
HAL Id: hal-03429350
https://hal.science/hal-03429350

Preprint submitted on 15 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Möbius Transformations and their applications
to Dempster-Shafer Theory: Clarification and

implementation ⋆

Maxime Chaveroche, Franck Davoine, Véronique Cherfaoui

To cite this version:
Maxime Chaveroche, Franck Davoine, Véronique Cherfaoui. Efficient Möbius Transformations and
their applications to Dempster-Shafer Theory: Clarification and implementation ⋆. 2021. �hal-
03429350�

https://hal.science/hal-03429350
https://hal.archives-ouvertes.fr

ar
X

iv
:2

10
7.

07
35

9v
1

 [
cs

.C
C

]
 1

5
Ju

l 2
02

1

Efficient Möbius Transformations and their applications to

Dempster-Shafer Theory: Clarification and implementation⋆

Maxime Chaveroche∗, Franck Davoine, Véronique Cherfaoui

Sorbonne University Alliance, Université de technologie de Compiègne, CNRS, Heudiasyc,
CS 60319 - 60203 Compiègne Cedex, France

Abstract

Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering useful addi-
tional information, but suffers from a high computational burden. A lot of work has been done
to reduce the complexity of computations used in information fusion with Dempster’s rule. The
main approaches exploit either the structure of Boolean lattices or the information contained
in belief sources. Each has its merits depending on the situation. In this paper, we propose
sequences of graphs for the computation of the zeta and Möbius transformations that optimally
exploit both the structure of distributive semilattices and the information contained in belief
sources. We call them the Efficient Möbius Transformations (EMT). We show that the complex-
ity of the EMT is always inferior to the complexity of algorithms that consider the whole lattice,
such as the Fast Möbius Transform (FMT) for all DST transformations. We then explain how
to use them to fuse two belief sources. More generally, our EMTs apply to any function in any
finite distributive lattice, focusing on a meet-closed or join-closed subset. This article extends
our work published at the international conference on Scalable Uncertainty Management (SUM)
[1]. It clarifies it, brings some minor corrections and provides implementation details such as
data structures and algorithms applied to DST.

Keywords: Möbius Transform, Zeta Transform, Efficiency, distributive lattice, meet-closed
subset, join-closed subset, Fast Möbius Transform, FMT, Dempster-Shafer Theory, DST,
belief functions, efficiency, information-based, complexity reduction

1 Introduction

Dempster-Shafer Theory (DST) [2] is an elegant formalism that generalizes Bayesian probability
theory. It is more expressive by giving the possibility for a source to represent its belief in the
state of a variable not only by assigning credit directly to a possible state (strong evidence)
but also by assigning credit to any subset (weaker evidence) of the set Ω of all possible states.
This assignment of credit is called a mass function and provides meta-information to quantify
the level of uncertainty about one’s believes considering the way one established them, which is
critical for decision making.

⋆This work was carried out and co-funded in the framework of the Labex MS2T and the Hauts-de-France
region of France. It was supported by the French Government, through the program “Investments for the future”
managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

∗Corresponding author
Email address: name.surname@hds.utc.fr (Maxime Chaveroche∗ , Franck Davoine, Véronique Cherfaoui)

Extension of a published article (SUM 2019) July 16, 2021

http://arxiv.org/abs/2107.07359v1

Nevertheless, this information comes with a cost: considering 2|Ω| potential values instead
of only |Ω| can lead to computationally and spatially expensive algorithms. They can become
difficult to use for more than a dozen possible states (e.g. 20 states in Ω generate more than
a million subsets), although we may need to consider large frames of discernment (e.g. for
classification or identification tasks). Moreover, these algorithms not being tractable anymore
beyond a few dozen states means their performances greatly degrade before that, which further
limits their application to real-time applications. To tackle this issue, a lot of work has been
done to reduce the complexity of transformations used to combine belief sources with Dempster’s
rule [3]. We distinguish between two approaches that we call powerset-based and evidence-based.

The powerset-based approach concerns all algorithms based on the structure of the powerset
2Ω of the frame of discernment Ω. They have a complexity dependent on |Ω|. Early works
[4, 5, 6, 7] proposed optimizations by restricting the structure of evidence to only singletons and
their negation, which greatly restrains the expressiveness of DST. Later, a family of optimal
algorithms working in the general case, i.e. the ones based on the Fast Möbius Transform
(FMT) [8], was discovered. Their complexity is O(|Ω|.2|Ω|) in time and O(2|Ω|) in space. It has
become the de facto standard for the computation of every transformation in DST. Consequently,
efforts were made to reduce the size of Ω to benefit from the optimal algorithms of the FMT.
More specifically, [9] refers to the process of conditioning by the combined core (intersection of
the unions of all focal sets of each belief source) and lossless coarsening (merging of elements
of Ω which always appear together in focal sets). Also, Monte Carlo methods [9] have been
proposed but depend on a number of trials that must be large and grows with |Ω|, in addition
to not being exact.

The evidence-based approach concerns all algorithms that aim to reduce the computations
to the only subsets that contain information (evidence), called focal sets, which are usually far
less numerous than 2|Ω|. This approach, also refered to as the obvious one, implicitly originates
from the seminal work of Shafer [2] and is often more efficient than the powerset-based one since
it only depends on information contained in sources in a quadratic way. Doing so, it allows for
the exploitation of the full potential of DST by enabling us to choose any frame of discernment,
without concern about its size. Moreover, the evidence-based approach benefits directly from
the use of approximation methods, some of which are very efficient [10]. Therefore, this approach
seems superior to the FMT in most use cases, above all when |Ω| is large, where an algorithm
with exponential complexity is just intractable.

It is also possible to easily find evidence-based algorithms computing all DST transformation,
except for the conjunctive and disjunctive decompositions for which we recently proposed a
method [11, 12].

However, since these algorithms rely only on the information contained in sources, they do
not exploit the structure of the powerset to reduce the complexity, leading to situations in which
the FMT can be more efficient if almost every subset contains information, i.e. if the number
of focal sets tends towards 2|Ω| [9], all the most when no approximation method is employed.

In this paper, we fuse these two approaches into one, proposing new sequences of graphs, in
the same fashion as the FMT, that are always more efficient than the FMT and can in addition
benefit from evidence-based optimizations. We call them the Efficient Möbius Transformations
(EMT). More generally, our approach applies to any function defined on a finite distributive
lattice.

Outside the scope of DST, [13] is related to our approach in the sense that we both try to
remove redundancy in the computation of the zeta and Möbius transforms on the subset lattice
2Ω. However, they only consider the redundancy of computing the image of a subset that is
known to be null beforehand. To do so, they only visit sets that are accessible from the focal

2

sets of lowest rank by successive unions with each element of Ω. Here, we demonstrate that it
is possible to avoid far more computations by reducing them to specific sets so that each image
is only computed once. These sets are the focal points described in [11, 12]. The study of their
properties will be carried out in depth in an upcoming article [14]. Besides, our method is more
general since it applies to any finite distributive lattice.

Furthermore, an important result of our work resides in the optimal computation of the zeta
and Möbius transforms in any intersection-closed family F of sets from 2Ω, i.e. with a complexity
O(|Ω|.|F |). Indeed, in the work of [15] on the optimal computation of these transforms in any
finite lattice L, they embedded L into the Boolean lattice 2Ω, obtaining an intersection-closed
family F as its equivalent, and found a meta-procedure building a circuit of size O(|Ω|.|F |)
computing the zeta and Möbius transforms. However, they did not managed to build this
circuit in less than O(|Ω|.2|Ω|). Given F , our Theorem 3.2.2 in this paper directly computes this
circuit with a complexity that can be as low as O(|Ω|.|F |) in some instances, while being much
simpler.

This paper is organized as follows: Section 2 will present the elements on which our method
is built. Section 3 will present our EMT. Section 4 will discuss their complexity and their usage
both in general and in the case of DST. Finally, we will conclude this article with section 5.

2 Background of our method

Let (P,≤) be a finite1 set partially ordered by ≤.

2.1 Zeta transform

The zeta transform g : P → R of a function f : P → R is defined as follows:

∀y ∈ P, g(y) =
∑

x≤y

f(x) (1)

This can be extended to the multiplication as the multiplicative zeta transform:

∀y ∈ P, g(y) =
∏

x≤y

f(x)

Example 2.1.1. In DST, the implicability function b is defined as the zeta transform of the
mass function m in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, b(B) =
∑

A⊆B

m(A)

Example 2.1.2. In DST, the implicability function b is also the inverse of the multiplicative
zeta transform of the disjunctive weight function v in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, b(B) =
∏

A⊆B

v(A)−1

1The following definitions hold for lower semifinite partially ordered sets as well, i.e. partially ordered sets
such that the number of elements of P lower in the sense of ≤ than another element of P is finite. But for the
sake of simplicity, we will only talk of finite partially ordered sets.

3

Example 2.1.3. In DST, the commonality function q is defined as the zeta transform of the
mass function m in (2Ω,⊇), i.e.:

∀B ∈ 2Ω, q(B) =
∑

A⊇B

m(A)

Example 2.1.4. In DST, the commonality function q is also the inverse of the multiplicative
zeta transform of the conjunctive weight function w in (2Ω,⊇), i.e.:

∀B ∈ 2Ω, q(B) =
∏

A⊇B

w(A)−1

2.2 Möbius transform

The Möbius transform of g is f . It is defined as follows:

∀y ∈ P, f(y) =
∑

x≤y

g(x).µP,≤(x, y) (2)

where µP,≤ is the Möbius function of (P,≤) (See [16]). There is also a multiplicative version
with the same properties that can be seen as the exponential of the Möbius transform of log ◦ g:

∀y ∈ P, f(y) =
∏

x≤y

g(x)µP,≤(x,y)

Example 2.2.1. In DST, the mass function m is the Möbius transform of the implicability
function b in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, m(B) =
∑

A⊆B

b(A).µ2Ω,⊆(A,B)

where for any A,B ∈ 2Ω, the Möbius function evaluates to µ2Ω,⊆(A,B) = (−1)|B|−|A|, as
recalled in [8].

Example 2.2.2. In DST, the disjunctive weight function v is the inverse of the multiplicative
Möbius transform of the implicability function b in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, v(B) =
∏

A⊆B

b(A)−µ2Ω,⊆(A,B)

Example 2.2.3. In DST, the mass function m is the Möbius transform of the commonality
function q in (2Ω,⊇), i.e.:

∀B ∈ 2Ω, m(B) =
∑

A⊇B

q(A).µ2Ω,⊇(A,B)

where for any A,B ∈ 2Ω, the Möbius function also evaluates to µ2Ω,⊇(A,B) = (−1)|B|−|A|.

Example 2.2.4. In DST, the conjunctive weight function w is the inverse of the multiplicative
Möbius transform of the commonality function q in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, w(B) =
∏

A⊇B

q(A)−µ2Ω,⊇(A,B)

4

2.3 Sequence of graphs and computation of the zeta transform

To yield g(y) for some y ∈ P , we must sum all values f(x) such that x ≤ y. Our objective is
to do it in the minimum number of operations, i.e. to minimize the number of terms to sum. If
we only compute g(y) alone, we have to pick every element in {x ∈ P / x ≤ y} and sum their
associated values through f . However, if we compute g(y) for all elements y ∈ P at once, we can
organize and mix these computations so that partial sums are reused for more than one value
through g. Indeed, for any element y ∈ P , if there is an element z ∈ P such that y ≤ z, we have
g(z) = g(y) +

∑

x≤z
x 6≤y

f(x). So, we want to recursively build partial sums so that we can get the

full sum on each g(y) by only summing the values on some elements from {x ∈ P / x ≤ y}. In
other words, we would like to define an ordered sequence of transformations computing g from
f .

Let us adopt the formalism of graph theory. Let G≤ be a directed acyclic graph in which the
set of its nodes matches P and each arrow is directed by ≤. Let E≤ be the set of its arrows. We
have E≤ = {(x, y) ∈ P 2 / x ≤ y} and G≤ = (P,E≤). Thus, computing g(y) alone is equivalent
to visiting the node y from all nodes x of G≤ such that there is an arrow (x, y) ∈ E≤. Each
“visit” to node y from a node x corresponds to the computation of the operation f(x)+ ·, where
· represents the current state of the sum associated with y. Thus, G≤, combined with the binary
operator f(·) + ·, describes the transformation of 0 into g. More concisely, we will equivalently
initialize our algorithm with values through f instead of 0 and exploit the combination of G<

and +. We will say that the transformation (G<, f,+) computes the zeta transform of f in
(P,≤). In the end, we want to minimize the number of “visits” to be made to all y, i.e. we
want to minimize the total number of arrows to follow to compute every g(y). Therefore, the
question is: Is there an ordered sequence of graphs that can compute g from f with less arrows
in total than (G<, f,+) ?

Let IP be the set containing all identity arrows of G≤, i.e. IP = { (x, y) ∈ P 2 / x = y}.
Consider that all elements y ∈ P are initialized with f(y). We are interested in finding a
sequence of graphs that is equivalent to the arrows of G<. Let (Hi)i∈J1,nK be a sequence of
n directed acyclic graphs Hi = (P,Ei). We will note ((Hi)i∈J1,nK, f,+) the computation that
transforms f into h1 through the arrows of E1, then transforms h1 into h2 through the arrows
of E2, and so on until the transformation of hn−1 into hn through the arrows of En. We ignore
all identity arrows in these computations. So, this sequence of graphs requires us to consider
|E1|+ |E2|+ · · ·+ |En| arrows, but transforms f into hn in |E1\IP |+ |E2\IP |+ · · ·+ |En\IP |
operations.

Proposition 2.3.1. Let Ω = {ω1, ω2, . . . , ωn}. One particular sequence of interest is (Hi)i∈J1,nK,
where Hi = (2Ω, Ei) and:

Ei = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {ωi}}.

This sequence computes the same zeta transformations asG⊂ = (2Ω, E⊂), whereE⊂ = {(X,Y) ∈
2Ω × 2Ω / X ⊂ Y }.

Example 2.3.1. Let us say that Ω = {a, b, c}. Crossing ignored arrows (i.e. identity arrows),
we have:

• E1 = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {a}} = {

(∅, {a}),
✘
✘

✘
✘✘❳

❳
❳
❳❳

({a}, {a}), ({b}, {a, b}),
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤❤

({a, b}, {a, b}),

({c}, {a, c}),
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤❤

({a, c}), {a, c}), ({b, c},Ω), ✘
✘
✘❳

❳
❳(Ω,Ω)

}

5

∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω

• • • • • • • •

1 : Y = X ∪ {a}

• • • • • • • •

2 : Y = X ∪ {b}

• • • • • • • •

3 : Y = X ∪ {c}

• • • • • • • •

Figure 1: Illustration representing the paths generated by the arrows contained in the sequence
(Hi)i∈J1,3K, where Hi = (2Ω, Ei) and Ei = {(X, Y) ∈ 2Ω × 2Ω/ Y = X ∪ {ωi}} and Ω = {a, b, c}.
This sequence computes the same zeta transformations as G⊂ = (2Ω, E⊂), where E⊂ = {(X, Y) ∈
2Ω × 2Ω / X ⊂ Y }. A dot represents the node of its column. Its row i corresponds to both the tail of a
potential arrow in Hi and the head of a potential arrow in Hi−1. The last row corresponds to the heads
of all potential arrows that could be in H3. The arrows represents the actual arrows in each graph Hi.
Identity arrows are ignored in computations and not displayed here for the sake of clarity. If they were,
there would be vertical arrows in every column, linking each dot in row i to the next dot of same node
in row i+ 1. This representation is derived from the one used in [8].

