
On The Design of SLA-Aware and Cost-
Efficient Event Driven Microservices

Mazen Ezzeddine1,2, Sébastien Tauvel2, Françoise Baude1, Fabrice Huet1

1Université Côte d’Azur, CNRS, I3S
Nice, France

2HighTech Payment Systems, HPS
Aix En Provence, France

mazen.ezzeddine@univ-cotedazur.fr

WoC’21
The Seventh International Workshop on Container Technologies and Container

Clouds collocated with Middleware’21, Dec 2021, Quebec, Canada
6 December 2021

• Event driven microservices are widely used for architecting
scalable cloud software and data systems.
– Complete isolation and loose coupling of microservices, asynchronous

queue-based event driven communication style, in addition to performance
gain [1][2][3][4][5].

• SLA-aware and cost-efficient event driven microservices to
achieve a desired tail latency for event processing have been
rarely studied in the literature [11]
– Autonomus scale in and out of resources to cater to the incoming workload

in cost efficient manner

– Challenges not faced in typical request-response style microservices
• Rebalancing : distribute the load of the events waiting in the queues among the

microservice replicas
– Consumption blocking operation that negatively affects the SLA.

Motivation and Problem statement (1)

[1] K. Marcos , D. Pedro, B. Leonardo, C. Carlos, M. Lemos, A. Darlan, L. Sérgio and Y. Z. Yongluan, "From a monolithic big data system to a microservices event-driven architecture”
[2] P. Das, L. Rodrigo and Z. Yongluan, "HawkEDA: a tool for quantifying data integrity violations in event-driven microservices”
[3] Q. Xiang, P. Xin, H. Chuan, W. Hanzhang, X. Tao, L. Dewei, Z. Gang and C. Yuanfang, "No Free Lunch: Microservice Practices Reconsidered in Industry,"
[4] C. Richardson, "Building microservices: Inter-process communication in a microservices architecture
[5] W. Hasselbring and G. Steinacker, "Microservice architectures for scalability, agility and reliability in e-commerce.,"
[11] P. Chindanonda, V. Podolskiy and M. Gerndt, "Self-Adaptive Data Processing to Improve SLOs for Dynamic IoT Workloads,"

• Each latency-critical consumer
microservice is configured with a
maximum event processing
latency

– Maximum time an event might
exhibit waiting in the queue and
processed by its consumer
microservice without violating the
SLA.

• Event driven microservices
architecture deployed on
Kubernetes orchestrator.

Motivation and Problem statement (2)

Order

µs

Payment

µs

Order_Payment Event queue

Order_Shipment Event queue

Shipment

µs

Order_notification Event queue

Notificati-

on

µs

1. Design and implementation of dynamic horizontal autoscaling
framework to meet a desired tail latency for event processing
time.

2. An autoregressive workload prediction model with online
learning using the exponentially weighted recursive least squares
algorithm for proactive autoscaling.

3. Quantitative measurements on the cost of consumer microservice
provisioning time, and on the cost of blocking the consumption
during rebalancing

Contributions

Background (Kafka distributed event broker)
Topic, partition, producer and consumer microservices

P0

P1

Pn

Topic T0

...

Distributed message broker cluster
(e.g., kafka)

Producer
 µs

Consumer
 µs

Consumer
µs

Consumer µs Group

Topic Partition
P

• 𝒕𝒐𝒕𝒂𝒍𝑨𝒓𝒓𝒊𝒗𝒂𝒍𝑹𝒂𝒕𝒆𝒕 = σ𝒑 ∈ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝒔

𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒅
𝒑

𝒕
− 𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒅

𝒑

𝒕−𝜹

𝜹

• 𝒎𝒂𝒙𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑹𝒂𝒕𝒆𝑷𝒆𝒓𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒓 =
𝒆𝒗𝒆𝒏𝒕𝒔 𝒑𝒐𝒍𝒍𝒆𝒅 𝒑𝒆𝒓 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓

𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈𝑻𝒊𝒎𝒆

• 𝒍𝒂𝒈𝒑 = 𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒅
𝒑

− 𝒐𝒇𝒇𝒔𝒆𝒕𝒍𝒂𝒔𝒕𝑪𝒐𝒎𝒎𝒊𝒕𝒕𝒆𝒅
𝒑

• 𝒍𝒂𝒈𝒕𝒐𝒑𝒊𝒄 = σ𝒑 ∈ 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝒔 𝒍𝒂𝒈𝒑

Event Arrival Rate, Event lag, maximum
Consumption Rate Per Consumer

P0

P1

Pn

Topic T0

...

