
HAL Id: hal-03429330
https://hal.science/hal-03429330

Submitted on 7 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MYX: Runtime correctness analysis for multi-level
parallel programming paradigms

Joachim Protze, Miwako Tsuji, Christian Terboven, Thomas Dufaud, Hitoshi
Murai, Serge Petiton, Nahid Emad, Matthias Müller, Taisuke Boku

To cite this version:
Joachim Protze, Miwako Tsuji, Christian Terboven, Thomas Dufaud, Hitoshi Murai, et al.. MYX:
Runtime correctness analysis for multi-level parallel programming paradigms. Hans-Joachim Bun-
gartz; Severin Reiz; Benjamin Uekermann; Philipp Neumann; Wolfgang E. Nagel. Software for Ex-
ascale Computing - SPPEXA 2016-2019, 136, Springer International Publishing, pp.545-567, 2020,
Lecture Notes in Computational Science and Engineering, 978-3-030-47956-5 (e-book). �10.1007/978-
3-030-47956-5_18�. �hal-03429330�

https://hal.science/hal-03429330
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MYX: Runtime Correctness Analysis for

Multi-Level Parallel Programming

Paradigms

Joachim Protze, Miwako Tsuji, Christian Terboven, Thomas Dufaud,

Hitoshi Murai, Serge Petiton, Nahid Emad, Matthias S. Müller,

and Taisuke Boku

Abstract In recent years the increasing compute power is mainly provided by

rapidly increasing concurrency. Therefore, the HPC community is looking for new

parallel programming paradigms to make the best use of current and up- coming

machines. Under the Japanese CREST funding program, the post-petascale HPC

project developed the XcalableMP programming paradigm, a pragma-based

partitioned global address space (PGAS) approach. To better exploit the potential

J. Protze ()

RWTH Aachen University, Aachen, Germany

e-mail: protze@itc.rwth-aachen.de

M. Tsuji

RIKEN-CCS, Kobe, Japan

e-mail: miwako.tsuji@riken.jp

C. Terboven

RWTH Aachen University, Aachen, Germany

e-mail: terboven@itc.rwth-aachen.de

T. Dufaud

University of Versailles, Versailles, France

e-mail: thomas.dufaud@uvsq.fr

H. Murai

RIKEN-CCS, Kobe, Japan

e-mail: h-murai@riken.jp

S. Petiton · N. Emad

University of Versailles, Versailles, France

e-mail: serge.petiton@univ-lille.fr; nahid.emad@uvsq.fr

M. S. Müller

RWTH Aachen University, Aachen, Germany

e-mail: mueller@itc.rwth-aachen.de

T. Boku

University of Tsukuba, Tsukuba, Japan

e-mail: taisuke@cs.tsukuba.ac.jp

© The Author(s) 2020

H.-J. Bungartz et al. (eds.), Software for Exascale Computing - SPPEXA

2016–2019, Lecture Notes in Computational Science and Engineering 136,

https://doi.org/10.1007/978-3-030-47956-5_18

545

mailto:protze@itc.rwth-aachen.de
mailto:miwako.tsuji@riken.jp
mailto:terboven@itc.rwth-aachen.de
mailto:thomas.dufaud@uvsq.fr
mailto:h-murai@riken.jp
mailto:serge.petiton@univ-lille.fr
mailto:nahid.emad@uvsq.fr
mailto:mueller@itc.rwth-aachen.de
mailto:taisuke@cs.tsukuba.ac.jp
https://doi.org/10.1007/978-3-030-47956-5_18

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 546

concurrency of large scale systems, the mSPMD model was proposed and imple-

mented with the YvetteML workflow description language. When introducing a new

parallel programming paradigm, good tool support for debugging and performance

analysis is crucial for the productivity and therefore the acceptance in the HPC

community. The subject of the MYX project is to investigate which properties of a

parallel programming language specification may help tools to highlight correctness

and performance issues or help to avoid common issues in parallel programming in

the first place. In this paper, we exercise these investigations on the example of

XcalableMP and YvetteML.

1 Introduction

Exascale systems are expected to consist of tens of thousands of compute nodes,

complemented by specialized accelerators, resulting in system architectures which

are heterogeneous on multiple levels. Such architectures challenge the programmer

to write multi-level parallel programs, which means employing multiple different

paradigms to address each level of parallelism in the system [2]. This ranges from

inter-node parallelism in the form of distributed memory parallelism, over shared-

memory parallelism to exploit multi-core processors and acceleration units, to

vector-style parallelism to target corresponding hardware units. The long-term

challenge is to evolve existing and develop new programming models to better sup-

port the application development on exascale machines. For different domains and

different abstraction levels, various programming models have gained momentum.

While there is ongoing research on how to make the currently predominant HPC

programming model—namely MPI+X—scale well on such systems, the emerging

and more high-level PGAS programming models have shown to deliver high

productivity for users and certain types of codes [10]. The JST-CREST funded post-

petascale HPC project developed the XcalableMP (XMP) programming paradigm,

which combines local and global view PGAS concepts.

The multi-level programming paradigm FP3C [13] as described later in this paper

is a solution for post-petascale systems targeting a huge number of processors and

the attached acceleration devices. Programmers can express high-level parallelism

in the YvetteML (YML) workflow language and employ parallel components

written in SPMD programming paradigms like XMP or MPI. Since YML drives and

executes multiple SPMD tasks at the same time, this is characterized as mSPMD.

The MYX project aims to combine the know-how and lessons learned of different

areas to derive the input necessary to guide the development of future programming

models and software engineering methods. Therefore we are developing correctness

checking techniques for the XMP programming paradigm and make this analysis

also available for the multi-level programming paradigm FP3C.

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 547

The contributions of this work are:

• Identify possible correctness issues of XMP applications,

• define an XMP tools interface to provide runtime state and event information to

runtime tools,

• extend MUST by XMP specific runtime correctness analyses,

• extend YML to soundly support innovative numeric techniques like UCGLE, and

• provide a workflow to analyze YML+XMP applications driven by the FC2P

framework.

