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Multi-SPMD Programming Model
with YML and XcalableMP

Miwako Tsuji, Hitoshi Murai, Taisuke Boku, Mitsuhisa Sato,
Serge G. Petiton, Nahid Emad, Thomas Dufaud, Joachim Protze,
Christian Terboven, and Matthias S. Müller

Abstract This chapter describes a multi-SPMD (mSPMD) programming model
and a set of software and libraries to support the mSPMD programming model. The
mSPMD programming model has been proposed to realize scalable applications on
huge and hierarchical systems. It has been evident that simple SPMD programs
such as MPI, XMP, or hybrid programs such as OpenMP/MPI cannot exploit
the postpeta- or exascale systems efficiently due to the increasing complexity of
applications and systems. The mSPMD programming model has been designed to
adopt multiple programming models across different architecture levels. Instead of
invoking a single parallel program on millions of processor cores, multiple SPMD
programs of moderate sizes can be worked together in the mSPMD programming
model. As components of the mSPMD programming model, XMP has been sup-
ported. Fault-tolerance features, correctness checks, and some numerical libraries’
implementations in the mSPMD programming model have been presented.
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1 Introduction

From petascale, post-petascale to exascale, supercomputers will be larger, denser,
and more complicated. A huge number of cores will be arranged in a multi-
level hierarchy, such as a group of cores in a node, a group or cluster of nodes
tightly linked, and a cluster of clusters. Because it is not easy to fully utilize such
systems for current programming models such as simple SPMD, OpenMP+MPI,
it is essential to adopt multiple programming models across different architecture
levels. In order to exploit the performance of such systems, we have proposed a
new programming model called the multi-SPMD (mSPMD) programming model,
where several MPI programs and OpenMP+MPI programswork together conducted
by a workflow programming[14]. To develop each of the mSPMD components in
a workflow, XcalableMP (XMP) has been supported. In this chapter, we introduce
the mSPMD programming model, and a development and execution environment
implemented to realize the mSPMD programming model.

2 Background: International Collaborations
for the Post-Petascale and Exascale Computing

There were two important international collaborative projects to plan, implement,
and evaluate the multi-SPMD programming model. In this section, we describe the
projects briefly.

Firstly, Framework and Programming for Post-Petascale Computing (FP3C)
project conducted during September 2010–March 2013 aimed to exploit efficient
programming and method for future supercomputers. The FP3C project was a
French-Japan research project, where more than ten Universities and research insti-
tutes participated. Featured topics of the project were new programming paradigms,
languages, methods, and systems for the existing and future supercomputers. The
mSPMD programming had been proposed in the FP3C project. Many important
features in the mSPMD programming model had been implemented during the
project period.

The priority program “Software for Exascale Computing” (SPPEXA) had been
conducted to address fundamental research on the various aspects of HPC soft-
ware during 2013–2015 (phase-I) and 2016–2018 (phase-II). The project “MUST
Correctness Checking for YML and XMP Programs (MYX)” had been selected
as a phase-II program of the SPPEXA. As the name of the project suggested, the
MYX project combined MUST, developed in Germany, YML, developed in France,
and XMP, developed in Japan, to investigate the application of scalable correctness
checking methods. The deliverable from the MYX project will be described in
Sect. 8.
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3 Multi-SPMD Programming Model

3.1 Overview

While most programming models consider MPI+X such as MPI+OpenMP, or
MPI+X1+X2 · · · , we consider X1+MPI (or XMP) +X2 and propose a multi-SPMD
(mSPMD) programming model where MPI programs and OpenMP+MPI programs
work together in the context of a workflow programming model. In other words,
tasks in a workflow are parallel programs written in XMP, MPI, or their hybrid with
OpenMP.

