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ABSTRACT
In this paper, we describe the implementation and performance
of a Virtual Audience behaviour model for Virtual Reality (VR).
The model is a VR adaptation of an existing desktop model based
on crowd-sourced data. The system allows a user in VR to easily
build and experience a wide variety of atmospheres with small or
large groups of virtual agents. The paper describes the model’s
implementation and possible benefits for different applications,
e.g. training, therapeutic or culture. Our first scalability bench-
mark results demonstrated the ability to simultaneously handle one
hundred virtual agents without significantly affecting the recom-
mended frame rate for VR applications. Lastly, we propose a set of
improvements our training system can benefit from. This research
is conducted in the context of a classroom simulation software for
teachers’ training.

CCS CONCEPTS
• Human-centered computing → Virtual reality; • Software
and its engineering→ Virtual worlds training simulations.

KEYWORDS
Virtual Reality, Behaviour Model, Education, Virtual Agent

1 INTRODUCTION
A number of recent virtual reality (VR) training systems use groups
of virtual agents reacting to the user. The virtual characters pop-
ulating these virtual environments are called a Virtual Audience
(VA). For instance, VR training systems simulating different VAs
(e.g., attentive or bored) have been used to reduce public speak-
ing anxiety [5, 9, 19]. Classroom simulations have also been used
to help trainee teachers to manage students by reproducing non-
verbal behaviours commonly met [7, 10, 16]. The term atmosphere
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is used in this context to describe how different types of audiences
may be perceived [7]. Studies have defined a set of virtual agents
behaviours to simulate distinguishable audience styles [12], and
further work identified a set of critical non-verbal behaviours influ-
encing VA perceptions [4]. More recent research evaluated these
kind of behaviours in VR in the context of teacher training simu-
lations [6, 20]. These behaviours can be simple non-verbal signals
(e.g. a head movement or a smile) or a combination of complex
signals through time (e.g. gaze away time mixed with posture’s
proximity and openness and facial expressions).

However, easily creating a highly believable audience, composed
of a number of virtual characters enacting specific desired atmo-
spheres, is still a challenge. Having a system which allows the
handling of large groups of agents without compromising the VR ex-
perience is the first step to take on this challenge. Indeed, numerous
user studies demonstrated the negative impacts of high latencies,
temporal jitter, and positional error on user performances, satisfac-
tion, discomfort and sense of immersion [1, 8, 11, 13, 15, 17, 18, 21].
Consequently, it is important to first benchmark the system in order
to be aware of how many agents the system can manage without
increasing latency.

In this paper, we present a new open-source tool to quickly and
easily design VA atmospheres in a generic way without requiring
expertise in animation or computer graphics. In contrast with our
system, and according to our knowledge, existing tools [2, 12]
do not allow creating atmospheres interactively in VR, and have
not been evaluated for large VA. Because our long term goal is to
provide a virtual classroom training system allowing instructors
to dynamically adapt the classroom to a teaching scenario we are
first looking to the model implementation’s limits and scalability
performances in order to lay out a believable system following VR
latency recommendations. Thus, we are here focusing on exposing
our system’s scalability performances as well as its architecture.

2 RELATED BEHAVIOUR MODEL
The behaviour model we implemented is from Mathieu Chollet
and Stefan Scherer [4]. This particular model has demonstrated the
capacity to express relevant audience states (e.g, bored, interested).

To do so they created a web interface allowing users to design
the behaviour of an agent according to a given value of arousal and
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valence, i.e. the audience’s engagement and its opinion toward the
speech. An important aspect of this study was to investigate the
link between non-verbal behaviours and the overall perception of
an audience. This first evaluation provided the desktop model we
are implementing in a VR system. Moreover, they designed another
web interface where users had to identify the audience’s state by
rating it through five-points scales, i.e. one for the valence and one
for the arousal. Results afford rich details on how VA are perceived.
For instance, it details how contradictory behaviours are perceived
as well as how prominent behaviours are with regards to the global
perception of the audience.