The structure of the remaining paper is as follows. In Sect. 2 we introduce the

concept of runtime correctness checking and provide an overview of the general

implementation of MUST. In Sect. 3 we provide a brief overview of the concepts of

the XMP programming paradigm based on an example code. In Sect. 4 we highlight

potential correctness issues in XMP applications and what information is needed

to analyze those errors. To perform such runtime analysis, a tool like MUST needs

state and event information from the XMP runtime system. In Sect. 5 we, therefore,

provide a brief overview of the tools interface that we proposed as an extension of

XMP to the XMP specification consortium. In Sect. 6 we introduce the concepts of

the YML workflow language based on an example code. The unite and conquer

method described in Sect. 7 represents an example use case for an mSPMD program

implemented with YML for the coarse-grained parallelism and XMP for the

implementation of the individual YML tasks. To implement such a method, some

extensions of YML are necessary, we also discuss the implications for correctness.

In Sect. 8 we present the FP2C framework, which provides a YML+XMP

implementation targeted to HPC systems. As MPI is basically the standard for

distributed memory HPC systems and those systems also prefer fixed- width jobs,

i.e., jobs with a fixed number of processes the FP2C framework is implemented

with MPI and dynamically launches MPI processes to fill the requested number of

process slots. Finally, in Sect. 9 we present the challenges and solutions to provide

runtime correctness analysis in MUST for such a dynamic runtime system.

2 Runtime Correctness Analysis for Parallel Programs

Other than serial programs, parallel programs are affected by non-determinism as

an effect of the concurrent execution of multiple threads or processes. For defect

programs, this non-determinism can manifest as data races or deadlocks which are

not known in serial programming. Different approaches to identify and remove the

defects in those programs include static code analysis, model checking, and runtime

or post-mortem analysis. Here we want to discuss runtime correctness analysis,

where the error detection is performed during the execution of the program.

MUST performs runtime correctness checking for MPI parallel applications. The

application developer executes the application under the control of MUST, which

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 548

checks at execution time whether the usage of MPI is valid according to the MPI

specification. For MPI applications we have shown, that the execution overhead

for such runtime analysis is below 20% for the typical use case [8]. Although we

aim at complete coverage of the MPI specification, the focus is currently on

communication functions.

The overhead of runtime correctness analysis depends significantly on the

granularity of the analysis. For MPI, the granularity is quite coarse-grained: there

is typically a lot of calculation between MPI function calls which is not analyzed.

For data race detection in multithreaded applications, the granularity of analysis is

much more fine-grained, as each individual memory access is subject to analysis.

Therefore we see a two to hundredfold runtime overhead for data race analysis.

2.1 Runtime Analysis in MUST

For runtime analysis of distributed memory applications, we distinguish three kinds

of analyses as shown in Fig. 1. Local analysis only needs information from a single

application process and can be performed within the application process to avoid

unnecessary data transfer. In a multi-threaded application, this analysis potentially

needs information from multiple threads. We, therefore, spawn an additional

Fig. 1 MUST applied to a hybrid parallel application with four processes p0 ... p3 and four threads

t0 . . . t3 each. MUST spawns an extra tool thread in each process, which communicates with the

additional tool processes using a tree-based overlay network (TBON). Each analysis is performed

on the first tool layer that has sufficient information to perform the specific analysis. In the typical

setup, communication between MUST processes is performed using MPI. The communication

between the threads uses shared memory communication

p3

p2

p1

p0

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 549

analysis thread to have all necessary information available. In a single-threaded

application or when only the master thread communicates, the local analysis is

performed in the application thread and no additional tool thread is spawned. As an

example, local type matching compares compile-time information about types used

by the application on variable declaration with the runtime information on the

corresponding MPI data types used in communication [9].

Distributed analysis needs information from more than one application process.

For scalability reasons, the analysis is distributed in the analysis tree and performed

in the node where sufficient information is available. As an example, the distributed

deadlock detection analysis runs on the parent node of each application process. It

works with a distributed state transition system, which is fed with send and receive

information for the specific process, as well as completion notification for collective

communication [8].

Centralized analysis needs global information from multiple or all application

processes. For scalability, a tree reduction analysis is applied where possible, so that

the centralized analysis is just the last step in such reduction. An example of such

tree reduction is collective matching analysis, where each tree node compares the

parameters in collective communication for all child nodes and finally passes one

representative to the parent tree node. An example of completely centralized

analysis is graph-based deadlock analysis, which we use to visualize the circular

dependencies causing a deadlock, but also to verify the presence of a deadlock

in the time-out based deadlock detection. This analysis needs information on all

pending communication operations but is only executed when a deadlock is detected

or suspected.

2.2 Underlying Tool Infrastructure of MUST

MUST intercepts events in the execution of a targeted application to apply the

analysis based on the information from these application events. Initially, these

events were MPI function calls, but this is now extended to OpenMP and XMP

events that are delivered to registered callback functions. Within an application

process or thread, the tool can only get active when such an event is delivered.

MUST builds on a tree-based overlay network (TBON) communication subsystem,

as depicted in Fig. 1. Since the tool cannot make any assumptions, when it will

be active on an application process or thread, those nodes communicate only

towards the root of the tree. For use cases as point-to-point matching and distributed

deadlock detection, the classical TBON communication scheme was extended by

horizontal communication within a tool layer. In the current default configuration

of MUST, all processes are started together as MPI processes with a common

MPI_COMM_WORLD. Using the MPI interception layer PMPI, MUST then makes

sure, that only the processes intended to execute the application code will continue

execution. The tool processes remain in a run loop which waits for incoming events

to process. Whenever application code uses MPI_COMM_WORLD in an MPI

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 550

function call, this communicator is replaced by a sub-communicator representing

the application processes. This is transparent for the application, which will never

see the additional analysis processes. For performance reasons, the tree layout—

including the number of layers and placement of analysis functions— is hard-coded

and compiled into a specific instance of the tool. This means that with the current

tool infrastructure a dynamic reconfiguration of the tree is not possible at runtime.

