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Compressive learning for patch-based image denoising∗1

Hui Shi† , Yann Traonmilin† , and Jean-François Aujol†2

3

Abstract. The Expected Patch Log-Likelihood algorithm (EPLL) and its extensions have shown good perfor-4
mances for image denoising. The prior model used by EPLL is usually a Gaussian Mixture Model5
(GMM) estimated from a database of image patches. Classical mixture model estimation meth-6
ods face computational issues as the high dimensionality of the problem requires training on large7
datasets. In this work, we adapt a compressive statistical learning framework to carry out the GMM8
estimation. With this method, called sketching, we estimate models from a compressive representa-9
tion (the sketch) of the training patches. The cost of estimating the prior from the sketch no longer10
depends on the number of items in the original large database. To accelerate further the estimation,11
we add another dimension reduction technique (low-rank modeling of the covariance matrices) to12
the compressing learning framework. To demonstrate the advantages of our method, we test it on13
real large-scale data. We show that we can produce denoising performances similar to performances14
obtained with models estimated from the original training database using GMM priors learned from15
the sketch with improved execution times.16

Key words. Image denoising, Compressive learning, Sketching, Optimization,17

AMS subject classifications. 68U10, 94A08, 49N3018

1. Introduction. We consider the classical noisy observation model of a clean natural19

image u ∈ RN (composed of N pixels):20

(1.1) v = u+ w21

where v is the observed degraded version of u. The acquisition noise w is usually assumed to be22

an additive white Gaussian noise of variance σ, i.e. w
i.i.d.∼ N (0, σ2IN ). In the last two decades,23

non local patch-based methods have been proven successfull for denoising. Methods such as24

Piecewise Linear Estimators [52, 1], BM3D [9, 26] or NL-Bayes [28, 27, 50] are examples of25

non-local methods [2]. In patch-based image denoising, the noisy image v is divided into small26

patches {vi}Mi=1. Each patch vi ∈ RP (P is the patch size) can be seen as a vector in a high27

dimensional space. The denoising problem is considered on each patch:28

(1.2) vi = ui + wi,29

and a corresponding denoised version u∗i of the true values ui are estimated. To overcome30

the ill-posedness of this inverse problem, various denoising methods [29, 28, 27, 20] consider31

patch models within a Bayesian framework. According to the Bayes’ theorem, the objective32

is to find u∗i which maximizes the posterior probability distribution f(ui|vi) under the prior33
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p(ui). The Maximum A Posteriori (MAP) problem is formulated as34

(1.3) u∗i = arg max
ui∈RP

f(ui|vi) = arg max
ui∈RP

f(vi|ui)p(ui) ∝ arg max
ui∈RP

e−
||ui−vi||

2

2σ2 p(ui)35

where ‖ · ‖ denotes the `2-norm. This yields36

(1.4) u∗i = arg min
ui∈RP

||ui − vi||2

2σ2
− log(p(ui)).37

Ideally, the choice of the prior distribution should be determined by the nature of the38

image to be estimated. In practice, Gaussian Mixture Models (GMM) [52, 49, 20] have shown39

their effectiveness. With the GMM prior, the solution of problem (1.4) can be approximated40

by a Wiener filter solution.41

Among these various non-local denoising methods, the Expected Patch Log-Likelihood42

algorithm (EPLL) [53] occupies a central position due to its efficient denoising performance.43

A large number of works build on the original EPLL formulation to deal with more general44

prior or go beyond the denoising problem [11, 33, 5, 30, 37, 47, 10, 39]. EPLL uses a GMM45

prior learned from a very large set of patches extracted from clean images. The key to the46

success of EPLL is to find a good prior distribution. Since in practice patch sizes are typically47

greater than 5×5, estimating prior distributions in such a high-dimensional space is a difficult48

task. Moreover, to estimate the best possible model, we need to maximize the redundancy49

of structural information and use training databases as large as possible. As the traditional50

empirical minimization approaches require access to the whole training dataset, when the51

collection size is large, the learning process can be extremely costly. For instance, in the case52

of the classical learning method Expectation Maximization (EM), the memory consumption53

and computation time depend on the size of the database (see section 3).54

Leveraging ideas from compressive sensing [14] and streaming algorithms [8], R. Gribon-55

val et al. propose a sketching method [23, 18, 19, 17, 16] to compress the training database.56

This scalable technique compress the whole training collection into a fixed-size representation57

(a vector): a sketch of the training dataset before learning. The sketch captures the nec-58

essary information for the considered learning task. For certain mixture model estimation,59

it is then possible to learn their parameters directly from the sketch, without access to the60

original dataset. Hence the space and time complexity of the learning algorithm no longer61

depends on the original database size, but only on the size of the sketch which is linked to the62

dimensionality of the model. Sketching has been already used successfully in machine learn-63

ing [40, 16, 25, 6, 4, 36], generative networks [41], source localization [12, 13], independent64

component analysis [43] and depth imaging [44]. In [23], the sketching is implemented and65

evaluated on synthetic data to estimate a GMM with diagonal covariances. It is shown that66

on large synthetic data, for the estimation of GMM, the sketching produces precise results67

while requiring fewer memory space and computations. In this work, we explore the sketching68

method in the image patches context where GMM with full covariance must be estimated69

from the compressed database.70

Due to the curse of dimensionality, it is computationally expensive to manipulate the71

GMMs’ covariance matrices. [38] shows that most natural images and videos can be repre-72

sented by a GMM with low-rank covariance matrices. The experiments have also shown the73
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efficiency of low rank covariance matrices applied to image denoising [34], image inpainting,74

high-speed video and hyperspectral imaging [51]. This motivates us to use such low rank co-75

variances in the GMM modeling of patches and extend the sketching framework accordingly76

to gain computational speedup and to manage the modeling of the image patches in the most77

possible flexible way.78

1.1. Contributions. A preliminary and short version of this work has appeared in [46]. In79

this paper, we provide a more detailed version of this work with a final consolidated version80

of the proposed learning algorithm, validated by extended numerical experiments.81

Figure 1 summarizes the principle of our approach. We first construct a sketch by averaging82

random Fourier features computed over the whole image patch database. Then the model83

parameters are learned directly from the sketch by our Low-rank Continuous Orthogonal84

Matching Pursuit (LR-COMP) algorithm without access to the original database. Finally,85

the learned model is used with a Bayesian method (EPLL) for the denoising task.

