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Abstract

In this paper we consider the problem of finding bounds on the prices of options depend-
ing on multiple assets without assuming any underlying model on the price dynamics,
but only the absence of arbitrage opportunities. We formulate this as a generalized
moment problem and utilize the well-known Moment-Sum-of-Squares (SOS) hierarchy
of Lasserre to obtain bounds on the range of the possible prices. A complementary
approach (also due to Lasserre) is employed for comparison. We present several nu-
merical examples to demonstrate the viability of our approach. The framework we
consider makes it possible to incorporate different kinds of observable data, such as
moment information, as well as observable prices of options on the assets of interest.
Keywords: Semidefinite programming, Options pricing, Moment-SOS hierarchy.

1 Introduction

Derivative securities have become an integral part in financial economics and constitute at-
tractive instruments for a wide variety of parties. Such products may be used to hedge
portfolios, ensure financial planning security in supply chains and for investment purposes.
The value of a derivative security relies on the value of one or multiple assets, called under-
lyings, like stocks, currencies, commodities or similar. The most commonly used derivative
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securities are futures, forwards, swaps or options. A central question of financial economics
is at what price to sell such products. Important in this respect is to ensure the price put on
the security creates no possibility of arbitrage, i.e., there must not be a risk-free possibility
to make money. Two main approaches to finding bounds on such prices are used throughout
the literature. The first one assumes the prices of the underlying assets follow a stochastic
differential equation (SDE) and tools from the theory of SDEs are used to solve the problem
of finding a price. The most famous model in this regard is the Black and Scholes model,
which provides closed formula solutions to many problems. However, this has the drawback
that the assumed model is highly susceptible to model misspecifications and to parameter
estimation errors. The other approach, which is the one we will follow, has no underlying
model or assumptions on the price dynamics, but solely assumes the non-existence of arbi-
trage. It is based on the idea of using observable data like prices of other options on the
same asset or prices of correlation-based derivatives and then using semidefinite optimization
techniques to obtain solutions.

In this paper we will focus on the problem of deriving bounds on the price of European
call options. A European call option is a contract that gives the owner the right, but no
obligation, to buy an underlying asset at fixed price, referred to as strike (or strike price)
at a predetermined date in the future, called maturity. Since the owner is not obliged to
exercise the option, it has nonnegative value. For example, consider a European call option
with strike K on a stock, whose price at time t is given by St. If at maturity T the price
ST of the stock is greater than the strike price K, a rational owner will exercise the option
an make a profit of ST − K. If, however, the price of the asset is less than the strike, the
owner will not exercise the option (since they could buy the stock cheaper at the stock
market) and therefore not make a profit. Thus, the payoff function of the option is given by
max{ST −K, 0}. There are many different types of options and we will introduce the ones
that will be relevant in this paper. A rainbow option is an option on multiple underlyings
S
(1)
T , . . . , S

(n)
T that pays on the level of one option. For example a call on max with payoff

function max(0,max{S(1)
t , . . . , S

(n)
t } − K). This is equivalent to a lookback option on one

asset if S
(i)
t is the price of the same asset at n points in time. A basket option also depends

on multiple assets and pays on the level of more than one. For example, it could be a
weighted linear combination of the prices of the assets at maturity with payoff function
max(0,

∑n
i=1 αiS

(i)
t −K), where αi ≥ 0. Examples for options of this type are index options

or currency basket options. Because markets are incomplete in general, it is not possible to
compute exact prices of options. However, one can compute bounds, such that, if the price
of the option lies within the given range, it is consistent with the given information and does
not create the possibility of arbitrage.

1.1 Prior work

The problem of computing bounds on option prices without assuming a specific price dy-
namic of the underyling assets has been studied since the 1970s beginning with the poineering
work of Merton [21]. Cox and Ross [5] and Harrison and Kreps [11] show that the assump-
tion of no arbitrage possibilities is equivalent to the existence of a probability measure under
which the option prices become Martingales. Boyle and Lin [4] extended prior contributions
of Lo [20] considering the problem of deriving upper bounds on basket options on multiple
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assets given the means and the covariance matrix of the underlying assets by constructing
a semidefinite program. In [1], Bertsimas and Popescu considered a more general setting
assuming observable options prices as well as moment information of the underlying distri-
bution of the assets like means and variances are available. Using semidefinite programming
techniques they solve the univariate case and give closed form solutions to some cases. For
the multivariate case, i.e., options depending on multiple assets they prove that the problem
is NP-hard in general and present a relaxation to the problem by enlarging the set of possible
values the assets can attain. They follow up by identifying the cases in which their relaxation
can be solved efficiently, which is the case if the objective and the constraint functions are
quadratic or linear over d disjoint polyhedra D1, . . . , Dd which form a partition of Rn, where
n is the number of assets considered. Davis and Hobson [6] study the structure of the un-
derlying problem and give sufficient and necessary conditions for the existence of measures
specified in [5], [11]. In a series of papers (see [18], [13], [12]) Hobson, Laurence, and Wang
consider the case of multivariate basket options and give sharp upper and lower bounds when
the constraints consist of observable vanilla options prices. They do not employ semidefinite
programming techniques, but approach the problem by constructing primal and dual solu-
tions with a zero duality gap. Primbs [25] constructs dynamic replicating portfolios using
semidefinite programming to get upper and lower bound on option prices, using knowledge
of piecewise polynomial data. In his dissertation [10], d’Aspremont computes bounds for
basket options by constructing static replicating portfolios assuming knowledge on prices of
different basket options with the same maturity. Li et al. [19] extend the work of Bertsi-
mas and Popescu using sum-of-squares (SOS) relaxations to obtain a hierarchy of bounds
on option prices. Another approach was taken by Peña and Zuluaga [24]. They used tools
from conic programming to reformulate the considered problem and prove strong duality in
many cases. To give approximate solutions to the problem they propose to use increasingly
tight outer approximations of the cone of interest. For certain sets K they provide explicit
outer approximation sequences for the cone of measures supported on K, and use these to
compute upper bounds for option prices.

1.2 Contribution of this paper

Our work builds on the work of Bertsimas and Popescu [1]. We analyze and computationally
explore cases which they simply determined to be NP-hard. We consider a model similar
to the one treated by Li et al. [19], which in itself is a generalization of the problem Boyle
and Lin [4] considered. While the authors in [19] focus on a dual approach using inner
(i.e., SOS) approximations of the cone of positive polynomials, our main interest lies in a
primal method relying on an outer approximation of the moment cone. In contrast to Li et
al. we give a rigorous argument as to why we consider compact underlying sets whenever
we do so. To complement our primal method of outer approximation we analyze an inner
approximation of the moment cone as well. Our inner approximation does not rely on any
compactness assumption. In special cases we give explicit bounds on the support of the
optimal solution of the treated problem. Our method of outer approximations takes the
same approach as Peña and Zuluaga in [24]. Our analysis contributes additional insights
into when optimal solutions exist and the proposed hierarchies converge. Several numerical
examples are provided to illustrate the effectiveness of our methods.
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1.3 Outline of the paper

We first introduce some notation and give insights to the generalized moment problem and
the Moment-SOS hierarchy as tools to approximate such problems in section 2.