Producer
 µs

Distributed message broker cluster
(e.g., kafka)

Consumer
 µs

Consumer
µs

Consumer µs Group

Topic Partition
P

P0

P1

Pm

Payment Topic

Payment

Producer

 µs

Reactive/Proactive autoscale
decisions

Consumer
 µs

Consumer
µs

Payment Consumer Group
 µs

Controller process

Auto Scale logic

Workload prediction
Max Consumption Rate Per

Consumer

Newly Added

Module

Total Arrival Rate

System Architecture and Kubernetes deployment

Decision Interval

Reactive Autoscale

Algorithm 1. Reactive Autoscale

Input n: current number of consumer microservices

Input decisionInterval: time between two successive scaling decisions
REPEAT FOREVER

Query the broker to get the totalArrivalRate into topic and

maxConsumptionRatePerConsumer
IF totalArrivalRate >= n * maxConsumptionRatePerConsumer

Scale up the consumer group by one

ELSE IF totalArrivalRate < (n-1) * maxConsumptionRatePerConsumer

Scale down the consumer group by one
SLEEP decisionInterval

• When current total arrival rate > total consumption rate : scale up by 1

• If a replica is removed, and current total arrival rate REMAIN < total
consumption rate : scale down by 1.

Proactive Autoscale

Algorithm 2. Proactive Autoscale

Input n: current number of consumer microservices

Input decisionInterval: time between two successive scaling decisions

REPEAT FOREVER
Query the broker to get the totalArrivalRate into topic and

maxConsumptionRatePerConsumer
IF totalArrivalRate >= n × maxConsumptionRatePerConsumer OR

predicted(totalArrivalRate) >= n × maxConsumptionRatePerConsumer
Scale up the consumer group by one

ELSE IF totalArrivalRate < (n-1) × maxConsumptionRatePerConsumer AND

predicted(totalArrivalRate) < (n-1) × maxConsumptionRatePerConsumer
Scale down the consumer group microservices by one

SLEEP decisionInterval

• When current OR predicted total arrival rate > total consumption rate :
scale up by 1

• If a replica is removed, and current AND predicted total arrival rate
REMAIN < total consumption rate : scale down by 1.

• Autoregression (AR), autoregression moving average (ARMA) and
autoregression integrated moving average (ARIMA) are widely
used in cloud computing for time series (workload) prediction [29]

• AR, ARMA and ARIMA can be trained online using the
exponentially weighted recursive least squares RLS algorithm

– RLS is an extension to the classical least-square (LS) targeted
towards real time applications where data arrives sequentially to
the system

– Exponentially weighted RLS ewRLS incorporates a forgetting
factor that discounts older data to make the model representative
for the most recent state of the workload

Arrival rate prediction using Recursive Least
Squares RLS

[29] C. Qu, . R. N. Calheiros and R. Buyya, "Auto-scaling web applications in clouds: A taxonomy and survey.,"

Exponentially weighted Recursive Least Squares
Algorithm (ewRLS)

• At time t, when y(t) [the arrival rate at time t] is observed update the

model 𝛩(𝑡) using the equations shown in Algorithm 3 (see backup
slides).

y(t) : Arrival rate at t

y(t-1) : Arrival rate at t-1

Model ϴ at t-1

Model ϴ at t

time t

Arrival rate y(t)

• Workload or total Arrival rate vector :

• 𝐘(𝐭) = 𝐲 𝐭 − 𝟏 , … , 𝐲 𝐭 − 𝒑

• Model vector : 𝚯 = 𝜽𝟏… , 𝜽𝒑
• Predicted arrival rate ෝ𝒚 𝒕 = 𝚯(𝐭 − 𝟏)𝑻𝐘(𝐭)

• At each decision interval t (a new observation of arrival rate, y(t) is
available) calculate the mean relative prediction accuracy Acc
– The average relative prediction accuracy over all the past predictions

– Acc metric also used in [30] mean elasticity index MEI

• When the model achieves a configurable value for ACC (default
0.85) the model switches to proactive provisioning.
• Currently, once proactive mode is activated, the reactive mode is not re-

activated again (e.g., if ACC drops below its configured value)

Seamless switching from reactive to proactive
provisioning

[30] V. R. Messias, J. C. Estrella, , R. Ehlers, Santana, M. J. Santana, R.C. Santana, and S. Reiff-Marganiec, S., “Combining time series prediction models using genetic algorithm to autoscaling web applications
hosted in the cloud infrastructure”.