• E2 = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {b}} = {

(∅, {b}), ({a}, {a, b}),
✘
✘
✘
✘✘❳

❳
❳
❳❳

({b}, {b}),
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤❤

({a, b}, {a, b}),

({c}, {b, c}), ({a, c}),Ω),
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤❤

({b, c}, {b, c}), ✘
✘
✘❳

❳
❳(Ω,Ω)

}

• E3 = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {c}} = {

(∅, {c}), ({a}, {a, c}), ({b}, {b, c}), ({a, b},Ω),

✘
✘
✘
✘✘❳

❳
❳
❳❳

({c}, {c}),
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤❤

({a, c}), {a, c}),
✭
✭
✭
✭
✭
✭✭❤

❤
❤
❤
❤
❤❤

({b, c}, {b, c}), ✘
✘
✘❳

❳
❳(Ω,Ω)

}

Fig. 1 illustrates this sequence. Check that, after execution of ((Hi)i∈J1,nK, f,+), each element
y of 2Ω is associated with the sum

∑

x⊆y f(x). For instance, let us take a look at Ω. Initially,

each element of 2Ω is associated with its value through f . Then, at step 1, we can see that the
value on Ω is summed with f({b, c}). At step 2, it is summed with h1({a, c}), which is equal to
f({c})+f({a, c}), following step 1. Finally, at step 3, it is summed with h2({a, b}), which is equal
to h1({a})+h1({a, b}) following step 2, which is itself equal to f(∅)+f({a})+f({b})+f({a, b}),
following step 1. Gathering all these terms, we get that h3(Ω) = f(Ω) + f({b, c}) + f({c}) +
f({a, c}) + f(∅) + f({a}) + f({b}) + f({a, b}).

Proposition 2.3.2. The dual of this particular sequence in (2Ω,⊇) is (Hi)i∈J1,nK, where Hi =
(2Ω, Ei) and:

Ei = {(X,Y) ∈ 2Ω × 2Ω/ X = Y ∪ {ωi}}.

This sequence computes the same zeta transformations asG⊃ = (2Ω, E⊃), whereE⊃ = {(X,Y) ∈
2Ω × 2Ω / X ⊃ Y }.

Example 2.3.2. Fig. 2 illustrates the dual sequence for zeta transforms in (2Ω,⊇) and Ω =
{a, b, c}.

Remark. These two sequences of graphs are the foundation of the Fast Möbius Transform
(FMT) algorithms. Their execution is O(n.2n) in time and O(2n) in space. As we can see, the
FMT presented here proposes two transformations ((Hi)i∈J1,nK, f,+) that computes the same

6

∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω

• • • • • • • •

1 : X = Y ∪ {a}

• • • • • • • •

2 : X = Y ∪ {b}

• • • • • • • •

3 : X = Y ∪ {c}

• • • • • • • •

Figure 2: Illustration representing the paths generated by the arrows contained in the sequence
(Hi)i∈J1,3K, where Hi = (2Ω, Ei) and Ei = {(X, Y) ∈ 2Ω × 2Ω/ X = Y ∪ {ωi}} and Ω = {a, b, c}.
This sequence computes the same zeta transformations as G⊃ = (2Ω, E⊃), where E⊃ = {(X, Y) ∈
2Ω × 2Ω / X ⊃ Y }.

transformation as respectively (G⊂, f,+) and (G⊃, f,+) for any function f : 2Ω → R. The
authors proved them to be the optimal transformations for any set Ω, i.e. the one that uses
the fewest arrows, independently of the function f to be considered. This means that they do
not take into account the neutral values of f for the operator +, i.e. where f evaluates to 0,
contrary to our approach. This is why our method is able to feature a lower complexity than
this optimal FMT.

More generally, Theorem 3 of [8] defines a necessary and sufficient condition to verify that a
transformation ((Hi)i∈J1,nK, f,+) computes (ignoring identity arrows) the same transformation
as (G<, f,+). It is stated in our terms as follows:

Theorem 2.3.1. Let (Hi)i∈J1,nK be a sequence of directed acyclic graphs Hi = (P,Ei). Let us
pose Ai = Ei ∪ IP . The transformation ((Hi)i∈J1,nK, f,+) computes (ignoring identity arrows)
the same transformation as (G<, f,+) if and only if each set of arrows satisfies Ei ⊆ E≤ and
every arrow e ∈ E≤ can be decomposed as a unique path (e1, e2, . . . , en) ∈ A1 ×A2 × · · · × An,
where the tail of e1 is the tail of e and the head of en is the head of e. Recall that a path is a
sequence of arrows in which ∀i ∈ J1, n− 1K, the head of ei is the tail of ei+1.

Example 2.3.3. Let us prove Proposition 2.3.1. We had Ω = {ω1, ω2, . . . , ωn}. The sequence
of graphs (Hi)i∈J1,nK computes the same zeta transformations as G⊂ = (2Ω, E⊂), where E⊂ =
{(X,Y) ∈ 2Ω × 2Ω / X ⊂ Y } if:

Ei = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {ωi}},

where i ∈ {1, . . . , n} and Hi = (2Ω, Ei).

Proof. Obviously, for any i ∈ J1, nK, we have Ei ⊆ E⊆. In addition, each set X ⊆ Ω is
composed by definition of at most n elements from Ω. Thus, it is possible to reach in at most
n steps from X any set Y ⊆ Ω such that X ⊆ Y with identity arrows and arrows where the
head is just the tail with exactly one other element from Ω, i.e. with identity arrows or arrows
of (Hi)i∈J1,nK. Moreover, since each step corresponds to a distinct element from Ω, there is
exactly one path from X to Y : at each step corresponding to the elements in Y \X , follow the
arrow that adds an element to the set reached in the previous step. Only identity arrows can
be followed in the steps corresponding to the elements in X ∩ Y . Otherwise, there would be
an element missing or in excess relatively to Y at the end of step n, which means that Y could
not be reached. Therefore, according to Theorem 2.3.1, the transformation ((Hi)i∈J1,nK, f,+)
computes the same transformation as (G⊂, f,+) for any function f : 2Ω → R. �

In addition, for a sequence of graphs computing zeta transforms in (P,≤), reversing its paths
yields a sequence of graphs computing zeta transforms in (P,≥). Hence Proposition 2.3.2.

7

2.4 Sequence of graphs and computation of the Möbius transform

Now, consider that we want to find a sequence of graphs that undoes the previous computation.
We want to transform g into f , i.e. the Möbius transform of g in (P,≤). For this, notice that
for any step i in the transformation ((Hi)i∈J1,nK, f,+), we have for each node y ∈ P ,

hi(y) = hi−1(y) +
∑

(x,y)∈Ei\IP

hi−1(x) ⇔ hi−1(y) = hi(y)−
∑

(x,y)∈Ei\IP

hi−1(x).

So, as long as we know all hi−1(x) for all arrows (x, y) ∈ Ei\IP at each step i and for all y ∈ P ,
we can simply reverse the order of the sequence (Hi)i∈J1,nK and use the operator - instead of +. If
this is verified, then ((Hn−i+1)i∈J1,nK, g,−) computes the Möbius transform of g in (P,≤). This
condition can be translated as follows: for every arrow (x, y) ∈ Ei\IP , we have hi(x) = hi−1(x).
This condition is equivalent to stating that for every arrow (x, y) ∈ Ei\IP , there is no arrow
(w, x) in Ei\IP .

Theorem 2.4.1. Let (Hi)i∈J1,nK be a sequence of directed acyclic graphs Hi = (P,Ei). Let hn

be the function resulting from the transformation ((Hi)i∈J1,nK, f,+), ignoring identity arrows. If
for every arrow (x, y) ∈ Ei\IP , there is no arrow (w, x) in Ei\IP , then ((Hn−i+1)i∈J1,nK, hn,−)
yields the initial function f .

Thus, if ((Hi)i∈J1,nK, f,+) computes the zeta transform g of f in (P,≤) and Theorem 2.4.1 is
satisfied, then ((Hn−i+1)i∈J1,nK, g,−) computes the Möbius transform f of g in (P,≤).

2.4.1 Application to the powerset lattice 2Ω (FMT)

Consider again the sequence (Hi)i∈J1,nK, from the application of section 2.3.1, that computes
the zeta transform of f in (2Ω,⊆). If there is an arrow (X,Y) ∈ Ei\I2Ω , then ωi 6∈ X . This
means that there is no set W in 2Ω such that W ∪{ωi} = X , and so no arrow (W,X) in Ei\I2Ω .
Thus, according to Theorem 2.4.1, ((Hn−i+1)i∈J1,nK, hn,−) computes the Möbius transforma-
tion of ((Hi)i∈J1,nK, f,+), i.e. the function f . Furthermore, given that Ω is a set and that
each graph Hi concerns an element ωi, independently from the others, any indexing (order)
in the sequence (Hi)i∈J1,nK computes the zeta transformation. This implies that any order in
((Hn−i+1)i∈J1,nK, hn,−) computes the Möbius transformation of ((Hi)i∈J1,nK, f,+). In particu-
lar, ((Hi)i∈J1,nK, hn,−) computes the same transformation as ((Hn−i+1)i∈J1,nK, hn,−).

Example 2.4.1. Let us say that Ω = {a, b, c}. We want to compute the Möbius transform
f of g in (2Ω,⊆). Each arrow set Ei has already been computed in Example 2.3.1. Fig. 1
illustrates any transformation based on (Hi)i∈J1,nK, including ((Hi)i∈J1,nK, hn,−). Check that,
after execution of ((Hi)i∈J1,nK, hn,−), each element y of 2Ω is associated with f(y). For instance,
let us take a look again at Ω. Initially, each element of 2Ω is associated with its value through
g. Then, at step 1, we can see that to the value on Ω is subtracted g({b, c}). At step 2, to h1(Ω)
is subtracted h1({a, c}), which is equal to g({a, c})− g({c}), following step 1. Finally, at step 3,
to h2(Ω) is subtracted h2({a, b}), which is equal to h1({a, b})− h1({a}) following step 2, which
is itself equal to g({a, b})− g({b})− (g({a})− g(∅)), following step 1. Gathering all these terms,
we get that

h3(Ω) = g(Ω)− g({b, c})− [g({a, c})− g({c})]− [g({a, b})− g({b})− [g({a})− g(∅)]]

= g(Ω)− g({b, c})− g({a, c}) + g({c})− g({a, b}) + g({b}) + g({a})− g(∅)

=
∑

X⊆Ω

g(x).(−1)|Ω|−|X|.

8

As recalled in [8], the function that associates to each couple (X,Y) ∈ 2Ω × 2Ω the value
(−1)|Y |−|X| is the Möbius function µ in (2Ω,⊆). So, according to Eq. 2, we have h3(Ω) = f(Ω).

2.5 Order theory

Let (P,≤) be a set partially ordered by the relation ≤.

2.5.1 Meet / join

Let S be a subset of P . If it is unique, the greatest element of P that is less than all the elements
of S is called the meet (or infimum) of S. It is noted

∧

S. If S = {x, y}, we may also note it
with the binary operator ∧ such that x∧ y. If it is unique, the least element of P that is greater
than all the elements of S is called the join (or supremum) of S. It is noted

∨

S. If S = {x, y},
we may also note it with the binary operator ∨ such that x ∨ y.

Example 2.5.1. In (2Ω,⊆), the meet operator ∧ is the intersection operator ∩, while the join
operator ∨ is the union operator ∪.

2.5.2 Lattice / semi-lattice

If any non-empty subset of P has a join, we say that P is an upper semilattice. If any non-empty
subset of P has a meet, we say that P is a lower semilattice. When P is both, we say that P is
a lattice.

Example 2.5.2. In (2Ω,⊆), any non-empty subset S has an intersection and a union in 2Ω.
They respectively represent the common elements of the sets in S and the cumulative elements
of all the sets in S. Thus, 2Ω is a lattice.

2.5.3 Irreducible elements

In any partially ordered set, there are bottom elements such that they cannot be described as the
join of two lesser elements. Such irreducible elements are called the join-irreducible elements
of P if they are not equal to the global minimum of P . We will note ∨I(P) the set of all
join-irreducible elements of P . Since none of them is

∧

P , this means that the join of any two
join-irreducible elements yields a non-join-irreducible element of P . In fact, if P is an upper
semilattice (or a lattice), it is known that the join of all possible non-empty subset of ∨I(P)
yields all elements of P , except

∧

P . Formally, we write that all join-irreducible element i
verifies i 6=

∧

P and for all elements x, y ∈ P , if x < i and y < i, then x ∨ y < i.

Dually, in any partially ordered set, there are top elements such that they cannot be described
as the meet of two greater elements. Such irreducible elements are called the meet-irreducible
elements of P if they are not equal to the global maximum of P . We will note ∧I(P) the set
of all meet-irreducible elements of P . Since none of them is

∨

P , this means that the meet of
any two meet-irreducible elements yields a non-meet-irreducible element of P . In fact, if P is
a lower semilattice (or a lattice), it is known that the meet of all possible non-empty subset of
∧I(P) yields all elements of P , except

∨

P . Formally, we write that all meet-irreducible element
i verifies i 6=

∨

P and for all elements x, y ∈ P , if x > i and y > i, then x ∧ y > i.

Example 2.5.3. In (2Ω,⊆), the join-irreducible elements are the singletons {ω}, where ω ∈ Ω.
The meet-irreducible elements are their complement {ω} = Ω\{ω}, where ω ∈ Ω.

9

2.5.4 Distributive lattice

A distributive lattice L is a lattice that satisfies the distributive law:

∀x, y, z ∈ L, (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z) (3)

Since (x ∧ z) ∨ z = z, this condition is equivalent to:

∀x, y, z ∈ L, (z ∨ y) ∧ (z ∨ x) = z ∨ (y ∧ x) (4)

Example 2.5.4. In the powerset lattice 2Ω, it holds for any sets A,B,C ∈ 2Ω that (A ∩B) ∪
(A ∩ C) = A ∩ (B ∪ C). Thus, the lattice 2Ω is a distributive lattice.