Following that, in section 3 we present the problem we intend to study in this paper, which is
finding bounds on the prices of options depending on multiple assets without assuming any
underlying stochastic processes of the assets prices. This can be modeled as a generalized
moment problem over a non-compact set.

Also in section 3, we prove the existence of an optimal solution of the problem formulation
we proposed. Equipped with this knowledge we continue in section 4 to apply the core
variety procedure to a special case to demonstrate how to obtain a bound on the support of
the optimal solution.

Section 5 contains a few examples of numerical computations for problems with real world
data as well as some explanation of the implementation techniques. In section 6 we apply
a relaxation technique for the non-compact generalized moment problem to our setting and
conclude the section with a numerical example to show its effectiveness.

2 Preliminaries

2.1 Notation

Let N = {0, 1, 2, . . . } be the set of nonnegative integers. We will denote by R[x] =
R[x1, . . . , xn] the ring of real multivariate polynomials in n variables x = (x1, . . . , xn). For a
vector α ∈ Nn with α = (α1, . . . , αn) we define xα = xα1

1 · . . . ·xαn
n . The degree of a monomial

xα is defined as |α| = α1 + · · · + αn and the degree deg(p) of a polynomial p ∈ R[x] is the
largest degree of all monomials it consists of. Further, let Nn

r = {α ∈ Nn : α1 + · · ·+αn ≤ r}.
The notation [m] for m ∈ N \ {0} denotes the set {1, . . . , m}. For r ∈ N we define [x]r to be
a monomial basis vector of R[x]r, i.e.,

[x]Tr = (1, x1, . . . , xn, x
2
1, . . . , x

r
n).

A polynomial p ∈ R[x] is called a sum of squares, abbreviated SOS, if it can be written as
a sum of squared polynomials, i.e. if

p =

m∑

i=1

pi(x)2,

for pi ∈ R[x]. Given ω ∈ R and x̃ ∈ R
n, a weighted Dirac delta measure ωδx̃ with weight ω

is a (atomic) measure with all its mass concentrated on x̃. If ω = 1 then it is a probability
measure. For a set K ⊂ Rn we denote by M(K)+ the set of positive finite Borel measures
supported on K. By 1A(x) we denote the indicator function of the set A. We denote by Sn

the set of n× n symmetric matrices, by Sn
+ the set of positive semidefinite matrices, and we

write X � 0 for X ∈ S
n
+.
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2.2 GMP and Moment-SOS-hierarchy

Let K ⊂ R
n. The generalized moment problem (GMP) is an optimization problem of the

following form

inf
µ∈M(K)+

∫

K

f0(x)dµ(x)

s.t.

∫

K

fi(x)dµ(x) = ai , for i ∈ [m1]
∫

K

gi(x)dµ(x) ≤ bi , for i ∈ [m2] ,

(1)

for m1, m2 ∈ N, ai, bj ∈ R and fi, gj ∈ R[x] for all i ∈ [m1], j ∈ [m2]. Since the vector space
M(K) of signed Borel measure is infinite dimensional, this problem is an infinite dimensional
conic linear optimization problem, whose duality theory is well understood, see, e.g., [28]. It
is straightforward to extend this problem to a more general case where one optimizes over
multiple measures supported on different sets and we refer to [29] for an analysis of the more
general case. We will use this framework to study the problem of pricing options in this
paper.

Many NP-hard problems can be modeled via the GMP, see e.g. [8]. Thus, solving the GMP in
full generality is rather hopeless. However, it is possible to construct relaxation hierarchies,
whose optimal values serve as bounds on the optimal value and often one can prove they
converge to the optimal value. One such hierarchy is the Moment-SOS hierarchy developed
by Lasserre [15]. Let y = {yα}α∈Nn be an infinite real sequence and let Ly : R[x] → R be
the Riesz linear functional defined by

f(x) =
∑

α∈Nn

fαx
α 7→ Ly(f) =

∑

α∈Nn

fαyα.

Therefore, if y is the moment sequence of a measure µ supported on a set K, i.e.

yα =

∫

K

xαdµ(x) for α ∈ N
n

then Ly coincides with the integration operator on polynomials with respect to µ, i.e. for a
polynomial f ∈ R[x] we find

Ly(f) =
∑

α∈Nn

fαyα =

∫

K

f(x)dµ(x).

Given a finite sequence y = {yα}α∈Nn
2r

, we associate the so-called truncated moment matrix
Mr(y) to y, defined as (Mr(y))α,β = yα+β for α, β ∈ Nn

r . Such a matrix has dimensions
s(r)× s(r), where

s(r) =

(
n + r

r

)

.
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For y as above, given a polynomial g ∈ R[x] of degree d, we define the localizing matrix
Mr(g ⋆ y) associated to y and g as

(Mr(g ⋆ y))α,β =
∑

γ∈Nn
d

gγyα+β+γ , for α, β ∈ N
n
r .

Let us now assume that K is defined as a finite conjunction of polynomial inequalities, i.e.,
a basic closed semialgebraic set:

K = {x ∈ R
n : hi(x) ≥ 0 for i ∈ [m3]} . (2)

For later purpose, let us define

rmin := max
i∈[m1],j∈[m2],k∈[m3]

{deg(f0), deg(fi), deg(gj), deg(hk)} .

For r ∈ N, with r ≥ rmin, the level r of Moment-SOS relaxation of (1) is defined as

inf
y∈Rs(2r)+rmin

Ly(f0)

s.t. Ly(fi) = ai , for i ∈ [m1]

Ly(gi) ≤ bi , for i ∈ [m2]

Mr(y) � 0

Mr(hi ⋆ y) � 0 , for i ∈ [m3].

(3)

For each r this is a semidefinite optimization problem (SDP) that can be solved up to
arbitrary precision in polynomial time using for instance interior point methods. SDPs can
be understood as a powerful generalization of linear programming problems (LPs), which
are more common in practice. The difference is that the decision variables in SDPs are
positive semidefinite matrices, whereas in LPs these are nonnegative scalar variables. For a
comprehensive introduction in semidefinite optimization we refer to the paper by Boyd and
Vandenberghe, see [3]. The moment and localizing matrices depend linearly on y and the
cost is linear in y. The Moment-SOS hierarchy presented above was introduced by Lasserre,
see [15]. For a survey on semidefinite programming relaxation of GMPs we refer the reader
to [8]. Also worth mentioning is the following sufficient condition for convergence of the
Moment-SOS hierarchy to the optimal value of the corresponding GMP. For this we make
the following assumption which is slightly stronger than compactness.

