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An Efficient Bond-adaptive approach for Finite-temperature Open Quantum
Dynamics using the one-site Time-Dependent Variational Principle for Matrix

Product States

Angus J. Dunnett1 and Alex W. Chin1

1Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75252 Paris, France

Recent tensor network techniques for simulating system-environment wavefunctions have pro-
vided profound insights into non-Markovian dissipation and decoherence in open quantum systems.
Here, we propose a dynamically adaptive one-site Time-Dependent-Variational-Principle (A1TDVP)
method for matrix product states in which local bond dimensions grow to capture developing system-
bath entanglement. This avoids the need for multiple convergence runs w.r.t. bond dimensions and
the unfavourable local Hilbert space scaling of two-site methods. A1TDVP is thus ideally suited for
open quantum dynamics in finite-temperature bosonic environments, as the initial states typically
have low bond dimension but require very large local physical dimensions. We demonstrate this
with simulations of non-equilibrium heat flows through a qubit spin, finding a 30x and 10x speed-up
over 2TDVP and 1TDVP, respectively.

I. INTRODUCTION

Irreversible phenomena such as relaxation and deco-
herence critically determine how physical and biochem-
ical systems process free energy and quantum informa-
tion at the nanoscale6,7,13,47,61. However, over the short
spatio-temporal scales (fs-ns, nm) at which such non-
equilibrium processes may occur, simple Markovian de-
scriptions of open quantum systems (OQS) will typically
fail. Instead, the key physics emerges from the growth
and death of many body quantum correlations between
the system and the external variables of its environ-
ment(s). Understanding how these extended quantum
correlations and memory effects impact the performance
of functional materials will be key for the optimization
and design of efficient, few-quanta machines2, as well as
suggesting new routes for avoiding deleterious environ-
mental effects in quantum technologies1.

Describing how dissipation emerges from this com-
plexity requires advanced, non-perturbative numerical
techniques3,32,35,53,54,57,60,61, and the use of tensor net-
work states (TNS) have recently proved particularly ef-
fective for this problem43,44,46,50. TNS provide highly
efficient representations of large, correlated quantum
states and are widely used to study non-perturbative
problems in quantum matter42,45,48. In particular, the
class of TNS known as matrix product states (MPS)
are especially powerful for 1D systems with short-range
couplings, and are thus ideally suited to the very wide
range of system-environment Hamiltonians that can be
mapped onto simple chain-like models (see Refs.12,46,56).
Strikingly, a recent result of Tamascelli et al. al-
lows access to finite-temperature (mixed state) effects
from pure system-environment wavefunctions56, open-
ing TNS methods to real-world applications20.

However, the numerical resources required for fi-

nite temperature simulations can grow rapidly over
time19,20, necessitating efficient techniques for evolv-
ing the MPS. The time-dependent variational principle
(TDVP) applied to MPS22,25,26,37,49, has established it-
self as a powerful numerical method for time evolving
large MPS wavefunctions4,42,45,48. Its main advantage
over the long established time evolving block decima-
tion (TEBD) algorithm is the fact that the only input
it requires is a matrix product operator (MPO) rep-
resentation of the Hamiltonian, meaning that it can be
applied to generic Hamiltonians30, potentially with long
range interactions, like a ‘black-box’.

Unlike practically all other MPS algorithms which
control the growth of bond dimensions by performing
a compression after each evolution step, the evolution
generated by TDVP is confined to the smooth mani-
fold of MPS with fixed bond dimension D (see Fig. 1).
The TDVP attempts to find the MPS ψ(t, {A}) built
from a set of matrices {A} with bond dimensions D
which best approximates the actual time-evolved wave-
function. The set of MPS for full-ranked {A} of fixed
dimensions is a smooth manifold M on which this opti-
mization can be performed25. The solution for a system
with a Hamiltonian Ĥ (ℏ = 1) is found to be

d

dt
|ψ(t, {A})⟩ = −iP̂T|ψ(t)⟩,MĤ |ψ(t, {A})⟩ , (1)

where P̂T|ψ(t)⟩,M is the orthogonal projector onto the
tangent space of M at the point |ψ(t, {A})⟩. The in-
troduction of this projector results in a projection error
ϵP

31, due to the fact that the exact state will in gen-
eral become highly entangled, and cannot be faithfully
represented by a 1D MPS ansatz |Ψ(t, {A}⟩ in which
the entanglement will be bounded by ∼ log(D). On the
other hand, Eq. (1) can be integrated exactly to within
a time step error26, avoiding the truncation errors as-
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sociated with other time-evolution schemes45. The ge-
ometric properties of TDVP also include attractive fea-
tures such as automatic norm conservation and Rieman-
nian optimization26,27. Perhaps most interestingly in
the context of open quantum system is its ability to ac-
curately predict the apparent long-time ‘thermalization’
dynamics of observables associated with local degrees of
freedom23,34.