2.5.5 Sublattice

A sublattice S is simply a subset of a lattice L that is itself a lattice, with the same meet and
join operations as L. This means that for any two elements x, y ∈ S, we have both x ∨ y ∈ S
and x ∧ y ∈ S, where ∨ and ∧ are the join and meet operators of L.

2.5.6 Upset / down set

An upset (or upward closed set) S is a subset of P such that all elements in P greater than at
least one element of S is in S. The upper closure of an element x ∈ P is noted ↑ x or x↑P (when
the encompassing set has to be specified). It is equal to {y ∈ P / x ≤ y }.

Dually, a down set (or downward closed set) S is a subset of P such that all elements in P
less than at least one element of S is in S. The lower closure of an element x ∈ P is noted ↓ x
or x↓P (when the encompassing set has to be specified). It is equal to {y ∈ P / x ≥ y }.

2.6 Support elements and focal points

Let f : P → R.

2.6.1 Support of a function in P

The support supp(f) of a function f : P → R is defined as supp(f) = {x ∈ P / f(x) 6= 0}.

Example 2.6.1. In DST, the set containing the focal sets of a mass function m is supp(m).

2.6.2 Focal points

We note ∨supp(f) the smallest join-closed subset of P containing supp(f), i.e.:

∨supp(f) =
{

∨

S / S ⊆ supp(f), S 6= ∅
}

We note ∧supp(f) the smallest meet-closed subset of P containing supp(f), i.e.:

∧supp(f) =
{

∧

S / S ⊆ supp(f), S 6= ∅
}

10

The set containing the focal points F̊ of a mass function m from [11, 12] for the conjunctive
weight function is ∧supp(m). For the disjunctive weight function, we use their dual focal points,
defined by ∨supp(m).

It has been proven in [11, 12] that the image of 2Ω through the conjunctive weight function
can be computed without redundancies by only considering the focal points ∧supp(m) in the
definition of the multiplicative Möbius transform of the commonality function. The image of all
set in 2Ω\∧supp(m) through the conjunctive weight function is 1. In the same way, the image of
any set in 2Ω\∧supp(m) through the commonality function is only a duplicate of the image of
a focal point in ∧supp(m). Its image can be recovered by searching for its smallest focal point
superset in ∧supp(m). The same can be stated for the disjunctive weight function regarding the
implicability function and ∨supp(m).

In fact, as generalized in [14], for any function f : P → R, its focal points ∧supp(f) are
sufficient to define its zeta and Möbius transforms in (P,≥), and ∨supp(f) is sufficient to define
its zeta and Möbius transforms in (P,≤).

However, considering the case where P is a finite lattice, naive algorithms that only consider
osupp(f), where o ∈ {∨,∧} have upper bound complexities in O(|osupp(f)|2), which may be
worse than the optimal complexity O(|∨I(P)|.|P |) of a procedure that considers the whole lattice
P . In this paper, we propose computing schemes for g(S), where osupp(f) ⊆ S ⊆ P and g is the
zeta transform of f in (P,≤), with complexities always less than O(|∨I(P)|.|P |), provided that
P is a finite distributive lattice. We also provide schemes for computing the Möbius transform
f(S) of g in (P,≤).

3 Our Efficient Möbius Transformations

In this section, we consider a function f : P → R where P is a finite distributive lattice (e.g. the
powerset lattice 2Ω). We present here the sequences of graphs that can be exploited to compute
our so-called Efficient Möbius Transformations. Theorem 3.2.1 describes a way of computing
the zeta and Möbius transforms of a function based on the smallest sublattice Lsupp(f) of P
containing both ∧supp(f) and ∨supp(f), which is defined in Proposition 3.1.3. Theorem 3.2.2
goes beyond this optimization by computing these transforms based only on osupp(f), where
o ∈ {∨,∧}. Nevertheless, this second approach requires the direct computation of osupp(f),
which has an upper bound complexity of O(|supp(f)|.|osupp(f)|), which may be more than
O(|∨I(P)|.|P |) if |supp(f)| ≫ |∨I(P)|.

3.1 Preliminary results

In this subsection, we provide some propositions that are useful for proving our main results
(presented in the next subsection).

Lemma 3.1.1 (Safe join). Let us consider a finite distributive lattice L. For all join-irreducible
element i ∈ ∨I(L) and for all elements x, y ∈ L that are not greater than or equal to i, i.e. i 6≤ x
and i 6≤ y, we have that their join is not greater or equal to i either, i.e. i 6≤ x ∨ y.

Proof. By definition of a join-irreducible element, we know that ∀i ∈ ∨I(L) and for all
a, b ∈ L, if a < i and b < i, then a ∨ b < i. Moreover, for all x, y ∈ L such that i 6≤ x and i 6≤ y,
we have equivalently i ∧ x < i and i ∧ y < i. Thus, we get that (i ∧ x) ∨ (i ∧ y) < i. Since L
satisfies the distributive law Eq. (3), this implies that (i ∧ x) ∨ (i ∧ y) = i ∧ (x ∨ y) < i, which
means that i 6≤ x ∨ y. �

11

Lemma 3.1.2 (Safe meet). Let us consider a finite distributive lattice L. For all meet-
irreducible element i ∈ ∧I(L) and for all elements x, y ∈ L that are not less than or equal
to i, i.e. i 6≥ x and i 6≥ y, we have that their meet is not less or equal to i either, i.e. i 6≥ x ∧ y.

Proof. By definition of a meet-irreducible element, we know that ∀i ∈ ∧I(L) and for all
a, b ∈ L, if a > i and b > i, then a ∧ b > i. Moreover, for all x, y ∈ L such that i 6≥ x and i 6≥ y,
we have equivalently i ∨ x > i and i ∨ y > i. Thus, we get that (i ∨ x) ∧ (i ∨ y) > i. Since L
satisfies the distributive law Eq. (4), this implies that (i ∨ x) ∧ (i ∨ y) = i ∨ (x ∧ y) < i, which
means that i 6≥ x ∨ y. �

Proposition 3.1.1 (Iota elements of a subset of P). For any subset S ⊆ P , we note ι(S) the
set containing the join-irreducible elements of the smallest sublattice LS of P containing S,
i.e. ι(S) = ∨I(LS). These so-called iota elements of S can be obtained through the following
equality:

ι(S) =
{

∧

i↑S / i ∈ ∨I(P), i↑S 6= ∅
}

,

where i↑S is the upper closure of i in S, i.e. {s ∈ S / i ≤ s}.

Proof. See Appendix A.1. �

Proposition 3.1.2 (Dual iota elements of a subset of P). Similarly, for any subset S ⊆ P ,
we note ι(S) the set containing the meet-irreducible elements of the smallest sublattice LS of
P containing S, i.e. ι(S) = ∧I(LS). These so-called dual iota elements of S can be obtained
through the following equality:

ι(S) =
{

∨

i↓S / i ∈ ∧I(P), i↓S 6= ∅
}

,

where i↓S is the lower closure of i in S, i.e. {s ∈ S / i ≥ s}.

Proof. Analog to the proof of Proposition 3.1.1, exploiting the dual definition of the dis-
tributive law in a lattice, i.e. Eq. (4). �

Proposition 3.1.3 (Lattice support). The smallest sublattice of P containing both ∧supp(f)
and ∨supp(f), noted Lsupp(f), can be defined as:

Lsupp(f) =
{

∨

X / X ⊆ ι(supp(f)), X 6= ∅
}

∪
{

∧

supp(f)
}

=
{

∧

X / X ⊆ ι(supp(f)), X 6= ∅
}

∪
{

∨

supp(f)
}

.

More specifically, ∨supp(f) is contained in the upper closure supp(f)
↑Lsupp(f)

of supp(f) in
Lsupp(f):

supp(f)
↑Lsupp(f)

= {x ∈ Lsupp(f) / ∃s ∈ supp(f), s ≤ x},

and ∧supp(f) is contained in the lower closure supp(f)↓
Lsupp(f) of supp(f) in Lsupp(f):

supp(f)
↓Lsupp(f)

= {x ∈ Lsupp(f) / ∃s ∈ supp(f), s ≥ x}.

These sets can be computed in less than respectively O(|ι(supp(f))|.|supp(f)↑
Lsupp(f)|) and

O(|ι(supp(f))|.|supp(f)↓
Lsupp(f)|), which is at most O(|∨I(P)|.|P |).

Proof. The proof is immediate here, considering Proposition 3.1.1 and its proof, as well as
Proposition 3.1.2. In addition, since ∧supp(f) only contains the meet of elements of supp(f),
all element of ∧supp(f) is less than at least one element of supp(f). Similarly, since ∨supp(f)
only contains the join of elements of supp(f), all element of ∨supp(f) is greater than at least

one element of supp(f). Hence supp(f)
↑Lsupp(f)

and supp(f)
↓Lsupp(f)

. �

12

As pointed out in [17], a special ordering of the join-irreducible elements of a lattice when
using the Fast Zeta Transform [15] leads to the optimal computation of its zeta and Möbius
transforms. Here, we use this ordering to build our EMT for finite distributive lattices in a way
similar to [17] but without the need to check the equality of the decompositions into the first j
join-irreducible elements at each step.

Corollary 3.1.1 (Join-irreducible ordering). Let us consider a finite distributive lattice (L,≤)
and let its join-irreducible elements ∨I(L) be ordered such that ∀ik, il ∈ ∨I(L), k < l⇒ ik 6≥ il.
If L is a graded lattice (i.e. a lattice equipped with a rank function ρ : L → N), then ρ(i1) ≤
ρ(i2) ≤ · · · ≤ ρ(i|∨I(L)|) implies this ordering. We note ∨I(L)k = {i1, . . . , ik−1, ik}.

For all element ik ∈ ∨I(L), we have ik 6≤
∨

∨I(L)k−1.

Proof. Since the join-irreducible elements are ordered such that ∀ik, il ∈ ∨I(L), k < l ⇒
ik 6≥ il, it is trivial to see that for any il ∈ ∨I(L) and ik ∈ ∨I(L)l−1, we have ik 6≥ il. Then,
using Lemma 3.1.1 by recurrence, it is easy to get that il 6≤

∨

∨I(L)l−1. �

Example 3.1.1. For example, in DST we work with P = 2Ω, in which the rank function is
the cardinality, i.e. for all A ∈ P , ρ(A) = |A|. So, with (L,⊆) a subset lattice of (2Ω,⊆), the
ordering required in Corollary 3.1.1 simply translates to sorting the join-irreducible elements
of L from the smallest set to the largest set. Thus, sorting ∨I(L) = {i1, i2, · · · , in} such that
|i1| ≤ |i2| ≤ · · · ≤ |in|, Corollary 3.1.1 tells us that for any k ∈ J2, nK, we have ik 6⊆

⋃

∨I(L)k−1,
where ∨I(L)k = {i1, . . . , ik−1, ik}.

Corollary 3.1.2 (Meet-irreducible ordering). Let us consider a finite distributive lattice (L,≤)
and let its meet-irreducible elements ∧I(L) be ordered such that ∀ik, il ∈

∨I(L), k < l⇒ ik 6≤ il.
If L is a graded lattice (i.e. a lattice equipped with a rank function ρ : L → N), then ρ(i1) ≥
ρ(i2) ≥ · · · ≥ ρ(i|∧I(L)|) implies this ordering. We note ∧I(L)k = {i1, . . . , ik−1, ik}.

For all element ik ∈ ∧I(L), we have ik 6≥
∧

∧I(L)k−1.

Proof. Since the meet-irreducible elements are ordered such that ∀ik, il ∈ ∧I(L), k < l ⇒
ik 6≤ il, it is trivial to see that for any il ∈ ∧I(L) and ik ∈ ∧I(L)l−1, we have ik 6≤ il. Then,
using Lemma 3.1.2 by recurrence, it is easy to get that il 6≥

∧

∧I(L)l−1. �

Example 3.1.2. Taking back Example 3.1.1, the ordering required in this Corollary 3.1.2 simply
translates to sorting the meet-irreducible elements of L from the largest set to the smallest set.
Thus, sorting ∧I(L) = {i1, i2, · · · , in} such that |i1| ≥ |i2| ≥ · · · ≥ |in|, Corollary 3.1.2 tells us
that for any k ∈ J2, nK, we have ik 6⊇

⋂

∧I(L)k−1, where
∧I(L)k = {i1, . . . , ik−1, ik}.

3.2 Main results

In this subsection, we present our two types of transformations computing the zeta and Möbius
transforms of a function f : P → R. The first one corresponds to Theorem 3.2.1 and its
corollaries and is based on a sublattice L ⊆ P , where L contains the lattice support of f , i.e.
Lsupp(f) ⊆ L. The second one corresponds to Theorem 3.2.2 and its corollary and is based on
any lower subsemilattice of P containing ∧supp(f). Its dual is presented in Corollary 3.2.7 and
its corollary and is based on any upper subsemilattice of P containing ∨supp(f).

13

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •

1 : Y = X ∪ Ω

• • • • • • •

2 : Y = X ∪ {c, d, f}

• • • • • • •

3 : Y = X ∪ {d}

• • • • • • •

4 : Y = X ∪ {a}

• • • • • • •

Figure 3: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X,Y) ∈ L2 / Y = X ∪ i5−k}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same zeta transformations as G⊂ = (L,E⊂), where
E⊂ = {(X,Y) ∈ L2 / X ⊂ Y }.

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •

1 : Y = X ∪ {a}

• • • • • • •

2 : Y = X ∪ {d}

• • • • • • •

3 : Y = X ∪ {c, d, f}

• • • • • • •

4 : Y = X ∪ Ω

• • • • • • •

-1 -1 -1

-1 -1

-1 -1-1 -1

-1 -1 -1 -1 -1 -1

Figure 4: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X, Y) ∈ L2 / Y = X ∪ ik}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same Möbius transformations as G⊂ = (L,E⊂),
where E⊂ = {(X, Y) ∈ L2 / X ⊂ Y }. The “-1” labels emphasize the intended use of the operator −
with this sequence.

Theorem 3.2.1 (Efficient Möbius Transformation in a distributive lattice). Let us consider
a finite distributive lattice L (such as Lsupp(f)) and let its join-irreducible elements ∨I(L) =
{i1, i2, · · · , in} be ordered such that ∀ik, il ∈ ∨I(L), k < l ⇒ ik 6≥ il.

Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{

(x, y) ∈ L2 / y = x ∨ in+1−k

}

.

This sequence computes the same zeta transformations as G< = (L,E<), where E< = {(X,Y) ∈
L2 / X < Y }. This sequence is illustrated in Fig. 3. The execution of any transformation based
on this sequence is O(n.|L|) in time and O(|L|) in space.

