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LOCATION OF SIEGEL CAPTURE POLYNOMIALS
IN PARAMETER SPACES

ALEXANDER BLOKH, ARNAUD CHÉRITAT, LEX OVERSTEEGEN,
AND VLADLEN TIMORIN?

Dedicated to the memory of Anatole Katok

Abstract. A cubic polynomial with a marked fixed point 0 is
called an IS-capture polynomial if it has a Siegel disk D around 0
and if D contains an eventual image of a critical point. We show
that any IS-capture polynomial is on the boundary of a unique
bounded hyperbolic component of the polynomial parameter space
determined by the rational lamination of the map and relate IS-
capture polynomials to the cubic Principal Hyperbolic Domain and
its closure.

1. Introduction

A complex polynomial P of any degree is said to be hyperbolic if
all of its critical points belong to the basins of attracting or superat-
tracting periodic cycles. The set of all hyperbolic polynomials in any
particular parameter space is open. Components of this set are called
hyperbolic components. The dynamics of hyperbolic complex polyno-
mials is well understood. According to the famous Fatou conjecture
[Fat20], hyperbolic polynomials are dense in the parameter space of all
complex polynomials. This explains why hyperbolic components play
a prominent role in complex dynamics.

By a general result of J. Milnor [Mil12], every bounded hyperbolic
component in the moduli space of degree d polynomials is an open
topological cell of complex dimension d − 1. Hence it is fair to say
that the structure of such hyperbolic domains is known. However, in
degrees greater than 2, the same cannot be said about the closures
of hyperbolic components. Arguably, even in the case of the cubic
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Principal Hyperbolic Domain PHD3 (defined as the subset of the cu-
bic parameter space consisting of classes of polynomials with a unique
(super)attracting fixed point and a Jordan curve Julia set), the descrip-
tion of its boundary has proved to be rather elusive. For example, in
a recent paper by L. Petersen and T. Lei [PT09] it is shown that the
boundary of PHD3 has a very intricate “fractal” structure that is not
fully understood. Thus, understanding the boundaries of hyperbolic
components, in particular understanding the boundary of PHD3, is an
important open problem.

Qualitative changes in the dynamics of polynomials take place on
the boundary of the connectedness locus. It is known that boundaries
of bounded hyperbolic components are contained in the boundary of
the entire connectedness locus. This provides an additional incentive
for studying boundaries of hyperbolic components.

In our paper we consider these issues in the cubic case. More pre-
cisely, we consider the parameter space of cubic polynomials with a
marked fixed point. The corresponding connectedness locus contains
many complex analytic disks in its boundary. A typical example is pro-
vided by IS-capture polynomials, i.e., polynomials that have an invari-
ant Siegel domain around the marked fixed point and a critical point
which is eventually mapped into it. In this paper we study the dy-
namics of such polynomials and their location in the parameter space;
below we briefly summarize our main results.

Summary of the main results. An IS-capture polynomial f be-
longs to the boundary of a unique bounded hyperbolic component with
the same rational lamination as f . Moreover, f belongs to a complex
analytic disk lying in the boundary of this hyperbolic component.

We also obtain some corollaries. In [BOPT14a] it was proven that all
polynomials from PHD3 satisfy some simple conditions. We conjecture
that these conditions are not only necessary but also sufficient for a
polynomial to belong to the closure of PHD3. In the present paper we
show that any polynomial satisfying the above mentioned conditions
but not belonging to the closure of PHD3 must be a polynomial of
so-called queer type. This improves our earlier results [BOPT16a].

To state another corollary of our results, we remind the reader about
Brjuno numbers.

d:bn Definition 1.1 (Brjuno numbers). The set B is the set of irrational

numbers θ such that
∑ ln qn+1

qn
< ∞, where pn

qn
→ θ is the sequence of

approximations given by the continued fraction expansion of θ. Num-
bers from B are called Brjuno numbers.
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The following is a classical result by A. D. Brjuno [Brj71].

t:br Theorem 1.2 ([Brj71]). If a is an irrationally indifferent fixed point
of a polynomial f with multiplier e2πiθ and θ ∈ B, then the point a is a
Siegel fixed point.

Another classical result, due to J.-C. Yoccoz, states that in the qua-
dratic case Theorem 1.2 is sharp.

t:yoc Theorem 1.3 ([Yoc95]). In the situation of Theorem 1.2, if f is qua-
dratic and θ /∈ B is not a Brjuno number, then a is a Cremer fixed
point of f .

A conjecture by A. Douady states that Theorem 1.3 holds for higher
degree polynomials too. We show that if a polynomial P does not
belong to the closure of PHD3 and has multiplier λ = e2πiθ at its fixed
point w, where θ is not a Brjuno number, then w is a Cremer fixed
point of P . Thus, if a cubic counterexample to the Douady conjecture
exists, it must be a polynomial from the boundary of PHD3.

Understanding the structure of the polynomial space in degree greater
than two is an important problem in complex dynamics. Describing
the location of IS-capture polynomials in the parameter space is a step
which will, hopefully, allow one to study the boundaries of hyperbolic
components and their mutual disposition, extending our knowledge
about the cubic polynomial parameter space.

2. Detailed statement of the results
s:detailed

We write C for the plane of complex numbers. The Julia set of a
polynomial f : C → C is denoted by J(f), and the filled Julia set of
f by K(f). For quadratic polynomials, a crucial object of study is the
Mandelbrot set M2. Let Pc(z) be a quadratic polynomial defined by
the formula Pc(z) = z2 + c. Clearly, 0 is the only critical point of the
polynomial Pc in C. By definition, c ∈ M2 if the orbit of 0 under Pc
is bounded (points with unbounded orbits are said to escape). Equiv-
alently, c ∈ M2 if and only if the filled Julia set K(Pc) is connected.
If c 6∈ M2, then the set K(Pc) is a Cantor set.

By classes of polynomials we mean affine conjugacy classes. The
class of f is denoted by [f ]. The parameters c of Pc(z) are in one-to-one
correspondence with classes of quadratic polynomials. A higher-degree
analog of the set M2 is the degree d connectedness locus Md, i.e., the
set of classes of degree d polynomials f all of whose critical points do
not escape or, equivalently, whose Julia set J(f) is connected.

The structure of the Mandelbrot set is described in the seminal work
of Thurston [Thu85] (see also [DH8485]). In particular, [Thu85] gives
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a full description of how distinct hyperbolic components of M2 are
located with respect to each other and what kind of dynamics is ex-
hibited by polynomials from their boundaries. However, for degrees
d > 2 studying the set Md has proven to be a difficult task. Cer-
tain full dimensional parts of Md are well understood; e.g., results of
[EY99, IK12] allow to find copies of M2 ×M2 or MK in M3 (here
MK is the set of pairs (c, z), where c ∈M2 and z ∈ K(Pc)). However,
the combinatorial structure of Md as a whole remains elusive.

The central and, arguably, the simplest part of the Mandelbrot set
is the (quadratic) Principal Hyperbolic Domain denoted by PHD2. It
is the set of all parameter values c such that the polynomial Pc has an
attracting fixed point. All these polynomials have Jordan curve Julia
sets. The closure PHD2 of PHD2 consists of all parameter values c such
that Pc has a non-repelling fixed point. It is sometimes called the filled
Main Cardioid. Its boundary Bd(PHD2) is a plane algebraic curve,
a cardioid called the Main Cardioid. As follows from the Douady–
Hubbard parameter landing theorem and from the “no ghost limbs”
theorem by Yoccoz [DH8485, Hub93], the Mandelbrot set itself can be
thought of as the union of PHD2 and limbs, connected components of
M2 \ PHD2, parameterized by reduced rational fractions p/q ∈ (0, 1).

It is natural to consider analogs of the Main Cardioid for higher
degree polynomials, in particular for cubic polynomials. This moti-
vates our interest to the boundary of the cubic Principal Hyperbolic
Domain PHD3 defined as the set of classes of cubic polynomials that
have an attracting fixed point and whose Julia set is a Jordan curve.
A closely related set, the so-called Main Cubioid, was studied in a
few recent papers ([BOPT14a, BOPT14b, BOPT16a, BOPT16b]). In
this framework an important task is to describe whether polynomials
with certain dynamical properties belong to the boundary of the Main
Cubioid. This is one of the problems addressed in the present paper.

Let us now concentrate on cubic polynomials. Let F be the space of
polynomials fλ,b given by the formula

fλ,b(z) = λz + bz2 + z3, λ ∈ C, b ∈ C.

The space F is adapted to studying polynomials with a marked fixed
point. Any such polynomial is affinely conjugate to one from F under
a conjugacy sending the marked fixed point to 0. All polynomials
g ∈ F have 0 as a fixed point. Let the λ-slice Fλ of F be the space
of all polynomials g ∈ F with g′(0) = λ. It is well known that two
polynomials fλ,b and fλ,b′ are conjugate by a Möbius transformation
M(z) that fixes 0 if and only if M(z) = ±z and b′ = ±b. We will
deal with f ∈ Fλ for some λ and consider only perturbations of f in
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F . Set Fat =
⋃
|λ|<1Fλ (the subscript at stands for attracting).1 Let

us emphasize that Fat is the family of polynomials from F that have
the point 0 as an attracting fixed point. For each g ∈ Fat, let A(g) be
the immediate basin of attraction of 0. Denote by Fnr the set of all
polynomials f = fλ,b ∈ F such that 0 is non-repelling for f (so that
|λ| 6 1).