• Google Cloud using a GKE
Kubernetes cluster of 4 VMs.

• 10 minutes workload: the batch of
events sent to the broker each
second. (Adapted from [11])

• Payment processing consumer
microservice:
– Maximum event processing latency of 5

seconds

• Peek provisioning: 4 consumer
microservices operating at 100
events/second
• zero events violated the latency SLA.

• 40 replica.minutes

Methodology and Results

P0

P1

P11

Payment
Topic

...

Payment
Producer

 µs

Distributed message broker
cluster (e.g., kafka)

Payment
Consumer

 µs

Payment
Consumer

µsController process

Auto Scale logic

Workload

prediction

PaymentConsumer
Group

[11] P. Chindanonda, V. Podolskiy and M. Gerndt, "Self-Adaptive Data Processing to Improve SLOs for Dynamic IoT Workloads,"

Reactive Autoscaling

• Payment microservices
operating at 100
events/sec, maximum
event processing latency
of 5 seconds

• 97.2% SLA guarantee
(2.8% violation) at the
cost of 23.8
replica.minutes
– 59.5% reduction in the cost

of consumer microservices
compared to peek load
provisioning.

Why only 97.2% SLA guarantee? Can we do better?

• Delay until the payment microservice is ready and can start serving
payment events
– 𝒕𝒐𝒕𝒂𝒍 𝒅𝒆𝒍𝒂𝒚 = 𝒑𝒓𝒐𝒗𝒊𝒔𝒊𝒐𝒏𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 + 𝒋𝒐𝒊𝒏𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 + 𝒓𝒆𝒃𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈 𝒕𝒊𝒎𝒆

• Provisioning time :

– Time required so that Kubernetes launches a consumer instance and the
instance probed ready

• [1, 3] seconds

• Joining time :

– Time so that all consumer microservices in the group are aware that a
rebalancing shall take place.

– Up to 3 seconds (default heartbeat interval)

• Rebalancing time :

– Actual assignment of topic partitions to the consumer microservices in the
group

– A consumption blocking operation that takes [1, 3] seconds

• Maximum total delay from SLA detection till the newly added
microservice starts consumption = 9 seconds.

From Reactive to Proactive Autoscaling

• Autoscaling started in reactive mode and
switched to proactive at time 300
seconds.

• Event processing latency SLA of 5
seconds, 100 events/sec consumers
– 2.3% events violated the SLA (97.7% SLA

guarantee)

• Observations:
– The experiment ran reactively for 50% of the

time.

– Proactive autoscaling :

• Can help in Provisioning time

• Can not help in the blockage of events
consumption flow resulting out of consumer
group rebalancing. (rebalancing time)

• Given the negative impact of blocking rebalancing on latency SLAs,
Kafka recently introduced incremental (nonstop of the world) rebalancing
– A non-blocking continual flow version of rebalancing.

– Consumption of events will block only for those partitions that will be reassigned to
other consumer microservices.

– Experiments omitted from the paper due to space limitations.

Incremental non-blocking rebalancing

• A framework for cost-efficient tail latency SLA guarantee of event
driven microservices.

• Further design space exploration under larger scale deployments
and more realistic workload traces.
– Consumer microservices running on heterogenous servers, that is, having

different consumption rate.

• Tackling a pipeline of event driven microservices instead of single
producer consumer microservices.

• Investigation of the case of stateful consumer microservices.

Conclusion and ongoing work

Thank You

Questions?