Figure 1. A summary of our method

86
Our contributions of this piece of work are the following:87

• In this work, we propose an algorithm LR-COMP to estimate a GMM with non-88

diagonal and low-rank covariance matrices. Compared to previous work in [23], our89

extension to non-diagonal covariance matrices allows us to learn a GMM prior from90

a compressed database of patches in the context of image denoising. Moreover, with91

the low-rank approximation of the covariance matrices, we lighten the computation92

burden in the denoising process while keeping good denoising performances.93

• We demonstrate the performance of our approach on real large-scale data (over 494

millions training samples of patch size of 7 × 7) for the task of patch-based image95

denoising. We show that using models trained with the compressed database, we96
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can obtain similar denoising performances compared to the models obtained with the97

classical EM algorithm. To the best of our knowledge, this is also the first time that98

the sketching framework has been applied with such high dimensional GMMs.99

• Computationally, we estimate the model from a compressed database which is about100

1000 times smaller than the original patch database. It leads to running time approx-101

imately two times faster compared to the EM method.102

The paper is organized as follows. Section 2 is a reminder of the EPLL framework. Then103

we review the EM algorithm in section 3. In section 4, we explain the compressive learning104

method. In section 5, we focus on explaining how to adapt the sketching framework to learn105

a GMM in the image patch context. We also interpret the extension to low rank covariances106

and the implementation details of the adapted learning algorithm LR-COMP. In section 6,107

we provide numerical experiments that demonstrate the performance of our approach. Some108

conclusions and tracks for further works follow in section 7.109

2. Image denoising with EPLL. We review in this section the Expected Patch Log-110

Likelihood (EPLL) framework for image denoising. EPLL is a patch-based image restoration111

algorithm introduced by Zoran and Weiss [53]. The EPLL framework restores an image u by112

performing the following maximum a posteriori (MAP) estimation over all N patches:113

(2.1) u∗ = arg min
u∈RN

P

2σ2
‖u− v‖2 −

N∑
i=1

log(p(Piu))114

where Pi : RN −→ RP is a linear operator that extracts a patch of P pixels centered at the115

position i, typically P = 7 × 7. The function p(·) is the density of the prior probability116

distribution of the patches.117

2.1. Optimization. Due to the non-convexity of p(·), direct optimization of the prob-118

lem may be difficult. The authors of EPLL proposeto perform the optimization with “half-119

quadratic splitting” [15]. By introducing N auxiliary unknown vectors zi ∈ RP and a denoising120

parameter β > 0, the problem then is considered as:121

(2.2) u∗ = arg min
u∈RN

z1,...,zN∈RP

P

2σ2
‖u− v‖2 +

β

2

N∑
i=1

‖Piu− zi‖2 −
N∑
i=1

log(p(zi))122

The optimization (2.2) is accomplished by alternating the minimization of u and zi.123

• Solving u for fixed zi — Problem (2.2) turns into a linear inverse problem with the124

Tikhonov regularization. It has a closed form solution:125

û = arg min
u∈RN

P

2σ2
‖u− v‖2 +

β

2

N∑
i=1

‖Piu− zi‖2

= (I +
βσ2

P

N∑
i=1

PTi Pi)−1(v +
βσ2

P

N∑
i=1

PTi zi)

(2.3)126
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where
∑N

i=1 PTi Pi is a diagonal matrix of size N ×N , its i-th diagonal element corre-127

sponds to the number of patches overlapping the pixel in position i. The number is128

equal to P , which allows to express the solution as:129

(2.4) û = (I + σ2βI)−1(v + σ2βz̄i)130

where z̄i = (
∑N

i=1 PTi Pi)−1PTi zi is the average of all overlapping patches ẑi.131

• Solving zi for fixed u — (2.2) leads to a MAP estimation:132

(2.5) ẑi = arg min
z1,...,zN∈RP

β

2

N∑
i=1

‖Piû− zi‖2 −
N∑
i=1

log(p(zi))133

The solution of this problem depends on the choice of patch prior p(·).134

2.2. Denoising with a GMM prior. EPLL assumes that the prior is a finite Gaussian135

mixture model (GMM) with zero-means, i.e. we consider that a patch x ∈ RP is a random136

vector generated from a distribution with density p(x) defined as137

(2.6) p(x) =

K∑
k=1

αkNP (x; 0,Σk)138

where K is the number of Gaussian components and αk ≥ 0 are weights of each component139

such that
∑K

k=1 αk = 1. NP (x; 0,Σk) denotes the density of a Gaussian distribution with zero-140

mean with covariance Σk ∈ RP×P . Recall that the zero-mean Gaussian distribution density141

is:142

(2.7) NP (x; 0,Σk) =
1

(2π)P/2|Σk|1/2
e−

1
2
xTΣ−1

k x
143

Hence, under the GMM prior, the problem (2.5) turns to:144

(2.8) ẑi = arg min
z1,...,zN∈RP

β

2

N∑
i=1

‖Piû− zi‖2 −
N∑
i=1

log(
K∑
k=1

αkNP (zi; 0,Σk))145

This problem cannot be solved in closed form as the second term is the logarithm of a sum of146

exponential. [53] proposed to solve this problem by keeping only one Gaussian component. For147

a given patch z̃i = Piû, we chose the component k∗i that maximizes the posterior probability148

p(ki|z̃i). This leads to computationally efficient implementations. [48] also justified that only149

one component is required for good reconstructions. k∗i is chosen by150

k∗i = arg max
1≤ki≤K

p(ki|z̃i) = arg max
1≤ki≤K

p(ki)p(z̃i|ki)

= arg min
1≤ki≤K

−2 logαki + log

∣∣∣∣Σki +
1

β
IP

∣∣∣∣+ z̃Ti (Σki +
1

β
IP )−1z̃i

(2.9)151

With k∗i (instead of a sum of K components), the solution of (2.8) is then a Wiener filtering152

solution:153

(2.10) ẑi = (Σk∗i
+

1

β
IP )−1Σk∗i

z̃i.154
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2.3. Eigenspace implementation of EPLL. The matrix inversions in (2.9) and (2.10) can155

be done efficiently by using the singular value decomposition over the covariance matrices.156