Proof. See Appendix A.2. �

Corollary 3.2.1. It can be shown similarly that the sequence (Hk)k∈J1,nK computes the same
zeta transforms as the sequence of Theorem 3.2.1, where Hk = (L,Ek) and:

Ek =
{

(x, y) ∈ L2 / x = y ∧ ik
}

.

with the meet-irreducible elements ∧I(L) = {i1, i2, · · · , in} ordered such that ∀ik, il ∈ ∧I(L),

14

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •

1 : X = Y ∪ {a}

• • • • • • •

2 : X = Y ∪ {d}

• • • • • • •

3 : X = Y ∪ {c, d, f}

• • • • • • •

4 : X = Y ∪ Ω

• • • • • • •

Figure 5: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X, Y) ∈ L2 / X = Y ∪ ik}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same zeta transformations as G⊃ = (L,E⊃), where
E⊃ = {(X,Y) ∈ L2 / X ⊃ Y }.

k < l ⇒ ik 6≤ il, i.e. in reverse order compared to the join-irreducible elements of Theorem
3.2.1.

Corollary 3.2.2. Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{

(x, y) ∈ L2 / y = x ∨ ik
}

.

This sequence computes the same Möbius transformations as G< = (L,E<), where E< =
{(X,Y) ∈ L2 / X < Y }. This sequence is illustrated in Fig. 4 and leads to the same complexities
as the one presented in Theorem 3.2.1.

Proof. For every arrow (x, y) ∈ Ek, if ik 6≤ x, then there is an arrow such that y = x∨ ik 6= x.
However, there can be no arrow (w, x) ∈ Ek since x cannot be equal to w ∨ ik. Otherwise, if
ik ≤ x, then y = x∨ik = x, i.e. (x, y) is an identity arrow. Thus, for every arrow (x, y) ∈ Ek\IP ,
there is no arrow (w, x) in Ek\IP , meaning that Theorem 2.4.1 is satisfied. The sequence
(Hn−k+1)k∈J1,nK computes the same Möbius transformations as G<. �

Corollary 3.2.3. Again, it can be shown similarly that the sequence (Hk)k∈J1,nK computes the
same Möbius transforms as the sequence of Corollary 3.2.2, where Hk = (L,Ek) and:

Ek =
{

(x, y) ∈ L2 / x = y ∧ in+1−k

}

.

with the meet-irreducible elements ∧I(L) = {i1, i2, · · · , in} ordered such that ∀ik, il ∈ ∧I(L),
k < l ⇒ ik 6≤ il, i.e. in reverse order compared to the join-irreducible elements of Corollary
3.2.2.

Corollary 3.2.4. Dually, consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{

(x, y) ∈ L2 / x = y ∨ ik
}

.

This sequence computes the same zeta transformations as G> = (L,E>), where E> = {(X,Y) ∈
L2 / X > Y }. This sequence is illustrated in Fig. 5 and leads to the same complexities as its
dual.

Corollary 3.2.5. Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{

(x, y) ∈ L2 / x = y ∨ in+1−k

}

.

This sequence computes the same Möbius transformations as G> = (L,E>), where E> =
{(X,Y) ∈ L2 / X > Y }. This sequence is illustrated in Fig. 6 and leads to the same complexities
as the one presented in Theorem 3.2.1.

15

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •

1 : X = Y ∪ Ω

• • • • • • •

2 : X = Y ∪ {c, d, f}

• • • • • • •

3 : X = Y ∪ {d}

• • • • • • •

4 : X = Y ∪ {a}

• • • • • • •

-1 -1 -1

-1 -1

-1 -1-1 -1

-1 -1 -1 -1 -1 -1

Figure 6: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X,Y) ∈ L2 / X = Y ∪ i5−k}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same Möbius transformations as G⊃ = (L,E⊃),
where E⊃ = {(X, Y) ∈ L2 / X ⊃ Y }. The “-1” labels emphasize the intended use of the operator −
with this sequence.

The procedures exploiting the sequences of graphs described in Theorem 3.2.1 and its corol-
laries to compute the zeta and Möbius transforms of a function f on P is always less than
O(|∨I(P)|.|P |). Their upper bound complexity for the distributive lattice L = Lsupp(f) is
O(|∨I(L)|.|L|), which is actually the optimal one for a lattice.

Yet, we can reduce this complexity even further if we have ∧supp(f) or ∨supp(f). This is
the motivation behind the sequence proposed in the following Theorem 3.2.2. As a matter
of fact, [15] proposed a meta-procedure producing an algorithm that computes the zeta and
Möbius transforms in an arbitrary intersection-closed family F of sets of 2Ω with a circuit of
size O(|Ω|.|F |). However, this meta-procedure is O(|Ω|.2|Ω|). Here, Theorem 3.2.2 provides a
sequence of graphs that leads to procedures that directly compute the zeta and Möbius trans-
forms in O(|Ω|.|F |.ǫ), where ǫ can be as low as 1. Besides, our method is far more general since
it applies to any meet-closed or join-closed subset of a finite distributive lattice. The intuition
behind it is that we can do the same computations as in Theorem 3.2.1, even in a subsemilattice,
simply by bridging gaps, from the smallest gap to the biggest to make sure that all nodes are
visited.

Theorem 3.2.2 (Efficient Möbius Transformation in a join-closed or meet-closed subset of P).
Let us consider a meet-closed subset M of P (such as ∧supp(f)). Also, let the iota elements
ι(M) = {i1, i2, · · · , in} be ordered such that ∀ik, il ∈ ι(M), k < l⇒ ik 6≥ il.

Consider the sequence (Hk)k∈J1,nK, where Hk = (M,Ek) and:

Ek =
{

(x, y) ∈M2 / x =
∧

(y ∨ ik)
↑M and x ≤ y ∨

∨

ι(M)k

}

,

where ι(M)k = {i1, i2, . . . , ik}. This sequence computes the same zeta transformations as G> =
(M,E>), where E> = {(X,Y) ∈ M2 / X > Y }. This sequence is illustrated in Fig. 7. The
execution of any transformation based on this sequence is at most O(|ι(M)|.|M |) in space and
O(|ι(M)|.|M |.ǫ) in time, where ǫ represents the average number of operations required to “bridge
a gap”, i.e. to find the minimum of (y ∨ ik)

↑M .

Proof. See Appendix A.3 �

Remark. This number ǫ is hard to evaluate beforehand since it depends on both the number
of “gaps to bridge” and the average number of elements that can be greater than some element.

16

∅ {a} {b} {a,b} {c} {d} {b,c,d} Ω

• • • • • • • •

1 : X =
⋂
(Y ∪ {a})↑M and X ⊆ Y ∪ {a}

• • • • • • • •

2 : X =
⋂
(Y ∪ {b})↑M and X ⊆ Y ∪ {a, b}

• • • • • • • •

3 : X =
⋂
(Y ∪ {c})↑M and X ⊆ Y ∪ {a, b, c}

• • • • • • • •

4 : X =
⋂
(Y ∪ {d})↑M and X ⊆ Y ∪ {a, b, c, d}

• • • • • • • •

5 : X =
⋂
(Y ∪Ω)↑M and X ⊆ Y ∪ Ω

• • • • • • • •

Figure 7: Illustration representing the paths generated by the arrows contained in the sequence
(Hk)k∈J1,5K, whereHk = (M,Ek) and Ek =

{

(X,Y) ∈ M2 / X =
⋂

(Y ∪ ik)
↑M and X ⊆ Y ∪

⋃

ι(M)k
}

and ι(M)k = {i1, i2, . . . , ik} and M = {∅, {a}, {b}, {a, b}, {c}, {d}, {b, c, d},Ω} and Ω = {a, b, c, d, e, f}
and (ik)k∈J1,5K = ({a}, {b}, {c}, {d},Ω). This sequence computes the same zeta transformations as
G⊃ = (M,E⊃), where E⊃ = {(X, Y) ∈ M2 / X ⊃ Y }. Actually, since there is no order between any
two iota elements of ι(M)\{Ω} in this example, the order chosen here is arbitrary. Any order would
compute the same zeta transformations as G⊃, as long as Ω is the last iota element to consider.

If there is no gap, or if there is only one greater element, this ǫ can be as low as 1. Moreover,
the choice of data structures may greatly reduce this ǫ. For instance, if P = 2Ω, then dynamic
binary trees may be employed to avoid the consideration of elements that cannot be less than
some already found element in (y ∪ ik)

↑M , by cutting some branches.

Corollary 3.2.6. Consider the sequence (Hk)k∈J1,nK, where Hk = (M,Ek) and:

Ek =
{

(x, y) ∈M2 / x =
∧

(y ∨ in+1−k)
↑M and x ≤ y ∨

∨

ι(M)n+1−k

}

.

This sequence computes the same Möbius transformations as G> = (M,E>), where E> =
{(X,Y) ∈M2 / X > Y }. This sequence is illustrated in Fig. 8 and leads to the same complex-
ities as the one presented in Theorem 3.2.2.

Proof. Analog to the proof of Corollary 3.2.2. �

Corollary 3.2.7. Dually, let us consider a join-closed subset J of P (such as ∨supp(f)). Also,
let the dual iota elements ι(J) = {i1, i2, · · · , in} be ordered such that ∀ik, il ∈ ι(J), k < l⇒ ik 6≤
il, i.e. in reverse order compared to the iota elements of Theorem 3.2.2.

In the direct line of Corollary 3.2.1, consider the sequence (Hk)k∈J1,nK, where Hk = (J,Ek)
and:

Ek =

{

(x, y) ∈ J2 / x =
∨

(y ∧ ik)
↓J and x ≥ y ∧

∧

ι(J)k

}

,

where ι(J)k = {i1, i2, . . . , ik}. This sequence computes the same zeta transformations as G< =
(J,E<), where E< = {(X,Y) ∈ J2 / X < Y }. This sequence is illustrated in Fig. 9. The
execution of any transformation based on this sequence is at most O(|ι(J)|.|J |) in space and
O(|ι(J)|.|J |.ǫ) in time, where ǫ represents the average number of operations required to “bridge
a gap”, i.e. to find the maximum of (y ∧ ik)

↓M .

Corollary 3.2.8. Finally, in the direct line of Corollary 3.2.3, consider the sequence (Hk)k∈J1,nK,

17

∅ {a} {b} {a,b} {c} {d} {b,c,d} Ω

• • • • • • • •

1 : X =
⋂
(Y ∪ Ω)↑M and X ⊆ Y ∪ Ω

• • • • • • • •

2 : X =
⋂
(Y ∪ {d})↑M and X ⊆ Y ∪ {a, b, c, d}

• • • • • • • •

3 : X =
⋂
(Y ∪ {c})↑M and X ⊆ Y ∪ {a, b, c}

• • • • • • • •

4 : X =
⋂
(Y ∪ {b})↑M and X ⊆ Y ∪ {a, b}

• • • • • • • •

5 : X =
⋂
(Y ∪ {a})↑M and X ⊆ Y ∪ {a}

• • • • • • • •

-1 -1

-1 -1

-1 -1

-1 -1 -1

-1 -1 -1 -1-1 -1 -1

Figure 8: Illustration representing the paths generated by the arrows con-
tained in the sequence (Hk)k∈J1,5K, where Hk = (M,Ek) and Ek =
{

(X,Y) ∈ M2 / X =
⋂

(Y ∪ i6−k)
↑M and X ⊆ Y ∪

⋃

ι(M)6−k

}

and ι(M)k = {i1, i2, . . . , ik}
and M = {∅, {a}, {b}, {a, b}, {c}, {d}, {b, c, d},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,5K =
({a}, {b}, {c}, {d},Ω). This sequence computes the same Möbius transformations as G⊃ = (M,E⊃),
where E⊃ = {(X, Y) ∈ M2 / X ⊃ Y }. The “-1” labels emphasize the intended use of the operator −
with this sequence. Actually, since there is no order between any two iota elements of ι(M)\{Ω} in
this example, the order chosen in Fig. 7 is arbitrary. Thus, any order here would compute the same
Möbius transformations as G⊃, as long as Ω is the first iota element to consider.

where Hk = (J,Ek) and:

Ek =

{

(x, y) ∈ J2 / x =
∨

(y ∧ in+1−k)
↓J and x ≥ y ∧

∧

ι(J)n+1−k

}

.

This sequence computes the same Möbius transformations as G< = (J,E<), where E< =
{(X,Y) ∈ J2 / X < Y }. This sequence is illustrated in Fig. 10 and leads to the same complex-
ities as the one presented in Corollary 3.2.7.

4 Discussions

4.1 General usage

If |supp(f)| is of same order of magnitude as |∨I(P)| or lower, then we can directly compute
the focal points ∧supp(f) or ∨supp(f). Next, with ∧supp(f), we can compute Efficient Möbius
Transformations based on Theorem 3.2.2 to get the zeta or Möbius transform of any function f
in (P,≥).

Let us take the sequence (Hk)k∈J1,nK from Theorem 3.2.2, where Hk = (∧supp(f), Ek) and:

Ek =
{

(x, y) ∈ ∧supp(f)
2
/ x =

∧

(y ∨ ik)
↑∧supp(f) and x ≤ y ∨

∨

ι(∧supp(f))k

}

,

where ι(∧supp(f))k = {i1, i2, . . . , ik} such that ∀ik, il ∈ ι(∧supp(f)), k < l ⇒ ik 6≥ il.

Example 4.1.1. Consider the mass function m and the commonality function q from Example
2.1.3. The transformation ((Hk)k∈J1,nK,m,+), where ∧supp(f) = ∧supp(m), computes the
commonality function q.

18

∅ {a,e,f} {c,d,e,f}{a,c,d,e,f}{a,b,c,e,f}{a,b,d,e,f}{b,c,d,e,f} Ω

• • • • • • • •

1 : X =
⋃
(Y ∩ {b, c, d, e, f})↓J and X ⊇ Y ∩ {b, c, d, e, f}

• • • • • • • •

2 : X =
⋃
(Y ∩ {a, c, d, e, f})↓J and X ⊇ Y ∩ {c, d, e, f}

• • • • • • • •

3 : X =
⋃
(Y ∩ {a, b, d, e, f})↓J and X ⊇ Y ∩ {d, e, f}

• • • • • • • •

4 : X =
⋃
(Y ∩ {a, b, c, e, f})↓J and X ⊇ Y ∩ {e, f}

• • • • • • • •

5 : X =
⋃
(Y ∩ ∅)↓J and X ⊇ Y ∩ ∅

• • • • • • • •

Figure 9: Illustration representing the paths generated by the arrows con-
tained in the sequence (Hk)k∈J1,5K, where Hk = (J,Ek) and Ek =
{

(X,Y) ∈ J2 / X =
⋃

(Y ∩ ik)
↓J and X ⊇ Y ∩

⋂

ι(J)k
}

and ι(J)k = {i1, i2, . . . , ik} and J =
{∅, {a, e, f}, {c, d, e, f}, {a, c, d, e, f}, {a, b, c, e, f}, {a, b, d, e, f}, {b, c, d, e, f},Ω} and Ω = {a, b, c, d, e, f}
and (ik)k∈J1,5K = ({b, c, d, e, f}, {a, c, d, e, f}, {a, b, d, e, f}, {a, b, c, e, f}, ∅). This sequence computes the
same zeta transformations as G⊂ = (J,E⊂), where E⊂ = {(X,Y) ∈ J2 / X ⊂ Y }. Actually, since
there is no order between any two dual iota elements of ι(J)\{∅} in this example, the order chosen here
is arbitrary. Any order would compute the same zeta transformations as G⊂, as long as ∅ is the last
dual iota element to consider.