On the other hand, the fixed nature of MPS bond di-
mensions under TDVP is a major inconvenience when-
ever entanglement is spatially or temporally inhomoge-
neous. This is a particular problem in OQS problems
where we are normally interested in the dynamics of an
initial system-environment state with an exact D = 1
product state structure. As entanglement then grows,
much larger bond dimensions will be needed to describe
the state, which, for fixed-D TDVP dynamics, means
that one must embed the initial, low-entanglement MPS
in a much larger manifold to capture the later dynam-
ics. Thus, at short-to-intermediate times, the bond di-
mensions will be much larger than those actually re-
quired by the physics, and multiple costly runs with
varying bond dimensions are needed to converge the re-
sults. Moreover, as the Tamascelli theorem states that
many open system problems have environments initially
in the vacuum state56, (non-interacting) bath excita-
tions are created and destroyed uniquely at the system-
environment bond, and thus spread in a ‘light cone’
centered on the system site55. Using a large, uniform
bond dimension for even the most ‘distant’ (uncorre-
lated) sites will thus always be very inefficient, and it
would be highly advantageous to adapt bond dimen-
sions in a site-specific way that efficiently represents the
strongly inhomogeneous entanglement properties of the
system-environment chains.

Haegeman et al. 26 proposed a two-site variant of
TDVP (2TDVP) which addressed this issue by expand-
ing the MPS manifold upon which one optimises to in-
clude two-site variations of the MPS. This leads to a
modified algorithm wherein pairs of neighbouring MPS
sites are updated together and subsequently split up
via an SVD decomposition. The truncation of singular
values which is necessary to prevent bond dimensions
exploding, leads to, on the one hand, MPS bond di-
mensions which can grow to adapt to the entanglement
induced by the time evolution, but on the other, a break-
ing of the appealing geometric properties of the original
TDVP method. The error caused by this truncation
can lead to a slower convergence for certain observables
than would be obtained with the original, one-site form
of TDVP (referred to henceforth as 1TDVP)23,34. How-
ever, in the context of OQS which is the focus of this
paper, there exists a stronger reason why 2TDVP is dis-
advantageous: the poor scaling in the local Hilbert space

dimension of the MPS sites d. Since environmental exci-
tations are normally bosonic in nature, d becomes a con-
vergence parameter, and large values (d ∼ 10−100) can
often be necessary due to strong interactions or finite-
temperature effects8,19,20,49.

That there is a need for an MPS time evolution
algorithm that retains the desirable properties of the
1TDVP, while allowing bond dimensions to change in re-
sponse to emerging entanglement, is widely agreed upon
in the literature and there have recently been a number
of papers which make progress in this direction10,15,59,62.
Notably, Yang and White 62 have proposed a general,
bond-adaptive 1TDVP variant, drawing on ideas related
to subspace expansions for one-site DMRG29, wherein
the MPS is enriched at each step with the help of global
Krylov vectors, which are constructed by several appli-
cations of the Hamiltonian’s MPO to the MPS. While
conceptually different from the unoptimized expansion
approach that we shall develop in this article, the global
subspace expansion TDVP (GSE-TDVP) of Ref.62 al-
lows bond dimensions to grow during time-evolution
with numerical costs and speeds that are intermediate
between standard, fixed-D 1TDVP and 2TDVP. More-
over, GSE-TDVP is also able to handle certain classes of
long-range problems for which both 1TDVP and 2TDVP
will fail. However, this method employs full SVDs to
extend the MPS basis, thus incurring a cubic scaling
in the local Hilbert dimensions of the sites62. Again,
given our focus on simulating open quantum systems
with strongly excited bosonic environments, it would
be advantageous to avoid SVDs and maintain the linear
d-scaling of standard 1TDVP, if possible.

