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Compressive learning for patch-based image denoising∗1

Hui Shi† , Yann Traonmilin† , and Jean-François Aujol†2

3

Abstract. The Expected Patch Log-Likelihood algorithm (EPLL) and its extensions have shown good perfor-4
mances for image denoising. The prior model used by EPLL is usually a Gaussian Mixture Model5
(GMM) estimated from a database of image patches. Classical mixture model estimation meth-6
ods face computational issues as the high dimensionality of the problem requires training on large7
datasets. In this work, we adapt a compressive statistical learning framework to carry out the GMM8
estimation. With this method, called sketching, we estimate models from a compressive representa-9
tion (the sketch) of the training patches. The cost of estimating the prior from the sketch no longer10
depends on the number of items in the original large database. To accelerate further the estimation,11
we add another dimension reduction technique (low-rank modeling of the covariance matrices) to12
the compressing learning framework. To demonstrate the advantages of our method, we test it on13
real large-scale data. We show that we can produce denoising performances similar to performances14
obtained with models estimated from the original training database using GMM priors learned from15
the sketch with improved execution times.16

Key words. Image denoising, Compressive learning, Sketching, Optimization,17

AMS subject classifications. 68U10, 94A08, 49N3018

1. Introduction. We consider the classical noisy observation model of a clean natural19

image u ∈ RN (composed of N pixels):20

(1.1) v = u+ w21

where v is the observed degraded version of u. The acquisition noise w is usually assumed22

to be an additive white Gaussian noise of variance σ, i.e. w
i.i.d.∼ N (0, σ2IN ). In the last two23

decades, non local patch-based methods have been proven successfull for denoising. Methods24

such as Piecewise Linear Estimators [60, 1], BM3D [10, 29] or NL-Bayes [31, 30, 58, 28] are25

examples of non-local methods [3]. In patch-based image denoising, the noisy image v is26

divided into small patches {vi}Mi=1. Each patch vi ∈ RP (P is the patch size) can be seen as a27

vector in a high dimensional space. The denoising problem is considered on each patch:28

(1.2) vi = ui + wi,29

and a corresponding denoised version u∗i of the true values ui are estimated. To overcome30

the ill-posedness of this inverse problem, various denoising methods [32, 31, 30, 22] consider31

patch models within a Bayesian framework. According to the Bayes’ theorem, the objective32

is to find u∗i which maximizes the posterior probability distribution f(ui|vi) under the prior33
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p(ui). The Maximum A Posteriori (MAP) problem is formulated as34

(1.3) u∗i = arg max
ui∈RP

f(ui|vi) = arg max
ui∈RP

f(vi|ui)p(ui) ∝ arg max
ui∈RP

e−
‖ui−vi‖

2

2σ2 p(ui)35

where ‖ · ‖ denotes the `2-norm. This yields36

(1.4) u∗i = arg min
ui∈RP

‖ui − vi‖2

2σ2
− log(p(ui)).37

Ideally, the choice of the prior distribution should be determined by the nature of the38

image to be estimated. In practice, Gaussian Mixture Models (GMM) [60, 56, 22] have shown39

their effectiveness. With the GMM prior, the solution of problem (1.4) can be approximated40

by a Wiener filter solution (see subsection 2.2).41

Among these various non-local denoising methods, the Expected Patch Log-Likelihood42

algorithm (EPLL) [63] occupies a central position due to its efficient denoising performance.43

A large number of works build on the original EPLL formulation to deal with more general44

prior or go beyond the denoising problem [12, 37, 6, 33, 41, 52, 11, 44]. EPLL uses a GMM45

prior learned from a very large set of patches extracted from clean images. The key to the46

success of EPLL is to find a good prior distribution. Since in practice patch sizes are typically47

greater than 5×5, estimating prior distributions in such a high-dimensional space is a difficult48

task. Moreover, to estimate the best possible model, we need to maximize the redundancy49

of structural information and use training databases as large as possible. As the traditional50

empirical minimization approaches require access to the whole training dataset, when the51

collection size is large, the learning process can be extremely costly. For instance, in the case52

of the classical learning method Expectation Maximization (EM), the memory consumption53

and computation time depend on the size of the database (see section 3).54

Leveraging ideas from compressive sensing [15] and streaming algorithms [9], R. Gribon-55

val et al. propose a sketching method [25, 19, 20, 18, 17] to compress the training database.56

This scalable technique compress the whole training collection into a fixed-size representation57

(a vector): a sketch of the training dataset before learning. The sketch captures the nec-58

essary information for the considered learning task. For certain mixture model estimation,59

it is then possible to learn their parameters directly from the sketch, without access to the60

original dataset. Hence the space and time complexity of the learning algorithm no longer61

depends on the original database size, but only on the size of the sketch which is linked to the62

dimensionality of the model. Sketching has been already used successfully in machine learn-63

ing [45, 17, 27, 7, 5, 40], generative networks [46], source localization [13, 14], independent64

component analysis [48] and depth imaging [49]. In [25], the sketching is implemented and65

evaluated on synthetic data to estimate a GMM with diagonal covariances. It is shown that66

on large synthetic data, for the estimation of GMM, the sketching produces precise results67

while requiring fewer memory space and computations. In this work, we explore the sketching68

method in the image patches context where GMM with full covariance must be estimated69

from the compressed database.70

Due to the curse of dimensionality, it is computationally expensive to manipulate the71

GMMs’ covariance matrices. In [42], the authors show that most natural images and videos72
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can be represented by a GMM with low-rank covariance matrices. The experiments have also73

shown the efficiency of low-rank covariance matrices applied to image denoising [38], image74

inpainting, high-speed video and hyperspectral imaging [59]. This motivates us to use such75

low-rank covariances in the GMM modeling of patches and extend the sketching framework76

accordingly to gain computational speedup and to manage the modeling of the image patches77

in the most possible flexible way.78

1.1. Contributions. A preliminary and short version of this work has appeared in [51]. In79

this paper, we provide a more detailed version of this work with a final consolidated version80

of the proposed learning algorithm, validated by extended numerical experiments.81

Figure 1 summarizes the principle of our approach. We first construct a sketch by averaging82

random Fourier features computed over the whole image patch database. Then the model83

parameters are learned directly from the sketch by our Low-rank Continuous Orthogonal84

Matching Pursuit (LR-COMP) algorithm without access to the original database. Finally,85

the learned model is used with a Bayesian method (EPLL) for the denoising task. Our

Figure 1. A summary of our method

86
contributions of this piece of work are the following:87

• In this work, we propose an algorithm LR-COMP to estimate a GMM with non-88

diagonal and low-rank covariance matrices. Compared to previous work in [25], our89

extension to non-diagonal covariance matrices allows us to learn a GMM prior from90

a compressed database of patches in the context of image denoising. Moreover, with91

the low-rank approximation of the covariance matrices, we lighten the computation92

burden in the denoising process while keeping good denoising performances.93
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• We demonstrate the performance of our approach on real large-scale data (over 494

millions training samples of patch size of 7 × 7) for the task of patch-based image95

denoising. We show that using models trained with the compressed database, we96

can obtain similar denoising performances compared to the models obtained with the97

classical EM algorithm. To the best of our knowledge, this is also the first time that98

the sketching framework has been applied with such high dimensional GMMs.99

• Computationally, we estimate the model from a compressed database which is about100

