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PRIMER

Inferring cell junction tension and pressure from cell geometry
Chloé Roffay1,2,*,‡, Chii J. Chan3,*,§,¶, Boris Guirao2, Takashi Hiiragi3,4 and François Graner1,**

ABSTRACT
Recognizing the crucial role of mechanical regulation and forces in
tissue development and homeostasis has stirred a demand for in situ
measurement of forces and stresses. Among emerging techniques,
the use of cell geometry to infer cell junction tensions, cell pressures
and tissue stress has gained popularity owing to the development of
computational analyses. This approach is non-destructive and fast,
and statistically validated based on comparisons with other
techniques. However, its qualitative and quantitative limitations, in
theory as well as in practice, should be examined with care. In this
Primer, we summarize the underlying principles and assumptions
behind stress inference, discuss its validity criteria and provide
guidance to help beginners make the appropriate choice of its
variants. We extend our discussion from two-dimensional stress
inference to three dimensional, using the early mouse embryo as an
example, and list a few possible extensions. We hope to make stress
inference more accessible to the scientific community and trigger a
broader interest in using this technique to study mechanics in
development.

KEY WORDS: Mechanical stress inference, Cell junction tension,
Cell pressure, Cell shape, Epithelia, Development

Introduction
The roles of mechanical interactions during morphogenesis,
proposed more than one century ago (His, 1874; Thompson,
1917; Dupont, 2017), are nowwell recognized. Forces are generated
by molecular motors, notably by actomyosin networks, and are
transmitted via cytoskeletal elements through cell-cell adhesive
complexes. Stresses (see Glossary, Box 1) are the effects of these
internal forces, measured at the cell or tissue scale. Forces and
stresses contribute to the determination of static cell shapes and
packing (Graner and Riveline, 2017), as well as dynamic changes in
cell size, shape, number and position, and gene expression, all of
which ultimately contribute to tissue morphogenesis (reviewed by
Heisenberg and Bellaïche, 2013; Heer and Martin, 2017).
Reciprocally, tissue morphogenesis and mechanics can impact
cell-fate specification (Gjorevski and Nelson, 2010; Mammoto
et al., 2012; Chan et al., 2017). Such combined control by genetics
and mechanics, and their feedback, helps to ensure that tissue

development is simultaneously robust within a given species and
variable across living organisms (Miller and Davidson, 2013;
Hannezo and Heisenberg, 2019).

In vivo quantitative measurements of force and stress are therefore
key to improving our understanding of how tissue morphogenesis is
regulated. Recent years have seen technical inventions to measure
force and stress (for reviews see Gjorevski and Nelson, 2010;
Mashburn, 2015; Sugimura et al., 2016; Campàs, 2016; Roca-
Cusachs et al., 2017; Gómez-González et al., 2020). Broadly
speaking, these techniques belong to one of the following four
classes: contact manipulation (e.g. parallel plate compression,
atomic force microscopy and micropipettes); manipulation using
light (e.g. optical tweezers and laser ablation); visual sensors (e.g.
FRET sensors, liquid droplets and elastic beads); and non-
mechanical observation techniques (e.g. birefringence and stress
inference). These techniques measure either absolute or relative
values of force or stress at various spatial and temporal scales, with
various levels of precision, difficulty and cost. Whenever the same
quantity can be measured by different methods, cross-validations
can be performed. These methods are thus complementary and
together constitute a useful toolbox.

Contact and light manipulation, as well as visual sensors, are
somewhat invasive and typically provide mechanical information at
a single location and time. Although one could consider
constructing maps using single-point data from multiple
experiments, biological variations often make such work
impractical. In contrast, stress inference (see Glossary, Box 1) has
gained popularity because it is inherently non-invasive, can provide
information on multiple positions and time-points from a single
experiment, and is also relatively cheap and fast. Thus, it is
reasonably easy to implement with a high-throughput outcome,
provided one has a high-quality image dataset that allows cell
contours to be automatically segmented. It determines tensions
and pressures in cells based only on image analysis, thanks to the
following simple principle. When three cell junctions that meet at a
vertex have an equal tension, by symmetry they meet at equal
angles (i.e. 120°) (Taylor, 1976; Cantat et al., 2013; Graner and
Riveline, 2017). Conversely, deviations from 120° angles indicate
that junction tensions are different and the ratio of tensions can be
calculated for these three junctions, then by iteration for all
junctions of an individual cell, and even across a whole tissue.
Similarly, the curvature of a junction between two cells is
determined by the pressure difference between these cells; all
pressure differences between cells can also be determined by the
same logic.

Stress inference is a very promising approach to link mechanics
and developmental processes, from the cellular to the tissue scale. In
this Primer, we provide a beginner’s guide to stress inference; our
goal is to make the approach more accessible to the scientific
community, especially for the non-specialists. We first recall the
basic principles and underlying assumptions. We then review
current two-dimensional (2D) variants with their respective
strengths and limitations. We provide a practical checklist and
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flowchart to help the reader choose the appropriate variant,
depending on the nature of the biological questions and on the
available images. We also discuss recent developments in three-
dimensional (3D) stress inference, its validations and limits, using
the mouse embryo as an example to demonstrate and assess the
pipeline. We conclude with some future perspectives, such as
analysis of dynamic cell shape changes and extensions in 3D stress
inference.

Stress inference: principle and application
The term ‘force inference’, which has often been used in the
literature, could be considered misleading. Formally speaking, as
Noll et al. (2020) argued, cell junction tension and cell pressure have
no directionality, are not vectors, and are thus not forces. They are
simply the components of the cell stress (Chiou et al., 2012). In this
Primer, we use the term ‘stress inference’, and whenever necessary
we specify the quantity being measured, by distinguishing ‘cell

junction tension’, ‘cell pressure’ and their ‘coarse-grained’ (see
Glossary, Box 1) version: the ‘tissue stress’.

Using stress inference to study development
The idea of inferring cell stresses from images of cells within
epithelial tissues was proposed long ago by Thompson (1917). To
our knowledge, it was implemented for the first time by Stein and
Gordon (1982). A froth made of soap bubbles is a well-known
example of a pattern with equal tensions (Cantat et al., 2013).
Analysing a five bubbles cluster, Stein and Gordon (1982) checked
the tension values they inferred were equal within their precision,
hence validating the approach. Using this approach, they further
analysed a patch of 11 cells in the superficial cell layer of a frog
gastrula and revealed significant differences among cell junction
tensions.

In the 2000s, with progress in computers, live imaging and finite
element modelling, Brodland and co-workers revisited this
principle to infer tensions from cell shape images (Chen and
Brodland, 2000; Brodland et al., 2007; Yang and Brodland, 2009;
Cranston et al., 2010). In cases where limited information was
sufficient to provide insights into the underlying cellular
mechanisms, angles between cell junctions (Rauzi et al., 2008;
Landsberg et al., 2009; Xiong et al., 2014; Samarage et al., 2015) or
roughness of clone boundaries (Bosveld et al., 2016) were used as
indicators of ratios of junction tensions, while cell junction
curvatures were used as markers for cell pressure differences
(Fujita and Onami, 2012; Lamiré et al., 2020). All these studies have
contributed to the modern development of stress inference that we
will now present.

Stress inference, as represented by its current variants discussed
in this Primer, was first introduced by Chiou et al. (2012). It has
been extensively used in two dimensions to obtain mechanical
information mostly on planar epithelial tissues (Fig. 1, Table 1). In
particular, it has provided important insights into the mechanics of
Drosophila egg chamber formation (Bellver Arnau, 2015)
(Fig. 1A), pupal dorsal thorax (Ishihara and Sugimura, 2012;
Guirao et al., 2015) (Fig. 1B) and wing morphogenesis (Sugimura
and Ishihara, 2013; Ishihara et al., 2013; Guirao et al., 2015); as well
as embryo ventral furrow formation (Chiou et al., 2012), germband
extension (Noll et al., 2020) (Fig. 1C,D) and germband retraction
(McCleery et al., 2019). Stress inference has also been applied to
study avian development, revealing tissue-scale pressure gradient in
the quail primitive ectoderm (Kong et al., 2019) (Fig. 1E) and
mechanical heterogeneity associated with hair-cell differentiation
during avian cochlea formation (Chiou et al., 2012).