Assumption 1. Let hj(x) for j ∈ [m3] be the defining polynomials of K in (2) and define
h0(x) = 1 for all x ∈ Rn. There exist SOS polynomials σj for j = 0, 1, . . . , m3 such that
N − ‖x‖2 =

∑m3

j=0 σj(x)hj(x).

Assumption 1 is equivalent to the so-called Archimedian condition and if it is satisfied, the
Moment-SOS relaxation (3) converges to the optimal value of (1) for r → ∞, (cf. [16,
Theorem 4.1]). Nie [23] proved that the optimal value is achieved for a finite r for generic
polynomial optimization problems. Note that if we know that K is compact on can simply
add the redundant constraint N − ‖x‖2 ≥ 0 to K for N such that N ≥ ‖x‖2 for all x ∈ K
so that Assumption 1 is satisfied.
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3 Bounds on options via the GMP formulation

In this section we will cast the problem of computing bounds on the price of European
call options as a particular instance of the GMP. The option will be dependent on n assets
S1, . . . , Sn. We will denote the payoff function by ϕ : Rn

+ → R+, which may depend on
the prices of the n different assets. We assume the payoff is nonnegative, since we consider
options, meaning there is no obligation of the owner to exercise it, in which case the payoff
is zero. The range of possible prices for asset Si will be the nonnegative reals, i.e., xi ∈ R+.
Note that the payoff function is what defines the type of the option. As has been mentioned
the no-arbitrage assumption is equivalent to the existence of a probability measure µ such
that asset prices become martingales under µ. This measure is referred to as the equivalent
martingale measure or the risk-neutral measure. The price of the option is then given by the
expectation of the payoff function with respect to this measure. Here and throughout this
paper we assume for simplicity an interest rate of 0.

3.1 Problem statement

Let information pairs (fi, qi) for i ∈ I where fi : Rn
+ → R and qi ∈ R, be given. These pairs

might consist of payoff functions fi of options on the assets S1, . . . , Sn with the observable
prices qi at which theses options are traded, or prices of derivatives on moments of underlying
asset, such as mean, variance or correlation. In order to find bounds for the option at hand
we will look for a probability measure that is consistent with this given information. In other
words, the feasible set of measures µ will consist of measures such that

∫

Rn
+

fi(x)dµ(x) ≦ qi , for all i ∈ I,

where ” ≦ ” means either ” ≤ ” or ” = ”. We will also assume that the d-th order moments
of the corresponding distributions are finite for some d ∈ N. To fix ideas we will consider
the following problem adapted from [1]. Given n assets S1, . . . , Sn whose prices are given
by x1, . . . , xn, we want to find a lower bound on a European call option whose payoff may
depend on the assets Si for i ∈ [n]. The available information is the following: we have
Ni ∈ N prices qi,j, j ∈ [Ni] of options on asset Si with strikes ki,j for j ∈ [Ni]. Additionally,
we have some moment information in the following form

∫

Rn
+

fℓ(x)dµ(x) = pℓ ,

where fℓ ∈ R[x] and pℓ ∈ R. For example, if γi is the observed mean of asset i and the
observed covariance of assets i and j is σi,j , one can add the constraint

∫

Rn
+

(xi − γi)(xj − γj)dµ(x) = σi,j .

Further, we assume the d-th order moments under a risk-neutral pricing measure are finite,
where

d = max
i∈[n],j∈[Ni],ℓ∈[m]

{deg(ϕ), deg(fi,j), deg(fℓ)}+ 1.
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What we mean by this is that ∫

Rn
+

‖x‖d2dµ(x) ≤M

for some M ∈ R+, where ‖x‖2 =
√

x2
1 + · · ·+ x2

n is the standard Euclidean ℓ2-norm. A risk-
neutral pricing measure is a measure such that the asset prices are equal to the expectation
under this measure discounted by the risk-free interest rate. For convenience, we assume that
d is even, otherwise we set d← d+1. This way we make sure that we are dealing with a GMP
with (piecewise) polynomial data. The optimal value of the optimization problem below will
serve as bound for the given option that is consistent with the available information.

sup
µ∈M(Rn

+)+

/ inf
µ∈M(Rn

+)+

∫

Rn
+

ϕ(x)dµ(x)

s.t.

∫

Rn
+

max(0, xi − ki,j)dµ(x) = qi,j , for i ∈ [n], j ∈ [Ni]

∫

Rn
+

fℓ(x)dµ(x) = pℓ , for ℓ ∈ [m]

∫

Rn
+

dµ(x) = 1

∫

Rn
+

‖x‖d2dµ(x) ≤M .

(4)

To obtain upper bounds we maximize and for lower bounds we minimize. In a nutshell,
one is looking for the probability distribution of the asset price, that is consistent with the
known information and minimizes (respectively maximizes) the objective.

3.2 Existence of an optimal solution

Now we prove that the infimum in (4) is attained. In order to do so, we will use the Prokhorov
theorem [26] asserting a weak sequential compactness of a family of tight measures.

Definition 1 (Tightness). A sequence of measures (µk)
∞
k=1 defined on Rn is called tight if

for every ǫ > 0 there exists a compact set K such that µk(K
c) < ǫ for all k ∈ N.

Theorem 1 (Prokhorov). Let (µk)∞k=1 be a tight sequence of Borel probability measures on
Rn. Then there exists a Borel probability measure µ and a subsequence (µki)

∞
i=1 converging

weakly to µ, i.e.,

lim
i→∞

∫

g dµki =

∫

g dµ (5)

for all bounded continuous functions g on Rn.

Lemma 1. If Problem (4) is feasible, then its supremum/infimum is attained.

Proof. Proof. We begin by observing that if (4) is feasible, then the infimum in (4) is finite
since the objective function is nonnegative. Also, the supremum is finite because of the
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last constraint
∫

Rn
+
‖x‖d2dµ(x) ≤ M . Denote fi,j := max(0, xi − ki,j) and let (µk)

∞
k=1 be an

optimizing sequence for (4). Denote by φk the measures defined by

dφk = (1 + ‖x‖d−1
2 )dµk .

