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Compressive learning for patch-based image denoising*

Hui Shif, Yann Traonmilinf, and Jean-Francois Aujolf

Abstract. The Expected Patch Log-Likelihood algorithm (EPLL) and its extensions have shown good perfor-
mances for image denoising. The prior model used by EPLL is usually a Gaussian Mixture Model
(GMM) estimated from a database of image patches. Classical mixture model estimation meth-
ods face computational issues as the high dimensionality of the problem requires training on large
datasets. In this work, we adapt a compressive statistical learning framework to carry out the GMM
estimation. With this method, called sketching, we estimate models from a compressive representa-
tion (the sketch) of the training patches. The cost of estimating the prior from the sketch no longer
depends on the number of items in the original large database. To accelerate further the estimation,
we add another dimension reduction technique (low-rank modeling of the covariance matrices) to
the compressing learning framework. To demonstrate the advantages of our method, we test it on
real large-scale data. We show that we can produce denoising performances similar to performances
obtained with models estimated from the original training database using GMM priors learned from
the sketch with improved execution times.

Key words. Image denoising, Compressive learning, Sketching, Optimization,

AMS subject classifications. 68U10, 94A08, 49N30

1. Introduction. We consider the classical noisy observation model of a clean natural
image u € RY (composed of N pixels):

(1.1) v=u+w

where v is the observed degraded version of u. The acquisition noise w is usually assumed to be

an additive white Gaussian noise of variance o, i.e. w i N(0,0%Iy). In the last two decades,
non local patch-based methods have been proven successfull for denoising. Methods such as
Piecewise Linear Estimators [52, 1], BM3D [9, 26] or NL-Bayes [28, 27, 50| are examples of
non-local methods [2]. In patch-based image denoising, the noisy image v is divided into small
patches {v;}M,. Each patch v; € RP (P is the patch size) can be seen as a vector in a high
dimensional space. The denoising problem is considered on each patch:

(1‘2) V; = U; + W,

and a corresponding denoised version u; of the true values u; are estimated. To overcome
the ill-posedness of this inverse problem, various denoising methods [29, 28, 27, 20] consider
patch models within a Bayesian framework. According to the Bayes’ theorem, the objective
is to find «} which maximizes the posterior probability distribution f(u;|v;) under the prior
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2 H. SHI, Y. TRAONMILIN, AND J. -F. AUJOL

p(u;). The Maximum A Posteriori (MAP) problem is formulated as

s =311

(1.3) u; = argmax f(u;|v;) = argmax f(v;|u;)p(u;) < argmaxe™ 202 p(u;)

u; ERFP u; ERP u; ERP
where || - || denotes the ¢2-norm. This yields

2
. - |ui — v
(1.4) ut = angmin 1 =310 g ()
u; €

Ideally, the choice of the prior distribution should be determined by the nature of the
image to be estimated. In practice, Gaussian Mixture Models (GMM) [52, 49, 20] have shown
their effectiveness. With the GMM prior, the solution of problem (1.4) can be approximated
by a Wiener filter solution.

Among these various non-local denoising methods, the Expected Patch Log-Likelihood
algorithm (EPLL) [53] occupies a central position due to its efficient denoising performance.
A large number of works build on the original EPLL formulation to deal with more general
prior or go beyond the denoising problem [11, 33, 5, 30, 37, 47, 10, 39]. EPLL uses a GMM
prior learned from a very large set of patches extracted from clean images. The key to the
success of EPLL is to find a good prior distribution. Since in practice patch sizes are typically
greater than 5 x 5, estimating prior distributions in such a high-dimensional space is a difficult
task. Moreover, to estimate the best possible model, we need to maximize the redundancy
of structural information and use training databases as large as possible. As the traditional
empirical minimization approaches require access to the whole training dataset, when the
collection size is large, the learning process can be extremely costly. For instance, in the case
of the classical learning method Expectation Maximization (EM), the memory consumption
and computation time depend on the size of the database (see section 3).

Leveraging ideas from compressive sensing [14] and streaming algorithms [8], R. Gribon-
val et al. propose a sketching method [23, 18, 19, 17, 16] to compress the training database.
This scalable technique compress the whole training collection into a fixed-size representation
(a vector): a sketch of the training dataset before learning. The sketch captures the nec-
essary information for the considered learning task. For certain mixture model estimation,
it is then possible to learn their parameters directly from the sketch, without access to the
original dataset. Hence the space and time complexity of the learning algorithm no longer
depends on the original database size, but only on the size of the sketch which is linked to the
dimensionality of the model. Sketching has been already used successfully in machine learn-
ing [40, 16, 25, 6, 4, 36], generative networks [41], source localization [12, 13|, independent
component analysis [43] and depth imaging [44]. In [23], the sketching is implemented and
evaluated on synthetic data to estimate a GMM with diagonal covariances. It is shown that
on large synthetic data, for the estimation of GMM, the sketching produces precise results
while requiring fewer memory space and computations. In this work, we explore the sketching
method in the image patches context where GMM with full covariance must be estimated
from the compressed database.

Due to the curse of dimensionality, it is computationally expensive to manipulate the
GMMSs’ covariance matrices. [38] shows that most natural images and videos can be repre-
sented by a GMM with low-rank covariance matrices. The experiments have also shown the
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COMPRESSIVE LEARNING FOR PATCH-BASED IMAGE DENOISING 3

efficiency of low rank covariance matrices applied to image denoising [34], image inpainting,
high-speed video and hyperspectral imaging [51]. This motivates us to use such low rank co-
variances in the GMM modeling of patches and extend the sketching framework accordingly
to gain computational speedup and to manage the modeling of the image patches in the most
possible flexible way.