1000 times smaller than the original patch database. It leads to running time approx-101

imately two times faster compared to the EM method.102

The paper is organized as follows. Section 2 is a reminder of the EPLL framework. Then103

we review the EM algorithm in section 3. In section 4, we explain the compressive learning104

method. In section 5, we focus on explaining how to adapt the sketching framework to learn105

a GMM in the image patch context. We also interpret the extension to low-rank covariances106

and the implementation details of the adapted learning algorithm LR-COMP. In section 6,107

we provide numerical experiments that demonstrate the performance of our approach. Some108

conclusions and tracks for further works follow in section 7.109

2. Image denoising with EPLL. We review in this section the Expected Patch Log-110

Likelihood (EPLL) framework for image denoising. EPLL is a patch-based image restoration111

algorithm introduced by Zoran and Weiss [63]. The EPLL framework restores an image u by112

performing the following maximum a posteriori (MAP) estimation over all N patches:113

(2.1) u∗ = arg min
u∈RN

P

2σ2
‖u− v‖2 −

N∑
i=1

log(p(Piu))114

where Pi : RN −→ RP is a linear operator that extracts a patch of P pixels centered at the115

position i, typically P = 7 × 7. The function p(·) is the density of the prior probability116

distribution of the patches. Note that in practice, we assume that patches are distributed117

independently.118

2.1. Optimization. Due to the non-convexity of p(·), direct optimization of the problem119

may be difficult. The authors of EPLL propose to perform the optimization with “half-120

quadratic splitting” [16]. By introducing N auxiliary unknown vectors zi ∈ RP and a denoising121

parameter β > 0, the problem is then considered as:122

(2.2) u∗ = arg min
u∈RN

z1,...,zN∈RP

P

2σ2
‖u− v‖2 +

β

2

N∑
i=1

‖Piu− zi‖2 −
N∑
i=1

log(p(zi)).123

The optimization (2.2) is accomplished by alternating the minimization of u and zi.124

• Solving u for fixed zi — Problem (2.2) turns into a linear inverse problem with the125
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Tikhonov regularization. It has a closed form solution:126

û = arg min
u∈RN

P

2σ2
‖u− v‖2 +

β

2

N∑
i=1

‖Piu− zi‖2

= (I +
βσ2

P

N∑
i=1

PTi Pi)−1(v +
βσ2

P

N∑
i=1

PTi zi)

(2.3)127

with
∑N

i=1 P>i Pi = PI, where P is the number of patches overlapping each pixel.128

Hence we have129

(2.4) û = (I + σ2βI)−1(v + σ2βz̄i)130

where z̄i := (
∑N

i=1 P>i Pi)−1
∑N

i=1 P>i zi = 1
P

∑N
i=1 P>i zi is the image after averaging131

all overlapping patches zi.132

• Solving zi for fixed u — The minimization problem (2.2) is separable with respect133

to the latent variable zi. It means that for each zi we solve a patch MAP estimation134

under the patch prior p(zi), i.e. for all i,135

(2.5) ẑi = arg min
zi∈RP

β

2
‖Piû− zi‖2 − log(p(zi)).136

The solution of this problem depends on the choice of patch prior p(·).137

2.2. Denoising with a GMM prior. EPLL assumes that the prior is a finite Gaussian138

mixture model (GMM) with zero-mean on centered patches: the empirical mean estimated139

from noisy patches are removed before the denoising process (2.5) and added back in the end.140

We consider that a zero-mean patch x ∈ RP is a random vector generated from a distribution141

with density p(x) defined as142

(2.6) p(x) =
K∑
k=1

αkNP (x; 0,Σk)143

where K is the number of Gaussian components and αk ≥ 0 are weights of each component144

such that
∑K

k=1 αk = 1. The function NP (x; 0,Σk) denotes the density of a Gaussian dis-145

tribution with zero-mean with covariance Σk ∈ RP×P . Recall that the zero-mean Gaussian146

distribution density is:147

(2.7) NP (x; 0,Σk) =
1

(2π)P/2|Σk|1/2
e−

1
2
xTΣ−1

k x.148

Hence, under the GMM prior, Problem (2.5) turns to:149

(2.8) ẑi = arg min
zi∈RP

β

2
‖Piû− zi‖2 − log(

K∑
k=1

αkNP (zi;mi,Σk))150
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where we supposed that the mean mi are correctly estimated by the empirical mean of noisy151

patches.152

This problem cannot be solved in closed form as the second term is the logarithm of a sum153

of exponential. In [63], the authors proposed to solve this problem by keeping only one Gauss-154

ian component. For a given centered patch z̃i = Piû −mi, we chose the component k∗i that155

maximizes the posterior probability p(ki|z̃i). This leads to computationally efficient imple-156

mentations. [54] also justified that only one component is required for good reconstructions.157

The index k∗i is chosen by158

k∗i = arg max
1≤ki≤K

p(ki|z̃i) = arg max
1≤ki≤K

p(ki)p(z̃i|ki)

= arg min
1≤ki≤K

−2 logαki + log

∣∣∣∣Σki +
1

β
IP

∣∣∣∣+ z̃>i (Σki +
1

β
IP )−1z̃i

(2.9)159

where αki and Σki are the weights and the covariance matrices of the kth Gaussian component160

for the given patch z̃i. With k∗i (instead of a sum of K components), the solution of (2.8) is161

then a Wiener filtering solution:162

(2.10) ẑi = (Σk∗i
+

1

β
IP )−1Σk∗i

z̃i+mi.163

2.3. Eigenspace implementation of EPLL. The matrix inversions in (2.9) and (2.10) can164

be done efficiently by using the singular value decomposition over the covariance matrices.165

We denote Σk = UkΛkU
T
k , with Uk ∈ RP×P an unitary matrix and Λk = diag(λ

(k)
1 , ..., λ

(k)
P ) a166

diagonal matrix. The diagonal entries λ
(k)
i of Λk are the singular values of Σk. Then we can167

compute (2.9) by:168

(2.11) k∗i = arg min
1≤k≤K

−2 logαk +
P∑
j=1

(
log(λ

(k)
j +

1

β
) +

[ṽ
(k)
i ]2j

λkj + 1
β

)
169

where170

(2.12) ṽ
(k)
i = UTk z̃i.171

Then (2.10) leads to172

(2.13) ẑi = Uk∗i Sk∗i U
T
k∗i
z̃i+mi = Uk∗i Sk∗i ṽ

(k∗i )
i +mi173

with174

(2.14) Sk∗i = diag

 λ
(k∗i )
j

λ
(k∗i )
j + 1

β


j=1,...,P

.175
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3. Learning a GMM with EM. The Expectation-Maximization (EM) algorithm is a clas-176

sical mixture estimation approach. This algorithm starts with some initial estimates of model177

parameters and then iteratively updates the estimate until the the estimates are not changing178

much. See Appendix B for the details of the EM algorithm. In each iteration, it carries out179

two steps: the E-Step (expectation step) and the M-Step (maximization step). In E-Step,180

using the current estimate of the parameters, we evaluate the posterior probabilities. In the181

M-Step we compute parameters that maximize the probabilities found on the E-Step. These182

estimated parameters are then used to determine the distribution of the latent variables in183

the next E-Step.184

As for the time complexity of one iteration of this algorithm, it is linear in the number of185

model components K and the number of elements in the database n. However it is cubic with186

respect to the dimensions P due to the fact that we need to inverse the covariance matrix when187

calculating the density in E-Step. Thus, when estimating a K-components GMM on a data-188

base of n elements of dimension P , the computational complexity of one iteration of the EM189

algorithm is O(nKP 2 +KP 3). The major criticism of the EM algorithm is that when dealing190

with a large dataset, it often converges slowly. To address this problem, researchers have191

developed various variations of the traditional EM algorithm [36, 36]. Learning parameters192

using EM technique face computational issues linked to the size of the dataset and the number193

of parameters to estimate, which would make the use of (very) large image patches databases194

impractical. In the next section we will see an alternative manner to learn parameters using195

compressive learning.196

4. Sketching. Sketching is a dimensionality reduction method. The principle is to com-197

press the whole dataset massively before learning. First, the dataset χ = {xi}ni=1 is summa-198

rized into a vector y ∈ Cm (m� n) called the sketch:199

(4.1) y := Sketch(χ).200

Note that the computation of the sketch can be performed in a distributed manner. Then201

we apply a learning procedure Υ that allows us to learn an estimate Ψ∗ of some statistical202

parameters Ψ of the dataset directly from the sketch ŷ, namely203

(4.2) Ψ∗ = Υ(ŷ) = Υ(Sketch(χ))204

More specifically, learning from the sketch corresponds to a minimization problem205