There have also been recent applications of stress inference to
study 3D living tissues (Table 1). For example, during zebrafish
gastrulation, stress inference revealed the influence of fluid
osmolarity on tissue interfacial tension, and argued against the
role of such tension in germ layer progenitor cell segregation (Krens
et al., 2017). During blastoderm spreading in zebrafish, stress
inference revealed a higher tension for the marginal deep cells
compared with the central cells; this contributes to spatially
patterned tissue fluidization (Petridou et al., 2019). In mice, stress
inference revealed the role of tension gradient across cells to drive
mammary gland tube elongation (Neumann et al., 2018). Stress
inference has also been used to quantify tensions and pressures in
early C. elegans embryo (Xu et al., 2018).

Underlying assumption of mechanical equilibrium
To be able to use stress inference, the tissue needs to be in
mechanical equilibrium (see Glossary, Box 1); for exceptions to this

Box 1. Glossary
Anisotropy. The property of a material to show variation in parameters
along different axes. Here, the tissue stress anisotropy arises when cell
junctions in different directions have a different tension distribution.
Bayesian method. Statistical method by which Bayes’ theorem (Bayes
and Price, 1763) is used to estimate the probability for a hypothesis to be
true, within the constraints provided by all information available from
other sources.
Coarse-graining. Obtaining a value of a quantity over a large spatial
scale, by averaging the information available from a smaller scale.
Condition number. Mathematical quantity, which measures how truly
independent the equations are. Here, a higher condition number
indicates that a change or error in the measured angle and curvature
values leads to larger changes in the inferred tension and pressure
values. For further details, see supplementary information.
Inference. An approach based on induction, as opposed to deduction,
adjustment or simulation. It consists in determining the input quantities
(here stresses) that cause the observed data (here cell shapes) when a
mathematical model describing their relationship is known.
Inversion. A mathematical operation performed during the process of
inference. Here, it involves finding the inverse of a matrix.
Junction laser ablation. Using a focused laser to eliminate the
molecular structures supporting the tension in a targeted junction. The
opening velocity of the released junction immediately after ablation is
proportional to the tension it had before ablation.
Mechanical equilibrium. The state when the net balance of forces on a
system is zero. Here, a static state of epithelial tissues where in each
cell-cell junction, tension and curvature balance pressure, and when
junctions meet, their tensions sum up to zero vectorially. When this is not
the case, a tissue is said to be out of equilibrium.
Relaxation time. The time taken for a viscoelastic material to
significantly dissipate its internal stress when a constant strain (i.e.
deformation) is applied to it.
Stresses. Mechanical forces exerted by a region of a material onto a
neighbouring region, divided by the contact area between these regions.
Cell stress can be coarse grained to yield tissue stress.
Tissue laser ablation. Using a focused laser to cut a line across several
cells in order to measure the tissue stress perpendicular to this line.
Alternatively, cutting a circular piece yields at once two tissue stress
components.
Weissenberg number. The ratio between elastic and viscous forces in a
viscoelastic fluid; equivalently, the product of relaxation time (which is a
property of the material) and velocity gradient (which is a property of the
flow).
Young-Laplace equation. This expresses that, at mechanical
equilibrium, a deformable interface under tension has a curvature in
direct relation to the pressure difference between the materials it
separates.
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rule, see below ‘Dynamic stress inference’. The central hypothesis
underlying stress inference is that cell shapes result from the balance
of cell-cell interactions through junctions between two cells, and at
vertices where the junctions meet. These interactions are mediated
by two components acting perpendicular and parallel to the cell-cell
junction. The magnitude of the perpendicular component acting on

a junction between two cells is assumed to be determined by the
difference in pressure between the cells. Each cell is assumed to have
a homogeneous pressure and the pressure difference is thus assumed
to be the same at all points along a given cell-cell junction. Similarly,
the magnitude of the parallel component is assumed to be the cell-cell
junction tension, homogeneous along the whole junction.
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Fig. 1. Examples of stress inference in development. (A) Junction tension distribution in the Drosophila egg chamber. Confocal projection showing basal cell
membranes and geometry of a group of three polar cells (bright) and neighbouring follicular cells on fixed tissue. Cell membranes are stained for Fas3,
which is overexpressed in polar cells. Colours of follicle cell membranes indicate junction tensions relative to the average value of the entire tissue (from 0.58, blue,
to 1.78, red). Picture courtesyof F. Agne ̀s (Centre de GénétiqueMoléculaire, CNRS, France), analysis by J. Bellver Arnau (Bellver Arnau, 2015). (B) Map of tissue
stress for the Drosophila pupal dorsal thorax. Adapted from Guirao et al. (2015), where it was published under a CC-BY 4.0 license. Each bar indicates the
anisotropic part of tissue stress inferred from binned cell junction tensions. Bar direction indicates stress orientation; bar length indicates stress magnitude.
(C,D) Overlay of color-coded inferred junction tensions (C) and inferred stress for each cell plotted as an ellipse (D) on a confocal image of the Drosophila lateral
ectoderm near the cephalic furrow during late germ-band extension. Adapted from Noll et al. (2020), where it was published under a CC-BY 4.0 license.
(E) Map of inferred pressures in the primitive ectoderm of a quail embryo. Adapted from Kong et al. (2019), where it was published under a CC-BY 4.0 license.
Tensions, pressures and stresses are expressed in arbitrary units; cell sizes are not specified as they are not relevant for stress inference.
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There are many cases where this hypothesis is valid, at least
approximately. In tissue morphogenesis, the cell contours are often
static or ‘quasi-static’ (a slow succession of quasi-equilibrated
states). Although stress inference has been extensively used to study
living tissues, it has occasionally been applied to images of fixed
tissues, as shown in Fig. 1A. Although the actual stress in the fixed
sample is contributed by the polymerized proteins that maintain the
tissue rigidity, the cell shapes should reflect the cell stress existing
before fixation, so that stress inference is still valid.
Several approaches can be taken to decide whether a tissue resides

close enough to mechanical equilibrium to perform stress inference.
The first quantitative criterion is static. It can be applied either on a
single image or on one frame of a movie. It consists of computing the
left hand side of Eqn 1 (defined below) at each vertex, and checking
that the right hand side is consistently close to zero. The right hand
side is called the ‘residue’ of the equation. It is unlikely to be exactly
zero for all vertex equations simultaneously. If the residues root mean
square is much smaller than the average tension, then equilibrium
hypothesis is reasonably valid. A similar criterion applies for Eqn 2 at
each junction. The drawback of this static criterion is that it can be
checked only a posteriori, after stress inference has been performed.
A second criterion, applicable only to live movies, is based on

movements. The velocity gradient is a variation of local tissue
velocity with respect to position, and is expressed as the inverse of a
time. Multiplying it with the tissue relaxation time (see Glossary,
Box 1), which could be measured independently [e.g. by tissue scale
laser ablation (see Glossary, Box 1)], yields a dimensionless number
known as the Weissenberg number (White, 1964) (see Glossary,
Box 1). The Weissenberg number reflects the degree of anisotropy
(see Glossary, Box 1) in deformation generated by the flow
deformation rate. When it is less than one, the tissue has enough
time to relax towards mechanical equilibrium, and is quasi-static;
when it is larger than one, the tissue does not have time to relax and
remains far from mechanical equilibrium.
In practice, however, a third and more qualitative criterion is used

first to filter out tissues that are visibly far from mechanical

equilibrium. Visual inspection often allows users, especially
experienced ones, to detect deviations from equilibrium when
they are large enough. For example, on a still image, sinuous
junctions, very acute angles, protruding cells or triskelia (Fig. 2)
imply that a set of tensions and pressures cannot suffice to explain
the observed shapes. Several cell shapes are determined by junction
resistance to bending. The shape of cells like axons or blebbing
migrating cells are dominated by heterogeneous cytoskeleton
forces. Since four- or fivefold vertices are rarely stable in tissues,
an excessive proportion of such vertices probably reflects the
existence of a mechanism which prevents their relaxation (Bardet
et al., 2013). In all these cases, stress inference cannot be applied.