Moving on, we show that the sequence (φk)∞k=1 is tight. Let ǫ > 0 be given and let K be the
closed ball of radius a. Then we have

φk(Kc) =

∫

Rn

1{‖x‖2≥a}(1 + ‖x‖d−1
2 )dµk

≤ 1

a

∫

Rn

‖x‖2(1 + ‖x‖d−1
2 )dµk ≤

M1/d + M

a
,

where we used Jensen’s inequality [14] in the last step. By picking a sufficiently large,
we make φk(K

c) < ǫ, hence establishing tightness. By Theorem 1, there exists a weakly
convergent subsequence (that we do not relabel) that converges weakly to a measure φ. We
set

dµ :=
dφ

1 + ‖x‖d−1
2

to be the candidate optimizer for (4). We first show that the equality constraints for (4) are
satisfied by µ. We have

qi,j = lim
k→∞

∫

fi,j dµk = lim
k→∞

∫
fi,j

1 + ‖x‖d−1
2

dφk

=

∫
fi,j

1 + ‖x‖d−1
2

dφ =

∫

fi,j dµ ,

where in the third equality we used the fact that the function
fi,j

1+‖x‖d−1
2

is continuous and

bounded. The same argument applies to the objective function and the constraint
∫

dµ = 1,
as well as for the functions fℓ, ℓ ∈ [m]. Finally, we establish that

∫
‖x‖d2 dµ < M . We define

fn(x) := min(‖x‖d2, n). Then we have
∫

‖x‖d2 dµ
(i)
= lim

n→∞

∫

fn dµ = lim
n→∞

∫
fn

1 + ‖x‖d−1
2

dφ

(ii)
= lim

n→∞
lim
k→∞

∫
fn

1 + ‖x‖d−1
2

dφk = lim
n→∞

lim
k→∞

∫

fn dµk

(iii)

≤ lim
n→∞

lim
k→∞

∫

‖x‖d2 dµk ≤M ,

where we used the monotone convergence theorem in (i), the weak convergence of φk to φ
in (ii) and the fact that fn ≤ ‖x‖d2 in (iii).

Combining this result with the Richter theorem (see [27, Satz 4] for an original reference
or [9, Theorem 19] for a modern statement and historical remarks), we get the following
immediate corollary.

Corollary 1. If Problem (4) is feasible, then the optimal value of (4) is attained by an
atomic measure with finitely many atoms (at most n

∑n
i=1Ni + m + 3).
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We finish this section by showing that finite d-th order moments are necessary for the exis-
tence of an optimal solution.

Proposition 1. The last constraint in (4) cannot be omitted in Lemma 1.

Proof. Proof. Consider the following problem

p∗ = inf

∫ ∞

0

max(0, x− k1)dµ

s.t.

∫ ∞

0

max(0, x− k2)dµ = a

∫ ∞

0

dµ = 1 ,

(6)

where we assume k1 < k2 and a 6= 0. Note that this implies that for the optimal value
we have p∗ ≥ a. We will show that there exists no measure for which the optimal value is
attained. The following is a minimizing sequence for (6)

µn =

(

1− 1

n

)

δk1 +
1

n
δk2+na .

For every n ∈ N we see that µn is a probability measure as it is a convex combination of
atomic measures and

∫ ∞

0

max(0, x− k2)dµn =
1

n
(k2 + na− k2) = a .

So the sequence is indeed feasible. For the objective value we get

∫ ∞

0

max(0, x− k1)dµn =

(

1− 1

n

)

(k1 − k1) +
1

n
(k2 + na− k1) = a +

1

n
(k2 − k1) .

So we have that µn is a minimizing sequence as it is feasible and converges to a ≤ p∗. The
limit limn→∞ µn = δk1, however, is not feasible. We now show that there exists no probability
measure µ ∈ M(R+)+ that is optimal for (6). For this we assume that µ is an optimizer of
(6). Then we have

∫

R+

max(0, x− k1)dµ(x) = a =

∫

R+

max(0, x− k2)dµ(x) .

Thus,

0 =

∫

R+

max(0, x− k1)dµ(x)−
∫

R+

max(0, x− k2)dµ(x)

=

∫ k2

k1

(x− k1)
︸ ︷︷ ︸

≥0

dµ(x) +

∫ ∞

k2

(k2 − k1)
︸ ︷︷ ︸

>0

dµ(x) .
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The latter integral must be zero which implies that supp(µ)∩ [k2,∞) = ∅. But if that is the
case we have

a =

∫

R+

max(0, x− k2)dµ(x) =

∫ ∞

k2

(x− k2)dµ(x) = 0.

Therefore, µ cannot be feasible.

This example therefore illustrates that the support of a minimizing sequence can tend to
infinity.

4 Bounding the support

By Corollary 1 the optimal solution to (4) is a measure with finitely many atoms. This
section is devoted to the question whether it is possible to bound the support of the optimal
solution in terms of the problem data of (4). If this were possible, i.e., if we knew the
optimal solution is attained in a box [0, B]n for some B ∈ R+, we could consider a compact
version of (4), where Rn

+ is replaced by [0, B]n. This has the advantage that we know that
the Moment-SOS hierarchy converges if the underlying sets are compact (recall Assumption
1 in connection with [16, Theorem 4.10]). It may be possible to derive such a bound by
analyzing the core variety associated to the moment functional arising from any optimal
solution of (4). Specifically, in view of Theorem 2.10 of [2] one should bound a B ∈ R+ such
that the core variety associated to the set [0, B]n and the optimal moment functional of (4)
is nonempty. We carry out the core variety procedure for an artificial example to show how
it works and demonstrate that in special cases it is possible to derive a bound on the support
in this way.

4.1 Approach 1: Core variety

We follow the notation of Section 1.1. of [2]. Consider the following problem

p∗ = inf

∫ ∞

0

max(0, x− k)dµ

s.t.

∫ ∞

0

dµ = 1

∫ ∞

0

x2dµ ≤M ,

(7)

for some M > 0. Let a be the objective value of this problem for some feasible measure µ∗

and let m be such that we have
∫∞

0
x2dµ∗ = m ≤ M . Define f = max(0, x− k). Let S be

the interval [0, B] with B > 0 to be determined and let

V := span{1, f, x2} .
Note that the constant function must be included since we are looking for representing
probability measures. Define the linear functional L : V → R by

L(c1 · 1 + c2f + c3x
2) =

∫

(c1 + c2f + c3x
2) dµ = c1 + c2a + c3m,

11



for (c1, c2, c3) ∈ R
3 and define

S0 := S ,

which is the initial step of the core-variety iterative computation procedure. The next step
is given by setting

S1 = Z(g ∈ V | L(g) = 0, g ≥ 0 on S0) ,

where Z(P ) denotes the set of all common zeros of the functions contained in P . The
subsequent steps of the core variety computation procedure are given by induction and the
core variety itself is the terminal step of this procedure (which is provably finite). Here we

prove that S1 = S0 = [0, B] whenever B > k if a = 0 and B >
M+
√

M(M−4ak)

2a
if a > 0. In

order to do so, let g = c0 + c1f + c2x
2 ∈ V be given. The requirement of L(g) = 0 means

that
c0 + c1a + c2m = 0

and hence c0 = −c1a− c2m. Therefore

g = c1(f − a) + c2(x
2 −m) = c1(max(0, x− k)− a) + c2(x

2 −m) .

We need to understand when g(x) ≥ 0 for all x ∈ [0, B], i.e., what restriction do we have on
the ci’s for i = 1, 2.

We distinct two main cases, a = 0 and a > 0 and then consider subcases to solve the problem.
The aim is to determine a B ∈ R+ such that all g ∈ V satisfying L(g) = 0 and g ≥ 0 on
[0, B] are identically zero on S0. This is the case if c0 = c1 = c2 = 0 and the core variety
procedure terminates.