3 XcalableMP

XcalableMP (XMP) is a directive-based language extension for Fortran and C

languages. Like in OpenMP, parallelism is introduced by the use of directives. If all

the directives are ignored by the compiler, a serial program with the same semantics

and results should remain. XMP targets parallel programming for distributed

memory systems, in contrast to OpenMP targeting shared-memory parallelism. The

implementation of XMP in the OmniCompiler is a source to source transformation,

which translates the directives into additional code and calls into the XMP runtime

library. The XMP runtime library communication is mainly performed using MPI.

Therefore, it is in general also possible to use MPI communication in XMP

programs or link a library written with XMP into an MPI application.

Listing 1 shows an example of an XMP distributed parallel source code. This

example assumes the execution with four processes which are assigned to the

nodeset p. In XMP, the distribution of a virtual array onto nodes is defined as a

template. An array is then associated with a template using the align statement.

This defines the distribution of the array over the nodes. Also, the distributed

processing is defined by applying the template to a loop directive. The iterations

of the loop are executed on the different processes according to the distribution

assigned to the template t.

For parallelization of stencil codes on distributed memory systems, there is

typically the need to use a halo as temporary copy for the calculation of the boundary

in the local share. XMP supports such behavior with two directives. The shadow

Listing 1 Global-view programming: distribute data and work to processes (nodes)

#pragma xmp nodes p(4)
#pragma xmp template t(0:11)
#pragma xmp distribute t(block) onto p
int B[12]; // Data Mapping
#pragma xmp align B[i] with t(i)

#pragma xmp loop (i) on t(i)
for(i=0; i<12; i++){ // Work Mapping
B[i]=B[i]*2;

}

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 551

Listing 2 Local-view programming: use coarray notion in C code

int a[10]:[*], b[10], c[10];

#pragma xmp nodes p(4)

int me = xmpc_this_image();

int right = (me + 1) % 4, left = (me + 3) % 4;

for(i=0; i<10; i++){

b[i]=me; // initialize
}

a[:]:[right] = b[:]; // put to right neighbor
xmp_sync_all(NULL); // barrier and sync memory
b[:] = a[:]; // local copy
c[:] = a[:]:[left]; // get from left neighbor

directive allows to specify the width of the halo for a specific distributed array and

the reflect directive is to perform the update of the halo.

The functionality described so far is called as global-view programming in XMP.

In global-view programming, the application programmer does not need to care

where data is located. The array is transparently distributed and accessed. In the

suggested workflow, the work is performed where the data is located.

Furthermore, XMP extends Coarray Fortran and makes this functionality also

available in C. In XMP this is called local-view programming. To access memory

on a different process in local-view programming means to explicitly specify the

target process, that holds the image of interest.

The code example in Listing 2 demonstrates how XMP allows using the concept

of Coarray in C code. The array a is declared as a Coarray of size 10 with an image

on each process. The image selector is separated with a colon in the declaration. A

classical, local array b is initialized in the for loop and then assigned to the Coarray

a. The slice notation b[:] similar to Fortran allows assigning a whole array at

once. The assignment to the remote image right is semantically a put operation.

Therefore, the slice notion is not only a convenience feature but allows to perform

a single memory transfer in comparison to a for loop, which assigns each array

element individually.

4 Correctness Checking for XMP Programs

In this section, we will discuss possible programming errors in XMP applications

and how to detect those errors in the code.

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 552

4.1 Programming Errors in XMP Programs

For global-view programming we identified a range of possible programming errors that

violate restrictions provided for the specific XMP construct. As an example, the

barrier construct has the following restriction:

• The nodeset specified by the on clause must be a subset of the executing nodeset.

The code example in Listing 3 violates this restriction, because the task construct

limits the executing nodeset to process p(0), while the nodeset specified by the on

clause is the complete nodeset p. The code presents also the MPI idiom with the

same semantic. Since only the process with the rank number 0 reaches the barrier,

this will finally result in a deadlock for the MPI code.

Besides violations against restrictions imposed by the XMP specification, we also

identified possible data races for asynchronous communication. The code example

in Listing 4 initializes a distributed array, which is defined with a surrounding halo.

The update of the halo is performed asynchronously, because of the async clause.

Listing 3 Only a subset of processes participates in a collective barrier operation

#pragma xmp task on p(0)
{

printf("Only executed on rank 0");

#pragma xmp barrier on p
}

if(rank == 0)

{

printf("Only executed on rank 0");

MPI_Barrier(MPI_COMM_WORLD);

}

Listing 4 Asynchronously updating the halo can result in a data race

int a[16];

#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t onto p
#pragma xmp align a[i] with t[i]
#pragma xmp shadow a[1]

#pragma xmp loop (i) on t[i]
for(int i=0;i<16;i++)

a[i] = i * 4;

#pragma xmp reflect (a) width (/periodic/1) async(100)
for(int i=0;i<16;i++)

a[i] = a[i-1] + a[i+1];

#pragma xmp wait(100)

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 553

Before the asynchronous execution is finished, the stencil access already reads this

halo value. It is unclear whether the old or the new value is read, but also whether

the old or the new value is sent to the neighbor.

Another possible error arises from the use of the orthogonal clause with the

reflect construct. With this clause, only the orthogonally adjacent halo will be

updated, but not the corners or edges of a multidimensional halo. For most stencil

applications, this is sufficient and saves a lot of communication, because the corner

is located on a different process. If the application nevertheless needs and accesses

the value, it will see an uninitialized value there.

For local-view programming, the main risk is data race in the remote memory

access. This can occur if different processes access the same memory in the same

image without synchronization and one of them modifies the memory. Revisiting

the code example in Listing 2, we would have a data race on a if we remove the

function call to xmp_sync_all. The left neighbor updates the local image a

of a process, which would then not be synchronized with the local access to a and

also not synchronized with the read by the right neighbor.

4.2 Correctness Analysis for XMP Programs

Since XMP programs translate to MPI programs in the implementation provided

by the omni-compiler, we can apply native MPI correctness analysis to XMP

programs. For an application which implements Listing 3, MUST detects a deadlock

between an MPI_Barrier implementing the XMP barrier directive and an

MPI_Barrier inserted by the XMP compiler at the end of the task region. Figure

2 shows the deadlock as reported by MUST. The left diagram depicts the cyclic

dependency detected by MUST, where MPI_Barrier is called with two different

communicators. The MUST report provides further details about these

communicators, which are created by the XMP implementation. The right diagram

provides additional information on the function stack for the two conflicting

MPI_Barrier calls. _XMP_Barrier is the XMP runtime implementation for any

explicit or implicit barrier. The graph also shows that this XMP barrier is called from

two different locations—lines 15 and 23—in the source code, although the original

source code only has 15 lines.