(4.3) Ψ∗ ∈ arg min
Ψ

E(ŷ,Ψ)206

where the energy of the model E(·, ·) quantifies the fit between the sketch ŷ and the parameter207

Ψ. In the context of statistical learning, the energy E can be seen as a proxy of the empirical208

risk. The principle of sketching is summarized in Fig. 2.209

4.1. Compressive mixture estimation. In machine learning, the data xi ∈ Rd (e.g. in our210

case, the patches with d = P ) are often modeled as i.i.d. random samples generated from a211

probability distribution parameterized by Θ with a density fΘ ∈ D (D is the set of probability212

measures over Rd). The idea of sketching is to project the measure fΘ on a low-dimensional213
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d x1 x2 xn ∼ f

χ

Large collection size n

Sketch

ŷ

m� n
Learn

Ψ∗

Figure 2. Schema of sketching

vector space while keeping all the necessary information of the dataset. Mathematically, given214

a linear sketching operator S:215

(4.4)
S :D −→ Cm

y = Sf
216

and for some finite K ∈ N∗, we define a K-sparse model fΘ,α ∈ D:217

(4.5) fΘ,α =

K∑
k=1

αkfθk218

where fθk ∈ D are elementary measures parametrized by θk, αk ≥ 0 for all components and219 ∑K
k=1 αk = 1. We can express the vector z as220

(4.6) y = SfΘ,α =
K∑
k=1

αkSfθk .221

In practice we only have access to the empirical probability distribution f̂ = 1
n

∑n
i=1 δxi222

where δxi is a unit mass at xi. So we can define the empirical sketch as ŷ = 1
nS
∑n

i=1 δxi .223

The goal of the sketching framework is to recover fΘ,α from y, hence we do the following224

minimization to estimate the parameters225

(4.7) (Θ∗, α∗) ∈ arg min
Θ∈RK

α∈RK ,αk≥0,
∑K
k=1 αk=1

‖SfΘ,α − ŷ‖22.226

The objective of sketched learning algorithms is to minimize a datafit functional between the227

compressed database and the sketch of the estimation. In other words, our aim is to find228

parameters α,Θ such that the sketch of the probability distribution parameterized by α,Θ is229

the closest to the empirical sketch ŷ.230

4.2. Recovery guarantees. It was shown in [18] that we can guarantee theoretically the231

success of this estimation with a condition on the sketch size. These guarantees necessitate232

a “Lower Restricted Isometry Property” (LRIP) of the sketching operator. This property, is233

verified with high probability, for GMM with sufficiently separated mean and random Fourier234

sketching as long as the sketch size m ≥ O(K2dpolylog(K, d)), i.e. when the size of the sketch235

essentially depends on the parameters K (the number of components) and d (the model236



COMPRESSIVE LEARNING FOR PATCH-BASED IMAGE DENOISING 9

dimension). Empirical results seem to indicate that for dtot the total number of parameters, a237

database size of the order of dtot is sufficient: in the case of estimating a GMM with diagonal238

covariance matrices [25], the authors observe that the quality of the reconstruction exhibits a239

sharp phase-transition with respect to the sketch size m. This phase transition happens for240

m proportional to dtot. In our model, dtot = K(Pr+1). The excess risk of the GMM learning241

task is then controlled by the sum of an empirical error term and a modeling error term. This242

guarantees that the estimated GMM approximates well the distribution of the data [19].243

Note that EPLL uses a zero-mean GMM as the patch prior, therefore, during the learning244

process, the patches are centered before sketching and we do not estimate the mean of Gaus-245

sians. In our case, the sketched GMM learning problem reduces to the estimation of the sum246

of k zero-mean Gaussians with covariances Θ = (Σk)
K
k=1, i.e fΘ,α =

∑K
k=1 αkgΣk where gΣ is247

the zero-mean Gaussian measure with covariance Σ. In this context, the notion of separation248

used to prove guarantees in [18] does not hold. We still show empirically that the sketching249

process is successful without this separation assumption.250

4.3. Design of sketching operator: randomly sampling the characteristic function. In251

[25], the sketch is a sampling of the characteristic function (i.e the Fourier transform of the252

probability distribution f). Recall that the characteristic function ψf of a measure f is defined253

as:254

(4.8) ψf (ω) =

∫
Rd
e−iω

T xdf(x) ∀ω ∈ Rd.255

The sketching operator is therefore expressed as:256

(4.9) Sf = [ψ(ω1), ..., ψ(ωm)]T257

where {ω1, ..., ωm} is a set of well chosen frequencies. In the spirit of Random Fourier Sam-258

pling, the authors of [25] propose to draw the frequencies from a probability distribution, i.e.259

(ω1, ..., ωm)
i.i.d.∼ ∆. The choice of frequencies is essential to the success of sketching, and we260

will discuss it in details in subsection 5.1.261

5. Sketching image patches. In this section, we adapt the sketching framework to the262

context of image patches. As when using the classical EM algorithm, the GMM learning from263

sketch is performed under the assumption that the training patches are i.i.d. Given a training264

set of n centered patches χ = {x1, ..., xn} ⊂ RP , we define the empirical characteristic function265

with266

(5.1) ψ̂(w) =
1

n

n∑
j=1

e−iω
T xj with ω ∈ RP .267

Thus the empirical sketch ŷ is expressed as268

(5.2) ŷ = [ψ̂(ω1), ..., ψ̂(ωm)]T =
1

n

 n∑
j=1

e−iω
T
1 xj , ...,

n∑
j=1

e−iω
T
mxj

T .269
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In other words, a sample of the sketched database is a P -dimensional frequency component270

calculated by averaging over patches (not to be mixed with usual 2D Fourier components of271

images). Thanks to the properties of the Fourier transform of Gaussians, the sketch of a single272

zero-mean Gaussian component gΣk at frequency ωl is273

(5.3) (S(gΣk))l = ψgΣk
(ωl) = e−

1
2
ωTl Σkωl .274

Thus, given the weights α = (αk)
K
k=1 and the covariance matrices Σ = (Σk)

K
k=1, the sketch of275

a zero-mean GMM fΣ,α =
∑K

k=1 αkgΣk is276

(5.4) z = [S(fΣ,α)l]l=1,...,m =

[
K∑
k=1

αke
− 1

2
ωTl Σkωl

]
l=1,...,m

.277

As a consequence, denoting PSDP the set of P ×P positive symmetric definite matrices, the278

problem (4.7) of estimating GMM parameters becomes279

(5.5) (Σ∗, α∗) ∈ arg min
Σ=(Σk)Kk=1,Σk∈PSDP
α∈RK ,αk≥0,

∑K
k=1 αk=1

‖ŷ − SfΣ,α‖22,280

i.e.281

(5.6) (Σ∗, α∗) ∈ arg min
Σk∈PSDP ,∀k

α∈RK ,αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣∣ 1n
n∑
j=1

e−iω
T
l xj −

K∑
k=1

αke
− 1

2
ωTl Σkωl

∣∣∣∣∣∣
2

.282

In practice, the positive definite constraint in the optimization problem is hard to enforce283

directly on the space of P×P matrices (as previous work only considered diagonal covariances,284

it was not an issue). Our method, based on the Burer-Monteiro, permits us to respect the285