1.1. Contributions. A preliminary and short version of this work has appeared in [46]. In
this paper, we provide a more detailed version of this work with a final consolidated version
of the proposed learning algorithm, validated by extended numerical experiments.

Figure 1 summarizes the principle of our approach. We first construct a sketch by averaging
random Fourier features computed over the whole image patch database. Then the model
parameters are learned directly from the sketch by our Low-rank Continuous Orthogonal
Matching Pursuit (LR-COMP) algorithm without access to the original database. Finally,
the learned model is used with a Bayesian method (EPLL) for the denoising task.

2
. : i — vil] ;
uj = argmin, .pr T ogz og(p(u;))
Moisy image Denoised image
=u+ .
e Our method "
w~ N(0,%) EM ~1__ LR-COMP

g ——

Large database of patches

— compressed database
X = fai},z € BF P

Figure 1. A summary of our method

Our contributions of this piece of work are the following:

e In this work, we propose an algorithm LR-COMP to estimate a GMM with non-
diagonal and low-rank covariance matrices. Compared to previous work in [23], our
extension to non-diagonal covariance matrices allows us to learn a GMM prior from
a compressed database of patches in the context of image denoising. Moreover, with
the low-rank approximation of the covariance matrices, we lighten the computation
burden in the denoising process while keeping good denoising performances.

e We demonstrate the performance of our approach on real large-scale data (over 4
millions training samples of patch size of 7 x 7) for the task of patch-based image
denoising. We show that using models trained with the compressed database, we
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4 H. SHI, Y. TRAONMILIN, AND J. -F. AUJOL

can obtain similar denoising performances compared to the models obtained with the

classical EM algorithm. To the best of our knowledge, this is also the first time that

the sketching framework has been applied with such high dimensional GMMs.

e Computationally, we estimate the model from a compressed database which is about

1000 times smaller than the original patch database. It leads to running time approx-

imately two times faster compared to the EM method.
The paper is organized as follows. Section 2 is a reminder of the EPLL framework. Then
we review the EM algorithm in section 3. In section 4, we explain the compressive learning
method. In section 5, we focus on explaining how to adapt the sketching framework to learn
a GMM in the image patch context. We also interpret the extension to low rank covariances
and the implementation details of the adapted learning algorithm LR-COMP. In section 6,
we provide numerical experiments that demonstrate the performance of our approach. Some
conclusions and tracks for further works follow in section 7.

2. Image denoising with EPLL. We review in this section the Expected Patch Log-
Likelihood (EPLL) framework for image denoising. EPLL is a patch-based image restoration
algorithm introduced by Zoran and Weiss [53]. The EPLL framework restores an image u by
performing the following maximum a posteriori (MAP) estimation over all N patches:

N
(2.1) u* = arg min 2—2||u - Zlog(p(ﬂ-u))
u€RN o i=1

where P; : RV — R” is a linear operator that extracts a patch of P pixels centered at the
position 4, typically P = 7 x 7. The function p(-) is the density of the prior probability
distribution of the patches.

2.1. Optimization. Due to the non-convexity of p(:), direct optimization of the prob-
lem may be difficult. The authors of EPLL proposeto perform the optimization with “half-
quadratic splitting” [15]. By introducing N auxiliary unknown vectors z; € RY and a denoising
parameter 5 > 0, the problem then is considered as:

(2.2) ut = argmln Hu—vH2 BZHPU—W Zlog z))

21, :ZNGRP

The optimization (2.2) is accomplished by alternating the minimization of u and z;.
e Solving u for fixed z; — Problem (2.2) turns into a linear inverse problem with the
Tikhonov regularization. It has a closed form solution:

B
= rgmm2 2||u—v||2 Z:HPu—zZH2

=1

1+i27ﬂ“7ﬁz L ZPTzZ)
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COMPRESSIVE LEARNING FOR PATCH-BASED IMAGE DENOISING 5

where Zfil PiT P; is a diagonal matrix of size N x N, its i-th diagonal element corre-
sponds to the number of patches overlapping the pixel in position 7. The number is
equal to P, which allows to express the solution as:

(2.4) = (I+0*BI) (v+0°8%)

where Z; = (Zfil PiT Pi)*lPiT z; is the average of all overlapping patches 2;.
e Solving z; for fixed u — (2.2) leads to a MAP estimation:

N N
(2.5) Z; = argmin g D o NPiii— z|* = log(p(z))
i=1 =1

21,...,2NERP
The solution of this problem depends on the choice of patch prior p(-).