In this paper we show that this is indeed possible
and we present an alternative approach to subspace ex-
pansion in 1TDVP which we have developed specifically
with OQS problems in mind. Our approach, which we
call Adaptive 1TDVP (A1TDVP), is simple and cheap,
and exploits state enrichment without the need for sin-
gular value decompositions. Moreover, the accuracy of
the algorithm is controlled by a single parameter, avoid-
ing the need for fine tuning. By contrast, the more
generally applicable GSE-TDVP requires at least two
such tuning/error parameters62. Essentially, and as will
be described, the simplicity of our method stems from
the fact that the states used for subspace expansion
are unoptimized, which we find nevertheless leads to
a bond dimension growth comparable to that generated
by 2TDVP. The key innovation is the convergence cri-
terion that is used to chose new values for the bond
dimensions.

The structure of this paper is as follows: in Sec. II
we will introduce the concepts of MPS and subspace ex-
pansion and then, in Sec. III and IV, we will explain the
A1TDVP method; finally, in Sec. V we present numeri-
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cal results which show that A1TDVP gives an order of
magnitude speed-up over both one- and two-site TDVP.

Figure 1. A cartoon illustrating the TDVP. The wavefunc-
tion |ψ⟩, with bond dimension D, is a point on the full-
ranked fixed bond dimension MPS manifold M. Evolution
under the Hamiltonian Ĥ would in general take |ψ⟩ out
of this manifold and into one of a higher bond dimension.
Applying the projector onto the tangent space T|ψ⟩,M con-
strains the evolution to M. The wavefunction |ψ′⟩ is a point
on the manifold M′ with smaller bond dimension D′. One
may extend the manifold M to include rank-deficient MPS
in order to incorporate the point |ψ′⟩. However, |ψ′⟩ would
correspond to a singular point on this manifold where there
is no unique tangent space. If one applied the TDVP to |ψ′⟩
in the manifold M, the evolution would be indeterminate.
In practice however, this indeterminacy is resolved by the
gauge of |ψ′⟩.

II. MPS AND SUBSPACE EXPANSION

We begin by expressing the wave-function |Ψ(t, {A})⟩
graphically as an MPS with open boundary conditions
made up of the set of tensors {A} with local physical
Hilbert space dimensions {d} and bond dimensions {D}

|ψ({A})⟩ = . (2)

The first and final bond dimension are trivial (D0 =
DN = 1) such that contracting the entire network, for
a choice of physical states, will yield a scalar. Similarly,
the Hamiltonian is represented as an MPO

Ĥ = . (3)

We choose to write our MPS using the convention that
a physical leg pointing downwards implies the elements
are complex conjugated. Thus the bra is represented as

⟨ψ({A})| = . (4)

One of the key properties of the MPS representation is
its gauge freedom which allows different sets of tensors
to represent the same physical state. For example, the
transformation Ai → AiX, Ai+1 → X−1Ai+1 for any
non-singular matrix X, leaves the state unchanged. In
particular, by performing QR factorizations, one can
put the MPS into the so called canonical forms which
are the basis of many MPS based algorithms.

The QR factorization takes an m×n rectangular ma-
trix A, where m ≥ n, and decomposes it into an m×m
unitary matrix Q and an m×n upper triangular matrix
R. Since R is upper triangular, its bottom m− n rows
are all zero, leading to the following block structure

A = QR =
(
Q1 Q2

) (
R1
0

)
= Q1R1. (5)

The matrix Q2 consists of m− n orthonormal columns
which are orthogonal to the n columns of Q1. Since
on multiplying together the factors Q and R the block
Q2 will simply meet the zero rows of R, this block is
often discarded and the factorization is taken as Q1R1.
This is known as the thin or reduced QR factorization
whereas taking QR is known as full QR. It should be
noted that while Q1 is unique (provided that A is full
ranked), Q2 is not.

