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Simple Summary: Glioblastoma stem-like cells (GSCs) are responsible for most of the malignant
characteristics of glioblastoma, including therapeutic resistance, tumour recurrence, and tumour
cellular heterogeneity. Therefore, increased understanding of the mechanisms regulating GSCs
aggressiveness may help to improve patients’ outcomes. Here, we investigated the role of integrin a6
in controlling stemness and resistance to radiotherapy across proneural and mesenchymal molecular
subtypes. We observed that integrin a6 had a clear role in stemness maintenance in proneural but not
in mesenchymal GSCs. In addition, we proved a crucial role of integrin a6 in supporting mesenchymal
GSCs resistance to ionizing radiation. Finally, we highlighted that integrin a6 may control different
stem-associated features in GSCs, depending on the molecular subtype. The inhibition of integrin a6
limits stem-like malignant characteristics in both GSCs subtypes and thus may potentially control
tumour relapse following conventional treatment.

Abstract: Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma
(GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like
cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining
the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner
is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness
and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting,
gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for
proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal
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GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation
therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on
integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction
of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6
inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation
and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM
subtypes in GBM heterogeneous biology and thus may represent a promising target to improve
patient outcomes.

Keywords: glioblastoma; integrin alpha-6; ITGA6; radiotherapy; cancer stem cells; mesenchymal
subtype; radioresistance

1. Introduction

Glioblastoma (GBM) is the most common and most malignant primary brain tumour
in adults. It is characterized by high recurrence rates even after maximal resection and
multimodal treatment [1]. Despite many efforts to delineate new therapeutical strategies,
radiotherapy remains the most successful non-surgical treatment for GBM associated with
the best survival benefit [2,3]. Conventional radiation protocol involves fractionated focal
radiotherapy (maximum dose 60 Gy, 1.8–2.0 Gy/fraction per day) [1].

From the histological point of view, GBMs display neoplastic lesions with remarkable
cellular heterogeneity [4]. Key players among the various cellular elements are the GBM
stem-like cells (GSCs), which are commonly believed to be at the origin of tumorigenesis,
invasion, angiogenesis, immune evasion, and treatment resistance [5–11]. Notably, GSCs
are characterized by specific biological features which confer them an outstanding capacity
to cope with radiation-induced cell-damage [7,12,13].

Generally, GSCs are located in trophic niches [6,14,15] and share most of the core
characteristics with non-transformed stem cells, including self-renewal capability, extensive
proliferation and multipotency [5,11,16]. Among the mediators granting the interaction
between GSCs and the surrounding microenvironment, integrins are important elements.
Integrins are cell type-I transmembrane heterodimers composed of different combinations
of alpha (a) and beta (b) subunits [17]. Integrins shape the niche architecture and are
indeed involved in stem cell proliferation and self-renewal, homing, and maintenance in
the niche [18].

The integrin subunit a6 (coded by the gene ITGA6) has received considerable attention,
especially for its role in regulating cancer stem-like cells [19,20]. Integrin a6 dimerizes with
integrin b1 or b4 to generate the surface receptor for laminin. In human mesenchymal
stem cells, integrin a6 has been described as maintaining pluripotency through prolonged
activation of the PI3K/AKT pathway and sustained expression of OCT4 and SOX2 [21]. In
GBM, ITGA6 is commonly used as a GSCs marker, being capable of enriching for the GSCs
population, alone or in combination with CD133, and also sustaining stemness [22]. More
recently, integrin a6 has been associated with ZEB1 transcriptional network to sustain DNA
damage response in GBM [23].

In the last decade, GBM patient specimens have been inspected to identify gene ex-
pression profiles that could allow patient stratification and therapy response prediction.
Following a progressive optimization, three molecular subgroups were consistently iden-
tified: mesenchymal (MES), proneural (PN), and classical (CL) [24,25]. GSCs harboured
within tumour samples reflect similar transcriptional clusters, with PN and MES being the
most consolidated profiles [26–29]. Although the PN subtype tends to be associated with a
more favourable outcome, the molecular patterns of GBM only partially explain clinical
behaviour and their predictive power is scarce [30].

To our knowledge, the role of integrin a6 in the GBM context has never been investi-
gated in relation to GBM molecular heterogeneity. In breast cancer, integrin a6 expression
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has been related to a distinct role in tumoral cells bearing epithelial or mesenchymal phe-
notype [31]. Indeed, integrin a6 has been mostly characterized in the GBM context in
association with common proneural GSCs markers, such as transcription factor SOX2 and
Oligo2 [23] or CD133 and Oligo2 [22]. However, there is still no indication on the role of
this membrane receptor in MES-GSCs.

Here we investigated the implications of ITGA6 expression in GSCs biology according
to the different transcriptional subtypes PN and MES. Given the extensive body of evidence
on PN-GSCs, we focused on assessing the role of integrin a6 in MES-GSCs. We observed
that integrin a6 supported stemness in PN but not in MES settings. ITGA6 downregulation
affected DNA damage repair machinery and cell cycle in the MES profile, thus reducing
the capacity to clear gamma-H2AX foci upon ionizing radiation and, therefore, increasing
radiosensitivity.

2. Materials and Methods
2.1. Human Cell Lines and Differentiation Assay

Glioblastoma stem-like cells (GSCs) cultures were isolated from post-surgical speci-
mens from consenting GBM patients (histological diagnosis GBM WHO grade IV, IDH1-wt).
Collection of human samples was performed according to the protocol approved by the
Ethics Committee of Hospital Universitari de Bellvitge. Tumoral samples were processed
as previously described [32]. GSCs cultures were established following the neurosphere
culture method without selection of specific stem markers [33,34]. Briefly, tissues were
enzymatically dissociated for 30 min at 37 ◦C with 20 U/mL Papain (Worthington Biochem-
ical Corporation, Lakewood, NJ, USA), stabilized with 8.25 µM L-cysteine (Sigma-Aldrich,
St. Louis, MO, USA) and 3.42 µM EDTA (Panreac Química S.L.U., Castellar del Vallés,
Spain). The cell suspension was cultured and maintained in FBS-free media supplemented
with EGF 20 ng/mL (PeproTech EC, Ltd., London, UK) and bFGF 10 ng/mL (PrepoTech).
Out of seven GBM patient specimens, four different MES-GSC cultures were success-
fully established (57% efficiency of isolation). MES-GSC cultures were differentiated in
10% FBS media, and after 7 days, samples were collected. Differentiated glioblastoma
cells (DGCs) were established from the same human post-surgical specimens of GSCs,
as described before [32], and cultured in 10% FBS DMEM (Biological Industries, Kibbutz
Beit-Haemek, Israel). All experiments were performed before passage 20 and tested to
be mycoplasma negative. HEK293T were maintained following the ATCC guidelines.
PN-GIC2 and PN-GIC7 were kindly provided by Marta Alonso (Department of Oncol-
ogy, University Hospital of Navarra, Pamplona, Spain) and Candelaria Gómez-Manzano
(Department of Neuro-Oncology, The University of Texas, MD Anderson Cancer Center,
Houston, TX, USA).