PSD constraint by recasting the covariance estimation problem as an optimization over RP×P286

without constraint (see subsection 5.2 for more details).287

5.1. Frequency sampling. The design of the probability distribution ∆ for sampling the288

frequencies {ω1, ..., ωm} is essential to the success of sketching. In our work, we draw fre-289

quencies from the adapted radius frequency distribution proposed in [25]. The adapted radius290

heuristic proposes to sample ω as291

(5.7) ω = Rϕ292

where R ∈ R+ is the norm of ω and ϕ ∈ RP is the random direction. The radius R is293

chosen with a radius distribution R ∼ pR(R; η) = ((ηR)2 + 1
4(ηR)4)

1
2 e−

1
2

(ηR)2
where η is294

a scale parameter that should be adjusted to the current dataset to ensure that most of295

the spectral content of the GMM is sampled. By combining this radius distribution with the296

decomposition (5.7), we have a frequency distribution ∆k referred as adapted radius frequency297

distribution. See Appendix C for details. With this distribution, we avoid sampling very low298

frequencies. Figure 3 illustrates the curve of p(R) with different values of η.299
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Figure 3. Curve of the radius distribution density

5.2. Extension to low-rank covariances. Bayesian MAP theory permits to use a GMM300

with degenerate covariance matrices as a denoising prior. In this case, the prior is given only301

in the union of subspaces spanned by the r leading eigenvectors of the K covariance matrices302

of the GMM. The experiments [38, 42] have shown that we can use low-rank covariance303

matrices for denoising while keeping good performance. This motivates us to approximate the304

covariance matrices in the GMM prior by low-rank matrices.305

Following classical Burer-Monteiro method [4, 8] in low-rank matrix estimation, we pa-306

rameterize Σk by its factors Xk: Σk = XkX
T
k . We define fX,α the density function of a307

zero-mean GMM with X = (Xk)
K
k=1, where Xk is a factor of a covariance matrix.308

Supposing that ‖ŷ −SfX,α‖22 has a minimizer, we approximate the minimization (5.5) by309

(5.8) (X̂, α̂) ∈ arg min
X=(Xk)Kk=1,Xk∈RP×r

α∈RK ,αk≥0,
∑K
k=1 αk=1

‖ŷ − SfX,α‖22,310

i.e.311

(5.9) (X̂, α̂) ∈ arg min
Xk∈RP×r,∀k

α∈RK ,αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣ŷ −
K∑
k=1

αke
− 1

2
ωTl XkX

T
k ωl

∣∣∣∣∣
2

312

where X̂ = {X̂1, ..., X̂K} is the collection of factorized rank reduced covariances. With the313

following proposition, we show that the difference between the costs minimized in (5.5) and314

(5.9) (the full rank and the low-rank cases, respectively) is associated with the smallest eigen-315

values of the covariance matrices. We qualitatively validate this approximation since these316

eigenvalues are typically small.317

Proposition 5.1. Let Φ∗ = {Σ∗1, ...,Σ∗K , α∗1, ..., α∗K} be a minimizer of (5.5). Suppose318

that there exists a minimizer Φ̂ = {X̂1, ..., X̂K , α̂1, ..., α̂K} for the problem (5.8). Let C =319
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1
2

√∑m
l=1 ‖ωl‖42. Then we have:320 ∥∥SfΦ̂ − ŷ

∥∥
2
− ‖SfΦ∗ − ŷ‖2 ≤ C max

k
(σr+1(Σ∗k))321

where the σr+1(Σ∗k) is the (r + 1)-th singular value of Σ∗k sorted by decreasing order.322

The proof is detailed in Appendix D.323

Ideally, we would like to obtain a similar bound for ‖Σ∗k − X̂kX̂
T
k ‖F . We conjecture that324

a RIP (Restricted Isometry Property) would be needed for such a result. As the verification325

of RIP remains an open theoretical question in the zero-mean GMM case, we leave this326

theoretical question for further work.327

5.2.1. Related work. There exist other methods to learn GMMs by incorporating a di-328

mensionality reduction technique. In the mixture models of probabilistic PCAs (MPPCA) [53],329

the covariance matrix Σk is parameterized as330

(5.10) Σk = XkX
>
k + γ2

kI.331

The authors use the EM algorithm to optimize the parameters γk and Xk. In the high332

dimensional data clustering (HDDC) model [2], the authors generalized the MPPCA by setting333

the covariance matrix as334

(5.11) Σk = Xkdiag(λk)X
T
k + γ2

kI, λk > 0.335

As for the MPPCA, the parameters are learned by the EM algorithm. In the HDMI model [22],336

a model selection algorithm for the intrinsic dimension of each mixture component is proposed.337

In this model, the noise variance γk is a priori fixed and the other parameters are optimized338

by the EM algorithm. Finally, in the PCA-GMM model [21], the covariance matrix Σk is339

expressed as:340

(5.12) Σk =

(
1

γ2
k

(I −XkX
T
k ) +XkS̃

−1XT
k

)−1

, S̃ ∈ SPD(P ).341

This model is a more general one than HDDC. The parameter γk can either be fixed a priori or342

optimized simultaneously with the other parameters by the EM algorithm. Unlike the above343

models, our model doesn’t estimate γk, we rather set a similar user-defined parameter (called344

µ in our case) at the denoising step. In our model, we also assume that the intrinsic dimension345

of each Gaussian component is the same and a priori fixed. Using automatically estimated346

ranks for covariances is a possible future work.347

5.3. An algorithm for learning patch prior from a sketch : LR-COMP (Low-Rank Con-348

tinuous Orthogonal Matching Pursuit). Problem (4.7) can be solved approximately using the349

greedy Compressive Learning OMP called CL-OMP and a variation of CL-OMP called CL-350

OMP with Replacement (CL-OMPR) [25, 26]. These algorithms are based on the Matching351

Pursuit [34], Orthogonal Matching Pursuit [39] and Orthogonal Matching Pursuit with Re-352

placement [23] for classical compressive sensing, which handle sparse approximation problems.353

It starts from an empty support and it expands the support by greedily adding new atoms to354
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the current support. Each new atom θ′ is found by maximizing the correlation 〈Sfθ′, r〉 where355

r is the current residual. Then it updates the weights and reduces the cost function with a356

descent algorithm initialized with the current parameters. For better feasible recovery, the357

algorithm using the replacement method was proposed. The approach increases the number358

of iterations of CL-OMP and extends the size of support more than the desired sparsity. Then359

it deletes the extra atoms by using the hard thresholding operator. We adapt these algorithms360

in the GMMs context with our low-rank approximation. Several modifications are detailed361

below:362

• No Replacement. Although the algorithms using the replacement method show363

better results on synthetic data, our results tested on image patches show that the364

replacement step has a negligible effect. Therefore, we run our algorithm without this365

hard thresholding operator to decrease the computation time.366

• Estimation of the factors of covariance instead of the covariance matrices.367

As we approximate the covariance matrices with their factors, in each step of the368

algorithm, we do operations directly on the factorized rank reduced covariance X369

instead of the covariance matrix Σ to lighten the computations.370

• Non-negativity and the normalization of the weights. In Step 1 of the algo-371

rithm, we compute the real part of the correlation between the normalized atom and372

the residual as done in CL-OMP(R). This avoids a negative correlation and negative373

weights in practice. No matter how Step 3 was computed, using the projected gra-374

dient descent or the gradient descent, or with a direct calculation, there’s negligible375

difference in the result and the running time. The weights are not forced to be sum-376

to-one at each iteration. However, after transforming the negative weights to zero, an377

l1-normalization of the weights is performed at the end of the algorithm.378

Algorithm 5.1 LR-COMP: Compressive GMM estimation with low-rank covariances [50].