We denote Σk = UkΛkU
T
k , with Uk ∈ RP×P an unitary matrix and Λk = diag(λ

(k)
1 , ..., λ

(k)
P ) a157

diagonal matrix. The diagonal entries λ
(k)
i of Λk are the singular values of Σk. Then we can158

compute (2.9) by:159

(2.11) k∗i = arg min
1≤k≤K

−2 logαk +

P∑
j=1

(
log(λ

(k)
j +

1

β
) +

[ṽ
(k)
i ]2j

λkj + 1
β

)
160

where161

(2.12) ṽ
(k)
i = UTk z̃i162

Then (2.10) leads to163

(2.13) ẑi = Uk∗i Sk∗i U
T
k∗i
z̃i = Uk∗i Sk∗i ṽ

(k∗i )
i164

with165

(2.14) Sk∗i = diag

 λ
(k∗i )
j

λ
(k∗i )
j + 1

β


j=1,...,P

166

3. Learning a GMM with EM. The Expectation-Maximization (EM) algorithm is a clas-167

sical mixture estimation approach. This algorithm starts with some initial estimates of model168

parameters and then iteratively updates the estimate until the the estimates are not changing169

much. See Appendix B for the details of the EM algorithm. In each iteration, it carries out170

two steps: the E-Step (expectation step) and the M-Step (maximization step). In E-Step,171

using the current estimate of the parameters, we evaluate the posterior probabilities. In the172

M-Step we compute parameters that maximize the probabilities found on the E-Step. These173

estimated parameters are then used to determine the distribution of the latent variables in174

the next E-Step.175

As for the time complexity of one iteration of this algorithm, it is linear in the number of176

model components K and the number of elements in the database n. However it is cubic with177

respect to the dimensions P due to the fact that we need to inverse the covariance matrix178

when calculating the density in E-Step. Thus, when estimating a K-components GMM on179

a database of n elements of dimension P , the computational complexity of one iteration of180

the EM algorithm is O(KP 3n). Learning parameters using EM technique face computational181

issues linked to the size of the dataset and the number of parameters to estimate, which would182

make the use of (very) large image patches databases impractical. In the next section we will183

see an alternive manner to learn parameters using compressive learning.184

4. Sketching. Sketching is a dimensionality reduction method. The principle is to com-185

press the whole dataset massively before learning. First, the dataset χ = {xi}ni=1 is summa-186

rized into a vector y ∈ Cm (m� n) called the sketch:187

(4.1) y := Sketch(χ).188
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Then we apply a learning procedure Υ that allows us to learn an estimate Ψ∗ of some statistical189

parameters Ψ of the dataset directly from the sketch y, namely190

(4.2) Ψ∗ = Υ(y) = Υ(Sketch(χ))191

More specifically, learning from the sketch corresponds to a minimization problem192

(4.3) Ψ∗ ∈ arg min
Ψ

E(y,Ψ)193

where the energy of the model E(·, ·) quantifies the fit between the sketch y and the parameter194

Ψ. In the context of statistical learning, the energy E can be seen as a proxy of the empirical195

risk. The principle of sketching is summarized in Fig. 2.

d x1 x2 xn ∼ f

χ

Large collection size n

Sketch

y

m� n
Learn

Ψ∗

Figure 2. Schema of sketching

196

4.1. Compressive mixture estimation. In machine learning, the data xi ∈ Rd are often197

modeled as i.i.d. random samples generated from a probability distribution parameterized by198

Θ with a density fΘ ∈ D (D is the set of probability measures over Rd). The idea of sketching199

is to project the measure fΘ on a low-dimensional vector space while keeping all the necessary200

information of the dataset. Mathematically, given a linear sketching operator S:201

(4.4)
S :D −→ Cm

z = Sf
202

and for some finite K ∈ N∗, we define a K-sparse model fΘ,α ∈ D:203

(4.5) fΘ,α =
K∑
k=1

αkfθk204

where fθk ∈ D are elementary measures parametrized by θk, αk ≥ 0 for all components and205 ∑K
k=1 αk = 1. We can express the vector z as206

(4.6) z = SfΘ,α =
K∑
k=1

αkSfθk .207

In practice we only have access to the empirical probability distribution ỹ = 1
n

∑n
i=1 δxi208

where δxi is a unit mass at xi. So we can define the empirical sketch as y = 1
nS
∑n

i=1 δxi .209



8 H. SHI, Y. TRAONMILIN, AND J. -F. AUJOL

The goal of the sketching framework is to recover fΘ,α from y, hence we do the following210

minimization to estimate the parameters211

(4.7) (Θ∗, α∗) ∈ arg min
Θ∈RK

α∈RK ,αk≥0,
∑K
k=1 αk=1

‖SfΘ,α − y‖22.212

The objective of sketched learning algorithms is to minimize a datafit functional between the213

compressed database and the sketch of the estimation. In other words, our aim is to find214

parameters α,Θ such that the sketch of the probability distribution parameterized by α,Θ is215

the closest to the empirical sketch y.216

4.2. Recovery guarantees. It was shown in [17] that we can guarantee theoretically the217

success of this estimation with a condition on the sketch size. These guarantees necessitate218

a “Lower Restricted Isometry Property” (LRIP) of the sketching operator. This property,219

is verified with high probability, for GMM with sufficiently separated means and random220

Fourier sketching as long as the sketch size m ≥ O(K2dpolylog(K, d)), i.e. when the size221

of the sketch essentially depends on the parameters K (the number of components) and d222

(the model dimension). Empirical results seem to indicate that for dtot the total number of223

parameters, a database size of the order of dtot is sufficient. The excess risk of the GMM224

learning task is then controlled by the sum of an empirical error term and a modeling error225

term. This guarantees that the estimated GMM approximates well the distribution of the226

data [18].227

Note that since the means of patches can be estimated from the noisy patches, the EPLL228

method uses a zero-means GMM as prior. The means of noisy patches are removed before229

the denoising process and added back in the end. Therefore, during the learning process, the230

patches are centered before sketching and we do not estimate the mean of Gaussians. In our231

case, the sketched GMM learning problem reduces to the estimation of the sum of k zero-232

mean Gaussians with covariances Θ = (Σk)
K
k=1, i.e fΘ,α =

∑K
k=1 αkgΣk where gΣ is the zero233

mean Gaussian measure with covariance Σ. In this context, the notion of separation used to234

prove guarantees in [17] does not hold. We still show empirically that the sketching process235

is successful without this separation assumption.236

4.3. Design of sketching operator: randomly sampling the characteristic function. In237

[23], the sketch is a sampling of the characteristic function (i.e the Fourier transform of the238

probability distribution f). Recall that the characteristic function ψf of a measure f is defined239

as:240

(4.8) ψf (ω) =

∫
Rd
e−iω

T xdf(x) ∀ω ∈ Rd241

The sketching operator is therefore expressed as:242

(4.9) Sf = [ψ(ω1), ..., ψ(ωm)]T243

where {ω1, ..., ωm} is a set of well chosen frequencies. In the spirit of Random Fourier Sampling,244