2.2. RNA Isolation and Real-Time q-PCR Analyses

Total RNA was extracted from samples using TRIsure (Bioline) and subsequently
digested with DNase I RNase-free (Thermo Scientific, Waltham, MA, USA). RNA purity
and concentration were measured using Nanodrop spectrophotometer (Thermo Scientific).
Reverse-transcription of RNA was performed using the High-Capacity cDNA Reverse
Transcription Kit (Life Technologies, Carlsbad, CA, USA). Gene expression was determined
using validated Taqman® Gene Expression Assays (Applied Biosystems, Waltham, MA,
USA; GAPDH: Hs99999905_m1; GUSB: Hs00939627_m1; CD44: Hs1075864_m1; OLIG2:
Hs00300164_s1; PROM1: Hs01009257_m1; ITGA6: Hs01041011_m1; NES: Hs04187831_g1;
ALDH1A3: Hs00167476_m1) and 7900HT Real-Time RT-PCR system (Applied Biosystems).
Cycling conditions were as default for Taqman® probes: 50 ◦C for 2 min, 95 ◦C for 10 min,
followed by 40 cycles of 15 s at 95 ◦C for denaturation and 1 min at 60 ◦C for annealing
and extension. Relative mRNA content was calculated based on the ddCt method, while
the normalized mRNA amount was obtained with the dCt process. Normalization in both
approaches was performed with GAPDH and GUSB as housekeeping genes.
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2.3. Flow Cytometry and Integrin a6 Cell Sorting

GSCs were collected, rinsed and blocked with FACS buffer (0.5% BSA, 2 mM EDTA
dissolved in PBS; pH 7.2) for 15 min at room temperature. Cells were stained with uncon-
jugated anti-integrin a6 antibodies (1/100; clone NKI-GoH3; Millipore, Burlington, MA,
USA) for 15 min at room temperature. Bound antibodies were then revealed by species-
specific Alexa Fluor conjugated secondary antibodies (Invitrogen, Waltham, MA, USA).
As DGCs cultures do not express integrin a6 [32], they were used as negative controls.
The stained cells were acquired on FACS Canto (BD Biosciences, Franklin Lakes, NJ, USA)
using FACS Diva software (Becton Dickinson, Franklin Lakes, NJ, USA). Data analysis
and median fluorescence intensity (MFI) calculation were performed using the FlowJo
software (Tree Star Inc. Ashland, OR, USA). ITGA6HI and ITGA6LO cell populations were
obtained using MoFlo Astrios cell sorter (Beckman Coulter, Brea, CA, USA) on the basis of
ITGA6-MFI cells.

2.4. Western Blot

Proteins were extracted in reducing condition with 0.3% CHAPs (Sigma-Aldrich)
lysis buffer supplemented with protease inhibitors (Complete and PhosSTOP from Roche).
Antibodies against b-actin (1/5000; clone AC-15; Sigma-Aldrich), integrin a6 (1/500; clone
HPA012696; Novus Biologicals, Littleton, CO, USA), and p-ERK1/2 (1/2000; clone #4370;
Cell Signalling Technology, Danvers, MA, USA) were used. Densitometric analysis was
carried out using Multi Gauge software (FujiFilm Corporation, Tokyo, Japan).

2.5. Gliomasphere Formation Assay

To assess GSCs self-renewal capacity, cells were seeded in 96-well plates as single-cell
suspension at clonal densities 0.2–0.4 cell/µL in quadruplicate. Cells were allowed to
proliferate for 14 days, and then plates were visually scanned under light microscope, and
the gliomasphere size was recorded. Gliomaspheres bigger than 90 µm were scored as
proliferating (ProgRes CapturePro, Jenoptik, Huntsville, AL, USA).

2.6. Lentiviral Particle Generation and GSCs Transduction

To silence the integrin a6 expression, GSCs were treated with short hairpin (sh)RNA
delivered via lentiviral vectors. Non-targeting shRNA construct (shCTRL; source clone ID:
RHS4348) and shITGA6 plasmid mapping against ITGA6 exon 15 (target sequence: AG-
GATATTGCTTTAGAAAT; source clone ID: V3LHS_326014) were purchased from Thermo-
Scientific. The plasmids used display target insert under the hCMV promoter cloned into
the pGIPZ backbone. Lentiviral particles were generated by co-transfection of the plas-
mids of interest with viral packaging vectors (VSVG, RSV-REV, and pMDL g/p RRE) into
HEK293T cells using the GenJet Plus DNA Transfection Reagent (SignaGen Laboratories,
Rockville, MD, USA). Cell culture supernatant, once collected, was filtered (0.45 µm) and
purified by centrifugation at 40,000× g for 2 h at 4 ◦C. Particles were resuspended in PBS
and GSCs infected for 4 h at 37 ◦C. To ease the transduction, Polybrene was added at
5 µg/mL (Hexadimethrine bromide, Sigma-Aldrich). Infected cells were selected with
5 µg/mL of puromycin (Sigma-Aldrich). Efficient silencing of ITGA6 transcript was as-
sessed by PCR analysis at all times.