This example emphasizes, that correctness analysis for XMP applications can be

done at the MPI level, but is not too useful for the application developer. In other

previous work [1, 11] we have seen that we can achieve better results concerning

precision and recall if we base the analysis on the semantics of the high-level parallel

programming paradigm. Furthermore, the analysis at a higher abstraction level can

help to provide more meaningful error reports. In the following, we will see how

this applies to XMP.

Analysis in Global-View Programming For the errors, where XMP code might

violate restrictions imposed by the XMP specification, we distinguish between static

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 554

Ranks: 1

Ranks: 1

Fig. 2 Deadlock detected by MUST for Listing 3 when only looking at MPI

and dynamic properties of the code. Most of the restrictions on the standalone

declarative directives like nodes, template, or align have an impact on static

properties of the code. Those restrictions include self-reference in a declaration or

lexical name conflicts of handle names with other symbols in a scoping unit. Such

restrictions should be enforced by the compiler and result in meaningful compile-

time error messages.

Restrictions on dynamic properties depend on the specific value a variable has at

runtime. We distinguish between those that involve only the local process and those

that involve multiple or all processes. For global-view programming the latter is

only the case for collective operations, which require consistent clauses and values

among all contributing processes. As for MPI collective communication functions,

we analyze this as a reduction analysis, where each node in the TBON compares all

incoming events and passes one representative event to the parent node.

All other restrictions on dynamic properties can be analyzed locally. Various

XMP constructs have the same restriction as mentioned in Sect. 4.1 for the barrier

construct. The nodeset used for the construct needs to be a subset of the currently

executing nodeset. The executing nodeset is the set of nodes executing the current

XMP region. The loop construct as well as the task construct allow to restrict the

currently executing nodeset. To perform runtime analysis for such a subset

requirement, an analysis tool needs to understand the concept of nodeset and how

they can be derived. Listing 5 provides some examples for slicing nodesets. The

nodeset p consists of the eight processes executing the application, it is also called

entire nodeset. The nodeset q skips the first node in p and recruits nodes two to five

from p. The nodeset r is a two-dimensional nodeset, which can be used from two-

dimensional domain decomposition. The nodeset s is also two-dimensional, but

uses only every other node in p. Now, checking whether q[2] is subset of s

Ranks: 0

xmpc_main@barrier-dl.c:23 xmpc_main@barrier-dl.c:15

main@barrier-dl.c:9

MPI_Barrier

Ranks: 0

_XMP_barrier@a.out:(0x4071b8)

Ranks: 0-1

comm=B

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 555

Listing 5 Deriving nodesets in XMP

#pragma xmp nodes p(8) // entire nodeset
#pragma xmp nodes q(4)=p(2:5) // slicing nodes 2-5
#pragma xmp nodes r(2,4)=p(1:8) // 2-dimensional nodeset
#pragma xmp nodes s(2,2)=p(1:8:2) // skip every other node

is a non-trivial question. One method to perform the subset analysis is to expand the

given nodeset to the entire nodeset while marking participating nodes. This

expansion is not scalable for large numbers of processes, but for some comparison

of nodesets we cannot avoid the full expansion.

Analysis in Local-View Programming For local-view programming, our main

focus is on data race detection in remote memory access. A data race is commonly

understood as concurrent access of multiple execution entities to the same data in

memory while at least one access is writing to memory. Concurrent access implies

that there is no synchronization between the two memory accesses. We can observe

two ways of access to a coarray in XMP, both can be found in the code example

in Listing 2. The remote image access denoted by a[:]:[target] has write

semantics on the target memory for the put operation and read semantics for the get

operation. The local image access denoted by a[:] or by a[1] has the memory

access semantics as suggested by the base language. In general, an application might

access and modify the local image through a pointer to the local image. Especially,

when the array is passed to a library, as a linear algebra library, the access to the local

image is out of control of the XMP compiler or runtime system. To detect data races

on remote memory access, we need to instrument the local memory accesses as well

as tracking all remote memory accesses. Since the conflicting memory access might

occur in the library, also the library needs to be instrumented for the runtime data

race analysis. This is particularly difficult if the library is only available as a binary.

For data race analysis in MUST, we build on ThreadSanitizer as logging and

analysis backend. Memory access instrumentation is performed by clang or GNU

compiler during compilation. In addition, we provide high-level synchronization,

memory access, and concurrency semantics into the ThreadSanitizer analysis.

Therefore we extend the annotation interface used by ThreadSanitizer and Valgrind

to feed all necessary information into the analysis. An access to the local image

by a remote process should be seen concurrent to any previous access by a

different process, that is not synchronized with the current access. Synchronization

in XMP is possible with global synchronization, e.g., using the sync all directive

respectively an xmp_sync_all() call, or point to point synchronization, e.g.,

using the sync image directive respectively an xmp_sync_image() function

call.

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 556

5 Tools Interface for XcalableMP

To provide XMP specific runtime information to analysis tools, we designed and

implemented the XMP tools interface—XMPT. The interface builds on experiences

from the OpenMP tools interface. As an example, the specific environmental

variable XMP_TOOL_LIBRARIES allows loading an XMP specific tool, when the

XMPT interface is available during application execution. This imitates the OMPT

specific environmental variable OMP_TOOL_LIBRARIES and allows building

portable tools, which dynamically adapt to the parallel programming paradigm used

by a program.

During startup of an XMP application, the XMP runtime tries to find an XMPT

tool, which is identified by the exported function xmpt_initialize. Other than

in OMPT we don’t need a three-way handshake for tool initialization, as the XMP

runtime doesn’t need to adopt the own initialization in case an XMPT tool is present.