[23] proposes to draw the frequencies from a probability distribution, i.e. (ω1, ..., ωm)
i.i.d.∼ ∆.245

The choice of frequencies is essential to the success of sketching, and we will discuss it in246

details in subsection 5.1.247
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5. Sketching image patches. In this section, we adapt the sketching framework to the248

context of image patches. Given a training set of n centered patches χ = {x1, ..., xn} ⊂ RP ,249

we define the empirical characteristic function with250

(5.1) ψ̃(w) =
1

n

n∑
j=1

e−iω
T xj with ω ∈ RP251

Thus the empirical sketch y is expressed as252

(5.2) y = [ψ̃(ω1), ..., ψ̃(ωm)]T =
1

n

 n∑
j=1

e−iω
T
1 xj , ...,

n∑
j=1

e−iω
T
mxj

T253

In other words, a sample of the sketched database is a P -dimensional frequency component254

calculated by averaging over patches (not to be mixed with usual 2D Fourier components of255

images). Thanks to the properties of the Fourier transform of Gaussians, the sketch of a single256

zero-mean Gaussian component gΣk at frequency ωl is257

(5.3) (S(gΣk))l = ψgΣk
(ωl) = e−

1
2
ωTl Σkωl .258

Thus, given the weights α = (αk)
K
k=1 and the covariance matrices Σ = (Σk)

K
k=1 , the sketch of259

a zero-means GMM fΣ,α =
∑K

k=1 αkgΣk is260

(5.4) z = [S(fΣ,α)l]l=1,...,m =

[
K∑
k=1

αke
− 1

2
ωTl Σkωl

]
l=1,...,m

.261

As a consequence, the problem (4.7) of estimating GMM parameters becomes262

(5.5) (Σ∗, α∗) ∈ arg min
Σ∈RK

α∈RK ,αk≥0,
∑K
k=1 αk=1

‖y − SfΣ,α‖22263

i.e.264

(5.6) (Σ∗, α∗) ∈ arg min
Σk∈RP×P ,∀k

α∈RK ,αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣∣ 1n
n∑
j=1

e−iω
T
l xj −

K∑
k=1

αke
− 1

2
ωTl Σkωl

∣∣∣∣∣∣
2

.265

5.1. Frequency sampling. The design of the probability distribution ∆ for sampling the266

frequencies {ω1, ..., ωm} is essential to the success of sketching. In our work, we draw frequen-267

cies from the Adapted radius frequency distribution proposed in [23]. The Adapted radius268

heuristic proposes to sample ω as269

(5.7) ω = Rϕ270

where R ∈ R+ is the norm of ω and ϕ ∈ RP is the random direction. The radius R is271

chosen with a radius distribution R ∼ pR(R; η) = ((ηR)2 + 1
4(ηR)4)

1
2 e−

1
2

(ηR)2
where η is a272
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Figure 3. Curve of the radius distribution density

scale parameter which should be adjusted to the current dataset. By combining this radius273

distribution with the decomposition (5.7), we have a frequency distribution ∆k referred as274

Adapted radius frequency distribution. See Appendix C for details. With this distribution,275

we avoid sampling very low frequencies. Figure 3 illustrates the curve of p(R) with different276

values of η.277

5.2. Extension to low rank covariances. Bayesian MAP theory permits to use a GMM278

with degenerate covariance matrices as a denoising prior. As we perform Wiener filtering,279

this is useful as we can reduce the number of parameters by just truncating the component of280

noisy patches supported on the lowest eigenvalues of the covariance. The experiments [34, 38]281

have shown that we can use low rank covariance matrices for denoising while keeping good282

performance. This motivates us to approximate the covariance matrices in the GMM prior283

by low-rank matrices.284

Following classical Burer-Monteiro method [3, 7] in low-rank matrix estimation, we pa-285

rameterize Σk by its factors Xk: Σk = XkX
T
k . Supposing that ‖y−SfX,α‖22 has a minimizer,286

we approximate the minimization (5.5) by287

(5.8) (X̂, α̂) ∈ arg min
X∈RK

α∈RK ,αk≥0,
∑K
k=1 αk=1

‖y − SfX,α‖22288

i.e.289

(5.9) (X̂, α̂) ∈ arg min
Xk∈RP×r,∀k

α∈RK ,αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣y −
K∑
k=1

αke
− 1

2
ωTl XkX

T
k ωl

∣∣∣∣∣
2

290

where X̂ = {X̂1, ..., X̂K} is the collection of factorized rank reduced covariances.291

With the following proposition, we justify that the difference between the energy E(y, Φ̂)292

and the minimized energy in the full-rank case E(y,Φ∗) (where Φ∗ is the result of mini-293

mization (5.5)) is associated with the smallest eigenvalues of the covariance matrices. We294

qualitatively validate this approximation since these eigenvalues are typically small.295
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Proposition 5.1. Let Φ∗ = {Σ∗1, ...,Σ∗K , α∗1, ..., α∗K} be a minimizer of (5.5). Suppose296

that there exists a minimizer Φ̂ = {X̂1, ..., X̂K , α̂1, ..., α̂K} for the problem (5.8). Let C =297
√
P

2

√∑m
l=1 ‖ωl‖22‖ωl‖2∞. Then we have:298

∥∥SfΦ̂ − y
∥∥

2
− ‖SfΦ∗ − y‖2 ≤ C max

1≤k≤K

√ ∑
j≥r+1

σ2
j (Σ

∗
k)299

where the σj(Σ
∗
k) are the singular values of Σ∗k sorted by decreasing order.300

The proof is detailed in Appendix D.301

Ideally, we would like to obtain a similar bound for ‖Σ∗k − X̂kX̂
T
k ‖F . We conjecture that302

a RIP (Restricted Isometry Property) would be needed for such a result. As the verification303

of RIP remains an open theoretical question in the zero-means GMM case, we leave this304

theoretical question for further work.305

5.3. An algorithm for learning patch prior from a sketch : LR-COMP (Low Rank Con-306

tinuous Orthogonal Matching Pursuit). Problem (4.7) can be solved approximately using307

the greedy Compressive Learning OMP called CL-OMP and a variation of CL-OMP called308

CL-OMP with Replacement (CL-OMPR) [23, 24]. These algorithms are based on the Match-309

ing Pursuit [31], Orthonormal Matching Pursuit [35] and Orthonormal Matching Pursuit with310