2.7. Radiation Schedule

In vitro irradiation of GSCs was achieved using an X-ray accelerator (Clinac 600 CD,
M/S Varian AG) at a dose-rate of 2.67 Gy/min. Dosimetry calculations were performed by
the Medical Physics Department at the Catalan Institute of Oncology. For the evaluation
of GSCs DNA repair capacity (gamma-H2AX foci formation assay), GSCs were irradiated
with 4.0 Gy delivered in single dose. To evaluate the capacity of GSCs to functionally
recover from irradiation and form gliomaspheres (clonogenic assay and ELDA), GSCs were
irradiated following a fractionated protocol (2.0 Gy every 24 h). Total absorbed dose was
2.0 or 4.0 Gy for the clonogenic assay and 8.0 Gy for ELDA.
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2.8. Gamma-H2AX Foci Formation Assay

GSCs were seeded on glass coverslips and allowed to adhere 24 h prior to treat-
ment. At the indicated times following RT (1, 4, and 24 h), the cells were fixed in 4%
paraformaldehyde and permeabilized with 0.1% Triton-X/PBS. Cells were subsequently
stained with anti-gamma-H2AX antibody (Ser139; 1/400; Millipore; JBW301 Billerica,
MA, USA). To visualize gamma-H2AX foci, samples were incubated with Cy3-conjugated
secondary antibody (1/500; Jackson ImmunoResearch, West Grove, PA, USA). Nuclei
were counterstained with DRAQ5 (1/2500; Biostatus, Leicestershire, UK) Micrographs
were acquired with a Leica TCS-SL Spectral confocal microscope (Leica Microsystems,
Wetzlar, Germany) ). Nuclei and foci were counted using Image J (U.S. National Institutes
of Health, https://imagej.nih.gov/ij/, accessed on 25 July 2017). An average of five to
eight micrographs were analysed for each treatment condition.

2.9. Clonogenic Assay and Linear-Quadratic Model Interpretation

For survival quantitation following RT, GSCs were analysed as previously described [32].
Briefly, cells were seeded at clonal density 0.2–0.4 cell/µL in quadruplicate and then
exposed to an RT schedule. GSCs were treated following a fractionated protocol. Cells
were cultured for 14 days and the total number of newly formed gliomaspheres bigger
than 90 µm was recorded. The survival curves obtained were compared according to the
published extensive guidelines [35]. Briefly, the surviving fraction (SF) at each treatment
dose (D) was calculated (SF2 at 2.0 Gy and SF4 at 4.0 Gy) as the ratio of gliomaspheres
arising in treated samples in comparison with control untreated cells. SF were then fit
according to the linear–quadratic model (LQM): SF = exp – (αD + βD2) [35,36]. Differential
radiosensitivity was evaluated via comparison of SF2, SF4, the area under the curve (AUC),
and the LQM parameters: α- and β-values and α/β [32,35,37,38].

2.10. In-Vitro Extreme Limiting Dilution Assay (ELDA)

To obtain single cell suspension, GSCs were mechanically dissociated and filtered
with a 40 µm cell strainer (BD Biosciences). Cells were seeded into a 96-well plate at 1,
5, 10, 20 cells per well, with at least 10 replicates for each condition. The exact number
of cells seeded was determined after 24 h in a bright field inverted microscope. Cells
were then irradiated following a fractionated schedule. After 14 days the number of
gliomaspheres/well (size cut-off: 90 µm) was scored. Stem cell frequency in each samples
was calculated using the Extreme Limiting Dilution Analysis web tool (http://bioinf.wehi.
edu.au/software/elda, accessed on 12 July 2017) [39].

2.11. Bulk RNA-Seq and Bioinformatic Analysis

Total RNA was extracted from samples and quantity/quality was assessed using
an Agilent LabChip instrument showing excellent integrity (RNA Integration Number,
RIN > 9). purity based on absorbance ratios (260/280 and 260/230) was checked using
a Nanodrop spectrophotometer. Then, 700 ng of total RNA was used to prepare RNA
sequencing libraries via Illumina TruSeq Stranded mRNA Library preparation kit, which
allows creation of libraries for strand-specific mRNA sequencing.

First, to address sequencing specifically on polyadenylated transcripts, magnetic
beads were used for a polyA selection. Next, after fragmentation, cDNA was synthesized,
dA-tailed and ligated to TruSeq indexed adapters (unique dual indexing strategy). Finally,
PCR amplification was used to create the final cDNA library. After qPCR quantification,
sequencing was carried out using 2 × 100 cycles (paired-end reads of 100 nucleotides each)
on an Illumina NovaSeq 6000 system (S1 flow cells). Around 50 M paired-end reads were
obtained per sample.

Bcl2fastq was used to generate fastq files from raw sequencing data, where demulti-
plexing was performed according to indexes.

The Institut Curie RNA-seq bioinformatics pipeline (available at https://github.com/
bioinfo-pf-curie/RNA-seq, accessed on 7 March 2021 (v0.2.4)) was used to process se-

https://imagej.nih.gov/ij/
http://bioinf.wehi.edu.au/software/elda
http://bioinf.wehi.edu.au/software/elda
https://github.com/bioinfo-pf-curie/RNA-seq
https://github.com/bioinfo-pf-curie/RNA-seq
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quencing reads. Briefly, potential rRNA contamination was cleaned by sequencing reads
on the rRNA human complete reference (U13369.1). Then, by using STAR (v2.5.3a) and
the GENCODE annotation database (v19) with the following parameters (—outFilterType
BySJout—outFilterMultimapNmax 20—alignSJoverhangMin 8—alignSJDBoverhangMin 1—
outFilterMismatchNmax 999—outFilterMismatchNoverLmax 0.04—alignIntronMin 20— align-
IntronMax 1,000,000—alignMatesGapMax 1,000,000—outSAMprimaryFlag OneBestScore—
outMultimapperOrder Random) the remaining reads were then aligned on the human refer-
ence genome (hg19). Finally, the raw gene counts tables were also generated by STAR, using
the option –quantMode GeneCounts.

Differential gene expression analysis on raw gene counts was performed using the
DESeq2 suite of analysis tools, v1.30.0 [40]. The EnhancedVolcano R package was used
to create volcano plots, by means of the fold change and adjusted p-values of the genes,
obtained using the DESeq2 suite. The fold change of the genes was also used to create
graphic representations of pathway enrichment, using the pathview R package. Gene set
enrichment analysis (GSEA) was performed using the public Broad Institute software and
its publicly available molecular signatures database (KEGG, HALLMARK, Gene Ontology)
with raw gene counts data as input. The software computes logFoldChange and p-values
of genes in a given comparison, ranks them, and scores the genes according to their rank.
It gives an enrichment score (ES) depending on the over-representation of genes of a given
predefined gene set in one of the conditions. This score is normalized (NES) and a statistical
value is given (p-value). The RNA-seq data were deposited under the GEO reference
GSE178260. Transcription factor enrichment analysis was performed using Enrichr [41].
For analysis of the activated/inhibited pathways, we used Ingenuity Pathway Analysis
(IPA, Ingenuity Systems, Inc., Redwood City, CA, USA). Molecules from the data set
that were associated with Ingenuity Knowledge Base were considered for the analysis.
We included only the significantly differentially expressed genes with no cutoff for the
fold change.