Case 1: a = 0. First, note that if a = 0 we have
√
m ≤ k. The reason is that

0 =

∫ ∞

0

max(0, x− k)dµ =

∫ ∞

k

(x− k) dµ

and so supp(µ) ∩ (k,∞) = ∅, which implies

m =

∫ ∞

0

x2dµ =

∫ k

0

x2dµ ≤ k2

∫ k

0

dµ = k2

and so
√
m ≤ k.

Case 1.1. c2 > 0. Since f(0) = 0, we have g(0) = −(c2m) and hence c2 cannot be positive.

Case 1.2. c1 < 0, c2 < 0. Now, for x > max(
√
m, k) = k, both (x2−m) and (max(0, x−k))

are strictly positive and so c1, c2 cannot be strictly negative at the same time, since then
g(B) < 0 for B > k.

Case 1.3. c1 > 0, c2 < 0. If
√
m = k set x > k. If

√
m < k + a we can simply set x =

√
m

and see that

0 ≤ g(x) = c1(x− k) + c2(x
2 − k2) = (x− k)(c1 + c2(x + k)) ,

which becomes negative if x ≥ − c1
c2
− k. Assume 0 ≤ g(k + ε) for some ε > 0. Then,

0 ≤ εc1 + c2(2εk + ε2)

12



and so
−c1
c2
≤ 2k + ε ,

from which follows that the choice c1 > 0, c2 < 0 leads to g(x) < 0 if x > k+ ε for any ε > 0.
If instead

√
m < k we can simply set x = k to find

0 ≤ g(k) = c2(k
2 −m) < 0 .

For all cases above we found that for B > k, the only function g ∈ V that satisfies g(x) ≥ 0
on S0 is identically 0.

Case 2: a > 0. In this case we must again check all possibilities for c1, c2.

Case 2.1: c1 > 0, c2 > 0. For x = 0 we see

0 ≤ g(0) = c1(−a) + c2(−m) < 0 .

Case 2.2: c1 < 0, c2 < 0. For x ≥ max(
√
m, k + a) we find

0 ≤ g(x) = c1(x− k − a) + c2(x
2 −m) < 0 .

Case 2.3: c1 > 0, c2 < 0. If
√
m < k + a we find

g(
√
m) = c1 (max(0,

√
m− k)− a)

︸ ︷︷ ︸
<0

+c2((
√
m)2 −m) < 0 .

If
√
m ≥ k + a, then note that 0 ≤ g(0) = c1(−a) + c2(−m) from which follows c1 ≤ −c2m

a
.

Then for x ≥ √m we find

0 ≤ c1(x− k − a) + c2(x
2 −m) ≤ c2

(

x2 − m

a
x +

mk

a

)

.

The content of the brackets is positive for

x >
m +

√

m(m− 4ak)

2a
,

and note the term under the square root is positive because m ≥ k2 + 2ak + a2.

Case 2.4. c1 < 0, c2 > 0. Let
√
m > k + a. Setting x = k + a we find g(k + a) =

c2((k + a)2 − m) < 0. Thus, consider the case where
√
m ≤ k + a. Note that we can

deduce c1
c2
≤ −m

a
from g(0) ≥ 0. Let x > k. We want to check for what x we have

c1(x− k − a) + c2(x
2 −m) < 0. This is the case if

c1
c2
≤ −m

a
< − x2 −m

x− k − a
.

We are looking for the smallest root x∗ of x2 − m
a
x + mk

a
such that x∗ > k. The roots are

given by

x1,2 =
m±

√

m(m− 4ak)

2a
.

13



We show

x1 =
m−

√

m(m− 4ak)

2a
> k .

For this note that

m−
√

m(m− 4ak)

2a
> k ⇔ m− 2ak >

√
m2 − 4amk .

Squaring both sides and cleaning up we see this is true.

In conclusion, if B >
M+
√

M(M−4ak)

2a
the core variety procedure terminates after the first step

and the support of the corresponding measure lies in [0, B].

4.2 Approach 2: Atomic representation

We now present a different approach to the problem of bounding the support to verify the
bound we obtained before. Consider the univariate, i.e. n = 1 case for problem (4) and
assume it is feasible and m = 0. Also let the strike prices be ordered, i.e. k1,≤ k2 ≤ · · · ≤
kN1 . Therefore we have N1 equality constraints, each corresponding to the observable price
of a vanilla option on the considered asset. We further assume the payoff function to be the
payoff of a European call option, i.e. ϕ(x) = max(0, x− k) for some k ∈ R+. By Corollary
(1) there exists an atomic solution of the form

∑m
j=1 αjδxj

. Let 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm.
The following lemma shows that we may assume w.l.o.g. that xm−1 ≤ kN1 ≤ xm.

Lemma 2. Consider (4) for n = 1 and m = 0. If there exists an optimal solution, then
there exists one such that exactly one atom x(i) lies in (kN1,∞). Moreover, there exists a
solution such that in each of the intervals

[0, k1], [k1, k2], . . . , [kN1−1, kN1], [kN1 ,∞)

there is at most one atom.

Proof. For the first claim asserting that there exists an optimal measure µ∗ such that exactly
one atom lies in (kN1,∞), let us assume that all atoms lie in [0, kN1]. Then

aN1 =

∫

R+

max(0, x− kN1)dµ
∗ =

∫ kN1

0

max(0, x− kN1)dµ
∗ = 0 ,

which is a contradiction. Thus, at least one atom lies in (kN1 ,∞). Suppose two atoms lie in
(kN1 ,∞) and let the associated weighted Dirac measures be αδx1 and βδx2 with α, β > 0 and
x1, x2 > kN1. Now, since x1, x2 > kN1 these two Dirac measures influence every constraint of
(4) as well as the objective because all input functions are strictly positive at x1, x2. Their
influence is exactly

α(x1 − ki) + β(x2 − ki) = (α + β)

(
α

α + β
x1 +

β

α + β
x2 − ki

)

.

It follows that these two Dirac measure can be combined to a single one with weight ω =
α + β > 0 and support x = α

α+β
x1 + β

α+β
x2 > kN1 without changing the influence on the
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data. Also, because ‖ · ‖d is convex, the inequality constraint is also satisfied. By similar
reasoning one can prove the second claim of the lemma.

We deduce that therefore αm(xm − kN1) = aN1 . We also know αmx
2
m ≤ M ⇔ αm ≤ M/x2

m,
from which follows that aN1 ≤M/x2

m(xm − kN1). Hence,

xm ≤
M +

√

M(M − 4aN1kN1)

2aN1

=: B .

In the univariate case the support of an optimal solution lies in [0, B].

5 Examples for outer range

We will now present some examples of numerical computations of bounds on option prices
in the framework specified in the previous sections. The Moment-SOS hierarchy provides a
lower bound to the minimization problem and an upper bound to the maximization problem,
which is why we call these outer bounds. For the implementation was coded in Julia and we
used the MOSEK solver [22] version 9.1.9. The code is available online1 and relies partly on
the Julia package MomentOpt.jl [30].

