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• Event driven microservices are widely used for architecting 
scalable cloud software and data systems. 
– Complete isolation and loose coupling of microservices, asynchronous 

queue-based event driven communication style, in addition to performance 
gain [1][2][3][4][5].

• SLA-aware and cost-efficient event driven microservices to 
achieve a desired tail latency for event processing have been 
rarely studied in the literature [11]
– Autonomus scale in and out of resources to cater to the incoming workload 

in cost efficient manner

– Challenges not faced in typical request-response style microservices
• Rebalancing : distribute the load of the events waiting in the queues among the 

microservice replicas
– Consumption blocking operation that negatively affects the SLA.

Motivation and Problem statement (1)
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• Each latency-critical consumer 
microservice is configured with a 
maximum event processing 
latency 

– Maximum time an event might 
exhibit waiting in the queue and 
processed by its consumer 
microservice without violating the 
SLA.

• Event driven microservices  
architecture deployed on 
Kubernetes orchestrator.

Motivation and Problem statement (2)
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1. Design and implementation of dynamic horizontal autoscaling 
framework to meet a desired tail latency for event processing 
time.

2. An autoregressive workload prediction model with online 
learning using the exponentially weighted recursive least squares 
algorithm for proactive autoscaling.

3. Quantitative measurements on the cost of consumer microservice 
provisioning time, and on the cost of blocking the consumption 
during rebalancing

Contributions



Background (Kafka distributed event broker)
Topic, partition, producer and consumer microservices
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• 𝒕𝒐𝒕𝒂𝒍𝑨𝒓𝒓𝒊𝒗𝒂𝒍𝑹𝒂𝒕𝒆𝒕 = σ𝒑 ∈ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝒔

𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒅
𝒑

𝒕
− 𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒅
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• 𝒎𝒂𝒙𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑹𝒂𝒕𝒆𝑷𝒆𝒓𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒓 =
# 𝒆𝒗𝒆𝒏𝒕𝒔 𝒑𝒐𝒍𝒍𝒆𝒅 𝒑𝒆𝒓 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓

𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈𝑻𝒊𝒎𝒆

• 𝒍𝒂𝒈𝒑 = 𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒅
𝒑

− 𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑪𝒐𝒎𝒎𝒊𝒕𝒕𝒆𝒅
𝒑

• 𝒍𝒂𝒈𝒕𝒐𝒑𝒊𝒄 = σ𝒑 ∈ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝒔 𝒍𝒂𝒈𝒑

Event Arrival Rate, Event lag, maximum 
Consumption Rate Per Consumer

P0

P1

Pn

Topic T0

...

Producer 
 µs

Distributed message broker cluster 
(e.g., kafka)

   

Consumer
 µs

Consumer 
µs

Consumer  µs Group

Topic Partition 
P



P0

P1

Pm

Payment Topic 

Payment 

Producer 

 µs  
  

Reactive/Proactive autoscale 
decisions

Consumer
 µs

Consumer 
µs

Payment Consumer Group
 µs 

Controller process

Auto Scale logic 

Workload prediction 
Max Consumption Rate Per 

Consumer

Newly Added 

Module

Total Arrival Rate

System Architecture and Kubernetes deployment

Decision Interval



Reactive Autoscale 

Algorithm 1. Reactive Autoscale

Input n: current number of consumer microservices

Input decisionInterval: time between two successive scaling decisions
REPEAT FOREVER

Query the broker to get the totalArrivalRate into topic and

maxConsumptionRatePerConsumer
IF totalArrivalRate >= n * maxConsumptionRatePerConsumer

Scale up the consumer group by one

ELSE IF totalArrivalRate < (n-1) * maxConsumptionRatePerConsumer

Scale down the consumer group by one
SLEEP decisionInterval

• When current total arrival rate > total consumption rate : scale up by 1

• If a replica is removed,  and current total arrival rate REMAIN < total 
consumption rate :  scale down by 1. 



