
HAL Id: hal-03429458
https://hal.science/hal-03429458v1

Submitted on 15 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acceleration of Newton’s method using nonlinear Jacobi
preconditioning
Konstantin Brenner

To cite this version:
Konstantin Brenner. Acceleration of Newton’s method using nonlinear Jacobi preconditioning. Finite
Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples., Jun 2020, Bergen
(Online), Norway. �hal-03429458�

https://hal.science/hal-03429458v1
https://hal.archives-ouvertes.fr


Acceleration of Newton’s method using
nonlinear Jacobi preconditioning

Konstantin Brenner

Abstract For mildly nonlinear systems, involving concave diagonal nonlinearities,
semi-global monotone convergence of Newton’s method is guarantied provided that
the Jacobian of the system is an M-matrix. However, regardless this convergence
result, the efficiency of Newton’s method becomes poor for stiff nonlinearities. We
propose a nonlinear preconditioning procedure inspired by the Jacobi method and
resulting in a new system of equations, which can be solved by Newton’s method
much more efficiently. The obtained preconditioned method is shown to exhibit
semi-global convergence.
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1 Introduction

Let N be a positive integer, we consider the problem of finding u∈ (R+)
N satisfying

f (u)+Au = b, (1)

where A belongs to the set of real N ×N matrices, denoted in the following by
M(N), b ∈ (R+)

N and the mapping f is defined by

f : u 7→ ( f1(u1), . . . fN(uN))
T

with fi strictly increasing continuous functions from R+ to R+ satisfying fi(0) = 0.
More precisely we will assume the following:
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(A1)For 1≤ i≤ N, fi is strictly increasing, concave and belongs to C1 on (0,+∞).
(A2)For any u > 0 the matrix f ′(u)+A is an M-matrix in the sense of the definition

below.
(A3)The matrix A has zero diagonal elements.

Definition 1 We say that A is an M-matrix if A is invertible, A−1 ≥ 0, and ai, j ≤ 0
for i, j = 1, . . . ,N with i 6= j.

We remark that the derivatives of fi are potentially unbounded at the origin.
The system (1) can be found in numerical modeling of flow and transport pro-

cesses. In particular it arises from the discretization of the nonlinear evolutionary
PDEs of the form

∂tβ (u)+div(vu−λ∇u) = γ(u), (2)

where v is some given velocity field. Applying the backward Euler scheme and some
space discretization method to (2) one typically get the discrete problem of the form

β (un
h)−β (un−1

h )

∆ t
+M−1Sun

h = γ(un
h)+σ

n
h , (3)

where un
h,u

n−1
h ∈ RN are the vectors of the discrete unknowns associated with two

sequential time steps, while M and S are respectively the mass and the stiffness
matrices, and the vector σn

h contains boundary data.
To fix the ideas let’s assume that the Dirichlet boundary conditions are imposed.

Several space discretization methods provide (possibly under some geometrical con-
dition on the mesh) that the matrix M−1S is an M-matrix. In the presence of diffusion
(that is λ > 0), the examples of such monotone discretization schemes is the stan-
dard finite volume method with two-point flux approximation and P1 finite element
method with mass lumping under the Delaunay condition on the underlying mesh
(see [3]). Let us mention that the monotone discretizations are not only beneficial to
the nonlinear solver (as it is going to be discussed in this paper), but also allow to
preserve the local maximum principle on the discrete level, thus avoiding any spuri-
ous oscillations of the discrete solution. Let D denote the diagonal of M−1S and let
A = ∆ t

(
M−1S−D

)
. Setting

f (u) = β (u)+∆ t (Du− γ(u))

the system (3) can be written as (1).
Given the assumption (A1) on the mapping f , and thus on the nonlinearities β (u)

and γ(u), several physical models are relevant. Such models are for example the
porous media equation [6], models of transport in porous media with adsorption (us-
ing e.g. the Freundlich isotherm [1]), the Richards’ equation [5], [2] or the Dupuit-
Forchheimer equation [1] (provided that convection is discretized using an explicit
scheme). Let us further remark that the analysis and the algorithms presented in
this paper can be extended to the Hele-Shaw or Stefan like problems where β (u) is
no longer a function, but rather a monotone graph of the form f (u) = ζ H(u)+ f̃ ,
where f̃ is a function satisfying the assumption (A1), ζ is a positive real number
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and H(u) denotes the multivalued Heaviside graph. In [2] this type of nonlinearity
has been addressed trough the parametrization of f , that is a couple of the functions
τ→ (u(τ),v(τ)) with v(τ) ∈ f (u(τ)) for all τ . The problem has been then rewritten
in terms of the new variable τ .

