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Abstract8

In bladed disks, friction nonlinearities occurring within the contact between the blades and9

disk or between the blades and underplatform dampers are used to decrease the vibratory10

energy of the system and extend its lifespan. Modeling these nonlinearities and simulat-11

ing their effects correctly are challenging: complex nonlinear phenomena such as stick,12

slip and separation may occur in the contact zones. Efficient numerical methods must be13

used to compute the dynamics of the system in a reasonable amount of time. This paper14

proposes a new reduction methodology to tackle large cyclically symmetric finite-element15

models undergoing static preload from centrifugal effects and strong nonlinearities (fric-16

tion and separation). It combines the nonlinear identification of the possible interacting17

nodal diameters with a linear component mode synthesis procedure. Its performances are18

assessed through comparisons with some state-of-the art methods. Complex and realistic19

nonlinear finite-element models of bladed disks with underplatform dampers and dovetail20

or fir-tree blade roots are used. The Dynamic Lagrangian Frequency Time algorithm is21

employed to capture the nonlinear effects. Using the proposed new reduction methodol-22

ogy, the effect of underplatform dampers on bladed disk contact occurrence and damping23

efficiency is investigated.24
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1. Introduction27

Vibration is widely present in turbomachinery. Engineers seek to decrease its level28

in order to extend engine lifespan and reduce the cost of maintenance. Introducing fric-29

tion nonlinearities, such as contact between blades and disk or blades and underplatform30

dampers, is widely used as a damping mechanism. This paper will focus on these two31

different nonlinearities, considered either separately or combined together.32

Different designs of friction dampers have been studied by Petrov [1, 2]. The work33

of Gola et al. [3] underlined the complex behavior of underplatform dampers. Yang and34

Menq [4] proposed an approach to design wedge dampers. Sanliturk et al. [5] and Pesaresi35

et al. [6, 7] provided experimental validation of their models. Many parametric simulations36

have been run to study the contact parameter [8] or the effect of centrifugal loading [9] on37

system dynamics. Firrone et al. [10, 11], and more recently Pesaresi et al. [6], underscored38

the importance of considering both the centrifugal effect and the external force within the39

nonlinear solver for an accurate response.40

For efficient simulation of the dynamics of nonlinear structures composed of blades,41

disk and contact regions, three successive methodologies must be chosen: one to charac-42

terize the nonlinear effects occurring at the contact zones, one to reduce the size of the43

model usually constructed by finite elements and, finally, one to diminish the number of44

evaluations of the nonlinear forces. Numerous methodologies have been proposed to de-45

scribe the contact at frictional interfaces accurately. Zucca et al. [12] proposed strategies46

to model friction nonlinearities for 1D and 2D contact. Nacivet et al. [13] developed the47

Dynamic Lagrangian Frequency Time (DLFT) algorithm which employs Coulomb’s law48

along with a Harmonic Balance Method (HBM) [14] and an Alternating Frequency Time49
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(AFT) [15] procedure. Mitra et al. [16] proposed a nonlinear reduced-order model (ROM)50

by using a basis formed by multiple levels of sticking and slipping cases.51

The entire structural model under consideration is composed of nonlinear degrees of52

freedom (DOFs) at interfaces and linear ones everywhere else. To decrease the compu-53

tational time, it is interesting to reduce the number of linear DOFs. Different strategies54

have been developed over the years for this purpose. Classical component mode synthesis55

methods (CMS) [17] are widely employed in industry. Petrov [18] proposed an approach56

to reduce the evaluation of the dynamic stiffness matrix. Mashayekhi et al. [19] employed57

a similar approach for mistuned structures. Pourkiaee and Zucca [20] also provided re-58

duction strategies specific to the case of shrouded blade models. For cyclic symmetric59

systems, some of the aforementioned reduction methods can be employed in addition to60

the cyclic symmetric procedure [21, 22] which enables a drastic reduction in the numerical61

system to be solved. However, in the presence of nonlinearities, the nodal diameters get62

coupled [23] and the system may remain large.63

This paper focuses on a nonlinear, perfectly cyclic, bladed disk structure modeled with64

a high number of finite elements. The most direct approach to account for the nonlinear65

effects would be to evaluate all the nonlinear forces for all sectors. This exact approach,66

which is necessary for mistuned structures [19], requires a very long computation time.67

However, other methods have been developed in the case of perfectly cyclic structures.68

Petrov [24] proposed a reduction methodology based on the assumption that both the de-69

formation and external forcing show the same wave shape. This work has then been widely70

used to study different effects due to, for instance, underplatform dampers [1] or fretting71

wear of the bladed disk [25]. However, this strategy is efficient only when the exter-72

nal force has a traveling wave shape. In a recent paper [26], we proposed a theoretical73

method to predict which nodal diameters get coupled in the presence of friction nonlin-74

earities, leading to a much-reduced nonlinear system. This work was merely validated on75
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a phenomenological model of a bladed disk, in which centrifugal load and loss of contact76

between solids were not studied. Another possible approach is the Component Nonlinear77

Complex Mode Synthesis (CNCMS) method, proposed by Joannin et al. [27, 28], which78

employs CMS reduction but also deals with the nonlinear evaluation by considering com-79

plex nonlinear modes calculated on a fixed-boundary sector.80

In this paper, a new cyclic reduction method to tackle large nonlinear finite element81

models undergoing centrifugal load is developed. This strategy combines a linear compo-82

nent mode synthesis procedure [17] with a nonlinear nodal diameter reduction [26]. Sev-83

eral options were given in [26] to select the important nodal diameters. These options will84

all be considered in the new methodology. The proposed reduction method is employed85

and validated on a cyclic structure with dovetail attachment (the contact is described by86

frictional effects at interfaces but also by possible separation). Such level of validation is87

very scarce in the literature, even for a well-known method such as [24]. The authors in-88

tend, through this paper, to promote this new method as a possible reference methodology89

to assess the accuracy of new reduced-order models.90

The different nonlinear methodologies used in this paper will be presented briefly in91

Section 2. Section 3 will compare their efficiency and accuracy when applied to a sim-92

plified bladed disk finite-element model. Finally, Section 4 provides some useful insights93

into the influence of underplatform dampers on the dynamics of a realistic bladed disk94

model.95

2. Methodologies96

This section presents the different reduction methodologies that will be employed later97

to study bladed disks composed of multiple solids: a disk, N blades, and possibly N98

dampers, as illustrated in Figure 1 in the case of a structure with N = 8 sectors and no99

dampers.100
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2.1. Linear reduction101

When the structure is modeled with finite elements, we usually begin by reducing102

the linear part of the system with classical CMS [17] methods. In this paper, the Craig-103

Bampton procedure is employed [29]. The structure is broken down into master degrees104

of freedom (DOFs) um and slave DOFs us. us is reduced into nξ generalized coordinates,105

noted ξ with the equation:106


um

us


= R


um

ξ


=


 I 0

Ψ Φ




um

ξ


 (1)

where R is the reduction matrix and is composed of linear static mode shapes Ψ (obtained107

with a unit displacement for each master DOF), and linear modes Φ obtained for um = 0.108

The matrix I is the identity matrix. The static mode shapes and linear modes are obtained109

respectively by110

Ψ=−K−1
f,ssKf,sm, (2)

(
−ω

2Mf,ss +Kf,ss
)
Φ= 0. (3)

where Mf,ss, Kf,ss and so on denote partitions (slave-slave DOFs) of the full mass and111

stiffness matrices Mf and Kf. As illustrated with red lines in Figure 1, the nonlinear re-112

gions can be located in the contact zone between the blades and the disk, for instance. In113

these regions, different nonlinear phenomena may occur: stick, slip and/or separation [30].114

To compute the nonlinear dynamics of the system, these DOFs must be kept as master115

DOFs, as well as (at least) one observer node on which the external excitation will be ap-116

plied. This standard reduction is widely used in the paper and is employed in the different117

methodologies explained hereafter, whose accuracy will be studied in Section 3.118
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Figure 1: Cyclic symmetric structure with N = 8 and nonlinear contact occurring at the blade root.

