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Hierarchical transfer learning with applications for electricity load
forecasting.

Abstract

The recent abundance of data on electricity consumption at different scales opens new opportunities

and highlights the need for new techniques to leverage information present at finer scales in order

to improve forecasts at wider scales. In this work, we take advantage of the similarity between

this hierarchical prediction problem and transfer learning where source data are observed at a

low aggregation level and target data at a global level. We develop two methods for hierarchical

transfer learning, based respectively on the stacking of generalized additive models and random

forests (GAM-RF). We also propose and compare adaptations of online aggregation of experts

in a hierarchical context using quantile GAM-RF as experts. We apply these methods to two

problems of electricity load forecasting at the national scale, using smart meter data in the first

case, and regional data in the second case. For these two usecases, we compare the performances

of our methods to that of benchmark algorithms, and we investigate their behavior using variable

importance analysis. Our results demonstrate the interest of both methods, which lead to a

significant improvement of the predictions.

Keywords: Demand forecasting, Semi-parametric additive model, Random forest, Transfer

learning, Time series , Combining forecasts, Aggregation of experts.

1. Introduction

The recent abundance of electricity consumption data at low aggregation level, due in part to

the development of smart meters, opens up many prospects for electricity consumption forecasting

(e.g. see Wang et al. (2019)). However, with these new perspectives come new challenges, among

which is the question of how to include these data obtained at a finer scale (corresponding to a

household or to a smaller geographical area), which can be used to create forecasts at a fine scale,

into a prediction at a wider scale (at the national scale for example). In this work, we present two

methods for leveraging our ability to predict a variable of interest at a finer scale, with the goal of
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exploiting these predictions to improve prediction at a larger scale. This problem, which consists

in taking advantage of the similarities (e.g. similar dependency to explanatory variables, common

drift in distributions) existing between forecasting problems at different scales, can be naturally

formulated in the framework of transfer learning.

Transfer learning methods aim at transferring the knowledge acquired from solving given prob-

lems (referred to as source problems S) to address an other problem of interest (referred to as the

target problem T ). In a supervised predictive machine learning setting, the objective is to predict

a variable of interest Y T using covariates XT . To do so, the learner relies on a set of observations

(XTi , Y
T
i )i∈{1,...,nT }, drawn from a joint distribution PT . Popular methods rely on minimizing the

empirical risk corresponding to a given loss function over a set of possible learners (e.g. tree based,

neural nets, generalized additive models). When the learners and the loss are chosen appropriately,

the estimated model will have good forecasting accuracy on a new dataset as long as the size of

the training set is sufficiently large, and the marginal and joint distributions remain unchanged in

the test set. In a wide range of real-world applications, these conditions are not satisfied. Clas-

sical examples of such situations include tasks requiring massive training sets, such as computer

vision or natural language processing. When dealing with temporal data, one may be confronted

with changes in the distribution leading to large prediction errors over the prediction period. If

we consider that the historical data correspond to a first problem, and the prediction period to

a different but related problem, we are faced with the following challenge: we must exploit the

similarity between the two tasks, in order to take advantage of the abundance of historical data,

while ensuring adaptability to the new task.

Transfer learning aims to tackle such a problem. It has attracted increasing attention in machine

learning and has been used in many applications (see Olivas et al. (2009)). In many practical

situations, a relatively small quantity of data from the target distribution PT is available. In some

cases, one also has access to a larger dataset, with a different distribution denoted PS , which can be

used to solve a task related to the target problem. A key assumption is that PT and PS are related

in a way that can be leveraged by the transfer learning method. These distributions may be defined

on the same domain (in this case, the transfer learning problem is said to be homogeneous), or on

different domains, in which case more complex transformations need to be developed (the transfer

learning problem is then said to be heterogeneous). In this paper, we will focus on heterogeneous
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transfer problems, with differences between source and target in terms of features spaces, feature

marginal distribution, and joint distribution.

Surprisingly, although transfer learning is very popular in computer vision and text mining

(see Pan & Yang (2010) and Zhuang et al. (2020) for a survey), very few developments can be

found in the time series forecasting community. In (Laptev et al., 2018) the authors fine-tune a

pre-trained neural network using a large data set of individual electricity loads as source and some

independent individual data as target. In (Capezza et al., 2021) additive stacking (an interpretable

aggregation of experts) is proposed combining models at the individual level and global one for

probabilistic forecasting of individual demand. In (Obst et al., 2021b,a) the authors propose a

fine-tuning approach as well as online updates to transfer information from Italian Data to French

Data in order to improve electricity load forecasts during the COVID lockdown. Here the transfer

is both in time (from past data (source) to future data (target)) and space (from one country to

another).

Hybridizing statistical models with modern machine learning tools recently proved to be an

efficient strategy to forecast time series (see Smyl (2020) top rank at the M4 competition). Anderer

& Li (2022) propose to transfer time-series features for bottom-up forecasting in the context of M5

competition with intermittent time series at the low aggregation level. N-BEATS, a deep learning

forecasting approach is proposed at the global level and boosting trees with LightGBM at the

bottom level. In the present paper, we develop new transfer learning methods for hierarchical

prediction, that leverage data available at a fine scale to improve prediction at a wider scale. The

first approach, presented in more detail in Section 3, is based on the design of new features learned

from the source data. These features are then used as input in a Random Forest (RF) stacked with

a Generalized Additive Model (GAM). Stacking an ensemble of forecasting models for time series

forecasting has already been done successfully (see e.g. Khairalla et al. (2018); Moon et al. (2020)

for load forecasting, Dong et al. (2021) for wind power forecasting, Xenochristou & Kapelan (2020)

for water demand forecasting and Zhai & Chen (2018) for pollution forecasting). Previous work

usually combined the forecasts in a meta-learner whereas we propose to combine features from

GAM with original covariates in the RF. This is new and allows to detect interactions not modeled

in GAM or appearing online (typically interaction with time in the context of drift). Our empirical

results suggest that the feature design method presented above, combining stacked GAM and RF,
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allows to improve prediction at an wider scale by leveraging knowledge acquired from data at a

finer scale. Unfortunately, this approach relies on knowledge acquired on a training set, which may

not be relevant if a change in distribution occurs during the test period. For this reason, these

methods are not adaptative to a brutal change in distribution both at the fine and the wider scale,

and to leverage the relationship between both. To ensure adaptivity in our model, we propose

a second transfer learning approach based on online aggregation of experts. In the hierarchical

context, Goehry et al. (2019) and Brégère & Huard (2021) show that aggregating experts designed

on different nodes of a hierarchical partition of the data (statistical clustering based on temporal

or exogenous information, spatial partition) improves forecasting performances compared with

classical bottom-up approaches. Our online aggregation strategies leverage similarities between

shifts in distribution at the local scale and at the global scale, in order to adapt more quickly. We

also present a new way of designing relevant experts in this context.

1.1. Contributions and outline of the paper

In this paper, we develop two methods for leveraging information available at a fine scale to

improve prediction at a wider scale, based respectively on feature design combined using stacked

generalized additive models and random forests, and on online aggregation of experts. These meth-

ods are presented in Section 3, and illustrated on two real-world problems. In Section 4, we apply

the first method to the problem of electricity load forecasting at the national level, relying on

smart meter data. In Section 5, we combine these methods to obtain adaptative methods for fore-

casting electricity consumption at the national level during the Covid-19 pandemic period, using

data available at the regional level. We demonstrate the interest of our proposed approach in

both cases. Our results indicate that both the stacking of GAM and RF and the use of features

designed on data at finer scale lead to improvements in the forecasts at wider scale. Moreover, the

use of multi-scale information transfer through aggregation of experts also increases the quality of

wide-scale forecasts. Strikingly, our results indicate that in the two usecases, the presented meth-

ods can improve wide-scale predictions by using fine-scale predictions, even when no hierarchical

constraints are implemented.