Replacement [21] for classical compressive sensing, which handle sparse approximation prob-311

lems. It starts from an empty support and it expands the support by greedily adding new312

atoms to the current support Ω. Each new atom θ′ is found by maximizing the correlation313

〈Sfθ′, r〉 where r is the current residual. Then it updates the weights and reduces the cost314

function with a gradient descent initialized with the current parameters. For better practical315

recovery, the algorithms with Replacement extend the size of support more than the desired316

sparsity. Then it selects the K (the number of model components) largest weights and it317

deletes the extra atoms using a Hard Threshold.318

We adapt these algorithms in the GMMs context with our low-rank approximation. Several319

modifications are detailed below:320

• No Replacement. Although the algorithms with Replacement show better results321

on synthetic data, our results tested on image patches show that the Replacement has322

a negligible effect. Therefore, we run our algorithm without this Hard Thresholding323

step to decrease the computation time.324

• Estimation the factors of covariance instead of the covariance matrices.325

As we approximate the covariance matrices with their factors, in each step of the326

algorithm, we do operations directly on the factorized rank reduced covariance X327

instead of the covariance matrix Σ to lighten the computations.328

The proposed algorithm is summarized in Algorithm 5.1. The main tool for the implemen-329

tation of Algorithm 5.1 is to compute the necessary gradients for the optimization problems330

in Steps 1, 3 and 4. Our algorithm was implemented by extending the MATLAB toolbox [22].331

The Matlab implementation of our approach is available at [45].332

5.4. Expressions of the necessary gradients. For the following section, denote the vector333

v(X) = SfX ∈ Rm.334
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Algorithm 5.1 LR-COMP: Compressive GMM estimation with low-rank covariances [45].

Input Empirical sketch y, sketching operator S, sparsity K
r̂ ← y; Ω← ∅
for t = 1 to K do

Step 1: Find a X such that: X ← arg maxX Re
〈
SfX
‖SfX‖2 , r̂

〉
2
, init = rand

Step 2: Extend the support Ω← Ω ∪ {X}
Step 3: Find weights: α← arg minα

∥∥∥y −∑|Ω|k=1 αkSfXk
∥∥∥2

2
Step 4: Perform a gradient descent initialized with current parameters

Θ, α← arg minΘ,α

∥∥∥y −∑|Ω|k=1 αkSfXk
∥∥∥2

2
, init = (Ω, α)

Step 5: Update residual: r̂ ← y −
∑|Ω|

k=1 αkSfXk ;
end for

Final adjustment: Θ, α← arg minΘ,α

∥∥∥y −∑K
k=1 αkSfXk

∥∥∥2

2
Normalize the weights αk such that

∑
k αk = 1

return Support Ω, weights α

5.4.1. The gradient for Step 1. In step 1, we have the optimization problem335

(5.10) X ∈ arg max
X∈RP×r

Re

〈
SfX
‖SfX‖2

, r̂

〉
2

r̂ ∈ Cm336

Let F (X) = −Re
〈
SfX
‖SfX‖2 , r̂

〉
2

= −v(X)TRe(r̂)
‖v(X)‖2 , then problem (5.10) turns to337

(5.11) X ∈ arg min
X∈RP×r

F (X)338

With W = [ω1, ..., ωm] ∈ RP×m the frequency matrix and ∗̇ the multiplication element by339

element, we express the gradient of F (X) as :340

(5.12) ∇XF (X) = − 1

‖v(X)‖2
W

(
W TX ∗̇

(
v (X) ∗̇

(
F (X) v (X)

‖v (X) ‖2
− Re (r̂)

)))
.341

The detailed computation is in Appendix E.342

5.4.2. Solution of Step 3. The problem is343

(5.13) α∗ = arg min
α∈R|Ω|

∥∥∥∥∥∥y −
|Ω|∑
k=1

αkSfXk

∥∥∥∥∥∥
2

2

y ∈ Cm344

Denote V (X) = [v(X1), ..., v(X|Ω|)] ∈ Rm×|Ω|, α = [α, ..., α|Ω|]
T ∈ R|Ω|, then the problem can345

be expressed as a least-squares minimization346

(5.14) α∗ = arg min
α∈R|Ω|

g(α) = arg min
α∈R|Ω|

‖y − V α‖22347

We thus have348

(5.15) α∗ = (V TV )−1V T y.349
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5.4.3. The gradient for Step 4. The problem is350

(5.16) (Θ, α) ∈ arg min
Θ∈RK ,Xk∈RP+P×r

α∈RK

∥∥∥∥∥y −
K∑
k=1

αkSfXk

∥∥∥∥∥
2

2

351

Denote V = [v(X1), ..., v(XK)], α = [α1, ...αK ]T , we express352

(5.17) h(Θ, α) = ‖y − V α‖22353

so we have the gradients354

(5.18) ∇αh(Θ, α) = 2V T (V α− y)355

and356

(5.19) ∇Xkh(Θ, α) = 2αk∇Xkv(Xk)
T (V α− y)357

In practice, as in Step 1, we compute the second gradient by358

(5.20) ∇Xkh(Θ, α) = −2αkW (W TXk∗̇v(Xk)∗̇(V α− y))359

5.5. Complexity of LR-OMP. When estimating a K-components GMM, the proposed360

algorithm LR-OMP has a computational cost of the order of O(mP 2rK2). In each iteration,361

the computational cost is dominated by the matrix-vector product W (W TX) where W is a362

matrix of size P ×m and W TX is a matrix of size m× r. As m� n, the computational cost363

of our algorithm is lower than that of the EM.364

5.6. Denoising with low-rank covariance matrices. In this section, we describe some365

modifications required in EPLL to use our estimated model. The estimated parameters366

are Φ̂ = {X̂1, ..., X̂K , α̂1, ..., α̂K} with X̂k ∈ RP×r and αk ∈ R+. A singular value de-367

composition of X̂k is given by X̂k = ÛkŜkÛ
T
k . Ûk ∈ RP×P is an orthogonal matrix and368

Ŝk = diag(ŝk1 , ..., ŝkr) ∈ Rr×r is a diagonal matrix. The r-rank covariance matrix can be369

expressed with Σ̂kr = X̂kX̂
T
k = ÛkŜ

2
kÛ

T
k . We approximate the covariance matrix Σk with370

Σk ' Σ̂k = ÛkΛ̂kÛ
T
k where Λ̂k is formed as:371

(5.21) Λ̂k =



ŝ2
k1

. . .

ŝ2
kr

0

0

µ
. . .