Suppose that a is a fixed point of a polynomial f of any degree.
Assume that f ′(a) = e2πiθ where θ is irrational. Then a is said to be
an irrationally indifferent fixed point. If f is linearizable (i.e., ana-
lytically conjugate to a rotation) in a neighborhood of a, the point a
is called a Siegel fixed point. In this case the rotation in question is
well defined and is the rotation by 2πθ so that θ is called the rotation
number. Moreover, this is equivalent to the existence of an orientation
preserving topological conjugacy between f in a neighborhood of a and
the rotation by 2πθ of the unit disk. If a is a Siegel fixed point, the
biggest neighborhood of a on which f is linearizable exists and is called
the Siegel disk around a. If f is not linearizable in any neighborhood
of a then the point a is called a Cremer fixed point.

d:compotypes Definition 2.1 (Siegel captures). Suppose that a polynomial f ∈ F
has a Siegel disk ∆(f) around 0. If a critical point of f is eventually
mapped to ∆(f), then this critical point is denoted by ca(f) (here
“ca” stands for “captured”), and f is called an IS-capture polynomial,
or simply an IS-capture (here “I” stands for “invariant” and “S” stands
for “Siegel”). By [Man93], there exists a recurrent critical point re(f) of
f (here “re” stands for “recurrent”) whose limit set contains Bd(∆(f)).
It follows that the critical points ca(f) and re(f) are well-defined and
distinct (evidently, ca(f) is not recurrent).

r:0-siegel Remark 2.2. Generically, maps in the family F have three fixed points.
Any of these points, not only 0, could have a Siegel disk around it that
captures a critical point. However, let us stress that we only speak of
IS-captures when 0 is the Siegel fixed point whose Siegel disk captures
a critical point.

In this paper, we study the location of IS-captures in F relative to
hyperbolic components. An important role here is played by the set P◦
of all hyperbolic polynomials f ∈ F such that f ∈ Fat and J(f) is a
Jordan curve. Equivalently, f ∈ Fat belongs to P◦ if and only if A(f),
the immediate basin of attraction of 0, contains both critical points of f .
Evidently, P◦ is open in F . To see that P◦ is one hyperbolic component

1The set Fat was denoted by A in [BOPT14b, BOPT16b]. We adopt a more
consistent notation in this paper.
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of F , not only of Fat, observe that polynomials fb,λ = z3 + bz2 + λz
with |λ| = 1 are not hyperbolic and that by Corollary 4.9, the set P◦
is connected.

d:princrit Definition 2.3. The set P◦ is called the principal hyperbolic compo-
nent of F . We say that a hyperbolic polynomial f ∈ Fat is an IA-
capture polynomial (IA stands for Invariant Attracting) if a critical
point of f , denoted by ω2(f), is eventually mapped to A(f) but does
not lie in A(f) (then the remaining critical point ω1(f) belongs to A(f),
and no critical point of f belongs to J(f)). A hyperbolic component U
of F is of IA-capture type if U contains an IA-capture polynomial. Hy-
perbolic components of IA-capture type will also be called IA-capture
components.

Similarly to Remark 2.2, we emphasize that IA-capture polynomi-
als have 0 as their attracting fixed point. Evidently, both critical
points ω1(f), ω2(f) are well-defined for an IA-capture polynomial f .
Observe also that, similarly to the above, the fact that polynomials
fb,λ = z3 + bz2 + λz with |λ| = 1 are not hyperbolic implies that any
hyperbolic component U of F of IA-capture type is contained in Fat.
Thus, the principal hyperbolic component P◦ of F and the hyperbolic
components of F of IA-capture type are subsets of Fat.

We also need the concepts of rational lamination and full lamination.
Denote by D the open unit disk in the complex plane centered at the
origin and by S the unit circle which is the boundary of D. We will
identify R/Z with S via x 7→ e2πix.

Let f be a monic polynomial of degree greater than 1 and connected
Julia set. In this case all external rays with rational arguments land.
Given two rational angles α, β ∈ R/Z, we declare α ∼r β iff the landing
points of the corresponding external rays coincide. This defines an
equivalence relation on Q/Z. The equivalence classes are finite (see
Theorems 3.5 and 3.6 with references). We then consider the collection
Lrf of all edges of the convex hulls (in D) of all equivalence classes and
call it the rational lamination of f .

If the Julia set J(f) is locally connected, then all external rays land.
Given any two angles α, β ∈ R/Z we declare that α ∼ β iff the landing
points coincide. This defines an equivalence relation on R/Z, and in
this case too the equivalence classes are finite (see Theorems 3.5 and 3.6
and Theorem 1.1 of [Kiw02]). The collection of all edges of the convex
hulls of all classes is denoted Lf and is called the (full) lamination of
f . We will refer to the elements of Lf as leaves.

We include in each lamination the singletons {e2πiα} and call them
degenerate leaves, with α ∈ Q/Z for Lrf , resp. α ∈ R/Z for Lf . The
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set C of all possible chords of the unit disk and singletons in the unit
circle is equipped with a natural topology that associates to a chord ab
of S with endpoints a, b ∈ S the pair {a, b} of the symmetric product
S× S/(a, b) ∼ (b, a).

Clearly, in the case when J(f) is locally connected we have Lrf ⊂ Lf
and, since Lf is closed (see Section 3), we have Lrf ⊂ Lf . Contrary

to what one may expect, it is not always true that Lrf = Lf . A typ-
ical example is the case of a quadratic polynomial Q with invariant
Siegel domain and locally connected Julia set. Then LrQ consists only
of degenerate leaves and, therefore, coincides with the rational lami-
nation of z2 (abusing the language we will call such a lamination the
empty lamination). For IS-capture polynomials, we relate rational and
full laminations in Subsection 3. Recall that a polynomial with con-
nected Julia set that belongs to a hyperbolic component has a locally
connected Julia set and, hence, a well-defined lamination.

thmA Theorem A. If f ∈ F is an IS-capture polynomial, then there is a
unique bounded hyperbolic component U in F , whose boundary contains
f . Moreover, U ⊂ Fat, for all P ∈ U we have Lrf = LrP , LP = Lrf , and
there are two possibilities:

(1) the Julia set of f contains no periodic cutpoints, then U = P◦;
(2) the Julia set of f has a repelling periodic cutpoint, then U is of

IA-capture type.

A polynomial is said to be J-stable with respect to a family of poly-
nomials if its Julia set admits an equivariant holomorphic motion over
some neighborhood of the map in the given family [Lyu83, MSS83].
Say that f ∈ Fλ is λ-stable if it is J-stable with respect to Fλ with
λ = f ′(0), otherwise f is called λ-unstable. A component of the
set of λ-stable polynomials in Fλ is called an IS-capture component
if some (equivalently, all) polynomials from this component are IS-
capture polynomials. Thus IS-capture components are complex one-
dimensional analytic disks in the two-dimensional space F . Every such
disk is contained in a slice Fλ represented as a straight (complex) line
in coordinates (λ, b) of F .

In [Zak99, Theorem 5.3], Zakeri proved that every IS-capture poly-
nomial belongs to some IS-capture component. From Theorem A it
follows that every IS-capture component is contained in the boundary
of a unique hyperbolic component U of F . Moreover, U = P◦ or U is
of IA-capture type. Conversely:

thmB Theorem B. Let U be either an IA-capture component or P◦. Then
the boundary of U contains uncountably many IS-capture components
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lying in Fλ, where λ = e2πiθ, and θ runs through all Brjuno numbers
in R/Z.

A more precise formulation of Theorem B is contained in Theorem
6.5. We will apply Theorem A to the study of P , the closure of P◦ in
F . The following are some properties of polynomials in P .

t:prophd Theorem 2.4 ([BOPT14a]). If f = fλ,b ∈ P, then |λ| 6 1, the Julia
set J(f) is connected, f has no repelling periodic cutpoints in J(f), and
all its non-repelling periodic points, except possibly 0, have multiplier
1.

These properties extend almost verbatim to the higher degree case
[BOPT14a]. Theorem 2.4 motivates Definition 2.5.

d:cubio Definition 2.5 ([BOPT14a]). Let CU be the family of cubic polyno-
mials f ∈

⋃
|λ|61Fλ such that J(f) is connected, f has no repelling

periodic cutpoints in J(f), and all its non-repelling periodic points,
except possibly 0, have multiplier 1. The family CU is called the Main
Cubioid of F .

Note that P◦ and CU are subsets of F that play a similar role to
the principal hyperbolic component PHD3 and the main cubioid CU
in the (unmarked) moduli space of cubic polynomials. However, the
difference is that, when defining P◦ and CU , we take into account the
special role of the marked fixed point 0 for polynomials in F . As a
consequence, the sets P◦ and CU are not stable under arbitrary affine
conjugacies. By Theorem 2.4, Definition 2.5 immediately implies that

P ⊂ CU .

corC1 Corollary C. IS-capture polynomials do not belong to CU \ P.

We prove Corollary C at the end of Section 5.
For a compact set X ⊂ C, define the topological hull TH(X) of X as

the union of X with all bounded components of C \ X. We write Pλ
for the λ-slice of P , i.e., for the set P ∩ Fλ.

corC2 Corollary D. If W is a component of TH(Pλ) \ Pλ and f ∈ W, then
the following holds.

(1) Any such polynomial f is λ-stable.
(2) Critical points of f are distinct and belong to J(f).
(3) The Julia set J(f) has positive Lebesgue measure and carries

an invariant line field.