Applying this factorization to the tensors in our MPS
allows us to decompose A as

= , (6)

where AL has the property

= 1̂. (7)

We have written the right bond dimension of AL above
as D̃ to include the possibility of including the one or
more of the columns of Q2. We may take D̃ to be any
value between DR and dDL inclusive. Taking D̃ = DR
would correspond to thin QR, while taking D̃ = dDL
would correspond to a full QR.
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It is useful to consider the matrix A as a basis trans-
formation whose job is to take the combined Hilbert
space of the DL states from its left plus the d local
states and to find the DR most relevant states (where
often DR ≪ dDL) which it then outputs to the next ten-
sor on the chain. This is how the MPS is able to describe
many-body quantum states using a computationally vi-
able number of parameters. Including the extra states
of Q2 can be considered as completing the truncated ba-
sis of DR states such that A outputs either a full basis
for the dDL dimensional Hilbert space, or a less severely
truncated one. This is what we mean by subspace ex-
pansion. Of course, for a given MPS, including the extra
Q2 states will make no difference since the next tensor
along the chain will still only except DR states from its
left. However, this notion of sub-space expansion will be
in important in Sec. III when we introduce the A1TDVP
method.

We can equally take the mirror image of Eq. (6) and
decompose A as

= , (8)

where now

= 1̂, (9)

and DL ≤ D̃ ≤ dDR.
By always taking thin QRs we can put the MPS into

canonical form by iteratively applying Eq. (8) from the
right and Eq. (6) from the left and contracting C into
the neighboring site

. (10)

In doing so one will always be left with one site that is
not of the form AL or AR. This site will be known as
the orthogonality center and will be denoted AC. The
orthogonality center may be placed on any site of the
MPS. If AC is on site 1(N) the MPS is said to be in
right(left)-canonical form, while its being on any other
site is known as mixed-canonical form.

One may also gauge the MPS such that C lies between
two sites

. (11)

III. FROM 1TDVP TO A1TDVP

The key insight behind 1TDVP is that the tangent
space projector appearing in Eq. (1) can be exactly de-
composed into a sum of terms i that each project out
all but the degrees of freedom associated with either a
given physical site i or the bond between sites i, i+ 137

P̂T|ψ⟩,M({D̃}) =
N∑

i=1
P̂

(i)
AC

(D̃i−1, D̃i)−
N−1∑
i=1

P̂
(i)
C (D̃i),

(12)

with

P̂
(i)
AC

(D̃i−1, D̃i) = · · · · · · ,

(13)
and

P̂
(i)
C (D̃i) = · · · · · · . (14)

In conventional 1TDVP the projectors are constructed
from the MPS using thin QR decompositions, however,
in the above we have introduced a dependence on the
bond dimension by expanding certain sites in the man-
ner described in Sec. II. We indicate an MPS site that
has been expanded using a filled black tensor. In this
way, the application of P̂T|ψ⟩,M({D̃}) will result in a pro-
jection onto the manifold of MPS with the chosen bond
dimensions {D̃}. Of course, choosing {D̃} = {D} will
result in the original projector used in 1TDVP.

This procedure is equivalent to constructing the pro-
jectors from a rank-deficient MPS |ψ′⟩, which would cor-
respond to a singular point on M (see Fig. 1)25. At
such points the tangent space is not well defined by the
wavefunction alone but will also depend on the gauge of
|ψ′⟩. In the present case this means that the projector of
Eq. (12), and thus the projection error, will have a de-
pendence on the states Q2 that are used to expand the
subspaces. The Q2 matrices which are output by the
QR routine should be in no way optimized to minimise
the projection error. We find however (see Sec. V) that
it is sufficient to consider only these unoptimised states
to produce an algorithm that significantly outperforms
2TDVP.
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The reason for splitting the projector in this manner
is that, on substituting Eq. 12 into Eq. 1, each term
may be integrated exactly37. For example, by gauging
the MPS as in Eq. 10 with AC on site i the operator
P̂

(i)
AC
Ĥ affects only site AC and so may be written as an

effective Hamiltonian Hi
eff which acts only on this site

Hi
eff(D̃i−1, D̃i) =

(15)

= . (16)

Then by making all other sites time-independent we can
write the exact evolution of AC as

Ai
C(t) = exp[−iHi

efft]Ai
C(0). (17)

Similarly by writing the MPS as in Eq. 11 with C
between sites i and i + 1 and making only C time-
dependent we have

Ci(t) = exp[+iKi
efft]Ci(0), (18)

with the effective Hamiltonian

Ki
eff(D̃i) = . (19)

With these solutions the entire MPS can be evolved us-
ing a Lie-Trotter splitting16,36,58 by sweeping from left
to right along the chain and evolving each AC and C by
a time step ∆t. If this left to right sweep is composed
with a reverse sweep from right to left then this pro-
cedure constitutes a second-order integrator with error
O(∆t3).