µ


372

µ is a user parameter. Denoting Û rk ∈ RP×r the matrix formed by the first r columns of Ûk373

and Λ̂rk the matrix formed with the first r rows and r columns of Λ̂k, we have:374

(5.22)

(
Σk +

1

β
IP

)−1

= Û rk (Λ̂rk +
1

β
Ir)
−1Û rTk +

β

βµ+ 1
(Ip − Û rk Û rTk )375
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and376

(5.23)

(
Σk +

1

β
IP

)−1

Σk = Û rk (Λ̂rk +
1

β
Ir)
−1Λ̂rkÛ

rT
k +

βµ

βµ+ 1
(Ip − Û rk Û rTk )377

Then the Gaussian selection step of EPLL (2.11) becomes378

k∗i = arg min
1≤k≤K

−2 logαk +
r∑
j=1

(
log(ŝ2

kj
+

1

β
) +

[v̂
(k)
i ]2j

ŝ2
kj

+ 1
β

− β

βµ+ 1
[v̂

(k)
i ]2j

)
(5.24)379

where380

(5.25) v̂
(k)
i = Û rTk z̃i381

With the optimal component k∗i , the estimated patch (2.10) becomes382

ẑi = (Σk∗i
+

1

β
IP )−1Σk∗i

z̃i

= Ûkr
i∗

(Λ̂rk∗i +
1

β
Ir)
−1Λ̂rk∗i Û

rT
k∗i
z̃i +

βµ

βµ+ 1
(Ip − Û rk∗i Û

rT
k∗i

)z̃i

= Û rk∗i Λ̂′k∗i v̂
(k∗i )
i +

βµ

βµ+ 1
(z̃i − Ûk∗r v̂

(k∗i )
i )

(5.26)383

with384

(5.27) Λ̂′k∗i = (Λ̂rk∗ +
1

β
Ir)
−1Λ̂rk∗ = diag

 ŝ2
k∗ij

ŝ2
k∗ij

+ 1
β


j=1,...,r

.385

6. Experimental Results. In this section we present several numerical experiments to il-386

lustrate the benefits of our approach. The noisy images are obtained by adding zero-mean387

Gaussian noise with standard deviations σ2 = 20 to the test images. The denoising is per-388

formed with EPLL1 . To evaluate the quality of denoised images, we use two measures: PSNR389

(Peak Signal to Noise Ratio) and SSIM (Structural Similarity).390

The prior model used for EPLL is learned from a sketch that compresses n = 4 × 106391

patches of size P = 7 × 7. The patches are randomly extracted from the training images392

of the Berkeley Segmentation Database (BSDS) [32]. Based on observations from numerical393

simulations, the scale parameter in C.5 needs to be adjusted with different tasks [42]. In394

[23], the authors propose to estimate this parameter with a small sketch on a small subset395

from the dataset. In our work, we choose the optimal parameter η by hand. We learn a396

mixture model of K = 20 Gaussian components, the rank of covariance matrices are reduced397

to r = 20. Our experiments showed that we cannot reduce the rank further to keep good398

denoising performance.399

We compare the denoised results with the results obtained with a prior learned by EM.400

For the comparison, we train the prior from the same database using the EM algorithm. The401

experimental results are shown in Figure 4 and Figure 5. We observe that for most of images,402

we obtain similar or better values of PSNR and SSIM. To reproduce the results below, you403

can use the code at [45].404

1Matlab implementation based on the code of [34].
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22.1/.615 33.2/.909 33.3/.902

22.1/.596 35.4/.918 35.4/.915

22.1/.654 32.3/.896 32.4/.894

22.1/.739 29.9/.834 30.0/.831

22.1/.740 29.2/.921 28.6/.917

22.1/.677 32.3/.865 32.2/.863

Figure 4. From left to right: Original images, noisy images with noise σ2 = 20, results with EM model,
results with LR-COMP model. The denoising results are evaluated with PSNR/SSIM. Similar denoising per-
formances are obtained with LR-COMP with a 1000 times smaller compressed database. To estimate the prior
model, our method is 2 times faster than the EM algorithm.
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22.1/.762 30.2/.822 29.9/.813

22.1/.829 28.5/.838 28.7/.831

22.1/.676 31.7/.806 31.8/.806

22.1/.742 30.3/.825 30.0/.811

22.1/.851 27.6/.806 27.4/.771

22.1/.590 35.3/.906 35.2/.904

Figure 5. From left to right: Original images, noisy images with noise σ2 = 20, results with EM model,
results with LR-COMP model. The denoising results are evaluated with PSNR/SSIM. Similar denoising per-
formances are obtained with LR-COMP with a 1000 times smaller compressed database. To estimate the prior
model, our method is 2 times faster than the EM algorithm.
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6.1. The sketch size and compression rate. Theoretically, we can successfully estimate a405

GMM with sufficiently separated means and random Fourier sketching with high probability406

as long as the sketch size m ≥ O(K2Ppolylog(K,P )). In our case, we learn zero-mean407

Gaussians. Empirical results indicate that it is sufficient when the sketch size is the order of408

the number of parameters. We set m = 10K(P ×r+1) ≈ 2×105, i.e the compressed database409

is approximately 1000 times smaller than the original patch database. The gains in terms of410

memory is approximately n
m times compared to the EM approach.411

6.2. Learning time. In terms of time complexity, the running time depends on the number412

of components K and the complexity of the gradient descent algorithm. In our approach, we413

use the Limited-memory BFGS algorithm to handle the optimization problems in Step 1 and414

4. The latter is the most time-consuming part of the algorithm. To get the model that achieves415

the denoising performance of our experiments, it takes less than 2 hours on a computer with 2416

* 32 cores AMD EPYC 7452 @ 2,35 GHz. With the same environment, our learning algorithm417

is about 2 times faster than the EM algorithm2.418

7. Conclusions. In this work, we adapt the sketching framework in the context of image419

patches. We propose an algorithm LR-COMP to estimate a GMM with low-rank approxi-420

mation and provide an implementation of the algorithm. Experiments illustrate that a high-421

dimensional GMM can be learned from a compressed database and then used for patch-based422

denoising. We achieve denoising performances close to state-of-the art model based methods423

while the learning procedure uses less memory and time than the classical EM algorithm.424

In future works, we can generalize our approach to other models such as GGMM (General-425

ized Gaussian Mixture Model) for a better denoising performance [10]. We also aim to adapt426

the sketching to more inverse problems such as image super-resolution, image deblurring, etc.427