Figure 1 shows the overview of the mSPMD programming model. In the target
systems we have expected, there should be non-uniform memory access (NUMA),
general-purpose many-core CPUs, and accelerators such as GPU. We employ a
shared memory programming model within a node, or a group of cores, and
GPGPU programming on an accelerator. In a group of nodes, we have considered
a distributed parallel programming model. Between these groups of nodes, there is
a workflow programming model to manage and control several distributed parallel
programs and hybrid programs of the distributed parallel and shared programming
models. To realize this framework, we support XcalableMP (XMP) to describe
the distributed parallel programs in a workflow as well as MPI, which is a de-
facto standard for distributed parallel programming. For the shared programming
and GPGPU, as well as XMP+OpenMP, MPI+OpenMP, MPI+GPGPU such as
CUDA, OpenACC, we support a runtime library called StarPU. The StarPU
library[1], which is a task programming library for hybrid architectures, enables
us to implement heterogeneous applications in a uniform way. XMP provides an
extension to enable work-sharing among CPU cores and GPU [7]. YML[2–4]—a
development and execution environment for a scientific workflow—is used for the
workflow execution.

Fig. 1 An overview of multi-SPMD programming model
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3.2 YML

YML[2–4] is a workflow programming environment for a scientific workflow. YML
had been developed to execute a workflow application in a grid and P2P environment
and provides the following software:

• Component (task) generator,
• Workflow compiler, and
• Workflow scheduler.

The YML workflow compiler supports an original workflow language called
YvetteML, which allows us to describe dependency between tasks easily. Some
details of the YvetteML are described later, in Sect. 4.2. A workflow written in the
YvetteML would be compiled by the YML workflow compiler into a DAG of tasks.
The YML workflow scheduler interprets the DAG to execute the defined workflow.
Depending on the available systems, the scheduler uses different middleware, such
as XtremWeb for a P2P, OmniRPC[9] for a grid. The YML component generator
generates executable programs from “abstract” and “implementation” descriptions
of a component. Figures 2 and 3 show examples of “abstract” and “implementation,”
respectively. Note that in Fig. 3, while we show an example using XMP, the original
YML had supported neither XMP norMPI. The XMP andMPI supports were added
by extending YML and middleware.

3.3 OmniRPC-MPI

YML has been designed to execute workflow applications over various environ-
ments, such as clusters, P2P, and single processors. During the execution, the YML
workflow scheduler dynamically loads a backend library for its environment. Each
of the backend libraries calls APIs defined in middleware libraries. For example, in

Fig. 2 An example of “Abstract” in YML
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Fig. 3 An example of “Implementation” in YML

a grid environment, the OmniRPC backend linked with the OmniRPC middleware
library should be loaded.

The OmniRPC [9] is a grid RPC facility for cluster systems. The OmniRPC
supports a master-worker programmingmodel, where remote serial programs (rexs)
are executed by exec, rsh or ssh.

To realize the mSPMD programming model, we have implemented an MPI
backend and extended the OmniRPC to OmniRPC-MPI for a large scale cluster
environment. The OmniRPC-MPI library provides the following functions:

• invoke a remote program (worker program) over a specified number of nodes.
• communication between the workflow scheduler and the remote programs.

– the scheduler sends a request to execute a certain task to a remote program.
– the scheduler listens to the communicator and receives a termination message

from a remote program.

• manage remote programs and computational resources.
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4 Application Development in the mSPMD Programming
Environment

In this section, we describe how to develop applications in the mSPMD program-
ming environment.

4.1 Task Generator

Figure 4 shows the YML Component generator extended for the mSPMD program-
ming environment. The generator takes an implementation source code, such as the
one shown in Fig. 3. Then, combining the implementation and abstract source codes,
it generates several intermediate files: (1) an XMP source code, which extracts
task procedure itself defined by a user and (2) an interface definition file, which
includes some communication functions used to communicate with a workflow
scheduler. The YML Component generator calls (1) an XMP compiler to translate
the XMP source code to a C-source code with XMP runtime library calls and (2) a C-
compiler to compile the C-source code generated by the XMP compiler. The YML
Component generator calls (1) an OmniRPC-generator to translate the interface
definition to a C-source code and (2) a C-compiler to compile the C-source code
generated by the OmniRPC-generator. Finally, the YML Component generator calls
a linker to link the compiled object files and external libraries such as anMPI library.