2.12. Elaboration of Publicly Available Data from GBM Patients

The integrin a6 gene expression pattern across glioma patients was investigated using
publicly available cohorts. The Cancer Genome Atlas (TCGA) [42] and REMBRANDT
datasets [43] were downloaded from the GlioVis portal (http://gliovis.bioinfo.cnio.es/,
accessed on 20 March 2020) [44]. Samples were classified according to molecular subtype
following available GlioVis tool as described in [25]. Gene expression data of the GSCs
collection were retrieved from Gene Expression Omnibus (GEO). The two independent
interrogated datasets were GEO accession GSE49009 (Bhat cohort; 11 PN-GSCs and 6 MES-
GSCs) [26] and GSE67089 (Mao cohort; 6 PN-GSCs and 4 MES-GSCs) [27]. For the ITGA6
expression in the two-dimensional representation according to the new integrative GBM
classification model [45], refer to the Broad Institute Single Cell Portal website (https:
//singlecell.broadinstitute.org/single_cell, accessed on 29 September 2020), study number
SCP393 (load cell state hierarchy plot with gene expression annotation).

Survival analysis and risk assessment of ITGA6-associated signature for 660 GBM and
low grade gliomas were performed with the SurvExpress web-source (http://bioinformatica.
mty.itesm.mx:8080/Biomatec/SurvivaX.jsp, accessed on 10 November 2020) [46].

2.13. Statistical Analysis

Data graphs are presented as means ± SEM (standard error of the mean). Statistical
analyses were performed using the GraphPad Prism® software. Statistical tests used for
each experimental data collection are specified in each figure caption. Calculated p-value is
summarized in figure panels as * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Different
tests were used to assess statistical significance according to data distributions and to the
nature of comparison (unpaired t-test with or without Welch’s correction, Mann–Whitney
test, and two-way ANOVA). Every test used is specified for each panel in the figure caption.

http://gliovis.bioinfo.cnio.es/
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
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3. Results
3.1. Integrin a6 Is Expressed in Proneural and Mesenchymal GBM Subtypes

To better understand the significance of integrin a6 in GBM, we analysed in silico
the ITGA6 expression in the two most important GBM subtypes. Data extracted from
two distinct datasets of GBM patients [42,43] showed that ITGA6 expression was greater
in GBMs compared with non-cancerous samples (Figure S1A) and that MES subtype
expresses significantly higher levels of ITGA6 than PN GBMs (Figure S1B). In addition, in
line with this, ITGA6 expression was greater in the MES-GSCs in a dataset obtained from
in vitro patient-derived GSCs [27] (Figure S1C). Even taking into consideration the recent
integrative model that tuned the previous classification into four molecular subtypes [45],
ITGA6-expressing cells were specifically enriched in the MES-like state (Figure S1D). This
independent evidence prompted us to further investigate the unexplored role of integrin a6
in the MES subtype, especially in consideration of the fact that the cellular in vitro models
used to analyse the role of integrin a6 in GSCs [22,23] were limited to the PN subtype
(CD133HI, Oligo2HI, and SOX2HI cells) [26,27,47,48]. In contrast, the specific role of integrin
a6 in MES-GSCs—i.e., Oligo2LO/CD133LO/CD44HI—still remains unclear.

First, we investigated the expression of ITGA6 in a set of patient-derived GSCs lines.
The analysed cultures were maintained as gliomaspheres in serum-free medium and
were previously classified as MES-GSCs or PN-GSCs [32] according to the mesenchymal
index [26]. The levels of CD44 and OLIG2 were used as bona fide markers for MES and PN
subtypes, respectively (Figure 1A) [26–29]. The MES/PN classification obtained was further
validated by quantification of PROM1 (protein name: CD133) transcription level, which
is more prevalent in the PN subtype (Figure S2A) [26,27,47]. Consistent with previous
observations [27], GSCs bearing Oligo2HI/CD44LO PN signature tended to form tightly
joined gliomaspheres, whereas Oligo2LO/CD44HI MES-GSCs formed irregular grape-shape
spheres which tended to be bigger in size (Figure S2B). Within our set of GSCs patient-
derived cell lines (four MES-GSCs and two PN-GSCs), ITGA6 transcriptional levels were
comparable and equally high, thus suggesting the relevance of integrin a6 in our MES-GSCs
cultures as well (Figure 1B). Flow cytometry highlighted a unique population of integrin
a6-expressing cells in PN-GIC2, MES-GSC82, MES-GSC88, and MES-GSC90 (Figure 1C).
Paired differentiated GBM cells (DGCs) obtained from same-patient specimens and stained
for integrin a6 showed no relevant expression at flow cytometry (Figure 1C). Although
PN-GIC2 displayed a higher mean fluorescence intensity and a greater percentage of
integrin a6-positive cells (≈94%), the three MES-GSCs still showed a notable portion of
cells expressing integrin a6 (mean ≈74%; Figure 1C and Figure S2C).

Given the demonstrated association between integrin a6 and stemness in CD133HI

PN settings [22], we wondered whether the differentiation state would also inhibit ITGA6
expression in the MES subtype. Nestin (NES) level was quantified along with ITGA6
expression as a GBM stemness marker [5], which characterizes GSCs irrespective of their
molecular subtype, as demonstrated by previously published data (Figure S2D) [26]. MES-
GSC82 and MES-GSC90 were therefore differentiated in serum-containing media and
integrin a6 protein level was analysed at 7 days. ITGA6 expression strongly decreased
upon differentiation stimuli together with NES expression (Figure 1D) and was totally
undetectable in differentiated glioblastoma cells (DGCs) derived from the same post-
surgical specimen (Figure S2C) [32].