Another perspective is to extend our model to the study of video denoising method as the428

potential of the technique for video restoration remains unexplored. In our work, we estimate429

a GMM with zero-means. In this context, the notion of separation used to prove guarantees430

in [17] does not hold. We still show empirically that the sketching process is successful without431

this separation assumption. This opens interesting new theoretical questions for the study of432

the success of compressive learning in patch-based image processing.433

Appendix A. Definitions and theorems.434

Definition A.1. Singular values For A ∈ Cm×n and i = 1, ...,min(m,n), the singular435

values σi(A) (that we suppose sorted by decreasing order) of the matrix A are the absolute436

values of the eigenvalues of the matrix AAT :437

(A.1) σ2
i (A) = λi(AA

T )438

Definition A.2. Frobenius norm. For a matrix A ∈ Cm×n, the Frobenius norm of A is439

2Mo Chen (2021). EM Algorithm for Gaussian Mixture Model (EM GMM)
(https://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model-
em-gmm), MATLAB Central File Exchange. Retrieved October 11, 2021.
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defined as440

(A.2) ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|ai,j |2 =
√

trace (ATA) =

√√√√min{m,n}∑
i=1

σ2
i (A)441

where σi(A) are the singular values of A.442

Definition A.3. Operator norm. For a continuous linear operator A : V → W , the443

operator norm of A is defined as444

‖A‖op = inf{c ≥ 0 : ‖Av‖ ≤ c‖v‖ ∀v ∈ V }

= sup

{
‖Av‖
‖v‖

: v 6= 0 and v ∈ V
}

(A.3)445

Theorem A.4. Eckart-Young-Mirsky theorem. Let D = UΣV > ∈ Rm×n, m ≥ n be446

the singular value decomposition of D with Σ = diag(σ1, ..., σm). Let Ur (resp. Vr) be the447

matrix formed by the first r columns of U (resp. V ) and Σr = diag(σ1, ..., σr). Then the448

r-rank matrix, obtained from the truncated singular value decomposition: D∗ = UrΣrV
T
r is449

the minimizer of the low-rank approximation:450

(A.4) ‖D −D∗‖F = min
rank(D′)≤r

‖D −D′‖F =

√ ∑
j≥r+1

σ2
j (D)451

The minimizer D∗ is unique if and only if σr+1 < σr.452

Appendix B. EM algorithm. Given a data set of n clean training patches χ =453

{x1, ..., xn} ⊂ RP×n, the EM algorithm for estimating a GMM can be summarized as fol-454

lows:455

1. Define the number of components K. For each component k, we initialize the param-456

eters Θk = (µk,Σk, αk) randomly, and we compute the log likelihood457

(B.1) logL(Θk;x1, ..., xn) =
n∑
i=1

log(
K∑
k=1

αkNP (xi;µk,Σk))458

2. E-Step459

Compute the posterior function Γi,k with the current parameters Θk:460

(B.2) Γi,k =
αkNP (xi;µk,Σk)∑K
j=1 αjNP (xi;µj ,Σj)

461

3. M-Step462

Re-estimate the parameters Θnew
k with the Γi,k obtained in the E-Step:463

(B.3) µnewk =
1

Nk

n∑
i=1

Γi,kxi464
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465

(B.4) Σnew
k =

1

Nk

n∑
i=1

Γi,k(xi − µk)T (xi − µk)466

467

(B.5) αnewk =
Nk∑K
k=1Nk

468

where Nk =
∑n

i=1 Γi,k.469

4. Re-evaluate the log likelihood. Iterate E-Step and M-Step until the log likelihood or470

the parameters are not changing much.471

Appendix C. Design of adapted radius distribution. The frequency distribution is472

chosen as with a heuristic called adapted radius [25]. Assuming that we want to estimate473

a P -dimensional Gaussian g = N (0, IP ), we can compute the characteristic function ψg(ω)474

associated with g:475

(C.1) ψg(ω) = e−
1
2
ωTω

476

The Adapted radius heuristic proposes not to sample ω directly but rather to sample the477

radius of the P -dimensional Gaussian R =
√
ωTω. Thus, we draw the frequency ω ∈ RP as478

(C.2) ω = Rϕ479

The radius R ∈ R+ is chosen with a radius distribution R ∼ pR(R; η). The direction ϕ ∈ RP480

is uniformly generated on the l2 unit sphere SP−1, i.e. ϕ ∼ U(SP−1). Then, the characteristic481

function ψg(ω) reduces to482

(C.3) ψg(ω) = ψg(Rϕ) = e−
1
2
R2

= ψ(R)483

We obtain a one-dimensional Gaussian distribution for R. To design the radius distribution,484

we consider the estimation of a Gaussian g = N (0, 1). We aim at sampling the radius R485

leading to large variations of the characteristic function when the parameters are closed to the486

true parameters. In other words, when parameters (µ, σ2) are closed to (0,1), we want have487

a large
∣∣ψ(µ,σ2)(R)− ψ(0,1)(R)

∣∣. This can be accomplished by promoting the radius R which488

makes the norm of the gradient
∥∥∇ψ(µ,σ2)(R)

∥∥
2

large. Recall that ψ(µ,σ2)(R) = e−iµRe−
1
2
σ2R2

489

and the norm of the gradient is:490

(C.4)
∥∥∇ψ(µ,σ2)(R)

∥∥2

2
=
∣∣−iRψ(µ,σ2)(R)

∣∣2 +

∣∣∣∣−1

2
R2ψ(µ,σ2)(R)

∣∣∣∣2 = (R2 +
1

4
R4)e−σ

2R2
491

Therefore, ‖∇ψ(0,1)(R)‖2 = (R2 + 1
4R

4)
1
2 e−

1
2
R2

. It yields the density of a radius distribution :492

(C.5) pR(R; η) = ((ηR)2 +
1

4
(ηR)4)

1
2 e−

1
2

(ηR)2
.493

494

Appendix D. Proof of Proposition 5.1.495
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Proof. Let Φ∗k = (Σ∗k, α
∗
k) be the minimizer of the problem (5.5), i.e.496

(D.1) Φ∗k ∈ arg min
Σk∈RP×P

αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣
K∑
k=1

αke
− 1

2
ωTl Σkωl − yl

∣∣∣∣∣
2

497

and suppose that there exists a minimizer Φ̂k = (X̂k, α̂k) for the problem (5.8):498