WoC’21
The Seventh International Workshop on Container Technologies and Container

Clouds collocated with Middleware’21, Dec 2021, Quebec, Canada
6 December 2021

Backup slides

WoC’21
The Seventh International Workshop on Container Technologies and Container

Clouds collocated with Middleware’21, Dec 2021, Quebec, Canada
6 December 2021

Exponentially weighted Recursive Least Squares
Algorithm (ewRLS)

Algorithm 3. Exponentially weighted Recursive Least Squares Algorithm (ewRLS) [16][17]
Input 𝒑 : history length of arrival rate vector used to forecast

Input 𝝀 : forgetting factor (𝜆 = 0.98)

Input P(0): positive definite matrix e.g., P(0)= I identity matrix

𝑰𝒏𝒑𝒖𝒕 𝒀(𝟏) = 𝑦 0 , 𝑦 −1 ,… , 𝑦(−𝑝 + 1) initial random values of arrival rate vector

𝐈𝐧𝐩𝐮𝐭 𝚯(𝟎) = 𝜃0, 𝜃1… , 𝜃𝑝−1 initial random values of model vector

For t= 1 to INFINITY do (loop every time a new sample of arrival rate is available)
𝑌(𝑡) = 𝑦(𝑡 − 1), 𝑦 𝑡 − 2 , … , 𝑦(𝑡 − 𝑝)

𝐾𝑡 =
𝑃(𝑡 − 1) 𝑌(𝑡)

𝜆 + 𝑌𝑇 𝑡 𝑃(𝑡 − 1) 𝑌 𝑡

𝑃𝑡 =
1

𝜆
[𝑃(𝑡 − 1) −

𝑃(𝑡−1) 𝑌(𝑡)𝑌𝑇 𝑡 𝑃(𝑡−1)

𝜆+ 𝑌𝑇 𝑡 𝑃(𝑡−1) 𝑌 𝑡
]

𝛩(𝑡) = 𝛩 𝑡 − 1 + 𝐾𝑡 𝑦 𝑡 − ෝ𝑦 (𝑡|𝛩 𝑡 − 1)

End For

References
[1] R. Laigner, K. Marcos , D. Pedro, B. Leonardo, C. Carlos, M. Lemos, A. Darlan, L. Sérgio and Y. Z.

Yongluan, "From a monolithic big data system to a microservices event-driven architecture,"

IEEE 46th Euromicro Conference on Software Engineering and Advanced Applications, pp. 213-

220., 2020.

[2] P. Das, L. Rodrigo and Z. Yongluan, "HawkEDA: a tool for quantifying data integrity violations in

event-driven microservices," Proceedings of the 15th ACM International Conference on

Distributed and Event-based Systems, pp. 176-179, 2021.

[3] Q. Xiang, P. Xin, H. Chuan, W. Hanzhang, X. Tao, L. Dewei, Z. Gang and C. Yuanfang, "No Free

Lunch: Microservice Practices Reconsidered in Industry," arXiv preprint arXiv:2106.07321, 2021.

[4] C. Richardson, "Building microservices: Inter-process communication in a microservices

architecture," 24 July 2015. [Online]. Available: https://www.nginx.com/blog/building-

microservices-inter-process-communication/. [Accessed 11 September 2021].

[5] A. Bellemare, Building Event-Driven Microservices, O’Reilly Media, Inc., 2020.

[6] W. Hasselbring and G. Steinacker, "Microservice architectures for scalability, agility and

reliability in e-commerce.," EEE International Conference on Software Architecture Workshops

(ICSAW), pp. 243-246, 2017.

[7] N. Dragoni, G. Saverio, A. L. Lafuente, M. Manuel, M. Fabrizio, R. Mustafin and L. Safina,

"Microservices: yesterday, today, and tomorrow," Present and ulterior software engineering, pp.

195-216, 2017.

[8] G. Yu, P. Chen and Z. Zheng, "Microscaler: Cost-effective scaling for microservice applications in

the cloud with an online learning approach," IEEE Transactions on Cloud Computing, 2020.

[9] B. Choi,, C. Byungkwon, J. Park, C. Lee and D. Han, "pHPA: A Proactive Autoscaling Framework

For Microservice Chain," in 5th Asia-Pacific Workshop on Networking (APNet 2021). Association

for Computing Machinery, Inc, 2021.

[10] G. Yu, P. Chen, H. Chen, G. Zijie , Z. Huang, L. Jing, T. Weng, X. Sun and X. Li, "MicroRank: End-to-

End Latency Issue Localization with Extended Spectrum Analysis in Microservice

Environments.," Proceedings of the Web Conference 2021, pp. 3087-3098, 2021.