For reproducibility of the results, please find the code and data in the supplementary ma-

terial: https://drive.google.com/file/d/1hdCEHKpVXt6zoSi7n7xEA0oUKW-_uEeD/view?usp=

sharing.
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2. Concepts and algorithms

In this section, we present the different statistic tools composing our transfer learning approach:

generalized additive models, (quantile) random forests, and online aggregation of experts.

2.1. Generalized additive models

Generalized additive models (Wood, 2006) are a simple class of models that model a response

as a sum of smooth non-parametric functions of the covariates. Partially linear additive models

(Amato et al., 2017), which are a special case of generalized additive nonparametric models (GAM),

retain the parsimony and interpretability of linear models and the flexibility of nonparametric

additive regression, by allowing a linear component for some predictors which are presumed to

have a strictly linear effect, and an additive structure for other predictors. This choice of both

linear and non-parametric components allows to reduce the degrees of freedom and to mitigate the

problem known as “curse of dimensionality”.

Given observations {(Yt,X(1)
t ,X

(2)
t )}nt=1, where Yt is the response at time t, X

(1)
t = (X

(1)
t,1 , . . . , X

(1)
t,d1

)T

and X
(2)
t = (X

(2)
t,1 , . . . , X

(2)
t,d2

)T are vectors of covariates, the partially linear generalized additive

model assumes that

Yt = b+
(
X

(1)
t

)T
β +

d2∑
j=1

fj(X
(2)
t,j ) + εt, t = 1, . . . , n, (1)

where b is the intercept, β is the d1 × 1 vector of unknown coefficients for linear terms, fj are

unknown nonlinear real valued components and the εi’s are i.i.d random variables with mean 0 and

variance σ2 independent of the covariates. In order to ensure that the model is identifiable, one

requires that the linear covariates are centered and that identifiability conditions
∫
fj(t)dt = 0,

j = 1, . . . , d2 hold. For the sake of simplification, and with some abuse of definition, such PLAM

models will be referred hereafter as GAMs, and we will denote by fk(Xk) the effect of variable Xk,

be it linear or non-parametric.

Such models, together with procedures that achieve estimation and simultaneous consistent

variable selection, have proven their ability to cope with high-level aggregate electricity data in

previous work: Goude et al. (2013) applied it to french substations consumption and Fan & Hyn-

dman (2012) show their interest for regional Australia’s load forecasting. Moreover they can be

applied efficiently to forecast electricity data at different levels of aggregation (Amato et al., 2021).

In the following, GAMs are trained in R using the library mgcv (Wood, 2017).
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2.2. Random forest and quantile regression forest

Random forests (RF) are a powerful black box approach for modeling complex regression re-

lationships (see Breiman (2001)). The very general underlying model behind a random forest

regression assumes that yt = h(Xt) + εt, where g is a generic, non-parametric function, and εt is

an independent gaussian noise. Because of the generality of the model, RF necessitates very little

prior knowledge of the problem. RF are obtained by aggregating an ensemble of base learners

generated by applying classification and regression trees (CART, see Breiman et al. (1984)) on

different subsets of the data obtained with bagging and random sampling of covariates. One nice

feature of random forests is that they can be easily used for quantile regression as presented in

Meinshausen & Ridgeway (2006).

In our applications, we use the procedure ranger() from the R toolbox ranger for the random

forest fits. The default parameters are used (500 trees, mtry =
√
p, unlimited tree depth). In

future work, these values could be optimized in a more refined way by combining ranger with

procedures from the R library caret, at the cost of increasing CPU time.

2.3. Online aggregation of experts

Online robust aggregation of experts (Cesa-Bianchi & Lugosi, 2006) is a powerful model agnostic

approach for time series forecasting. It consists in combining in a streaming fashion different

forecasts (called experts) according to their past performances. When experts forecasting a variable

of interest at a finer scale are aggregated so as to forecast this variable at the wider scale, this

allows to transfer knowledge between these different scales. Aggregation of experts was recently

applied in a forecasting competition (see Farrokhabadi et al. (2021)), where 2 of the 3 first teams

(see de Vilmarest & Goude (2021), Ziel (2021)) applied these approaches to forecast electricity load

consumption during the COVID lockdown in a big city (unknown localization). In this changing

context, online aggregation allows to adapt to changes in distributions and to track the performance

of the best expert.

We propose here a short description of sequential expert aggregation for forecasting. A complete

presentation of these methods can be found in Cesa-Bianchi & Lugosi (2006). Sequential expert

aggregation assumes that data are observed sequentially: the target variable (here the electricity

consumption) is supposed to be a bounded sequence Y1, . . . , YT ∈ [0, B], B > 0, which we want to

forecast step by step for every time t. At each time t, N experts provide forecasts of Yt, denoted
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(
Ŷ 1
t , . . . , Ŷ

N
t

)
∈ [0, B]N . These experts can come from a statistical model, a physical model, or

expert advice projection. The aggregation algorithm chooses weights p̂j,t ∈ RN , and returns as

forecast for Yt a weighted average Ŷt =
∑N

j=1 p̂j,tŶ
j
t of the N forecasts. Then, Yt is observed and

instance t+ 1 begins. In the following, we will consider only convex aggregation (with weights p̂j,t

summing to one and in [0, 1]).

The performances of experts and aggregation forecasts are evaluated according to a convex loss

function. We will consider here the square loss `t(x) = (Yt − x)2. At time t, expert k suffers loss

`t(Ŷ
k
t ) = (Yt − Ŷ k

t )2 and the aggregation `t(Ŷt) = (Yt − Ŷt)2. The purpose of expert aggregation is

to minimize the total loss
∑T

t=1(Yt − Ŷt)2 that can be expressed:

1

T

T∑
t=1

(Yt − Ŷt)2 ,
1

T

T∑
t=1

(Yt − Ŷ ∗t )2 +RT ,

Ŷ ∗t is called an oracle and can be viewed as an optimal (unknown before the forecasting run)

forecast. RT is the regret term corresponding to the error suffered by our algorithm relatively to

the error of the oracle. Some algorithms are proposed to achieve low regrets. In our study, we use

the ML-Poly algorithm proposed in Gaillard et al. (2014) and implemented in the R package opera

(Gaillard & Goude, 2016). This algorithm tracks the best expert or the best convex aggregation

of experts by giving more weight to an expert that will generate a low regret. This makes this

algorithm particularly interesting as no parameter tuning is needed.

3. Hierarchical stacking

In this section, we present our methodological contributions. The first one relies on learning

new features using data from the source distribution. These features are then used as input in a

stacked GAM and RF model. The second one is to design new aggregation strategies to adaptively

forecast variables on a bi-level hierarchy.

subsectionFeature design for stacked GAM and RF

Features design using the source data. In the following, we suppose to have access to two data sets

DT =
(
XTt , Y

T
t

)
t=1,...,nT

and DS =
(
XSt , Y

S
t

)
t=1,...,nS

,

where DT is the target data set in the sense that the final objective is to forecast Y Tt , and has

underlying distribution PT . DS , with underlying distribution PS , is an auxiliary source data set
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sharing some common properties with DT . We then want to exploit DS in order to improve the

forecast of Y Tt .