2.2. Reference method119

A rotational speed Ω was first applied to the different components, leading, among120

other things, to a static preload that is retrieved from the ANSYS commercial FE soft-121

ware. Applying the Craig-Bampton procedure to the full finite-element model results in122

the following nonlinear system:123

Mü+Cu̇+Ku+ fnl = fext, (4)

where M and K are the mass and stiffness matrices obtained from the reduction procedure.124

The damping matrix C will be constructed in order to obtain a modal damping of 5×10−4
125

for the mode studied. The vector fext contains both the static preload and dynamic external126

excitation force; fnl denotes the nonlinear forces. As in [11, 6], the static and dynamic127

loadings are coupled in the work presented in this paper. The external excitation force in128

turboengines may follow a specific wave pattern because a given stage can be excited either129

by previous stages due to the incoming air, or by a forward stage due to reverse airflow.130
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If the stages alternate between a rotating bladed disk and a fixed one, the excitation force131

follows a traveling wave shape. This force fext,j, for a sector j, can be described with the132

following equation133

f j,ext = f1,ext

(
t− 2πhex ( j−1)

ωN

)
, (5)

where N denotes the number of sectors, hex is the excitation wave number and ω is the134

relative speed between two stages. In other situations, the bladed disk may be excited by135

a standing wave force which is then defined as the combination of waves traveling in the136

opposite direction:137

f j,ext =
1
2

(
f1,ext

(
t− 2πhex ( j−1)

ωN

)
+ f1,ext

(
t +

2πhex ( j−1)
ωN

))
. (6)

2.3. Component Nonlinear Complex Mode Synthesis (CNCMS) method138

Joannin et al. proposed a reduction approach called CNCMS to tackle both tuned and139

mistuned cyclic structures with friction nonlinearities. Their initial work [27] presented140

the methodology for a one-dimensional spring-masses model and was then extended for141

3D finite-element models in [28]. In the latter paper, the CNCMS procedure was bro-142

ken down into three steps: a classical Craig-Bampton reduction for each detuned sector143

(see Equation (1)), a nonlinear Craig-Bampton procedure to recover the complex nonlin-144

ear modes of a sector [31] and finally the use of interface mode reduction [17]. The final145

superelement created was composed of N×Nmode +Ninterf complex unknowns (one con-146

trol coordinate per sector multiplied by the number of nonlinear modes Nmode considered147

supplemented by Ninterf interface modes). It depended on the excitation frequency and was148

employed in a synthesis procedure to calculate the forced response. The nonlinear forces149

were synthesized from the nonlinear modes computed at the second reduction step [32].150

The application of the CNCMS method in this paper will be slightly different in that we151

will use the static preload due to the global rotation, whereas a uniform static preload was152
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applied in [28]. The CNCMS will be compared with other methods in Section 3 to evaluate153

its accuracy and efficiency as a ROM methodology.154

2.4. Cyclic symmetry methodologies155

For tuned cyclic structures, the problem can be written in terms of spectral compo-156

nents, also called nodal diameters [33, 21, 22]. In a finite-element approach, combining157

this change of variables with a Craig-Bampton procedure enables the creation of (K +1)158

superelements (one for each nodal diameter) directly from a single sector; where K = N
2159

if N is even or K = N−1
2 otherwise. These superelements contain master DOFs composed160

of the nonlinear DOFs as well as an observer node. Compared to the reference method161

presented in Section 2.2, this strategy allows us to decrease the Craig-Bampton computa-162

tion time drastically because the reduction is applied to a single sector only. Compared to163

the CNCMS procedure in Section 2.3, the cyclic property allows us to consider the cyclic164

boundary as slave DOFs. In this paper, we will assume that the cyclic boundaries are165

free of nonlinearities. For linear problems, the spectral formulation yields an uncoupled166

system of equations [34] and is extremely advantageous. However, in the presence of non-167

linearities, the equation of motion couples the different nodal diameters and can be written168

as:169

M̃k ¨̃uk + C̃k ˙̃uk + K̃kũk +FT
k fnl = f̃ext,k, ∀k ∈ J0,KK, (7)

with M̃k, C̃k and K̃k the mass, damping and stiffness spectral matrices of order k. The170

vectors ũk, and f̃ext,k denote the spectral displacement, nonlinear force and excitation force171

of order k. FT
k denotes the Fourier transform associated with the k−th spectral component.172

If all spectral components are considered up to K, the number of coupled nonlinear un-173

knowns of (7) is equal to the number of equations in (4) and thus no reduction is obtained.174

Moreover, the nonlinear forces must be evaluated for all sectors, a priori.175
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Different strategies, such as [24, 26], exist to decrease the size of (7) and reduce the176

number of sectors for which the nonlinear forces must be evaluated. In a general manner,177

after reduction the system becomes:178

M̃k ¨̃uk + C̃k ˙̃uk + K̃kũk +FT
k Q
(
fnl,m

)
= f̃ext,k, k ∈ km (8)

where Q is an operator which verifies179

fnl = Q
(
fnl,m

)
. (9)

The operator Q allows the number of sectors for which the nonlinear forces must be eval-180

uated to be reduced: only a subset of the nonlinear forces, noted fnl,m, is used to determine181

the nonlinear forces on all sectors. The space km gathers the nodal diameters which in-182

teract through the nonlinearities. The original approach of this paper is to combine the183

Craig-Bampton reduction, explained in Section 2.1, with the different options proposed184

in [26], referred to as Method 1 and Method 2 (the same terminology is employed in this185

paper). The method developed in [24] also uses cyclic symmetry property. All these cyclic186

methods define their own Q and km. These are detailed next.187

Method 1. For Method 1 [26], the set km is determined analytically by considering friction188

nonlinearities. This method is highly robust as it is entirely theoretical and makes no189

assumptions. The evaluation of the nonlinear forces is performed with190

Q
(
fnl,m

)
= Pfnl,m (10)

where the matrix P can be obtained by the real (Re) and imaginary (Im) parts of the Fourier191

matrix and is equal to192

P =


 INdiam

[Re(F2) Im(F2)] [Re(F1) Im(F1)]
−1


 . (11)
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The terms F1 and F2 denote partitions of the Fourier matrix associated with the interacting193

nodal diameters. While F1 is the partition for the first Ndiam sectors (equal to the number194

of interacting nodal diameters, weighted by 2 if k /∈
{

0, N
2

}
), F2 is the partition for the195

N−Ndiam sectors. Its full derivation is given in [26]. The term fnl,m, in Equation (10),196

gathers the nonlinear forces of the first Ndiam sectors.197

Method of Petrov [24]. In [24], the set km is not known a priori (and is determined by198

the resolution method, which is detailed in Section 2.5). This methodology is applicable199

only if the structure is excited with a traveling wave excitation. It assumes that both the200

deformation of the structure and associated nonlinear force have a traveling wave shape.201

The operator Q must therefore ensure that for a sector j ∈ J1,NK202

fnl, j = fnl,1

(
t− 2πhex ( j−1)

ωN

)
. (12)

Evaluating the nonlinear forces for a single sector is thus sufficient to compute the non-203

linear frequency forced response of the entire structure. This offers greater reduction than204

Method 1, but only works for traveling wave excitation.205

Method 2. Method 2 combines the analytical results of Method 1 (determination of the set206

km) but also uses the assumption of traveling wave excitation, displacement, and nonlinear207

forces (Q must ensure Equation (12)).208

2.5. Numerical solution methods and contact algorithm209

The nonlinear system obtained by the methodologies presented in Sections 2.2 to 2.4210

can be solved with different methods. We can cite, for instance, numerical time integration,211

Asymptotic Numerical Methods (ANM) [35] or shooting methods [36]. In this paper, we212

will employ the Harmonic Balance Method [37, 38] which is explained next.213
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The HBM can be broken down into a projection step and an orthogonalization step.214