To sum up, our findings demonstrate that ITGA6 is expressed in both PN and MES
GBM subtypes and derived GSCs and is associated with a dedifferentiated status.
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Mean expression was calculated with the dCt method (mean ± SEM; n = 3; unpaired t-test with Welch’s correction). (C) 
Representative flow cytometry analysis of integrin a6 in MES-GSC90 and PN-GIC2 with relative differentiated glioblas-
toma cells (DGCs) as an internal negative control (Figure S2C). (D) ITGA6 and NES mRNA levels after 7 days of differen-
tiation in 10% FBS containing media (mean ± SEM; n = 3; unpaired t-test). (E) Western blot validation of PN and MES-
GSCs enriched for integrin a6 high MFI (median fluorescence intensity; HI) or low MFI (LO) via FACS sorting. The values 
indicated within blots are relative to the densitometric analysis. Numbers indicate the normalized integrin a6 intensity 
ratio relative to the mean of normalized ITGA6HI samples. (F and G) Assessment of self-renewal capacity (mean ± SEM; 
unpaired t-test) and sphere size (mean ± SEM; Mann–Whitney test) in PN-GSCs (F) and MES-GSCs (G) enriched or de-
pleted according to the ITGA6 expression. Representative micrographs of gliomaspheres formed from PN-GIC2 enriched 
for ITGA6 high-expressing and low-expressing cells. The number of independent experiments—n, the number of glio-
maspheres scored for each condition—N. The values specified within the bar plot indicate the mean relative self-renewal 
capacity. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 
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Figure 1. Integrin a6 expression in PN and MES-GSCs. (A) Analysis of GSCs from our collection according to the expression
of CD44 and OLIG2 by q-PCR. The gene expression was calculated using the dCt (unpaired t-test with Welch’s correction).
(B) Expression levels of the ITGA6 gene across MES-GSCs (depicted in red) and PN-GSCs (depicted in green). Mean
expression was calculated with the dCt method (mean ± SEM; n = 3; unpaired t-test with Welch’s correction).
(C) Representative flow cytometry analysis of integrin a6 in MES-GSC90 and PN-GIC2 with relative differentiated glioblas-
toma cells (DGCs) as an internal negative control (Figure S2C). (D) ITGA6 and NES mRNA levels after 7 days of differentia-
tion in 10% FBS containing media (mean ± SEM; n = 3; unpaired t-test). (E) Western blot validation of PN and MES-GSCs
enriched for integrin a6 high MFI (median fluorescence intensity; HI) or low MFI (LO) via FACS sorting. The values
indicated within blots are relative to the densitometric analysis. Numbers indicate the normalized integrin a6 intensity ratio
relative to the mean of normalized ITGA6HI samples. (F,G) Assessment of self-renewal capacity (mean ± SEM; unpaired
t-test) and sphere size (mean ± SEM; Mann–Whitney test) in PN-GSCs (F) and MES-GSCs (G) enriched or depleted accord-
ing to the ITGA6 expression. Representative micrographs of gliomaspheres formed from PN-GIC2 enriched for ITGA6
high-expressing and low-expressing cells. The number of independent experiments—n, the number of gliomaspheres
scored for each condition—N. The values specified within the bar plot indicate the mean relative self-renewal capacity.
** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.2. Integrin a6 Supports Stemness in PN-GSCs, but Not in MES-GSCs

As previously shown, ITGA6 knockdown in Olig2HI PN-GSCs results in abrogation
of stem-related features, such as self-renewal reduction and proliferation arrest [22]. To
explore whether integrin a6 regulates the same cellular functions in MES-GSCs, we com-
pared FACS-sorted ITGA6HI and ITGA6LO subpopulations (Figure 1E) enriched following
the gating strategy specified in Figure S2E. Cells were seeded at single-cell clonal density
and the capacity to form gliomasphere, and their diameter were evaluated. Gliomasphere-
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forming capacity and variation in sphere size roughly reflect stem cell frequency/stem
cell potential and proliferation rate, respectively [49–53]. Consistently with published
data on PN-GSCs [22], PN-GIC2-ITGA6LO showed a significant reduction in clonogenic
capability and sphere size (Figure 1F). In particular, the capacity of PN-GIC2-ITGA6HI to
give rise to gliomaspheres was more than double than that of PN-GIC2-ITGA6LO, and
the mean diameter was 21.65% larger (PN-GIC2-ITGA6HI: 100.7 ± 1.9 µm; PN-GIC2-
ITGA6LO: 78.9 ± 1.5 µm). However, surprisingly, no significant difference was seen in
the MES-GSC82 subtype in regard to self-renewal capacity and sphere size (Figure 1G;
MES-ITGA6HI: 255.7 ± 7.4 µm; MES-ITGA6LO: 257.2 ± 6.1 µm). Moreover, another MES-
GSCs (MES-GSC90) culture was tested and ITGA6LO did not display reduced sphere size
or capacity to form gliomaspheres (Figure S2F). These findings indicated that integrin a6
was required for self-renewal and proliferation in GSCs bearing PN background, but not in
MES-GSCs.

Next, we decided to stably silence the ITGA6 expression via a lentiviral-based shRNA
to better understand its role in GSCs (Figure S3A). After puromycin selection, the obtained
gliomasphere cultures displayed a reduced amount of ITGA6 (Figure 2A,C and Figure S3B).
Consistently with the comparison between PN-GIC2-ITGA6HI and PN-GIC2-ITGA6LO

(Figure 1G), ITGA6 silencing in PN-GIC2 reduced the clonogenic potential to 33.84%
(Figure 2B) and the spheres formed were 12.85% smaller (PN-GIC2-shCTRL: 86.0 ± 1.1 µm;
PN-GIC2-shITGA6: 75.0 ± 1.0 µm). Notably, integrin a6 was essential for the survival
of the PN-GIC2, as the ITGA6 silencing precluded more than two passages in culture.
Our results confirmed the previously shown strong impact of integrin a6 on proliferation
and stemness in PN settings [22]. Conversely, and consistent with our own findings on
MES-ITGA6HI and MES-ITGA6LO (Figure 1G), three different ITGA6-silenced MES-GSCs
did not display a significant effect on gliomasphere-forming capacity and proliferation
(Figure 2D).

To further prove that integrin a6 indeed has an impact on stemness in the PN but not
in the MES setting, we evaluated the effect of ITGA6 downregulation on the expression
of a putative stem-cell marker. Silencing of ITGA6 reduced the expression of NES in the
PN-GIC2 cells (Figure 2E). In contrast, no effect was associated with ITGA6 silencing in
tested MES-GSCs (Figure 2E). Importantly, no variation was detected for ALDH1A3, a
recognized specific marker for MES-GSCs [27] (Figure 2F).

Taken together, our results demonstrate that integrin a6 has no impact on stemness in
MES-GSCs, while also corroborating the role of integrin a6 in PN-GSCs stemness [22,23,54].
Accordingly, we decided to further explore the functional role of integrin a6 in MES-GSCs,
which, to our knowledge, had not yet been investigated.