Fig. 4 YML Component (task) generator extended for the mSPMD programming environment
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During a workflow application execution, the remote programs generated by
the YML Component generator are invoked and managed by the YML workflow
scheduler and the OmniRPC-MPI middleware.

4.2 Workflow Development

A workflow application in the mSPMD is defined by a workflow description
language called YvetteML. The YvetteML allows us to define the dependencies
between tasks easily. Figure 5 shows an example of the YvetteML, which computes
an inversion of a matrix by the Block Gauss–Jordan method. In the YvetteML, the
following directives are supported:

compute call a task
par parallel loop or region

each index of the loop can be executed in parallel, or

Fig. 5 An example of an application written in YvetteML
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each code block defined by // in a par region can be executed in parallel
ser serial loop
wait wait until the corresponding signal has been issued by notify
notify issues a specific signal for wait

4.3 Workflow Execution

The YML workflow compiler compiles the YvetteML into a directed acyclic graph
(DAG), and the YML workflow scheduler interprets the DAG to execute a workflow
application.

Figure 6 illustrates a workflow execution in the mSPMD programming model.
First, mpirun kicks the YML workflow scheduler. The YML workflow scheduler,
which has been linked with the OmniRPC-MPI library, interprets the DAG of
a workflow application and asks the invocation a task specified by YvetteML
compute (task-name) to the OmniRPC-MPI library. The OmniRPC-MPI library
finds a remote program which includes the specified task, and invokes the remote
program over the specified number of nodes by calling MPI_Comm_spawn, and
sends a request to perform the specific task.

While actual communications, node management, and task scheduling have been
supported by the OmniRPC-MPI library, the YML workflow scheduler schedules a
“logical” order of tasks based on the DAG of an application.

Fig. 6 A workflow execution of the mSPMD
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5 Experiments

In this section, we demonstrate the performance of the mSPMDprogrammingmodel
and our implementation.

Table 1 shows the specification of the K computer, which has been used for the
experiments.

In our experiments, the Block Gauss–Jordan (BGJ) method, which computes
the inversion of a matrix A, has been considered. Figure 7 shows the algorithm
of the BGJ method. The workflow for the BGJ method written in YvetteML
has been shown in Fig. 5. As shown in Table 2, tasks in the workflow process
block(s). In order to investigate the performance over different levels of hierarchical
parallelism:

• the total size of the matrix A is fixed to 32,768 × 32,768, but the number of
blocks is varied from 1× 1 to 16× 16.

• the total number of processes (cores) for a workflow is fixed to 4096, but the
number of processes for each task is varied from 8 to 4096.

Table 1 Specification of K
computer

CPU Fujitsu SPARC64VIIIfx, 8 core, 2.00 GHz

Memory 16GB , 64GB/s

Cache L1: 32 + 32KB/core, L2: 6MB/core

Network Tofu (6D mesh/torus) Interconnect

5GB/s × 2

Fig. 7 Algorithm of the Block Gauss–Jordan method
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Table 2 Tasks in the Block Gauss–Jordan workflow application. The input/output of the tasks
such as Ai,j , Bi,j , Ci,j , · · · are blocks of a matrix

Task Description

inversion(Ai,j ) Compute the inversion of a block Ai,j

prodMat(Ai,j , Bi,j ) Compute Bi,j = Ai,jBi,j

mProdMat(Ai,j , Bi,j ,Ci,j ) Compute Ci,j = −Ai,jBi,j

prodDiff(Ai,j , Bi,j ,Ci,j ) Compute Ci,j = Ci,j − Ai,jBi,j

Table 3 # of blocks, block
sizes and # of tasks in the
Block Gauss–Jordan method

# of blocks 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16

Block size 32,7682 16,3842 81922 40962 20482

# of tasks 3 18 108 696 4848

Fig. 8 Execution time of the BGJ workflow applications

Therefore, if we have a single block and assign all processes for a task, then it
is almost equivalent to a distributed parallel application. On the other hand, if we
divide a matrix into many small blocks and assign a process for each block, it is
almost a traditional workflow application. Table 3 shows the block size and the
number of tasks for each number of blocks. If we assign 512 processes for each
task, then at most eight tasks can be executed simultaneously.