Input Empirical sketch ŷ, sketching operator S, sparsity K, rank r
r̂ ← y; X ← ∅
for t = 1 to K do

Step 1: Perform a descent initialized with a P×r matrix of normally distributed random
numbers:
X∗k ← arg maxXk Re

〈 SfXk
‖SfXk‖2

, r̂
〉

2
, init = rand

Step 2: Extend the support: X ← X ∪ {X∗k}

Step 3: Find weights: α← arg minα

∥∥∥ŷ −∑|X|k=1 αkSfXk
∥∥∥2

2
Step 4: Perform a descent initialized with current parameters:

X,α← arg minX,α

∥∥∥ŷ −∑|X|k=1 αkSfXk
∥∥∥2

2
, init = (X,α)

Step 5: Update residual: r̂ ← ŷ −
∑|X|

k=1 αkSfXk ;
end for
Normalize the weights αk such that

∑
k αk = 1

return Support X, weights α

The proposed algorithm is summarized in Algorithm 5.1. In practice, we perform Step 4 with379
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a descent algorithm (L-BFGS). We use more iteration in the ultimate Step 4 (for t = K) as a380

”final adjustment”. With this ”final adjustment” step, we could reduce the running time by381

using fewer iterations in Step 4 for t < K. Our algorithm was implemented by extending the382

MATLAB toolbox [24]. The Matlab implementation of our approach is available at [50]. The383

main tool for the implementation of Algorithm 5.1 is to compute the necessary gradients for384

the optimization problems in Steps 1, 3, and 4.385

For the following section, denote the vector v(X) = SfX ∈ Rm.386

5.3.1. Expression of the gradient for Step 1. In step 1, we have the optimization problem387

388

(5.13) X∗k ∈ arg max
Xk∈RP×r

Re

〈
SfXk
‖SfXk‖2

, r̂

〉
2

, r̂ ∈ Cm.389

Let F (Xk) = −Re
〈 SfXk
‖SfXk‖2

, r̂
〉

2
= −v(Xk)TRe(r̂)

‖v(Xk)‖2 , then problem (5.13) turns to390

(5.14) Xk
∗ ∈ arg min

Xk∈RP×r
F (Xk).391

In practice, with W = [ω1, ..., ωm] ∈ RP×m the frequency matrix, we compute the gradient of392

F (Xk) with the following operation:393

(5.15) G = − 1

‖v(Xk)‖2
W

(
W TXk∗̇

(
v (Xk) ∗̇

(
F (Xk) v (Xk)

‖v (Xk) ‖2
− Re (r̂)

)))
.394

Here the symbol ∗̇ represents the multiplication element by element in MATLAB. A matrix of395

size m×r multiplied using dot∗ with a m×1 vector leads to a matrix of size m×r (multiplying396

all columns of the left side by the same column vector of the right side). The result G is a397

matrix of size P ×r. We need to reshape all the elements of the matrix G into a single column398

vector, whose result is the gradient ∇XkF (Xk). The detailed computation is in Appendix E.399

5.3.2. The solution of Step 3. The problem is400

(5.16) α∗ = arg min
α∈R|X|

∥∥∥∥∥∥y −
|X|∑
k=1

αkSfXk

∥∥∥∥∥∥
2

2

y ∈ Cm.401

Denote V (X) = [v(X1), ..., v(X|X|)] ∈ Rm×|X|, α = [α, ..., α|X|]
T ∈ R|X|, then the problem can402

be expressed as a least-squares minimization403

(5.17) α∗ = arg min
α∈R|X|

g(α) = arg min
α∈R|X|

‖y − V α‖22 .404

We thus have405

(5.18) α∗ = (V TV )−1V T ŷ.406
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5.3.3. Expression of the gradient for Step 4. The problem is407

(5.19) (X∗, α) ∈ arg min
X∈R|X|,Xk∈RP+P×r

α∈R|X|

∥∥∥∥∥∥ŷ −
|X[∑
k=1

αkSfXk

∥∥∥∥∥∥
2

2

.408

Denote V = [v(X1), ..., v(X|X|)], α = [α1, ...αK ]T , we express409

(5.20) h(X,α) = ‖ŷ − V α‖22 ,410

so we have the gradients411

(5.21) ∇αh(X,α) = 2V T (V α− ŷ)412

and413

(5.22) ∇Xkh(X,α) = 2αk∇Xkv(Xk)
T (V α− ŷ).414

In practice, as in Step 1, we compute the second gradient by calculating the matrix415

(5.23) G2 = −2αkW (W TXk∗̇v(Xk)∗̇(V α− y)).416

The gradient ∇Xkh(X,α) corresponds the vector after reshaping G2.417

As the function minimized here is smooth; the descent will be guaranteed to converge to418

a local minimum. Recent works suggest that if all the OMP steps fall close enough to the419

Gaussian of the global optimum [55], this step will converge to the global optimum under a420

restricted isometry condition.421

5.4. Complexity of LR-OMP. When estimating a K-components GMM, the proposed422

algorithm LR-OMP has a computational cost of the order of O(mP 2rK2). In each iteration,423

the computational cost is dominated by the matrix-vector product W (W TX) where W is a424

matrix of size P ×m and W TX is a matrix of size m×r. As m� n, the computational cost of425

our algorithm is lower than that of the EM. Moreover, it is possible to exploit the advantages426

of GPU computing, the matrix multiplication can be performed by using multiple GPUs in427

parallel [62]. This could result in a speed-up, especially for the ”final adjustment” step.428

5.5. Denoising with low-rank covariance matrices. In this section, we describe some429

modifications required in EPLL to use our estimated model. The estimated parameters430

are Φ̂ = {X̂1, ..., X̂K , α̂1, ..., α̂K} with X̂k ∈ RP×r and αk ∈ R+. A singular value decom-431

position of X̂k is given by X̂k = ÛkŜkV̂
T
k . Ûk, V̂k ∈ RP×P are orthogonal matrices and432

Ŝk = diag(ŝk1 , · · · , ŝkr , 0, · · · , 0) ∈ RP×P is a diagonal matrix. The r-rank covariance matrix433

can be expressed with Σ̂kr = X̂kX̂
T
k = ÛkŜ

2
kÛ

T
k . We approximate the covariance matrix Σk434

with Σk ' Σ̂k = ÛkΛ̂kÛ
T
k where Λ̂k is formed as:435

(5.24) Λ̂k =



ŝ2
k1

. . .

ŝ2
kr

0

0

µ
. . .