In a movie, excessive fluctuations of vertex positions or cell
contours suggest that the tissue exists far from mechanical
equilibrium. When a single image is available, it is impossible to
distinguish whether cells undergo dynamical changes in time, or
whether they are static due to ingredients other than tensions and
pressures. In this Primer, for simplicity, we use the term ‘out of
equilibrium’ in both cases without distinction.

In summary, larger or more numerous deviations from
mechanical equilibrium, visible through cell shapes or through
their fluctuations, imply a higher uncertainty of stress inference
results. To decide whether it is worth applying stress inference, the
user must compare the stress inference uncertainty with the
precision required to answer the biological question. Where
mechanical equilibrium conditions do not hold, see ‘Dynamic
stress inference’ for an alternative option.

In practice: what stress inference can and cannot do
Given an image of epithelial cells, the possibility of using stress
inference to obtain meaningful results depends on the scientific
question under consideration and the objectives, which we
discuss below. At each vertex, the ratio of junction tensions is
measured (described in greater detail below), and inversion (see
Glossary, Box 1) returns the ratio of each junction tension to the
average tension within a given image. Each tension is

Table 1. Some applications of stress inference in living tissues

Biological systems Results Reference

Drosophila ventral furrow formation Mechanical anisotropy at the onset of ventral furrow formation Chiou et al. (2012)
Drosophila germband extension Inferred cell stress predicts cell cleavage axis; validation of stress

inference
Noll et al. (2020); Kong et al. (2019)

Drosophila germband retraction Highly elongated shape of amnioserosa cells generates anisotropic
tissue tensions

McCleery et al. (2019)

Drosophila egg chamber formation Mechanical stress anisotropy does not play a role in triggering
supernumerary polar cell apoptosis

Bellver Arnau (2015)

Drosophila pupal dorsal thorax
metamorphosis

Tissue scale division pattern correlates with inferred junctional stress;
validation of stress inference with laser ablation

Ishihara and Sugimura (2012); Guirao et al.
(2015); Kong et al. (2019)

Drosophila pupal wing
morphogenesis

Tissue stress along proximal-distal axis promotes hexagonal packing
of cells

Sugimura and Ishihara (2013); Ishihara et al.
(2013); Guirao et al. (2015)

Avian cochlea formation Mechanical heterogeneity correlates with different cell fates during
hair-cell formation

Chiou et al. (2012)

Early development of quail primitive
ectoderm

Tissue-scale pressure gradient exists between embryonic and
extraembryonic regions

Kong et al. (2019)

Blastoderm spreading in early
zebrafish development

Mechanical heterogeneity contributes to tissue fluidisation Petridou et al. (2019)

Gastrulation in early zebrafish
development

Interfacial tension does not lead to spatial segregation of different
germ cells

Krens et al. (2017)

Preimplantation development of
mouse embryos

Validation of inferred tension with measurement by pipette aspiration Veldhuis et al. (2017); supplementary
information

Mouse mammary gland tube
elongation

High tension in anterior protrusions and posterior tension gradient
drives cell migration

Neumann et al. (2018)

C. elegans early development Tension and pressure inference; sensitivity test on inference scheme Xu et al. (2018)
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determined up to an unknown multiplicative constant, which is
the same for all junctions in a given image. Hence, stress
inference can map out spatial heterogeneity or anisotropy in
junction tensions. With a movie, it can determine the
fluctuations of tension ratios with time, but not how the
tension in a given junction varies with time.
The sign of the pressure difference across a cell-cell junction is

determined from the junction concavity. The pressure difference
across the junction is calculated from its curvature and tension
(Young-Laplace equation, see Glossary, Box 1). Hence, it is also
determined up to the same unknown positive multiplicative
constant as the tension. The inversion method returns the

pressure in each cell, up to an unknown additive constant, so
that the sign of the pressure itself is not determined and the
pressure average can be set to zero. Stress inference can map out
spatial heterogeneity in pressure and variation with time of relative
pressure differences.

Stress inference is not based on any assumptions for the origin of
the forces involved. Hence, in inferring the junction tension
between any two cells, stress inference is not able to distinguish the
relative contribution from each cell, nor from each biological
ingredient, to the overall junction tension. For example, junction
tension has been shown to increase with decreased cell-cell
adhesion or increased cell contractility (Brodland, 2002; Ouchi

A B

D E

C

F G H

I J K

1.0 1.0

0.25

1.0 1.0

0.0

1.0 1.0

−0.25

Fig. 2. Representative images of cell
configurations that visibly deviate from
mechanical equilibrium. This set is not
exhaustive. Visible deviations are indicated
by red arrows. (A) Crenellated edge,
illustrated and discussed by Veldhuis et al.
(2015). (B) S-shaped edge, illustrated and
discussed by Kong et al. (2019). Adapted
from Kong et al. (2019), where it was
published under a CC-BY 4.0 license.
(C) Edges with a constant sign of curvature
but not a constant value (thus not a circular
arc). Arrows indicate two such edges: on the
left, the two different curvature radii are
visualized; on the right, the arrow indicates
the limit between a flat part and a curved
one. (D) Plant tissue with very irregular cell
shapes, illustrated by Carter et al. (2017).
Most junctions are wiggly, similar to B. Red
box indicates higher magnification of the
region illustrated in E. (E) Triskelion: the
curvatures of the three junctions that meet
have the same sign. (F) Caco-2 colon
epithelial cell monolayers whose cell-cell
junctions are identified by endogenous
E-cadherin tagged with GFP at its C
terminus (Acharya et al., 2018). Arrows
indicate some wiggly junctions; the ellipse
marks a region where junction contrast
makes segmentation difficult. Adapted, with
permission, from Acharya et al. (2018).
(G) Fourfold vertices meeting at nearly 90°,
illustrated and discussed by Bardet et al.
(2013). Some cases of fourfold vertices can
be in stable equilibrium, see Spencer et al.
(2017) and Kong et al. (2019). (H) Rosette-
like fivefold vertex, illustrated and discussed
by Bardet et al. (2013). G and H are
adapted, with permission, from Bardet et al.
(2013). (I,J) Early mouse embryos (see
supplementary information). (I) Four-cell
stage, with a bulging cell. (J) Eight-cell
stage, with cells that cannot be fitted with a
circular arc. (K) Schematic of angles φ
around 180°, illustrated and discussed by
Veldhuis et al. (2015); φ just below 180° (left)
indicates one tension is much smaller than
the others; φ equals 180° (middle) indicates
a zero tension; φ just above 180° (right)
would correspond to a negative tension
(the junction pushes on the vertex), which is
beyond the scope of stress inference
methods. Cell sizes are not specified
as they are not relevant for stress inference.
A, C and K are adapted, with permission,
from Veldhuis et al. (2015).
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et al., 2003; Lecuit and Lenne, 2007; Käfer et al., 2007). To
distinguish these antagonist contributions, stress inference is
insufficient by itself, and should be used in combination with
genetic or drug perturbations.
Stress inference results can be plotted as maps of pressures or

tensions, histograms of tensions, polar plots of tensions versus
direction (to determine tension anisotropy), graphs correlating each
junction tension with another measurement in the same junction
(for instance, protein distribution) or correlation between cell
pressure and another measurement (e.g. cell size).
Let us discuss a practical example. In Fig. 2F, the experimentalist

has identified a signalling pathway that responds when tensile stress is
applied to epithelia. This involves the activation of Rho signalling;
when that signalling fails, the epithelium fractures. Can stress
inference capture the role of mechanical stress in this tissue?
This question needs to be subdivided. Are the assumptions for

stress inference valid here? The bulk tissue appears to be in
mechanical equilibrium, but a few cell contours are barely visible or
appear wiggly, so stress inference may not be applicable to the entire
tissue, and detection of mechanical heterogeneity is not possible.
Can stress inference detect temporal variations of cell junction
tensions due to activation of Rho signalling? No, stress inference
can only indicate relative differences in tensions within a given
image. Finally, can stress inference provide information on tissue

stiffness and yield strength? No, such material properties have to be
determined by other methods. Therefore, stress inference might turn
useless to extract meaningful mechanical information for this
particular biological question.