While, in general, the covariates from the source and target datasets XSt and XTt may belong

to spaces of different dimensions, we may assume without loss of generality that there exists a

subset C of covariates that are common to both data sets. In the setting of electricity consumption

forecasting, these common variables can be, e.g., calendar variables, or meteorological variables (at

finer scale in DS , and at wider scale in DT ). It is then natural to assume that these features will

have similar effects on the variable of interest Yt in the target and source data set. To exploit this

idea, we propose to learn the effect fk of a common feature Xt,k such that k ∈ C, using the source

dataset DS . More precisely, we fit a GAM on the dataset DS , and we extract the smooth function

fk corresponding to the effect of covariate Xt,k. We then use fk to generate a new feature fk(XTt,k),

which we include in the target dataset DT . When the functions fk are learned from an auxiliary

dataset DS corresponding to observations at a finer scale, adding the corresponding features to

the dataset DT of observations at the wider scale allows to transfer knowledge in a hierarchical

fashion.

Note that we can also use this technique to learn the effects of the covariates directly on the

target dataset DT , and use them as new features in the regression. If we use one type of learner

(e.g., GAM) to learn the feature, and we combine these features using a different type of learner

(e.g., RF), we can hope to take advantage of both types of learners. This idea motivates the

stacking of generalized additive models (GAM) and random forests (RF) presented below.

Stacked GAM and RF. Our models for the target problem are obtained by stacking GAMs and

the correction provided by random forest regression trained on the target dataset.

GAM provide interpretable models and a natural way to incorporate expert knowledge into

a statistical model. In addition, because of the smoothness assumptions imposed on GAM func-

tionals, GAMs provide a good representation of the effects of important features and they can

extrapolate out of training data. However, they only model the influence of pre-specified covari-

ates or pairs of covariates, and can therefore fail to account for some interactions between inputs.

By contrast, Random forests (RF) can model complex regression relationships (see Breiman

(2001)): their black box design can capture well complex non-linear interactions. By definition,

RF predictions are restricted to the convex hull of the outcomes Yt of the training data (all the
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possible mean of yi). This behavior prevents them from producing aberrant predictions caused by

extrapolation, even when trained on very small data sets, as can typically be the case in a transfer

learning framework with a small target dataset and a high number of covariates (Balestriero et al.,

2021). To have the best of both worlds, we propose to stack these two approaches. Note that

using other black box machine learning methods such as neural nets or boosting trees could be a

potential improvement for future research.

The stacked GAM and RF algorithm (GAM-RF in the following) consists in three steps:

1. We first fit a GAM model as Equation (1) on the source data DS . We use the estimated

GAM features (fk)k∈C to create new features
((
fk(XTk,t)

)
k∈C

)
t=1,...,nT

for the target dataset.

2. We compute estimates of forecasting residuals on the target dataset DT (either by cross-

validation, block cross-validation or forecasting errors in an online forecasting setting) denoted

ε̂t.

3. We then fit a RF model on the augmented target dataset
(
ε̂t,X

T
t ,
(
fk(XTk,t)

)
k∈C

)
t=1,...,nT

to

predict the GAM residuals ε̂t. The final forecasts are obtained by summing GAM forecasts

and the corrections provided by the RF.

The method presented above allows transferring information through the new features fk, used

as input in the RF. In Section 4, we illustrate this methodology by applying the stacked GAM-RF

to predict electricity load at the national level for the United Kingdom, by leveraging data available

at a finer scale collected by smart meters.

3.1. Online aggregation of stacked experts for a bi-level hierarchy

Our experiments in Sections 5 and 4 show that GAM and RF stacking can exploit the data

in the source dataset to improve prediction on a related target dataset. However, this method

relies on the assumption that the source and target distributions are constant, and thus may not

be robust if a change occurs in these distributions. In many hierarchical prediction situations, it is

natural to assume that changes in the distribution at the least aggregated level (i.e., on the source

data) and at the most aggregated level (i.e., on the target data) are related. One may then want

to take advantage of the data available for the source problem to learn these changes more quickly

and obtain more adaptive forecasts for the target problem. To achieve this goal, we propose to

use online aggregation of quantile experts. We consider a hierarchical forecasting setting where
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the data yt are observed at a global level and in K zones yz,t such that yt =
∑K

z=1 yz,t. We denote

ynormt (resp. ynormz,t ) the normalized load at the global (resp. zonal) level. This normalization

consists in dividing these time series by their empirical mean (computed on the source set). We

propose different original ways to create experts that will be aggregated online.

3.1.1. Experts

Online expert aggregation leverages the diversity of predictions made by different experts by

combining their predictions. To obtain a diverse set of experts, we train our models to predict

different quantiles of the target distribution. Designing experts for low and high quantiles present

several advantages. On the one hand, these experts, when aggregated online to track the changes in

the distribution of the load using convex aggregation, are particularly relevant since there is a high

probability that the real consumption falls in the convex hull of the quantile experts. On the other

hand, by doing so, we obtain experts with similar behavior across regions, that can share weights

between the different regions and at the national level. Indeed, it is reasonable to assume that

when an expert receives a low weight in one region, it must receive a low weight in all regions. For

example, in Section 5 we study the problem of electricity load forecasting in France at the national

level using regional data. Measures taken in response to the Covid-19 epidemic in France resulted

in a decrease in electricity load throughout the country: this change would correspond to low-

quantile experts for the different regions receiving higher weights in the aggregation. Considering

a vectorial aggregation model allows us to take advantage of the similar behavior of the quantile

experts across regions.

In addition, we increase the diversity of the set of experts by considering different models to

predict these quantiles, which we now describe. The stacked GAM and RF presented in Section

3 can be computed for each zone. We propose two ways of computing stacking: one considering

each zone individually (individual GAM-RF), and the other considering common models for zones

and at the global level (common GAM-RF). We the following experts.

• GAM: a GAM is fitted on each zone and at the global level on the normalized data resulting

in K + 1 scaled experts.

• Individual GAM-RF: using quantile regression forests, we fit for each zone and at the

global level 5 RF on the residuals of the GAM model. These RF predict quantiles at levels
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0.05, 0.1, 0.5, 0.9, 0.95. By stacking the prediction of these RF and of the GAM, we obtain

5 scaled experts for each zone.

• Common GAM-RF: using quantile regression forests, we fit 5 RF on the aggregated resid-

uals for all zones and the global level. These RF predict quantiles at levels 0.05, 0.1, 0.5, 0.9,

0.95. By stacking the prediction of these RF and of the GAM, we obtain 5 scaled experts for

each zone.

These approaches are illustrated in Figure 1. Quantile experts can be considered are possible

scenarios of evolution of the data distribution that we will try to track online in the aggregation.

Common RF are used to improve the transfer efficiency and capture common dynamics between

the zones.

Figure 1: Experts used for predicting the normalized responses for the different zones and at the global level.

3.1.2. Aggregation strategies

The strategy described in Section 3.1.1 yields 11 experts for each one of K zones and for the

global level: 1 GAM expert, 5 GAM-RF stacked experts trained zone by zone, and 5 GAM-RF

stacked experts trained on the aggregated data. Thus, we obtain 11×K experts. To combine the
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predictions of these experts, we propose 4 aggregation strategies taking differently into account the

hierarchical structure of the data. The algorithms are described below and illustrated in Figures 2

and 3.
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(a) Fully disaggregated model.

(b) Vectorial aggregation.

Figure 2: Fully disaggregated and Vectorial aggregations strategies.
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• Full disaggregated model: we use the full set of 11(K+ 1) scaled forecasts as experts and

the scaled global response ynorm as our target variable. The prediction is then multiplied by

the average value of the response at the global level.