µ


436
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where µ is a user parameter. Denoting Û rk ∈ RP×r the matrix formed by the first r columns437

of Ûk and Λ̂rk the matrix formed with the first r rows and r columns of Λ̂k, we have:438

(5.25)

(
Σk +

1

β
IP

)−1

= Û rk (Λ̂rk +
1

β
Ir)
−1Û rTk +

β

βµ+ 1
(Ip − Û rk Û rTk )439

and440

(5.26)

(
Σk +

1

β
IP

)−1

Σk = Û rk (Λ̂rk +
1

β
Ir)
−1Λ̂rkÛ

rT
k +

βµ

βµ+ 1
(Ip − Û rk Û rTk ).441

The detailed computation of (5.25) is in Appendix F. Then the Gaussian selection step of442

EPLL (2.11) becomes443

k∗i = arg min
1≤k≤K

−2 logαk +

r∑
j=1

(
log(ŝ2

kj
+

1

β
) +

[v̂
(k)
i ]2j

ŝ2
kj

+ 1
β

− β

βµ+ 1
[v̂

(k)
i ]2j

)
(5.27)444

where445

(5.28) v̂
(k)
i = Û rTk z̃i.446

With the optimal component k∗i , the estimated patch (2.10) becomes (recall that z̃i are cen-447

tered patches and that mi are the estimated mean of patches448

ẑi = (Σk∗i
+

1

β
IP )−1Σk∗i

z̃i

= Ûkr
i∗

(Λ̂rk∗i +
1

β
Ir)
−1Λ̂rk∗i Û

rT
k∗i
z̃i +

βµ

βµ+ 1
(Ip − Û rk∗i Û

rT
k∗i

)z̃i

= Û rk∗i Λ̂′k∗i v̂
(k∗i )
i +

βµ

βµ+ 1
(z̃i − Ûk∗r v̂

(k∗i )
i )+mi

(5.29)449

with450

(5.30) Λ̂′k∗i = (Λ̂rk∗ +
1

β
Ir)
−1Λ̂rk∗ = diag

 ŝ2
k∗ij

ŝ2
k∗ij

+ 1
β


j=1,...,r

.451

6. Experimental Results. In this section we present several numerical experiments to452

illustrate the benefits of our approach.453

We randomly extract n = 4×106 patches of size P = 7×7 from the training images of the454

Berkeley Segmentation Database (BSDS) [35]. Then the patches are compressed into a sketch.455

Based on observations from numerical simulations, the scale parameter η must be adjusted456

for each task and dataset [47]. In [25], the authors propose to estimate this parameter with a457

small sketch on a small subset from the dataset. In our work, we choose the optimal parameter458

η by hand. We then learn a mixture model of K = 20 Gaussian components with low-rank459

covariance matrices. We compare the denoised results with the results obtained with a GMM460

(full-rank) prior model learned by the EM algorithm. For the comparison, we train the prior461
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from the same image patches dataset. The denoising is performed with EPLL1 . To evaluate462

the quality of denoised images, we use two measures: PSNR (Peak Signal to Noise Ratio) and463

SSIM (Structural Similarity) [57]. For the test images, we use two datasets: Set12 [61] and464

BSD68 [43] for a thorough evaluation. The code is available at [50] to reproduce the results465

below.466

Figure 4 shows the denoising performance on 6 images of the Set12 dataset. The noisy467

images are obtained by adding zero-mean Gaussian noise with standard deviations σ = 20 to468

the test images. The covariance matrices of the model learned by the sketching have the rank469

r = 20. We observe that for most of images, we obtain similar or better values of PSNR and470

SSIM.471

Another evaluation was carried out on the images from the BSD68 dataset. The test472

images have been corrupted by adding white Gaussian noise with standard deviations σ =473

15, 60. Table 1 shows the average PSNR and SSIM values on the dataset. On average,474

our approach results are 0.2dB below the results with EM in terms of PSNR. However, our475

approach is about 2 times faster than the EM. Moreover, a loss of 0.2dB does not affect the476

visual quality in most natural images.477

Table 1
The average PSNR and SSIM on the BSD68 dataset with 2 different levels of noise.

σ Sketching EM

15 31.8 / .876 32.0 / .879

50 24.4 / .637 24.6 / .646

We also evaluate the similarity of the models learned via EM and LR-OMP. In Figure 5 we478

visualize the leading eigenvectors of the learned covariance whose weight is the largest. The479

represented eigenvectors are ordered decreasingly with respect to the eigenvalues. The figure480

shows that the learned components have rich and similar structures except for the smallest481

eigenvalues where we observe differences. As we also observe that the eigenvalues decay much482

faster with our method than with EM, it is hard to interpret further the difference with the483

result of EM. We can still say that these different ”dictionaries” lead to similar denoising484

results.485

6.1. Influence of realization of sketching operator. Our approach performs stable per-486

formances with different initialization. Table 2 shows the variability of the PSNR/SSIM over487

different random sketch realizations. The evaluation is carried out on the classical images:488

cameraman, house, etc. The noisy images are obtained by adding white Gaussian noise with489

standard deviations σ = 20 to the test images.490

6.2. Influence of sketch size and the compression rate. Theoretically, we can success-491

fully estimate a GMM with sufficiently separated mean and random Fourier sketching with492

high probability as long as the sketch size m ≥ O(K2Ppolylog(K,P )). In our case, we learn493

zero-mean Gaussians. From [25], empirical results indicate that a sketch size of the order of494

the number of parameters is sufficient (i.e. it is conjectured that K2P could be reduced to495

1Matlab implementation based on the code of [38].
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22.1/.615 33.2/.937 33.4/.930

22.1/.596 35.4/.929 35.4/.926

22.1/.655 32.3/.940 32.4/.937

22.1/.743 30.3/.914 30.0/.908

22.1/.740 29.2/.921 28.6/.917

22.1/.678 32.3/.933 32.2/.931

Figure 4. From left to right: Original images, noisy images with noise σ = 20, results with EM model,
results with LR-COMP model. The denoising results are evaluated with PSNR/SSIM. Similar denoising per-
formances are obtained with LR-COMP with a 1000 times smaller compressed database. To estimate the prior
model, our method is 2 times faster than the EM algorithm.
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Figure 5. The first 20 eigenvectors of the covariance matrices (for the heaviest weight) learned by LR-OMP
with rank r = 20 (a), r = 49(b) and EM (c). The decay of the corresponding eigenvalues (d).

Table 2
Image denoising performance comparison of models estimated over different random sketch realization.

Realization 1 Realization 2 Realization 3 Realization 4

cameraman 33.1 / .930 33.3 / .930 33.4 / .930 33.4 / .930
house 35.4 / .926 35.4 / .925 35.4 / .926 35.4 / .925

jetplane 32.1 / .936 32.3 / .937 32.4 / .937 32.4 / .937
lena 32.0/ .931 32.2 / .931 32.2 / .931 32.2 / .931

pirate 29.8 / .907 30.0 / .908 30.0 / .908 30.0 / .908

KP ). In our experiments, we set m = cK(P × r+1) = 10K(P × r+1) ≈ 2×105, i.e the com-496

pressed database is approximately 1000 times smaller than the original patch database. The497

gains in terms of memory is approximately n
m times compared to the EM approach. Figure 6498

shows the denoising performance and estimation time with models learned by using different499

sketch sizes (c = 1, 5, 10, 20). Our experiments show that a larger sketch size doesn’t improve500

the denoising performance necessarily, and indeed it causes more learning time.501
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32.87/.925 33.2/.930 33.4/.930 33.3/.933

0.23h 0.68h 1.94h 7.57 h
(a) (b) (c) (d)

Figure 6. Denoising performance (PSNR/SSIM) and estimation time (hours) of models learned with
different sketch size. c =1 (a), 5 (b), 10 (c), 20 (d).

6.3. Influence of the rank r. Figure 7 shows the denoising performance of models esti-502

mated with different ranks. Our experiments show that the model with reduced rank results503

in a minor PSNR/SSIM drop compared to the full-rank model. However, the learning time is504

much faster. According to the experiments, we cannot reduce the rank further (less than 20)505

to keep good denoising performance.

31.7/.922 33.4/.930 33.5/.934

0.56h 1.94h 7.39h

Figure 7. Denoising performance (PSNR/SSIM) of models learned with different intrinsic dimensions. r
= 10 (left), 20 (middle), 49(right).