With the sub-space expansions employed in Eq. 12 the
effective Hamiltonians become capable of increasing the

bond dimensions, whereas in normal 1TDVP they would
leave them unchanged. For example, Hi

eff(D̃i−1, D̃i)
takes an MPS site tensor AC with right and left bond di-
mensions Di−1 and Di respectively and outputs a tensor
with bond dimensions D̃i−1 and D̃i. In the next section
we will explain how these new values for the bond di-
mensions are chosen in A1TDVP.

IV. PROJECTION ERROR

Ideally, bond dimensions would be chosen so as to
guarantee that the projection error ϵP does not exceed
a certain acceptable value: ϵP ≤ ϵ′P . The projection
error arises from the fact that the true time evolution
vector Ĥ |ψ⟩ differs from the projected one P̂T|ψ⟩,MĤ |ψ⟩
by a residue |ϕ⟩

|ϕ⟩ ..= Ĥ |ψ⟩ − P̂T|ψ⟩,M |ψ⟩ . (20)

We can thus define the projection error as the norm of
this residue

ϵP({D̃}) ..= ⟨ϕ|ϕ⟩ (21)
= ⟨ψ| Ĥ2 |ψ⟩ − ⟨ψ| ĤP̂T|ψ′⟩,M({D̃})Ĥ |ψ⟩ ,

(22)

where we have inserted the bond dimension dependent
projectors to obtain the projection error as a function
of {D̃}. A full evaluation of ϵP will be often be pro-
hibitively expensive29 and would always have a greater
computational complexity than a 1TDVP sweep. How-
ever, we see that in Eq. (22) only the second term has
a dependence on the new bond dimensions {D̃}; thus,
the effect that increasing the bond dimensions has on
the projection error should be entirely contained within
this term. Further inserting the decomposition of the
projection (Eq. (12)) into Eq. (22), we see that the effect
of changing only one bond dimension D̃i while keeping
all the rest constant is described by the function

fi(D̃i) ..= ∥Ĥi
eff(Di−1, D̃i)Ai

C∥2 − ∥K̂i
eff(D̃i)Ci∥2

+∥Ĥi+1
eff (D̃i, Di+1)Ai+1

C ∥2.
(23)

We find that choosing bond dimensions to satisfy the
requirement

1
fi(D̃i)

∂fi

∂D̃i

≤ p, (24)

where p defines a precision, works well in economising
resources whilst providing fast convergence. The pres-
ence of the factor of fi(D̃i) in the denominator makes
the convergence criterion independent of the scale of f .
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This is important because the magnitude of fi(D̃i) has
no meaning on its own as it only represents half of the
expression for the projection error (Eq. (21)).

In only considering the dependence of the projection
error on each bond dimension individually, we ignore
any possible co-dependence of the bond dimensions,
which may arise from the Ĥi

eff terms in Eq. (23). New
values D′

i for each bond dimension can be determined
by evaluating the left hand side of Eq. (24) at incre-
mentally increasing values of D̃i, for each site i, until
the inequality is satisfied.

The procedure of updating the bond dimensions with
this measure is inexpensive and costs as follows. First
the tensors F i

L defined in Eq. 15 for i ∈ [1, N − 1] must
be computed, requiring a left to right QR sweep of the
MPS. The tensors F i

R will already be available from the
previous right to left sweep of 1TDVP. The overhead of
this additional QR sweep may be mitigated by using the
ACs produced as a shortcut to computing observables
along the chain for that timestep. Following this, the
quantities fi(D̃i) may be computed.

It is clear that this bond-update step will take only
a small fraction (typically < 10%) of the time required
for a 1TDVP sweep. In 1TDVP by far the most expen-
sive operation is the application of the exponentiated
effective Hamiltonians which are the formal solutions of
the 1TDVP equations of motion (cf. Eq. (17) and (18)).
These are carried out using the Krylov method28, which
involves many repeated applications of Ĥi

eff and K̂i
eff re-

spectively. In the adaptive bond update step these op-
erations are replaced by one calculation of Ĥi

effA
i
C and

K̂i
effC

i which each require only a single application of
Ĥi

eff and K̂i
eff, respectively.