• Vectorial aggregation: we illustrate the possibility to share weights between the zones and

at the global level. We aim at predicting the time series of the (K+1)-dimensional vector

corresponding to the scaled response in each zone and at the global level. To do so, we

aggregate 11 vectorial, (K+1)-dimensional experts corresponding to the predictions of the

GAMs and of the 10 stacked GAM-RF. The prediction corresponding to the global level is

then multiplied by the average value of the response at the global level to forecast y.

• Hierarchical aggregation, scaled predictions: as a first step, we aggregate the 11 experts

in each zone using the scaled response for a zone z, ynormz as a target, and we obtain K experts.

Then, we aggregate these K experts and the quantile experts at the global level, with the

scaled global response ynorm as our target variable. The prediction is then multiplied by the

average value of the response at the global level.

• Hierarchical aggregation, unscaled predictions: we again aggregate the 11 experts in

each zone, using the scaled response for the corresponding zone as a target, and we obtain

K experts predicting the normalized response at the zonal level. Then, we multiply their

predictions by the average value of the response for the corresponding zone yz, and sum

these predictions in order to obtain a forecast of the global level y. We underline that this

aggregation method is the only one enforcing coherency between the prediction at the zonal

level and the prediction at the global level.

14



(a) Unscaled hierarchical aggregation.

(b) Scaled hierarchical aggregation.

Figure 3: Unscaled and scaled hierarchical Aggregations strategies.
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In Section 5, we apply this methodology to adaptively predict electricity load at the national

level in France during the first Covid lockdown using data at the regional level. We underline that

our objective is the forecast at the national scale, and that forecasts at the regional scale are only

used to improve this aggregated forecast. For this reason, we do not require that the forecasts be

coherent (the sum of the forecasts at the regional level does not necessarily have to be equal to

the forecast at the national level). In fact, the experiments presented in Section 5 indicate that

aggregation methods that do not respect coherency (such as vectorial aggregation) can obtain more

accurate results than methods that do (i.e. hierarchical aggregation with unscaled predictions).

4. Transfer learning for forecasting aggregated smart meter data

In this section, we will illustrate the methodology using a dataset that is commonly used for

the calibration of electricity consumption forecasting models. The dataset is made up of aggregate

semi-hourly consumption data of the national load for the United Kingdom, and of observations

of some meteorological and calendar variables. Our goal is to forecast electricity consumption at

the national level from December 2009 to August 2010 (this period will be referred to as the test

set). For this purpose, we assume that we have access to data at the national level covering the

period from April 2005 to November 2009 (called hereafter the learning set) and data from smart

meters for a smaller period (from April 2009 to August 2010). In this first example, we compare

the performances of a GAM, a RF and a stacked GAM-RF trained using data at the national scale

to the performances of a stacked GAM-RF using features learned from smart meter data. This

allows us to highlight both the advantage of stacking GAM and RF and that of transferring the

GAM features learned at the finer scale, and to decompose the contribution due to stacking GAM

and RF and to using these new features.

4.1. Data

4.1.1. National Data

This dataset for UK national semi-hourly electricity consumption is provided by the European

Grid Standards Office (see https://www.nationalgrideso.com/balancing-data/data-finder-

and-explorer) and covers the period between April 2005 and December 2010. We add as features

the temperature data obtained from the NOAA (National Oceanic and Atmospheric Administra-
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tion) 1 for the 10 largest cities in the UK: London, Birmingham, Glasgow, Sheffield, Bradford,

Liverpool, Edinburgh, Manchester, and Bristol. We then compute a weighted average Tt of the

temperatures recorded in these 10 stations with weights proportional to the official population

of each city, and we finally perform an exponential smoothing of this weighted average with the

parameters 0.2, 0.05, and 0.01.

4.1.2. Smart meters Data

This data set corresponds to smart meters data at an individual scale in the UK. This dataset

has been obtained from the Energy Demand Research Project (EDRP) launched by Ofgem on

behalf of the UK Government in 2007 (see AECOM (2018), Schellong (2011) and 2) where the power

consumption of approximately 60,000 households was collected at half hourly intervals for about

two years. We consider a subset of 1925 customers from April 2009 to August 2010 located in two

regions of the UK: south-east (arround Brighton) and north-west (around Glasgow). We considered

temperatures in each region, obtained from the NOAA. We add to this data set supplementary

calendar covariates such as the time of year, day type, sunrise and sunset time along the year.

4.2. Models and forecasting

The fitting procedure used to forecast electricity consumption at the national level can be

described as follows.

We note a trend in the time series of consumption over the period from April 2005 to August

2010. We estimate this trend in a very simple way by fitting to the series of observations a

nonparametric Gaussian model Yt = µ+s(t)+εt, the trend s(t) being represented in a cubic spline

function base with a number of knots limited to three. In the following, we subtract this trend and

aim at forecasting the national de-trended consumption, which is then given by Y c
t = Yt− ŝ(t)− µ̂.

We apply the stacked GAM and RF methodology to predict national load consumption, using

only data available at the national level. Note that this is a special case of the general transfer

learning framework, with DT = DS , and where the final forecast is obtained using RF on the data

enriched with the transfer of information performed using the design of new features. We begin by

1https://www.noaa.gov/
2https://www.ofgem.gov.uk/gas/retail-market/metering/transition-smart-meters/energy-demand-

research-project
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Y c
t de-trended electricity load

Tempt weighted temperature

Temp99t weighted and exponentially smoothed temperature

Instantt instant of the day

DayTypet day of the week

Holidayt binary variable indicating public holiday days

LongWeekEndt binary variable indicating the presence of a long weekend

ToYt time of year

Table 1: Variables used in the models 2 and 3

fitting a semi-parametric GAM on the learning set. The GAM is given by

Y c
t =

∑7
j=1mjIDayTypet=j +m8IHolidayt=1 +m9ILongWeekEndt=1

+ g1(Instantt,Tempt) +
∑7

j=1 fj(Instantt)IDaytypet=j + s(ToYt)

+ s(Temp99t) + εt

(2)

where the variables are presented in Table 1, and εt is a centered Gaussian noise. Each univariate

smooth component of the above GAM model is fitted using regression spline functions with 40

knots (50 knots for ToY) and a tensor basis of spline functions for the interaction between time

and temperature with 20 and 10 knots, respectively.

Then, once the fit (2) has been performed, we extract the estimated effects g1, and fj of the

features, and add them to the set of initial covariates. This enriched dataset will then be used to

train the RF. Note that the initial number of covariates in the database taken into account in the

Equation (2) is 7, and the number of additive components extracted by the GAM methodology is

15. We thus find ourselves, after transfer, with a sample having a number of observed covariates

equal to 22. We apply the GAM-RF stacking methodology to fit a nonparametric regression called

GAM.RF.nat on the training sample. Finally, we evaluate the prediction of this stacked GAM and

RF on the test sample, and compare it to the predictions obtained with the GAM (2) model.

We also compare this model to a standard regression model by random forests, denoted hereafter

RF.nat.

In a second time, we apply the stacked GAM and RF methods to transfer information from the

smart meters data. We begin by computing the total consumption of the customers on the smart
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meter data set, and we fit a GAM model to forecast this total. Using the same methodology as

for the national data, we obtain the model presented in Equation (3). We chose to use a simpler

model than the national one, because the dataset used to train it is smaller.

yt =
∑7

j=1mjIDayTypet=j

+ g1(Instantt, Tt) +
∑7

j=1 fj(Instantt)IDayTypet=j + s(ToYt)

+ εt

(3)

We then extract the 10 non-linear features of this model as supplementary covariates and add them

to the dataset consisting of all original covariates and of the effect extracted from the GAM at the

national level. Finally, we use these covariates to train the stacked GAM-RF, and obtain a model

called GAM.RF.local. We underlined that the GAM (3) used to model the aggregated smart-meter

load is fitted on the small dataset consisting of smart-meter data. However, the effects fk extracted

from this model are then used to create new features for each entry of the large national dataset.