5.1 Univariate case

Let us describe our implementation strategy for the univariate case. Assume we want to find
bounds on the price of an option with strike k given strikes and prices of other options on
the same asset, i.e., the following problem:

sup
µ∈M(R+)+

/ inf
µ∈M(R+)+

∫

R+

max(0, x− k)dµ(x)

s.t.

∫

R+

max(0, x− ki)dµ(x) = ai , for i ∈ [n]

∫

R+

dµ(x) = 1

∫

R+

x2dµ(x) ≤M .

(8)

Since we know from Lemma 1 that feasibility implies the existence of an optimal solution,
we will assume the optimal solution will be attained in a box [0, B] for some B ∈ R. A
suitable B can be obtained via the procedure described in section 4.
To circumvent the problem of dealing with piecewise affine functions we split the interval
[0, B] into subintervals and define measures supported on each of the subintervals. For
this let m be the index such that km < k < km+1. We define intervals [0, k1], [ki, ki+1] for
i = 1, . . . , m − 1, as well as [km, k], [k, km+1] and [kj, kj+1] for j = m + 1, n − 1 and finally
[kn, B]. The situation is visualized in Figure 5.1

1https://github.com/FelixKirschner/boundingOptionPricesCode
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[km+1, km+2] . . . [kn, B]

B

Figure 1: Visualization of the segmentation of the interval [0, B]

Let S be the collection of these subsets. Elements in S are pairwise disjoint and the union
of all sets in S is [0, B]. The collection S contains n+ 2 intervals and to each one is assigned
a measure µi for i = 1, . . . , n + 2. This way we can formulate a problem equivalent to (8).

sup / inf

n+2∑

i=m+2

∫

(x− k)dµi(x)

s.t.

n+2∑

i=j+2

∫

(x− kj)dµi(x) = aj , for j = m + 1, . . . , n

n+2∑

i=j+1

∫

(x− kj)dµi(x) = aj , for j ∈ [m]

n+2∑

i=1

∫

x2dµi(x) ≤ M

n+2∑

i=1

∫

dµi(x) = 1 .

(9)

Let si = [si1 , si2 ] for i = 1, . . . , n + 2 be the elements of S. Introduce a linear operator
Lr
i : R[x]2r → R for every µi. The level r relaxation is then given by

sup / inf

n+2∑

i=m+2

Lr
i (x− k)

s.t.
n+2∑

i=j+2

Lr
i (x− kj) = aj , for j = m + 1, . . . , n

n+2∑

i=j+1

Lr
i (x− kj) = aj , for j ∈ [m]

n+2∑

i=1

Lr
i (x

2) ≤M

n+2∑

i=1

Lr
i (1) = 1

Lr
i ([x]r[x]Tr ) ∈ DNN , for i ∈ [n + 2]

Lr
i ((si2 − x)(x− si1)[x]r−1[x]Tr−1) ∈ DNN , for i ∈ [n + 2] ,

(10)
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i 1 2 3 4 5
ki 95 100 110 115 120
ai 12.875 8.375 1.875 0.625 0.25

Table 1: Prices of European call options on the Microsoft stock from July ’98 with strikes ki

where DNN is the doubly nonnegative cone, i.e., Sn
+ ∩Rn×n

+ and the operator Lr
i is applied

entry-wise to the matrices [x]r[x]Tr . The decision variables here are the linear operators Lr
i .

By introducing a variable y
(i)
α = Lr

i (x
α), for i ∈ [n + 2], α ∈ N

n
r problem (10) becomes

a regular semidefinite program. For the actual calculation it is expedient to normalize
everything, divide the given data by B. Consider problem (8) with the data displayed in
Table 1 and with k = 105 and with M = 20000. Using the relaxation given in (10) we can
approximate the optimal solution and we find the first level is tight, meaning we obtained
the optimal bounds proposed by Bertsimas and Popescu in [1]. For the considered case we
get a lower bound of 3.875 and an upper bound of 5.125 and the computation took 0.01
seconds.

5.2 Explicit examples with two assets

Consider the following example where we want to compute bounds on the price of a basket
option on a basket with two assets whose prices are given by x1 and x2, respectively. As a
payoff function we choose max(0, 1/2x1 + 1/2x2−K). We assume we can observe the prices
of two single call options on each asset. The corresponding optimization program is given
in (11) below.

sup
µ∈M(R2

+)+

/ inf
µ∈M(R2

+)+

∫

R2
+

max

(

0,
1

2
x1 +

1

2
x2 −K

)

dµ(x)

s.t.

∫

R2
+

max(0, xi − kxi,j)dµ(x) = axi,j , for i, j = 1, 2

∫

R2
+

‖x‖22dµ(x) ≤M

∫

R2
+

dµ(x) = 1.

(11)

To solve this numerically we slice up the domain into an irregular grid along the kinks of the
max-functions, under the assumption that the support of the optimal solution is contained
in [0, B]2 for some B ∈ R. The domain then may look as depicted in Figure 2, where the
red lines indicate where the objective ascends from 0, i.e., where 0.5x1 + 0.5x2−K = 0. We
index the tiles from bottom to top, left to right. For each tile i in the grid we introduce a
new measure µi. For example for tile 12 in Figure 2 we get

supp(µ12) = {x ∈ R
2 : (B − x1)(x1 − kx1,2) ≥ 0 , x2(kx2,1 − y) ≥ 0 ,

1/2x1 + 1/2x2 −K ≥ 0} .

Consider the following (strike, price) pairs
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Figure 2: Example of how the support might be split

• x1: (100, 12), (110, 3)

• x2: (102, 10), (107, 6)

and let M = 200, B = 400 and K = 105.

Applying the above described procedure to problem (11) with the data given above results
in problem (12). Note that (11) and (12) are equivalent. With respect to Figure 2 the index
sets Ji for i = 0, 1, . . . , 5 correspond to the sets on which the functions which define problem
(11) are not identically zero, i.e.,

• max(0, 1
2
x1 + 1

2
x2 −K) = 1

2
x1 + 1

2
x2 −K on J0 = {4, 6, 8, 10, 12, 13, 14}

• max(0, x1 − kx1,1) = x1 − kx1,1 on J1 = {5, 6, . . . , 14}

• max(0, x1 − kx1,2) = x1 − kx1,2 on J2 = {11, . . . , 14}

• max(0, x2 − kx2,1) = x2 − kx2,1 on J3 = {2, 3, 4, 7, 8, 9, 10, 13, 14}

• max(0, x2 − kx2,2) = x2 − kx2,2 on J4 = {3, 4, 9, 10, 14}.
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i 1 2 3
kx,i 95 100 110
ax,i 16 11 3
ky,i 96 102 107
ay,i 15 9 6

Table 2: Strikes and corresponding prices for European call options

Thus, we obtain the following problem:

sup
µi

/ inf
µi

∑

i∈J0

∫ (
1

2
x1 +

1

2
x2 −K

)

dµi(x)

s.t.
∑

j∈J1

∫

(x1 − kx1,1) dµj(x) = ax,1

∑

j∈J2

∫

(x1 − kx1,2) dµj(x) = ax1,2

∑

j∈J3

∫

(x2 − kx2,1) dµj(x) = ax2,1

∑

j∈J4

∫

(x2 − kx2,2) dµj(x) = ax2,2

14∑

i=1

∫

dµi(x) = 1

14∑

i=1

∫

x2
1 + x2

2 dµi(x) ≤ M .