2.2. Denoising with a GMM prior. EPLL assumes that the prior is a finite Gaussian
mixture model (GMM) with zero-means, i.e. we consider that a patch € R is a random
vector generated from a distribution with density p(z) defined as

K
(2.6) p(x) =Y opNp(w;0, %)

k=1
where K is the number of Gaussian components and oy > 0 are weights of each component
such that S5 ay, = 1. Np(z;0, %) denotes the density of a Gaussian distribution with zero-
mean with covariance ¥, € RFXP . Recall that the zero-mean Gaussian distribution density
is:

1 1l Ty,
(27) NP(:I:,O, Ek) == We 2 k

Hence, under the GMM prior, the problem (2.5) turns to:

N N K
(2.8) Z; = argmin g Z | Pt — zZH2 — Z log(z arNp(2:;0,%28))
i=1 k=1

Zl,...,ZNERP i=1

This problem cannot be solved in closed form as the second term is the logarithm of a sum of
exponential. [53] proposed to solve this problem by keeping only one Gaussian component. For
a given patch z; = P;i, we chose the component £} that maximizes the posterior probability
p(k;|Z;). This leads to computationally efficient implementations. [48] also justified that only
one component is required for good reconstructions. k} is chosen by
k7 = argmax p(k;|2;) = argmax p(k;)p(Z;|ki)
1<k;<K 1<k;<K

(29) 1 o 1 |-

= argmin —2log ay; +log | Xk, + =Ip| + Z; Bk, + 51Ip) 2

1<ki<K B B

With k} (instead of a sum of K components), the solution of (2.8) is then a Wiener filtering
solution:

X | N -
(2.10) Z; = (Esz + BIP) 12;%*2’1'.
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6 H. SHI, Y. TRAONMILIN, AND J. -F. AUJOL

2.3. Eigenspace implementation of EPLL. The matrix inversions in (2.9) and (2.10) can
be done efficiently by using the singular value decomposition over the covariance matrices.
We denote X}, = UkAkUkT, with U, € RP*F an unitary matrix and Ay = diag()\gk), ey /\gf)) a
)

diagonal matrix. The diagonal entries )\Z(-k of Ay are the singular values of ¥;. Then we can

compute (2.9) by:

2.11 ki = argmin —2log oy, + log A\ + =) 4

(2.11) g min —2log ay Z(g(J 3) A’?+1>
Jj=1 J B

where

(2.12) W —ul'z

Then (2.10) leads to

(2.13) % = Up: S U 2 = Uk;Sklf‘@gk:)
with
A\
(2.14) Skr = diag )\(k:])j
J B/ j=1,.pP

3. Learning a GMM with EM. The Expectation-Maximization (EM) algorithm is a clas-
sical mixture estimation approach. This algorithm starts with some initial estimates of model
parameters and then iteratively updates the estimate until the the estimates are not changing
much. See Appendix B for the details of the EM algorithm. In each iteration, it carries out
two steps: the E-Step (expectation step) and the M-Step (maximization step). In E-Step,
using the current estimate of the parameters, we evaluate the posterior probabilities. In the
M-Step we compute parameters that maximize the probabilities found on the E-Step. These
estimated parameters are then used to determine the distribution of the latent variables in
the next E-Step.

As for the time complexity of one iteration of this algorithm, it is linear in the number of
model components K and the number of elements in the database n. However it is cubic with
respect to the dimensions P due to the fact that we need to inverse the covariance matrix
when calculating the density in E-Step. Thus, when estimating a K-components GMM on
a database of n elements of dimension P, the computational complexity of one iteration of
the EM algorithm is O(K P3n). Learning parameters using EM technique face computational
issues linked to the size of the dataset and the number of parameters to estimate, which would
make the use of (very) large image patches databases impractical. In the next section we will
see an alternive manner to learn parameters using compressive learning.

4. Sketching. Sketching is a dimensionality reduction method. The principle is to com-
press the whole dataset massively before learning. First, the dataset x = {x;}!' ; is summa-
rized into a vector y € C™ (m < n) called the sketch:

(4.1) y := Sketch(x).
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COMPRESSIVE LEARNING FOR PATCH-BASED IMAGE DENOISING 7

Then we apply a learning procedure T that allows us to learn an estimate U* of some statistical
parameters ¥ of the dataset directly from the sketch y, namely

(4.2) U* = Y(y) = YT (Sketch(x))
More specifically, learning from the sketch corresponds to a minimization problem

(4.3) U* € argmin E(y, ¥)
v

where the energy of the model E(-, ) quantifies the fit between the sketch y and the parameter
W. In the context of statistical learning, the energy E can be seen as a proxy of the empirical
risk. The principle of sketching is summarized in Fig. 2.

Large collection size n

d Sketch Learn
o1 o | ~ f mIn

Figure 2. Schema of sketching

4.1. Compressive mixture estimation. In machine learning, the data x; € R¢ are often
modeled as i.i.d. random samples generated from a probability distribution parameterized by
O with a density fo € D (D is the set of probability measures over R?). The idea of sketching
is to project the measure fg on a low-dimensional vector space while keeping all the necessary
information of the dataset. Mathematically, given a linear sketching operator S:

(4.4)

and for some finite K € N*, we define a K-sparse model fg € D:

K
(4.5) fow = arfo,
k=1

where fg, € D are elementary measures parametrized by 6y, o > 0 for all components and
Zszl ar = 1. We can express the vector z as

K
(4.6) z=Sfon=> arSfy,.
k=1
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8 H. SHI, Y. TRAONMILIN, AND J. -F. AUJOL

The goal of the sketching framework is to recover fg . from y, hence we do the following
minimization to estimate the parameters
(4.7) (0", a") € arg min IS fo.o — yl3-
OcRK

a€RK 0, >0,5 4 aj=1
The objective of sketched learning algorithms is to minimize a datafit functional between the
compressed database and the sketch of the estimation. In other words, our aim is to find
parameters a, © such that the sketch of the probability distribution parameterized by «, © is
the closest to the empirical sketch y.