Thus, the models RF.nat, GAM.nat, GAM.RF.nat, and GAM.RF.local are trained on the same

number of observations from the national dataset.

GAM.nat RF.nat GAM.RF.nat GAM.RF.local

RMSE 1409 MW 1339 MW 1214 MW 1193 MW

MAPE 2.670 2.560 2.360 2.310

Nb of covariates 7 7 22 32

Table 2: Errors of prediction for the learners GAM.nat, RF.nat, GAM.RF.nat, and GAM.RF.local

An importance by permutation analysis of the variables used in the stacked RF after learning by

transfer retains as most important for GAM.RF.nat the instant of the day, followed by three terms

from the national GAM modeling. For the model GAM.RF.local, the most important variables are

the instant of the day, followed by two terms from the national GAM, and by one term from the

local GAM.

By analyzing the mean absolute percentage errors (MAPE) and the root mean squared errors

(RMSE) of the different methods, presented in Table 2, we see that for the British national data
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set, the RF are more efficient than the adopted reference model GAM. Interestingly, the stacked

GAM and RF trained using only national data GAM.RF.nat outperforms these two models. This

indicates that the stacking of GAM and RF allows to obtain the best of both worlds: the RF is

able to correct effects or interactions of variables (such as the instant of the day) that are not well

captured by the GAM, while being robust to the large number of covariates taken as input (up

to 28). Finally, the best model both in terms of MAPE and RMSE is obtained by stacking GAM

and RF using effects learned from both national and smart meter data. These results underscore

the value of leveraging available data at a finer scale, even when no hierarchical constraints are

implemented in the algorithm.

5. Electricity load forecasting during the first Covid-19 lockdown

In this Section, we apply our methodology to short-term electricity load forecasting during the

Covid-19 lockdown and post-lockdown period in France, at a resolution of half an hour and at

the national level. To do so, we leverage information available at the regional level. Electricity

consumption has been significantly affected by the measures taken by the government to cope

with the epidemic: closures of non-essential businesses, as well as stay-at-home directives, have

led to a decrease in electricity consumption of about 10%, as well as to changes in its daily and

weekly patterns (see Obst et al. (2021b) for a description of the impact of these measures on french

electricity consumption). Common models trained on historical data, which rely on calendar and

weather data, fail to account for these significant changes. Similarly, transfer learning methods

relying on data present at a finer (e.g., regional) scale, if trained on data with different distribution

than that of the target, will make poor predictions, especially if the relationship between local and

global variables changes over time. Thus, these models, trained on data from the pre-pandemic

period, make relatively large prediction errors on the period following the start of the lockdown.

To ensure adaptativity of our models, we combine the stacked GAM-RF methodology presented

in Section 3 with the online aggregation of quantile experts presented in Section 3.1.2.

Transfer learning proves to be essential to address the problem of electricity load forecasting

during the Covid-19 pandemic. Indeed, as the data for this period is scarce, especially since

we want to make predictions from its very beginning, it is crucial to use information from the

pre-pandemic period to predict power consumption during the pandemic period. To do so, we
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use the methods presented above to transfer information from the large data set corresponding

to historical electricity consumption during the pre-pandemic period (hereafter called the source

period) to improve predictions during the pandemic period (called the target period). This can

be done using again stacked GAM and RF: this transfer learning algorithm allows us to rely on a

GAM trained on a large set of observations of historical electricity consumption, coming from the

source distribution, while correcting its error on the target using RF based on scarce observations.

On the other hand, because of the important changes in electricity consumption consecutive to

the lockdown, we expect that the relationship between effects learned on regional data and national

load will also change. Indeed, our studies reveal that containment measures induce changes in elec-

tricity consumption at the regional level, which however differ according to the region considered.

To make use of electricity consumption data available at the regional level, we must remain adap-

tative to changes in the distribution of both national and regional data. This is achieved by using

online aggregation of experts, which allows us to combine forecasts at the regional and national

levels in an adaptative fashion. We choose to forecast electricity consumption separately region

by region using stacked GAM and RF, and then combine the forecasts of these regional models in

order to predict national electricity consumption in a hierarchical fashion. In doing so, the hierar-

chical model captures regional phenomena that are not apparent at a more aggregated scale and

leverages this information to improve predictions at the national level. Thus, our methods allow

for transferring knowledge both at a temporal level (data from the pre-pandemic period are used

to improve forecasts during the pandemic period), and at a hierarchical level (regional predictions

are used to produce forecasts at the national level).

The rest of the section is organized as follows. In Section 5.1, we present the data used to design

and evaluate our models. In Section 5.2 we present the models used for forecasting electricity

consumption at the national and regional levels. The results of our study are presented in Section

5.3: first, we compare the performances of different approaches, then we present a more detailed

analysis of the stacked GAM and RF, and of the online aggregation of experts.

5.1. Data

The data are from the french TSO (Transmission System Operator) RTE. It consists of elec-

tricity consumption (in MW) at a half-hourly temporal resolution at the French national level

(“Load”) and for the 12 metropolitan administrative regions (it does not include Corsica): Nou-
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velle Aquitaine, Auvergne Rhônes-Alpes, Bourgogne-Franche-Comté, Occitanie, Hauts-de-France,

Normandie, Bretagne, Centre-Val de Loire, Île-de-France, Pays de la Loire, Provence-Alpes-Côte

d’Azur, Grand Est. Our goal is to forecast the French national consumption, exploiting the re-

gional loads information. For all the load consumption data, we compute the lags for one day and

one week and denote it with the subscripts“.48” and “.336”.

Our models use the temperature and weighted temperature as explanatory variables. These

variables were collected on the website of the French weather forecaster Météo France. For each

region, we compute the weighted mean of meteorological stations where the weights are proportional

to exp(−dist) where dist is the distance of the station to the barycenter of each region. Note that

we use the observed temperatures instead of their predicted values in our forecast. In doing so, we

cancel out the errors caused by the uncertainty of a particular weather forecast, which allows for a

more precise comparison of the different models. Moreover, this choice allows us to only use open

data, so as to ensure reproducibility of our results.

Our models also rely on variables characterizing the impact of the restrictions implemented

to fight the epidemic. The first of these variables is the Oxford Covid-19 Government Response

Tracker. This index, freely available at https://www.bsg.ox.ac.uk/research/research-projects/

covid-19-government-response-tracker, aggregates indicators characterizing the measures taken

by governments to mitigate the epidemic in terms of containment, health, and economic support.

It is available at the national level. The methodology used to calculate the index and the measures

on which it is based are known a few days in advance, so we assume that it is known for the day we

wish to forecast. The remaining variables used to characterize the impact of lockdown measures

are Google Mobility Indices. These indices are provided by Google, and obtained by aggregating

geolocalisation data. They characterize the changes in the frequentation of categorized places (res-

idential, workplaces, transports, parks, grocery and pharmacy, retail and recreation). The data are

freely available at https://www.google.com/covid19/mobility/, albeit with a little less than a

week delay. Therefore, we considered lagged versions of these indicators in our prediction. The

government response and mobility indices are available respectively from January and February

2020 onwards. Therefore, we do not use them as covariates in the source model, but only in the

target model.