3.3. Downregulation of Integrin a6 Affects DNA Damage Repair and Cell Cycle in MES-GSCs

To better clarify the role of integrin a6 in the MES context, we performed RNA-
Seq analysis of MES-GSCs (MES-GSC90) upon ITGA6 silencing. Transcriptomic analysis
revealed 308 differentially expressed genes with the fold change (FC) < −2 or >2 (Figure 3A;
adjusted p < 0.05).
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Figure 2. Silencing of integrin a6 in MES-GSCs does not have an impact on stemness and self-renewal. (A,C) Representative
Western blot of the lentiviral-based shRNA silencing of ITGA6 in PN-GIC2 (A) and MES-GSCs (C). The values indicated
within blots are relative to the densitometric analysis. Numbers indicate the normalized integrin a6 intensity ratio relative
to the mean of normalized shCTRL samples. (B) Assessment of self-renewal capacity (mean ± SEM; n = 3; unpaired t-test)
and sphere size (mean ± SEM; n = 3; Mann–Whitney test) in PN-GSCs silenced for ITGA6. Micrographs from representative
fields of gliomaspheres (scale bar = 100 µm). (D) Self-renewal capacity (mean ± SEM; n = 4; unpaired t-test) and sphere size
(mean ± SEM; n = 4; Mann–Whitney test) in MES-GSCs silenced for ITGA6. The number of independent experiments—n,
the number of gliomaspheres scored for each condition—N. The values specified within the bar plot indicate the mean
relative self-renewal capacity. (E) Transcript levels of ITGA6 and NES detected by means of qPCR in shITGA6 PN-GSCs
and MES-GSCs (mean ± SEM; n = 3; unpaired t-test). (F) Relative transcript amount of ALDH1A3, a specific MES stem cell
marker, in shITGA6 MES-GSCs (mean ± SEM; n = 3; unpaired t-test). *** p < 0.001; **** p < 0.0001.
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Figure 3. Pathway enrichment analysis following integrin a6 inhibition in MES-GSCs. (A) An enhanced volcano plot of
differentially expressed genes according to log2(FC) and –log10(p-value) within the comparison of CTRL vs. shITGA6.
(B) Top 9 gene-sets resulting from GSEA as for KEGG tool. The most relevant processes associated with DNA repair
dynamics are highlighted in orange colour: DNA replication, mismatch repair, cell cycle, HR, and NER. Used acronyms:
P&C metabolism, porphyrin and chlorophyll metabolism; HR, homologous recombination; NER, nucleotide excision
repair. (C) GSEA plot for the indicated KEGG pathways. (D) Pathview KEGG maps of cell cycle and mismatch repair
pathway displaying colour variation according to differentially expressed genes (see Figure S4A for KEGG DNA replication).
(E) Top modulated transcription factor networks as for ENRICHR tool showing the signature related to E2F4 and FOXM1.
(F) IPA key upstream regulators inhibited (blue colour) or activated (orange colour) in the CTRL cells vs. shITGA6 and their
predicted relationships.



Cancers 2021, 13, 3055 12 of 21

Differentially expressed transcripts between shITGA6 and shCTRL samples were then
examined to identify biologically relevant clusters. We performed gene set enrichment
analysis (GSEA) within the curated KEGG pathways. As expected, the silencing of integrin
a6 induced a consistent modulation of extracellular matrix components and interactors
(Figure S4A). Moreover and surprisingly, among the top modulated gene sets, we detected
pathways related to DNA damage repair and to cell-cycle regulation (Figure 3B,C,D and
Figure S4B). Similar results were obtained with GSEA hallmarks gene sets. Indeed, MES-
GSC90-shCTRL was found to be significantly enriched in G2/M checkpoint and DNA
repair gene sets (Figure S4C,D).

Next, we investigated enrichment in transcription factor ontologies. We found that
E2F-4 and forkhead box protein M1 (coded by FOXM1) were the transcription factors
most likely to be involved in the transcriptomics changes upon ITGA6 downregulation
(Figure 3E and Figure S4E). Both transcription factors have been implicated in cell cycle
regulation [55,56], and FOXM1, in particular, has been associated with enhanced sensi-
tivity to genotoxic stress in GBM [57–60]. Indeed, most of the FOXM1 and E2F4 direct
transcriptional targets found to be significantly upregulated in shCTRL cells (Figure S4F,G)
are involved in cell cycle regulation and G2/M checkpoint pathways after DNA dam-
age [61–65]. Analysis of TCGA datasets in glioma patients confirmed significant positive
correlation of ITGA6 expression with CDK1, CDK4, PCNA, and FOXM1 transcript levels
(Figure S5A,B). Based on these data, high levels of integrin a6 potentially convey resistance
to DNA damaging therapies in MES-GSCs.

To gain further insights into the biological value of the ITGA6 expression in the
mesenchymal setting, we performed Ingenuity Pathway Analysis (IPA). Interestingly, IPA
predicted that ITGA6 induces the TP53 pathway inhibition, thus activates FOXM1 and
inhibits CDKN1A (p21) and E2F4 (Figure 3F). As a consequence, the molecular alterations
happening in ITGA6-silenced cells convey increased cell morbidity, senescence, and necrosis
(Figure S4H).

Recently, the inhibition of integrin a6 has been described as negatively impacting
on the FOXM1 regulatory node in an ERK-dependent manner in Oligo2HI GSCs (PN-
GSCs) [54]. However, in our Oligo2LOW CD44HI GSCs (MES setting), no inhibition was
detected in this signalling axis upon silencing of ITGA6 (Figure S5C). Moreover, no per-
turbation of ERK phosphorylation was detected following ITGA6 silencing (Figure S5D).
Finally, consistent with our results in Figure 2F, stem-related genes were not affected by
ITGA6 inhibition (Figure S5E).

Taken together, our results suggest that integrin a6 regulates pathways crucial for cell
cycle and DNA damage repair in GSC-MES, and its inhibition may sensitize tumoral cells
to DNA damaging therapeutic stress.

3.4. Integrin a6 Is Critical for MES-GSCs Sensitivity to Ionizing Radiation

To corroborate that silencing of ITGA6 impacts on DNA damage response in MES-
GSCs, we quantified the magnitude of DNA double-strand breaks (DSB) accumulation,
via the phosphorylated status of the histone H2AX (gamma-H2AX), and its resolution
over time [66]. The effect of integrin a6 downregulation on DNA damage repair was
not significant in basal conditions, despite a slight tendency of shITGA6 GSCs toward
accumulating a larger number of gamma-H2AX positive foci. However, when shITGA6
MES-GSC82 and shITGA6 MES-GSC90 were exposed to ionizing radiation following a
treatment regimen mimicking a clinically relevant radiotherapy setting (RT), a significant
reduction in the capacity to repair DNA damage was detected. Specifically, MES-GSCs
were irradiated, and foci formation and decay were analysed 1, 4, and 24 h afterwards.
Interestingly, ITGA6 downregulation significantly reduced the capacity of MES-GCS82 and
MES-GSC90 to repair DNA damage, with a delayed decay in gamma-H2AX foci resolution
4 and 24 h after RT exposure (Figure 4A,B). Thus, ITGA6 inhibition downregulates the
DNA damage repair machinery in MES-GSCs and significantly alters their capacity to
recover from induced DSB.