On the other hand, if there was a clone with high junction
tensions (e.g. due to activation of actomyosin contractility),
surrounded by a wild-type region with lower tensions, or if the aim
was to detect a difference in tension between the junctions that
fracture and those that remain intact, stress inference could be a
valuable approach.

Two dimensional stress inference
In this section, we discuss 2D stress inference: its equations,
variants, validations and choices to make in practice. The general
framework for the stress inference pipeline has been described by
Ishihara and Sugimura (2012). Readers interested in further details
may refer to the ‘Cellular Force-Inference Toolkit’ (CellFIT)
introduced by Brodland et al. (2014), for which the code is
available online with several variants, or to Kong et al. (2019) for a
more recent version.

Equations for mechanical equilibrium
For cell shapes, the mechanical equilibrium is quantitatively
expressed using the two following rules (see Fig. 3 for notations
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Fig. 3. Notations and principle of stress inference in
two dimensions. (A) Each cell, labelled α, β or γ is
apically constricted; cell shapes in the apical plane and in
the basal plane are not necessarily identical. (B) In the
two dimensional simplified description of the epithelium,
only the adherens junction tension is taken into account.
Each junction noted 1, 2, 3… is assumed to have a
homogeneous tension t. (C) Representation of
angles θ with the horizontal axis. The magnitude
of tension is the same at both ends of the junction.
(D) Representation of polar angles φ. (E) Each cell,
labelled α, β or γ, is assumed to have a homogeneous
pressure P. (F) A cell-cell junction is represented
as a circular arc of radius R and a threefold vertex is
where three cells meet or, equivalently, where three
junctions meet. The angles θ and θ′ of both arc ends
with the horizontal axis are different. The chord is the
straight line linking two adjacent vertices (dotted line).
The angle Θ of the chord with the horizontal axis is the
same at both its ends. Adapted from Noll et al. (2020),
where it was published under a CC-BY 4.0 license.
Drawings are schematics rather than equilibrium
patterns.
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and definitions). Readers may also refer to Graner and Riveline
(2017) for further details.
The first rule expresses the mechanical equilibrium of a vertex in

two dimensions. It states that the vertex is at rest when junction
tensions ~t, which are vectors, sum up to zero; e.g. for edges
labelled 1, 2 and 3:

~t1 þ~t2 þ~t3 ¼~0: ðEqn 1Þ
The second rule, also known as the Young-Laplace equation,

expresses the mechanical equilibrium of a junction between two
cells. It states that each junction has a curvature K and tension t,
which together balance the pressure difference between both cells,
e.g. cells α and β:

DP ¼ tK: ðEqn 2Þ
Here, DP ¼ Pa � Pb; K is oriented from α towards β, i.e. is

counted positively if α is the convex cell and β the concave one.
Technically, pressures are in fact 2D pressures, expressed in Nm−1;
tensions are one dimensional tensions (also called line tensions)
expressed in N; curvatures are expressed in m−1. As a consequence
of Eqn 2, each junction is smooth and has a homogeneous curvature
K; in two dimensions, it is an arc of a circle with radius R=1/K.
This results in a set of mechanical balance equations: Eqn 1 at each

vertex; Eqn 2 at each junction. In principle, this set of equations could
be used for direct modelling. For example, in numerical simulations
(Chiou et al., 2012; Ishihara and Sugimura, 2012; Ishihara et al., 2013;
Brodland et al., 2014; Kong et al., 2019; Noll et al., 2020), the inputs
are the tensions and pressures; implementing and solving the equations
allows one to deduce the equilibrium cell shapes.
Here, the terms in the equations come frommeasurements based

on image analysis. Stress inference, based on the same equations
and assumption of mechanical equilibrium, acts as a kind of
reverse engineering. Starting from the equilibrium cell shapes, it
finds the cell junction tension and cell pressure. This is what
‘inference’ means, and technically this is achieved by ‘inverting’
equations.

Consequences of equations
These equations (Eqns 1 and 2) have at least four important
qualitative consequences. A first consequence is a low proportion of
fourfold vertices. A fourfold vertex (Fig. 4A, left) involves a larger
total amount of junctional lengths than when it is decomposed into
two threefold vertices (Fig. 4A, right) (Taylor, 1976; Cantat et al.,
2013). In a particular tissue where all tensions are equal, the energy
of a configuration would simply be the tension multiplied by the
total amount of junctional length; the fourfold vertex would then
cost more energy than two threefold vertices and be unstable. In the
more general case of a tissue with unequal tensions, a fourfold
vertex can sometimes be energetically stable (Spencer et al., 2017)
but this is rare and most vertices are threefold.
A second consequence is the anti-correlation between angles and

tensions. In the particular case where three junctions that meet
had the same t, by symmetry they would necessarily form angles
φ = 120° (Taylor, 1976). In the more general case of a tissue with
unequal tensions, deviations from 120° increase when the tensions
are increasingly different.
For example, in Fig. 3D, φ2 is almost equal to 180°, and larger

than φ1 and φ3. This indicates that t2 is much smaller than t1 and t3.
φ1 is slightly smaller than φ3 which indicates that t1 is higher than t3.
This anti-correlation between angles and tensions is illustrated in
more detail in Fig. 4B. Finally, junctions always meet at angles that

are less than 180°; two junctions could meet exactly at 180° only if
the third junction had zero tension (Fig. 2K).

A third consequence is the anti-correlation between side
numbers and junction convexity. In a tissue where all junctions
have the same tension, they would meet in three with 120° angles,
as discussed above. Consider a cell in the interior of the tissue,
surrounded by neighbours, with five sides or fewer. To close this
cell while simultaneously meeting at 120°, for purely geometrical
reasons at least some junctions must be convex (bent outwards).
For the same geometrical reasons, cells with seven sides or more
have junctions that are mostly concave (bent inwards). Cells with
six sides have junctions with an average curvature near zero; they
can, but need not have flat junctions (Fig. 4C). This is related to
pressure difference because, according to Eqn 2, a cell that has a
convex junction with one of its neighbours has a higher pressure
than this neighbour (Cantat et al., 2013).

In the more general case where junction tensions differ, this
relation between convexity and side number still holds approximately
true. Larger tension differences imply larger deviations to this