[11] P. Chindanonda, V. Podolskiy and M. Gerndt, "Self-Adaptive Data Processing to Improve SLOs for

Dynamic IoT Workloads," Computers, vol. 9, no. 1, p. 12, 2020.

[12] N. Narkhede, G. Shapira and T. Palino, Kafka: the definitive guide: real-time data and stream

processing at scale, O'Reilly Media, Inc., 2017.

[13] G. Shapira , T. Palino, R. Sivaram and K. Petty, Kafka: The Definitive Guide Real-Time Data and

Stream Processing at Scale, second edition, O’Reilly Media, Inc., 2021.

[14] S. BLEE-GOLDMAN, "From Eager to Smarter in Apache Kafka Consumer Rebalances," Confluent,

11 5 2020. [Online]. Available: https://www.confluent.io/blog/cooperative-rebalancing-in-

kafka-streams-consumer-ksqldb/. [Accessed 11 9 2021].

[15] M. S. Aslanpour, S. S. Gill and A. . N. Toosi, "Performance evaluation metrics for cloud, fog and

edge computing: A review, taxonomy, benchmarks and standards for future research," Internet

of Things, vol. 12, 2020.

[16] A. H. Sayed, Adaptive filters, John Wiley & Sons, 2011.

[17] L. Weifeng, J. C. Principe and S. S. Haykin, Kernel adaptive filtering: a comprehensive

introduction, Wiley, 2010.

[18] S. A. Baset, "Cloud SLAs: present and future," ACM SIGOPS Operating Systems Review, vol. 46, no.

2, pp. 57-66, 2012.

[19] C. Delimitrou and C. Kozyrakis, "Quasar: Resource-efficient and qos-aware cluster

management," ACM SIGPLAN Notices, vol. 49, no. 4, pp. 127-144, 2014.

[20] J. Bar, "New AWS Auto Scaling – Unified Scaling For Your Cloud Applications," Amazon, 16

January 2018. [Online]. Available: https://aws.amazon.com/autoscaling/. [Accessed 3 May

2021].

[21] "Kubernetes Horizontal Pod Autoscaler," 9 September 2021. [Online]. Available:

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/. [Accessed

2021 September 2021].

[22] C. Qu, R. N. Calheiros and R. Buyya, "A reliable and cost-efficient auto-scaling system for web

applications using heterogeneous spot instances," Journal of Network and Computer

Applications, Elsevier, vol. 65, pp. 167-180, 2016.

[23] M. Ghobaei-Arani, S. Jabbehdari and M. A. Pourmina, "An autonomic resource provisioning

approach for service-based cloud applications: A hybrid approach," Future Generation

Computer Systems, vol. 78, pp. 191-210, 2018.

[24] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu and J. Chen, "A cost-aware auto-scaling

approach using the workload prediction in service clouds.," Information Systems Frontiers,

vol. 16, no. 1, pp. 7-18, 2014.

[25] N. Roy, A. Dubey and A. Gokhale, "Efficient autoscaling in the cloud using predictive models

for workload forecasting," IEEE 4th International Conference on Cloud Computing, pp. 500-

507, 2011.

[26] S. Islam, J. Keung, K. Lee and A. Liu, "Empirical prediction models for adaptive resource

provisioning in the cloud," Future Generation Computer Systems, vol. 28, no. 1, pp. 155-162,

2012.

[27] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu and R. Buyya, "Machine Learning-based Orchestration

of Containers: A Taxonomy and Future Directions," arXiv preprint arXiv:2106.12739, 2021.

[28] S. C. Hoi, D. Sahoo, L. Jing and P. Zhao, "Online learning: A comprehensive survey,"

Neurocomputing,, pp. 249-289, 2021.

[29] C. Qu, . R. N. Calheiros and R. Buyya, "Auto-scaling web applications in clouds: A taxonomy

and survey.," ACM Computing Surveys (CSUR), vol. 51, no. 4, 2018.
[30] V. R. Messias, J. C. Estrella, , R. Ehlers, Santana, M. J. Santana, R.C. Santana, and S. Reiff-

Marganiec, S., “Combining time series prediction models using genetic algorithm to

autoscaling web applications hosted in the cloud infrastructure”. Neural Computing and

Applications, 27(8), 2383-2406. 2016