4.2. Recovery guarantees. It was shown in [17] that we can guarantee theoretically the
success of this estimation with a condition on the sketch size. These guarantees necessitate
a “Lower Restricted Isometry Property” (LRIP) of the sketching operator. This property,
is verified with high probability, for GMM with sufficiently separated means and random
Fourier sketching as long as the sketch size m > O(K?dpolylog(K,d)), i.e. when the size
of the sketch essentially depends on the parameters K (the number of components) and d
(the model dimension). Empirical results seem to indicate that for dy, the total number of
parameters, a database size of the order of dy, is sufficient. The excess risk of the GMM
learning task is then controlled by the sum of an empirical error term and a modeling error
term. This guarantees that the estimated GMM approximates well the distribution of the
data [18].

Note that since the means of patches can be estimated from the noisy patches, the EPLL
method uses a zero-means GMM as prior. The means of noisy patches are removed before
the denoising process and added back in the end. Therefore, during the learning process, the
patches are centered before sketching and we do not estimate the mean of Gaussians. In our
case, the sketched GMM learning problem reduces to the estimation of the sum of k zero-
mean Gaussians with covariances © = (Xp)K | ie fo o = Zszl akgs, where gy is the zero
mean Gaussian measure with covariance . In this context, the notion of separation used to
prove guarantees in [17] does not hold. We still show empirically that the sketching process
is successful without this separation assumption.

4.3. Design of sketching operator: randomly sampling the characteristic function. In
[23], the sketch is a sampling of the characteristic function (i.e the Fourier transform of the
probability distribution f). Recall that the characteristic function ¢ of a measure f is defined
as:

(4.8) Pr(w) = / e_inxdf(z) Yw e R?
Rd
The sketching operator is therefore expressed as:
(4.9) Sf = W(wr), - to(wm)]”
where {w1, ..., wn, } is a set of well chosen frequencies. In the spirit of Random Fourier Sampling,

[23] proposes to draw the frequencies from a probability distribution, i.e. (w1, ...,wm) HdAL

The choice of frequencies is essential to the success of sketching, and we will discuss it in
details in subsection 5.1.
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COMPRESSIVE LEARNING FOR PATCH-BASED IMAGE DENOISING 9

5. Sketching image patches. In this section, we adapt the sketching framework to the
context of image patches. Given a training set of n centered patches x = {z1,...,x,} C RP,
we define the empirical characteristic function with

- 1 & .
1 =—) e ™" with RP
(5.1) Y(w) n 2 e i with we

Thus the empirical sketch y is expressed as

T
n

(5‘2) Yy = [’l;(wl), ceny ’L;(wm)]T = % Z e—i‘*}%ﬂﬂﬁj7 s Z e—iwg;lmj
j=1

J=1

In other words, a sample of the sketched database is a P-dimensional frequency component
calculated by averaging over patches (not to be mixed with usual 2D Fourier components of
images). Thanks to the properties of the Fourier transform of Gaussians, the sketch of a single
zero-mean Gaussian component gy, at frequency wy is

(5:3) (S = s, (w1) = & e Phs,

Thus, given the weights o = (ak)le and the covariance matrices ¥ = (Zk)le , the sketch of
a zero-means GMM fx o, = Zszl ags, is

K
54 = S = [T
k=1

I=1,....m

As a consequence, the problem (4.7) of estimating GMM parameters becomes

(5.5) (X%, a%) € arg min ly — Sfs.alls
YeRK
aERK,akEO,ZkK:l ap=1

ie.
2
m 1 n K L
. iy T o _ 1.7
(5.6) (X%, a%) € arg min g = E e T — E e 2% BRe
ZrERPX P,k = "= k=1
a€RK 03, >0,5°5, a=1

5.1. Frequency sampling. The design of the probability distribution A for sampling the
frequencies {wj, ...,wy, } is essential to the success of sketching. In our work, we draw frequen-
cies from the Adapted radius frequency distribution proposed in [23]. The Adapted radius
heuristic proposes to sample w as

(5.7) w= Ry

where R € Ry is the norm of w and ¢ € R” is the random direction. The radius R is
chosen with a radius distribution R ~ pr(R;n) = ((nR)? + i(nR)‘l)%e*%(”R)z where 7 is a
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n=1
n=05
0.6 - n=5_ |1

0 I I
0 2000 4000 6000 8000 10000 12000
R

Figure 3. Curve of the radius distribution density

scale parameter which should be adjusted to the current dataset. By combining this radius
distribution with the decomposition (5.7), we have a frequency distribution Ay referred as
Adapted radius frequency distribution. See Appendix C for details. With this distribution,
we avoid sampling very low frequencies. Figure 3 illustrates the curve of p(R) with different
values of 7.

5.2. Extension to low rank covariances. Bayesian MAP theory permits to use a GMM
with degenerate covariance matrices as a denoising prior. As we perform Wiener filtering,
this is useful as we can reduce the number of parameters by just truncating the component of
noisy patches supported on the lowest eigenvalues of the covariance. The experiments [34, 38|
have shown that we can use low rank covariance matrices for denoising while keeping good
performance. This motivates us to approximate the covariance matrices in the GMM prior
by low-rank matrices.

Following classical Burer-Monteiro method [3, 7] in low-rank matrix estimation, we pa-
rameterize Xy by its factors Xj: Xy = X, X! . Supposing that ||y — Sfx. |3 has a minimizer,
we approximate the minimization (5.5) by
(5.8) (X,a) € arg min ly — Sfx.al3

XeRK
aERK@kZO,Z?:l ap=1

ie.
m K 2
> A . _1..T T
(5.9) (X,a) € arg min Z Yy — E e 29 XX e
XkERPXT,Vk l:1 k_l

Q€RK 0, >0, 55 ag=1

where X = {X1,..., Xg} is the collection of factorized rank reduced covariances.