We prove it in Section 7. Part of it follows from [Zak99, Theorem
3.4].
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In Section 7, we aslo obtain interesting corollaries of Theorem B
that help distinguish between Siegel and Cremer fixed points of a given
multiplier.

In the end of this section we include a glossary of non-standard terms
and notation used throughout the paper. We appreciate the suggestion
made by one of the referees as it is certain to make reading easier.

GLOSSARY OF IMPORTANT TERMS AND NOTATION

PHD3: the Principal Hyperbolic Domain inM3 consisting of classes
of hyperbolic cubic polynomials with a fixed (super)attracting
point and the Jordan curve Julia set.

IS-capture polynomial: a cubic polynomial with invariant Siegel
domain and a critical point that eventually maps to that do-
main.

F : the space of polynomials fλ,b given by the formula

fλ,b(z) = λz + bz2 + z3, λ ∈ C, b ∈ C.

Fλ: the λ-slice of the space F consisting of all polynomials g ∈ F
with g′(0) = λ.

Fat: the union of all Fλ with |λ| < 1.
A(g): the immediate basin of attraction of 0 for g ∈ Fat.
Fnr: the union of all Fλ with |λ| 6 1.
∆(f): if f ∈ F has a Siegel disk around 0, then we denote this

disk ∆(f).
P◦: the set of all hyperbolic polynomials f ∈ F such that f ∈ Fat

and J(f) is a Jordan curve.
P: the closure of P◦ in F .
IA-capture polynomial: a hyperbolic polynomial f ∈ Fat such

that a critical point of f is eventually mapped to A(f) but does
not lie in A(f).

component of IA-capture type: a hyperbolic component U of
F that contains an IA-capture polynomial.

re(f): a recurrent critical point of an IS-polynomial f .
ca(f): a non-recurrent critical point of an IS-polynomial f ; it

eventually maps to ∆(f).
Lrf : the rational lamination of a polynomial f .
Lf : the full lamination of a polynomial f , defined if J(f) is locally

connected.
CU : the Main Cubioid of F (see Definition2.5).
TH(Z): the topological hull of a set Z.
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3. Rays and laminations
ss:pcuts

We will make use of the concepts of the full/rational lamination as-
sociated to a polynomial with connected Julia set. These concepts are
due to Thurston [Thu85] and Kiwi [Kiw97, Kiw01, Kiw04]. In fact,
in [Thu85] full laminations are defined independently of polynomials
as a combinatorial concept and are often studied in that setting (see,
e.g., [BMOV13]). Laminations are important tools of combinatorial
complex polynomial dynamics. Some of these tools are applicable to
polynomials of arbitrary degree, including those with non-locally con-
nected Julia sets. However, for the sake of brevity in this paper we avoid
unnecessary generality and define full lamination only in the case when
P has a locally connected Julia set.

3.1. Rays. Studying periodic external rays of polynomials is a power-
ful tool in complex dynamics. Given a polynomial f with connected
Julia set we denote by Rf (α) the external ray of f with argument α.
(According to our convention, arguments of external rays are elements
of R/Z rather than R/2πZ.) The arguments of external rays depend
on the choice of a Böttcher coordinate near infinity. For an arbitrary
cubic polynomial, such coordinate is defined up to a sign, i.e., up to the
involution z 7→ −z. However, for f ∈ F , we can distinguish a lineariz-
ing coordinate asymptotic to the identity. We assume that, whenever
f ∈ F , the linearizing coordinate near infinity is chosen in this way.

l:land-ratio Lemma 3.1 (see, e.g., [Mil06], Section 18). Let f be a polynomial. All
external rays of f with rational arguments land. The landing points
eventually map to periodic parabolic or repelling points. If J(f) is con-
nected then all rays landing at points that are eventually mapped to
parabolic or repelling periodic points have rational arguments.

Call an external ray smooth if it does not contain an escaping (pre)critical
point. The next lemma can be found in [GM93] (Lemma B.1) or
[DH8485] (Lecture VIII, Section II, Proposition 3).

l:rep Lemma 3.2. Let f be a polynomial, and z be a repelling periodic point
of f . If a smooth periodic ray Rf (θ) lands at z, then, for every polyno-
mial g sufficiently close to f , the ray Rg(θ) lands at a repelling periodic
point w close to z, and w depends holomorphically on g.

By a periodic argument we mean an element of R/Z periodic under
the d-tupling map θ 7→ dθ.

c:converge Corollary 3.3 (Lemma 4.7 [BOPT14b]). Suppose that hn → h is an
infinite sequence of polynomials of degree d with connected Julia sets,
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and {α, β} is a pair of periodic arguments such that the external rays
Rhn(α), Rhn(β) land at the same repelling periodic point xn of hn. If
the external rays Rh(α), Rh(β) do not land at the same periodic point
of h, then one of these two rays must land at a parabolic point of h.

Lemma 4.7 of [BOPT14b] is more general and includes (with provi-
sions) the case when Julia sets of polynomials hn are disconnected.

The following result is purely topological and is based on local be-
havior of polynomials at points of the plane. Given a polynomial f
with connected Julia set J(f) and a point z ∈ J(f), denote by Az the
set of arguments of rays landing at z. It is known [Hub93] that Az is
finite. Given a finite set X ⊂ S, the points a, b, c ∈ X are said to be
consecutive if the positively oriented arcs (a, b) and (b, c) are disjoint
from X (observe that the order of points in this definition is essential).

t:a1 Theorem 3.4 (cf Lemma 18.1 [Mil06]). Let f be a polynomial of de-
gree d > 1 whose Julia set J(f) is connected. (We do not assume that
J(f) is locally connected.) Let z ∈ J(f) be a point such that Az 6= ∅.
Then σd|Az is a k-to-1 map between Az and Af(z), and, if z is non-
critical, then k = 1. Moreover, there are two possibilities.

(1) The set σd(Az) = Af(z) is a singleton.
(2) Given any three consecutive points a, b, c in Az, the points σd(a),

σd(b) and σd(c) form a triple of consecutive points in Af(z).

The next result is classical and has a proof using the Schwarz-Pick
metric in [DH8485]. Recall that the (pre)periodic external rays are
exactly those whose arguments are rational.

t:a2 Theorem 3.5 (Proposition 2, Section II, Lecture VIII [DH8485]). Let
f be a polynomial of degree d > 1 with connected Julia set. Then all ra-
tional external rays for f land, and their landing points are (pre)periodic
points eventually mapped to repelling or parabolic periodic points.

Theorem 3.6, due to A. Douady, is a form of converse of Theorem 3.5.

t:a3 Theorem 3.6 (Theorem I.A [Hub93]). Let f be a polynomial of degree
d > 1 whose Julia set J(f) is connected. Let z ∈ J(f) be a repelling or
parabolic periodic point. Then:

i. The point z ∈ J(f) is the landing point of at least one periodic
external ray.

ii. Every external ray landing at z is periodic.
iii. All periodic external rays landing at z have the same period.
iv. There are finitely many external rays landing at z.
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Once one proves the first claim, the others follow from it, Theo-
rem 3.4 and properties of the d-tupling map. In [Hub93] there is an-
other proof, using the Yoccoz inequality.

The following nice theorem will not be used in its full strength; we
add it for the sake of completeness. A wandering point in J(f) is a
point whose orbit is infinite: this is the opposite of being (pre)periodic.

t:a4 Theorem 3.7 ([Kiw02]). Let f be a polynomial of degree d > 1 with
locally connected Julia set J(f). Then there exists an integer k = k(d)
independent of f , such that every wandering point z ∈ J(f) can be the
landing point of at most k external rays.

3.2. Full lamination. For a (finite or infinite) set A ⊂ S, denote by
CH(A) its (closed Euclidian) convex hull. A chord ab between any two
points a, b ∈ S is CH({a, b}) and contains the endpoints a and b. If
b = a the chord is called degenerate. Consider a closed set A ⊂ S and
its convex hull CH(A). An edge of CH(A) is a closed straight segment I
connecting two points of S such that I ⊂ Bd(CH(A)). Define the map
σd : S→ S by σd(s) = sd; here we assume S ⊂ C. Then the (σd-)image

of a chord ab is by definition the chord σd(a)σd(b). A (σd-)critical chord
is a non-degenerate chord whose endpoints have the same σd-image.

If f is a polynomial of degree d and J(f) is locally connected, one
defines an equivalence relation ∼f on S by declaring α, β ∈ S equivalent
ifRf (α) andRf (β) land at the same point. Then J(f) is homeomorphic
to S/ ∼f . By Theorems 3.6 and 3.7, any ∼f -class is finite. It is well-
known that the graph of ∼f is a closed subset of S× S.

Definition 3.8 is based upon ∼f but is not related to polynomials.

d:lam Definition 3.8 (Laminational equivalence relations). An equivalence
relation ∼ on the unit circle S is said to be laminational if:
(E1) the graph of ∼ is a closed subset in S× S;
(E2) convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.

By an edge of a ∼-class we mean an edge of its convex hull.

d:si-inv-lam Definition 3.9 (Laminational equivalences and dynamics). A lamina-
tional equivalence relation ∼ is (σd-)invariant if:
(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;
(D2) for any ∼-class g, the map τ = σd|g extends to S as an orientation
preserving covering map τ̂ such that g is the full preimage of τ(g) under
the covering map τ̂ .

To each laminational equivalence relation ∼ we associate the corre-
sponding geodesic lamination L∼ defined as the collection of all edges
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of convex hulls of ∼-classes together with all points of S. Call the lam-
ination all of whose leaves are singletons in S the empty lamination.