Higher
tension

Tension

Smaller
tension

Higher
pressure

Pressure

Smaller
pressure

Concave

Cell shape

Convex

Opposite angle

5

Side number

74 6 8 93

Φ1

Φ2

Φ3

Φ1 Φ2Φ3

A

B

C

Fig. 4. General relationship between cell shape, tension and pressure in
equilibrated tissues. (A) In an equilibrated tissue, a fourfold vertex (left) is
rare; it involves a larger total amount of junctional lengths (Taylor, 1976; Cantat
et al., 2013) than when it is decomposed into two threefold vertices (right),
which are in the majority. (B) Illustration of the anti-correlation between angle
and junction tension. Left: the angle φ1 opposite a junction with high tension is
small; the angle φ2 opposite a junction with low tension is large, close to
180°. The angle φ3 is intermediate and the opposite junction tension is also
intermediate. Right: junctions with three equal tensions are balanced when
they meet at 120° angles. (C) Illustration of the anti-correlation between side
number and cell convexity. Cells with fewer sides tend to be more convex (and
have a higher pressure) than their neighbours. Adapted from Noll et al. (2020),
where it was published under a CC-BY 4.0 license. Drawings are schematics
rather than equilibrium patterns.
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relation, but broadly speaking, the smaller the side number of a cell,
the more concave are its junctions and the higher its pressure with
respect to its neighbours (Fig. 4C).
A fourth consequence is that three junctions that meet cannot all

be bent in the same direction as in Fig. 2E. To express it
quantitatively, when three cells meet at a vertex, e.g. α, β and γ in
Fig. 3, one can start from cell α, run around the vertex by crossing to
β, then γ, and come back to cell α. Summing the pressure differences
across the three junctions 1, 2 and 3 encountered in this route, one
can trivially write that ðPa � PbÞ þ ðPb � PgÞ þ ðPg � PaÞ ¼ 0.
So the consequence of Eqn 2 is that the sum of tKs (product of
junction tension and curvature) over the three junctions is zero:

t1K1 þ t2K2 þ t3K3 ¼ 0: ðEqn 3Þ
Hence, their curvatures K1, K2 and K3 cannot all have the same sign.
In the particular case where all three junctions have the same t, the

sum K1+K2+K3 of their curvatures would be zero (Cantat et al.,
2013). In the more general case where tensions differ, this
approximately holds true and the sum of their curvatures is small.

Solving the equations
To determine all tensions, Eqn 1 is written for each vertex. To
determine all pressures, Eqn 2 is written for each junction. This results
in a large systemwith many unknowns and equations. In a tissue made
ofN cells, whichmostlymeet by three, the number of vertices is around
2N and the number of junctions is around 3N. This results from simple
counting: it is independent of both the nature of the tissue and the type
of packing, whether hexagonal or not (Graner and Riveline, 2017).
The polar coordinates using angles φ, which Figs 3D and 4B

show for pedagogical explanations, are seldom used in practice (see
‘Extensions’). Rather, Eqn 1 is projected on horizontal axis x and on
vertical axis y, so there are still two equations per vertex, in cartesian
coordinates. All equations are then solved simultaneously to find the
tensions and/or the pressures.
The resolution method depends on the number of equations and

unknowns. This in turn depends on what can be feasibly measured:
chord angles or tangent angles? Is curvature measurable? It also
depends on what one is looking for: tensions only, or tensions and
pressures? Accordingly, the literature offers four variants of stress
inference (Fig. 5). We now examine them one by one.

Four variants of stress inference
For biological questions where the knowledge of cell pressures is
not needed, curvature measurement is not required. The first two
variants do not consider curvature.

Chord tension inference
The first variant [called mechanical inference by Mashburn (2015)]
is what we call chord tension inference. It considers actual vertices
but approximates the actual junctions as straight lines between
vertices; i.e. it replaces each junction with its chord, angles θ of the
junction (with respect to horizontal x axis) with angleΘ of the chord
(Fig. 3F), and each cell with a polygon (Chiou et al., 2012). This is
acceptable when junctions are almost straight and pressures are
assumed to be almost identical. The measured quantities are the
angles Θ. The unknown quantities are the tensions. Their number is
one tension per junction, that is, 3N, up to boundary cells; while the
number of equations, based on Eqn 1, is two per vertex:

t1 cosQ1 þ t2 cosQ2 þ t3 cosQ3 ¼ 0,

t1 sinQ1 þ t2 sinQ2 þ t3 sinQ3 ¼ 0:
ðEqn 4Þ

i.e. 4N up to boundary cells. Hence, for a large enough tissue, where
the bulk cells largely outnumber boundary cells, there are many
more equations than unknown quantities. The problem is called
‘overdetermined’, which means its resolution is simple and robust.
A usual matrix inversion code yields the values of the unknown that
satisfy best (but not perfectly) all equations simultaneously. Each
fourfold vertex reduces the ratio of equations to unknown quantities
(two equations for four junctions, instead of two for three) and this
renders the problem less overdetermined; fivefold vertices reduce
even further the overdetermination.

When many cells are considered, the number of equations and
unknowns is large; the inversion code needs to be accelerated. As each
equation concerns only few junctions, so-called ‘sparsematrix’methods
can be used, as foreseen by Stein and Gordon (1982). For experienced
users, we refer to Kale et al. (2018), who have implemented a useful
technical improvement that they call ‘variational mechanical inference’.

Tangent tension inference
The second variant, which we call tangent tension inference, uses
more precise input data, so that the outputs are also more precise
(Brodland et al., 2014). The number of equations is the same as in
chord tension inference but it instead uses the angles θi, u

0
i of actual

tangents at both ends of the junction with the horizontal x axis
(Fig. 3C,F). Eqn 1 becomes:

t1 cos u1 þ t2 cos u2 þ t3 cos u3 ¼ 0;

t1 sin u1 þ t2 sin u2 þ t3 sin u3 ¼ 0:
ðEqn 5Þ

Curved junction stress inference
When the knowledge of cell pressure is needed, the third variant
[called cellular force-inference toolkit inMashburn (2015)] is what we
call curved junction stress inference. It measures junction curvature to
determine pressures using Eqn 2: the number of equations is then 6N
(Brodland et al., 2014). The simplest way is to determine first the
tensions using tangent tension inference, and then use these
tensions to determine pressures (Veldhuis et al., 2015). As the
number of pressures is equal to N, the total number of unknown
quantities (tensions and pressures) is 4N, up to boundary cells.

Several improvements are possible. First, based on arc length ℓ
(Fig. 3F), Eqn 2 can be rewritten using the integrated form
DP‘ ¼ tiðui � u0iÞ, and estimating ℓ could be more robust than
measuring the curvature.

Second, Brodland et al. (2014) present a more precise (and more
computationally intensive) procedure that simultaneously
determines tensions and pressures.

Third, all variants discussed so far consider individual static
images; where a time-lapse movie is being analysed, each image is
treated independently. Astutely, Vasan et al. (2019) use the values of
tension at each edge and pressure in each cell from the previous time
point as an initial guess for the current time point (see below, in the
‘Validations’ section, a justification for thismethod). This informs the
inversion method and slightly improves its robustness against noise.
They call this ‘dynamic local intercellular tension estimation’
(DLITE). However, this is still a static method where each
inversion is performed on a single image. This is not to be
confused with the truly dynamic methods, as discussed in ‘Dynamic
stress inference’.

Fourth, for experienced users, to solve the inversion problem in that
variant, we refer to Noll et al. (2020) who have implemented a useful
technical improvement of both the segmentation and inference.
Elegantly, they use a so-called ‘variational method’ to simultaneously
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determine the angles and curvatures, tensions and pressures that best fit
the image: this method together segments the image and infers stresses.

Bayesian stress inference
As opposed to the three above variants, which are overdetermined
and solved by a deterministic method, the fourth variant [called
Bayesian force inference in Mashburn (2015)] is what we call
Bayesian stress inference. It is useful when pressures are required
but curvatures cannot be measured precisely, e.g. if the size or
contrast of cell contours is insufficient. The number of equations is
two per vertex, around 4N, and the number of unknowns is also
around 4N. In practice, as boundary cells provide incomplete
information and fourfold vertices provide more unknowns than

equations, the actual number of equations is smaller than the number
of unknowns: the problem is ‘underdetermined’ and cannot be
solved in the same way as the approaches described above. Instead,
Bayesian methods (see Glossary, Box 1) (Akaike, 1980; Kaipio and
Somersalo, 2004) have been applied by Ishihara, Sugimura and co-
workers (Ishihara and Sugimura, 2012; Ishihara et al., 2013;
Sugimura and Ishihara, 2013; Sugimura et al., 2013; Guirao et al.,
2015) followed by Kong et al. (2019). Several pieces of a priori
information can be imposed, e.g. all junction tensions are expected
to be positive; missing information (e.g. on junction curvature) is
statistically restored (Ishihara and Sugimura, 2012).

For experienced users, note that Ishihara and Sugimura (2012) use
equations different from Eqns 1 and 2. In fact, as they do not take into

Start
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cell shape analysis
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Do I need only
tissue-scale stress?