Proactive Autoscale

Algorithm 2. Proactive Autoscale

Input n: current number of consumer microservices

Input decisionInterval: time between two successive scaling decisions

REPEAT FOREVER
Query the broker to get the totalArrivalRate into topic and

maxConsumptionRatePerConsumer
IF totalArrivalRate >= n × maxConsumptionRatePerConsumer OR

predicted(totalArrivalRate) >= n × maxConsumptionRatePerConsumer
Scale up the consumer group by one

ELSE IF totalArrivalRate < (n-1) × maxConsumptionRatePerConsumer AND

predicted(totalArrivalRate) < (n-1) × maxConsumptionRatePerConsumer
Scale down the consumer group microservices by one

SLEEP decisionInterval

• When current OR predicted total arrival rate > total consumption rate : 
scale up by 1

• If a replica is removed,  and current AND predicted total arrival rate 
REMAIN < total consumption rate :  scale down by 1. 



• Autoregression (AR), autoregression moving average (ARMA) and 
autoregression integrated moving average (ARIMA) are widely 
used in cloud computing for time series (workload) prediction [29]

• AR, ARMA and ARIMA can be trained online using the 
exponentially weighted recursive least squares RLS algorithm

– RLS is an extension to the classical least-square (LS) targeted 
towards real time applications where data arrives sequentially to 
the system

– Exponentially weighted RLS ewRLS incorporates a forgetting 
factor that discounts older data to make the model representative 
for the most recent state of the workload

Arrival rate prediction using Recursive Least 
Squares RLS

[29] C. Qu, . R. N. Calheiros and R. Buyya, "Auto-scaling web applications in clouds: A taxonomy and survey.,"



Exponentially weighted Recursive Least Squares 
Algorithm (ewRLS)

• At time t, when y(t) [the arrival rate at time t] is observed update the 

model 𝛩(𝑡) using the equations shown in Algorithm 3 (see backup 
slides). 

y(t) : Arrival rate at t

y(t-1) : Arrival rate at t-1

Model ϴ at  t-1 

Model ϴ at t

time t

Arrival rate y(t)

• Workload or total Arrival rate vector :

• 𝐘(𝐭) = 𝐲 𝐭 − 𝟏 , … , 𝐲 𝐭 − 𝒑

• Model vector : 𝚯 = 𝜽𝟏… , 𝜽𝒑
• Predicted arrival rate ෝ𝒚 𝒕 = 𝚯(𝐭 − 𝟏)𝑻𝐘(𝐭)



• At each decision interval t (a new observation of arrival rate, y(t)  is 
available) calculate the mean relative prediction accuracy Acc
– The average relative prediction accuracy over all the past predictions

– Acc metric also used in [30] mean elasticity index MEI

• When the model achieves a configurable value for ACC (default 
0.85 ) the model switches to proactive provisioning.
• Currently, once proactive mode is activated, the reactive mode is not  re-

activated again (e.g., if ACC drops below its configured value)

Seamless switching from reactive to proactive 
provisioning

[30] V. R. Messias, J. C. Estrella, , R. Ehlers, Santana, M. J. Santana, R.C. Santana, and  S. Reiff-Marganiec, S., “Combining time series prediction models using genetic algorithm to autoscaling web applications 
hosted in the cloud infrastructure”. 



• Google Cloud using a GKE 
Kubernetes cluster of 4 VMs.

• 10 minutes workload: the batch of 
events  sent to the broker each 
second. (Adapted from [11])

• Payment processing consumer 
microservice:  
– Maximum event processing latency of 5 

seconds

• Peek provisioning: 4 consumer 
microservices operating at 100 
events/second 
• zero events violated the latency SLA.

• 40 replica.minutes

Methodology and Results 
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Reactive Autoscaling

• Payment microservices 
operating at 100 
events/sec, maximum 
event processing latency 
of 5 seconds

• 97.2% SLA guarantee 
(2.8% violation) at the 
cost of 23.8 
replica.minutes 
– 59.5% reduction in the cost 

of consumer microservices 
compared to peek load 
provisioning. 



Why only 97.2% SLA guarantee? Can we do better?