With every ∼-class G′, we associate its convex hull G = CH(G′).
The geodesic lamination L∼ is the set of all edges of all such poly-
gons G together with all singletons in S. Elements of L∼ are leaves.
A leaf is degenerate if it coincides with a point in S; otherwise it is
non-degenerate. If ` = ab is a leaf, then, by Theorem 3.4, the chord
σd(a)σd(b) is a (possibly degenerate) leaf denoted σd(`). A critical leaf
is a leaf that is a critical chord. A gap of Lf is the closure of a compo-
nent of D\

⋃
Lf . For any gap G of Lf , define σd(G) as CH(σd(G∩S)).

A gap G is invariant if σd(G) = G. If Lf has a gap G such that G∩ S
is infinite, then the interior of G is disjoint from the convex hulls of
all ∼f -classes. Finally, the geodesic lamination L∼f

= Lf is called the
(full) geodesic lamination associated with f .

3.3. Invariant gaps of cubic laminations. Let L∼ be a cubic lami-
nation. The degree of a gap G of L∼ is the maximal number of disjoint
critical chords that fit in G and are not edges of G, plus 1, except
for the case when G is a triangle with critical edges in which case the
degree of G is 3 (since chords include their endpoints, disjoint critical
chords have distinct endpoints). Degree 2 (respectively, 3) gaps are
said to be quadratic (respectively, cubic).

By [BOPT14a], a quadratic σ3-invariant gap G has a unique longest
edge M(G) called the major (of G). The major M(G) is critical (then
G is of regular critical type) or periodic (then G is of periodic type).
For every edge ` = ab of G, let H`(G) be the arc of S with endpoints
a and b and no points of G in H`(G). Let us normalize the length of S
to 1; then the major M(G) is singled out by the fact that the length
of HM(G)(G) is greater than or equal to 1/3.

t:major Theorem 3.10 ([BOPT16a]). Consider a polynomial f ∈ Fat \ P◦
with locally connected Julia set J(f). Then the geodesic lamination
Lf has a quadratic invariant gap G, and there are two possibilities.

(1) The major M(G) of G is critical, the corresponding critical
point of f belongs to Bd(A(f)), and periodic cutpoints of J(f)
do not exist.

(2) The major M(G) of G is periodic, and the corresponding point
of J(f) is a repelling or parabolic periodic cutpoint of J(f).

Corollary 3.11 easily follows.

c:attracapt Corollary 3.11. If f ∈ Fλ, |λ| < 1, is an IA-capture polynomial, then
J(f) is locally connected, the geodesic lamination Lf has a quadratic
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invariant gap G with periodic major M(G), the Julia set J(f) contains
a periodic repelling cutpoint associated to M(G), and f ∈ Fλ \ P.

Proof. Since f is hyperbolic, J(f) is locally connected so that Theo-
rem 3.10 applies to f . Evidently, neither critical point of f belongs to
J(f). Hence case (1) of Theorem 3.10 does not apply to f while case
(2) does apply. The cutpoint cannot be parabolic for otherwise f would
not be hyperbolic. This proves all claims of the corollary except for the
last one. To see that f ∈ Fλ \ P it remains to apply Lemma 3.2 which
implies that small perturbations of f will have a periodic cutpoint in
their Julia sets and, therefore, cannot belong to P◦. �

3.4. Rational lamination. Rational laminations Lrf are introduced
by Kiwi (see [Kiw97, Kiw01, Kiw04]) and are based upon the work of
Goldberg and Milnor [GM93].

l:a5 Lemma 3.12. Let f be a polynomial of degree d > 2 with connected
Julia set. If a chord is a limit of leaves `i ∈ Lrf and one of its endpoints
is periodic, then its other endpoint is periodic of the same period.

This lemma follows from Lemma 3.16 of [BOPT16a] since Lrf is gen-
erated by a laminational equivalence relation.

d:siblinv Definition 3.13 ([BMOV13]). A collection of chords L is sibling σd-
invariant provided that:

(1) for each ` ∈ L, we have σd(`) ∈ L,
2 (2) for each ` ∈ L there exists `1 ∈ L so that σd(`1) = `.
3 (3) for each ` ∈ L so that σd(`) is a non-degenerate leaf, there

exist d disjoint leaves `1, . . . , `d in L so that ` = `1 and
σd(`i) = σd(`) for all i = 1, . . . , d.

l:ratio-sibl Lemma 3.14 ([Kiw97, Kiw01]). For a polynomial f with connected
Julia set the rational lamination Lrf is sibling invariant.

We are ready to prove the next lemma.

l:ratiofull Lemma 3.15. If f is a polynomial of degree d > 2 with locally con-
nected Julia set and there is no bounded Fatou domain of f whose
boundary contains a critical point with infinite orbit, then Lrf = Lf .

Proof. Recall that always Lrf ⊂ Lf . Suppose that Lrf $ Lf . By Lemma
3.14, the collection Lrf is sibling invariant. Moreover, let x and y be
rational arguments. By Theorems 3.5 and 3.6, if x ∼ y and x is pe-
riodic for σ3, then y is periodic of the same period. By Lemma 3.12
it follows that there are no critical leaves in Lrf with a periodic end-
point. Moreover, it follows also that if x ∈ S is periodic and xy 6= xz
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are leaves of Lrf , then σd(xy) 6= σd(xz). Sibling invariant collections of
leaves with these properties are called proper ; such collections as well
as their closures are studied in [BMOV13]. In particular, it follows from
Theorem 4.9 of [BMOV13] that Lrf is a lamination associated with an

equivalence relation, say, ≈, on the unit circle. This means that Lrf is
formed by the edges of the convex hulls of all ≈-classes. Recall that
Lf is generated by a specific equivalence relation on S denoted by ∼f .

Now, by the assumption Lrf $ Lf . This implies that there is a gap

Ĝ of Lrf that contains leaves of Lf inside (so that only the endpoints

of these leaves belong to the boundary of Ĝ). The gap Ĝ cannot be
finite because then all its vertices must be ∼f -equivalent, and leaves of

Lf cannot intersect the interior of Ĝ. Suppose that Ĝ is infinite. We

claim that there are no infinite gaps H of Lf properly contained in Ĝ.
Indeed, suppose otherwise. Then an edge ` of H must be contained in

the interior of Ĝ (except for its endpoints). Observe that any edge of
an infinite gap of any lamination is either (pre)critical or (pre)periodic
(cf. [BOPT17a, Lemma 4.5]). Since ` ∈ Lf \ Lrf , this implies that ` is
(pre)critical with infinite orbit, a contradiction with the assumption of

the lemma. Thus, all gaps of Lf in Ĝ are finite.
By [Kiw02, Theorem 1.1], all infinite gaps are (pre)periodic. Hence

for some n the infinite gap G = σnd (Ĝ) is periodic. By the previous
paragraph all gaps of Lf in G are finite. Then the quotient space
(G∩S)/ ∼f is a so-called dendrite, which carries a self-map induced by
σpd where p is the minimal period of G. Theorem 7.2.7 from [BFMOT12]
implies that there are infinitely many periodic cutpoints in this den-
drite, hence G contains leaves of Lrf , a contradiction. �

4. Preliminaries to Theorem A
s:prel

In this section, we list various preliminary results. Some of them are
well known and therefore given without proof.

ss:pl
4.1. A perturbation lemma. Consider a sequence λn ∈ D converg-
ing to λ ∈ S. We say that λn converges to λ non-tangentially if all
λn belong to a cone with the following properties. The vertex of the
cone is λ. The axis of symmetry of the cone is the radius (radial line)
through λ. The angle between the edges of the cone and its axis of
symmetry is less than π/2. For an open set U ⊂ C and a holomorphic
map g : U → C with attracting fixed point 0, let A(g) be the immediate
basin of attraction of 0 with respect to g. Recall a part of Corollary 2
from [BP08], based on ideas of [Yoc95, Proposition 1, page 66]:



16 A. BLOKH, A. CHÉRITAT, L. OVERSTEEGEN, AND V. TIMORIN

l:perturb1 Lemma 4.1 (Corollary 2 of [BP08]). Suppose that λn ∈ D converge
non-tangentially to λ ∈ S. Let U ⊂ C be an open set, and f : U → C
be a holomorphic map with f(0) = 0 and f ′(0) = λ. Assume that f
has a Siegel disk ∆ around 0. If the sequence fn : U → C satisfies
fn(0) = 0, f ′n(0) = λn, and for every compact subset K ⊂ ∆

max
z∈K
|fn(z)− f(z)| = O(|λ− λn|), n→∞,

then any compact set K̃ ⊂ ∆ is contained in A(fn) for n large enough.

We now go back to our family F . Below, we define some special
perturbations of polynomials in Fnr. Let f(z) = fλ,b(z) = λz + bz2 +
z3 ∈ Fnr so that |λ| 6 1. Then denote by fε the polynomial

eq:fepseq:feps (4.1.1) f(1−ε)λ,b(z) = (1− ε)λz + bz2 + z3 ∈ Fat,
where ε > 0. The following is an easy corollary of Lemma 4.1.

c:perturb2 Corollary 4.2. If f = fλ,b has a Siegel disk ∆(f) around 0, then, for

every compact set K̃ ⊂ ∆(f), there exists δ(K̃) > 0 such that every

polynomial fε has the property K̃ ⊂ A(fε) for any 0 < ε < δ(K̃).