Example 4.1.2. Consider the mass function m and the commonality function q from Example
2.2.3. The transformation ((Hn+1−k)k∈J1,nK, q,−), where

∧supp(f) = ∧supp(m), computes the
mass function m.

Example 4.1.3. Consider the conjunctive weight function w and the commonality function q
from Example 2.1.4. The transformation ((Hk)k∈J1,nK, w

−1,×), where ∧supp(f) = ∧supp(w − 1),
computes the commonality function q.

Example 4.1.4. Consider the conjunctive weight function w and the commonality function q
from Example 2.2.4. The transformation ((Hn+1−k)k∈J1,nK, w

−1, /), where ∧supp(f) = ∧supp(w − 1),
computes the conjunctive weight function w.

Let us now take the sequence (Hk)k∈J1,nK from Corollary 3.2.7, where Hk = (∨supp(f), Ek)
and:

Ek =
{

(x, y) ∈ ∨supp(f)
2
/ x =

∨

(y ∧ ik)
↓∨supp(f) and x ≥ y ∧

∧

ι(∨supp(f))k

}

,

where ι(∨supp(f))k = {i1, i2, . . . , ik} and such that ∀ik, il ∈ ι(∨supp(f)), k < l⇒ ik 6≤ il.

Example 4.1.5. Consider the mass function m and the implicability function b from Example
2.1.1. The transformation ((Hk)k∈J1,nK,m,+), where ∨supp(f) = ∨supp(m), computes the
implicability function b.

Example 4.1.6. Consider the mass function m and the implicability function b from Example
2.2.1. The transformation ((Hn+1−k)k∈J1,nK, b,−), where

∨supp(f) = ∨supp(m), computes the
mass function m.

Example 4.1.7. Consider the disjunctive weight function v and the implicability function b
from Example 2.1.2. The transformation ((Hk)k∈J1,nK, v

−1,×), where ∨supp(f) = ∨supp(v − 1),
computes the implicability function b.

19

∅ {a,e,f} {c,d,e,f}{a,c,d,e,f}{a,b,c,e,f}{a,b,d,e,f}{b,c,d,e,f} Ω

• • • • • • • •

1 : X =
⋃
(Y ∩ ∅)↓J and X ⊇ Y ∩ ∅

• • • • • • • •

2 : X =
⋃
(Y ∩ {a, b, c, e, f})↓J and X ⊇ Y ∩ {e, f}

• • • • • • • •

3 : X =
⋃
(Y ∩ {a, b, d, e, f})↓J and X ⊇ Y ∩ {d, e, f}

• • • • • • • •

4 : X =
⋃
(Y ∩ {a, c, d, e, f})↓J and X ⊇ Y ∩ {c, d, e, f}

• • • • • • • •

5 : X =
⋃
(Y ∩ {b, c, d, e, f})↓J and X ⊇ Y ∩ {b, c, d, e, f}

• • • • • • • •

-1 -1

-1-1

-1-1

-1-1 -1

-1-1 -1 -1-1 -1 -1

Figure 10: Illustration representing the paths generated by the arrows con-
tained in the sequence (Hk)k∈J1,5K, where Hk = (J,Ek) and Ek =
{

(X,Y) ∈ J2 / X =
⋃

(Y ∩ i6−k)
↓J and X ⊇ Y ∩

⋂

ι(J)6−k

}

and ι(J)k = {i1, i2, . . . , ik} and J =
{∅, {a, e, f}, {c, d, e, f}, {a, c, d, e, f}, {a, b, c, e, f}, {a, b, d, e, f}, {b, c, d, e, f},Ω} and Ω = {a, b, c, d, e, f}
and (ik)k∈J1,5K = ({b, c, d, e, f}, {a, c, d, e, f}, {a, b, d, e, f}, {a, b, c, e, f}, ∅). This sequence computes the
same Möbius transformations as G⊂ = (J,E⊂), where E⊂ = {(X, Y) ∈ J2 / X ⊂ Y }. The “-1” labels
emphasize the intended use of the operator − with this sequence. Actually, since there is no order
between any two dual iota elements of ι(J)\{∅} in this example, the order chosen in Fig. 9 is arbitrary.
Thus, any order would compute the same Möbius transformations as G⊂, as long as ∅ is the first dual
iota element to consider.

Example 4.1.8. Consider the disjunctive weight function v and the implicability function b from
Example 2.2.2. The transformation ((Hn+1−k)k∈J1,nK, v

−1, /), where ∨supp(f) = ∨supp(v − 1),
computes the disjunctive weight function v.

These transformations can be computed in at mostO(|∨I(P)|.|supp(f)|+|I(supp(f))|.|osupp(f)|)
operations, where I ∈ {ι, ι} and o ∈ {∧,∨}, which is at most O(|∨I(P)|.|P |).

Otherwise, if |supp(f)| ≫ |∨I(P)|, then we can compute supp(f)
↑Lsupp(f)

or supp(f)
↓Lsupp(f)

from the lattice support of Proposition 3.1.3, and then compute Efficient Möbius Transforma-
tions based on Theorem 3.2.1. Doing so, computing the same transforms can be done in at

most O(|∨I(P)|.|supp(f)| + |I(supp(f))|.|supp(f)A
Lsupp(f)|) operations, where I ∈ {ι, ι} and

A ∈ {↑, ↓}, which is at most O(|∨I(P)|.|P |).

Either way, it is always possible to compute zeta and Möbius transforms in a distributive
lattice in less than O(|∨I(P)|.|P |) in time and space.

4.2 Dempster-Shafer Theory

So, we can always compute most DST transformations (See Examples 4.1.1 to 4.1.8), wherever
the FMT applies, in less than O(|Ω|.2|Ω|) operations in the general case. The EMT are always
more efficient than the FMT.

Moreover, supp(f)
↓Lsupp(f)

can be optimized if Ω ∈ supp(f). Indeed, in this case, we have

supp(f)
↓Lsupp(f)

= Lsupp(f), while there may be a lot less elements in (supp(f)\{Ω})↓
Lsupp(f).

If so, one can equivalently compute the down set (supp(f)\{Ω})↓
Lsupp(f), execute an EMT with

Theorem 3.2.1, and then add the value on Ω to the value on all sets of (supp(f)\{Ω})↓
Lsupp(f).

20

The same can be done with (supp(f)\{∅})↑
Lsupp(f). This trick can be particularly useful in

the case of the conjunctive and disjunctive weight function, which require that supp(f) contains
respectively Ω and ∅.

Also, optimizations built for the FMT, such as the reduction of Ω to the core C or its optimal
coarsened version Ω′, are already encoded in the use of the function ι (see Example 4.2.1). On
the other hand, optimizations built for the evidence-based approach, such as approximations by
reduction of the number of focal sets, i.e. reducing the size of supp(f), can still greatly enhance
the EMT.

Finally, it was proposed in [8] to fuse two mass functions m1 and m2 using Dempster’s
rule by computing the corresponding commonality functions q1 and q2 in O(|Ω|.2|Ω|), then
computing q12 = q1.q2 in O(2|Ω|) and finally computing back the fused mass function m12

from q12 in O(|Ω|.2|Ω|). Here, we propose to compute the same detour but only on the el-

ements of supp(m12) ⊆ (supp(m1) ∪ supp(m2))
↓Lsupp(f). Indeed, notice that supp(m12) ⊆

∧(supp(m1) ∪ supp(m2)), which implies that supp(m12)
↓Lsupp(f) ⊆ (supp(m1) ∪ supp(m2))

↓Lsupp(f)
.

Thus, noting L = (supp(m1) ∪ supp(m2))
↓Lsupp(f)

, we compute the corresponding commonality
functions q1 and q2 in O(|ι(L)|.|L|), then compute q12 = q1.q2 in O(|L|) and finally compute back
the fused mass function m12 from q12 in O(|ι(L)|.|L|), where ι(L) = ι(supp(m1) ∪ supp(m2)).

Example 4.2.1 (Coarsening in the consonant case). Let supp(f) = {F1, F2, . . . , FK} such
that F1 ⊂ F2 ⊂ · · · ⊂ FK . A coarsening Ω′ of Ω is a mapping from disjoint groups of elements
of Ω to elements of Ω′. The set Ω′ can be seen as a partition of Ω. The goal of this coarsening
of Ω is to provide a reduced powerset 2Ω

′

. The best coarsening in this example would create as
much elements in Ω′ as there are elements in supp(f). Thus, the best coarsening would give us
a powerset of size 2|supp(f)|.

On the other hand, our iota elements ι(supp(f)) are the join-irreducible elements of the
smallest sublattice of 2Ω containing supp(f). This lattice is what we called the lattice support
of f and noted Lsupp(f). By definition, we necessarily have |Lsupp(f)| ≤ 2|supp(f)|. More
precisely here, all elements of supp(f) are both focal points and join-irreducible elements of
Lsupp(f), i.e. ι(supp(f)) = supp(f) = ∨supp(f) = ∧supp(f), if ∅ 6∈ supp(f) (Otherwise, we
have ι(supp(f)) = supp(f)\{∅}). In fact, since our iota elements are not mapped elements of
a reduced set Ω′ but instead raw sets from 2Ω, combinations of joins lead to a vastly different
lattice. In this example, we have Lsupp(f) = supp(f), instead of the 2supp(f) given by coarsening.

5 Conclusion

In this paper, we proposed the Efficient Möbius Transformations (EMT), which are general
procedures to compute the zeta and Möbius transforms of any function defined on any finite
distributive lattice with optimal complexity. They are based on our reformulation of the Möbius
inversion theorem with focal points only, featured in our previous work [14]. The EMT optimally
exploit the information contained in both the support of this function and the structure of
distributive lattices. Doing so, the EMT always perform better than the optimal complexity
for an algorithm considering the whole lattice, such as the FMT. Following these findings, it
remains to propose explicit algorithms and implementation guidelines. We provide this for the
powerset lattice, for DST, in Appendix B. We plan to release both a C++ (roughly presented
in Appendix) and a Python open-source DST implementation in the near future.

21

Appendices

A Proofs about the Efficient Möbius Transformations

A.1 Proposition 3.1.1

Proof. Let us define LS as the set containing the join of all combinations of iota elements of
S, in addition to

∧

. Formally, we have:

LS =
{

∨

X / X ⊆ ι(S), X 6= ∅
}

∪
{

∧

S
}

.

By construction, we already know that the join of any number (except 0) of elements from LS

is also in LS . So, LS is an upper-subsemilattice of P . In the following, we will prove that it is
also a lower-subsemilattice of P .

But, before anything, notice that
∧

·↑S : P → P is a closure operator, i.e. for any elements
x, y ∈ P , we have:

x ≤
∧

x↑S (5)

x ≤ y ⇒
∧

x↑S ≤
∧

y↑S (6)

∧

(

∧

x↑S
)↑S

=
∧

x↑S (7)

Now, consider the meet of two iota elements ι1 ∧ ι2, where ι1, ι2 ∈ ι(S). By definition, there
are two join-irreducible elements x, y ∈ ∨I(P) such that ι1∧ ι2 =

∧

x↑S ∧
∧

y↑S =
∧

(x↑S ∪y↑S).
Let us note δ =

∧

(x↑S ∪ y↑S). Since S ⊇ x↑S ∪ y↑S , we know that
∧

S ≤ δ. If δ =
∧

S, then
δ ∈ LS . Otherwise, given that P is a lattice, we know that δ is equal to the join of all the
join-irreducible elements of P that are less than δ, i.e.

∨

δ↓
∨I(P) = δ.

For all join-irreducible elements i ∈ δ↓
∨I(P), we have i ≤ δ. By Eq. (6), we also have

∧

i↑S ≤
∧

δ↑S . Moreover, we know that δ↑S ⊇ x↑S ∪ y↑S because δ =
∧

(x↑S ∪ y↑S). This
implies that we have

∧

δ↑S ≤ δ, and so
∧

i↑S ≤ δ.

In addition, by Eq. (5), we get that i ≤
∧

i↑S , which means that, for all join-irreducible
elements i ∈ δ↓

∨I(P), we have i ≤
∧

i↑S ≤ δ. Therefore, combined with the fact that
∨

δ↓
∨I(P) =

δ, we finally obtain that
∨

δ↓ι(S) = δ. In plain English, this means that δ is equal to the join
of all the iota elements of S that are less than δ. So, by definition of LS, we get that δ ∈ LS.
Thus, the meet of two iota elements ι1 ∧ ι2, where ι1, ι2 ∈ ι(S), is in LS.

It only remains to consider the meet of two arbitrary elements of LS , i.e. x ∧ y, where
x, y ∈ LS . Notice that if x =

∧

S or y =
∧

S, then x ∧ y =
∧

S ∈ LS. Otherwise, it can be
decomposed as follows:

x ∧ y =
(

∨

x↓ι(S)
)

∧
(

∨

y↓ι(S)
)

Since P follows the distributive law Eq. (3), we can rewrite this equation as:

x ∧ y =
∨

ι1∈x↓ι(S)

∨

ι2∈y↓ι(S)

(ι1 ∧ ι2)

22

The meet of two iota elements of S being in LS, we get that x∧y is equal to the join of elements
that are all in LS . As we already established that LS is an upper-subsemilattice of P , we get
that the meet of two arbitrary elements of LS is also in LS . Thus, LS is a lower-subsemilattice
of P as well and therefore a sublattice of P .

In addition, notice that for all element s ∈ S and for all i ∈ s↓
∨I(P), we have by construction

i ≤
∧

i↑S ≤ s. Therefore, P being a lattice, we have s =
∨

s↓
∨I(P) =

∨

s↓ι(S), i.e. s ∈ LS.
Besides, if

∧

P ∈ S, then it is equal to
∧

S, which is also in LS by construction. So, S ⊆ LS.
It follows that the meet or join of every nonempty subset of S is in LS , i.e. MS ⊆ LS and
JS ⊆ LS, where MS is the smallest meet-closed subset of P containing S and JS is the smallest
join-closed subset of P containing S. Furthermore, iota elements are defined as the meet of a set
of elements of S, which implies that they are necessarily all contained in MS , i.e. ι(S) ⊆ MS.
This means that we cannot build a smaller sublattice of P containing S. Therefore, LS is the
smallest sublattice of P containing S.