• Delay until the payment microservice is ready and can start serving 
payment events 
– 𝒕𝒐𝒕𝒂𝒍 𝒅𝒆𝒍𝒂𝒚 = 𝒑𝒓𝒐𝒗𝒊𝒔𝒊𝒐𝒏𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 + 𝒋𝒐𝒊𝒏𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 + 𝒓𝒆𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈 𝒕𝒊𝒎𝒆

• Provisioning time : 

– Time required so that Kubernetes launches a consumer instance and the 
instance probed ready

• [1, 3] seconds

• Joining time :  

– Time so that all consumer microservices in the group are aware that a 
rebalancing shall take place.

– Up to 3 seconds (default heartbeat interval)

• Rebalancing time : 

– Actual assignment of topic partitions to the consumer microservices in the 
group 

– A consumption blocking operation that takes [1, 3] seconds

• Maximum total delay from SLA detection till the newly added 
microservice starts consumption = 9 seconds.



From Reactive to Proactive Autoscaling

• Autoscaling started in reactive mode and 
switched to proactive at time 300 
seconds.

• Event processing latency SLA of 5 
seconds, 100 events/sec consumers
– 2.3% events violated the SLA (97.7% SLA 

guarantee)

• Observations:
– The experiment ran reactively for 50% of the 

time.

– Proactive autoscaling :

• Can help in Provisioning time 

• Can not help in  the blockage of events 
consumption flow resulting out of consumer 
group rebalancing.  (rebalancing time)



• Given the negative impact of blocking rebalancing on latency SLAs,  
Kafka recently introduced incremental (nonstop of the world) rebalancing
– A non-blocking continual flow version of rebalancing.

– Consumption of events will block only for those partitions that will be reassigned to 
other consumer microservices.

– Experiments omitted from the paper due to space limitations.

Incremental non-blocking rebalancing



• A framework for cost-efficient tail latency SLA guarantee of event 
driven microservices.

• Further design space exploration under larger scale deployments 
and more realistic workload traces.
– Consumer microservices running on heterogenous servers, that is, having 

different consumption rate.

• Tackling a pipeline of event driven microservices instead of single 
producer consumer microservices.

• Investigation of the case of stateful consumer microservices.

Conclusion and ongoing work
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Exponentially weighted Recursive Least Squares 
Algorithm (ewRLS)

Algorithm 3. Exponentially weighted Recursive Least Squares Algorithm (ewRLS) [16][17]
Input 𝒑 : history length of arrival rate vector used to forecast

Input 𝝀 : forgetting factor (𝜆 = 0.98)

Input P(0):  positive definite matrix e.g., P(0)= I identity matrix

𝑰𝒏𝒑𝒖𝒕 𝒀(𝟏) = 𝑦 0 , 𝑦 −1 ,… , 𝑦(−𝑝 + 1) initial random values of arrival rate vector

𝐈𝐧𝐩𝐮𝐭 𝚯(𝟎) = 𝜃0, 𝜃1… , 𝜃𝑝−1 initial random values of model vector

For t= 1 to INFINITY do (loop every time a new sample of arrival rate is available)
𝑌(𝑡) = 𝑦(𝑡 − 1), 𝑦 𝑡 − 2 , … , 𝑦(𝑡 − 𝑝)

𝐾𝑡 =
𝑃(𝑡 − 1) 𝑌(𝑡)

𝜆 + 𝑌𝑇 𝑡 𝑃(𝑡 − 1) 𝑌 𝑡

𝑃𝑡 =
1

𝜆
[𝑃(𝑡 − 1) −

𝑃(𝑡−1) 𝑌(𝑡)𝑌𝑇 𝑡 𝑃(𝑡−1)

𝜆+ 𝑌𝑇 𝑡 𝑃(𝑡−1) 𝑌 𝑡
]

𝛩(𝑡) = 𝛩 𝑡 − 1 + 𝐾𝑡 𝑦 𝑡 − ෝ𝑦 (𝑡|𝛩 𝑡 − 1 )

End For
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