Proof. Assume the contrary. Then there exists a sequence εn → 0 with

K̃ 6⊂ A(fεn). Set λn = (1−εn)λ; then λn converge to λ non-tangentially.
To use Lemma 4.1, observe that for a compact set K ⊂ ∆(f)

max
z∈K
|fεn(z)− f(z)| = O(|λ− λn|), n→∞

because the left-hand side equals εn maxz∈K |z| while |λ−λn| = εn. This
yields a contradiction with Lemma 4.1 and proves the corollary. �

ss:bp
4.2. Blaschke products. Here we deal with the dynamics of Blaschke
products. As we do not need Blaschke products of higher degrees and
for the sake of simplicity we only consider quadratic Blaschke products
with fixed point 0. For a complex number a, we let a denote the
complex conjugate of a.

d:bp Definition 4.3 (Blaschke products). Let b and s be complex numbers
such that 0 < |b| < 1 and |s| = 1. Then the formula

eq:bpeq:bp (4.2.1) Bb,s(z) = sz
b− z
1− bz

defines a quadratic Blaschke product with fixed point 0. It is not hard
to see that the Blaschke product (4.2.1) is conjugate by a rotation to
a so-called normalized quadratic Blaschke product Qa of the form

eq:bp1eq:bp1 (4.2.2) Qa(z) = z
a− z
1− az

;



SIEGEL CAPTURE POLYNOMIALS IN PARAMETER SPACES 17

for some complex number a with |a| < 1.

Our normalized Blaschke product Qa differs by a sign from the tra-
ditional one in which the numerator is z − a, not a − z. It is well
known that Qa is a quadratic rational function that preserves D, its
complement C \ D, and the unit circle S. Moreover,

eq:bpdereq:bpder (4.2.3) Q′a(z) =
az2 − 2z + a

(1− az)2
,

which implies that Q′a(0) = a; an easy computation shows that the
multiplier of the fixed point at ∞ is a. Thus, both 0 and infinity are
attracting fixed points of Qa. Set Dr = {|z| < r}; then, by the Schwarz
Lemma (or directly), we have Qa(Dr) ⊂ Dr. Similarly, |Qa(z)| > |z| if
|z| > 1. Hence the Julia set of Qa is S. In fact, Qa is expanding on S,
see [Tis00]. It is easy to see, that

eq:bpcrpteq:bpcrpt (4.2.4) ca =
1−

√
1− |a|2
a

= a
1−

√
1− |a|2
|a|2

=
a

1 +
√

1− |a|2

is the unique critical point of Qa that belongs to D. Also, by (4.2.4)
a and ca belong to the same radial segment of D so that ca is located
between 0 and a. Observe that if a → s ∈ S, then ca → s too. To
describe the limit behavior of the entire orbit of ca as a → s ∈ S, we
need Lemma 4.4. For a complex number w, set Rw(z) = wz.

l:limit-onk Lemma 4.4. Suppose that s ∈ S and K ⊂ C \ {s} is a compact set.
Then the maps Qa converge to Rs uniformly on K as a→ s.

Proof. Since |s| = 1, we have ss = 1. Therefore s − z = s − ssz =
s(1 − sz). Dividing on both sides by 1 − sz, we see that s−z

1−sz = s for

all z 6= 1
s

= s. Since K ⊂ C \ {s} is a compact set, standard continuity
arguments imply the conclusions of the lemma. �

This does not yet yield the limit behavior of the orbit of ca as a →
s ∈ S as then ca → s too, and Lemma 4.4 does not apply.

l:bpcror Lemma 4.5. Suppose that s = e2πiθ, where θ is irrational. Let ε be
a positive real number and m be a positive integer. Then there exists
δ > 0 such that for any a ∈ D with |s−a| < δ we have |Qi

a(ca)| > 1− ε
for all i = 0, 1, . . . ,m.

In other words, if a = Q′a(0) is close to s, then the orbit of ca stays
close to the unit circle for any given period of time. The conclusions
of the lemma are sensitive with respect to the point whose trajectory
we consider. For example, Qa(a) = 0 so that the orbit of a under Qa
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is (a, 0, 0, . . . ) and, thus, the limit behavior of the orbits of a and of ca
are very different even though both a and ca converge to s = e2πiθ.

Proof. We will use the following notation and terminology. Given a
small arc T ⊂ S of length |T | with endpoints of arguments α and β,
denote by UT a “polar rectangle” built upon T with vertices (in polar
coordinates) given by (1−|T |, α), (1 + |T |, α), (1 + |T |, β), (1−|T |, β).

Simple computations show that

eq:bpcrimeq:bpcrim (4.2.5) Qa(ca) =
(1−

√
1− |a|2)2

a2
= c2a

Since θ is irrational, there exists a closed arc I ⊂ S symmetric with
respect to s such that I, Rs(I), R2

s(I), . . . , Rm
s (I) are pairwise disjoint

circle arcs. By Lemma 4.4, we can choose a small arc T ⊂ Rs(I)
centered at s2 such that for all a sufficiently close to s we have that
Qi
a(UT ) ⊂ URi+1

s (I) for all i = 0, . . . ,m− 1. We can then choose a small

neighborhood W of s so that ζ2 ⊂ UT provided that ζ ∈ W ; by (4.2.4)
and (4.2.5) this implies that for any a sufficiently close to s we have
ca ∈ W and Qj

a(ca) ∈ URj
s(I)

for every j = 1, . . . ,m. �

ss:mod
4.3. Modulus. A round annulus A(r, R) ⊂ C is an open annulus
formed by two concentric circles of radii r < R. A topological an-
nulus U \ K is formed by a simply connected domain U ⊂ C and a
non-separating (i.e., such that C \K is connected) continuum K ⊂ U .
If K is not a singleton and U 6= C, then we will call U \ K non-
degenerate. It is well known [Ahl79] that any non-degenerate annulus
is conformally equivalent to a non-degenerate round annulus and that
two round annuli A(r, R) and A(r′, R′) are conformally equivalent if

and only if R
r

= R′

r′
[Sch877]. Given a topological annulus Â that is

conformally equivalent to the round annulus A = A(r, R), we define its

modulus m(Â) as ln(R)−ln(r)
2π

.
By the above results the modulus of an annulus is well defined and

invariant under conformal equivalence. We will use Theorem 4.6 in the
proof of Lemma 5.1; below ρ(X, Y ) denotes the infimum of the distance
between points x ∈ X and y ∈ Y for sets X, Y ⊂ C.

t:annuprop Theorem 4.6. Suppose that A ⊂ A′ are two annuli such that A is not
null-homotopic in A′. Then m(A) 6 m(A′). Moreover, there exists a
function ψ : R>0 → R>0 such that ρ(K, S) > ψ(m(D \ K)) for any
non-separating continuum K ⊂ D.
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The first part of Theorem 4.6 is well known and can be found in
various textbooks; the second part easily follows, e.g., from [McM94,
Theorem 2.4] or from [Ahl06, Problem I of Section A, Chapter III].

4.4. Hyperbolic components. We will make use of the following
result [McS98, Corollary 2.10]:

l:McS Lemma 4.7. Let f be a hyperbolic rational function. Then the set
[f ]top of rational functions topologically conjugate to f coincides with
the set of rational functions qc-conjugate to f and is connected.

Suppose now that f and g are hyperbolic polynomials in F with
connected Julia sets. Recall that then J(f), J(g) are locally connected.
A critical orbit relation for f is a constraint of the form fn(c) = fm(c̃),
m 6= n, where c and c̃ are critical points of f , not necessarily different.
As in Section 3, we can associate geodesic laminations Lf and Lg with
f and g, respectively.

l:topconj Lemma 4.8. Let f and g be two degree d > 1 hyperbolic polynomials
with connected Julia sets such that Lf = Lg. If f and g have no critical
orbit relations, then f and g are topologically conjugate.

See [McS98] for very similar statements. The same methods prove
Lemma 4.8. It follows that g ∈ [f ]top. Note however that, in the cubic
case, the intersection of [f ]top with F may be disconnected.

c:samecomp Corollary 4.9. If polynomials f and g belong to the same bounded
hyperbolic component of F , then Lf = Lg. On the other hand, suppose
that f , g ∈ Fat are hyperbolic polynomials with connected Julia sets
such that Lf = Lg = L. If f and g have no attracting fixed points
except 0, then f , g belong to the same hyperbolic component of F .

Proof. The first claim is a variation of a well-known property of hy-
perbolic components; it is left to the reader. To prove the rest, we
may assume that neither f nor g has critical orbit relations. Indeed,
otherwise we can slightly perturb f and g within their hyperbolic com-
ponents of F so that the perturbed maps have no critical orbit relations.
Then f and g are topologically conjugate by Lemma 4.8. Suppose that
f = fλf ,bf = z3 + bfz

2 + λfz and g = gλg ,bg = z3 + bgz
2 + λgz.

By Lemma 4.7, there is a continuous family ft, t ∈ [0, 1] of cubic
rational functions qc-conjugate to f such that f0 = f and f1 = g.
Indeed, a qc-conjugacy between f and g takes the standard complex
structure on the dynamical plane of g to some invariant qc-structure
on the dynamical plane of f . The latter is represented by a Beltrami
differential ν. Considering the family of Beltrami differentials νt = tν
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and using the Ahlfors–Bers theorem, we obtain a family ft with the
desired properties. Observe that all rational functions ft are hyperbolic.