(12)

Applying the Moment-SOS hierarchy of level 1 to this problem results in an upper bound of
7.4 and a lower bound of 2.387, which are in the optimal values of (11).

Varying strikes

We are now going to give an example to see how changing the strike price affects the optimal
values of the optimization problems. Consider the data presented in Table 2 and let the
objective function be max(0, 1/2x1+1/2x2−K), B = 400 and M = 200. The optimal values
are given in Table 3. All values stem from the first level of the Moment-SOS hierarchy and
increasing the level up to level 10 did not change the objective values. For all K ≤ 101, the
obtained lower and upper bounds remain equal.

Currency Basket

A currency basket is simply a way to determine the value of a national currency by calculating
the weighted average of exchange rates of selected foreign currencies. These objects became
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K 103 104 105 106 107 108

lower bound on price 7.999 6.9993 5.9993 4.9993 3.9993 2.9993
computation time [s] 0.10 0.10 0.10 0.09 0.08 0.08

upper bound on price 8.4 7.6 6.8 6 5.4 4.8
computation time [s] 0.11 0.10 0.11 0.11 0.10 0.10

Table 3: Optimal lower and upper bounds w.r.t. the data given in Table 2

K 100 105 110 115 120

lower bound on price 1.4933 1.2599 1.0266 0.7933 0.56
computation time [s] 0.22 0.23 0.22 0.20 0.16

upper bound on price 31.5834 26.5833 21.5833 16.5833 11.5833
computation time [s] 0.15 0.16 0.18 0.18 0.16

Table 4: Optimal lower and upper bounds for a currency basket option with different strikes
for level r = 2

popular in 1971 after the abolition of the gold standard. Options on currency baskets are
attractive tools for multinational corporations to manage exposure to multiple currencies.
Consider the following currency basket option on Euro and British Pounds in US Dollars.
For both EUR/USD and GBP/USD two options are observable in the form (strike, price):

• EUR/USD: {(135.5, 2.77), (138.5, 1.17)}

• GBP/USD: {(116, 2.21), (119, 0.67)}

We choose the weights (2/3, 1/3) for the objective function, i.e. ϕ(x) = max(0, 2/3x1 +
1/3x2 − K) and we compute bounds for different values of K. We obtain an optimization
problem similar to (11). The optimal values are shown in Table 4. For this particular
example, it is clear that the bounds are not very useful in practice. This is, however, not
due to our approach but to the number of data point given. In practice, there are more
observable options available, improving the bounds that can be obtained.

Example from Boyle and Lin [4]

In this example we compute bounds for a different type of option. We assume we only have
data like mean, variance and correlation of the assets under the risk-neutral pricing measure
is available, instead of observable option prices with different strikes. The type of option is
specified through the payoff function, which will be given by max(0,max(x1, . . . , xn) − K)
in this case. This type of option is called call on max. It is based on n assets S1, . . . , Sn,
and gives the owner the right to buy the asset which at maturity is the most valuable for
the predetermined strike K.

The data in the following example is taken from Boyle and Lin [4], where they intro-
duced a different method to compute upper bounds. Consider three assets with means
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K 30 35 40 45 50
Boyle & Lin [4] 21.51 17.17 13.2 9.84 7.3

upper bound on price 21.51 17.17 13.2 9.84 7.3
computation time [s] 0.02 0.01 0.01 0.02 0.02

lower bound on price 14.21 9.21 4.21 0 0
computation time [s] 0.02 0.02 0.01 0.01 0.01

Table 5: Revisiting an example from Boyle and Lin, computing bounds on prices of a basket
options given means and covariance of the underlying assets for different strikes.

(44.21, 44.21, 44.21) and the covariance matrix given by

C =





184.04 164.88 164.88
164.88 184.04 164.88
164.88 164.88 184.04



 .

Then, in our setting, the smallest upper bound on the price on the call on max option on
these three assets is the optimal value of the following optimization problem:

sup
µ∈M(R3

+)+

∫

R3
+

max (0,max(x1, x2, x3)−K) dµ(x)

s.t.

∫

R3
+

xidµ(x) = 44.21 , for i = 1, 2, 3

∫

R3
+

(xi − 44.21)(xj − 44.21)dµ(x) = Ci,j , for i, j = 1, 2, 3

∫

R3
+

‖x‖22dµ(x) ≤M

∫

R3
+

dµ(x) = 1

(13)

The upper and lower bounds we obtain for different strikes

K ∈ {30, 35, 40, 45, 50}
are given in Table 5 as well as the bounds obtained by Boyle and Lin. As in the previous
example, the weakness of the bound is due to the fact that not enough information is available
and is not inherent to the approach. Note that in their paper, Boyle and Lin only give a
procedure for upper bounds. Also, in the original reference Boyle and Lin include a discount
factor of exp(−0.1) to account for an assumed risk free interest rate. This has no effect on
the optimization problem, they simply multiply their solution by the discount factor in the
end.

6 Relaxations of the non-compact case

We will consider another approach to approximate the solutions to problems like (4), but
without assuming the underlying set is compact.
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6.1 Lasserre hierarchy of inner range

The one considered in this section, known as the Lasserre measure-based hierarchy of inner
bounds introduced by Lasserre [17], consists of fixing a reference measure ν on Rn

+ such that
ν(Rn

+) < ∞ and then approximating the density function of the optimal measure µ for (4)
by SOS polynomials hr(x) ∈ Σ[x]r, such that dµ(x) = hr(x)dν(x). This has the advantage
that instead of searching for an optimal measure in the infinite dimensional cone M(Rn

+)+
we optimize over the set of sums of squares of fixed degree, which can be done with SDP
techniques. Opposed to before, the cone of measures M(Rn

+)+ is here approximated from
inside, while before, we used an outer approximation. A possible choice for the reference
measure is

dν(x) = exp

(

−
n∑

i=1

xi

)

dx .

An important assumption on the reference measure is that its moments must be avail-
able in closed form or efficiently computable. In the case above the moments are given by
∫

Rn
+
xαdν(x) = α!. The level r relaxation of problem (4) can be formulated as follows

inf
hr∈Σ[x]r

∫

Rn
+

ϕ(x)hr(x)dν(x)

s.t.