To solve the full nonlinear system (4), the projection stage seeks the solution as a Fourier215

series up to an order Nh,216

u(t) =
1
2


c0 +

Nh

∑
n=1

cneniωt


+ c.c, (13)

where the coefficients (cn)n∈J0,NhK are the harmonics coefficients. The excitation frequency217

is noted by ω . The terms c.c represent the complex conjugate terms. The orthogonalization218

step projects the system obtained after substituting the displacement u written as in (13)219

into (4). The projection is made on the exponential basis
(
eniωt)

n∈J0,NhK
. Finally, we obtain220

from (4) the system221

Zncn + cfnl,n = cfext,n, ∀n ∈ J0,NhK, (14)

where Zn = (niω)2 M+(niω)C+K is the dynamic stiffness matrix associated with the222

harmonic n. The terms cfnl,n, respectively cfext,n, represent the projection of the nonlinear223

force, respectively the excitation force, on the exponential basis. In this paper, the excita-224

tion is supposed to be mono-harmonic, hence cfext,n 6= 0 for n = 1 only. In the following,225

we give further explanations on how the HBM is applied in the different cyclic reduction226

methodologies.227

Method 1. Method 1 explained in Section 2.4 considers only the interacting nodal diame-228

ters (k ∈ km). To solve (8), the projection step of the HBM seeks the solutions as229

ũk =
Nh

∑
n=−Nh

c̃k,neniωt for k /∈
{

0, N
2

}

ũk =
1
2

(
Nh

∑
n=0

c̃k,neniωt

)
+ c.c for k ∈

{
0, N

2

}
.

(15)

For k = 0 and k =
N
2

(if N is even), the spectral component is a real quantity, whereas it is230

a complex value for other k− values.231
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Method of Petrov [24]. Assuming a traveling wave shape (Equation (12)) with the HBM232

expansion (Equation (13)) allows the harmonics number n to be paired with specific spec-233

tral component ũk. For each spectral component ũk, its associated set of harmonics is234

noted Nk and is sought as,235

ũk = ∑
n∈Nk

c̃k,neniωt for k /∈
{

0, N
2

}

ũk =
1
2

(
∑

n∈Nk

c̃k,neniωt

)
+ c.c for k ∈

{
0, N

2

}
.

(16)

By determining the non-zero values of the spectral components in Equation (16), we can236

then determine the set km in Equation (8).237

Method 2. The displacement obtained from Method 2 follows Equation (16). However238

only the interacting nodal diameters obtained from [26] are considered, and hence some239

harmonics are not retained in the expansion.240

All these methods can be employed with different contact methodologies. In this paper,241

we use a Schur condensation [39], which allows the different systems of equations to be242

reduced to their relative nonlinear DOFs. The nonlinear forces are calculated using these243

relative DOFs and with the Dynamic Lagrangian Frequency Time algorithm [13]. This244

procedure assumes no regularization of the friction law and also handles the existence of245

possible separation between the two bodies in the contact region. The contact/separation246

between the body satisfies the following law:247





fnl,N (t)≥ 0 repulsive force only

xr,N (t)≥ 0 no penetration

xr,N (t) · fnl,N (t) = 0 either no force or no contact

, (17)

where the subscript N denotes the normal direction of the contact and xr represents the248

relative displacement between the solids on the contact area. If the bodies are in contact,249
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then frictional effects are modeled using Coulomb’s law,250





‖fnl,T‖< µ
∣∣fnl,N

∣∣ if ẋr,T = 0

fnl,T =−µ
∣∣fnl,N

∣∣ ẋr,T

‖ẋr,T‖
if ‖ẋr,T‖> 0,

(18)

where the subscript T denotes the tangential directions. Appendix A details the numerical251

implementation of the DLFT.252

2.6. Summary of the strategies253

To summarize the different approaches, this section presents the various stages of re-254

duction, as well as the size of the final system. The features of the different methods are255

summarized in Table 1. Ndof,nl represents the relative number of nonlinear DOFs for one256

sector. For Method 1, the number Ndiam is equal to the number of interacting nodal diam-257

eters (with a factor 2 in the case k /∈
{

0, N
2

}
). Table 2 provides Ndiam for different values258

of external excitations (combined with the static preload hex = 0) and with N = 24.259

The pairing employed in [24] is used for Method 2, but the harmonics which do not ex-260

cite a specific interacting nodal diameter are removed. Therefore the number of harmonics261

is reduced to Nh,2 in Method 2. For the CNCMS, the complex nonlinear mode is evaluated262

with the HBM with Nh harmonics; however, the synthesis stage is only performed with the263

first harmonic.264
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Methodologies Reduction stages Number of unknowns
Type of

excitation

Reference method 1st: Craig Bampton N×Ndof,nl× (1+2Nh) Any

CNCMS

1st: Craig Bampton

(N×Nmode +Ninterf)×2 Any2nd: Nonlinear Craig Bampton

3rd: Interfaces Modes

Petrov’s method [24]
1st: Cyclic symmetry

Ndof,nl× (1+2Nh) Traveling
2nd: Craig Bampton

3rd: Selection of the nodal diameter

Method 1
1st: Cyclic symmetry

Ndiam×Ndof,nl× (1+2Nh) Any
2nd: Craig Bampton

3rd: Selection of the nodal diameter

Method 2
1st: Cyclic symmetry

Ndof,nl×
(
1+2Nh,2

)
Traveling

2nd: Craig Bampton

3rd: Selection of the nodal diameter

Table 1: Specificities of the different methodologies.

The reduction offered by Method 1 is not as efficient as that with Petrov’s method or265

Method 2, but it is exact for friction nonlinearities and can be employed for any excitation.266

Although the CNCMS requires additional reduction stages and is thus more complicated267

to implement, its performances seem interesting. It is also valid for any kind of excitations.268
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Moreover, except for the CNCMS, these methods can be employed with other reductions,269

such as [18], rather than CMS methods. The objective of the next section is to provide270

information on the accuracy of the different methodologies.271

hex 0 1 2 3 4 5 6 7 8 9 10 11 12

Ndiam 1 13 7 5 4 13 3 13 3 5 7 13 2

Table 2: Number of interacting diameters Ndiam for 24 sectors (see Appendix A in [26]).

3. Performance and accuracy of the methodologies272

The different methodologies presented in Section 2 are benchmarked on a finite-element273

model with a variable number of blades. The discretization used in these models makes it274

possible to apply the reference method of the system presented in Section 2.2. A variable275

number of blades is used to increase the modal density of the cyclic system and also to276

increase the amount of nonlinear effect transmitted through the cyclic boundaries. This277

study will give insights into the possible limitations of the different methods.278

3.1. Presentation of the simplified test case279

The model studied is composed of a 100mm diameter disk and N blades (each of280

length 60mm) with typical dovetail attachments. It was used in [25] to study fretting wear.281

The number of blades varies between {6,12,18,24}. Each contact interface is discretized282

with 15 nodes (3× 5). With 3 DOFs per node, and 2 contact interfaces, each of these283

models contains 180 nonlinear DOFs, all situated at the blade/disk interfaces. Figure 2a284

represents the model with N = 24 blades. The full sector (see Figure 2b) is composed285

of 25920 DOFs. The nonlinear interfaces are illustrated as green surfaces in Figures 2c286

and 2d. A rotational speed of Ω = 1000rads−1 was applied on the system leading to a287

static preload. The gyroscopic effect was assumed negligible and not taken into account288
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in the analysis. The inner region of the disk was clamped. An 0.32N excitation force289

was applied at the tip of the blade with either a traveling or a standing wave shape (see290

Equations (5) and (6)). The associated wave number was varied arbitrarily and is given in291

the numerical results. The nonlinear forces were evaluated with the DLFT algorithm with292

a friction coefficient of µ = 0.3. The HBM procedure was employed with Nh = 3 (which293

is a good compromise choice between accuracy and computation time, and is commonly294

used, for instance in [6]), and with the constant harmonic term (corresponding to c0 or c̃0,n295

in Equations (13), (15) or (16)).296
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(a) Description of the full finite-element model with 24 sectors.
(b) Fundamental sector.