Finally, let us verify that all iota elements are join-irreducible elements of LS . For any
join-irreducible element i ∈ ∨I(P), assume there are two distinct elements x, y ∈ LS such
that x <

∧

i↑S and y <
∧

i↑S . This implies by Eq. (6) and (7) that
∧

x↑S ≤
∧

i↑S and
∧

y↑S ≤
∧

i↑S . Moreover, if i ≤ x and i ≤ y, then by Eq. (6), we get that
∧

i↑S ≤
∧

x↑S and
∧

i↑S ≤
∧

y↑S , which means that x = y =
∧

i↑S. This contradicts the fact that x 6= y. Thus,
we get that i 6≤ x and i 6≤ y. By Lemma 3.1.1, this implies that i 6≤ x ∨ y. Since i ≤

∧

i↑S ,
we have necessarily x ∨ y 6=

∧

i↑S and so x ∨ y <
∧

i↑S . Therefore,
∧

i↑S is a join-irreducible
element of LS , i.e. ι(S) is the set containing only the join-irreducible elements of LS . �

A.2 Theorem 3.2.1

Proof. Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{

(x, y) ∈ L2 / y = x ∨ in+1−k

}

.

By definition, for all k ∈ J1, nK and ∀(x, y) ∈ Ek, we have x, y ∈ L and x ≤ y, i.e. (x, y) ∈ E≤.
Reciprocally, every arrow e ∈ E≤ can be decomposed as a unique path (e1, e2, . . . , en) ∈ A1 ×
A2 × · · · ×An, where Ak = Ek ∪ IP :

Similarly to the FMT, this sequence builds unique paths simply by generating the whole
lattice L step by step with each join-irreducible element of L. However, unlike the FMT, the
join-irreducible elements of L are not necessarily atoms. Doing so, pairs of join-irreducible
elements may be ordered, causing the sequence to skip or double some elements. And even if
all the join-irreducible elements of L are atoms, since L is not necessarily a Boolean lattice, the
join of two atoms may be greater than a third atom (e.g. if L is the diamond lattice), leading
to the same issue. Indeed, it is easy to build a path between two elements x, y of L such that
x ≤ y: At step 1, we take the arrow (x, x ∨ in) if in ≤ y (we take the identity arrow (x, x)
otherwise). At step 2, we take the arrow (p, p ∨ in−1) if in−1 ≤ y, where p = x ∨ in or p = x
depending on whether or not in ≤ y, and so on until we get to y. Obviously, we cannot get to
y if we take an arrow (p, p ∨ i) where i 6≤ y. So, any path from x to y only consists of arrows
obtained with join-irreducible elements that are less than y. But, are they all necessary to reach
y from x? Let ik be a join-irreducible element such that ik ≤ y. This join-irreducible element is
only considered in En+1−k. Suppose we do not take the arrow at step n+ 1− k, i.e. we replace
it by an identity arrow (p, p), where p was reached through a path from x with arrows at steps
1 to n− k. Since L is a distributive lattice, and since its join-irreducible elements are ordered
such that ∀ij, il ∈ ∨I(L), j < l ⇒ ij 6≥ il, we have by Corollary 3.1.1 that for any k ∈ J1, nK,
ik 6≤

∨

∨I(L)k−1. So, if ik 6≤ p, then by Lemma 3.1.1, we also have ik 6≤ p ∨
∨

∨I(L)k−1. Since

23

∨I(L)k−1 contains all join-irreducible elements considered after step n+1− k, this implies that
there is no path from p to an element greater than ik. Yet, ik ≤ y. Thus, if ik 6≤ p, then y can
only be reached from p through a path containing the arrow (p, p ∨ ik). Otherwise, if ik ≤ p,
then p = p∨ ik, which means that only an identity arrow can be taken at step n+1−k anyway.
Either way, there is only one arrow that can be taken at step n+1− k to build a path between
p and y. All join-irreducible elements less than y must be used to build a path from x to y.
Thereby, this path is unique, meaning that Theorem 2.3.1 is satisfied. The sequence (Hk)k∈J1,nK

computes the same zeta transformations as G<. �

A.3 Theorem 3.2.2

Proof. Consider the sequence (Hk)k∈J1,nK, where Hk = (M,Ek) and:

Ek =
{

(x, y) ∈M2 / x =
∧

(y ∨ ik)
↑M and x ≤ y ∨

∨

ι(M)k

}

,

where ι(M)k = {i1, i2, . . . , ik}.

By definition, for all k ∈ J1, nK and ∀(x, y) ∈ Ek, we have x, y ∈M and x ≥ y, i.e. (x, y) ∈ E≥.
Reciprocally, every arrow e ∈ E≥ can be decomposed as a unique path (e1, e2, . . . , en) ∈ A1 ×
A2 × · · · ×An, where Ak = Ek ∪ IP :

Recall the procedure, described in Theorem 3.2.1, that builds unique paths simply by gener-
ating all elements of a finite distributive lattice L ⊇M , based on the join of its join-irreducible
elements, step by step. Here, the idea is to do the same, except that we remove all elements
that are not in M . Doing so, the only difference is that the join y ∨ ik of an element y ∈ M
with a join-irreducible element ik ∈ ι(M) of this hypothetical lattice L may not be in M . How-
ever, thanks to the meet-closure of M , we can “jump the gap” between two elements y and p
of M , should they be separated by elements of L\M . Indeed, for all join-irreducible element
ik ∈ ι(M), if x ≥ y ∨ ik, then since M is meet-closed and x ∈ M , there is a unique element
p ∈M that we call proxy such that p =

∧

(y ∨ ik)
↑M . In complement, the synchronizing condi-

tion p ≤ y ∨
∨

ι(M)k ensures the unicity of this jump, and so the unicity of the path between
any two elements x and y of M .

Finding a path from x to y is easy: take all iota elements less than x, and simply compute
successive joins with them, starting from y. At step n, we take the arrow (

∧

(y ∨ in)
↑M , y) if

in ≤ x, and (y, y) otherwise. At step n− 1, we take the arrow (
∧

(p ∨ in−1)
↑M , p) if in−1 ≤ x,

where p =
∧

(y ∨ in)
↑M or p = y, depending on whether or not in ≤ x. Proceeding as such

until x is reached guarantees the existence of a path, since the synchronizing condition is always
satisfied. Then, the question is: Are there other paths?

Obviously, for some p ∈ M such that x ≥ p, no path from x to y can contain arrows
(
∧

(p∨ i)↑M , p) if i 6≤ x. Thus, it contains only arrows corresponding to joins with iota elements
that are less than x. Next, let us consider some element p ∈ M . If ik−1 ≤ p, then p =
∧

(p ∨ ik−1)
↑M , which means that only an identity arrow (p, p) can be taken at step k − 1.

Otherwise, if ik−1 6≤ p, then the arrow (
∧

(p ∨ ik−1)
↑M , p) can only exist in the sequence if

∧

(p∨ ik−1)
↑M ≤ p∨

∨

ι(M)k−1. We know by Corollary 3.1.1 that ik 6≤
∨

ι(M)k−1. By Lemma
3.1.1, this implies that if ik 6≤ p, then ik 6≤ p∨

∨

ι(M)k−1, which means that ik 6≤
∧

(p∨ik−1)
↑M .

Through the same reasoning, this means that ik 6≤
∧
(
∧

(p ∨ ik−1)
↑M ∨ ik−2

)↑M
. In fact, by

recurrence, we have ik 6≤
∧

(

· · ·
∧
(
∧

(p ∨ ik−1)
↑M ∨ ik−2

)↑M
· · · ∨ i1

)↑M

. Thus, if ik 6≤ p, then

no element greater than ik can be at the tail of a path leading to p through arrows of the
sequence. This means that on a path from x to y, if ik ≤ x, then at step k, either ik ≤ p

24

(i.e. we can only take the identity arrow (p, p)) or ik 6≤ p, which implies that we must take
the arrow (

∧

(p ∨ ik)
↑M , p). This implies that all iota elements less than x must be used in

the joins corresponding to the arrows of the path from x to y. Therefore, the path described
above is unique, which satisfies Theorem 2.3.1. The sequence (Hk)k∈J1,nK computes the same
zeta transformations as G>. �

B Implementation of the Efficient Möbius Transforma-

tions (EMT)

We present in this section evidence-based algorithms for the computation of DST transfor-
mations such as the commonality function q and the implicability function b, as well as their
inversions, namely the mass function m and the conjunctive and disjunctive weight functions w
and v. All these algorithms have better complexities than the FMT, i.e. less than O(|Ω|.2|Ω|).

We implemented these algorithms as a general-purpose C++ evidence-based framework along
with combination rules from DST. We plan to transpose this implementation as a Python
package in the near future to ease its usage. Code and implementation details can be found at
[18].

B.1 Data structure

B.1.1 Overview

The core of our implementation uses the class bitset (a contiguous sequence of bits) from the
standard C++ library, along with a special dynamic binary tree of our design presented in
section B.1.3. This tree allows us to search for supersets or subsets without having to consider
all sets. For simple look-ups, i.e. just to get the value associated with a set, we use Hashmaps,
since they feature constant time complexities for look-up and insertion.

Each representation of evidence (mass function, commonality function, implicability function,
conjunctive weight function, disjunctive weight functions, etc) has its own class. A mass function
is an object containing a tree of values different from 0, i.e. corresponding to focal sets. It
inherits the abstract class mobius transform which simply defines the behavior of storing values
such as focal sets. An object inheriting this abstract class can be created either directly, by
providing a key-value object such as an Hashmap or a tree, or indirectly, through inversion
of a given zeta transform and a given order relation (⊆ or ⊇). It also features methods to
remove negligeable values and renormalize. The conjunctive and disjunctive weight functions
also inherit this abstract class. For these last classes, all set that is not present in their tree is
associated with 1.

Other representations inherit the abstract class zeta transform. This abstract class defines
the behavior of computing focal points from focal sets, given some order relation, and storing
their values. It also keeps its mobius transform object in memory for eventual additional pro-
jections, i.e. to get the value associated with other sets than focal points. An object inheriting
this abstract class can be created either directly, by providing another zeta transform object,
or indirectly, by providing an object inheriting the mobius transform abstract class, an order
relation (⊆ or ⊇) and an operation (+ or ×). For the latter, you may also provide a specific
computation scheme (without structure, as a semilattice or as a lattice). This class also features
methods to find the value associated with a non-focal point. The commonality, implicability

25

∅

{a}

{b} {a, b}

{c} {a, c}{b, c} {a, b, c}

0 1

0 1 0 1

a

b

c

2{a}

2{a,b}

2{a,b,c}

singletons sub-FODs

Figure 11: Illustration depicting our data structure for powerset functions on the frame of discernment Ω =
{a, b, c}. It is a binary tree with values on nodes and leaves. For the sake of clarity, the structure is shown as
if it was static, where all elements from 2Ω are considered special elements. We see clearly that it reproduces
the natural generation of the powerset lattice, encapsulating the powerset of every {ω1, . . . , ωn} in the powerset
of {ω1, . . . , ωn+1}. As a consequence, the search for all singletons and all these sub-FODs can be restrained
respectiveley to the left and right chain of nodes.

{a}

{c} {b, c} {a, b, c}

0

1

0 1

a

b

c

Figure 12: Illustration depicting our data structure for powerset functions on the frame of discernment Ω =
{a, b, c}. Here, special sets are {a}, {c}, {b, c} and {a, b, c}. The blank node is a disjunction node.

and plausibility functions inherit this abstract class.

B.1.2 Frame of discernment

A frame of discernment (FOD), noted Ω, is represented as an object containing an array of
labels and a Hashmap that enables one to find the index associated with a particular label.

B.1.3 Powerset function

Our data structure for powerset functions (i.e. functions that assign values to elements of 2Ω)
is based on the representation of sets as binary strings, as in [9] and [19], and on the binary tree
depicted in Fig. 11. It is a dynamic powerset binary tree, only storing nodes corresponding to
special sets. All other set not present in the tree is assumed to be associated with a fixed value
(i.e. 0 for a mass function, 1 for a weight function). Thus, special sets include focal sets but
may not all be focal sets, as is the case with the lattice support. Each node in the tree contains
a boolean value to indicate whether it has been set to a value or not, an eventual value, pointers
to parent and children, its depth index and a bitset representing an element from 2Ω.

26

∅ {a}{b} {a, b}{c} {a, c}{b, c} {a, b, c}

0 1

0 1 0 1

0 1 0 1 0 1 0 1

a

b

c

2{c}

2{b,c}

2{a,b,c}

Figure 13: Same example as in Fig. 11 with an analogous data structure proposed by Wilson [9]. It is a binary
tree in which values are only assigned to terminal leaves, not intermediate nodes. As in Fig. 11, for the sake of
clarity, the structure is shown as if it was static, where all elements from 2Ω are considered special elements.

The creation of this tree is incremental, starting with the singleton {ω1}, where Ω = [ω1, . . . , ωn],
as root, whether it is a special set or not. The next special set is inserted to its right or left
given that it contains ω1 or not. In fact, for a pair (A, value), where A is a special set, this
procedure will assign value to a node of depth equal to the greatest index in J1, nK corresponding
to an element of A. This node is found following the binary code that represents A to navigate
the tree until the last element index is encountered in A, i.e. until we reach the last bit set to
1 in A. So, for some other special set B, if B contains all elements of A, in addition to other
ones including one of greater maximum index, then B is inserted at the right of A. If B has
all elements of A, in addition to other ones not including one greater than the maximum index
of A, then B is not on the same branch as A and will be assigned to a node of same depth as
A. All supersets of A have a depth equal to or greater than its. Of course, this also means
that all subsets of A have a depth equal to or less than its. Moreover, sets that are at the left
of A are not contained in A and do not contain A, since they have all elements of A but the
one of greatest index, in addition to others of greater index than the maximum index of A.
Furthermore, if B diverges with A before its depth, it may be necessary to create a disjunction.
A disjunction node (i.e. a node that does not hold any value) is inserted to split the branch in
two at the depth equal to the first element index not common to both A and B. The one that
does not contain it will be placed at the left of this disjunction node, and the one that does will
be placed at its right. This behavior is illustrated in Fig. 12.

A similar binary tree for powerset functions has been proposed in [9]. It is illustrated in Fig.
13. While both our binary tree and theirs are dynamic, theirs does not exploit depths and
requires to store 2F − 1 elements, where F is the number of special elements to store. Ours
needs to store at most F + F

2 elements, and only F if every disjunction node between two special
sets is also a special set (or if there is simply no disjunction between special sets, e.g. in the
consonant case). Furthermore, it features interesting properties like the fact that the search for
all singletons and some sub-FODs can be restrained respectiveley to the left and right chains of
nodes. As mentioned above, having depths allows us to exploit the fact that subsets can only
be of lower depth, while supersets can only be of greater depth. This form of powerset binary
tree also speeds up the search for any value since we have to check at most n booleans to find
a value, where n ∈ [1, |Ω|], while the version of [9] always have to check n booleans.