506

6.4. Learning time. In terms of time complexity, the running time depends on the number507

of components K and the complexity of the descent algorithm. In our approach, we use the508

Limited-memory BFGS algorithm to handle the optimization problems in Step 1 and 4. The509

latter is the most time-consuming part of the algorithm. To get the model (c = 10, r = 20)510

that achieves the denoising performance of our experiments (Figure 4), it takes less than511

2 hours on a computer with 2 * 32 cores AMD EPYC 7452 @ 2,35 GHz. With the same512

environment, our learning algorithm is about 2 times faster than the EM algorithm (3.68h)2.513

2Mo Chen (2021). EM Algorithm for Gaussian Mixture Model (EM GMM)
(https://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model-
em-gmm), MATLAB Central File Exchange. Retrieved October 11, 2021.
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7. Conclusions. In this work, we adapt the sketching framework in the context of image514

patches. We propose an algorithm LR-COMP to estimate a GMM with low-rank approxi-515

mation and provide an implementation of the algorithm. Experiments illustrate that a high-516

dimensional GMM can be learned from a compressed database and then used for patch-based517

denoising. We achieve denoising performances close to state-of-the art model based methods518

while the learning procedure uses less memory and time than the classical EM algorithm.519

In future works, we can generalize our approach to other models such as GGMM (General-520

ized Gaussian Mixture Model) for a better denoising performance [11]. We also aim to adapt521

the sketching to more inverse problems such as image super-resolution, image deblurring, etc.522

Another perspective is to extend our model to the study of video denoising method as the523

potential of the technique for video restoration remains unexplored. As mentioned earlier,524

the scale parameter η must be adjusted for each task and dataset. In our work, we choose525

this parameter by hand. Moreover, in our model, the intrinsic dimension of each Gaussian526

component is assumed the same and a prior fixed. It could be useful to design a procedure to527

estimate the hyper-parameters automatically in future work. In our work, we estimate a GMM528

with zero-mean. In this context, the notion of separation used to prove the restricted isometry529

property which in turn proves identifiability of the GMM in [18] and convergence of gradient530

descent in [55]. Proving a RIP on zero-mean would require a new notion of separation. We531

conjecture that an angular separation between Gaussian might enable us to prove such RIP.532

Such separation could e.g. compare the angle between eigenvectors of covariances by decreas-533

ing eigenvalue amplitude and weight the separation accordingly. The low-rank model should534

add even more separation as the Gaussian are supported on different sub-spaces. We still535

show empirically that the sketching process is successful without this separation assumption.536

This opens interesting new theoretical questions for the study of the success of compressive537

learning in patch-based image processing.538

Appendix A. Definitions and theorems.539

Definition A.1. Singular values For A ∈ Cm×n and i = 1, ...,min(m,n), the singular540

values σi(A) (that we suppose sorted by decreasing order) of the matrix A are the absolute541

values of the eigenvalues of the matrix AAT :542

(A.1) σ2
i (A) = λi(AA

T ).543

Definition A.2. Frobenius norm. For a matrix A ∈ Cm×n, the Frobenius norm of A is544

defined as545

(A.2) ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|ai,j |2 =
√

trace (ATA) =

√√√√min{m,n}∑
i=1

σ2
i (A)546

where σi(A) are the singular values of A.547

Definition A.3. Operator norm. For a continuous linear operator A : V → W , the548

operator norm of A is defined as549

‖A‖op = inf{c ≥ 0 : ‖Av‖ ≤ c‖v‖ ∀v ∈ V }

= sup

{
‖Av‖
‖v‖

: v 6= 0 and v ∈ V
}
.

(A.3)550
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Theorem A.4. Eckart-Young-Mirsky theorem. Let D = UΣV > ∈ Rm×n, m ≥ n be551

the singular value decomposition of D with Σ = diag(σ1, ..., σm). Let Ur (resp. Vr) be the552

matrix formed by the first r columns of U (resp. V ) and Σr = diag(σ1, ..., σr). Then the553

r-rank matrix, obtained from the truncated singular value decomposition: D∗ = UrΣrV
T
r is554

the minimizer of the low-rank approximation:555

(A.4) ‖D −D∗‖F = min
rank(D′)≤r

‖D −D′‖F =

√ ∑
j≥r+1

σ2
j (D).556

The minimizer D∗ is unique if and only if σr+1 < σr.557

Appendix B. EM algorithm. Given a data set of n clean training patches χ =558

{x1, ..., xn} ⊂ RP×n, the EM algorithm for estimating a GMM can be summarized as fol-559

lows:560

1. Define the number of components K. For each component k, we initialize the param-561

eters Θk = (µk,Σk, αk) randomly, and we compute the log likelihood562

(B.1) logL(Θk;x1, ..., xn) =

n∑
i=1

log(

K∑
k=1

αkNP (xi;µk,Σk))563

2. E-Step564

Compute the posterior function Γi,k with the current parameters Θk:565

(B.2) Γi,k =
αkNP (xi;µk,Σk)∑K
j=1 αjNP (xi;µj ,Σj)

566

3. M-Step567

Re-estimate the parameters Θnew
k with the Γi,k obtained in the E-Step:568

(B.3) µnewk =
1

Nk

n∑
i=1

Γi,kxi569

570

(B.4) Σnew
k =

1

Nk

n∑
i=1

Γi,k(xi − µk)T (xi − µk)571

572

(B.5) αnewk =
Nk∑K
k=1Nk

573

where Nk =
∑n

i=1 Γi,k.574

4. Re-evaluate the log likelihood. Iterate E-Step and M-Step until the log likelihood or575

the parameters are not changing much.576
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Appendix C. Design of the adapted radius distribution. The choice of the probability577

distribution ∆ to draw the frequencies is a key ingredient in designing the sketching opera-578

tor. In our work, we choose the frequency distribution called the adapted radius [27] with a579

heuristic. In this appendix, we describe the design of the adapted radius distribution.580

Assuming that we want to estimate a P -dimensional Gaussian g = N (0, IP ), we can581

compute the characteristic function ψg(ω) associated with g:582

(C.1) ψg(ω) = e−
1
2
ωTω.583

The adapted radius heuristic proposes not to sample ω directly but rather to sample the radius584

of the P -dimensional Gaussian R =
√
ωTω. Thus, we draw the frequency ω ∈ RP as585

(C.2) ω = Rϕ586

where the radius R ∈ R+ is chosen with a radius distribution R ∼ pR(R; η), and the direction587

ϕ ∈ RP is uniformly generated on the l2 unit sphere SP−1, i.e. ϕ ∼ U(SP−1). Then, the588

characteristic function ψg(ω) reduces to589

(C.3) ψg(ω) = ψg(Rϕ) = e−
1
2
R2

= ψ(R).590

We obtain a one-dimensional Gaussian function for R. To design the radius distribution, we591

consider the estimation of a Gaussian g = N (0, 1). We aim at sampling the radius R leading592

to large variations of the characteristic function when the parameters are closed to the true593

parameters. In other words, when parameters (µ, σ2) are closed to (0,1), we want have a large594 ∣∣ψ(µ,σ2)(R)− ψ(0,1)(R)
∣∣. This can be accomplished by promoting the radius R which makes595

the norm of the gradient
∥∥∇ψ(µ,σ2)(R)

∥∥
2

large. Recall that ψ(µ,σ2)(R) = e−iµRe−
1
2
σ2R2

and596

the norm of the gradient is:597

(C.4)
∥∥∇ψ(µ,σ2)(R)

∥∥2

2
=
∣∣−iRψ(µ,σ2)(R)