Cancers 2021, 13, 3055 13 of 21

Cancers 2021, 13, x FOR PEER REVIEW 13 of 22 
 

 

irradiated, and foci formation and decay were analysed 1, 4, and 24 h afterwards. Inter-
estingly, ITGA6 downregulation significantly reduced the capacity of MES-GCS82 and 
MES-GSC90 to repair DNA damage, with a delayed decay in gamma-H2AX foci resolu-
tion 4 and 24 h after RT exposure (Figure 4A,B). Thus, ITGA6 inhibition downregulates 
the DNA damage repair machinery in MES-GSCs and significantly alters their capacity to 
recover from induced DSB. 

 
Figure 4. Inhibition of integrin a6 expression in MES-GSCs triggers radiosensitivity. (A,B) Gamma-H2AX foci decay
after IR-induced DNA damage. (A) Representative microsections of the gamma-H2AX foci detected in MES-GSC90 by
immunofluorescence (scale bar = 50 µm). Gamma-H2AX foci were stained in red, while nuclei were counterstained with
DRAQ5. Smaller frames display the same sections at higher magnification. (B) Absolute quantitation of gamma-H2AX
foci after a single fraction of 4 Gy (mean ± SEM; n = 3; unpaired t-test). A minimum of 10 fields per condition reaching a
minimum of 70 cells in total were analysed (n = 3). (C) Survival curves of MES-GSCs obtained for control (shCTRL) and
ITGA6-inhibited cultures (shITGA6) following RT (n = 4). Two-way ANOVA reported within each plot. (D) Linear quadratic
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model and survival curve parameters to quantify radiation sensitivity. SF2 and SF4 are indicated as mean ± SEM. SF2,
surviving fraction at 2 Gy; SF4, surviving fraction at 4 Gy; AUC, area under the curve. (E) In vitro extreme limiting dilution
assay to test radiation sensitivity. It revealed the sphere formation frequencies of control and shITGA6 MES-GSC88 untreated
or 8 Gy irradiated. Pairwise test p-value reported within each single plot. (F) (top) Survival curve of MES-GSC90 obtained
for ITGA6HI and ITGA6LO cultures following RT (n = 3; two-way ANOVA). (bottom) Linear quadratic model and survival
curves parameters to quantify radiation sensitivity. * p < 0.05; *** p < 0.001.

In order to assess whether the inhibition of DNA damage repair consequent to integrin
a6 downregulation may play a role in a clinically relevant context, we challenged ITGA6-
silenced MES-GSC82, MES-GSC88, and MES-GSC90 with a fractionated protocol of RT. The
radiosensitivity was evaluated by means of a clonogenic assay at 2 and 4 Gy (Figure 4C).
Downregulation of ITGA6 clearly enhanced radiosensitivity in all the MES-GSCs tested.
For every survival curve, the surviving fractions (SFs) were calculated at each dose along
with the area under the curve (AUC) (Figure 4D). In multiple shITGA6 MES-GSCs tested,
SFs and the AUC obtained were smaller, indicating a more radiosensitive background.
To gain more insights into the radiobiological value of the test performed, the curves
were interpreted using the linear quadratic model, a commonly used mathematical model
in clinical radiation oncology [35,36,38,67–69]. shITGA6 cells displayed higher α- and
β-values, indicating increased radiosensitivity and impaired capacity to repair sublethal
DNA damage (Figure 4D). In addition, lower α/β ratio of shITGA6 suggested an enhanced
sensitivity to fractionated doses [38,69,70].

Finally, to address whether genotoxic stress in combination with ITGA6 silencing
inhibits stemness, we estimated the fraction of cells bearing stem cell potential and self-
renewal capacity via extreme limiting dilution assay (ELDA) [39]. As expected, and in
line with Figure 2, ITGA6 silencing did not change the GSCs proportion in non-irradiated
cultures (shCTRL CT vs. shITGA6 CT), while it displayed a significant impact over the
capacity to retain stemness compared with irradiated cells (Figure 4E). The reduction of
stem cell frequency was significantly greater in all three irradiated ITGA6-silenced MES-
GSCs cultures (Figure S6A). Though the intrinsic stemness of MES-GSCs was not altered
by integrin a6 downregulation, higher ITGA6 levels after irradiation correlated with better
capacity to maintain stem cell pool. Similar results were obtained analysing MES-GSC82
and MES-GSC90 FACS-sorted ITGA6HI and ITGA6LO (Figure 4F and Figure S6B). Indeed,
cells with greater expression of integrin a6 were characterized by a higher proportion
of stem cells only when irradiated (Figure S6C). This ruled out the possibility that the
observed effects were induced by side effects of the silencing.

Furthermore, the molecular insights we obtained on the role of integrin a6 in MES-
GSCs allowed us to focus on its relevance for glioma patients’ outcome. In particular, the
12 genes most upregulated by the expression of ITGA6 in MES-GSCs correlated negatively
with glioma patients’ survival, as shown by the Cox proportional hazards regression model
(hazard ratio, 4.4; 95% confidence interval, 3.31–5.86; p = 1.89 × 10−24; Figure S7).

Therefore, MES-GSCs with greater expression of integrin a6 display a more efficient
DNA damage response machinery and are hence more radioresistant.

4. Discussion

Integrins are a family of adhesion molecules driving cell-to-cell and cell–ECM com-
munication. These transmembrane proteins are involved in various cellular processes,
including cell survival, proliferation, migration, invasion, and angiogenesis, and conse-
quently, their functions are expected to potentially support tumour development [71–74].
Targeting integrins is an attractive goal as these adhesion molecules are involved in crucial
aspects of malignant progression. Furthermore, integrin expression patterns in neoplastic
lesions differ from those of non-neoplastic tissues, thus allowing selective targeting of
tumoral cells.
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In recent years, a promising peptide, named Cilengitide, was developed to target and
selectively inhibit integrin heterodimers av/b3 and av/b5. Despite encouraging preclinical
studies in GBM mouse models and early phase trials [75,76], the use of Cilengitide did not
show significant clinical improvement when combined with standard therapies [77,78].