27

Algorithm 1: Computation of the focal points associated with (S,≤), where ≤ ∈ {⊆
,⊇}.

Input: S, ≤
Output: F , FMap

F ← S;
FMap ← Hashmap<bitset, float>;
for i = 1 to |S| do

FMap[S[i]]← 0;

if ≤ = ⊆ then
// | is the bitwise OR operator

· ← |;

else
// & is the bitwise AND operator

· ← &;

for i = 1 to |S| do
for ii = i+ 1 to |F | do

A← F [ii] · S[i];
if A 6∈ FMap.keys() then

append A to F ;
FMap[A]← 0;

Recently, another similar structure to ours has been proposed in [20, 21]. However, their data
structure is not dynamic, i.e. it stores all subsets instead of only special sets. Doing so, they
do not have to store a binary string in each node, but they always have an overall exponential
spatial complexity (and of course, a time complexity at least exponential accordingly).

In the case of an infinite FOD, the idea is to represent it as an ever changing FOD containing
a special element ω∞ as first element that symbolizes the rest of the FOD. As we know that
ω∞ will always be an element of this FOD, having {ω∞} as the root node of its powerset binary
tree reduces the number of operations of reorganization after addition or removal of any FOD
element.

B.2 Procedures computing focal points

In this section, we present algorithms computing all focal points, given focal sets.

B.2.1 General procedure

Here, we apply Property 2 of section 3.4 of [14] to the case where P = 2Ω, leading to Algorithm
1. For a set S ⊆ 2Ω, e.g. supp(f), this algorithm computes its focal points oS, where o ∈ {∧,∨}
with a complexity less than O(|S| . |oS|) in time and O(|oS|) in space.

28

B.2.2 Linear analysis

There are some cases in which a linear pre-analysis of complexity O(|S|) both in time and space
is sufficient to find all focal points. This analysis focuses on the progressive union of all focal sets
in a linear run. Formally, let S\{Ω} = {A1, A2, . . . , AK} and S\{Ω}k = {A1, A2, . . . , Ak}. This
analysis focuses on Ii = Ui−1 ∩ Ai such that i ∈ J2,KK, and Ui−1 =

⋃

S\{Ω}i−1 and I1 = A1.
More precisely, we have

Ii = Ui−1 ∩ Ai

= (
⋃

S\{Ω}i−1) ∩ Ai

=
⋃

F∈{A1,...,Ai−1}
(F ∩ Ai) .

In other words, these intersections Ii contain all focal points based on pairs of focal sets.

In most cases, without testing each pair of focal sets, we cannot know which focal points are
generated based solely on Ii since several combinations of sets in 2Ii can lead to Ii as union.
For example, if Ω = {a, b, c, d} and S\{Ω} = {{a, b}, {a, c}, {b, c, d}}, then U2 = {a, b, c} and
I3 = {a, b, c} ∩ {b, c, d} = {b, c}. Yet, {b, c} is not a focal point. It is the result of the union of
the focal points {a, b} ∩ {b, c, d} = {b} and {a, c} ∩ {b, c, d} = {c}.

However, there are two special cases in which we know that Ii is a focal point: (a) if |Ii| = 0,
then 2Ii = {Ii}, and (b) if |Ii| = 1, then 2Ii = {Ii, ∅}.

So, if ∀i ∈ J2,KK, |Ii| = 0, then ∀F1, F2 ∈ S\{Ω}, F1 ∩ F2 = ∅. This is the quasi-Bayesian
case that has already been treated in Proposition 1 of [22]. By definition of this case, we have
∀F ∈ S\{∅,Ω}, F ↑∧S = {Ω} and the only possible focal point other than the focal sets is ∅,
i.e. ∧S\{∅} = S\{∅}. This means that for any powerset function f such that supp(f) ⊆ S,
the computation of its zeta and Möbius transforms in (2Ω,⊇) is always O(|supp(f)|), where
|supp(f)| ≤ |Ω|+ 2.

In addition, this analysis points to a slightly more general case that contains the quasi-
Bayesian one in which ∀i ∈ J2,KK, |Ii| ≤ 1. Indeed, when |Ii| = 1, we have 2Ii = {Ii, ∅}, which
means that all focal points composing Ii are in {Ii, ∅} and at least one of them is the singleton
Ii, since ∅ is the neutral element for the union of sets. Also, the only new focal point that could
be generated based on the intersection of the singleton Ii with another focal point is ∅.

Algorithm 2 sums up this procedure for ∧S. This linear analysis can be performed for the
dual order ⊆ as well, focusing on S\{∅} = {A1, A2, . . . , AK}, with Ii = Ui−1 ∪ Ai such that
i ∈ J2,KK, and Ui−1 =

⋂

S\{∅}i−1 and I1 = A1. This dual procedure is provided by Algorithm
3.

B.3 Computation of iota elements

Computation of the iota elements (See Proposition 3.1.1) and dual iota elements (See Proposition 3.1.2)
of S are presented respectively in Algorithms 4 and 5.

B.4 Computation of the lattice support

Computation of the upper and lower closure in the lattice support of S (See Proposition 3.1.3)
are presented respectively in Algorithms 6 and 7.

29

Algorithm 2: Linear computation of ∧S based on S.

Input: S\{Ω} = {A1, A2, . . . , AK}
Output: ∧S, is almost bayesian
∧S ← S;
U ← A1;
is almost bayesian ← True;
for i = 2 to K do

I ← U ∩ Ai;
if |I| > 1 then

is almost bayesian← False;
break;

else if |I| = 1 then
if I 6∈ ∧S then

append I to ∧S;

if ∅ 6∈ ∧S then
append ∅ to ∧S;

U ← U ∪ Ai;

Algorithm 3: Linear computation of ∨S based on S.

Input: S\{∅} = {A1, A2, . . . , AK}
Output: ∨S, is almost bayesian
∨S ← S;
U ← A1;
is almost bayesian ← True;
for i = 2 to K do

I ← U ∪ Ai;
if |I| < |Ω| − 1 then

is almost bayesian← False;
break;

else if |I| = |Ω| − 1 then
if I 6∈ ∨S then

append I to ∨S;

if Ω 6∈ ∨S then
append Ω to ∨S;

U ← U ∩ Ai;

30

Algorithm 4: Computation of ι(S).

Input: S
Output: I
foreach ω ∈ Ω do

i← Ω;
foreach F ∈ S, such that F ⊇ {ω} do

included← True;
i← i ∩ F ;
if i = {ω} then

break;

if included then
append i to I;

Algorithm 5: Computation of ι(S).

Input: S
Output: I
foreach ω ∈ Ω do

i← ∅;
foreach F ∈ S, such that F ⊆ Ω\{ω} do

included← True;
i← i ∪ F ;
if i = Ω\{ω} then

break;

if included then
append i to I;

Algorithm 6: Computation of S↑LS based on ι(S) and S.

Input: ι(S), S
Output: L
L← S;
foreach i ∈ ι(S) do

foreach A ∈ L do
B ← A ∪ i;
if B 6∈ L then

append B to L;

B.5 Computation of DST transformations in the consonant case

The consonant case has already been treated in Proposition 2 of [22]. A consonant structure of
evidence is a nested structure where each focal set is contained in every focal set of greater or
equal cardinality. Formally, ∀Fi, Fj ∈ F , if |Fi| ≤ |Fj | then Fi ⊆ Fj . By definition, there can be
only one focal set of each cardinality in J0, |Ω|K, each of them being a subset of every focal set of
greater cardinality. This means that there can be no focal point other than focal sets and that

31

Algorithm 7: Computation of S↓LS based on ι(S) and S.

Input: ι(S), S
Output: L
L← S;
foreach i ∈ ι(S) do

foreach A ∈ L do
B ← A ∩ i;
if B 6∈ L then

append B to L;

each focal point has a proxy focal point. Let us note |F1| < |F2| < · · · < |FK | the focal elements
in S. To check if this structure is consonant, we simply have to check that ∀i ∈ J1,K − 1K,
Fi ⊂ Fi+1. This analysis is performed by Algorithm 8.

Algorithms 9 to 16 present procedures in the consonant case to compute the following trans-
formations:

• m to b,

• b to m,

• m to q,

• q to m,

• b to v,

• v to b,

• q to w,

• w to q.

Their complexity in time is min [O(|Ω|), O (|S|. log (|S|))] (which corresponds to the complexity
of the sorting algorithm used on S). Their space complexity is O(|S|).

Algorithm 8: Consonance check.

Input: S
Output: is consonant
sort S such that S = {F1, F2, . . . , FK}, where |F1| ≤ |F2| ≤ · · · ≤ |FK |;
is consonant← True;
for i ∈ J1,K − 1K do

if Fi 6⊆ Fi+1 then
is consonant← False;
break;

B.6 Computation of DST transformations in a semilattice

Algorithms 17 to 24 present procedures using ∧S or ∨S to compute the following transformations:

• m to b,

• b to m,

• m to q,

• q to m,

• b to v,

• v to b,

• q to w,

• w to q.

They all use the sequences of graphs of Theorem 3.2.2 and Corollary 3.2.7. Their complexity
in time is O(I(S).|oS|.ǫ), where I ∈ {ι, ι} and o ∈ {∧,∨} and where ǫ represents the average
number of operations required to “bridge a gap” (See Theorem 3.2.2). This is always less than
O(|Ω|.2Ω). Their space complexity is O(|oS|).

32

B.7 Computation of DST transformations in a lattice

The general procedure to compute oS is less than O(|S|.|oS|). But, if one wishes to be certain
that our algorithms are at least as efficient as the FMT, i.e. at most O(|Ω|.2|Ω|), then one has
to look at |S|. Indeed, if O(|S|) ≤ O(|Ω|) (e.g. |S| < 10.|Ω|), then O(|S|.|oS|) ≤ O(|Ω|.2|Ω|).
Otherwise, one can rely on the lattice support LS, since ι(S) can be computed in less than
O(|Ω|.|S|) with Algorithm 4 and is then used to compute oS in O(ι(S).|LS|) in Algorithms 6
and 7, where |ι(S)| ≤ |Ω|.

Algorithms 25 to 32 present procedures using LS (more precisely, the upper and lower closures

S↑LS and S↓LS) to compute the following transformations:

• m to b,

• b to m,

• m to q,

• q to m,

• b to v,

• v to b,

• q to w,

• w to q.

They all use the sequences of graphs of Theorem 3.2.1 and its corollaries. Their complexity
in time is less than O(I(S).|LS|), where I ∈ {ι, ι} and o ∈ {∧,∨}, which is always less than
O(|Ω|.2|Ω|). Their space complexity is less than O(|LS|).

B.8 Computation of DST transformations independently from Ω

If supp(f) is almost Bayesian or if |Ω| happens to be considerable to the point that one would
like to compute the previous DST transformations independently from |Ω|, Algorithms 33 to
40 present procedures of time complexities in [O(|oS|), O(|oS|2)]. Their complexity in space is
O(|oS|). They present procedures for the following transformations:

• m to b,

• b to m,

• m to q,

• q to m,

• b to v,

• v to b,

• q to w,

• w to q.

Fig. 14 offers a decision tree to help the reader in choosing the right algorithm for their
case. Of course, this decision tree can be implemented as an algorithm in order to create a
unique general procedure automatically choosing the type of algorithm to use, no matter the
DST transformation.

Algorithm 9: Computation of {b(B) / B ∈ S } based on {m(B) / B ∈ S } in the
consonant case.
Input: {m(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {b(B) / B ∈ S }
if is consonant then

b(F1)← m(F1);
for i = 2 to K do

b(Fi)← m(Fi) + b(Fi−1);

33

Linear analysis
(section B.2.2)

is almost bayesian

is consonant

Use Alg. from
section B.5

O(S) ≤ O(|Ω|)
(e.g. S < 10.|Ω|)

Compute oS
(section B.2.1)

O(|oS|) ≤ O(|Ω|)
(e.g. |oS| < 10.|Ω|)

Use Alg. from
section B.8

Use oS and I(S)
(section B.6)

Use LS and I(S)
(section B.7)

O(|I(S).|LS|)

min [O(|Ω|), O (|S|. log (|S|))]

∈
[

O(S), O(|oS|2)
]

O(|I(S)|.|oS|.ǫ)

no yes

no

no

yes

yes

yes

no

Figure 14: Decision tree for the choice of which algorithms of section B to use. Of course, this decision tree can
be implemented as an algorithm in order to create a unique general procedure automatically choosing the type
of algorithm to use, no matter the DST transformation. Diamond nodes represent Boolean tests. Rectangle
nodes represent the chosen action. Finally, terminal nodes (leaves) indicate the final time complexity of the
whole procedure, including the computation of any DST transformation, where o ∈ {∧,∨} and I ∈ {ι, ι}. In
particular, when is almost Bayesian is true, the complexity of the whole procedure is O(S). Notice that all these
complexities are less than O(|Ω|.2|Ω|).

34

Algorithm 10: Computation of {m(B) / B ∈ S } based on {b(B) / B ∈ S } in the
consonant case.
Input: {b(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {m(B) / B ∈ S }
if is consonant then

m(F1)← b(F1);
for i = 2 to K do

m(Fi)← b(Fi)− b(Fi−1);

Algorithm 11: Computation of {q(B) / B ∈ S } based on {m(B) / B ∈ S } in the
consonant case.
Input: {m(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {q(B) / B ∈ S }
if is consonant then

q(FK)← m(FK);
for i = K − 1 to 1 do

q(Fi)← m(Fi) + q(Fi+1);

Algorithm 12: Computation of {m(B) / B ∈ S } based on {q(B) / B ∈ S } in the
consonant case.
Input: {q(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {m(B) / B ∈ S }
if is consonant then

m(FK)← q(FK);
for i = K − 1 to 1 do

m(Fi)← q(Fi)− q(Fi+1);

Algorithm 13: Computation of {v(B) / B ∈ S } based on {b(B) / B ∈ S } in the
consonant case.
Input: {b(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {v(B) / B ∈ S }
if is consonant then

v(F1)← b(F1)
−1;

for i = 2 to K do
v(Fi)← b(Fi)

−1. b(Fi−1);

35

Algorithm 14: Computation of {b(B) / B ∈ S } based on {v(B) / B ∈ S } in the
consonant case.
Input: {v(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {b(B) / B ∈ S }
if is consonant then

b(F1)← v(F1)
−1;

for i = 2 to K do
b(Fi)← v(Fi)

−1. b(Fi−1);

Algorithm 15: Computation of {w(B) / B ∈ S } based on {q(B) / B ∈ S } in the
consonant case.
Input: {q(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {w(B) / B ∈ S }
if is consonant then

w(FK)← q(FK)−1;
for i = K − 1 to 1 do

w(Fi)← q(Fi)
−1. q(Fi+1);

Algorithm 16: Computation of {q(B) / B ∈ S } based on {w(B) / B ∈ S } in the
consonant case.
Input: {w(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {q(B) / B ∈ S }
if is consonant then

q(FK)← w(FK)−1;
for i = K − 1 to 1 do

q(Fi)← w(Fi)
−1. q(Fi+1);

36

Algorithm 17: Computation of {b(B) / B ∈ ∨S } based on {m(B) / B ∈ ∨S }.