Once a tool is found, the XMP runtime calls this function and the tool has the chance

to register callbacks for certain XMP events. The current implementation of XMPT

provides callbacks for all global-view directives and constructs as well as for coarray

memory access and synchronization in local-view programming.

The data mapping identifiers like node-names and template-names are identified

by their opaque XMP descriptor handles. To recognize such a descriptor and store

information on the descriptor, the XMPT interface allows binding tool data to each

XMP descriptor.

The OpenMP specification restricts the OMPT tool to only use OMPT runtime

functions, but not to call OpenMP runtime routines like omp_get_num_threads,

nor to use OpenMP pragmas to implement OMPT callback functions or signal

handlers. Without this restriction, the OMPT tool might cause a deadlock in the

execution of an OpenMP application, because the OpenMP runtime could hold a

lock that it tries to acquire again when the OpenMP runtime function is called. The

main difference in this particular aspect is that XMP is initialized explicitly at an

early point in the execution by calling xmp_init, while OpenMP implementations tend

to lazy initialize when the first OpenMP construct or runtime routine is called. For

thread-safe initialization, the OpenMP runtime might acquire an initialization lock

at any entry to the runtime.

For XMPT there is no restriction on the use of XMP runtime functions so that an

XMPT tool can use the variety of inquiry functions to collect all necessary

information about the opaque XMP descriptor handles. This allows to query

information on XMP specific entities on demand and avoids to transport all available

information as arguments to the callbacks. This makes the interface both more

compact and more efficient.

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 557

= +

6 YvetteML

YvetteML (YML) is a workflow description language for technical or scientific

calculation that describes dependencies among tasks.

YML interprets low source code and dependencies between tasks to generate the

indicated DAG and execute the task according to the DAG. YML of the original

casing is, P2P tasks that are written sequentially in the language it was assumed to

run in an environment or a small cluster, of tasks written in a parallel language. By

using YML it became possible to run the application on a large scale system. We

also developed middleware for porting. The middleware used to implement the

mSPMD programming model is OmniRPC-MPI [13]. It provides Remote Procedure

Call (RPC) based on MPI and is an extension of the library OmniRPC. Our

OmniRPC-MPI middleware is a workflow scheduler to control remote programs

which are created for task execution by use of MPI_Comm_spawn on request. Control

and data flow is implemented using MPI functions such as and MPI_Send and

MPI_Recv.

Listing 6 shows a simple example for a YML program. It invokes a function

add which takes two double arguments and on return provides the sum in the first

argument. The execution starts sequentially, at first result 1 2 is calculated. Then

execution continues parallel with three concurrent code blocks, separated by

//. The first code block is just to satisfy the dependency on ping[0], the other two

concurrent code blocks execute five parallel iterations each. We can interpret each

of the iterations as a task, the wait and notify statements express dependencies.

The YML interpreter generates a DAG as depicted in Fig. 3, where each parallel block

and each parallel loop iteration becomes a task. Each of the leaf tasks executes

Listing 6 YvetteML example

compute add(result, 1.0, 2.0); # result <- 1 + 2
par

notify(ping[0]);

//

par(i:=0;4)

do

wait(ping[i]);

compute add(result, result, result);

notify(pong[i]);

enddo

//

par(i:=0;4)

do

wait(pong[i]);

compute add(result, result, result);

notify(ping[i+1]);

enddo

endpar

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 558

tasktree notify-wait

Fig. 3 Graph of tasks as defined by the YvetteML code in Listing 6. The task nodes representing

the inner task executing the compute add are represented by the result of their computation

one of the add functions and the vertices represent the dependencies expressed by

the notify and wait statements. Due to the alternating dependencies between the

tasks, this program at the end executes sequentially.

7 Unite and Conquer Approach Using YvetteML

The Unite and Conquer approach was introduced by Emad et al. [6]. The principle of

this approach is to make the collaboration of several iterative methods to accelerate

the convergence of one of them. This approach can be seen as a model for the design

of numerical methods by combining different computational components to work

for the same objective, with asynchronous communication among them. Unite

implies the combination of different computational components, and conquer

represents different components work together to solve one problem. Different

independent components with asynchronous communications can be deployed on

various platforms such as P2P, cloud and supercomputer systems. The idea of

mixing asynchronously restarted Krylov methods using distributed and parallel

computing was initially introduced by Guy Edjlali and Serge Petiton [4, 5]. They

experimented those hybrid Krylov methods asynchronously on networks of

heterogeneous parallel computers (e.g., using two Connection Machines, a CM5 and

a CM200 and a network of workstations).

 12

24 48

96 192

384 768

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 559

Dividing iterative methods into components coupled with asynchronous com-

munication, as suggested in the Unite and Conquer approach, introduces both

numerical and parallel benefits for the components.

Numerical benefits: for conventional deflation and polynomial preconditioned

methods, the information used is obtained from previous Arnoldi reduction, and

it might be difficult to explore larger subspace. Therefore, the convergence might

be slowed down. For the methods implemented with the proposed paradigm, the

solving and preconditioning parts are independent. This information applied to the

deflation or polynomial preconditioned Solver Components can be different from

their own Arnoldi reduction, which improves the flexibility of the algorithms, e.g.,

much more eigenvalues and larger searching space for the deflation. Hence the

limitation of spectral information caused by restarting might be broken down, and

faster convergence might be obtained. The numerical benefits for linear and

eigensolver are already respectively discussed in [7, 14].

Parallel benefits: parallel performance of iterative methods can be improved by

the asynchronous promotion and reduction of synchronizations and global commu-

nications, especially the synchronization points for the preconditioning. Separating

components improves also the fault tolerance and reusability of algorithms.

7.1 UCGLE

UCGLE (Unite and Conquer GMRES/GMRES-LS method) is a linear equation

solver implementation based on the Unite and Conquer approach. It composes

mainly three computing components: ERAM, GMRES (Generalized Minimal

Residual method), and LS (Least-Squares polynomial method). The GMRES

component is used to solve the systems, the LS and ERAM components work as the

preconditioning part. The asynchronous communication of this hybrid method

among three components reduces the number of overall synchronization points and

minimizes global communication. The work-flow of UCGLE with three computing

components: The ERAM component computes the desired number of dominant

eigenvalues, and then sends them to LS component; the LS component uses these

received eigenvalues to generate a new residual vector, and sends it to the GMRES

component; the GMRES component uses this residual as a new restarted initial

vector for solving the non-Hermitian linear systems. Figure 4 shows the better

convergence acceleration of UCGLE compared with preconditioned GMRES. The

convergence of UCGLE is accelerated by the LS polynomial preconditioning.