∫

Rn
+

fi,j(x)hr(x)dν(x) = qi,j , for i ∈ [n], j ∈ [Ni]

∫

Rn
+

fℓ(x)hr(x)dν(x) = pℓ , for ℓ ∈ [m]

∫

Rn
+

‖x‖22hr(x)dν(x) ≤ M .

(14)

This problem can be cast as an SDP. It should be noted that the above SDP might be
infeasible even if the GMP has an optimal solution. As a simple example consider the
following constraint for some α ∈ Nn

∫

Rn
+

xαdµ(x) = 0 .

While the atomic Dirac delta measure δ0 at 0 certainly satisfies this equation, there is
no r ∈ N such that there is a degree r sos polynomial density function that does. One
can, however, relax the constraints slightly, by searching for an hr such that one lands in
(increasingly) close proximity of the right hand side. Consider the following generalized
moment problem

b0 = inf
ν∈P(K)+

{∫

K0

f0(x)dν(x) :

∫

Ki

fi(x)dν(x) = bi

}

, (15)

where P(K)+ is the set of probability measures on K ⊂ Rn, intK 6= ∅ and Ki ⊂ K is closed
for every i = 0, 1, . . . , m. De Klerk et al. proved the following result in [7].
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Theorem 2. Let µ be a reference measure with known (or efficiently computable) moments
such that the moments are finite and

∫

K
x2k
i dµ(x) ≤ (2k)!M for some M > 0 and all

i ∈ [n], k ∈ N. If all fi for i = 0, 1, . . . , m are polynomials, then, as r →∞ we have

ε(r) := inf
h∈Σ[x]r

max
i=0,1,...,m

∣
∣
∣
∣

∫

Ki

fi(x)h(x)dµ(x)− bi

∣
∣
∣
∣

tends to zero (ε(r) = o(1)).

This means that if we fix an ε > 0 and relax the equality constraints to an ε neighborhood of
the RHS, then we will eventually (for r large enough) find a feasible solution for the relaxation
such that the optimal value is at most ε away from the true optimum. Theorem 2 promises
convergence but we cannot say anything about the rate at which ε goes to zero. It shall
be mentioned that adding the ε(r) in the relaxation does not necessarily result in the inner
range of the bounds of the sought option prices, since this is basically an outer approximation
of the inner range. Another way to think of it is first relaxing the equality constraints of
problem (14) resulting in an increase of the possible range and then applying the inner
approximation to the obtained optimization problem. When adding the εr-relaxation it is
clear that we cannot expect monotonicity of the bounds, which will become apparent in the
numerical results of section 6.2.

6.2 Univariate example

Consider the following example with data taken from [1].

sup
hr∈Σ[x]r

/ inf
hr∈Σ[x]r

∫

R+

max(0, x− 105)hr(x)dν(x)

s.t.

∫

R+

max(0, x− 100)hr(x)dν(x) = 8.375

∫

R+

max(0, x− 110)hr(x)dν(x) = 1.875

∫

R+

hr(x)dν(x) = 1

(16)

We know that the optimal lower and upper bounds for this data set are 3.375 and 5.125,
respectively. To improve the numerical stability of SDP (16), one can use a basis which is
orthogonal on R+ w.r.t. the measure dν(x) = exp(−x)dx, namely the Laguerre basis defined
by

Ln(x) =
n∑

i=0

(
n

i

)
(−1)i

i!
xi .

These polynomials form an orthogonal system for the Hilbert space L2(R+, w(x)dx) with
w(x) = exp(−x), i.e.,

∫ ∞

0

Ln(x)Lm(x) exp(−x)dx =

{

1, if m = n

0, otherwise.
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r 2 3 4 5 6 7 ∞
εr 0.0273 0.02525 0.022125 0.01755 0.0161 0.0161 0

upper bound 5.1279 5.1366 5.1288 5.1264 - - 5.125
time in s 0.01 0.01 0.01 0.01 - - -

lower bound 5.122 5.1136 5.1221 5.1251 4.224 3.3522 3.375
time in s 0.01 0.01 0.01 0.01 0.02 0.03 -

Table 6: Optimal solutions for the level-r relaxation of the measure-based Lasserre hierarchy
applied to the εr relaxation given in (18) for Laguerre basis with varying εr for r = 2, . . . , 7.
The εr are the smallest possible such that the resulting SDP still has a feasible solution.

To implement the program we used the fact that

∫ ∞

k

xndν(x) = exp(−k)

(
n∑

ℓ=0

n!

ℓ!
kℓ

)

(17)

and relaxed it to

sup
hr∈Σ[x]r

/ inf
hr∈Σ[x]r

∫

R+

max

(

0, x− 105

110

)

hr(x)dν(x)

s.t.

∣
∣
∣
∣

∫

R+

max

(

0, x− 100

110

)

hr(x)dν(x) − 8.375

110

∣
∣
∣
∣
≤ εr

∣
∣
∣
∣

∫

R+

max

(

0, x− 110

110

)

hr(x)dν(x) − 1.875

110

∣
∣
∣
∣
≤ εr

∣
∣
∣
∣

∫

R+

hr(x)dν(x) − 1

110

∣
∣
∣
∣
≤ εr .

(18)

As a normalization step, we divided the data by 110. We indicate in Table 6 how the optimal
values change if for level r we choose εr to be the smallest value such that the corresponding
relaxation still has a feasible solution. In other words, decreasing εr in this cases results in
infeasibility. Observe that no monotonicity appears, which is expected because the equality
constraint is relaxed. We mention that in Table 6 for r ∈ {6, 7} MOSEK could not solve the
maximization problem. However, the upper bound approximations were already reasonably
accurate at the previous levels. It seems that the approach considered in section 3 is superior
to the one presented in this section, since there we get the optimal values of 5.125 and
3.375 for the first level of the hierarchy already. Especially, when considering the fact that
increasing r quickly results in numerical problems and the problem is highly susceptible
to small changes in εr. Additionally, it is difficult to estimate how much the ε relaxation
perturbs the optimal value of the optimization problem.

7 Conclusion and further research

In this section we reflect on our results, and state open questions that could be further
studied. The model we considered has the advantage that it combines different possibilities
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of using observable data. Option prices with different strikes as well moment information
like mean, (co-)variance etc, can be taken into account, which is very useful in practice. The
Moment-SOS hierarchy, which was used to obtain the outer range delivers good approxi-
mations for low hierarchy levels. The method for the inner range quickly fails but in the
considered cases still gave reasonable bounds. However, comparing the two, the outer range
clearly outperformed the inner range.

Regarding the compactness argument it should be noted that in practice it might be pro-
hibitive to carry out the core variety procedure in a setting with many assets and constraints.
In a setting where it becomes too difficult one can of course start with an educated guess
for the B defined in section 4 and compute bounds for this B and a larger one B̂ > B, and
increase B until the optimal values no longer change.
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