With the following proposition, we justify that the difference between the energy E(y, <f>)
and the minimized energy in the full-rank case E(y,®*) (where ®* is the result of mini-
mization (5.5)) is associated with the smallest eigenvalues of the covariance matrices. We
qualitatively validate this approximation since these eigenvalues are typically small.
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Proposition 5.1. Let ®* = {¥7,...,¥%,0f,...,a%} be a minimizer of (5.5). Suppose
that there exists a minimizer ® = {Xl,...,XK,&l,...,&K} for the problem (5.8). Let C' =
S lealBllenl,. Then we have:

175 = ull, = IS Far = yllz < C max [ 37 o3(3)
j>r+1

where the 0j(3}) are the singular values of ¥}, sorted by decreasing order.

The proof is detailed in Appendix D.

Ideally, we would like to obtain a similar bound for ||X} — X kf(;f” r. We conjecture that
a RIP (Restricted Isometry Property) would be needed for such a result. As the verification
of RIP remains an open theoretical question in the zero-means GMM case, we leave this
theoretical question for further work.

5.3. An algorithm for learning patch prior from a sketch : LR-COMP (Low Rank Con-
tinuous Orthogonal Matching Pursuit). Problem (4.7) can be solved approximately using
the greedy Compressive Learning OMP called CL-OMP and a variation of CL-OMP called
CL-OMP with Replacement (CL-OMPR) [23, 24]. These algorithms are based on the Match-
ing Pursuit [31], Orthonormal Matching Pursuit [35] and Orthonormal Matching Pursuit with
Replacement [21] for classical compressive sensing, which handle sparse approximation prob-
lems. It starts from an empty support and it expands the support by greedily adding new
atoms to the current support 2. Each new atom 6’ is found by maximizing the correlation
(S for, ) where r is the current residual. Then it updates the weights and reduces the cost
function with a gradient descent initialized with the current parameters. For better practical
recovery, the algorithms with Replacement extend the size of support more than the desired
sparsity. Then it selects the K (the number of model components) largest weights and it
deletes the extra atoms using a Hard Threshold.

We adapt these algorithms in the GMMs context with our low-rank approximation. Several
modifications are detailed below:

e No Replacement. Although the algorithms with Replacement show better results
on synthetic data, our results tested on image patches show that the Replacement has
a negligible effect. Therefore, we run our algorithm without this Hard Thresholding
step to decrease the computation time.

e Estimation the factors of covariance instead of the covariance matrices.
As we approximate the covariance matrices with their factors, in each step of the
algorithm, we do operations directly on the factorized rank reduced covariance X
instead of the covariance matrix X to lighten the computations.

The proposed algorithm is summarized in Algorithm 5.1. The main tool for the implemen-
tation of Algorithm 5.1 is to compute the necessary gradients for the optimization problems
in Steps 1, 3 and 4. Our algorithm was implemented by extending the MATLAB toolbox [22].
The Matlab implementation of our approach is available at [45].

5.4. Expressions of the necessary gradients. For the following section, denote the vector
v(X)=Sfx € R™.
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Algorithm 5.1 LR-COMP: Compressive GMM estimation with low-rank covariances [45].
Input Empirical sketch y, sketching operator S, sparsity K
Py Q<0
fort =1to K do
Step 1: Find a X such that: X < argmaxy Re <%,f>2, init = rand
Step 2: Extend the support Q < QU {X}
Q
‘ y— Sy S fx,
Step 4: Perform a gradient descent initialized with current parameters

2
Yy — Z|1§2:|1 arS fx, X init = (2, «)

Step 5: Update residual: 7 < y — 252:‘1 oS fx;
end for

2
Step 3: Find weights: a - argmin,, )

O, a + argming ,

K
Yy —- Zk:l akaXk
Normalize the weights oy, such that >, oy =1
return Support €2, weights «

2
Final adjustment: ©,a < argming )

335 5.4.1. The gradient for Step 1. In step 1, we have the optimization problem

S
336 (5.10) X € argmax Re< Ix ,f> reC™
XERPxr ISfxll2” /4

. v(X)TRe(? =
Let F(X) = —Re <%,r>2 = —W, then problem (5.10) turns to

338 (5.11) X € argmin F(X)
XeRPxr

w
w
~

339 With W = [wq,...,wm] € RPX™ the frequency matrix and # the multiplication element by
340 element, we express the gradient of F/(X) as :

1 . (F(X)v(X) .
341 (5.12 VxF(X)=————W (WTX* <v X) % < —Re(7) .
(512 0= T D @
342 The detailed computation is in Appendix E.