For the use-case of multiple right-hand sides, Wu and Petiton extend this method

to m-UCGLE [14]. The m-UCGLE approach furthermore splits the problem into

blocks, which are solved individually while feeding their results asynchronously

into the computation of the other blocks. This loosely synchronized blocking

approach is supported by the general asynchronous feedback loop in the UCGLE

approach. Overall this method shows better scalability than other approaches while

still profiting from the improved convergence behavior of the UCGLE method.

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 560

1

1e-2

1e-4

1e-6

1e-8

1e-10
0 280 560 840 1120 1400 1680 1960 2240 2520 2800 3080

Iteration Steps

Fig. 4 Convergence comparison of UCGLE method vs. classic GMRES

7.2 Extending YvetteML to Support m-UCGLE

With the current version of YML, the implementation of an m-UCGLE method is

not possible due to two limitations: There is no mean for asynchronous communica-

tion in YML as needed for the asynchronous feedback loop. YML also provides no

way to break early from a YML loop. The latter would be needed to stop iteration

at a convergence condition. To make the control flow depending on asynchronous

communication, it is necessary to break at multiple levels. Therefore, we propose

different kinds of exiting a parallel branch in YML:

1. the application may exit the parallel branch if all the running tasks are completed,

e.g., if there are several BGMRES components in parallel to solve linear systems,

this parallel section should be exit if all the BGMRES component achieve the

convergence;

2. the application may exit the parallel branch if only one task among all is

completed, e.g., in the MERAM algorithm, several ERAM components are

executed in parallel to approximate the eigenvalues of a matrix, if one of these

components approximates enough eigenvalues, the whole parallel section should

be exited;

3. the application may exit the parallel branch if only several tasks among all are

completed;

4. for the application with multi-level parallelism, we may decide to exit several

levels of parallel branches; and

5. the application may exit with saving selected data into the local filesystems,

which will improve its fault tolerance and reusability, e.g., lsparams generated by

R
e
si
d
u
a
l

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 561

the B-LSP Component could be saved into local, which will be used for solving

the linear systems in future.

By use of the different ways to exit a parallel branch, a unite and conquer algorithm

could be implemented with YML. The latter point would even introduce resilience

to the YML implementation allowing efficient checkpoint and restart to be defined

in the YML description.

8 FP2C

FP2C (Framework for Post-Petascale Computing) is a development and execution

environment which supports multi-program methodologies across multiple archi-

tectural levels as suggested by Dufaud et al. [3]. FP2C integrates XMP to describe

tasks into the workflow environment YML. Therefore FP2C is an implementation of

YML to be executed on classical HPC clusters. FP2C is composed of three layers:

1. workflow programming,

2. parallel and distributed programming, and

3. shared-memory parallel programming/accelerator.

The tasks are expected to be executed on sub-clusters or groups of nodes which are

tightly connected. These tasks would be hybrid programs with distributed and

shared programming models. The workflow scheduler among the sub-clusters or

groups invokes and manages the tasks.

The YML backend implementation used for this configuration is OmniRPC-MPI to

allow dynamic creation and control of MPI processes needed to executed the YML

tasks on an HPC cluster. OmniRPC-MPI is an extension of OmniRPC [12], which

supports remote procedure call (RPC) in a grid environment. When the OmniRPC-

MPI receives requests to invoke remote programs or to execute tasks on the remote

programs, then it handles the requests by calling MPI function such as

MPI_Comm_spawn to create new processes for the task or MPI_Send to notify

existing, available processes about the new task.

Figure 5 depicts the execution of a workflow with FP2C. Initially, mpirun only

starts the process for the YML scheduler. The scheduler loads the task graph and

starts executing the YML program by creating and scheduling YML tasks. Using

MPI_Comm_spawn, the scheduler creates remote programs with the required

number of processes to execute a specific task. To avoid the overhead of process

startup and shutdown, the scheduler can reuse an existing group of processes to

schedule another task, when the previous task is finished like depicted for task2 and

task3. By the use of MPI point-to-point communication, the remote program is

informed about the next task to execute and also communicates back about the

completion of a task. If some YML tasks need a different number of parallel

processes than the previously finished task, FP2C will terminate the remote program

to spawn new remote programs as depicted for task1, which is replaced by smaller

remote programs to execute task5 and task4.

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 562

node0 node1 node2 node3 node4

invocation communication

Fig. 5 Execution of an mSPMD application described in the YML control and data flow language

in the FP2C implementation

9 Correctness Checking for YML

Correctness checking touches YML at multiple levels:

• The language Yvette, that expresses the graph semantics within YML, is quite

similar to the hardware description language Esterel and suffers from similar

correctness issues. In this section, we will especially cover potential deadlocks

and data races as well as some semantic issues that come with this language.

• The runtime system implementation of YML could also be subject of correctness

analysis. The challenge is then to distinguish the behavior of the YML runtime

system from application behavior to minimize the analysis overhead.

• Finally, since YML expresses a workflow and runs various modules, it can be of

interest to analyze the individual modules separately for correctness.

9.1 Programming Errors in YML Description

With the current specification of YML, the graph defined by a YML graph descrip-

tion can be statically built and therefore also statically analyzed. We identified

various possible error patterns in graph descriptions. Possible errors include the use

of undefined variables, type miss-match for a variable, but also deadlock due to wait

conditions which never receive a signal. Due to the static and self-contained nature

of the graph description language, even the possible deadlocks can be identified

y
m

l s
c
h

e
d

u
le

r &

O
m

n
iR

P
C

-M
P

I lib
ra

ry

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 563

statically with data flow analysis. The analysis for those programming errors should be

integrated into the YML compiler.