Hereafter, we call source models the models trained on historical data, collected between the
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beginning of 2012 to the end of August 2019. We evaluate their performances on data with the same

distribution, during the pre-lockdown period ranging from September 2019 to March 15th 2020,

and compare it to their performance on data from the target distribution, ranging from March

16th to September 17th. By contrast, the models specific to the lockdown and post-lockdown

period, henceforth called target models, are retrained every day during this target period, so as to

leverage all observations available. Note that while the first french lockdown officially started on

March 17th, we consider March 16th as the first day of the target distribution, as the electricity

consumption pattern had already changed by that day.

5.2. Models

5.2.1. Generalized additive models for the pre-pandemic period

We use GAM to predict the electricity load under normal circumstances. We fit one model for

each region of mainland France, as well as one at the national level, and obtain thus 13 models.

To take into account the daily patterns of electricity consumption, each model is composed of 48

GAM fitted independently and forecasting the electricity load at a given instant of the day. Thus,

the 624 time-series corresponding to the 48 half-hours for the 12 regions and the national level

are treated independently. In order to compare the predictions, terms, and errors of the models,

regional and national electricity loads are normalized, that is, they are divided by their average

value for the region and the half-hour considered. GAM are then fitted to predict this normalized

load. In the following, we denote respectively by y and ynorm the load and the normalized load.

The model used to predict the electrical load for a zone z at a time t corresponding to the h-th

half-hour of the day is the following:

ynormz,t =
7∑

i=1

1∑
j=0

α
(z,h)
i,j 1DayTypet=i1DLSt=j +

7∑
i=1

β
(z,h)
i Load.48z,t1DayType=i (4)

+γ(z,h)Load.336z,t + f
(z,h)
1 (t) + f

(z,h)
2 (ToYt) + f

(z,h)
3 (t,Tempz,t) (5)

+f
(z,h)
4 (Temp95z,t) + f

(z,h)
5 (Temp99z,t) + f

(z,h)
6 (TempMin99z,t,TempMin99z,t) + εz,t(6)

where εz,t is gaussian white noise, and the variables are presented in Table 3. Each univariate

smooth component of the above GAM model is fitted using regression spline functions with respec-

tively 20 knots for ToY, 10 knots for Temp95 and Temp99, 5 knots for Date, and a tensor basis of

spline functions for the interaction between time and temperature with 3 and 5 knots, respectively.
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ynormz,t normalized electricity load for the zone z

Daytypet categorical variable indicating the day of the week

DLSt binary variable indicating whether t is in summer hour or winter hour

ToYt time of year

Tempz,t temperature in the zone z

Temp95z,t weighted and exponentially smoothed temperature of smoothing factor 0.95

Temp99z,t weighted and exponentially smoothed temperature of smoothing factor 0.99

TempMin99z,t minimal value over the day of Temp99z,t

TempMax99z,t maximal value over the day of Temp99z,t

Load.48z,t normalized load of the day before in the zone z

Load.336z,t normalized load of the week before in the zone z

Table 3: Variables at time t used in model 4.

5.2.2. Quantile GAM-RF experts aggregation

We design experts by stacking GAM and RF, following the methodology described in Section

3. The RF are trained in a streaming fashion on the target data (pandemic and post-pandemic

period). Building on the results of Section 4, we choose to take as input for these RF the usual

covariates, but also the GAM effects learned on the source dataset. Interestingly, preliminary

results postponed to Appendix A indicate that while the RF inputs are high-dimensional, variable

selection only marginally affects the performance of our model. The RF appear to be robust against

the high dimension of the features, even in the early days of lockdown, where few observations are

available.

Using RF to correct the errors of the GAM during the pandemic period allows us to obtain an

adaptative model able to produce predictions from the very beginning of the target period. Note

that the corrections of the RF remain small compared to the predictions of the GAM: the first

order of the prediction is given by the source model, trained on the large set of historical data,

while the corrections learned on the scarce observations from the target dataset only provide a

second order correction.

For each of the 12 regions and at the national level, we obtain 11 experts, corresponding to

the GAM experts, the 5 GAM-RF quantiles experts trained on the residuals of the zone, and the
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5 GAM-RF quantiles experts trained on the aggregated residuals. Then, we compare 4 aggrega-

tion techniques (full disaggregated model, vectorial aggregation, hierarchical aggregation of scaled

predictions, and hierarchical aggregation of unscaled predictions).

5.3. Results

In this Section, we compare the methods presented above. First time, we compare their per-

formances in terms of MAPE and RMSE in Section 5.3.1. Then, we lead an importance by per-

mutation analysis of the RF, which is presented in Section 5.2.2. Finally, we analyze and compare

the different aggregation methods in Section Appendix B.2.

5.3.1. Performances

In Table 4, we compare the MAPE and the RMSE of the 4 methods, of the GAM at the national

level, and of the stacked individual RF predicting the median of the residuals at the national level.

We split the test period into 3 sub-periods. In the pre-pandemic period between September 1st

2019 and March 15th 2020, only the GAM predictions are available. During this period, vectorial

aggregation makes little sense since there is only one type of expert. The lockdown period ranges

between March 16th and May 11th: during this period, training data are very scarce, and models

must quickly adapt to a dramatic change in electricity consumption patterns. The post-lockdown

period, from May 12th to September 17th, corresponds to a new change in load pattern, due to a

relative rebound in activity, to which the models must adapt.

Model 2019/09/01-2020/03/15 2020/03/16-2020/05/11 2020/05/12-2020/09/17

GAM 1.36 %, 1030 MW 4.82 %, 2838 MW 1.84 %, 1045 MW

Individual stacked GAM-RF Non applicable 2.41 %, 1813 MW 1.03 %, 592 MW

Full disaggregated 1.20 %, 910 MW 2.26 %, 1716 MW 1.09 %, 609 MW

Hierarchical aggregation 1.14 %, 861 MW 2.21 %, 1648 MW 1.07 %, 609 MW

scaled

Hierarchical aggregation 1.20 %, 907 2.08 %, 1553 MW 1.02 %, 593 MW

unscaled

Vectorial aggregation Non applicable 2.56 %, 1885 MW 0.91 %, 521 MW

Table 4: Mean Absolute Percentage Error and Root of the Mean Squared Error of the stacked GAM and RF models.
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GAM-RF stacking improves GAM significantly. Using a stacked RF predicting the median of

the GAM residuals at the national level is enough to decrease its MAPE during and after the

lockdown by respectively 50 and 45%. All hierarchical aggregation strategies, except for vector

aggregation, outperform GAM and GAM-RF during the lockdown period: these results indicate

that online aggregation is an efficient way to take into account information available at a finer

scale. Our analysis in Appendix B shows that regional GAM have in average errors much larger

than that of the GAM at the national level, due to larger fluctuations present at the finer scale.

Interestingly, aggregating these low-accuracy models allows to obtain better performances than

that of the GAM at the national level, even in the pre-pandemic period. This confirms the interest

of aggregating quantile GAM-RF experts to track changes in the data. While vectorial aggregation

performs rather poorly compared to other aggregation strategies during the lockdown, it improves

over all other models after the end of the lockdown.

In Appendix B, we analyze the stacked GAM and RF. We plot the evolution of the importance

of the variables across time. Our results show that variables important for predicting one quantile

tend to be important for predicting the other quantiles. Moreover, the effects of the GAM are

among the most important covariates for predicting the GAM residuals. Using these effects as

covariates allows to transfer information on the impact of weather and calendar variables learned

on the large dataset of pre-pandemic observations. We also note that as time passes and the

size of the training set for the RF increases, relevant variables such as the Government Response

Tracker, or relative occupation of some places of interest become more important for the prediction.