Due to its quadratic convergence, Newton’s method is a very popular tool that
can be used to solve the systems (1) numerically; moreover under assumptions (A1)
and (A2) one can show that Newton’s method converges monotonically toward any
strictly positive solution u? as soon as the initial guess u0 satisfies 0 < u0 ≤ u?. This
semi-global convergence result is based on the concavity of the underlying func-
tional and the non-negativity of the inverse of it’s Jacobian; it is in fact a straightfor-
ward adaptation of the convergence results from [4] (see also Proposition 1 below)
to the concave setting.

Despite an available convergence result, the numerical evidences presented in
[2] suggest that the efficiency of Newton’s method applied to (1) can be very poor
especially for stiff problems with f ′(0) = +∞. To give an example let γ(u) = 0 and
β (u) = u

1
m ,m ≥ 1 (this choice corresponds to the porous media equation [6]). It is

demonstrated in the numerical section 3 that the convergence of Newton’s method
is slow; moreover the number of Newton’s iterations required to solve the system
grows with m. The numerical experiment also demonstrates that the efficiency of
Newton’s method can be greatly improved by a simple change of the variable v =
β (u). Let us note that for Richards-like parabolic-elliptic problems with β ′(u) =
0 for u ≥ us > 0 the similar change-of-variable trick can be performed using the
variable switching technique as suggested in [2]. Compared to the initial formulation
of (1) the drawback of the change-of-variable approaches is that the concavity of the
problem is lost, and therefore the monotone convergence is no longer guarantied.

In this article we reformulate the system (1) in a way that accelerates convergence
of Newton’s method while preserving concavity of the problem. More precisely we
replace the system (1) by a different one having the same solution set but is easier
to solve using Newton’s method. Since the modified system is similar to the one
obtained in Jacobi method, we refer to our approach as to Jacobi preconditioned
Newton’s method.

The mapping f is diagonal, strictly increasing and continuous and therefore ad-
mits an inverse denoted g = f−1. We consider the following left-preconditioned and
right-preconditioned problems

Fl(u) := u−g(b−Au) = 0 (4)

or
Fr(u) := u+Ag(u)−b = 0. (5)

Under the assumption (A1) the function g is increasing and convex, and therefore
F?(u), ? = l,r remains concave; moreover the derivative of g is finite for all u ∈
(R+)N and it can be shown that F ′?(u) exists and is an M-matrix for all u ∈ (R+)N .
This implies monotone convergence of Newton’s method applied to (4) and (5) for
any initial guess u0 satisfying F?(u0) ≤ 0. The numerical experiment shows (see
Section 3) that performance of the preconditioned methods turns out to be superior
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compare to the original formulation of (1), or alternatively to the change-of-variable
approaches.

The reminder of the article is organized as follows. In Section 2, starting with
convergence result from [4], we prove monotone convergence of Newton’s method
applied to the problem (1) in its original formulation and applied to the precondi-
tioned problems (4) and (5). Section 3 is deduced to the numerical experiment.

2 Main results

Let us first present the adaptation of the convergence result 13.3.4 from [4] to the
case of concave mappings.

Theorem 1 (Convergence of Newton’s method)
Let F be a continuous G-differentiable concave mapping from (R+)N to RN and

let F ′(u) be an M-matrix for all u ∈ (R+)N . Assume in addition that there exist
u? ∈ (R+)N satisfying F(u?) = 0 and u0 ∈ (R+)N such that F(u0) ≤ 0. Then the
sequence

un+1 = un−F ′(un)
−1F(un), n≥ 0 (6)

is well defined, satisfies

un ≤ un+1 ≤ u?, F(un)≤ 0

and is convergent. If in addition there exists an invertible P ∈ M(N) such that
F ′(un)

−1 ≥ P≥ 0 for all n≥ 0, then the sequence un converges to u?.