Let Mt be a complex affine transformation such that ht = Mt ◦
ft ◦M−1

t ∈ F . Since [0, 1] is simply connected, we may choose Mt to
depend continuously on t and so that M0 = id. Let U be the hyperbolic
component of F containing f . Then ht ∈ U for all t by continuity; in
particular, h1 ∈ U . On the other hand, h1 = M1 ◦ g ◦ M−1

1 ∈ F
and g are affinely conjugate. This implies that either h1 = g or h1 =
z3 − bgz2 + λgz. In the former case, we are done. In the latter case,
observe that h1 and g have the same linearizing coordinate near infinity
(this follows from the fact that z 7→ z3 commutes with the involution
z 7→ −z) while the orbits of g are obtained from the orbits of h1 by
z 7→ −z. Therefore, the geodesic lamination of g differs from the
geodesic lamination of h1 by a half-turn.

On the other hand, by our construction L coincides with the geodesic
lamination of h1. Thus, L is invariant with respect to the rotation by
180 degrees about the center of the unit disk. Then, by [BOPT16a], the
major of an invariant quadratic gap G in L corresponding to the basin

of immediate attraction of 0 (of either f or g) is 01
2
. This implies that

there are two invariant attracting domains of g (or f), corresponding
to G and the 180-degree rotation of G with respect to the center of
the unit disk. A contradiction with the assumption that g (and f) has
only one attracting fixed point. The statement now follows. �

5. Proofs of Theorem A and Corollary C
s:mt

Let f be an IS-capture polynomial. We refer to the glossary in the
end of Section 2. Let mf > 0 be the smallest positive integer for which
we have fmf (ca(f)) ∈ ∆(f). Observe that, given sufficiently small
ε > 0, for all polynomials g close enough to f , there exist a unique
critical point re(g) of g that is ε-close to re(f) and a unique critical
point ca(g) of g that is ε-close to ca(f). Notice that the functions re(g)
and ca(g) are holomorphic functions of the coefficients of g. However
re(g) is not necessarily recurrent, and g may not have a Siegel invariant
domain.

Lemma 5.1 is based on special perturbations (4.1.1).

l:zeta-out Lemma 5.1. Suppose that f is an IS-capture polynomial. Then, for
sufficiently small ε > 0, we have re(fε) ∈ A(fε). In particular, if
fε /∈ P◦, then ca(fε) /∈ A(fε).
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Proof. Set f = fλ,b. Then λ = e2πiθ, where θ is irrational. Take a
closed Jordan disk K and an open Jordan disk U such that

0 ∈ K ⊂ U ⊂ U ⊂ ∆(f).

We may assume that fmf (ca(f)) lies in the interior of K.
Observe that if fε ∈ P◦ then re(fε) ∈ A(fε) as desired. In particular,

if for sufficiently small ε > 0 we have that fε ∈ P◦, then we are done.
Thus we need to consider the case when there are positive values of ε
arbitrarily close to 0 and such that fε /∈ P◦. We need to show that
re(fε) ∈ A(fε) for all these values of ε. Observe that in any case at
least one critical point must belong to A(fε) for all ε > 0. Hence, if
ca(fε) /∈ A(fε) for some ε > 0, then re(fε) ∈ A(fε) for this ε as desired.
Thus, to prove the lemma it would suffice to prove the following claim.

Claim. For sufficiently small ε > 0, if fε /∈ P◦ then ca(fε) /∈ A(fε).

Proof of the Claim. Suppose that there are positive values of ε arbi-
trarily close to 0 and such that fε /∈ P◦. Moreover, suppose by way of
contradiction that the Claim fails. Then there exists a sequence εn → 0
with fεn /∈ P◦ and ca(fεn) ∈ A(fεn). Since fεn /∈ P◦, then ca(fεn) is
the only critical point in A(fεn). A Riemann map ϕ : A(fεn)→ D with
ϕ(0) = 0 conjugates fεn |A(fεn ) with a normalized quadratic Blaschke
product Qan , where an ∈ D. Then ϕ(ca(fεn)) = can is the unique
critical point of Qan in D. This yields the following contradiction.

(i) By Lemma 4.5, the point Q
mf
an (can) approaches the unit circle

as εn → 0.
(ii) By Corollary 4.2 and by continuity, the pointQ

mf
an (can) is bounded

away from the unit circle as εn → 0.

A more detailed proof follows.
(i) Clearly, the multiplier (1−εn)λ of fεn at 0 converges to λ = e2πiθ.

It follows that the multiplier of Qaεn at 0 also converges to λ. By
Lemma 4.5, the point Q

mf
an (can) approaches the unit circle as εn → 0.

(ii) On the other hand, take a polynomial fε with small ε > 0. By
Corollary 4.2, we have U ⊂ A(fε) for all sufficiently small ε > 0. By
continuity, f

mf
ε (ca(fε)) ∈ K if ε > 0 is sufficiently small. Thus, the

point f
mf
εn (ca(fεn)) is separated from Bd(A(fεn)) by the annulus U \K

of a definite positive modulus. It follows, by the conformal invariance
of the modulus, that the point Q

mf
aεn (can) must also be separated from S

by an annulus of a definite positive modulus. However, this contradicts
Theorem 4.6 and the conclusions of (i) above. �

Recall (Definition 2.3) that for an IA-capture polynomial f we denote
by ω1(f) its critical point that belongs to A(f) and by ω2(f) its critical
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point that does not belong to A(f) but eventually (after one or more
iterations) maps intoA(f). Observe that our notation for critical points
ω1(f) and ω2(f) is consistent with Definition 2.3. Finally, recall that
by potentially renormalizable polynomials we mean polynomials in F
that do not belong to P = P◦.

c:cri-id Corollary 5.2. Suppose that f is an IS-capture polynomial. If f is
potentially renormalizable, then ω1(f) = re(f) and ω2(f) = ca(f).

Proof. Since f is potentially renormalizable, all maps fε of f are outside
P◦ if ε is small. By definition and Lemma 5.1, re(f) = ω1(f) and
ca(f) = ω1(f). �

Observe that, if W is a hyperbolic component non-disjoint from Fat
such that polynomials in W have a critical point which maps into
a cycle of attracting Fatou domains but does not belong to it, then
W ⊂ Fat is an IA-capture component consisting of polynomials f with
an invariant attracting Fatou domain A(f) 3 0, a well-defined critical
point ω1(f) ∈ A(f) and a well-defined critical point ω2(f) = ca(f) /∈
A(f) such that for some minimal mf > 0 we have fmf (ω2(f)) ∈ A(f).

t:1hypcomb Theorem 5.3. If f ∈ Fnr is an IS-capture polynomial, then f belongs
to the boundary of exactly one bounded hyperbolic component W in
Fat. Every polynomial g ∈ W has a locally connected Julia set so that
Lg = Lrg, and W is either P◦, or an IA-capture component.

Proof. First we consider maps fε. By Lemma 5.1, for some δ > 0 and
any ε > 0 with ε < δ, we have re(f) ∈ A(fε). By Corollary 4.2 and
continuity, fmf (ca(fε)) ∈ A(fε). Thus, fε is hyperbolic, and there is
a unique hyperbolic component U of F containing all polynomials fε
with ε < δ. Clearly, U is either P◦, or an IA-capture component.

By way of contradiction, assume now that U and V are different
bounded hyperbolic components in Fat whose boundaries contain f .
All polynomials in U have locally connected Julia sets, are conjugate on
their Julia sets, and give rise to the same cubic invariant lamination LU ;
similarly, all polynomials in V give rise to the same cubic lamination
LV (cf. Corollary 4.9). Since, for a hyperbolic polynomial, the iterated
forward images of a critical point cannot lie on the boundary of a Fatou
component, then, by Lemma 3.15, we have LU = LrU and LV = LrV
where LrU and LrV are the corresponding rational laminations.

Consider a leaf ` ∈ Lrf . It corresponds to a (pre)periodic point in
J(f). Since all periodic points in J(f) are repelling, then, by Lemma
3.2, we have ` ∈ LU and ` ∈ LV . Since this holds for any ` ∈ Lrf ,
we conclude that Lrf ⊂ LrU and Lrf ⊂ LrV . Now consider a leaf αβ ∈
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LrU . Then Rg(α), Rg(β) land at the same (pre)periodic point xg, for
every g ∈ U . The periodic cycle, into which the point xg eventually
maps, is repelling. Consider a sequence gn ∈ U converging to f . By
Corollary 3.3 applied to this sequence, we have αβ ∈ Lrf . Since αβ is
an arbitrary leaf of LrU , we conclude that LrU ⊂ Lrf . Similarly, LrV ⊂ Lrf .
Together with the opposite inclusions proved earlier, this implies that
LrU = LrV = Lrf . By the first paragraph, it follows that LU = LV .
Finally, by Corollary 4.9, we have U = V =W . �

Proof of Theorem A. Let f ∈ Fλ be an IS-capture polynomial. By
Theorem 5.3, there is a unique bounded hyperbolic component U in
Fat with f ∈ Bd(U). A priori, there could exist a different hyperbolic
component V outside of Fat with f ∈ Bd(V). Since for g ∈ V the fixed
point 0 is repelling, there is a periodic angle θ such that Rg(θ) lands
at 0 for all g ∈ V . Consider a sequence gn ∈ V converging to f . By
Lemma 3.1, the ray Rf (θ) lands at a periodic point y 6= 0 (recall that
0 is a Siegel point). By Lemma 3.2, the point y is parabolic. However,
an IS-capture has no parabolic periodic points, a contradiction. Thus,
U is the only bounded hyperbolic component in F containing f in its
boundary. It remains to observe that, if U is an IA-capture, then, by
Corollary 3.11, the polynomial f has a repelling periodic cutpoint in
its Julia set. �

Proof of Corollary C. Suppose that f ∈ Fλ with |λ| = 1 is a cubic IS-
capture polynomial. By way of contradiction, assume that f ∈ CU \P .
By Theorem 5.3, all polynomials fε (see Equation (4.1.1)) for small
ε > 0 belong to some IA-capture component U (since f /∈ P , we have
fε /∈ Po for small ε). On the other hand, then, by Theorem A, the map
f contains a repelling periodic cutpoint in its Julia set, a contradiction
with f ∈ CU . �

6. Existence of IS-capture components

In this section, we find IS-capture components on the boundary of
P◦ as well as on the boundaries of IA-capture components. Thus we
will prove Theorem B.