343 5.4.2. Solution of Step 3. The problem is

12|
344 (5.13) o =argmin ||y — Y xSfx, || yeC”

a€RIL _
k=1 9

315 Denote V(X) = [v(X1),...,v(X|q))] € R4 o = [a, agll e RI®l, then the problem can

346 be expressed as a least-squares minimization

347 (5.14) o = argmin g(«) = argmin ||y — Va||§
acRI€ a€cRI

348 We thus have
319 (5.15) of = (VIV)~lv Ty,
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5.4.3. The gradient for Step 4. The problem is

K 2
(5.16) (©,a) € arg min y— Z arS fx,
OcRK X eRP+Pxr 1 9
aeRK
Denote V = [v(X1),...,v(XK)], @ = [a1, ...ax]T, we express
(5.17) h(®,a) = |ly - Va3
so we have the gradients
(5.18) Voh(0,0) =2V (Va —y)
and
(5.19) Vx O, a) =20, Vx,v(Xp)T (Va —y)
In practice, as in Step 1, we compute the second gradient by
(5.20) Vx, h(0,a) = 20, W (W Xpiv(Xp)%(Va —y))

5.5. Complexity of LR-OMP. When estimating a K-components GMM, the proposed
algorithm LR-OMP has a computational cost of the order of O(mP?rK?). In each iteration,
the computational cost is dominated by the matrix-vector product W (W7 X) where W is a
matrix of size P x m and W71 X is a matrix of size m x r. As m < n, the computational cost
of our algorithm is lower than that of the EM.

5.6. Denoising with low-rank covariance matrices. In this section, we describe some
modifications required in EPLL to use our estimated model. The estimated parameters
are & = {Xl,...,XK,éq,...,dK} with X, € RP*" and oy € Ry. A singular value de-
composition of X, is given by Xk = UkSkUg ) Uk e RP*P is an orthogonal matrix and
S = diag(8g,, ..., 8.) € R"™*" is a diagonal matrix. The r-rank covariance matrix can be
expressed with f]k,, = XkX,Z’ = Uk.S’,gUg . We approximate the covariance matrix Y, with
Y f]k = UkAkU,Z’ where Ak is formed as:

a2
Sk‘l

=>
e
I
YA
o
3

(5.21)

p is a user parameter. Denoting U S RP*" the matrix formed by the first r columns of Uy,
and A}, the matrix formed with the first 7 rows and r columns of Ay, we have:

B
Bp+1

1 - Arr (A 1 —17r ST
(5.22) (Zk + /3IP> = Up (A + BIT) Uit + (I, — ULUET)
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and
1\ e Lo ey B e
(5.23) (Ek + ﬁfp> g =Up(Ap + B—Tr)flAq/;UlgT + m(fp - ULuih)
Then the Gaussian selection step of EPLL (2.11) becomes
r ~(k)12

1[5 B
5.24 k = argmin —2log oy + log(57. + =) + 5% — o )2
(5.24) g min —2 log oy ;(g(kj 3 s Baril
where
(5.25) o =077

With the optimal component &, the estimated patch (2.10) becomes

1
% = (Ek: + BIP)*E;C;%

~ ~ 1 ~ ~ 5 ~ ~ B
= U,;}A’;@f’“” + ﬁ,uﬁi 1 (Zi — ﬁkrﬁl(ki*))
with
a2
A AT 1 —14Ar . Sk:
kfj B

Jj=1,...,r

6. Experimental Results. In this section we present several numerical experiments to il-
lustrate the benefits of our approach. The noisy images are obtained by adding zero-mean
Gaussian noise with standard deviations o = 20 to the test images. The denoising is per-
formed with EPLL' . To evaluate the quality of denoised images, we use two measures: PSNR
(Peak Signal to Noise Ratio) and SSIM (Structural Similarity).

The prior model used for EPLL is learned from a sketch that compresses n = 4 x 106
patches of size P = 7 x 7. The patches are randomly extracted from the training images
of the Berkeley Segmentation Database (BSDS) [32]. Based on observations from numerical
simulations, the scale parameter in C.5 needs to be adjusted with different tasks [42]. In
[23], the authors propose to estimate this parameter with a small sketch on a small subset
from the dataset. In our work, we choose the optimal parameter by hand. We learn a
mixture model of K = 20 Gaussian components, the rank of covariance matrices are reduced
to r = 20. Our experiments showed that we cannot reduce the rank further to keep good
denoising performance.

We compare the denoised results with the results obtained with a prior learned by EM.
For the comparison, we train the prior from the same database using the EM algorithm. The
experimental results are shown in Figure 4 and Figure 5. We observe that for most of images,
we obtain similar or better values of PSNR and SSIM. To reproduce the results below, you
can use the code at [45].

'Matlab implementation based on the code of [34].
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33.2/.909 33.3/.902 |

35.4/.918 | 35.4/. 915

. ] W

22.1/.615 |

. —

22.1/.740

32.3/.865 | 32.2/.863

22.1/.677

Figure 4. From left to right: Original images, noisy images with noise o> = 20, results with EM model,
results with LR-COMP model. The denoising results are evaluated with PSNR/SSIM. Similar denoising per-
formances are obtained with LR-COMP with a 1000 times smaller compressed database. To estimate the prior
model, our method is 2 times faster than the EM algorithm.
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22.1/.829

30.0/.811

27.4/.771

22.1/.500 35.3/.906 35.2/.904

Figure 5. From left to right: Original images, noisy images with noise o> = 20, results with EM model,
results with LR-COMP model. The denoising results are evaluated with PSNR/SSIM. Similar denoising per-
formances are obtained with LR-COMP with a 1000 times smaller compressed database. To estimate the prior

model, our method is 2 times faster than the EM algorithm.
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6.1. The sketch size and compression rate. Theoretically, we can successfully estimate a
GMM with sufficiently separated means and random Fourier sketching with high probability
as long as the sketch size m > O(K?Ppolylog(K, P)). In our case, we learn zero-mean
Gaussians. Empirical results indicate that it is sufficient when the sketch size is the order of
the number of parameters. We set m = 10K (P xr+1) ~ 2 x 10?, i.e the compressed database
is approximately 1000 times smaller than the original patch database. The gains in terms of
memory is approximately - times compared to the EM approach.