Let us denote Fu(u) = f (u)+Au− b, based on the assumptions (A1) and (A2),
it can be shown that the solution of (1) exists and is unique; in addition under the
same assumptions it follows from Theorem 1 that Newton’s method applied to (1)
converges monotonically provided that u? > 0 and Fu(u0) ≤ 0. More precisely the
following proposition holds.

Proposition (Convergence of the original formulation) Assume that b > 0, then
there exists the unique solution u? to (1) satisfying u? > 0; moreover there exists
u0 such that Fu(u0) ≤ 0 and Newton’s iterates (6) are well defined and monotoni-
cally converge to u?. �

We remark that if f ′(0) =+∞ the assumption b > 0 can not be avoided, therefore
Newton’s method can not be applied to Fu(u) = 0 unless the solution is strictly pos-
itive. In contrast the preconditioned methods can be applied without any additional
restrictions on f ′ or on the sign of the solution. Convergence of the preconditioned
methods is summarized by the following proposition, which relies on the assump-
tion (A3) ensuring the concavity of F? and the M-matrix property of F ′?, ?= l,r.

Proposition (Convergence of the preconditioned methods) The mappings Fl and
Fr satisfy the assumptions of Theorem 1 with u0 = 0; moreover for all u ∈ (R+)N

the matrix F ′?(u), ?= l,r is such that F ′?(u)≤ I ≤ F ′?(u)
−1. �
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3 Numerical experiment

Let us consider the porous medium equation (see [6])

∂tβ (u)−∂
2
xxu = 0 (7)

on (0,1)×(0,T ). The nonlinearity in the accumulation term is given by β (u)= u1/m

with m > 1. We consider the Neumann boundary conditions

∂xu(0, t) =−q, ∂xu(1, t) = 0, for all t ∈ (0,T )

with q > 0, and the constant initial condition u(x,0) = u0 > 0. The value of u0 is
going to be chosen close to zero leading to “an almost traveling wave solution”. For
m = 10, q = 104, T = 1.2 10−2 and NT = 100 the approximate profile of β (u) at
different time steps is exhibited at the right side of Figure 2.

Equation (7) is discretized using the standard implicit in time finite volume
method. Let the positive integers N and NT denote the number of cells and the total

number of time steps, let h =
1
N

be the cell size and ∆ t = T
NT

be the size of the time
step. For all cells i and time steps n the discretized version of (7) reads

β (un
i )+

∆ t
h2 ∑

j∈Ni

(un
i −un

j) = β (un−1
i )+

∆ t
h

q δi,1, (8)

where δi,1 stands for the Kronecker symbol and where Ni denotes the set of the
neighbors of the cell i. Let L denote the tridiagonal matrix associated to the dis-
cretization of the diffusion operator and D be it’s diagonal. We denote by bn the
right-hand-side of (8). The system (8) results in the following problem, which has
to be solved for each time step

(β (u)+Du)+(L−D)u = bn. (9)

It is easy to show that f (u) = β (u)+Du and A = L−D satisfy the assumptions
(A1)-(A3).

The objective of the numerical experiment is to evaluate the efficiency of New-
ton’s method (NM) applied to left and right-preconditioned problems

Fn
l (u) := u−g(bn−Au) = 0 (10)

and
Fn

r (u) := u+Ag(u)−bn = 0. (11)

Those preconditioned methods are compared, in terms of the performance, with
three more standard approaches specified below.
u−formulation: NM applied to (9) in the original form

Fn
u (u) := β (u)+Lu−bn = 0 (12)
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In view of Proposition 1 this method is monotonically convergent provided that the
initial guess satisfy F(u0)≤ 0.
v−formulation: The problem (9) is reformulated with respect to the variable v with
u = β−1(v) and NM is applied to

Fn
v (v) := v+Lβ

−1(v)−bn = 0 (13)

τ−formulation: Following [2] we introduce the function pair τ→ (u(τ),v(τ)) such
that for all τ it holds v(τ) = β (u(τ)) and max(u′(τ),v′(τ)) = 1. Then NM is applied
to

Fn
τ (τ) := v(τ)+Lu(τ)−bn = 0. (14)

At each time step n and for each of the formulations (10)-(14) the sequence of the
approximate solutions

(
ξ n

k

)
k (where ξ denotes an appropriate primary variable) is

computed using Newton’s method until the stopping criterion ‖Fn
? (ξ

n
k )‖∞ < ε is

satisfied for some small predefined tolerance ε . As the initial guess we use the value
of the variable obtained at the previous time step (this value will differ between
the formulations). This choice of the initial guess is motivated by the following
observation.