Figure 8 shows the execution time of the BGJ workflow applications for the
number of blocks and the number of processes per task. The results show that the
best performance has been realized when we divide a matrix into 8× 8 blocks and
assign 256 processes for each task. Our framework of the mSPMD programming
model can realize such an appropriate combination of different parallelisms and
can allow application developers to control the different parallelism levels easily.
On the other hand, the extreme cases—1 × 1 block and 16 × 16 blocks—have not
performed well. Also, assigning too many processes for small tasks, for example,
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Fig. 9 Execution timeline of the BGJ workflow application with 8× 8 blocks

2048 processes for 8 × 8 blocks, more than 256 processes for 16 × 16 processes,
show poor performance.

Figure 9 shows the execution timeline (from left to right) of the BGJ workflow
application with 8 × 8 blocks. As shown in the figure, at the first step, the task
of inversion (B = A−1) must be executed solely since the other tasks on the
first step use the result of the inversion. After the second step, some of the matrix
calculations such as A = A × B,C = −(B × A),C = C − (B × A) on the kth
step and the inversion on k + 1th step can be overlapped. For other programming
models such as flat-MPI, it is not easy to execute tasks or functions on different
steps simultaneously. On the other hand, the mSPMD programming model and
our programming environment allow application developers to describe this sort
of applications easily.

6 Eigen Solver on the mSPMD Programming Model

In this section, as a use case of the mSPMD programming model, we introduce an
eigen solver implemented on the mSPMD programming model.
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6.1 Implicitly Restarted Arnoldi Method (IRAM), Multiple
Implicitly Restarted Arnoldi Method (MIRAM) and Their
Implementations for the mSPMD Programming Model

The iterative methods are widely used to solve eigenvalue programs in scientific
computation. Implicitly Restarted Arnoldi Method (IRAM) [10] is one of the
iterative methods to search the eigen elements λ s.t. Ax = λx of a matrix A.

Figure 10 shows the algorithm of IRAM. IRAM is a technique that combines
the implicitly shifted QR mechanism with an Arnoldi factorization and the IRAM
can be viewed as a truncated form of the implicitly shifted QR-iteration. After the
first m-step Arnoldi factorization, the eigen pairs of a Heisenberg matrix H are
computed. If the residual norm is small enough, the iteration is stopped. Otherwise,
the shifted QR by selecting shifts based on eigenvalues of the Heisenberg matrix
is computed. Using these new vectors and H as a starting point, we can apply p

additional steps of the Arnoldi process to obtain an m-step Arnoldi factorization.
Multiple IRAM (MIRAM) is an extension of IRAM, which introduces two or

more instances of IRAM. The instances of IRAM work on the same problem, but
they are initialized with different subspaces m1,m2, · · · . At the restarting point,
each instance selects the best (mbest , Hbest , Vbest , fbest ) from l IRAM instances.

In the mSPMD programming model, MIRAM has been implemented, as shown
in Fig. 11. The source code written in YvetteML is shown in Fig. 12. The YML
workflow scheduler invokes l IRAM instances and a data server. Each of IRAM

Fig. 10 Algorithm of IRAM
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Fig. 11 Overview of MIRAM on the mSPMD programming model

Fig. 12 MIRAM workflow
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instances computes an Arnoldi iteration asynchronously over n nodes and sends the
resulting (m,H, V, f ) to the data server. The data server keeps the best result and
sends it to each IRAM. Each IRAM restarts with the (m,H, V, f ) sent by the data
server.