Using the convergence measure (24) avoids the need
to ever deal with the fully expanded subspaces of size
dD as in 2TDVP, and indeed one can avoid computing
tensors with dimensions greater than what will finally
be taken as the new bond dimensions {D′}. Thus, and
herein lies the main virtue of our method, the complex-
ity of A1TDVP is limited to that of 1TDVP. Further-
more, since individual bond dimensions are chosen in-
dependently, they may be computed in parallel, leading
to an up to (N − 1)-fold speed-up.

V. NUMERICAL VERIFICATION

We now demonstrate our method through simulations
of a two-level system (TLS) strongly coupled to two con-
tinuous bosonic baths at different temperatures (Fig. 3).
This class of model has wide applications, including
excitation transfer, quantum thermodynamics, clocks,
and non-equilibrium steady states5,9,11,17,18,24,38,52,63.
Importantly for us, this entropy generating system

shows strong and inhomogeneously growing entangle-
ment (bond dimensions) that A1TDVP can track from
a simple, low bond dimension initial state. The micro-
scopic Hamiltonian has the standard open system form
H = HS +HB +HI , where HS , HB &HI are the system,
environment and interaction terms, respectively. The
TLS has HS = ω0

2 σz, and HB =
∑

i,k ωkâ
†
ikâik, where

i = h, c indicates the hotter (h) or colder (c) reservoir,
respectively. The interaction term induces TLS tran-
sitions according to HI = σx

2 ⊗
∑

i,k(g∗
kâik + gkâ

†
ik).

To explore effects from temperature differences, we take
both baths to have the same Ohmic spectral function
J(ω) ≡

∑
k |gk|2δ(ω− ωk) = 2αωθ(ωc − ω). The cut-off

frequency of the bath ωc is taken as the unit of energy
and set to unity in the following.

The initial condition is given by the product den-
sity matrix ρ(0) = |↑z⟩ ⟨↑z| ⊗ ρh ⊗ ρc, where ρi is
the thermal density matrix for the ith (uncoupled)
environment at inverse temperature βi (β = 1/T ).
Such a mixed-state initial condition is, prima facie, a
major problem: each single wave function simulation
is costly, so sampling over thermal initial conditions
would be utterly intractable. However, here we exploit
the T-TEDOPA chain mapping12,14,56, which maps the
system-bath problem into a 1D nearest-neighbour prob-
lem where the effects of temperature are encoded only
in the chains’ Hamiltonians (see Fig. 3), rather than
the mixedness of the initial state. Finite temperature
effects can then be extracted from the evolution of the
uncorrelated pure initial state |ψ⟩ = ⊗ |↑z⟩ ⊗ |0⟩h ⊗ |0⟩c,
where |0⟩i is the vacuum state of bath i.

We ran A1TDVP on this model for several values
of the precision p and compared the resulting dynam-
ics and bond dimensions against those obtained using
2TDVP, also for different precisions. We also calculated
the dynamics with 1TDVP at a very large bond dimen-
sion (Dmax = 120) to provide a highly converged, bench-
mark result for evaluating the convergence of the bond
adaptive simulations. As is common in bond adaptive
methods, to avoid exploding memory usage, we set an
upper bound Dlim for the bond dimensions. We chose
Dlim = 120 for both the A1TDVP and 2TDVP simula-
tions.

Figure 2 shows the observable ⟨σz⟩ obtained using
A1TDVP at four different precisions. It was found that
a local Hilbert space dimension of d = 15 for all chain
oscillators present in the simulation, was sufficient to
give well converged results. The chains for both baths
were truncated so as to contain 40 sites each. The struc-
ture of the MPS is as shown above Fig. 3 with the TLS
on site 41, between the two baths. We find that a pre-
cision of p = 10−4 gives well converged results up to a
time of ωct = 25.