(c) Blade nonlinear region.
(d) Disk nonlinear region.

Figure 2: Structural mesh of the bladed disk model.

3.2. Linear analysis297

A linear numerical simulation was first performed with the ANSYS commercial FE298

software for the test case N = 24 and an excitation on the third nodal diameter (hex = 3).299

Figure 3a represents the amplitude of the tip of the blade in the frequency range of the first300

three modes of the system.301
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Figure 3: Linear response ( ): ANSYS; ( ): reference method; ( ): Cyclic methods; ( ): CNCMS.

The first peak corresponds to the first flapwise flexural mode, the second is a combina-302

tion between torsion and an edge flexion, and the third mode is the first torsion mode. In all303

the following simulations, the first flexural mode of the system, situated around 860Hz, is304

studied. Each method employed a Craig-Bampton reduction with a sufficiently high num-305

ber of modes, such that the dynamics of this mode were captured accurately, see Figure 3b.306

The CNCMS method was run with the first linear mode and 300 interface modes and also307

gives accurate prediction on the first flexural mode.308

To capture the second and third linear peaks correctly, all three methodologies need309

a greater number of Craig-Bampton modes. However, note that the CNCMS would also310

need the computation of more linear modes, as well as additional interface modes.311

3.3. Nonlinear numerical results312

The following results present the amplitude at the tip of the blade for the different313

sectors under harmonic forcing around the first linear flexural natural frequency.314

3.3.1. Traveling wave excitation315

A traveling wave excitation was first applied to the system. Figure 4 illustrates the316

results obtained with the reference method, the CNCMS approach (run with the first non-317
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linear mode and 300 interfaces modes), Petrov’s methodology, Method 1 and Method 2318

for different numbers of blades and excitation wave numbers. All the sectors show the319

same frequency forced response, hence only a single curve per method is represented in320

Figure 4.321
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(a) N = 6, hex = 1
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(b) N = 12, hex = 3
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(c) N = 18, hex = 4
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(d) N = 24, hex = 3

Figure 4: Frequency forced response under a traveling wave excitation for different numbers of sectors and

excitation wave numbers. ( ): linear solution (fully stuck); ( ): reference solution; ( ): CNCMS; ( ):

Petrov’s method; ( ): Method 1; ( ): Method 2.

Figure 4 shows a similar behavior regardless of the number of sectors: due to friction322
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and separation of nodes at the different interface regions, the nonlinear amplitude is ap-323

proximately half that of the linear response. The higher the number of sectors, the larger324

the error becomes between the CNCMS procedure and the reference solution. This ob-325

servation is highlighted in Table 3 in which the maximum relative errors are given. The326

maximum error was calculated with327

error = max
j

(
max

ω

(∣∣∣∣
uref, j−uRM, j

uref, j

∣∣∣∣
))

, (19)

where uref, j and uRM, j denote respectively the reference solution and the reduction method-328

ology solution for a sector j. The inaccuracy of the CNCMS is due to the second stage329

of reduction: the nonlinear Craig-Bampton. This step evaluates the nonlinear mode with330

fixed boundaries and corrects this approximation by linear static mode shapes. For a high331

number of sectors (the cyclic boundaries are close to the nonlinear regions) and a high level332

of nonlinearity, the linear static mode shapes cannot transmit the nonlinear contributions333

correctly to the neighbouring sectors.334

Number of sectors 6 12 18 24

CNCMS 1.7% 3.6% 4.1% 10.4%

Petrov’s method 1.4% 3.2% 1.2% 0.6%

Method 1 1.4% 3.2% 1.2% 0.6%

Method 2 0.2% 0.1% 1.2% 1.6%

Table 3: Relative error in the case of a traveling wave excitation.

For Method 1, Method 2 and Petrov’s method, the responses are very accurate. A small335

discrepancy may be observed in Figure 4b for Petrov’s method (which corresponds to the336

3.2% error in Table 3). This result is rather surprising, especially with the corresponding337

0.1% error of Method 2. For this specific test case, both methodologies take into account338
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both the nodal diameter 0 (with the 0th harmonic) and nodal diameter 3 (with the 1st and339

3rd harmonics). Petrov’s method also considers nodal diameter 6 with the 2nd harmonic.340

Therefore this additional unknown, which at first sight proposes more flexibility in the341

solution, creates a small error. It can be assumed that this result is specific to this test case342

in which the different assumptions may somehow offset one another.343

3.3.2. Standing wave excitation344

A standing wave excitation was now applied to the structure. Figure 5 presents the345

results obtained with the reference method, the CNCMS approach, and Method 1 (both346

Petrov’s method and Method 2 are inappropriate with a standing wave excitation). Con-347

trary to the traveling wave case, the sectors present different levels of amplitude.348
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(a) N = 6, hex = 1.

867 868 869 870 871 872
0

1

2

3

4

5

6 ×10−3

Frequency (Hz)

A
m

pl
itu

de
( m

)
(b) For N = 12, hex = 3.
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(c) N = 18, hex = 4.
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(d) N = 24, hex = 3.

Figure 5: Frequency forced response under a standing wave excitation for different numbers of sectors and

excitation wave numbers. ( ): linear solution (fully stuck); ( ): reference solution; ( ): CNCMS; ( ):

Method 1.

The amplitude responses and overall behavior of Figure 5 is quite different to those349
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shown in Figure 4 due to the different excitation. As will be explained in more detail350

in Section 3.4, the way the energy is exchanged within the system between the nodal351

diameters is different in the case of a traveling or a standing wave excitation. Similarly to352

Figure 4, we observe that the relative error of the CNCMS gets higher as the number of353

sectors increases. As depicted in Table 4, Method 1 is very accurate. The maximum level354

of error reached for N = 12 (3.2%) is explained next.355

Number of sectors 6 12 18 24

CNCMS 2.5% 3.6% 4.1% 10.9%

Method 1 1.6% 3.2% 1.1% 0.6%

Table 4: Relative error for standing wave excitation.

Method 1 does not make any assumption on the shape of the solution. It is based on356

an analytical development of nodal diameter interactions in the presence of friction non-357

linearities. However, as the DLFT algorithm used in the simulations manages to capture358

states of separation, the nodes may be in one of the three following states over a period:359

totally separated (there is no contact, therefore Method 1 is exact), never separated (once360

again Method 1 is exact as the nodes may be stuck or sliding), or undergoing a partial361

separation (alternating between contact and separation over one period). For this last case,362

Method 1 is not exact and may be inaccurate.363

In order to provide a global view of the contact status of the nodes at the interface, Fig-364

ure 6 presents the average status of all nodes over the period (discretized into nit instants)365

for Method 1 (illustrated using lines) and the reference method (depicted with square and366

circle markers). The full lines (or squares) represent the percentage of nodes undergo-367

ing separation (colored green), stick (colored red) and slip (colored blue) behavior. For368
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example, in the case of separation, this percentage is calculated with369

%separation =
1
nit

nit

∑
it=1


 1

Ndof,nl

Ndof,nl

∑
node=1

(contact(it,node) == separation)


×100, (20)

with contact(it,node) == separation equal to 1 if the contact of the node is separated at370

time it, and 0 otherwise. Moreover, in Figure 6, the dotted lines (or circles) denote the371

percentage of nodes undergoing a constant status over the entire period. The same color372

code is used to represent this status. For the constant separation case for instance, it is373

calculated with374

%separationtot =
1

Ndof,nl

Ndof,nl

∑
node=1

(contact(∀it,node) == separation)×100, (21)

with contact(∀it,node) == separation equal to 1 if the contact node is separated at all375

times and 0 otherwise. The average percentage of stuck or sliding nodes is calculated in376

a way similar to Equations (20) and (21). This post-treatment enables the overall contact377

status of the system to be described. As an example, Figure 6c shows at 864Hz that378

the nodes are mostly stuck (98% overall and about 50% are stuck at all time). Method379