6.2 Experiments

Here, we show the result of experiments on the T2K-Tsukuba supercomputer. The
specification of the T2K Tsukuba is shown in Table 4. In the experiments, we use a
matrix called Schenk/nlpkkt240 from the SuiteSparse Matrix Collection [11], where
n= 27,993,600 and the number of non-zero elements are 760,648,352.

Figure 13 shows the results of MIRAM with IRAM solvers of m = 24, 32, 40
(left) and 3 independent runs of IRAM solvers of the m = 24, 32, 40 (right). While
MIRAM converged around 450 iterations, none of 3 IRAMs could not converge
until 500 iterations.

This MIRAM example shows that by using the mSPMD programming model,
two different accelerations can be achieved. While the workflow programming
model of the mSPMD accelerates the convergence of the Arnoldi iterations, the
distributed parallel programming model speeds up each iteration of the Arnoldi
method.

Table 4 Specification of T2K Tsukuba

CPU Opteron Barcelona B8000, 4 cores, 4 sockets, 2.3GHz

Memory 32GB

Network Fat-tree, full-bisection interconnection quad-rail of InfiniBand

Fig. 13 Results of MIRAM with 3 IRAM solvers (right) and 3 independent runs of IRAM (left)
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7 Fault-Tolerance Features in the mSPMD Programming
Model

7.1 Overview and Implementation

As well as scalability and programmability, reliability is an important issue in
exascale computing. Since the number of components of an exascale supercomputer
should be tremendously large, it is evident that the mean time between failure
(MTBF) of a system decreases as the number of the system’s components increases.
Therefore, fault tolerance becomes essential for systems and applications. Here, we
develop a fault-tolerance mechanism in an mSPMD programming model, and its
development and execution environment. The fault tolerance in the mSPMD pro-
grammingmodel can be realized without modifying applications’ source codes[13].

Figure 14 illustrates the fault-tolerant mechanism in the mSPMD programming
model. If the workflow scheduler can find an error in a task and execute the
task again on different nodes, then we can realize a fault-tolerance and resilience
mechanism automatically.

We have extended the OmniRPC-MPI described in Sect. 3.3 to detect errors
in remote programs and notify the errors to the YML workflow scheduler. For
these purposes, heartbeat messages between master and remote programs have been
introduced in the OmniRPC-MPI library. If an error is detected in a remote program,
then it is reported to the YML workflow scheduler as a return value of existing
APIs. The OmniRpcProbe(Request r) API has been designed to listen to the
status of a requested task in a remote program. This returns success if the remote
program sends a signal to indicate the requested task r has successfully finished. On
the other hand, if heartbeat messages from the remote program executing the task r
have stopped, OmniRpcProbe(Request r) returns fail.

The YML scheduler re-schedules the failed task if it receives fail signal
from the OmniRPC-MPI library. The re-scheduling method is simple; The YML
scheduler puts the failed task at the head of the “ready” task queue.

7.2 Experiments

We have performed some experiments to investigate the overhead of the fault
detection and the elapsed time when errors occur on a cluster shown in Table 5. The
BGJ method shown in Sect. 5 had been used. The size of a matrix is 20,480× 20,480
and divided into
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Fig. 14 Overview of fault tolerance in the mSPMD programming model

Table 5 Specification of a
FX10 cluster

CPU Fujitsu SPARC64VIIIIfx, 16 core, 1.65 GHz

Memory 32GB, 85GB/s

Cache L1: 32 + 32KB/core, L2: 6MB/core

Network Tofu (6D mesh/torus) Interconnect

5GB/s × 2
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# of blocks 1× 1 2× 2 4× 4 8× 8

Block size 20,4802 10,2402 51202 25602

1024 cores (64 nodes) are used for each workflow, and 64–1024 cores are
assigned for each task in a workflow.