Let U be an IA-capture component in F . Then, for every f ∈ U , we
write A(f) for the immediate attracting basin of 0. There is a unique
critical point ω2(f) not in A(f), and we have fmf (ω2(f)) ∈ A(f) for
some positive integer mf . We may assume that mf is the smallest
positive integer with this property. Observe that mf does not depend
on f ; it depends only on U . We call this integer the preperiod of U .
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l:ag Lemma 6.1. Let U be a hyperbolic component in F that is either P◦
or an IA-capture component. In the latter case, let m be the preperiod
of U ; in the former case, set m = 2. For every Brjuno θ ∈ R/Z and
every n > m, there exists a map f ∈ Bd(U) ∩ Fλ, where λ = e2πiθ

and fn(c) = 0 for some critical point c of f . Additionally, it can be
arranged that fk(c) 6= 0 for k < n.

Let Xn be the set of all polynomials f ∈ F such that fn(c) = 0 for
some critical point c of f , and n is the smallest non-negative integer
with this property. It is clear that Xn is a complex algebraic curve in
F = C2. Define a function µ on Xn as µ(f) = f ′(0).

l:center Lemma 6.2. Let U be an IA-capture component. Consider a slice Fλ
with λ 6= 0 such that Fλ∩U 6= ∅; then clearly |λ| < 1. Take any integer
n > m, where m is preperiod of U . There is a polynomial f! ∈ Fλ ∩ U
such that fn! (c!) = 0 for some critical point c! of f!, and fk! (c!) 6= 0 for
k < n.

Proof. The proof is a standard qc-deformation argument, cf. [BF14].
Take any f ∈ Fλ ∩ U . Then there is a critical point c of f with
fm(c) ∈ A(f). The point v = f(c) is contained in a strictly preperiodic
Fatou component V of f such that fm−1(V ) = A(f). Consider a C1-
homeomorphism h : C → C that coincides with the identity outside
of some compact subset of V . Taking iterated h ◦ f -pullbacks of the
standard complex structure in iterated pullbacks of V , we obtain an
h◦f -invariant complex structure on C that coincides with the standard
one outside of iterated pullbacks of V . By the Measurable Riemann
Mapping theorem, h ◦ f is conjugate to a rational function fh by a qc-
conjugacy fixing∞. Since∞ is a fixed critical point of fh of multiplicity
2, we conclude that fh is a polynomial. We may also arrange that
fh ∈ F by an affine change of variables. In a small neighborhood of 0,
we have h ◦ f = f , and f is conformally conjugate to fh. Therefore,
f and fh have the same multiplier at 0, and fh ∈ Fλ. Note that fh
depends continuously on h, and fh = f for h = id. Thus any connected
set of homeomorphisms h gives rise to a connected subset of Fλ lying
entirely in U .

We now consider a connected set H of homeomorphisms as above
(i.e., all h ∈ H equal the identity outside of some compact subset of V ).
Let D be the corresponding set of maps fh, where h runs through H.
Clearly, D is connected. For g = fh ∈ D, define vg as the image of h(v)
under the conjugacy between h◦f and fh. Then vg is a critical value of
g. We can choose a homeomorphism h! so that fn−1(h!(v)) = 0 and that
fk−1(h!(v)) 6= 0 for k < n. Moreover, we can arrange that fm−1(h!(v))
is any given fn−m-preimage of 0 in A(f). This chosen homeomorphism
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h! can be included into a connected set H of homeomorphisms. The
corresponding polynomial f! = fh! has a critical point c! corresponding
to the critical point c of h! ◦ f . Set v! = f!(c!) to be the corresponding
critical value; clearly, it corresponds to the critical value h!(v) of h! ◦ f .
We have fn! (c!) = 0 and fk! (c!) 6= 0 for k < n. On the other hand,
f! belongs to a connected set D of hyperbolic polynomials; therefore,
f! ∈ Fλ ∩ U . �

The component P◦ has been extensively studied in [PT09]. In par-
ticular, the following is an immediate corollary of the parameterization
of P◦ obtained in [PT09]:

l:center0 Lemma 6.3. Let λ be any complex number with |λ| < 1, and n be any
integer that is at least 2. Then P◦ ∩ Fλ contains a polynomial f! with
the following properties: fn! (c!) = 0 for some critical point c! of f!, and
fk! (c!) 6= 0 for k < n.

Thus, both in the case U = P◦ and in the case where U is an IA-
capture component, we found a certain map f! ∈ U .

Proof of Lemma 6.1. Recall that the function µ : Xn → C was defined
by the formula µ(f) = f ′(0). We claim that µ(Xn ∩ U) coincides with
D, possibly with finitely many punctures. In the case U = P◦, this
follows from Lemma 6.3. Thus it suffices to assume that U is an IA-
capture component. The inclusion µ(Xn ∩ U) ⊂ D is obvious. It now
suffices to show that µ(Xn ∩ U) is open and closed in D. It is open by
the Open Mapping Theorem and since µ is a non-constant holomorphic
map. Suppose now that λ belongs to the boundary of µ(Xn ∩ U) in D
but not to µ(Xn ∩ U). Then there is a polynomial f ∈ Fλ ∩ Xn ∩ U .
In other words, there is a sequence fi ∈ Xn ∩ U with fi → f ∈ Fλ as
i → ∞. For every i, there is a critical point ci of fi with fni (ci) = 0.
Passing to a subsequence, we may assume that ci → c as i→∞, where
c is a critical point of f , and fn(c) = 0. On the other hand, |λ| < 1,
hence f is hyperbolic. A hyperbolic polynomial belongs to the closure
of a hyperbolic component U only if it belongs to U . Therefore, f ∈ U ,
but then by definition we have f ∈ Xn∩U unless f is a puncture of Xn
(which means that fk(c) = 0 for some k < n). The latter case is ruled
out for the following reason. There is δ > 0 such that f is injective
on the δ-disk Dδ around 0, and f(Dδ) b Dδ. Then, by continuity,
Dδ ⊂ A(fi) for all large i. This implies that fk(c) 6= 0 for k < n.
It follows that µ(f) as f runs through X n takes all values in S, in
particular, all values of the form e2πiθ, where θ is Brjuno.

Choose a point f ∈ X n ∩ U with µ(f) = e2πiθ, where θ is Brjuno.
It is clear that f is on the boundary of U . We will now prove that f
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is IS-capture. Indeed, f ′(0) = λ = e2πiθ and θ is Brjuno, hence f has
a Siegel disk ∆ around 0 (we distinguish between the function µ and
its particular value λ). On the other hand, since f ∈ X n, there is a
critical point c of f such that fn(c) = 0. We have in fact f ∈ Xn (and
fk(c) 6= 0 for k < n) for the same reason as above. By definition, this
means that f is an IS-capture polynomial. �

The following statement is proved as Theorem 5.3 in [Zak99] for
a different parameterization of basically the same slices. The only
difference with [Zak99] is that Zakeri considers critically marked cubic
polynomials.

l:no-isol Lemma 6.4. Suppose that f ∈ Fλ, where |λ| = 1, and f has a Siegel
disk ∆ around 0. If fn(c) ∈ ∆ for some critical point c of f , then there
is an IS-capture component in Fλ containing f .

Proof. The proof is based on the same qc-deformation argument as the
proof of Lemma 6.2. We will use the notation introduced in Lemma
6.2, in particular, v, H, D and fh. Then D = {fh |h ∈ H} a connected
subset of Fλ consisting of IS-capture polynomials. Recall that v = f(c)
is a critical value of f . We choose the set H of homeomorphisms so
that D = {h(v) |h ∈ H} is open.

For every g ∈ D, we let ∆g be the Siegel disk of g around 0. We let Vg
denote the Fatou component of g containing a critical value and such
that gn−1(Vg) = ∆g. These properties define Vg in a unique way. We
will also write vg for the critical value of g contained in Vg. Note that,
if g = fh, then vg is the image of h(v) under the conjugacy between
h ◦ f and fh. Consider the Riemann map φg : ∆g → D such that
φ(0) = 0 and φ′(0) ∈ R>0. The map g 7→ φg(g

n−1(vg)) takes D to
the open set φf (f

n−1(D)). Indeed, the image of fh under this map is
φf (f

n−1(h(v))). Thus, an analytic map takes D to some open set. It
follows that D contains an open subset of Fλ. Since D consists of IS-
capture polynomials, it is contained in some IS-capture component. �

Finally, we can prove the main theorem of this section.

t:IS-BdP Theorem 6.5. Let U be a hyperbolic component of F that is either
P◦ or an IA-capture component. In the latter case, set m to be the
preperiod of U ; in the former case set m = 2. For every Bjuno θ ∈ R/Z
and every n > m, there exists an IS-capture component D in Bd(U)∩Fλ
with λ = e2πiθ such that, for all g ∈ D, we have gn(cg) ∈ ∆(g) for some
critical point cg of g.