Finally, we took out from this model a set of variables which
allows us to manipulate VA’s states.

• Gaze direction and gaze away frequency;
• Postures in terms of openness and proximity;
• Head movements’ type and frequency;
• Facial expressions’ type and frequency;
• The number of agent displaying the target state or not.

Besides, this behaviour model is not dedicated to a context and
can be enriched with specific behaviours (e.g. classroom). However,
in-between agents’ interactions are not taken into account within
this behaviour model.

3 CONTRIBUTIONS
The contributions of this paper are as follows:

(1) Description of the implementation of an existing atmosphere
model for small and large virtual audiences in a popular
open-source game engine for VR application (Section 4);

(2) Experiment report verifying of the system’s scalability, to
handle up to 100 agents without degrading the VR-required
frame rate (Section 5);

4 SYSTEM OVERVIEW
Our system allows to control agents’ behaviour through factors
initially used in the original VA behaviour model from [4]. This
model has been implemented for the Unreal®Engine 4 (UE4) which
is a high-end development frameworkwidely used for 3D games and
VR software. To facilitate its use, the entire system is implemented
in a plugin which is compatible with most recent versions of the
game engine.

Our system, named the AtmosMaker, is based on three main
modules strongly linked to the UE4 base classes for virtual agents
(Figure 1). Themainmodule, also namedAtmosMaker grants control
of the non-verbal parameters corresponding to the model’s factors,
e.g. gaze, facial expression, frequency of gaze aversion. It behaves
like an audience manager, enabling it to alter the audience with
high level features. This AtmosMaker manager allows to modify
parts of the VA, the entire audience or only one agent at a time.

It can be paired with a 3D graphical user interface (GUI), e.g.
to edit the VA in real time directly in VR. The atmosphere can
be tailored to elicit a particular emotional response for a specific
application domain (e.g., virtual classroom, conference, theatre,
interview). To replicate Chollet and Scherer behaviours’ frequencies,
all behaviours have been set relatively to a time period. For instance,
the amount of time with averted gaze, e.g., 0%, 25%, 50% during a
given period.

Virtual reality Environment (classroom, theater)  

Trainee,
User

Tutor,
Therapist

Virtual Agents
(Up to 100)

AtmosMaker

Graphical User Interface

High level 
interaction 

features

Non-verbal
parameters

AtmosCharacter AtmosAnimation

Unreal Engine 4.X Commercial VR system
(Rift,Vive,Quest)

Asynchronous logic

Figure 1: Current system architecture. More informa-
tion and source code at https://www.hci.uni-wuerzburg.de/
projects/virtual-audiences/.

An AtmosAnimation instance computes the movements of
the agent according to the non-verbal parameters. The animation
actually played out by an agent is dynamically constructed from one
to several animations or applies rotations on character’s bones, each
corresponding to a specific factor from the model (e.g. the neck’s
bone to gaze away from the user). There is an animation instance per
agent due to how UE4 animates agents. Furthermore, extending this
animation instance empowers our system with advance features,
e.g. blending animations, layering agent’s skeleton or using inverse
kinematic.

Finally, anAtmosCharacter class exposes the different model’s
factors to the AtmosMaker and triggers the animations blending ac-
cording to their value by overseeing the AtmosAnimation instance.
This AtmosCharacter inherits from the UE4’s character class which
allows to combine our system with all the artificial intelligence
components available in the game engine, e.g. state machines, nav-
igation, character’s senses modules. Because all the behaviours
available in our implementation are rarely triggered together, we
are using an event system for optimisation purposes, it is described
in the next subsection 4.1.1.

https://www.hci.uni-wuerzburg.de/projects/virtual-audiences/
https://www.hci.uni-wuerzburg.de/projects/virtual-audiences/
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Figure 2: Virtual Audience composed ofMixamo’s character.

If facial expressions are required, the agent’s mesh must imple-
ment morph targets, i.e. blend shapes or shape keys. If it does not
have any, the AtmosAnimation will not be able to warp the mesh.
The plugin can handle model and animations from different free
3D Character Modelling tools such as Mixamo, or Autodesk Char-
acter Generator (Figure 2): it can be easily enriched by adding new
animations, facial expressions and head movements.