6.2. Learning time. In terms of time complexity, the running time depends on the number
of components K and the complexity of the gradient descent algorithm. In our approach, we
use the Limited-memory BFGS algorithm to handle the optimization problems in Step 1 and
4. The latter is the most time-consuming part of the algorithm. To get the model that achieves
the denoising performance of our experiments, it takes less than 2 hours on a computer with 2
* 32 cores AMD EPYC 7452 @ 2,35 GHz. With the same environment, our learning algorithm
is about 2 times faster than the EM algorithm?.

7. Conclusions. In this work, we adapt the sketching framework in the context of image
patches. We propose an algorithm LR-COMP to estimate a GMM with low-rank approxi-
mation and provide an implementation of the algorithm. Experiments illustrate that a high-
dimensional GMM can be learned from a compressed database and then used for patch-based
denoising. We achieve denoising performances close to state-of-the art model based methods
while the learning procedure uses less memory and time than the classical EM algorithm.

In future works, we can generalize our approach to other models such as GGMM (General-
ized Gaussian Mixture Model) for a better denoising performance [10]. We also aim to adapt
the sketching to more inverse problems such as image super-resolution, image deblurring, etc.
Another perspective is to extend our model to the study of video denoising method as the
potential of the technique for video restoration remains unexplored. In our work, we estimate
a GMM with zero-means. In this context, the notion of separation used to prove guarantees
in [17] does not hold. We still show empirically that the sketching process is successful without
this separation assumption. This opens interesting new theoretical questions for the study of
the success of compressive learning in patch-based image processing.

Appendix A. Definitions and theorems.

Definition A.1. Singular values For A € C™*" and i = 1,...,min(m,n), the singular

values o;(A) (that we suppose sorted by decreasing order) of the matriz A are the absolute
values of the eigenvalues of the matriz AAT :

(A1) 02(A) = \(AAT)

7

Definition A.2. Frobenius norm. For a matrizc A € C"™*", the Frobenius norm of A is

2Mo  Chen  (2021). EM  Algorithm for Gaussian Mixture Model (EM GMM)
(https://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model-
em-gmm), MATLAB Central File Exchange. Retrieved October 11, 2021.
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defined as

(A.2) IAlr= | D> lai;? = \/trace (ATA) =

i=1 j=1

where o;(A) are the singular values of A.
Definition A.3. Operator norm. For a continuous linear operator A : V. — W, the
operator norm of A is defined as
|Allop = inf{c > 0 : ||Av|| < ¢|lv|| Vv eV}

(A.3) . | Av]|
- p{ ol -

v#0 and UEV}

Theorem A.4. Eckart- Young-Mirsky theorem. Let D = ULV € R™"  m > n be
the singular value decomposition of D with ¥ = diag(oy,...,0m). Let U, (resp. V,) be the
matriz formed by the first r columns of U (resp. V) and ¥, = diag(o1,...,0.). Then the
r-rank matriz, obtained from the truncated singular value decomposition: D* = U, X, V.I is
the minimizer of the low-rank approximation:

A4 D —D*||p = i D-D|r= 2(D
(A4) D=0l = iy 1D =Dl =, | 5 D)

The minimizer D* is unique if and only if 0,41 < op.

Appendix B. EM algorithm. Given a data set of n clean training patches x =
{x1,...;zn} C RPX? the EM algorithm for estimating a GMM can be summarized as fol-
lows:

1. Define the number of components K. For each component k, we initialize the param-

eters O = (g, Xk, o) randomly, and we compute the log likelihood

n K
(B.1) logL(Ok; 1y vy Tp) = Z log(z arNp(2s; i, X))
k=1

=1

2. E-Step
Compute the posterior function I'; ;; with the current parameters ©y:

5 ,Z
(B.2) Fi,k: IC{VkNP(CU U k)
> i1 NP (@i pg, Bj)

3. M-Step
Re-estimate the parameters ©7° with the I'; ; obtained in the E-Step:

1 n
(B.3) " = Ni Z Ly pi
i=1
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1 n
(B.4) N = N, > Tkl — )" (i — )
=1
N,
(B.5) aper =
> ket Ni

where N, = > 0" Tk
4. Re-evaluate the log likelihood. Iterate E-Step and M-Step until the log likelihood or
the parameters are not changing much.

Appendix C. Design of adapted radius distribution. The frequency distribution is
chosen as with a heuristic called adapted radius [25]. Assuming that we want to estimate
a P-dimensional Gaussian g = N(0,Ip), we can compute the characteristic function 1, (w)

associated with g:
T

(C.1) Yg(w) = e3¢

The Adapted radius heuristic proposes not to sample w directly but rather to sample the
radius of the P-dimensional Gaussian R = VwZw. Thus, we draw the frequency w € R” as

(C.2) w= Ry

The radius R € R, is chosen with a radius distribution R ~ pr(R;7n). The direction ¢ € RF
is uniformly generated on the Iy unit sphere Sp_1, i.e. ¢ ~U(Sp—_1). Then, the characteristic
function 1)4(w) reduces to

(C.3) by(w) = by (Rp) = e 77 = y(R)