9.2 Challenges of Analyzing the YML Runtime System

Analyzing the runtime system of YML has two mayor challenges for a runtime

analysis tool like MUST, which is developed to support the analysis of common

HPC applications. The first challenge is to understand the difference between code

that represents the YML runtime system and code that belongs to the application

code, in this context the YML task code. The bigger challenge is the dynamic MPI

characteristic of the YML runtime system, which dynamically creates processes

using MPI_Comm_spawn, that are then integrated into the execution and should

also be supervised by the analysis tool. The analysis tool would also need to

understand the resulting new MPI communicators as well as the communication

patterns with those spawned processes.

Supporting an application that exposes such dynamic behavior is currently not

supported by MUST and the underlying TBON communication layer. The tool

would dynamically need to decide about additionally needed analysis processes to

extend the TBON. Creating a TBON infrastructure which supports such dynamic

application behavior might be subject of a future project.

9.3 Correctness Checking Integrated into FP2C

Since each YML task, invoked by the YML runtime, can be a complete parallel

program, such task can have any issue which can also be found in parallel programs.

Therefore a developer might want to analyze individual tasks for parallel correctness

to identify issues like deadlocks or data race within a task. We introduce a new

option for the definition of compute functions into the YML description, which

allows applying an analysis tool like MUST to specific YML tasks.

For those selected tasks, the YML scheduler needs to launch additional processes

to execute the distributed and centralized analysis of MUST as depicted for remote

program2 in Fig. 6. In this specific example, MUST executes both kinds of analysis

in a single process. Before launching the FP2C application, the MUST infrastructure

needs to be prepared for the execution with each task configuration, which would

be done by the mustrun execution wrapper for a normal MPI or XMP application.

For the execution of a YML task with applied MUST analysis, the remote program

controlled by FP2C then needs to select the appropriate prepared configuration of

MUST, which is typically done by exporting some environmental variables.

Since we specifically want to analyze the YML task, but not the YML infras-

tructure, the MPI functions called to implement the FP2C command and control

workflow should be ignored by the analysis tool. Some of those MPI functions are

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 564

node0 node1 node2 node3 node4 node5

invocation communication MUST communication

Fig. 6 Integration of MUST into FP2C: the YML scheduler launches selected YML tasks under

the control of MUST runtime correctness checking. MUST analyses are applied only to parallel

programming constructs used in the task code, but not to MPI communication utilized by the FP2C

command and control workflow

used to communicate with the YML scheduler, which is outside of the process

controlled by MUST. Such communication to the outside would confuse some

analysis performed by MUST. We can avoid analysis of such functions by directly

calling into the PMPI interface for functions that implement FP2C functionality.

Circumventing MUST analysis for all FP2C-owned MPI communication can result

in a deadlock: As Fig. 5 shows, FP2C will execute a barrier at the end of task execution

to ensure that all processes finished the execution of the task. For native FP2C

execution, it is valid to use MPI_COMM_WORLD for this barrier. The MUST analysis

process does not know about the barrier and the execution will therefore stall. With

FP2C using PMPI calls, MUST will not be able to replace MPI_COMM_WORLD by

a communicator representing the application processes as it was described in Sect.

2.2. The application processes cannot pass the barrier and the MUST process waits

for new messages from the application processes. We could fix this issue by deriving

fp2c_world from MPI_COMM_WORLD using MPI_Comm_dup as shown in Fig.

6. The fp2c_world communicator can then safely be used by FP2C in PMPI

communication calls which are limited to the application processes.

Another challenge when applying MUST to YML tasks is to deal with

the output files of MUST. By default, MUST assumes that it is applied to a

single MPI application and will write an output file to the current working directory.

With FP2C we apply MUST to various YML tasks. To enable the application

developer to associate the error report to a specific YML task, we should write the

MUST output to a different file per task. The MPI specification defines int

MPI_Pcontrol(const int level, ...) to allow flexible interaction

between MPI application and PMPI tool. It is the responsibility

 PMPI Comm spawn

MPI Comm dup(MPI COMM WORLD,&fp2c world)

PMPI Barrier(fp2c world)

distributed

and centralized

analysis,

y
m

l s
c
h

e
d

u
le

r &

O
m

n
iR

P
C

-M
P

I lib
ra

ry

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 565

of the tool to interpret and define the arguments passed to this variadic function.

For our use case, we defined usage with level=8192 and signature int

MPI_Pcontrol(const int level, const char* filename) to

indicate that the analysis results of subsequent application events should be written

to the new file name. We also want to make sure that distributed analysis for

application events before the pcontrol call write the report into the old file. Therefore

we require this pcontrol function call to be collective on the whole application.

Currently, we do not require to finish all MPI communication at this point. In the

future, we might add some additional pcontrol commands to express certain runtime

assertions. Such assertions might include that no outstanding messages are expected

or all MPI handles should be released at a certain point.

10 Conclusion

In this paper, we discussed how we can apply runtime correctness checking to

emerging multi-level parallel programming languages which try to encounter the

challenges of multi-level concurrency of exascale systems. Specifically, we looked

into possible correctness issues in XMP applications, which represent the field of

PGAS languages. We described how we integrated runtime correctness analysis for

XMP applications into the runtime correctness checking tool MUST and therefore

specified the new tools interface XMPT for XcalableMP. The workflow description

language YML allows to introduce another level of high-level concurrency and

therefore better exploit the massive available concurrency of exascale systems. As

an example application for such a high-level concurrency workflow, we introduced

the unite and conquer method UCGLE. This method improves the convergence

behavior of certain solvers of linear equation systems by asynchronously exchang-

ing intermediate results of preconditioner and solver. We introduced FP2C as an

implementation of YML targeting HPC systems. We showed how we could integrate

MUST runtime analysis to be applied to certain tasks scheduled by the FP2C

runtime system and discussed solutions for challenges on the way to a successful

workflow.

Acknowledgments The research reported here received funding by the German Research Foun-

dation (DFG) through the priority program 1648 SPPEXA, by the Agence nationale de la recherche

(ANR) and by the Japan Science and Technology Agency (JST). The authors would like to thank

them for making this research possible.