∣∣2 +

∣∣∣∣−1

2
R2ψ(µ,σ2)(R)

∣∣∣∣2 = (R2 +
1

4
R4)e−σ

2R2
.598

Therefore, ‖∇ψ(0,1)(R)‖2 = (R2 + 1
4R

4)
1
2 e−

1
2
R2

. It yields the density of a radius distribution :599

(C.5) pR(R; η) = ((ηR)2 +
1

4
(ηR)4)

1
2 e−

1
2

(ηR)2
.600

Here the scale parameter η should be chosen to probe the spectral content of the true GMM601

model.602

Appendix D. Proof of Proposition 5.1.603

Proof. Let Φ∗k = (Σ∗k, α
∗
k) be the minimizer of the problem (5.5), i.e.604

(D.1) Φ∗k ∈ arg min
Σk∈RP×P

αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣
K∑
k=1

αke
− 1

2
ωTl Σkωl − ŷl

∣∣∣∣∣
2

605
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and suppose that there exists a minimizer Φ̂k = (X̂k, α̂k) for the problem (5.8):606

(D.2) Φ̂k ∈ arg min
Xk∈RP×r

αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣
K∑
k=1

αke
− 1

2
ωTl XkX

T
k ωl − ŷl

∣∣∣∣∣
2

.607

Let Σ̃k be the best rank-r approximation of Σ∗k with the rank r i.e.608

(D.3) Σ̃k ∈ arg min
Σ,rank(Σ)=r

‖Σ∗k − Σ‖2F .609

Define Φ̃ = (Σ̃k, α
∗
k). According to the definition (D.2) and the triangle inequality, we have610 ∥∥SfΦ̂ − y

∥∥
2
≤
∥∥SfΦ̃ − ŷ

∥∥
2

=
∥∥SfΦ̃ − SfΦ∗ + SfΦ∗ − ŷ

∥∥
2

≤
∥∥SfΦ̃ − SfΦ∗

∥∥
2

+ ‖SfΦ∗ − y‖2

.(D.4)611

The first term is612

∥∥SfΦ̃ − SfΦ∗
∥∥2

2
=

∥∥∥∥∥
K∑
k=1

α∗kS(fΣ̃k
− fΣ∗k

)

∥∥∥∥∥
2

2

=
m∑
l=1

∣∣∣∣∣
K∑
k=1

α∗k

(
e−

1
2
ωTl Σ̃kωl − e−

1
2
ωTl Σ∗kωl

)∣∣∣∣∣
2

=
m∑
l=1

∣∣∣∣∣
K∑
k=1

α∗ke
− 1

2
ωTl Σ̃kωl

(
1− e−

1
2
ωTl (Σ∗k−Σ̃k)ωl

)∣∣∣∣∣
2

.

.(D.5)613

Using the convexity inequality |1− e−x| ≤ |x| and Cauchy–Schwarz inequality, we have614 ∣∣∣e− 1
2
ωTl Σ̃kωl(1− e−

1
2
ωTl (Σ∗k−Σ̃k)ωl)

∣∣∣ ≤ ∣∣∣1− e− 1
2
ωTl (Σ∗k−Σ̃k)ωl

∣∣∣
≤ 1

2

∣∣∣ωTl (Σ∗k − Σ̃k)ωl

∣∣∣ =
1

2

∣∣∣〈ωl, (Σ∗k − Σ̃k)ωl〉
∣∣∣ .(D.6)615

By the Eckart-Young-Mirsky theorem, we have that the largest singular value of Σ∗k − Σ̃k is616

σr+1(Σ∗k) and617

(D.7)
∣∣∣〈ωl, (Σ∗k − Σ̃k)ωl〉

∣∣∣ ≤ ‖ωl‖22‖(Σ∗k − Σ̃k)‖op = ‖ωl‖22σr+1(Σ∗k).618

Therefore, using
∑K

k=1 αk = ‖α‖1 = 1 and Hölder’s inequality, and upper bound on (D.5)619

reads620

∥∥SfΦ̃ − SfΦ∗
∥∥2

2
≤ 1

4

m∑
l=1

∣∣∣∣‖α‖1max
k

(
‖ωl‖22σr+1(Σ∗k)

)∣∣∣∣2
=

(
1

4

m∑
l=1

‖ωl‖42

)
max
k

(σr+1(Σ∗k))
2 .

(D.8)621
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622

Denoting C = 1
2

√∑m
l=1 ‖ωl‖42, we have from (D.4) that:623

(D.9)
∥∥SfΦ̂ − ŷ

∥∥
2
≤ C max

k
(σr+1(Σ∗k)) + ‖SfΦ∗ − ŷ‖2 .624

625

Appendix E. Calculation of the gradient. Denote F (Xk) = − v(Xk)T r̂
‖v(Xk)‖2 , where r ∈ Rm is626

the real part of r̂. We compute the gradient of F as follows:627

∇XkF (Xk) = − 1

‖v(Xk)‖22

(
(∇Xkv(Xk))

T r‖v(Xk)‖2 −
v(Xk)

T r(∇Xkv(Xk))
T v(Xk)

‖v(Xk)‖2

)
= −(∇Xkv(Xk))

T

‖v(Xk)‖2

(
r +

v(Xk)
T rv(Xk)

‖v(Xk)‖22

)
=

(∇Xkv(Xk))
T

‖v(Xk)‖2

(
F (Xk)v(Xk)

‖v(Xk)‖2
− r
)
.

(E.1)628

For each component vl(Xk) = e−
1
2
ωTl XkXk

Tωl , we have629

(E.2)
∂vl(Xk)

∂Xk
= −vl(Xk)Xk

Tωlω
T
l .630

Then for a given vector z ∈ Rm631

(E.3) 〈∇Xkv(Xk), z〉 = −
m∑
l=1

zlvl(Xk)Xk
Tωlω

T
l .632

In practice, we compute the scalar product with633

〈∇Xkv(Xk), z〉 = −W (W TXk∗̇(v(Xk)∗̇z))(E.4)634

where W = [ω1, ..., ωm] ∈MP,m(R) the frequency matrix and ∗̇ the multiplication element by635

element in MATLAB. We compute the matrix G as636

(E.5) G = − 1

‖v(Xk)‖2
W

(
W TXk∗̇

(
v(Xk)∗̇

(
F (Xk)v(Xk)

‖v(Xk)‖2
− r
)))

.637

As a consequence, we reshape the matrix G to a vector which corresponds the gradient638

∇XkF (Xk).639

Appendix F. The expression of (5.25). Denoting Û rk ∈ RP×r (resp. Û ck ∈ RP×(P−r) )the640

matrix formed by the first r (resp. the last P − r) columns of Ûk and Λ̂rk the matrix formed641

with the first r rows and r columns of Λ̂k. We use the bloc matrix multiplication:642 (
Σk +

1

β
IP

)−1

= Ûk(Λ̂k +
1

β
I)−1ÛTk

= Û rk (Λ̂rk +
1

β
Ir)
−1Û rTk + (µ+

1

β
IP−r)

−1Û ckÛ
cT
k .

(F.1)643
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We have Û ckÛ
cT
k = (Ip − Û rk Û rTk ), thus644 (

Σk +
1

β
IP

)−1

= Û rk (Λ̂rk +
1

β
Ir)
−1Û rTk +

β

βµ+ 1
(Ip − Û rk Û rTk ).(F.2)645
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by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil649

Régional d’Aquitaine (see https://www.plafrim.fr/). The authors are indebted to anonymous650

reviewers for providing insightful comments which have resulted in this paper.651

REFERENCES652

[1] C. Aguerrebere, A. Almansa, Y. Gousseau, J. Delon, and P. Musé, Single shot high dynamic range653
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