No

Is image quality
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No
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Tissue stress
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Fig. 5. Flowchart of the various steps involved in choosing the appropriate stress inference variant (blue boxes). Cell stress can be coarse-grained
(dashed lines) to provide the tissue stress anisotropic part (red boxes) or full information (green boxes).
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account junction curvatures, they describe the network of junctions as
equivalent to a set of rigid rods articulated at vertices. This is counter
to classical stress inference intuition but is fundamentally correct.

Tissue stress
In all the above variants, cell stress can be coarse-grained through
binning (Fig. 5), according to a formula by Batchelor (1970): it is
averaged over a given space scale and/or time scale to generate tissue
stress (Ishihara and Sugimura, 2012; Ishihara et al., 2013; Sugimura
et al., 2013; Guirao et al., 2015; Nestor-Bergmann et al., 2018; Kong
et al., 2019; Noll et al., 2020). The anisotropic component of tissue
stress arises from coarse-graining the anisotropic contribution of cell
junction tensions (Fig. 1B). The isotropic part of tissue stress
arises from coarse-graining together cell pressure and the isotropic
contribution of cell junction tensions (Kong et al., 2019). A side
advantage of coarse-graining is that the signal-to-noise ratio is
improved by the averaging, albeit at the expense of space and/or
time resolution. In addition, averaging of binned images over
several samples also improves the signal-to-noise ratio (Guirao
et al., 2015).
There are cases where tissue stress can be obtained without the

need to infer cell tensions or pressures (see left of Fig. 5). The
underlying assumption here is that cell shape anisotropy correlates
with stress anisotropy (Ishihara et al., 2017; Nestor-Bergmann et al.,
2018; Xu et al., 2018); this assumption has been validated on some
experimental examples (Durande et al., 2019; Kong et al., 2019).
When it is valid, this is convenient because cell shape anisotropy
can be extracted using techniques that do not require cell contour
segmentation, such as Fourier analysis (Durande et al., 2019).

Validations
A common approach to validate stress inference relies on numerical
simulations. Chiou et al. (2012); Ishihara and Sugimura (2012);
Ishihara et al. (2013); Kong et al. (2019) use the 2D version of the
Surface Evolver (Brakke, 1992), while Brodland et al. (2014); Noll
et al. (2020) use other algorithms. Such in silico benchmarking
proceeds as follows: use simulations to generate an equilibrated
pattern of cell shapes with known cell junction tensions and
pressures, then feed the stress inference code with the cell shapes
only to infer tensions and pressures, then compare these inferred
values with the known values. This measures the inference
uncertainty. The inference robustness is determined by adding
errors or noise to the cell shapes before feeding them to the stress
inference code (Brodland et al., 2014).
To experimentally validate stress inference, several publications

have used junction laser ablation (see Glossary, Box 1), in which
post-ablation initial recoil velocity acts as a proxy for relative junction
tension prior to ablation. In a tissue consisting of hundreds or
thousands of cells and small junction curvature ( junction radius of
curvature is much larger than cell size), such as the Drosophila
embryo, chord tension inference and junction ablation correlate well
(Kale et al., 2018); inDrosophila pupal wing (Sugimura and Ishihara,
2013), pupal dorsal thorax and embryo germband (Kong et al., 2019),
Bayesian stress inference and junction ablation correlate well. With a
small number of cells and large junction curvature, such as in
Drosophila retina ommatidia, curved junction stress inference and
junction ablation correlate well (Kong et al., 2019).
Other validations of 2D stress inference have come from evidence

of a strong correlation between the inferred stress and measured
myosin distribution in Drosophila embryos (Kale et al., 2018; Noll
et al., 2020) or pupal wing (Sugimura and Ishihara, 2013). The ratio
between vinculin and E-cadherin image intensities has been used as

a ratiometric readout for the mechanical load at E-cadherin
complexes, which was shown to correlate with inferred junction
tensions (Kale et al., 2018).

Interestingly, although individual cell junction tension
measurements are not always validated, better validation has been
obtained with collective measurements. For example, in biomimetic
systems (liposomes), histograms of tension distributions demonstrated
significant changes of average tension after perturbation (Caorsi et al.,
2016). Coarse-graining revealed the presence of anisotropic tissue
stress in gastrulating avian embryos and stress gradients inDrosophila
embryos undergoing germband extension, consistent with tissue
ablation that cuts a line through several cells (Kong et al., 2019).
Similarly, circular tissue ablation in Drosophila pupal dorsal thorax
showed a correlation with Bayesian stress inference (Ishihara et al.,
2013).

Stress inference has also been shown to be robust in time, despite
the fact that time variations of absolute tensions cannot be
determined. As expected for slow developmental processes, in a
time-lapse movie the inferred relative tensions display small
fluctuations with time, of order of minutes (Sugimura et al.,
2013). This justifies the method of Vasan et al. (2019) discussed
previously.

Low spatial fluctuations can also be a sign of stress inference
robustness, visible, for example, in the left-right symmetry of tissue
stress with respect to theDrosophila pupal thorax midline (Fig. 1B).
Mashburn (2015) performed a detailed study of the method’s
strengths and weaknesses, including its robustness to noise and the
uncertainty in detecting large-scale pressure gradients, and calls for
more systematic evaluations on various data sets.

For experienced users, internal validations consist of testing the
robustness of the inference itself, i.e. how sensitive the inversion
problem is to the noise and experimental uncertainties. Among them
are residuals and standard errors, which should be systematically
checked in overdetermined cases (Brodland et al., 2014; Ehsandar,
2015; Veldhuis et al., 2015; Mashburn, 2015). In underdetermined
cases, using Bayesian stress inference, there are specific criteria to
check (Ishihara and Sugimura, 2012).

Finally, again for experienced users, there is another important
marker for the robustness of inversion. The ‘condition number’ (see
Glossary, Box 1) measures how truly independent the equations are.
A large condition number reveals that the inversion problem is ill-
posed, even if at first sight it seems overdetermined, while a small
condition number indicates that the inversion problem is well-posed
and inference is reliable (Brodland et al., 2014; Ehsandar, 2015;
Veldhuis et al., 2015; Mashburn, 2015). Readers can refer to the
supplementary information for more technical explanation on
condition number.

Which variant to use?
The following steps should be considered when applying stress
inference to study biological processes. First, one should ask
whether the biological question requires the measurement of cell
junction tension, of cell pressure, or both. Second, one should
consider whether relative measurements of junctional tension or
pressure is sufficient for one’s purpose, or whether absolute values
are required. Third, one should search for strong deviations from
equilibrium (Fig. 2). If there are few strong deviations, one can
discard them and apply stress inference, depending on the required
precision, as discussed by Veldhuis et al. (2015) and Kong et al.
(2019). In tissues very far from equilibrium, one should consider
other options such as dynamic stress inference (see ‘Dynamic stress
inference’ section).
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Each variant has its own merits, depending on the tissue, image
quality and the biological question under consideration. Here, we
describe the steps (summarized in Fig. 5) involved in choosing the
optimal cell stress inference variant, which largely depends on the
expected output. Image quality, junction curvature, boundary
information, cell number and condition number should also be
taken into account, as we now detail.
The first aspect to consider is image quality or, more precisely,

the possibility of recognizing all cell contours (segmentability). Are
the membrane signals sufficiently good for quantifying angles of
junction tangent at vertices? The accuracy of stress inference is
highly sensitive to the quality of image segmentation: a single
strongly erroneous angle measurement can affect inferred tension
values over the entire tissue (Brodland et al., 2014). When detailed
information of individual cell shape is not required or when poor
image quality or large cell number render segmentation and
inference computationally demanding, alternative segmentation-
free methods can be considered (Durande et al., 2019).
The choice also depends on whether the junctions are almost straight