Conversely, spurious variables are discarded as unimportant. Interestingly, the common RF trained

on residuals across all regions detects these relevant variables more quickly than the individual RF

trained solely on residuals at the national level. This highlights the interest of aggregating the

data across zones and scales in this sparse data context.

The fact that scaled and unscaled hierarchical aggregation obtain similar performances is some-

what counterintuitive, given that in the scaled model the aggregation must learn the contribution

of the different regions to the national consumption. To analyze this phenomenon, we investigate

in Appendix B the relative weight given to the experts corresponding to the different regions. We

find that the weights in the unscaled hierarchical aggregation do not correspond to the propor-

tions of electricity consumed by the regions, and that they typically exhibit much more flexibility
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than the true weights. The fact that the scaled hierarchical aggregation outperforms its unscaled

counterpart both in the pre-pandemic and in the post-lockdown period suggests that the flexibility

provided by the second layer of aggregation used in the scaled model compensates for the lack of

knowledge of the relative contribution of the different regions.

We also study the weights given by the experts in the vectorial aggregation, and note that it

gives a predominant weight to the GAM and median staked RF experts, which appears as the most

relevant experts across all regions; however, these weights are highly unstable during the beginning

of the lockdown. The performance of the vectorial aggregation during this period is worst than

that of all other aggregation models, and than that of the stacked RF predicting the median of

residuals. This behavior mirrors the fact that the impact of the pandemic strongly differs from one

region to another, as is shown in Appendix B. On the other hand, vectorial aggregation achieves

the best performance during the post-lockdown period and appears as a promising approach to

predicting consumption under normal circumstances.

6. Conclusions and Future Work

We propose new transfer learning methods designed for forecasting time series observed at

different hierarchical scales. We present two different settings and illustrate them with two different

usecases:

1. To transfer information from finer scale (an aggregate of smart meters) to wider scale (na-

tional) data when the distribution of the data is stable with time, we propose to stack features

from GAM obtained at these two scales into random forests.

2. To transfer information from local to global data when the distribution of the data is chang-

ing with time we propose hierarchical online aggregation of experts where the experts are

generated at a finer scale (regional level) using quantile stacked random forest.

We demonstrate the interest of our proposed approach in both cases. In both cases transfer

learning by RF stacking at a single scale improve significantly the forecasting performance of single

GAM or RF model: 14% of improvement over GAM and 9% over the RF for case 1, 38% over

GAM for case 2. It supports our original intuition that stacked RF gather both the ability of GAM

to extrapolate and RF to model automatically interaction between covariates.
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Regarding multi-scale transfer performances, we also obtained convincing results. In case 1, we

improved the day-ahead forecasting performance of the wider scale stacked GAM-RF of about 1.5%

with our multi-scale transfer algorithm. For case 2, the best hierarchical aggregation algorithm

improves about 10% the stacked GAM-RF at a wider scale. Our relatively simple strategy of re-

scaling plus aggregation behaves well in this bi-level hierarchy. We also saw that introducing strong

constrains in the aggregation weight (vectorial aggregation) can be an interesting transfer strategy

when the experts behave similarly at the different scales of the hierarchy. This is true during the

post-covid period but not during the hard lockdown in France of March-April 2020 (we suspect

that the effect of COVID on the electricity load impacts the different regions in a desynchronized

way).

The main learner used in the paper for the final forecasting is based on stacked GAM-RF. We

could have chosen other machine learning methods such as tree-based gradient boosting or neural

networks, which can be tested in future work. Our experiments revealed that automatic variable

selection when forecasting didn’t show any improvement. However, in a high dimensional setting

with a large number of features generated when learning the source, we believe that a possible

approach that is worth exploring, is to use for forecasting a regression-reinforced random forest

(RFRF) approach that may have better prediction performance than RFs. The idea behind RFRF

is to borrow the strength of penalized parametric regression to improve RF. For example, for

RFRFs, we may run a SCAD (or LASSO) (see Fan & Li (2001)) based selection before RF, then

construct a RF on the residuals from the SCAD (or LASSO) penalized fit. Preliminary simulation

results show that RFRFs can capitalize on the strength of both parametric and nonparametric

methods and may give reliable predictions in high-dimensional extrapolation problems such as

those encountered in transfer learning.

In our first usecase, we did not investigate the clustering of smart meter data to generate diverse

GAM features, but this is clearly a possible improvement. Introducing hierarchical constrains in

the weights, as proposed in Brégère & Huard (2021), is an other potential perspective for our

second usecase. Finding the good warping of weights constraints for vectorial aggregation could

also be a way to improve the performance of this method on desynchronized data.
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Appendix A. Variable selection for electricity load forecasting during the first Covid-

19 lockdown

We allow the RF to use many variables for their predictions, including usual calendar and

weather variables, as well as mobility data, containment index, and estimated GAM effects, without

knowing a priori which ones will be relevant to predict electricity consumption during the pandemic

period. It is reasonable to think that including all covariates might be detrimental to the prediction,

given the high correlations between some variables and the small number of observations available

to train the model, especially in the early days of the lockdown.

Variable selection for the RF. We allow the RF to use many variables for their predictions, in-

cluding usual calendar and weather variables, as well as mobility data, containment index, and

estimated GAM effects, without knowing a priori which ones will be relevant to predict electricity

consumption during the pandemic period. It is reasonable to assume that including all covariates

might be detrimental to the prediction, given the high correlations between some variables and the

small number of observations available to train the model, especially in the early days of lockdown.

We want to take advantage of the fact that the number of observations increases rapidly, by re-

peating the variable selection operation several times during the pandemic period, in order to be

able to enrich the model if necessary. Moreover, we expect that the relevant variables might differ

from one region to the other, and so we want to perform the variable selection region by region.

To do so, we select every week the variables to be used to train the RF for the following week’s

forecasts for a given region. Feature selection in RF is an ongoing field of research. State-of-

the-art methods rely on the ranking of variable importance measure, such as VSURF (Genuer

et al., 2015), or on permutation of variables, such as Boruto (Kursa & Rudnicki, 2010). These

methods suffer from their important computational cost: VSURF, in particular, is too slow to be

used in our context of numerous variable selection operations. We suggest an alternative approach

to determine the relevant covariates, using the technics developed for variable selection in linear

regression. More precisely, we fit a linear model to predict the residuals of the GAM during the

pandemic period using a LASSO penalty. Without prior knowledge of the number of covariates

necessary to accurately forecast electricity load, we design three models corresponding to different

numbers of covariates. More precisely, we fit a LASSO with an ad-hoc penalty to select respectively

5 and 10 covariates. This variable selection step is repeated every week. Finally, the predictions
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of the RF taking these 5 (respectively 10) covariates as input are combined with that of the RF

taking all covariates as input using an expert aggregation method.

Before implementing this method for all regions and all quantiles, we evaluate its interest in

predicting the 0.5 quantile of the national load using the available national data. We compare the

MAPE of the predictor obtained using Boruto, Lasso variable selection with an aggregation step,

and of the full model with 16 variables. The MAPE for the lockdown and post-lockdown periods

are presented in Table A.5.

Selection method 2020/03/16-2020/05/11 2020/05/11-2020/09/17

Lasso with aggregation 2.41 % 1.06 %

Boruta 2.41 % 1.03 %

Full model 2.41 % 1.03 %

Table A.5: Mean Absolute Percentage Error of the stacked GAM and RF models.

The preliminary results indicate that variable selection only marginally affects the performance

of the RF. This underlines the robustness of the RF against a high dimension of the inputs, even

when trained on relatively small data sets. We therefore consider the RF obtained using the full

models, taking as input all covariates and estimated GAM effects.