We obtain a one-dimensional Gaussian distribution for R. To design the radius distribution,
we consider the estimation of a Gaussian ¢ = N(0,1). We aim at sampling the radius R
leading to large variations of the characteristic function when the parameters are closed to the
true parameters. In other words, when parameters (u,0?) are closed to (0,1), we want have
a large W(M,ﬂ)(R) — 1/1(071)(}%)’. This can be accomplished by promoting the radius R which
makes the norm of the gradient va(u,ﬂ)(R)HQ large. Recall that ¢, ,2)(R) = e 50" R
and the norm of the gradient is:

1 2 1 22
(CA) ([ Vebuen)(R)s = [—iR 02y (R + — 5 R*uon(R)| = (R? + [ RY)e™ "

Therefore, |V 1) (R)|l2 = (R* + %R‘l)%e*%m. It yields the density of a radius distribution :

(C5) pr(R:m) = ((OR)? + (nR)) e 30"

Appendix D. Proof of Proposition 5.1.
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Proof. Let ®; = (X}, ;) be the minimizer of the problem (5.5), i.e.

m | K L 2
. _ 1.7
(D.1) ¢ €  argmin g Qe 29 EREL gy
SReRPXE = k=1

akZO,Zle ap=1

and suppose that there exists a minimizer &5 = (X’ k» ) for the problem (5.8):

2
(D.2) ®, € argmin Z

XkE]RPXT
K
ap>0,3 10 ap=1

m
1=

K )
_1.,Tx, xT

E ape” 29 RS — gy

k=1

1

Let 3, be the best rank-r approximation of Y7 with rank r i.e.

(D.3) Sr € argmin [|Zf — 2|3
Srank(X)=r

Define ® = (3, aj). According to the definition (D.2) and the triangle inequality, we have

181 —yll, < ISfa —vll,
(D4) = ||Sfa = Sfor + Sfar —
<||8f3 — Sfax|ly + IS for —ylly

The first term is

K 2 m | K 1 2
2 _1 _1
1815 — Stally =D eisS(fs, — fe)|| =D 1D ek (6 21 Sk . E’twl)
k=1 2 =1 k=1
(D.5) e )
_ Z Zaze—%wﬁkwl (1 _ e—gwf(zk—zk)wl)
=1 k=1

Using the convexity inequality |1 — e™*| < |z| and Cauchy—Schwarz inequality, we have

e—%w?ikwl(l _ e—%wlT(EZ—flk)wl)‘ < ‘1 _ e—%wlT(ZZ—ik)wl

(D.6) < 3 [ (5 — S| = 5 [{en, (57— B

A

1 . <
< Sllwrll2l(Ek = Br)wnl2
We define the linear operator €);:

Q RO — R

(D.7)
¥ = (Si’j)lﬁiSPJSjSP — QZ(E) = Yw;
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We have
P P 2
ISl =" > Sii(wn);
(D 8) =1 |j=1
' p [P
<3 (1800, <max|wlr]PZer,ﬁ Pllali% 21
i=1 \j=1 =1 j=1

We deduce that ||lw;|lop < V/Pllwi]|sc- Since o >0 and K aj, =1, we get:

K
Zazeféwfzkwl (1 e 2wl (E Ek wl> § O{ e 2wl Ekwl (1 6 2 (E Ek)wl)
k=1

\/13 .
5 lwrllzflerllo Za;’;uzz — Xkllr

k=1

(D.9)
<

Therefore, we can bound the energy (D.5) by

m K 2
2 P 2 2 * * S
2 < ZZHMHQIIMIIOO > aillsh - Selle
=1 k=1

<7 i lwill3llwillZ, max [|SF — Skll%
= 2 0 1 Sh<K

|Sf5 — Sfe

(D.10)

By the Eckart and Young theorem, ||Xf — (|2 = Dl 0'?(2;;), where o; are the singular

values. Thus
\/P 5 m )
- 2
S o max Z o2(S5) 4| D llwrllBllwr|2,
jzr+l =1

Denoting € = ¥ /312, [lwill3lwnlZ, we have from (D.4) that:

(D.11) |Sfs — Sfo-||,

2

(D.12) ISfa =ull, < C max | >0 oF(5R) + IS far =yl =
j>r+1

Appendix E. Calculation of the gradient.  The expression of (5.12) is computed as

follows: Denote F(X) = —%, where r € R™ is the real part of #. We compute the
gradient of F' as follows:

| et PR () u(X)

VrE®) = ~neon <(VX ) rlolX)ll: (X2 )
(VX)) (e Tre(X)
(1) = T @l (* oSl >

_ (Vxu(X)" (F0e) )
OOl \ o0l



534
535
536
537

538

539

540
541
542
543
544
545
546

547

v O Ot
Tt Ot O B
L= O O

ot Ot Ot C

Ut Ut C

ot
IS

ot ot ot
» Ot

ot
I

ot Ot Ut

22 H. SHI, Y. TRAONMILIN, AND J. -F. AUJOL

For each component v;(X) = e~ 29l XX e have
81}1(X)
(E.2) ax = —u (X)X Tww!
Then for a given vector § € R™
m
(E.3) (Vxo(X),9) = =Y yw(X) X ww/”
=1

In practice, we compute the scalar product with
(E4) (Vxv(X),§) = =W (W' Xk(v(X)k))

where W = [wi, ...,wm] € Mp,(R) the frequency matrix and * the multiplication element by
element. As a consequence,

1

(E.5) VxF(X)= —mw (WTX% <U(X)>i< <m — r)>> :
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