(D.2) Φ̂k ∈ arg min
Xk∈RP×r

αk≥0,
∑K
k=1 αk=1

m∑
l=1

∣∣∣∣∣
K∑
k=1

αke
− 1

2
ωTl XkX

T
k ωl − yl

∣∣∣∣∣
2

499

Let Σ̃k be the best rank-r approximation of Σ∗k with rank r i.e.500

(D.3) Σ̃k ∈ arg min
Σ,rank(Σ)=r

‖Σ∗k − Σ‖2F501

Define Φ̃ = (Σ̃k, α
∗
k). According to the definition (D.2) and the triangle inequality, we have502 ∥∥SfΦ̂ − y

∥∥
2
≤
∥∥SfΦ̃ − y

∥∥
2

=
∥∥SfΦ̃ − SfΦ∗ + SfΦ∗ − y

∥∥
2

≤
∥∥SfΦ̃ − SfΦ∗

∥∥
2

+ ‖SfΦ∗ − y‖2

(D.4)503

The first term is504

∥∥SfΦ̃ − SfΦ∗
∥∥2

2
=

∥∥∥∥∥
K∑
k=1

α∗kS(fΣ̃k
− fΣ∗k

)

∥∥∥∥∥
2

2

=
m∑
l=1

∣∣∣∣∣
K∑
k=1

α∗k

(
e−

1
2
ωTl Σ̃kωl − e−

1
2
ωTl Σ∗kωl

)∣∣∣∣∣
2

=
m∑
l=1

∣∣∣∣∣
K∑
k=1

α∗ke
− 1

2
ωTl Σ̃kωl

(
1− e−

1
2
ωTl (Σ∗k−Σ̃k)ωl

)∣∣∣∣∣
2

.

(D.5)505

Using the convexity inequality |1− e−x| ≤ |x| and Cauchy–Schwarz inequality, we have506 ∣∣∣e− 1
2
ωTl Σ̃kωl(1− e−

1
2
ωTl (Σ∗k−Σ̃k)ωl)

∣∣∣ ≤ ∣∣∣1− e− 1
2
ωTl (Σ∗k−Σ̃k)ωl

∣∣∣
≤ 1

2

∣∣∣ωTl (Σ∗k − Σ̃k)ωl

∣∣∣ =
1

2

∣∣∣〈ωl, (Σ∗k − Σ̃k)ωl〉
∣∣∣

≤ 1

2
‖ωl‖2‖(Σ∗k − Σ̃k)ωl‖2

(D.6)507

We define the linear operator Ωl:508

Ωl :RP×P −→ RP

Σ = (Si,j)1≤i≤P,1≤j≤P −→ Ωl(Σ) = Σωl
(D.7)509
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We have510

‖Σωl‖2 =

P∑
i=1

∣∣∣∣∣∣
P∑
j=1

Si,j(ωl)j

∣∣∣∣∣∣
2

≤
P∑
i=1

 P∑
j=1

|Si,j(ωl)j |

2

≤ max
j
|ωl|2jP

P∑
i=1

P∑
j=1

|Si,j |2 = P‖ωl‖2∞ ‖Σ‖
2
F

(D.8)511

We deduce that ‖ωl‖op ≤
√
P‖ωl‖∞. Since α∗k ≥ 0 and

∑K
k=1 α

∗
k = 1, we get:512 ∣∣∣∣∣

K∑
k=1

α∗ke
− 1

2
ωTl Σ̃kωl

(
1− e−

1
2
ωTl (Σ∗k−Σ̃k)ωl

)∣∣∣∣∣ =
K∑
k=1

α∗ke
− 1

2
ωTl Σ̃kωl

(
1− e−

1
2
ωTl (Σ∗k−Σ̃k)ωl

)
≤
√
P

2
‖ωl‖2‖ωl‖∞

K∑
k=1

α∗k‖Σ∗k − Σ̃k‖F

(D.9)513

Therefore, we can bound the energy (D.5) by514

∥∥SfΦ̃ − SfΦ∗
∥∥2

2
≤ P

4

m∑
l=1

‖ωl‖22‖ωl‖2∞

(
K∑
k=1

α∗k‖Σ∗k − Σ̃k‖F

)2

≤ P

4

m∑
l=1

‖ωl‖22‖ωl‖2∞ max
1≤k≤K

‖Σ∗k − Σ̃k‖2F

(D.10)515

By the Eckart and Young theorem, ‖Σ∗k − Σ̃k‖2F =
∑

j≥r+1 σ
2
j (Σ

∗
k), where σj are the singular516

values. Thus517

(D.11)
∥∥SfΦ̃ − SfΦ∗

∥∥
2
≤
√
P

2
max

1≤k≤K

√ ∑
j≥r+1

σ2
j (Σ

∗
k)

√√√√ m∑
l=1

‖ωl‖22‖ωl‖2∞518

Denoting C =
√
P

2

√∑m
l=1 ‖ωl‖22‖ωl‖2∞, we have from (D.4) that:519

(D.12)
∥∥SfΦ̂ − y

∥∥
2
≤ C max

1≤k≤K

√ ∑
j≥r+1

σ2
j (Σ

∗
k) + ‖SfΦ∗ − y‖2520

Appendix E. Calculation of the gradient. The expression of (5.12) is computed as521

follows: Denote F (X) = − v(X)T r̂
‖v(X)‖2 , where r ∈ Rm is the real part of r̂. We compute the522

gradient of F as follows:523

∇XF (X) = − 1

‖v(X)‖22

(
(∇Xv(X))T r‖v(X)‖2 −

v(X)T r(∇Xv(X))T v(X)

‖v(X)‖2

)
= −(∇Xv(X))T

‖v(X)‖2

(
r +

v(X)T rv(X)

‖v(X)‖22

)
=

(∇Xv(X))T

‖v(X)‖2

(
F (X)v(X)

‖v(X)‖2
− r
)(E.1)524
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For each component vl(X) = e−
1
2
ωTl XX

Tωl , we have525

(E.2)
∂vl(X)

∂X
= −vl(X)XTωlω

T
l526

Then for a given vector ŷ ∈ Rm527

(E.3) 〈∇Xv(X), ŷ〉 = −
m∑
l=1

ylvl(X)XTωlω
T
l528

In practice, we compute the scalar product with529

〈∇Xv(X), ŷ〉 = −W (W TX ∗̇(v(X)∗̇ŷ))(E.4)530

where W = [ω1, ..., ωm] ∈MP,m(R) the frequency matrix and ∗̇ the multiplication element by531

element. As a consequence,532

(E.5) ∇XF (X) = − 1

‖v(X)‖2
W

(
W TX ∗̇

(
v(X)∗̇

(
F (X)v(X)

‖v(X)‖2
− r
)))

.533
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