In Fig. 3 we plot the MPS bond dimensions at
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Figure 2. ⟨σz(t)⟩ for ω0 = 0.2ωc, βc = 100/ωc, βh = 1/ωc,
α = 0.2 and 15 Fock states per oscillator. Different pre-
cisions p with Dlim = 120 are compared against standard
1TDVP with Dmax = 120 (crosses). Inset shows an ex-
panded view of ⟨σz(t)⟩ demonstrating the convergence of our
adaptive TDVP.

three snapshots in time for the different precisions of
A1TDVP. We observe that the distribution of resources
is skewed towards the hotter environment, both in terms
of magnitude and propagation speed along the chain.
Also shown in Fig. 3 are the bond dimensions given
by 2TDVP at the precision of p = 10−4 which we
found to give a similar quality of result as A1TDVP
for p = 10−439. Comparing the bond dimensions for
these two cases, we see that they have a similar distri-
bution and amplitude, suggesting that it is sufficient to
use unoptimised states for subspace expansion.

All simulations were performed on nodes consisting of
two 12-core Intel Xeon Haswell (E5-2670v3) processors.
The total run times for the three methods are given
in Tab. I. The speed-up achieved by A1TDVP is quite
striking, being almost 10 times faster than 1TDVP and
30 times faster than 2TDVP. Of course, the comparison
between 1TDVP and A1TDVP would be less favourable
to A1TDVP had we chosen the chains to be shorter; by
the end of the simulation at ωct = 25 the perturbation
has travelled about 30 sites into the hot bath’s chain
and about 20 sites into the cold bath’s chain, and so
we could have truncated them more severely without
affecting the results. However, such optimisations are
only possible with hindsight, as we do not know how the
light-cone will spread before we run the simulation40.
The efficiency of A1TDVP on the other hand is rela-
tively insensitive to the chosen chain length, since it
takes very little time to update MPS sites for which the
bond dimensions are trivial. Finally, we note that this
is also true when long-range interactions are present in

Figure 3. MPS bond dimensions for snapshots at times ωct =
1 (panel ‘a’), ωct = 10 (panel ‘b’), and ωct = 15 (panel ‘c’)
during A1TDVP simulations at various precisions and the
converged 2TDVP simulation at precision p = 10−4. The
grey dashed line, plotted at x-position 40.5, indicates the
position of the TLS; all bond dimensions to the right of this
line pertain to the hot bath sites, and all bond dimensions
to its left pertain to the cold bath sites.

the system-chain Hamiltonian. These interactions arise
when the fluctuations of the environment act on the sys-
tem states in a correlated fashion, such as those arsing as
a result of the spatial correlations, i.e. separated system
sites interacting with extended plane-wave excitations
of their common environment33. Indeed, accounting for
correlations in environmental fluctuations has recently
been shown to be essential in extracting realistic opti-
cal spectra from ab inito models of molecular excited
states21, and A1TDVP has been demonstrated to pro-
vide a highly efficient technique for handling these more
complex system-environment Hamiltonians41.

VI. CONCLUSION

In this paper we have presented a bond adaptive
variant of 1TDVP, which we have demonstrated to be
highly advantageous for the OQS problem. The fea-
tures of the OQS problem that make it particularly well
suited to A1TDVP are its light-cone structure and the
fact that its favourable scaling in the local physical di-
mension d is advantageous for typical bosonic environ-
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Method Run Time (mins)

1TDVP (Dmax = 120) 338
2TDVP (p = 10−4, Dlim = 120) 1054
A1TDVP (p = 10−4, Dlim = 120) 35a

a This time does not include the time required for the bond
update step, which we were not able to obtain. However, since
the bond update step is expected to take a small fraction of
the time required for TDVP, this will not affect our
conclusions.

Table I. Run times for converged simulations under the three
methods considered.

ments - especially so when thermal chain mappings are
employed19,20.

This idea may be straight forwardly extended to
tree-MPS which will allow the simulation of systems
with complex multi-environment interactions, where-
upon, the advantages demonstrated here, especially the
parallelizable steps, will become even more important
and could be further combined with the ‘entanglement
renormalisation techniques’ introduced in Ref.51 for ab
initio open quantum dynamics. A basic demonstration
of this has recently been given for the three-environment
tree network that describes the photophysics of the dye
Methyl-Blue21. Beyond our present focus on open quan-
tum systems, we also hope that our approach could be
readily applied to a range of other problems in con-
densed or atomic quantum matter and - as suggested
by our heat-flow example - the microscopic analysis of
more complex nanodevices operating in the regime of
quantum thermodynamics.
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