1 provides results close to the reference solution (small discrepancies are obtained for380

N = 12 and N = 24 but the overall trend is respected).381

Furthermore this post-treatment enables the level of accuracy of Method 1 to be quan-382

tified reasonably: if partial separation occurs (presented by a difference between the full383

green line and the dotted green line in Figure 6) then it explains why Method 1 is no longer384

exact. For instance, for N = 6, 12, 18 and 24 sectors the nodes undergo respectively partial385

separation at a maximum level of 6%, 8%, 1% and 0.2% (note that the dotted green lines386

are equal to 0 for all numbers of sectors and hence no node is fully separated). A direct387

25



correlation can then be made with Table 4: the error level increases with the percentage of388

partial separation.389

A similar analysis cannot be made to explain differences obtained with Method 2 in390

Section 3.3.1. This method makes the additional assumption of a traveling wave shape391

solution: the error obtained can therefore be due to a combination of different assumptions.392
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(c) N = 18 and hex = 4.
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(d) N = 24 and hex = 3.

Figure 6: Average contact status of the nodes over a period. ( ): separation; ( ): stuck; ( ): slip calcu-

lated with Method 1. For each contact status, ( ) with the same color code corresponds to the percentage

of which the status does not change over time. ( ), respectively ( ), shows the results associated with ( ),

respectively ( ), but obtained with the reference solution (the same color code is used).
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3.4. Details on the spectral contents of the responses for the N = 24 case393

While Figure 4d (obtained with a traveling wave excitation) showed a single level of394

amplitude for all sectors, Figure 5d (obtained with a standing wave excitation) shows dif-395

ferent levels. To better highlight why such differences occur, we now focus on the spectral396

content of the different responses. As demonstrated in [26], the friction nonlinearities cre-397

ate coupling between the zeroth, third and ninth nodal diameters (the external excitation398

follows a wave pattern with hex = 3 and the static preload corresponds to a 0 diameter399

excitation). Those are the diameters illustrated in Figure 7. The reference solution also400

contains a negligible amplitude response (below 1×10−7 m) on other nodal diameters due401

to separation and these diameters are therefore not represented.402
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(a) Traveling wave excitation. ( ): reference solution; ( ):

CNCMS;

( ): Petrov’s method; ( ): Method 1; ( ): Method 2.
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(b) Standing wave excitation. ( ): reference solution; ( ):

CNCMS; ( ): Method 1.

Figure 7: spectral contents of the responses illustrated in Figure 4d and 5d

In the case of a traveling wave excitation, the different methods capture the trend of ũ3403

correctly (except for the 10% error of the CNCMS) and give a correct order of magnitude404

for ũ9. However for ũ0, the different methodologies (except Method 1) capture neither the405

correct trend nor the order of magnitude.406

Some details on the harmonics composition of these spectral components are provided407

in Figure 8 at a specific frequency. Both Petrov’s method and Method 2 assume a trav-408

eling wave displacement which manages to capture the harmonic -1 of ũ3 correctly and409

thus the overall behavior of the system. However, the harmonic content of the reference410
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solution clearly shows that the solution is not a pure traveling wave solution (as an exam-411

ple, ũ9 responds on the harmonics −1 and 1 with an amplitude greater than the harmonic412

−3). Overall, Method 1 manages to capture most of the harmonics correctly. Some dis-413

crepancies can be observed, however these discrepancies are for low values of harmonics414

amplitudes and do not impact the amplitude of structural vibration (as underlined in Ta-415

ble 3).416

In the case of a standing wave excitation, Method 1 manages to capture the dynamics417

of ũ0, ũ3 and ũ9 correctly, as observed in Figure 7b. The harmonics content, shown in418

Figure 8b, clearly exhibits a standing wave solution (because c̃k,n = ¯̃ck,−n).419

From Figure 8a and 8b, we observe that the coupling between the third and ninth nodal420

diameters is 1000 times greater for a standing wave than for a traveling wave. Therefore it421

seems that nodal diameter interactions is facilitated when the structure is under a standing422

wave excitation.423
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(a) Traveling wave excitation (the color code matches the one of

Figure 7a).
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(b) Standing wave excitation (the color code matches the one of

Figure 7b).

Figure 8: Harmonics contents of the responses given in Figure 7a and 7b calculated at 862.4Hz.

3.5. Performance of the methods424

Tables 5 and 6 set out approximated computation times obtained with the different425

methodologies applied to the system with 24 sectors1. Only the computation time of the426

frequency forced response is provided. The preprocessing time is not included in Tables 5427

and 6. The CNCMS method first required the evaluation of a nonlinear mode which took428

27min. However this mode has been computed only once and can be used for any excita-429

tion.430

1The simulations were run on an Intel(R) Core(TM) i7-7700 @ 3.6 GHz computer
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Method Number of unknowns Computation time

HBM full system 15120 5h

CNCMS 648 12min

Petrov’s Method [24] 630 40s

Method 1 3150 17min

Method 2 450 24s

Table 5: Performance of the methods in the case of a traveling wave excitation (with 24 sectors).

Method Number of unknowns Computation time

HBM full system 15120 6h

CNCMS 648 13min

Method 1 3150 18min

Table 6: Performance of the methods in the case of a standing wave excitation (with 24 sectors).

In the case of a traveling wave excitation, Petrov’s method and Method 2 are highly431

efficient: the computation time is greatly reduced compared to the reference method or432

the CNCMS method. Method 1 requires a longer computation time but offers more flex-433

ibility as it can handle any kind of excitation. The CNCMS approach also reduces the434

computation time but shows some inaccuracy for a high level of nonlinearity and a high435

number of sectors. However the capacity of the CNCMS to handle mistuning [34] makes436

it interesting with a low level of nonlinearity. Studying the effect of mistuning is beyond437

the scope of the current paper.438
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4. Damping mechanisms for a bladed disk with underplatform dampers439

Section 3 showed that Method 1 and Method 2 are accurate and efficient as reduction440

models to tackle nonlinear finite-element models. Using these, we investigate in this sec-441

tion the influence of underplatforms dampers for a bladed disk with fir-tree attachment.442

These parameter studies could have not been performed without the existence and valida-443

tion of such high-standard reduction methods.444

4.1. Presentation of the test case445

The finite-element model considered is shown in Figure 9 and is a realistic represen-446

tation of a compressor stage. Multiple nonlinear regions exist: the bladed disk fir-tree447

attachment (see Figure 9c where the nonlinear interfaces are in green) and the underplat-448

form dampers (see Figure 9d). The full sector is composed of 30840 DOFs (14430 for the449

blade, 14628 for the disk and 1782 for the underplatform dampers). Quadratic elements450

were employed for the analysis. The bladed disk contact is described with 432 nonlin-451

ear DOFs and the contact blade/dampers with 306 nonlinear DOFs. A rotational speed452

of Ω = 2200rads−1 is initially applied on the system. A 4×10−1 N excitation force is453

applied at the tip of the blade with either a traveling or a standing wave shape (see Equa-454

tions (5) and (6)) with hex = 3. Three configurations were studied: a bladed disk with455

no dampers (the nonlinear contact occurs only between the blades and the disk, see Fig-456

ure 10a), a stuck bladed disk with dampers (the nonlinear contact occurs only between457

the dampers and the blades, see Figure 10b), and finally a full structure with blade, disk458

and dampers (nonlinear contact occurs between the blades, the disk and the dampers, see459

Figure 10c). The nonlinear forces were evaluated with the DLFT algorithm with a friction460

coefficient of µ = 0.15. The HBM procedure is employed with Nh = 3.461
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(a) Full structure.
(b) Fundamental sector.