Input: {m(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {b(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

b(A)← m(A);

Ωcum ← Ω;
for k = K to 1 do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B 6= A then

X ← argmax
C∈B↓∨S

(|C|);

if X 6= NULL and X ⊇ A ∩ Ωcum then
b(A)← b(A) + b(X);

Algorithm 18: Computation of {m(B) / B ∈ ∨S } based on {b(B) / B ∈ ∨S }.

Input: {b(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {m(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

m(A)← b(A);

Ωcum ← Ω;
for k = 1 to K do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B 6= A then

X ← argmax
C∈B↓∨S

(|C|);

if X 6= NULL and X ⊇ A ∩ Ωcum then
m(A)← m(A)−m(X);

37

Algorithm 19: Computation of {q(B) / B ∈ ∧S } based on {m(B) / B ∈ ∧S }.

Input: {m(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {q(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

q(A)← m(A);

Ωcum ← ∅;
for k = 1 to K do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B 6= A then

X ← argmin
C∈B↑∧S

(|C|);

if X 6= NULL and X ⊆ A ∪ Ωcum then
q(A)← q(A) + q(X);

Algorithm 20: Computation of {m(B) / B ∈ ∧S } based on {q(B) / B ∈ ∧S }.

Input: {q(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {m(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

m(A)← q(A);

Ωcum ← ∅;
for k = K to 1 do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B 6= A then

X ← argmin
C∈B↑∧S

(|C|);

if X 6= NULL and X ⊆ A ∪ Ωcum then
m(A)← m(A)−m(X);

38

Algorithm 21: Computation of {v(B) / B ∈ ∨S } based on {b(B) / B ∈ ∨S }.

Input: {b(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {v(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

v(A)← b(A)−1;

Ωcum ← Ω;
for k = 1 to K do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B 6= A then

X ← argmax
C∈B↓∨S

(|C|);

if X 6= NULL and X ⊇ A ∩ Ωcum then
v(A)← v(A)/v(X);

Algorithm 22: Computation of {b(B) / B ∈ ∨S } based on {v(B) / B ∈ ∨S }.

Input: {v(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {b(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

b(A)← v(A)−1;

Ωcum ← Ω;
for k = K to 1 do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B 6= A then

X ← argmax
C∈B↓∨S

(|C|);

if X 6= NULL and X ⊇ A ∩ Ωcum then
b(A)← b(A).b(X);

39

Algorithm 23: Computation of {w(B) / B ∈ ∧S } based on {q(B) / B ∈ ∧S }.

Input: {q(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {w(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

w(A)← q(A)−1;

Ωcum ← ∅;
for k = K to 1 do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B 6= A then

X ← argmin
C∈B↑∧S

(|C|);

if X 6= NULL and X ⊆ A ∪ Ωcum then
w(A)← w(A)/w(X);

Algorithm 24: Computation of {q(B) / B ∈ ∧S } based on {w(B) / B ∈ ∧S }.

Input: {w(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {q(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

q(A)← w(A)−1;

Ωcum ← ∅;
for k = 1 to K do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B 6= A then

X ← argmin
C∈B↑∧S

(|C|);

if X 6= NULL and X ⊆ A ∪ Ωcum then
q(A)← q(A).q(X);

40

Algorithm 25: Computation of {b(B) / B ∈ S↓LS } based on {m(B) / B ∈ S↓LS }.

Input: {m(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {b(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↓LS do
b(A)← m(A);

for k = K to 1 do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B 6= A then

b(A)← b(A) + b(B);

Algorithm 26: Computation of {m(B) / B ∈ S↓LS } based on {b(B) / B ∈ S↓LS }.

Input: {b(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {m(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↓LS do
m(A)← b(A);

for k = 1 to K do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B 6= A then

m(A)← m(A)−m(B);

Algorithm 27: Computation of {q(B) / B ∈ S↑LS } based on {m(B) / B ∈ S↑LS }.

Input: {m(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {q(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↑LS do
q(A)← m(A);

for k = 1 to K do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B 6= A then

q(A)← q(A) + q(B);

41

Algorithm 28: Computation of {m(B) / B ∈ S↑LS } based on {q(B) / B ∈ S↑LS }.

Input: {q(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {m(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↑LS do
m(A)← q(A);

for k = K to 1 do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B 6= A then

m(A)← m(A)−m(B);

Algorithm 29: Computation of {v(B) / B ∈ S↓LS } based on {b(B) / B ∈ S↓LS }.

Input: {b(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {v(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↓LS do
v(A)← b(A)−1;

for k = 1 to K do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B 6= A then

v(A)← v(A)/v(B);

Algorithm 30: Computation of {b(B) / B ∈ S↓LS } based on {v(B) / B ∈ S↓LS }.

Input: {v(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {b(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↓LS do
b(A)← v(A)−1;

for k = K to 1 do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B 6= A then

b(A)← b(A).b(B);

42

Algorithm 31: Computation of {w(B) / B ∈ S↑LS } based on {q(B) / B ∈ S↑LS }.

Input: {q(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {w(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↑LS do
w(A)← q(A)−1;

for k = K to 1 do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B 6= A then

w(A)← w(A)/w(B);

Algorithm 32: Computation of {q(B) / B ∈ S↑LS } based on {w(B) / B ∈ S↑LS }.

Input: {w(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {q(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;

foreach A ∈ S↑LS do
q(A)← w(A)−1;

for k = 1 to K do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B 6= A then

q(A)← q(A).q(B);

Algorithm 33: Computation of {b(B) / B ∈ ∨S } based on {m(B) / B ∈ S }
independently from |Ω|.

Input: {m(F) / F ∈ S }
Output: {b(B) / B ∈ ∨S }
foreach B ∈ ∨S do

b(B)← m(B);
foreach F ∈ S / F ⊂ B do

b(B)← b(B) +m(F);

43

Algorithm 34: Computation of {m(B) / B ∈ ∨S} based on {b(B) / B ∈ ∨S }
independently from |Ω|.

Input: {b(B) / B ∈ ∨S }
Output: {m(B) / B ∈ ∨S }
sort ∨S such that ∨S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = 1 to K do

m(Ai)← b(Ai);
foreach B ∈ ∨S / B ⊂ Ai do

m(Ai)← m(Ai)−m(B);

Algorithm 35: Computation of {q(B) / B ∈ ∧S } based on {m(B) / B ∈ S }
independently from |Ω|.

Input: {m(F) / F ∈ S }
Output: {q(B) / B ∈ ∧S }
foreach B ∈ ∧S do

q(B)← m(B);
foreach F ∈ S / F ⊃ B do

q(B)← q(B) +m(F);

Algorithm 36: Computation of {m(B) / B ∈ ∧S} based on {q(B) / B ∈ ∧S }
independently from |Ω|.

Input: {q(B) / B ∈ ∧S }
Output: {m(B) / B ∈ ∧S }
sort ∧S such that ∧S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = K to 1 do

m(Ai)← q(Ai);
foreach B ∈ ∧S / B ⊃ Ai do

m(Ai)← m(Ai)−m(B);

Algorithm 37: Computation of {v(B) / B ∈ ∨S } based on {b(B) / B ∈ ∨S }
independently from |Ω|.

Input: {b(B) / B ∈ ∨S }, ∨S
Output: {w(B) / B ∈ ∨S }
sort ∨S such that ∨S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = 1 to K do

v(Ai)← b(Ai)
−1;

foreach B ∈ ∨S / B ⊂ Ai do
v(Ai)← v(Ai)/v(B);

44

Algorithm 38: Computation of {b(B) / B ∈ ∨S } based on {v(B) / B ∈ ∨S }
independently from |Ω|.

Input: {v(B) / B ∈ ∨S }, ∨S
Output: {b(B) / B ∈ ∨S }
foreach B ∈ ∨S do

b(B)← v(B)−1;
foreach A ∈ ∨S / A ⊂ B do

b(B)← b(B)/v(A);

Algorithm 39: Computation of {w(B) / B ∈ ∧S } based on {q(B) / B ∈ ∧S }
independently from |Ω|.

Input: {q(B) / B ∈ ∧S }, ∧S
Output: {w(B) / B ∈ ∧S }
sort ∧S such that ∧S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = K to 1 do

w(Ai)← q(Ai)
−1;

foreach B ∈ ∧S / B ⊃ Ai do
w(Ai)← w(Ai)/w(B);

Algorithm 40: Computation of {q(B) / B ∈ ∧S } based on {w(B) / B ∈ ∧S }
independently from |Ω|.

Input: {w(B) / B ∈ ∧S }, ∧S
Output: {q(B) / B ∈ ∧S }
foreach B ∈ ∧S do

q(B)← w(B)−1;
foreach A ∈ ∧S / A ⊃ B do

q(B)← q(B)/w(A);

45

References

[1] M. Chaveroche, F. Davoine, and V. Cherfaoui, “Efficient Möbius transformations and their
applications to DS theory,” in International Conference on Scalable Uncertainty Manage-
ment. Springer, 2019, pp. 390–403.

[2] G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, Princeton,
1976.

[3] A. Dempster, “A Generalization of Bayesian Inference,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 30, 1968.

[4] J. A. Barnett, “Computational Methods for a Mathematical Theory of Evidence,” Proc. of
IJCAI, vol. 81, pp. 868–875, 1981.

[5] J. Gordon and E. H. Shortliffe, “A method for managing evidential reasoning in a hierar-
chical hypothesis space,” Artificial intelligence, vol. 26, no. 3, pp. 323–357, 1985.

[6] P. P. Shenoy and G. Shafer, “Propagating Belief Functions with Local Computations,”
IEEE Expert, vol. 1, no. 3, pp. 43–52, 1986.

[7] G. Shafer and R. Logan, “Implementing Dempster’s rule for hierarchical evidence,” Artifi-
cial Intelligence, vol. 33, no. 3, pp. 271–298, 1987.

[8] R. Kennes, “Computational aspects of the Mobius transformation of graphs,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 22, no. 2, pp. 201–223, 1992.

[9] N. Wilson, “Algorithms for Dempster-Shafer Theory,” in Handbook of Defeasible Reasoning
and Uncertainty Management Systems: Algorithms for Uncertainty and Defeasible Reason-
ing. Springer Netherlands, 2000, pp. 421–475.

[10] A. Sarabi-Jamab and B. N. Araabi, “Information-Based Evaluation of Approximation
Methods in Dempster-Shafer Theory,” IJUFKS, vol. 24, no. 04, pp. 503–535, 2016.

[11] M. Chaveroche, F. Davoine, and V. Cherfaoui, “Calcul exact de faible complexité des
décompositions conjonctive et disjonctive pour la fusion d’information,” in Proceedings of
XXVIIth Francophone Symposium on signal and image processing (GRETSI), 2019.

[12] ——, “Efficient exact computation of the conjunctive and disjunctive decompositions of
D-S Theory for information fusion: Translation and extension,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.06329

[13] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, “Trimmed Moebius inversion and
graphs of bounded degree,” Theory of Computing Systems, vol. 47, no. 3, pp. 637–654,
2010.

[14] M. Chaveroche, F. Davoine, and V. Cherfaoui, “Focal points and their implications for
möbius transforms and dempster-shafer theory,” Information Sciences, vol. 555, pp. 215 –
235, 2021.

[15] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, J. Nederlof, and P. Parviainen, “Fast
zeta transforms for lattices with few irreducibles,” ACM TALG, vol. 12, no. 1, p. 4, 2016.

[16] G.-C. Rota, “On the foundations of combinatorial theory I. Theory of Möbius functions,”
Probability theory and related fields, vol. 2, no. 4, pp. 340–368, 1964.

46

https://arxiv.org/abs/2107.06329

[17] P. Kaski, J. Kohonen, and T. Westerbäck, “Fast Möbius inversion in semimodular lattices
and U-labelable posets,” arXiv preprint arXiv:1603.03889, 2016.

[18] M. Chaveroche, “evidence-based-DST,” https://github.com/mchaveroche/evidence-based-DST,
2019.

[19] R. Haenni and N. Lehmann, “Implementing belief function computations,” International
Journal of Intelligent Systems, vol. 18, no. 1, pp. 31–49, 2003.

[20] L. G. Polpitiya, K. Premaratne, M. N. Murthi, and D. Sarkar, “A Framework for efficient
computation of belief theoretic operations,” Proc. of FUSION, pp. 1570–1577, 2016.

[21] ——, “Efficient Computation of Belief Theoretic Conditionals,” Proc. of ISIPTA, pp. 265–
276, 2017.

[22] T. Denoeux, “Conjunctive and disjunctive combination of belief functions induced by
nondistinct bodies of evidence,” Artificial Intelligence, vol. 172, no. 2, pp. 234 – 264, 2008.

47

https://github.com/mchaveroche/evidence-based-DST

	1 Introduction
	2 Background of our method
	2.1 Zeta transform
	2.2 Möbius transform
	2.3 Sequence of graphs and computation of the zeta transform
	2.4 Sequence of graphs and computation of the Möbius transform
	2.4.1 Application to the powerset lattice 2 (FMT)

	2.5 Order theory
	2.5.1 Meet / join
	2.5.2 Lattice / semi-lattice
	2.5.3 Irreducible elements
	2.5.4 Distributive lattice
	2.5.5 Sublattice
	2.5.6 Upset / down set

	2.6 Support elements and focal points
	2.6.1 Support of a function in P
	2.6.2 Focal points

	3 Our Efficient Möbius Transformations
	3.1 Preliminary results
	3.2 Main results

	4 Discussions
	4.1 General usage
	4.2 Dempster-Shafer Theory

	5 Conclusion
	Appendices
	A Proofs about the Efficient Möbius Transformations
	A.1 Proposition 3.1.1
	A.2 Theorem 3.2.1
	A.3 Theorem 3.2.2

	B Implementation of the Efficient Möbius Transformations (EMT)
	B.1 Data structure
	B.1.1 Overview
	B.1.2 Frame of discernment
	B.1.3 Powerset function

	B.2 Procedures computing focal points
	B.2.1 General procedure
	B.2.2 Linear analysis

	B.3 Computation of iota elements
	B.4 Computation of the lattice support
	B.5 Computation of DST transformations in the consonant case
	B.6 Computation of DST transformations in a semilattice
	B.7 Computation of DST transformations in a lattice
	B.8 Computation of DST transformations independently from