or significantly curved (Kong et al., 2019; Noll et al., 2020). If the
curvatures of all cells are small or barely measurable, then if pressure is
not of interest one could proceed directly to chord tension inference; but
if one wishes to extract both junction tension and pressure, then
Bayesian stress inferencewill be the optimal choice (Kong et al., 2019).
Junctions that are regular arcs of circles with strong curvature, as in the
case ofDrosophila retina ommatidia (Kong et al., 2019), can be treated
by the curved junction tension inference; if pressure is not of interest,
then tangent tension inference should suffice.
When enough information is available, including on cells located

at the tissue boundary, comparison of variants shows that
deterministic methods are preferable (Brodland et al., 2014).
Conversely, Bayesian stress inference outperforms the others in
terms of accuracy and robustness when some information is missing
(Ishihara et al., 2013; Sugimura et al., 2013; Brodland et al., 2014).
The cell number varies much in applications of stress inference,

typically ranging from a few cells (Xu et al., 2018; Kong et al.,
2019) to thousands of cells (Guirao et al., 2015; Kong et al., 2019).
In a large tissue where bulk cells largely outnumber the boundary
cells, there are many more equations than the unknown parameters
(tension and pressure); the problem is overdetermined and is
suitable for tangent or chord tension inference (Kong et al., 2019). If
pressure is of interest, as curved junction stress is prone to error
propagation when the system size increases (Brodland et al., 2014),
Bayesian stress inference is recommended (Guirao et al., 2015). For
smaller tissues, if each cell is well imaged, tangent or curved
junction inference is adequate (Kong et al., 2019); but if the problem
is underdetermined, Bayesian stress inference is the natural choice.
Finally, when the condition number is small, the inversion

problem is well-posed and overdetermined procedures perform
better. When the condition number is large, the inversion problem is
ill-posed and Bayesian stress inference is preferable.

From two dimensions to three dimensions
A living tissue is 3D, yet when it is a flat monolayer, stress inference
can be applied to the apical adherens junctions that transmit stress
from cell to cell, which allows 2D analysis. Evenwhen a tissue is not
flat or monolayered, there can be cases where it can be approximated
as quasi-2D to allow for 2D stress inference.
For example, for a pair of liposomes (Caorsi et al., 2016), or a few

cells (Brodland et al., 2010), a 2D section through a symmetry
plane, or a fit of cell shape with a sphere, simplifies the analysis.
In 3D monolayered epithelia, such as in Drosophila germband

(Chiou et al., 2012; Kong et al., 2019; McCleery et al., 2019; Noll
et al., 2020), egg chamber (Bellver Arnau, 2015) or pupal dorsal
thorax (Ishihara and Sugimura, 2012; Ishihara et al., 2013; Guirao
et al., 2015; Kong et al., 2019) (Fig. 1A-D, Table 1), 2D stress
inference can be applied to the apical surface, locally approximated
by a plane. The method is at its validity limit in the case of
Drosophila egg chamber, which is nearly spherical.

3D stress inference
History
A first extension of stress inference to 3D was introduced by
Ehsandar (2015), who demonstrated in his PhD thesis that the 2D
version of CellFIT is not reliable on 3D data. He then developed
the first actual 3D stress inference, called CellFIT-3D. Starting
from watershed-segmented 3D images, his algorithm took into
account the pixel intensity to define edges and triple junctions as
precisely as possible. CellFIT-3D was published 2 years later by
Veldhuis, Brodland and co-workers in two successive articles, one
for method details (Veldhuis et al., 2017) and one for biological
application (Krens et al., 2017). In Xu et al. (2018), the
segmentation process was identical up to additional smoothing
steps, and angles between the cells were extracted using
mathematical modelling.

Harmand (2019) compared the same junction tension inferred in
the apical plane with that inferred in a sectional view, and found
different results. The apparent contradiction vanishes if a 2D line
tension contribution is added to the 3D junction tension. This is
consistent with theoretical prediction (Hannezo et al., 2014;
Bielmeier et al., 2016; Alt et al., 2017) and experimental finding
(Bielmeier et al., 2016) of an apical belt contractility. Interestingly,
this line tension is measurable; the ratio of line tension to junction
tension is a length, found to be 4.5 µm (Harmand, 2019), which is
the expected order of magnitude (Hannezo et al., 2014).

Basic principle
In three dimensions, the ratio of the number of measured quantities to
unknown quantities is larger than in two dimensions because there are
more edges than faces: the inference is thereforemore overdetermined.
An edge is the line where three cells meet. An edge equilibrium is
expressed by Eqn 1 written in any plane perpendicularly intersecting
this edge (Fig. 6). Under the hypothesis that all points along the edge
are in mechanical equilibrium, the angles used in Eqn 1 can be
measured at any of these points, or better by averaging several
measurements along the same edge.

In three dimensions, Eqn 2 is written with actual pressures,
expressed in Nm−2; junction tensions are 2D tensions expressed in
Nm−1. Technically, a 3D surface has two curvature radii R and R′ at
each point, and it is the so-called ‘mean curvature’ K=1/R+1/R′,
expressed in m−1, that enters the right hand side of Eqn 2. At
mechanical equilibrium a cell junction has a homogeneous mean
curvature K, but as R and R′ can separately vary, the junction is not
necessarily spherical. This poses a challenge in fitting cell junction
shapes, especially as image segmentation is more difficult in three
dimensions than in two dimensions.

Validations
All steps of the pipeline, i.e. image segmentation, angle
measurements and stress inference, are prone to errors that are
inherently larger in three dimensions. On early mouse embryos
undergoing compaction at the eight-cell stage, Veldhuis et al.
(2017) exemplifies the large uncertainties with angle
measurements and CellFIT-3D based stress inference (Ehsandar,
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2015), as well as with pipette measurements (Maître et al., 2015).
In zebrafish, Krens et al. (2017) measured tangent angles to infer
junction tensions independently of pressures. High uncertainties
could arise from poor image quality and/or non-equilibrated cell
shapes. For example, some cells exhibit protrusion-like
projections or kinks at the junctions with the other cells (see a
comparable example, on a four-cell mouse embryo, in Fig. 2I).
This was partially addressed by the manual removal of outliers but
could be a case for dynamic stress inference (see section on
‘Dynamic stress inference’).
Only limited validations have been published. In silico, Ehsandar

(2015) and Veldhuis et al. (2017) used the 3D version of the Surface
Evolver (Brakke, 1992) while Xu et al. (2018) used automated
generation of two-cell systems with various angles. Experimental
attempts include laser ablation on Drosophila embryos (Ratheesh
et al., 2018), which provides relative tension values, and
micropipette aspiration of zebrafish embryos (Petridou et al.,
2019), which provides absolute values of tension.

Assessment
To gain confidence in the validity of 3D stress inference, further
tests will be necessary using a larger and more varied data set of
tension values, as well as improved image acquisition,

segmentation, filtering, cell junction fitting and tangent angle
measurement. In the supplementary information, we present a case
study for 3D stress inference on preimplantation mouse embryos
(eight- and 16-cell stage) and compare the findings with tension
measurements using micropipette aspiration.

In brief, we find that stress inference detects regional differences
in cell junction tensions, e.g. between the cell-medium tension
(outer tension) and the cell-cell tension in early mouse embryos,
consistent with measurements by micropipette aspiration. Stress
inference also reveals an increase in outer tension with time
(from early to late eight-cell stage) or when the outer cells are
more stretched [comparing reduced embryos generated from a
single blastomere isolated at the four-cell stage and cultured to the
16-cell stage (4/16) with one generated from two blastomeres in
the same way (8/16)], consistent with aspiration measurements
(Figs S1 and S2) and previous findings (Maître et al., 2015; Chan
et al., 2019).