Remark 1 Under the given initial and boundary conditions the solution of (7) satis-
fies ∂tu ≥ 0. This property is reproduced by the discrete solution un resulting from
u−formulation and the preconditioned methods. For ?= u,r, l, let un denote an ap-
proximate solution of Fn

? (u)= 0, then one can show that Fn
? (u

n−1)≤ 0, and therefore
un

0 = un−1 provides the appropriate choice of the initial guess.

In the following we present the results of the numerical experiment. The test case
is configurated as follows: in order to allow for the use of u−formulation we chose
strictly positive initial condition β (u0) = 10−10, we set q = 104, T = 1.2 10−2,
NT = 100 and we let the parameter m take values in the set {4,8,16,32}. For a
given value of m, the tolerance ε and a specific solution method ?, we denote by(
un,?

m,ε

)
n∈{1,...,NT }

∈ RN the approximate solution of (9).
The methodology of the study is similar to [2], that is for each value of m we

compute, using τ−formulation and the tolerance εre f = 10−10, the reference solu-

tion denoted by
(

un
m,re f

)
n∈{1,...,NT }

. Then, for each solution method (10)-(14) and

for the tolerance values of ε ∈ {10−1,10−2,10−4,10−6,10−8}, we perform the com-
putations measuring the total number of Newton’s iteration, required CPU time and
the relative deviation from the reference solution measured in terms of the conser-
vative variable β (u?m,ε)

err?m,ε =
‖β (un,?

m,ε)−β (un
m,re f )‖L∞(0,T ;L1(0,1))

‖β (un
m,re f )‖L∞(0,T ;L1(0,1))

.

Performance comparison. The first set of tests is performed using the fixed mesh
size parameter N = 100. In accordance with the results reported in [2], Figure 1 wit-
ness the qualitative differences in the performance of u, v and τ-formulations. Com-
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Fig. 1 Relative error err?m,ε as the function of the average number of Newton’s iterations per time
step. Left: for v-formulation (solid blue) and u-formulation (dashed blue). Right: for v-formulation
(blue) and τ-formulation (magenta).

Fig. 2 Left: relative error err?m,ε as the function of the average number of Newton’s iterations per
time step for τ-formulation (magenta), left-preconditioned (black) and right-preconditioned (red)
Newton’s method (magenta). Right: Approximate solution at different time steps.

pared to the original u-formulation, the formulation using v as the primary variable
is few time faster, it also performs slightly better then τ-formulation for the moder-
ate values of m. However, in contrast with τ-formulation, none of the formulations u
or v is robust with respect to the variation of m. Finally, Figure 2 shows a relatively
similar behavior of τ-formulation and the preconditioned methods, with the latter
ones requiring a slightly fewer number of iterations.
Computational overhead due to local problem solution. It can be observed on
Figures 1 and 2 that preconditioned Newton’s methods require less iterations then
the other formulations. However, each iteration of the preconditioned method re-
quires to evaluate the function g, and therefore to solve the set of the scalar nonlin-
ear equations. Those computations, performed again using Newton’s method, result
in a certain computational overhead which has to be accounted for. To access the
overall computational effort required by the preconditioned methods we present the
analysis in terms of the CPU time. Figure 3 shows, for different values of the mesh
size parameter N ∈ {200,400,800,1200}, the comparison of the left (respectively
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right) preconditioned NM with the method based on τ-formulation. In can be ob-
served that for the small problems (N . 400) τ-formulation outperforms the precon-
ditioned NM due to the computational overhead related to the latter ones. In turn,
for larger problems the preconditioned methods became advantages due to a smaller
number of the linear problem solves.

Fig. 3 Relative error errv,?
m,ε as the function of CPU time for different grid sizes. Left: left-

preconditioned NM (solid lines) and τ-formulation (dashed lines). Right: right-preconditioned NM
(solid lines) and τ-formulation (dashed lines).
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