(c) Fir-tree attachment.

(d) Underplatform dampers.

Figure 9: Details on the realistic finite-element bladed disk.
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(a) Test case 1: bladed disk.
(b) Test case 2: stuck bladed disk with

dampers.
(c) Test case 3: full nonlinear system.

Figure 10: Illustration of the test cases considered. The nonlinear frictional interfaces accounted for are

depicted in red.

4.2. Numerical results on the standard test case462

In the following, as in Section 3, two kinds of excitations were considered: a traveling463

excitation and a standing excitation. As the reference solution presented in Section 2.2464

is no longer computable on a standard computer due to the number of nonlinear DOFs,465

we will then use respectively Method 2 and Method 1 to simulate the nonlinear dynamics466

of the structure. In order to get full confidence in the results obtained with Method 2,467

we also performed the same simulations with Petrov’s method. The harmonics content of468

each nodal diameter for the different methods are provided in Table 7. The excitation fre-469

quency was varied around the natural frequency of the 1st flexural mode. Once again, the470

frequency forced responses illustrated represent the displacement at the tip of the blades471

for all sectors.472
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Nodal diameters Petrov’s method [24] Method 2 Method 1

0 0 0 J0,3K

3 1 1 J0,3K

6 2 n/a n/a

9 3 3 J0,3K

Table 7: Harmonics content of the spectral displacements for the different methodologies.

4.2.1. Traveling wave excitation473

Figure 11 presents the frequency forced response of the three systems mentioned pre-474

viously and illustrated in Figure 10. For the linear cases (stuck systems), represented by475

black dashed lines in Figure 11, we observe that the presence of dampers shifts the linear476

frequency towards high frequencies: the peak is reached at either 1538Hz (Figure 11a477

without dampers) or 1586Hz (Figure 11b and 11c with dampers). This result can simply478

be explained by the fact that the dampers add rigidity to the system. For the nonlinear479

bladed disk system, Figure 11a shows results similar to those presented in Section 3: the480

peak is damped by approximately 35% and is shifted to the low frequencies when the non-481

linear effects are accounted for (friction and separation). For the stuck bladed disk with482

dampers, the results of which are illustrated in Figure 11b, the effects due to the nonlin-483

earities are magnified: a shift of 8Hz is observed and the damping is increased up to 55%.484

As Figure 11c (corresponding to the full system) is similar to Figure 11b, we can conclude485

that the nonlinear effects are mainly governed by the dampers and not by the blade root486

attachment.487
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(a) Bladed disk.
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(b) Stuck bladed disk with dampers
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(c) Bladed disk with dampers.

Figure 11: Frequency forced response under a traveling wave excitation. ( ): linear solution (fully stuck);

( ): Petrov’s method; ( ): Method 2.

Figure 12 depicts the overall contact behavior of the three nonlinear systems whose488

forced response, calculated with Method 2, is illustrated in Figure 11. To better highlight489

how the nonlinear regions in the full system (blade/disk and blade/dampers) interact with490

each other, the contact status for each region is illustrated separately in Figure 12c. Doing491

so facilitates the comparison between Figure 12c and Figure 12a to study the bladed disk492

contact and between Figure 12c and Figure 12b to study the blade/damper contact.493

For the bladed disk (see Figure 12a), 5% of the nodes are totally separated. Moreover,494

as only 2% (difference between the solid and dotted green lines) of the nodes undergo495

partial separation, the results are expected to be accurate (see Section 3.3.2). The dynamics496

are completely different in the case of a stuck bladed disk with dampers (see Figure 12b)497

where 50% of the nodes are separated. At the resonant peak, more nodes undergo partial498

separation (the difference between the solid and dotted green lines is approximately 10%)499

and there are more nodes in the slipping phase than in the stuck phase (the blue line moves500

above the red line in Figure 12b). Figure 12c describes the contact in the case of the501
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full nonlinear system. Overall, the behaviors match between Figure 12c, Figure 12a, and502

Figure 12b. However, we do observe in Figure 12c that approximately 90% of the blade503

nodes are stuck, whereas there is a decrease to 80% in Figure 12a. This expresses the fact504

that the energy of the system is mainly lost in the dampers and thus the vibration in the505

fir-tree attachment is reduced. Overall, we see that damper nonlinearity is of the upmost506

importance to capture the global dynamics of the system, as well as the loss of vibratory507

energy.508
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(a) Bladed disk.
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(b) Stuck bladed disk with dampers.
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(c) Bladed disk with dampers.

Figure 12: Average contact status of the nodes over a period, in the case of a traveling wave excitation, and

with µ = 0.15. ( ): separation; ( ): stuck; ( ): slip for the blades/disk contact. ( ) with the same

color code corresponds to damper/blades contact. For each contact status, ( ) and ( ), with the same

color code, correspond to the percentage of which the status does not change over time.

4.2.2. Standing wave excitation509

A standing wave excitation was now applied to the different test cases and the associ-510

ated frequency forced responses calculated with Method 1 are given in Figure 13. For the511

three test cases, the amplitude of the tip of the blade on the first sector is globally the same512

for both types of excitation (comparison between Figures 11 and 13).513
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The contact status of the three configurations over the same frequency range is pro-514

vided in Figure 14 and exhibits differences with the case of a traveling wave excitation.515

First, we observe that approximately 10% of the nodes are slipping in Figure 14a against516

15% in Figure 12a. This indicates that the traveling wave excitation facilitates the appear-517

ance of friction. This can easily be explained by the fact that for a traveling wave solution,518

all the sectors undergo the same movement as that presented in Figure 11a. However,519

for a standing wave solution, some sectors get a very small amount of energy and remain520

stuck. This effect is accentuated for the stuck bladed disk with dampers, where 15% of the521

nodes are slipping under a standing wave excitation (see Figure 14b) against 30% for the522

traveling wave excitation (see Figure 12b).523

Another difference between the traveling and standing wave excitations is the number524

of separated nodes in the full nonlinear test case. Whereas the separation effect was largely525

dominant (approximately 55%) for the damper/blade contact in the case of a traveling526

wave excitation (see Figure 12c), the stuck phase predominates in the case of a standing527

wave excitation (see Figure 14c). As this observation was not made for the stuck bladed528

disk with dampers case (Figure 14b), we can expect this effect to come from the coupling529

between the standing wave excitation creating different levels of energy for the sectors and530

the nonlinearity between the blades and disk.531
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(b) Stuck bladed disk with dampers
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(c) Bladed disk with dampers.

Figure 13: Frequency forced response in the case of a standing wave excitation. ( ): linear solution (fully

stuck); ( ): Method 1.
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(b) Stuck bladed disk with dampers.
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(c) Bladed disk with dampers.

Figure 14: Average contact status of the nodes over a period, in the case of a standing wave excitation. The

legend matches the one of Figure 12.
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4.3. Details of the spectral components of the responses of the three test cases under a532

standing wave excitation533

In this section, we highlight the spectral components of the frequency forced responses534

illustrated in Figure 13. These components are shown in Figure 15 for each test case.535
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(c) Bladed disk with dampers.

Figure 15: Spectral components of the responses shown in Figure 13 obtained with Method 1. ( ): ũ0,

( ): ũ3 and ( ): ũ9.