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 566

References

1. Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Ahn, D.H., Laguna, I., Schulz, M., Lee, G.L.,

Protze, J., Müller, M.S.: ARCHER: Effectively spotting data races in large openmp

applications. In: 2016 IEEE International Parallel and Distributed Processing Symposium,

IPDPS 2016, Chicago, May 23–27, 2016, pp. 53–62 (2016)

2. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai, D., Berthou,

J.Y., Boku, T., Braunschweig, B., Cappello, F., Chapman, B., Chi, X., Choudhary, A., Dosanjh,

S., Dunning, T., Fiore, S., Geist, A., Gropp, B., Harrison, R., Hereld, M., Heroux, M., Hoisie,

A., Hotta, K., Jin, Z., Ishikawa, Y., Johnson, F., Kale, S., Kenway, R., Keyes, D., Kramer, B.,

Labarta, J., Lichnewsky, A., Lippert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P.,

Michielse, P., Mohr, B., Mueller, M.S., Nagel, W.E., Nakashima, H., Papka, M.E., Reed, D.,

Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling, T., Stevens, R., Streitz, F., Sugar,

B., Sumimoto, S., Tang, W., Taylor, J., Thakur, R., Trefethen, A., Valero, M., Van Der Steen,

A., Vetter, J., Williams, P., Wisniewski, R., Yelick, K.: The international exascale software

project roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011). https://doi.org/10.

1177/1094342010391989

3. Dufaud, T., Tsuji, M., Sato, M.: Design of data management for multi SPMD workflow

programming model. In: Proceedings of the 4th International Workshop on Extreme Scale

Programming Models and Middleware, ESPM2@SC 2018, Dallas, November 11–16, 2018,

pp. 9–18 (2018)

4. Edjlali, G., Emad, N., Petiton, S.: Hybrid methods on network of heterogeneous parallel

computers. In: Proceedings of the 14th IMACS World Congress, Atlanta (1994)

5. Edjlali, G., Petiton, S., Emad, N.: Interleaved parallel hybrid Arnoldi method for a parallel

machine and a network of workstations. In: Conference on Information, Systems, Analysis and

Synthesis (ISAS’96), pp. 22–26 (1996)

6. Emad, N., Petiton, S.G.: Unite and conquer approach for high scale numerical computing. J.

Comput. Sci. 14, 5–14 (2016). https://doi.org/10.1016/j.jocs.2016.01.007. https://doi.org/10.

1016/j.jocs.2016.01.007

7. Emad, N., Petiton, S., Edjlali, G.: Multiple explicitly restarted arnoldi method for solving large

eigenproblems. SIAM J. Sci. Comput. 27(1), 253–277 (2005)

8. Hilbrich, T., de Supinski, B.R., Nagel, W.E., Protze, J., Baier, C., Müller, M.S.: Distributed

wait state tracking for runtime MPI deadlock detection. In: International Conference for High

Performance Computing, Networking, Storage and Analysis, SC’13, Denver, November 17–

21, 2013, pp. 16:1–16:12 (2013). https://doi.org/10.1145/2503210.2503237. https://doi.org/10.

1145/2503210.2503237

9. Hück, A., Lehr, J., Kreutzer, S., Protze, J., Terboven, C., Bischof, C.H., Müller, M.S.:

Compiler-aided type tracking for correctness checking of MPI applications. In: 2nd

IEEE/ACM International Workshop on Software Correctness for HPC Applications, COR-

RECTNESS@SC 2018, Dallas, November 12, 2018, pp. 51–58 (2018). https://doi.org/10.

1109/Correctness.2018.00011. https://doi.org/10.1109/Correctness.2018.00011

10. Nakao, M., Lee, J., Boku, T., Sato, M.: Productivity and performance of global-view pro-

gramming with xcalablemp pgas language. In: Proceedings of 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, CCGrid, pp. 402–409 (2012). https://doi.

org/10.1109/CCGrid.2012.118

11. Protze, J., Schulz, M., Ahn, D.H., Müller, M.S.: Thread-local concurrency: a technique to

handle data race detection at programming model abstraction. In: Proceedings of the 27th

International Symposium on High-Performance Parallel and Distributed Computing, HPDC

2018, Tempe, June 11–15, 2018, pp. 144–155 (2018)

12. Sato, M., Hirano, M., Tanaka, Y., Sekiguchi, S.: Omnirpc: A grid RPC facility for cluster and

global computing in openmp. In: OpenMP Shared Memory Parallel Programming,

International Workshop on OpenMP Applications and Tools, WOMPAT 2001, West Lafayette,

July 30–31, 2001 Proceedings, pp. 130–136 (2001)

https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1016/j.jocs.2016.01.007
https://doi.org/10.1016/j.jocs.2016.01.007
https://doi.org/10.1016/j.jocs.2016.01.007
https://doi.org/10.1145/2503210.2503237
https://doi.org/10.1145/2503210.2503237
https://doi.org/10.1145/2503210.2503237
https://doi.org/10.1109/Correctness.2018.00011
https://doi.org/10.1109/Correctness.2018.00011
https://doi.org/10.1109/Correctness.2018.00011
https://doi.org/10.1109/CCGrid.2012.118
https://doi.org/10.1109/CCGrid.2012.118

Runtime Correctness Analysis for Multi-Level Parallel Programming Paradigms 567

13. Tsuji, M., Sato, M., Hugues, M., Petiton, S.: Multiple-SPMD programming environment based on pgas and workflow toward

post-petascale computing. In: Proceedings of 42nd International Conference on Parallel Processing, ICPP, pp. 480–485. IEEE,

Piscataway (2013). https://doi. org/10.1109/ICPP.2013.58

14. Wu, X., Petiton, S.G.: A distributed and parallel asynchronous unite and conquer method to solve large scale non-hermitian

linear systems. In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPC

Asia 2018, Chiyoda, January 28–31, 2018, pp. 36–46. ACM, New York (2018). https://doi.org/10.1145/3149457.3154481

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

https://doi.org/10.1109/ICPP.2013.58
https://doi.org/10.1109/ICPP.2013.58
https://doi.org/10.1145/3149457.3154481
http://creativecommons.org/licenses/by/4.0/