Recall that ∆(g) is the Siegel disk of g around 0.
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Proof. By Lemma 6.1, for any Brjuno θ ∈ R/Z and any n > m, there
is a cubic polynomial f with the following properties:

(1) we have f ∈ Fλ, where λ = e2πiθ;
(2) there is a critical point c of f with fn(c) = 0;
(3) we have fk(c) 6= 0 for k < n.

By Lemma 6.4, there is an IS-capture component D in Fλ containing
f . By Theorem A, the component D belongs to the boundary of a
unique hyperbolic component V of F . Moreover, by Theorem 5.3, the
polynomial f lies on the boundary of a unique hyperbolic component.
But f is in the boundary of U . It follows that V = U , hence D is
contained in the boundary of U . �

Theorem 6.5 establishes the existence of many analytic disks on the
boundary of the cubic connectedness locus. Observe that Lemma 6.4
and Theorem 6.5 imply Theorem B.

We conclude this section with a remark which relates our results
concerning IA-capture components and laminations. A cubic invariant
lamination L is said to be an IA-capture lamination if the following
assumptions hold:

(1) there is an invariant Fatou gap A such that σ3|A∩S is two-to-one;
(2) there is a Fatou gap V 6= A such that σ3|V ∩S is two-to-one;
(3) we have σmL

3 (V ) = A, where mL = m is the minimal integer
with this property.

The number m is called the preperiod of L. It is well-known (and easy
to see) that any IA-lamination is the closure of its restriction upon
all the rational angles (i.e., the closure of the corresponding rational
lamination).

It follows from the appendix to [Mil12] written by Poirier that, for
each IA-capture lamination L, there exists a unique IA-capture com-
ponent UL ⊂ F with the following property. No matter which f ∈ UL
we take, the lamination generated by f coincides with L. The result of
[Mil12] is stated in the language of Hubbard trees and so-called reduced
mapping schemes, however, a straightforward translation of this result
into the language of laminations yields the claim stated above. Simi-
larly, if L is the empty lamination, then we set UL = P◦. Evidently,
Theorem 6.5 can be restated to emphasize the role of IA-capture lam-
inations, e.g., as follows.

Theorem 6.5′. Let L be the empty lamination or an IA-capture lami-
nation. In the latter case, set m to be the preperiod of L; in the former
case set m = 2. For every Brjuno θ ∈ R/Z and every n > m, the hyper-
bolic component UL contains an IS-capture component D in Bd(UL)∩Fλ



28 A. BLOKH, A. CHÉRITAT, L. OVERSTEEGEN, AND V. TIMORIN

with λ = e2πiθ such that, for all g ∈ D, we have g◦n(cg) ∈ ∆(g) for
some critical point cg of g, and n is the least such integer.

7. The main cubioid of F
s:cu

In this section, we prove Corollary D and obtain corollaries related to
the problem of distinguishing between Siegel and Cremer fixed points.
Recall that the Main Cubioid CU was introduced in Definition 2.5.

Let W be a component of TH(Pλ) \ Pλ, where |λ| 6 1. It is called a
queer domain (or is said to be of queer type) if there exists a polynomial
f ∈ W so that all of its critical points are in J(f). Polynomials from
such W are also said to be of queer type. Observe that IS-polynomials
and polynomials of queer type have connected Julia sets. If f is an
IS-polynomial, then ca(f) is a critical point of f that does not belong
to J(f), hence f is not a polynomial of queer type.

The following theorem relies on [Zak99, Theorem 3.4], where the
most difficult case is worked out.

t:nosiegel Theorem 7.1 ([BOPT14b]). Let W be a component of TH(Pλ) \ Pλ
of queer type. Then, for any polynomial f ∈ W, the Julia set J(f) has
positive Lebesgue measure and carries an invariant line field.

Properties of polynomials from P listed in Theorem 2.4 are inherited
by polynomials from the topological hulls TH(Pλ).

t:extendclo Theorem 7.2 ([BOPT14a]). Suppose that |λ| 6 1. We have

TH(Pλ) ⊂ CU .
Moreover, all components of the set TH(Pλ)\Pλ, where |λ| 6 1, consist
of λ-stable polynomials.

In [BOPT14b], we consider components of the set TH(Pλ)\Pλ, where
|λ| 6 1. Let us describe some results of [BOPT14b, BOPT16b]. A cu-
bic polynomial f ∈ Fλ \ P = Fλ \ Pλ with |λ| 6 1 is said to be
potentially renormalizable. A critical point c of a potentially renormal-
izable polynomial f is said to be principal if there is a neighborhood
U of f in F and a holomorphic function ω1 : U → C defined on U
such that c = ω1(f), and, for every g ∈ U ∩ Fat, the point ω1(g) is the
critical point of g contained in A(g).

t:princ Theorem 7.3 ([BOPT14b]). A potentially renormalizable polynomial
has a unique principal critical point.

By Theorem 7.3, if f ∈ Fnr is potentially renormalizable, then the
point ω1(f) is well-defined; let the other critical point of f be ω2(f).
It is easy to see that ω1(f) ∈ K(f). It immediately follows from
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[BOPT16a] that an IA-capture polynomial g has a repelling periodic
cutpoint of the Julia set J(g). Hence an IA-capture polynomial g is not
in CU , thus not in P , i.e., it is potentially renormalizable, and the no-
tation for its critical points ω1(g), ω2(g), introduced in Definition 2.3,
is consistent with the just introduced notation for all potentially renor-
malizable polynomials.

Recall that, by Theorem 7.2, all polynomials in a component W
of TH(Pλ) \ Pλ are conjugate on their Julia set. Moreover, if some
polynomial in W is an IS-capture, then it is easy to see that so are all
polynomials in W . This inspires the following definition. Let W be a
component of λ-stable polynomials, where |λ| 6 1. Then W is said to
be of IS-capture type if any f ∈ W is an IS-capture polynomial. We
also say in this case that W is an IS-capture component. It is easy to
construct examples of IS-captures in Fλ \ TH(Pλ).

t:sie-quee Theorem 7.4 ([BOPT14b]). Let W be a component of TH(Pλ) \ Pλ,
where |λ| 6 1. Then W is either of IS-capture type or of queer type.

By Theorem B the first possibility listed in Theorem 7.4 is impossi-
ble.

Corollary D now follows from Theorem 7.4.
For the sake of completeness we also prove the next lemma.

l:nohyp Lemma 7.5. The only hyperbolic component of F intersecting CU is
P◦.

Proof. Assume, to the contrary, that there exists a hyperbolic compo-
nent V 6= P◦ intersecting CU . Set Vλ = V ∩ Fλ and CUλ = CU ∩ Fλ.
Choose λ with Vλ ∩ CUλ 6= ∅. We must have |λ| 6 1 since otherwise
CUλ = ∅. From Vλ 6= ∅, it follows that V ∩ Fat 6= ∅. But then
V ⊂ Fat and |λ| < 1. Note also that, since polynomials in CU have
connected Julia sets, all polynomials in V have connected Julia sets,
i.e., the component V is bounded.

Take g ∈ Vλ ∩ CUλ. Then J(g) is locally connected; let L be the
corresponding geodesic lamination. There is a gap G of L correspond-
ing to A(g). By Theorem 3.10, the major M of G is either critical
or periodic. The former implies that a critical point of g belongs to
Bd(A(g)), a contradiction. Therefore, M = αβ is periodic. The rays
Rg(α), Rg(β) land at the same periodic point x of g. Since g is hyper-
bolic, x must be repelling. Thus g has a repelling periodic cutpoint of
J(g), a contradiction with g ∈ CU . �

A question as to whether a fixed irrationally indifferent point of a
polynomial is Cremer or Siegel depending on the multiplier at this point
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is addressed in a conjecture by A. Douady. Let us now state a related
corollary based upon results of Perez-Marco.

Below we verify this for cubic polynomials fλ,b = λz+bz2+z3 except
for polynomials that belong to the set Pλ. An important ingredient of
our arguments is a result of R. Perez-Marco [Per01]; again for brevity
we state only a relevant corollary of Perez-Marco’s theorem reduced
to our spaces of polynomials (the actual results of [Per01] are much
stronger and much more general).

c:pm Corollary 7.6 (Corollary 1 [Per01]). Suppose that λ = e2πiθ and θ is
irrational. Then the set of parameters b for which fλ,b has 0 as a
Siegel fixed point is either the entire Fλ, or, otherwise, has Hausdorff
dimension 0 (in particular, it has empty interior).

Combining these results with our tools we prove Corollary 7.7.

c:nop Corollary 7.7. If θ /∈ B is not a Brjuno number and λ = e2πiθ, then
the fact that f ∈ Fλ \ Pλ implies that 0 is a Cremer fixed point of f .

Proof. Suppose first that f = fλ,b /∈ TH(Pλ). Then, by [BOPT16b], the
map is immediately renormalizable; moreover, 0 belongs to the filled
quadratic-like Julia set K∗ ⊂ K(f) of f . By Theorem 1.3, this implies
that 0 is a Cremer point of f . By Corollary 7.6, it follows then that
the set of parameters b for which fλ,b has 0 as a Siegel point has empty
interior. Since, by [BOPT16b], in each component of TH(Pλ) \ Pλ the
polynomials are conjugate, then polynomials in those bounded domains
cannot have 0 as their fixed Siegel point. This completes the proof. �
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