For our early prototype we chose to use seated agents in order
to fit within our research context (i.e. teachers’ training). However,
the system is flexible and allows using agents from different 3D
Character Modelling tools, which can be placed in a variety of
configurations, and play stand-up animations. The system has also
been tested with different hardware and head-mounted displays
(HMDs): mobile HMDs and HMDs with integrated eye-tracking are
both compatible.

4.1 Operating principle
In order to animate an agent, the different states it can encounter
when in animation were identified. The system is based on a loop
which alternatively shows or hides the result of the animation
building process.

Behaviour change
function

AtmosMaker

De-synchronisation
function

Wait time
function

Play time
function

AtmosCharacter

Show / hide
animation function

AtmosAnimation

Figure 3: Animation loop’s execution flow. From the Atmos-
Maker manager to the different stages needed to follow the
behaviour model and finally to the animation process.

4.1.1 Base animation loop. The animation phase has two parts
(Figure 3): one waiting and another playing the animation. States
are represented by independent timers duration, and the transitions
between them are function calls triggered by these timers. An
internal timer manager computes the time elapsed for each timers.
The base loop starts with a timer that represents the period where
the agent is waiting before showing any behaviour. When it reaches
its end, it triggers the call to the next function in the loop and so
on until all triggered behaviours were played out. Finally, the loop
goes back to its wait state when this last timer completes itself.

Every timer duration is based on a fixed value called reference
period. This parameter is used in every wait and play timers compu-
tation along with the corresponding display frequency factor value
provided in the AtmosMaker module. A fixed period of time can be
used to represent the rate at which we want to show a certain type
of animation for an agent in the audience (e.g. gazing away from
the user 60% of the period).

To avoid breaks in the virtual audience’s believability, we add
a timer with a random time before the animation loop’s first exe-
cution. This delay is used to desynchronize the start of the agent’s
animation, and thus breaking a negative effect where every agent in
the audience would begin to show at the same time their respective
animations

As all animations are not expected to be continually executed ,
the system does not rely on the update function provided with the
game engine. This function is internally called every frame, and
constantly evaluates animations. Hence, it is severely decreasing
the application’s performances. Concatenating functions calling
each others was the solution to avoid updating every frame.

4.1.2 Animation prioritisation. During the development of this
module’s component we noticed that the generated animations
although diverse, did not blend well in some cases. When per-
formed, animations could lead to physical oddities and overlapping
behaviours that can break the immersion for the user, creating un-
canny situations. As a solution, we decided to avoid the blending of
certain animation types, e.g. the gaze direction and the head move-
ment. But, we also wanted to keep the activation of incompatible
animations types in some cases, in order to execute them when an
opening becomes available (e.g. a period where the agent does not
show any animation).

The solution we chose to keep is based on a simple method.
The first animation which is executed by the code becomes the
prioritised one, i.e. it also signifies to other animations the priority
order. In case of conflict between two incompatible animations, we
cancel the activation of the lower priority one. Due to asynchrony,
some triggered behaviours could never be played out. To address
this issue, a time threshold interrupts the prioritised animation, e.g.
if an agent is gazing away for 100% of the time the threshold will
stop the behaviour to let the others to run.

The model implementation we are proposing allows to control
VA by triggering the different non-verbal behaviours. Our system
also keeps the generated VA away from behaviours which can
be considered as not believable or incongruous, e.g. synchronised
animations or a head shake while a gaze direction is changing.
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Figure 4: Desktop and virtual reality screenshots of the first scalability benchmark. From left to right: 2 agents with a desktop
GUI example, 28 agents in a VR overview, 1000 agents with desktop GUI.

The next performance study allows to apprehend the system’s
limitation in terms of simulation capacity and potential improve-
ments.