Firstly, we have considered the overhead of the heartbeat messages used to
detect errors in remote programs. Figure 15 shows the performance of the normal
and fault-tolerant mSPMD programming executions using between 64 and 1024
compute cores per task. The dotted lines are the results of fault-tolerant mSPMD
programming executions, and the solid lines are those of the regular mSPMD
programming executions. As shown in the figure, the best combination of the
number of blocks and the number of processes per task is 4 × 4 blocks and 512
processes for both cases of with and without fault-tolerance support. The overhead
of using a heartbeat message is very small and is 2.3% on average and 4.7% at a
maximum.

Then, we have investigated the behavior and performance of the fault-tolerant
mSPMD programming execution when errors occur. Instead of waiting for real
errors, we have inserted fake errors that stop heartbeat messages from remote
programs randomly with a certain error probability computed by an expected
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Fig. 16 Execution time with FT for the number of cores for each task under fake errors. The graph
legends show the number of blocks

MTBF (90,000s). Figure 16 shows the performance of the fault-tolerant mSPMD
programming execution under fake errors. Unfortunately, for the case of 1×1 block
and 1024 processes per task, it was not possible to complete the workflow, since
the face error ratio used in the experiment is higher than real systems. For the other
cases, the applications can be completed. The best combination of the number of
blocks and the number of processes per task is 4 × 4 blocks and 256 processes,
while it was 512 processes under the “no-error” condition. This is because the tasks
executed on a relatively small number of nodes are relatively easy to recover when
they fail.

8 Runtime Correctness Check for the mSPMD
Programming Model

8.1 Overview and Implementation

The mSPMD programming model has been proposed to realize scalability for large
scale systems. Additionally, as we discussed in Sect. 7, we support fault-tolerant
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features in the mSPMD programming model. In this section, we discuss another
important issue in large scale systems, productivity.

One of the reasons for the low productivity in distributed parallel programs is
the difficulty of debugging. Several libraries and tools have been proposed to help
and debug parallel programs. MUST (Marmot Umpire Scalable Tool) [5, 6, 12]
is a runtime tool that provides a scalable solution for efficient runtime MPI error
checking. The MUST has supported not only MPI but also XcalableMP (XMP) [8].

In this section, we discuss how to adapt the MUST library to the SPMD programs
in the mSPMD programmingmodel and enable the MUST correctness checking for
the mSPMD. Computational experiments have been performed to confirm MUST’s
operation in the mSPMD and to estimate the overhead of the correctness checking.

The mSPMD programming model consists of workflow scheduler, middleware,
remote programs, and so on. Each of the remote programs includes user-defined
tasks and control sections where the remote program communicates with the work-
flow scheduler. In this work, we focus on the user-defined tasks within the remote
programs, and the correctness check by the MUST library should be applied only
to the user-defined tasks. Figure 17 shows an overview of the application execution
in the mSPMD programming model and the target of the correctness check by the
MUST library in the mSPMD programming model. While MUST checks the MPI
and XMP communications shown in orange letters, MPI_Comm_spawn used to
invoke remote programs, MPI_Send used to send a request to the remote programs,
must be ignored.

Fig. 17 Applying MUST to the mSPMD programming model. Only communication functions
written in red letters are checked, MPI functions written in black letters are not checked
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MUST replaces MPI functions starting with MPI_ such as MPI_Send with their
own MPI functions, including correctness check and actual communication. The
functions starting with MPI_ such as MPI_Send in standard MPI libraries wrap the
functions starting with PMPI_ which perform communication. In order to avoid
the correctness check for the control sections, we define some macro to use PMPI
functions directly (Fig. 18). Moreover, to reserve an additional process for MUST
in remote programs, we define the macro to invoke remote programs (Fig. 19).

The original MUST creates an output file named MUST_Output.html for
each of parallel applications. On the other hand, in the mSPMD programming
model, there are one or more parallel applications simultaneously. Therefore, we
modify the MUST library to generate different MUST_Output_<id>.html files
for different remote programs. So far, we give a process id of the rank-0 of a remote
program as the <id> the output file. Figure 20 shows an example of the output file
generated by MUST in the mSPMD programming model.