As can be seen in Figure 15, the response of the 0−th nodal diameter shows only very536

slight variations over the frequency range studied here. The static preload controls the537

overall behavior and the small variations are due to nonlinear interactions. For the system538

with dampers (Figures 15b and 15c), the amplitude of ũ0 is higher due to the additional539

centrifugal loading of the dampers.540

For the bladed disk case, illustrated in Figure 15a, the ninth and third nodal diameters541

are coupled (the ratio between ũ9 and ũ3 is approximately 0.08). However, for the stuck542

bladed disk with dampers (Figure 15b), this ratio is only approximately 0.0046. Therefore,543

it appears from these results that the fir-tree attachment facilitates energy transfer between544

nodal diameters.545
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4.4. Influence of the friction coefficient546

In this section, we study the impact of the friction coefficient on the nonlinear dynamics547

of the system. Three values of friction coefficient µ are studied: 0.15, 0.3 and 0.45. For548

brevity, only a traveling wave excitation was applied. The standing wave excitation gives549

analogous results. The simulations were performed with Method 2 only.550

Figure 16 shows the influence of µ on the frequency response, focused around the551

first flexural mode for the three test cases. The results of Figure 16a are similar to those552

obtained in [1, 25]: as µ increases, the amplitude of vibration increases and moves closer553

to the stuck linear response.554

Contrary to the bladed disk system case, the stuck bladed disk with dampers case and555

the full nonlinear system case do not give results close to the fully-stuck linear system556

(illustrated in the curved black dashed line see Figure 16) as µ increases. In fact, due to557

the static preload, some damper/blade interface nodes will always be separated no matter558

how high µ is. To illustrate this separation phenomenon, a vertical black dashed line is559

represented in Figures 16b and 16c. It represents the linear resonant frequency (located560

at 1576.6Hz) of the system when all interface nodes that are not initially separated due to561

the static preload are imposed as being stuck. Naturally, the vibration of the system may562

change the contact status of these nodes to partial separation, and thus this vertical line563

does not represent the true asymptotic case.564

For the µ = 0.15 case, it was observed in Section 4.2.1 that the dampers governed565

most of the dynamics of the system. However, the blue and green lines in Figure 16c566

(corresponding to µ=0.3 and µ = 0.45) show a different behavior from Figure 16b and thus567

present new dynamics of their own. To describe the system accurately, account must be568

taken of the entire structure and its inherent couplings occurring at the different interfaces.569

Figure 17 illustrates the slipping state of the contact nodes for the three different values570

of µ and for the three test cases. For the stuck bladed disk with dampers (see Figure 16b),571
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as µ increases, the percentage of the slipping phase decreases from 30% to 15%. Less572

energy is thus dissipated and this may explain the amplitude increase as µ increases. The573

number of separated nodes (not represented here for brevity) is constant overall at approx-574

imately 50%. Figure 17c represents the slipping contact for the full system test case, we575

still observe a decrease in the percentage of the slipping phase when µ increases.576
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1570 1575 1580 1585
0

0.2

0.4

0.6

0.8

1

1.2 ×10−3

Frequency (Hz)
A

m
pl

itu
de

(m
)

(c) Bladed disk with dampers.

Figure 16: Frequency forced responses for different values of friction coefficients. ( ): µ = 0.15; ( ):

µ = 0.3; ( ): µ = 0.45, ( ): linear response (fully-stuck system). The vertical black dashed line indicates

the linear frequency obtained with dampers nodes partially separated (the remaining are considered stuck).
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(b) Stuck bladed disk with dampers.
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(c) Bladed disk with dampers.

Figure 17: Average slipping contact status of the blades/disk interface nodes over a period for different

friction coefficients. ( ): µ = 0.15; ( ): µ = 0.3; ( ): µ = 0.45. The lines with ( ) (and the same color

code for different µ) represent the contact status of the damper/blade interface nodes.

4.5. Influence of the static preload577

In this section, the friction coefficient was kept constant at µ = 0.15 and three values of578

the rotational speed Ω were considered: 2200rads−1, 2500rads−1 and 2800rads−1. The579

variation of the centrifugal force will impact both the frictional nonlinear forces and the580

separation status. Frequency forced responses calculated with Method 2 were obtained for581

the three test cases and with the three aforementioned rotational speeds. These are illus-582

trated in Figure 18. Figure 19 represents the slipping status of the nodes for the different583

static preloads and for each test case. To represent the slipping status of a test case for584

all rotational speeds, the frequencies of each simulation have been normalized by their585

respective resonant linear frequency.586
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(c) Bladed disk with dampers.

Figure 18: Frequency forced responses for different values of rotational speeds. ( ): Ω = 2200rads−1;

( ): Ω = 2500rads−1; ( ): Ω = 2800rads−1. ( ): linear responses (fully-stuck systems) with the same

color code.
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Figure 18 shows that, whatever the test case, the systems stiffens and the frequency of587

the first flexural mode increases when Ω increases. The relative amplitude difference at588

the resonant peaks between the linear and the associated nonlinear systems are given as589

a percentage in Figure 18. For the bladed disk test case (see Figure 18a), the greater the590

rotational speed, the less dissipation occurs, and thus the higher is the nonlinear amplitude.591

With high rotational speeds, the different solids composing the global structure are pressed592

against each other and are thus less likely to slip or get separated. This is confirmed by593

Figure 19a. For Ω = 2200rads−1, at the peak, almost 15% of the nodes are slipping,594

whereas this is approximately 10% for Ω = 2800rads−1.595

The behavior of the stuck bladed disk with dampers is different: the dissipation in-596

creases slightly with the rotational speed (see Figure 18b). Nevertheless we still observe,597

in Figure 19b, that 30% of the nodes are slipping for Ω = 2200rads−1, but only 20% for598

Ω = 2800rads−1. Similarly to the bladed disk test case, higher loads lead to a greater599

number of nodes getting stuck. The increase in dissipation for the stuck bladed disk with600

dampers with Ω can be explained by higher normal load at the interfaces which leads to601

the tangential interface force also being higher. There is a compromise to be made in602

terms of dissipation: on one hand, less dissipation occurs when more nodes get stuck as603

Ω increases; on the other hand the normal load and thus the tangential force increase as604

Ω increases. For the stuck bladed disk, the latter effect is predominant, whereas for the605

bladed disk it is the former.606

For the full nonlinear system, the dissipation varies very slightly and it seems that the607

two effects cancel each other out.608
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(a) Bladed disk.
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(b) Stuck bladed disk with dampers.
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(c) Bladed disk with dampers.

Figure 19: Average slipping status over a period. ( ): Ω = 2200rads−1; ( ): Ω = 2500rads−1; ( ):

Ω = 2800rads−1 for the blades/disk interface. The lines with ( ) are associated with the damper/blades

interface (same color code and line style).

5. Conclusion609

The combination of recent reduction methodologies for cyclic symmetric systems and610

classical component mode synthesis were employed for the first time in realistic indus-611

trial finite-element models under static and dynamic loading. The cyclic strategies showed612

great accuracy, while reducing computation time significantly. Using these efficient re-613

duction methods, the impact of dampers on a realistic compressor stage with a fir-tree614

attachment was studied. Different values of friction coefficients or centrifugal speed were615

used. The behavior of the full nonlinear system with frictional interfaces both at its root616

and with underplatfom dampers was shown to be highly complex and cannot simply be617

interpolated from either the damper nonlinear contact or the bladed disk contact.618

These recent methods may lack representativeness for shrouded blades when shock619

dictates the dynamics of the system, as they are based on theoretical results obtained with620

friction nonlinearities only. Moreover, they are valid only for tuned structures. Neverthe-621

less, in their framework of capabilities, these recent methodologies are particularly well622
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suited to assessing the performance of a new ROM procedure created to handle a wider623

range of systems, as was done with the CNCMS.624
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A. Dynamic Lagrangian Frequency Time method629

In [26], a DLFT algorithm in velocity was employed. Such algorithm is efficient but630

does not converge when handling systems under static preload: the term c0 of the dis-631

placement (see Equation (13)) is removed from the algorithm due to the time derivative.632

Therefore, in this paper, a DLFT algorithm in position is used. A Schur condensation, as633

explained in [39], is applied on (14) and gives634

Zrcr + cfnl = cfr,ext , (A.1)

where Zr is the relative dynamic stiffness matrix of the system, cr denotes the relative635

harmonics components of the displacement, cfnl corresponds to the harmonics of the non-636

linear forces, and cfr,ext contains the harmonics of the reduced external forces. The physical637

nonlinear forces are sought as638

cfnl = cfr,ext−Zrcr + ε (cr−yr) , (A.2)

where ε is a penalty coefficient (the choice of this parameter is provided in [40]). yr639

represents the harmonics of the relative displacement of the system’s interface and must640

satisfy the contact/separation law as well as Coulomb’s law. In the following, the algorithm641

is divided into two parts: the normal nonlinear forces and the tangential nonlinear forces.642
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A.1. Normal nonlinear forces643