Integrin a6 has been described in GBM as a GSCs marker capable of selectively
enriching for GSCs independently of CD133 expression and sustaining GCS self-renewal,
proliferation, and tumour initiating capacities [22]. Since then, the biological role of integrin
a6 has been extensively investigated in GSCs characterized by expression of Oligo2 and
CD133 markers, among others [22,23,54]. These markers are broadly used as part of the
signature defining the PN subtype [27,28,47]. Given the lack of knowledge on the role of
integrin a6 in GSCs belonging to the MES subtype and the high expression of this marker
in GSC-MES [32] and in bulk TCGA-MES GBM (Figure S1), we explored its relevance
in the PN versus MES subtype. Importantly, the study of key pathways may offer a
comprehensive evaluation of the molecular subtypes coexisting in the lesion, especially in
light of its heterogeneous biology.

We observed that, differently from PN cells where it supports cell proliferation and
stemness, integrin a6 did not drive cancer stem cell maintenance and proliferation in
MES-GSCs (i.e., OligoLOW CD44HI patient-derived gliomaspheres).

Computational analysis indicated that ITGA6 downregulation in MES-GSCs mod-
ulates pathways crucial for DNA replication, mismatch repair, and cell cycle regulation,
engaging particularly with transcription factor FOXM1. Most of the target genes of FOXM1
found altered by ITGA6 silencing, when inhibited in unperturbed cells, lead to a simple de-
lay in the mitotic entry [62]. However, when DNA damage is therapeutically induced, the
inefficient machinery may lead to an incorrect or absent release from the mitotic arrest [79].

Despite the limitations of the transcriptomic analysis conducted on a single cell line
(MES-GSC90), further functional validations were consistent across the different MES-
GSCs analysed.

Of note, ITGA6 expression inhibition effectively impaired DNA damage repair ma-
chinery in MES-GSCs leading to a significant delay in foci recovery dynamics.

MES-GSCs expressing lower amounts of integrin a6 were consistently characterized
by increased radiosensitivity and by a reduced capacity to retain stemness following RT.

Integrin a6 involvement in radioresistance mechanisms has been previously ascribed
to its control over the AKT/ERK pathway [80] and ZEB1/ERK transcription factor [23,54],
in breast cancer and GBM, respectively. Nevertheless, we found that the downregulation
of ITGA6 expression in GSCs bearing MES signature had little impact on these targets.

Cellular heterogeneity is a hallmark of GBM and is closely related to the presence of
GSCs at different transcriptional states [45,81,82]. In addition, single-cell RNA-seq revealed
the presence of distinct GSCs profiles in the same tumour [30]. Proneural to mesenchymal
transition (PMT) can be induced upon selective pressure of different factors and treatments
during GBM progression [26,28,83]. The results from our study suggest that targeting
integrin a6 may reduce the number of PN-GSCs and overcome radioresistance in MES-
GSCs within the same tumour. This may be of particular interest in order to counteract the
radiation-induced PMT and the selection of radioresistant subpopulations.

Notably, the molecular insights we acquired on the role of integrin a6 across different
subtypes highlight its relevance for GBM outcome. However, further investigations on a
larger cohort of GSCs to enforce and validate present findings are recommended.

Taking into consideration that the current standard of care in GBM [84] uses mainly
DNA-damaging therapies—radiotherapy and the DNA methylating agent temozolomide—
the impact of integrin a6 on DNA damage repair may represent a key turning point.
Irrespective of the molecular profile of GSCs, perturbation of ITGA6 leads to weaker and
more fragile cells which limits the capacity to cope with genotoxic stress. Importantly,
ITGA6 silencing was able to enhance sensitivity to radiation in a MES-GSCs culture line that
demonstrated a striking radioresistant phenotype in previous studies [32]. Thus, integrin a6
inhibition may represent a promising strategy to overcome GBM resistance to radiotherapy,
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even in the most refractory cases. However, many are the pitfalls to finding an effective and
safe therapy capable of inhibiting integrin a6 in vivo, since the functional blocking antibody
now available may potentially cause important side effects if systemically administrated,
due to the fact that integrin a6 is broadly expressed in epithelium and intestine. One
possible resource is local inoculation of inhibitory drugs directly in the surgical cavity
before irradiation.

Despite great efforts within the scientific community [85], the diagnostic strategies for
GBM still lack effective biomarkers at the moment, and pathologists rely on a “layered”
and “integrated diagnosis” [86]. Since 2016, glioblastomas are internationally classified
based on the IDH1/2 status and histopathological features (nuclear atypia, cellular pleo-
morphism, microvascular proliferation, and/or necrosis) [87]. Given the results obtained
in the present and previous studies [22], we can hypothesize integrin a6 expression as a
potential prognostic marker for GBM patients, irrespectively of the molecular subtype.
However, further investigations on a larger cohort of GSCs to enforce and validate present
findings are recommended. Indeed, at this stage, functional implications of the integrin a6
still remain speculative and warrant further research.

An important final remark on the microenvironment where integrin a6 may be relevant
within the whole GBM: We know that integrin a6 is a receptor for laminins [74]. Within
the brain, laminins are mainly localized in the vascular basement membrane around blood
vessels [88–90]. This makes our discoveries very relevant for a better understanding of the
tumour topology upon treatment. We can indeed envision a condition where GBM cells
that express more integrin a6 are more MES-like, radioresistant, and localized around blood
vessels—as previously shown for MES-like cells [91,92]—thus making the perivascular
niche an important hub for resistance to therapy [6,93–96]. Therefore, another potential
strategy to reduce the effects of integrin a6 may be reducing the movement of GBM cells
towards pre-existing blood vessels, also called vessel co-option [97,98]. This therapeutic
strategy may be potentially safer than directly targeting integrin a6.

Taken together, the findings presented here highlight the crucial relevance of integrin
a6 in the radioresistance of MES-GSCs and suggest that integrin a6 may represent an
attractive target to enhance GBM radiocurability.

5. Conclusions

In the current study, we observed a different role of integrin a6 in GSCs across proneu-
ral and mesenchymal signature. The data obtained show that ITGA6 in PN-GSCs tightly
regulates proliferation and stemness-related features. Despite the limited number of GSCs
investigated in the present study, the transcriptomic analysis suggests that silencing of
ITGA6 in MES-GSCs weakens the cell-cycle pathway and DNA damage response machin-
ery. Importantly, all silenced MES-GSCs cultures tested showed an increased sensitivity
to genotoxic stress, such as ionizing radiation. These data highlight the importance of
discriminating between transcriptional subtypes when studying the heterogeneous biology
of GBM. Lastly, we identified an attractive mechanism that may harm both GSCs subtypes
and potentially controls tumour relapse following conventional treatment.
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