8.2 Experiments

We have performed some experiments to evaluate the execution times and to
investigate applications’ behaviors with and without the MUST library. In these
experiments, the Oakforest-PACS (OFP) system has been used. Table 6 shows the
specification of the OFP. For remote programs, we adopt the flat-MPI programming
model where each MPI process runs on each core.

We focus on collective communication (MPI_Allreduce) and point to point
communication (Pingpong) and consider codes with and without error for each.
Figure 21 shows the tasks used in the experiments. From the top to bottom, allreduce
(w/o error), allreduce (w/ error, type mismatch), pingpong (w/o error), pingpong
(w/ error, type mismatch), allreduce (w/ error, operation mismatch), and allreduce
(w/ error, buffer size mismatch). Also, we consider different numbers of iterations

Fig. 18 The Macro to disable
the MUST correctness check

Fig. 19 The Macro to invoke
remote programs with n + 1
processes where “+1” is kept
for MUST
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Fig. 20 Screenshot of the output file generated by MUST in the mSPMD programming model

Table 6 The specification of
the Oakforest-PACS

CPU Intel Xeon Phi 7250 (KNL), 68 core, 1.4GHz

Memory 96GB(DDR) + 16GB(MCDRAM)

Network Intel Omni-Path Network, 100Gpbs

Compiler intel/2018.1.163

MPI library impi/2018.1.163

OS CentOS 7

and different interval seconds between MPI function calls in each test code for the
overhead evaluations.

Table 7 shows the applications’ behaviors and the statuses of error reports, when
applying or not applying MUST. While the datatype conflict and operation conflict
errors are reported when we apply the MUST, the applications are completed
without any report when we do not apply the MUST even though the results of
the reduction should be wrong.

Figure 22 shows the execution time of the mSPMDprogramming executionswith
and without the MUST library. Workflow applications include between 1 and 32
tasks of MPI_Allreduce. Figure 23 shows the results for MPI_Send/Recv. Each task
uses 32 processes in all experiments. As shown in Fig. 22, the overhead to check
and record errors of collective communication is ignorable if we do not perform
communication very intensively. On the other hand, if collective communication
functions called very frequently, then the overheads become large even if there is
no error. As shown in Fig. 23, the overhead of the MUST library is small if there is
no error in point to point communication functions. However, it takes more time if
there are some errors. The fact indicates that there is almost no overhead to check
point to point communication, but it takes some time to analyze and record errors in
the point to point communication functions.
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Fig. 21 The tasks used in experiments. From the top to bottom, allreduce (w/o error), allreduce
(w/ data type error), pingpong (w/o error), and pingpong (w/ error), allreduce (w/ operation error),
allreduce (w/ data size error)
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Table 7 Applications’ behaviors and the statuses of error reports

w/ MUST w/o MUST

Allreduce w/o error Completed Completed

Allreduce w/ Completed Completed

Type conflict error Error reports No report

Pingpong w/o error Completed Completed

Pingpong w/ Completed Completed

Type conflict error Error reports No report

Allreduce w/ Completed Completed

Operation conflict error Error reports No report

Allreduce w/ Failed Failed

Buffer size conflict error Error reports Simple error reports
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Fig. 22 Execution time when a workflow includes 1, 2, · · · 32 tasks executing MPI_Allreduce
repeatedly every 1-s (left) and every 0.01-s
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Fig. 23 Execution time when a workflow includes 1, 2, · · · 32 tasks executing MPI_Send/Recv
repeatedly every 1-s (left) and every 0.01-s
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9 Summary

In this chapter, we have presented the mSPMD programming model and program-
ming environment, where several SPMD programs work together under the control
of a workflow program. YML, which is a development and execution environment
for scientific workflows, and its middleware OmniRPC, have been extended to
manage several SPMD tasks and programs. As well as MPI, XMP, a directive-
based parallel programming language, has been supported to describe tasks. A task
generator has been developed to incorporate XMP programs into a workflow. Fault-
tolerant features, correctness check, and some numerical libraries’ implementations
in the mSPMD programming model have been presented.
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