5 SYSTEM SCALABILITY PERFORMANCES
Low latency is critical for VR systems. It is a negative factor in
simulator sickness, and it also considerably affects interaction [17].
Low latencies and its jitter are also critical requirements for enabling
collaborative applications with VR systems using virtual agents and
embodied avatars [14]. Consequently, the evaluation focuses on
measuring our system’s impact on the frame rate and identifying
the maximum threshold number of simultaneous agents in VR we
can support without any animation and mesh optimisations.

The following results are divided in two parts. The first part
shows the performances with low detailed agents (Figure 4) and
the second with a more detailed agents (Figure 6), approximately
four times more complex in terms of polygons count.

5.1 Device
To perform the evaluation we used a laptop running with Windows
10 64 bits, Intel®Core i7-7700HQ processor (Quad core, 2.80 GHz,
8MB cache,8 GT/s) and NVIDIA®GeForce GTX 1070 Graphics Pro-
cessing Unit (GPU) 8GB GDDR5. A HTC®Vive was used to carry
out the VR evaluation. We choose to carry out the evaluation with
a VR ready laptop we are commonly using to run our evaluations.

5.2 Environment configuration
A simple VR scenewas built without any superfluous post-processing
or shadows. Thereby, it makes it easier to detect the bottleneck of
our plugin. Thus, only a plane, the agents and a default sky-box was
rendered (Figures 4, 6). Several settings had to be made, for instance
VSync and UE4’s frame smoothing were disabled because they can
interfere with the frame rate in order to fit with the monitor’s re-
fresh rate. With regards to the VR head mounted display, it was at
a fixed position in order to avoid rotations and thus fluctuations
in the processor’s draw calls. All measures are medians done on a
fixed amount of time, i.e. 100 frames.

5.3 Results
Our results with the low detailed agents are visible on Figure 5 (blue
curve). From the performances data we distinguish three thresholds
: i) Up to 30 agents the average frame rate is high (> 90 Hz) ii) Up
to 100 the frame rate decreases while remaining acceptable for VR
usage (]80, 90] Hz), iii ) Above 200 agents, the system is no more
suitable for VR use (< 30 Hz). We noticed that our system was
CPU bounded. This is why we investigated which process was the

Figure 5: Frame rate depending on the number of agent. In
red the complex agent scalability data. In blue the light-
weight agent scalability data.

most consuming for the CPU between the draw time and the time
needed to update the audience, i.e. the time to update behaviours,
meshes, and animations. It appears that the render time is not the
bottleneck of our system but the cumulative time to update each
agents in the audience.

The second evaluation does not face the same problem. In fact,
while the agents’ triangles are increasing fast the number of agent
does not (Figure 5 red curve). We are here facing the opposite
problem with a draw time which is reducing the frame rate. With
complex agents the system can handle around 60 agents before the
draw time reduces the frame rate which is causing less fluidity in
agents’ movements for instance.

In order to make our data easier to read we are only displaying
the frames per second count while the system is not yet bounded
by the rendering. The step with 100 agents is also displayed in
the second evaluation even if the system is already bounded by
the rendering in order to compare the different impacts of the
audience’s update time and the draw time mainly affected by the
number of characters to render. The details of the draw time and the
update time are not displayed because they correspond to the frame
rate given in the figure, depending on which one is the bottleneck.
As a complementary fact the draw time is approximately half of the
update time in our first evaluation before the draw time becomes
more important, i.e. between 300 and 400 agents.
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s

Figure 6: Benchmark environment view. Close view of 60
Mixamo’s Remy agent.

6 DISCUSSION
The AtmosMaker offers a high-level building tool for audiences’
atmosphere. The implementation described in section 4 may offer to
the VR community the opportunity to design and control VA with
precise parameters from the literature. Considering the scalability
data, the system seems to indicate suitable performances for VR if
the system stays under the threshold of 100 agents and under 60
with more complex agents (Figure 5).