The normal nonlinear force (denoted by the subscript N) is separated into two parts:644

the optimized nonlinear forces (subscript u)645

cfnl,N,u = cfr,ext,N−Zr,Ncr + εcr,N , (A.3)

and the correction of the nonlinear forces (subscript x) to satisfy the normal contact law646

(see Equation (17)):647

cfnl,N,x =−εyr,N . (A.4)

A prediction of the nonlinear forces (subscript pre) is made by assuming that the solids648

are in contact,649

cfnl,N,pre = cfnl,N,u. (A.5)

Following the AFT procedure [15], this prediction is projected in the discretized time650

domain of length nit (tn = nT
nit

, with n ∈ J1,nitK and T the time period of the solution) and651

gives fnl,N,pre. Two cases must be considered: if fnl,N,pre (tn) < 0 (sticking case), then the652

prediction is correct (the solids are in contact), there is no correction and hence653

fnl,N,x (tn) = 0 (A.6)

otherwise if fnl,N,pre (tn)≥ 0 (separation case), then the prediction is incorrect and must be654

corrected by655

fnl,N,x (tn) = fnl,N,u (tn) . (A.7)

Finally the nonlinear forces are equal to656

fnl,N = fnl,N,u− fnl,N,x. (A.8)

The harmonic coefficients of fnl,N are then obtained with the AFT procedure.657

48



A.2. Tangential nonlinear forces658

For the tangential force (denoted by subscript T ), the nonlinear forces are also decom-659

posed into an optimized part,660

cfnl,T,u = cfr,ext,T−Zr,T cr + εcr,T , (A.9)

and a correction part661

cfnl,T,x =−εyr,T . (A.10)

Both of these terms are projected in the discretized time domain and gives
(
fnl,T,u (tn)

)
n∈J1,nitK

662

and
(
fnl,T,x (tn)

)
n∈J1,nitK

. The prediction is equal to663

fnl,T,pre (tn) = fnl,T,u (tn)− fnl,T,x (tn−1) . (A.11)

Initially, the solids are supposed to be stuck (fnl,T,x (t0) = 0). For each discretized time664

(tn)n∈J1,nitK, the tangential forces are evaluated. If, at tn the solids are separated then there665

is no tangential forces which implies666

fnl,T,x (tn) = fnl,T,u (tn) (A.12)

If, at tn, the solids are in contact then two cases must be distinguished: if ‖fnl,T,pre (tn)‖<667

µ
∣∣fnl,N

∣∣ then the solids are stuck are the prediction was correct:668

fnl,T,x (tn) = fnl,T,x (tn−1) . (A.13)

Otherwise ‖fnl,T,pre (tn)‖ ≥ µ
∣∣fnl,N

∣∣ then the solids are slipping and the correction is equal669

to670

fnl,T,x (tn) = fnl,T,x (tn−1)+ fnl,T,pre (tn)

(
1− µ

∣∣fnl,N (tn)
∣∣

‖fnl,T,pre (tn)‖

)
(A.14)

Finally the nonlinear forces are equal to671

fnl,T = fnl,T,u− fnl,T,x. (A.15)

To free ourself from the initial assumption (fnl,T,x (t0) = 0), the computation of the672

tangential nonlinear forces is done for two periods of time.673

49



References674

[1] E. P. Petrov, D. J. Ewins, Advanced Modeling of Underplatform Friction Dampers675

for Analysis of Bladed Disk Vibration, Journal of Turbomachinery 129 (1) (2007)676

143–150. doi:10.1115/1.2372775.677

[2] E. P. Petrov, Explicit Finite Element Models of Friction Dampers in Forced Re-678

sponse Analysis of Bladed Disks, Journal of Engineering for Gas Turbines and Power679

130 (2), publisher: American Society of Mechanical Engineers Digital Collection680

(Mar. 2008). doi:10.1115/1.2772633.681

[3] M. M. Gola, C. Gastaldi, Understanding Complexities in Underplatform Damper682

Mechanics (2014) V07AT34A002doi:10.1115/GT2014-25240.683

[4] B. D. Yang, C. H. Menq, Characterization of Contact Kinematics and Application to684

the Design of Wedge Dampers in Turbomachinery Blading: Part 1—Stick-Slip Con-685

tact Kinematics, Journal of Engineering for Gas Turbines and Power 120 (2) (1998)686

410–417, publisher: American Society of Mechanical Engineers Digital Collection.687

doi:10.1115/1.2818138.688

[5] K. Y. Sanliturk, D. J. Ewins, A. B. Stanbridge, Underplatform Dampers for Turbine689

Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data,690

Journal of Engineering for Gas Turbines and Power 123 (4) (1998) 919–929. doi:691

10.1115/1.1385830.692

[6] L. Pesaresi, L. Salles, A. Jones, J. S. Green, C. W. Schwingshackl, Modelling the693

nonlinear behaviour of an underplatform damper test rig for turbine applications,694

Mechanical Systems and Signal Processing 85 (2017) 662–679. doi:10.1016/j.695

ymssp.2016.09.007.696

50

https://doi.org/10.1115/1.2372775
https://doi.org/10.1115/1.2772633
https://doi.org/10.1115/GT2014-25240
https://doi.org/10.1115/1.2818138
https://doi.org/10.1115/1.1385830
https://doi.org/10.1115/1.1385830
https://doi.org/10.1115/1.1385830
https://doi.org/10.1016/j.ymssp.2016.09.007
https://doi.org/10.1016/j.ymssp.2016.09.007
https://doi.org/10.1016/j.ymssp.2016.09.007


[7] L. Pesaresi, J. Armand, C. W. Schwingshackl, L. Salles, C. Wong, An advanced un-697

derplatform damper modelling approach based on a microslip contact model, Journal698

of Sound and Vibration 436 (2018) 327–340. doi:10.1016/j.jsv.2018.08.014.699

[8] C. W. Schwingshackl, E. P. Petrov, D. J. Ewins, Effects of Contact Interface Param-700

eters on Vibration of Turbine Bladed Disks With Underplatform Dampers, Journal701

of Engineering for Gas Turbines and Power 134 (3), publisher: American Society of702

Mechanical Engineers Digital Collection (Mar. 2012). doi:10.1115/1.4004721.703

[9] B. He, H. Ouyang, X. Ren, S. He, Dynamic Response of a Simplified Turbine Blade704

Model with Under-Platform Dry Friction Dampers Considering Normal Load Varia-705

tion, Applied Sciences 7 (3) (2017) 228. doi:10.3390/app7030228.706

[10] C. M. Firrone, S. Zucca, M. M. Gola, The effect of underplatform dampers on707

the forced response of bladed disks by a coupled static/dynamic harmonic balance708

method, International Journal of Non-Linear Mechanics 46 (2) (2011) 363–375.709

doi:10.1016/j.ijnonlinmec.2010.10.001.710

[11] S. Zucca, C. M. Firrone, Nonlinear dynamics of mechanical systems with friction711

contacts: Coupled static and dynamic Multi-Harmonic Balance Method and multiple712

solutions, Journal of Sound and Vibration 333 (3) (2014) 916–926. doi:10.1016/713

j.jsv.2013.09.032.714

[12] C. M. Firrone, S. Zucca, Modelling Friction Contacts in Structural Dynamics and its715

Application to Turbine Bladed Disks, Numerical Analysis - Theory and Application716

(Sep. 2011). doi:10.5772/25128.717

[13] S. Nacivet, C. Pierre, F. Thouverez, L. Jézéquel, A dynamic Lagrangian fre-718
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