Appendix B. Analysis of our method for electricity load forecasting during the first

Covid-19 lockdown

Appendix B.1. Analysis of the stacked GAM and RF

Figures B.4a and B.4b present the evolution of the average importance (for the different half-

hours) of the variables for the stacked RF trained respectively on residuals at the national level,

and on all residuals. The importances of the different variables for a given model are normalized

so that their sum remains constant during the pandemic period, and equal to 100. More precisely,

denoting by Iv,t and Inormalized
v,t respectively the importance and normalized importance of variable

v at time t, we have at any time t

Inormalized
v,t = 100 ∗ Iv,t∑

variables v′ Iv′,t

We group the variables into 5 categories: the GAM effects, the measures of mobility, the government

response tracker, the lagged residuals, and the day of the week. The importance of a group is simply
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the sum of the importances of the variables in this group. The importance of the mobility measures

is detailed in Figures B.4c and B.4d.

(a) Average importance of types of variables in

the staked RF at the national level.

(b) Average importance of types of variables in the staked RF

common to all regions and the national level.

(c) Average importance of mobility measures in

the staked RF at the national level.

(d) Average importance of types of mobility measures in the

staked RF common to all regions and the national level.

Figure B.4: Evolution of the importance of the types of variables (top) and the mobility measures (bottom) in the

RF trained on GAM residuals at the national level (left), and on GAM residuals for all regions and at the national

level.

We note that the effects of the GAM are among the most important covariates for predicting

the GAM residuals. Using these effects as covariates allows to transfer information on the impact

of weather and calendar variables learned on the large dataset of pre-pandemic observations. We

observe a change in the importance of the different types of variables after the end of the lockdown,
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Figure B.5: Importance of the variables in the stacked RF predicting the quantiles 0.05, 0.5 and 0.95 of the GAM

residuals at the national level. The variables “GAMX” denotes the GAM effect corresponding to variable “X”.

(a) Accumulated Local Effects of the relative

frequentation of residential places.

(b) Accumulated Local Effects of the measure of

relative frequentation of workplaces.

Figure B.6: Accumulated Local Effects of the measure of relative frequentation of residential places (left) and

workplaces (right) for the RF at the national level predicting the quantiles 0.05 (red), 0.5 (black), and 0.95 (blue).

indicating that the RF is able to account for a relative change in electricity consumption patterns.

As time passes and the size of the training set for the RF increases, relevant variables such as the

Government Response Tracker, or relative occupation of residence, and grocery and pharmacies,

become more important for the prediction. Conversely, spurious variables (for example, the relative

frequentation of parks, highly correlated with weather) are discarded as unimportant. Interestingly,

the common RF trained on residuals across all regions detects these relevant variables more quickly
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than the individual RF trained solely on residuals at the national level. This highlights the interest

of multi-task learning in this sparse data context.

We also investigate the relative importance of the variables in the stacked RF predicting the

different quantiles. More precisely, we consider the stacked RF trained on the residuals at the

national level for the pandemic period. We compute an importance measure of a given variable

as the average increase in error in term of the pinball loss corresponding to a given quantile when

the values of this variable are permuted at random (the error is computed over the training set).

The importances of the different variables are normalized so that their sum is equal to 100. We

compare the importance of the variables for predicting the 0.05, 0.5, and 0.95 quantiles in Figure

B.5. Variables important for predicting one quantile tend to be important for predicting the other

quantiles. However, this is not the case for all variables: for example, the normalized load for

the relative frequentation of residential place and workplaces have an outstanding importance for

predicting the 0.05 and 0.95 quantiles. These variables have a very high (negative) correlation: the

frequentation of workplaces is very low during the lockdown period, and remains relatively low in

the post-lockdown period during weekdays; on the opposite, the frequentation of residential places

is high during the lockdown period and remains relatively high in the post-lockdown period during

weekdays. Looking at the Accumulated Local Effects of these variables, plotted in Figure B.6, we

see that they have a much larger impact on the prediction of the two extreme quantiles than on

that of the median. However, we expect their effects to partially cancel each other out because of

the correlation between these variables.

Appendix B.2. Analysis of online aggregation

Our results indicate that online aggregation is an efficient way to take into account information

available at a finer scale. Note that the regional GAM have in average errors much larger than that

of the GAM at the national level, as illustrated in Figure B.8, due to larger fluctuations present

at the finer scale. Interestingly, aggregating these low-accuracy models allows to obtain better

performances than that of the GAM at the national level, even in the pre-pandemic period, as

indicated by our results in Table 4.

The fact that scaled and unscaled hierarchical aggregation obtain similar performances is some-

what counterintuitive, given that in the scaled model the aggregation must learn the contribution of

the different regions to the national consumption. Looking at the distribution of the weights of the
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(a) Weights of the regional and national experts in the prediction at the national level. Red:

sum of the weights of the quantile and GAM experts by region, in the aggregation targeting the national

load using the full disaggregated approach. Green: weights of the regional experts, and for the national

level in the aggregation targeting the national load using the scaled hierarchical approach. Blue: true

proportion of the national electricity load consumed by the region.

(b) Weights of the quantile and GAM experts in the prediction at the national level. Weights

of the quantile experts and the GAM expert in the aggregation targeting the national load using a full

disaggregated approach (red), a hierachical aggregation approach (green), and a vectorial aggregation

approach (blue).

regions in the scaled hierarchical aggregation presented in Figure B.7a, we note that the weights do

not correspond to the proportion of electricity consumed by the regions (for example, regions with

low true weights such as Provence-Alpes-Côte d’Azur may receive more weight in the aggregation

than regions with high true weights, such as Île-de-France). Moreover, the weights in the aggrega-
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(a) Weights of the GAM and quantile experts in

the first step of hierarchical aggregation, targeting

the national load at 7:30 pm.

(b) Evolution of the weights of the GAM and quantile

experts in the vectorial aggregation at 7:30 pm.

Figure B.7: Evolution of the weights of the quantile stacked GAM-RF experts and the GAM expert in the prediction

of national load.

Figure B.8: Weekly averaged MAPE of the normalized GAM for the regions Auvergne-Rhône-Alpes, Grand-Est,

Normandie, Occitanie, and at the national level.

tion typically exhibit much more flexibility than the true weights: this phenomenon is all the more

striking in the fullydisaggregated model. The high variability of the weights suggests that some of

the models considered are fairly interchangeable. The fact that the scaled hierarchical aggregation
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outperforms its unscaled counterpart both in the pre-pandemic and in the post-lockdown period

suggests that the flexibility provided by the second layer of aggregation used in the scaled model

compensates the lack of knowledge of the relative contribution of the different regions.

We see in Figure B.7b that all quantiles and GAM experts contribute to the prediction, both

in the fully disaggregated model and in the hierarchical aggregation. By contrast, the vectorial

aggregation gives a predominant weight to the GAM and median staked RF experts, which ap-

pears as the most relevant experts across all regions. Figure B.7 shows the weights given by an

aggregation predicting the national load using only the national experts, and the weights given by

the aggregation. Day 25 corresponds to the first day of the pandemic period; before that day only

the GAM forecast is available to the aggregation. We note that the weights in the vectorial aggre-

gation are highly unstable during the beginning of the lockdown. The performance of the vectorial

aggregation during this period is worst than that of all other aggregation models, and than that of

the stacked RF predicting the median of residuals. This behavior mirrors the fact that the impact

of the pandemic strongly differs from one region to another, as is shown in Figure B.8. On the

other hand, vectorial aggregation achieves the best performance during the post-lockdown period,

and appears as a promising approach to predicting consumption under normal circumstances.
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