The results described are closely linked to the chosen hardware.
A more performing one would allow improving our system’s perfor-
mances. However, as explained in the previous section this bench-
mark allows us to better apprehend the audiences’ size the Atmos-
Maker can handle with a standard material commonly use in our
user evaluations. Moreover, in the case where larger audiences
would be needed, different solutions frequently used in VR games
can be used. For instance the use of level of details (LOD) to sim-
plify meshes in terms of polygons count. Reducing the number
of agents’ bones and only updating agents’ pose when rendered
are alternatives. These improvements could significantly enhance
performances and more precisely CPU load when rendering the
virtual environment. Regarding the audience’s update time which is
mainly affected by the layered animations, only updating the pose
when the agents are rendered could help as well as improving the
animation algorithm, i.e. mixing animations asks more resources.

VR GUIs as shown in Figure 7 seem to offer the possibility to
easily design atmospheres. These interfaces also authorise in-game
modifications, which could be used by systems using audiences
like [3, 9, 16].

If other domains may gain advantage from a VA behaviour sys-
tem, this current implementation is still under evaluation, e.g. per-
formances, audience perception and agents’ believability. The At-
mosMaker could also benefit VR training systems, with regards to
the trade-off between a fully autonomous simulation and a com-
pletely Wizard of Oz system where each agent would have to be
individually controlled: for applications where replacing tutor ex-
pertise with an autonomous component is not desirable, our system
can provide a component with high-level controls which may be
easily used by the tutor during a simulation-based training session.

Figure 7: Example of a graphical user interface in virtual re-
ality used in a user evaluation aiming at reproducing Chol-
let and Scherer’s results.

7 FUTUREWORK
With knowledge of AtmosMaker’s limitations, we are now able to
run user perception evaluations in order to replicate desktop results
[4]. Assessing the system capability to generate atmospheres and
investigating if users perceive them as intended is a compulsory
step in our long term study. Figure 7 is an example of Chollet and
Scherer’s evaluation replication in VR where users have to design
agent’s behaviour according to the valence and arousal dimensions.

In terms of interactivity and awareness the system is still limited,
it requires a user to trigger interactions or changes in the VA, i.e.
similar to Wizard of Oz systems. Therefore, we are planning to
use interactive storytelling techniques to obtain more realistic and
variable VR training systems. They should bring control over the
scenario, e.g. with narrative events and VA’s behaviour planning.
Within the context of teacher training systems the model we are
using [4] could be enhanced with context-related animations and
backchannels in order to bring more believability and responsive-
ness to the VA. A practical example of backchannels are sounds
that Chollet and Scherer’s model does not consider. In fact, in terms
of immersion and believability the sound should not be neglected;
background noises and phatic expressions like ’yeah’ or ’mmhmm’
would bring more depth to the simulation. These improvements
could help instructors to manage more precisely and to make the
classroom’s level of attention and approval more noticeable for the
user.

These backchannels can be triggered by eye-tracking data, by end
of sentence detection, by voice analysis, from the users locations
or even from physiological sensors for stress detection (e.g. skin
conductance, temperature, heart rate, pupils dilatation). It should
allow instructors to follow their training scenario without being
overwhelmed by the supervision of the simulation consistency, i.e.
by letting the system handling these backchannels automatically.

Such model improvements will need to be evaluated within a
training system context in order to testify to their effectiveness. The
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interactive narrative engine we are planning to develop will also
need evaluation in terms of scalability performances and instructors
acceptability.

8 CONCLUSION
In this study we presented a VA Atmosphere model implementation
and its limitations. As far as the scalability data goes, the system
allows to control approximately 100 agents in VR or 60 high quality
agents without compromising the frame rate. The AtmosMaker
offers a high-level building tool for audiences’ atmosphere. This tool
gives the VR community the opportunity to design audiences within
a game engine. We believe having a high-level VA programming
tool will benefit training or therapeutic applications by bringing
the capability to manipulate and create the rendered atmosphere
of an audience quickly and easily. Eventually, our next evaluation
aims at testifying to the quality of the generated atmospheres in VR.
This should led to our next implementation of a teacher training
system using storytelling engine.
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