A key question about 3D stress inference is how much error occurs
in the inferred tensions due to uncertainty in angle measurements. To
illustrate this uncertainty, we choose different combinations of angles
compatible with a same well contrasted image of a pseudo-vertex,
iterate it on each pseudo-vertex and infer all junction tensions in an
8/16 embryo (Fig. 7). We observe that, although the different
choices of angles generate uncertainties in the inferred tension, the
average inferred cell-medium tensions tcm for the outer cells
(M/OC) are consistently higher than the average cell-cell tensions
tcc between two outer cells (OC/OC), one outer and one inner cell
(OC/IC), or between two inner cells (IC/IC). This demonstrates
that 3D stress inference, on a statistical level, can reasonably
tolerate an uncertainty of 10° in the angle measurements.

Extensions
We now propose some extensions and possible improvements in
this field.

Polar coordinates
To improve the robustness of stress inference against noise,
fluctuations and experimental uncertainty, there is an alternative
way to write vertex equations (Harmand, 2019; Noll et al., 2020).
It only applies to threefold vertices and can thus be recommended if
the proportion of fourfold vertices is small enough. There is a
theorem named after Bernard Lami or Lamy (1640-1715)
(Thompson, 1917; Clapham and Nicholson, 2009) that states that
when the resultant of three vectors is zero, the magnitude of each
vector is proportional to the sine of the angle between the directions
of the other two vectors. Applied to three tensions, t, at a vertex
where the angles between junctions are noted φ (Figs 3D and 4B),
this yields:

t1
sinf1

¼ t2
sinf2

¼ t3
sinf3

: ðEqn 6Þ

These polar coordinates, more than cartesian coordinates (Eqn 5),
reflect the symmetry of the problem, the information provided by
the angle measurements, and our intuition (Fig. 4B). In addition, the
more angles deviate from 180°, the larger the sines are and the more
robust the inference is using Eqn 6.

A further refinement (Harmand, 2019), also for threefold
vertices, consists of looking for the unknowns X = ln t by taking
the logarithm of Eqn 6:

X1 � ln sinf1 ¼ X2 � ln sinf2 ¼ X3 � ln sinf3: ðEqn 7Þ

A B

C

D

Fig. 6. Principle of stress inference in three dimensions. (A) 3D top view of
a mouse embryo. Grey circled regions represent the three-cell systems in C
and D. (B) 3D tilted view of the embryo in A. (C) Three cells (left panel) share
three junctions, their common edge (dotted line) and its two end vertices (open
circles). To better visualize the edge, one segmented cell (red) is removed
(middle panel). To measure junction angles, the image is rotated (right panel)
and visualizes the 2D section perpendicular to the edge; both vertices are
approximately projected on top of each other (not shown). (D) Another example
illustrating the same principle of edge detection as in C, in which junction
angles strongly differ. Cell sizes are not specified as they are not relevant for
stress inference.
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This is a linear problem in the unknown X values that can be
solved easily; it is always well conditioned and its inversion is
robust with few outliers. The average X can be set to zero. Tensions
are obtained as t = exp X and are always positive by construction,
which is physically reasonable. Their product is 1 and so is their
geometrical average.

Dynamic stress inference
As noted above, one key consideration in using stress inference is
whether the tissue is in a quasi-static mechanical equilibrium
(Eqns 1 and 2). Readers can refer to the supplementary information
for more technical explanation on generalizing these equations to
out of equilibrium situations (Viennot and Décamp, 2020). Highly
dynamic and out of equilibrium processes may include cell
blebbing, periodic cortical waves (Maître et al., 2015) or rapid
cell rounding during mitosis. In cases where cell movements are
fast, viscous dissipation of the vertices and junctions must be
accounted for in the constitutive equations. After addressing several
technical challenges in a series of articles (Chen and Brodland,

2000; Brodland et al., 2007; Cranston et al., 2010), Brodland and
co-workers have proposed a method to infer, from live movies,
an estimate of the junction tensions and cell pressures needed to
drive vertex and junction movements. The authors named this
method video force microscopy (Brodland et al., 2010; Hutson
et al., 2013; Mashburn, 2015); we would call it dynamic stress
inference.

Such a method can be useful in analysing morphogenetic
movements where cells are driven out of mechanical equilibrium,
preferably when images cover the entire tissue, including its
boundaries; images covering only a small region of a larger
epithelium are more difficult to analyse (Hutson et al., 2013). It has
been used to estimate the cell stresses driving invagination on a
cross-section of Drosophila embryo during gastrulation (Brodland
et al., 2010), and to infer the stresses driving Drosophila germband
retraction and wound healing (Hutson et al., 2013). Other teams
have generalized the method to infer the stresses from the velocity
field, describing the tissue as a viscous fluid rather than a cellular
material (He et al., 2014; Hernández-Vega et al., 2017).
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A B
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Fig. 7. 3D stress inference is robust against
fluctuations due to errors in anglemeasurements.
(A) Image of an 8/16 mouse embryo with fluorescent
membrane label (‘mTmG’). The outer cells are A-E
and the inner cells are F-H. Red box outlines the inset
in C. (B) Tensions tcm for the outer cells (M/OC, pink)
are plotted separately from cell-cell tensions tcc
between two outer cells (OC/OC, brown), between
one outer and one inner cell (OC/IC, dark orange), or
between two inner cells (IC/IC, light orange). (C) Inset
shows higher magnification of the region outlined
in Awith overlay of two possible different combinations
of angles (black lines, dashed black lines) on a 2D
section. The 2D section has been chosen as
perpendicularly as possible to the edge where three
cells meet: it is a pseudo-vertex. Graph shows inferred
tensions based on 11 angle combinations at all such
pseudo-vertices. Each point is associated with two
coloured squares, indicating the specific tension
junction measured. Owing to the 3D nature of the
structure, not all 11 pseudo-vertices are visible in the
2D slice chosen as an illustration. Data are mean±s.d.
Colours correspond to cell colours in A;white indicates
medium.Tensions are expressed in arbitrary units; cell
sizes are not specified as they are not relevant for
stress inference.
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Perspectives in 3D stress inference
Although 2D stress inference has been well developed over the past
decade, given that many tissues are intrinsically 3D we foresee a
great potential for future development and application of 3D stress
inference techniques. These may include validations of 3D stress
inference using stress sensors such as liquid droplets for cell-level
measurements (Campàs et al., 2014), and deformable gel beads for
absolute measurements of tissue stress (Dolega et al., 2017;
Mohagheghian et al., 2018; Lee et al., 2019; Träber et al., 2019).
Comparison of 3D stress inference with membrane tension sensors
(Colom et al., 2018; Li et al., 2018) may present exciting
opportunities to study the contribution of cell membrane to cell
junction tensions.
With the advance in technology to better quantify cell curvatures in

3D, pressure inference could become readily accessible in a large
range of tissues. In principle, it might become possible to generalize
to three dimensions the variational method of Noll et al. (2020) to
simultaneously segment the image and infer stress, although it might
be challenging to fit all cell contours. Finally, segmentation-free
methods such as those based on Fourier transform (Durande et al.,
2019) could easily be extended to three dimensions to extract coarse-
grained cell shape anisotropy and hence 3D tissue stress information.

Conclusions
In this Primer, we provide a comprehensive survey and discussion of
the various variants of stress inference, which has gained recent
popularity as a novel tool to map cellular tensions and pressures in
living tissues. In particular, we focused on the underlying principles
and practical considerations for each approach in tackling the
different aspects of biological questions. We also look towards
future developments in the field that should allow stress inference to
be used in a broader range of situations. Such information will prove
useful in advancing future applications of stress inference to better
understand the roles of mechanics in tissue morphogenesis,
homeostasis and diseases.
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and Saint-Jalmes, A. (2013). Foams: Structure and Dynamics (ed. S. J. Cox).
Oxford University Press.

Caorsi, V., Lemier̀e, J., Campillo, C., Bussonnier, M., Manzi, J., Betz, T.,
Plastino, J., Carvalho, K. and Sykes, C. (2016). Cell-sized liposome doublets
reveal active tension build-up driven by acto-myosin dynamics. Soft Mat. 12,
6223-6231. doi:10.1039/C6SM00856A

Carter, R., Sánchez-Corrales, Y. E., Hartley, M., Grieneisen, V. A. and Marée,
A. F. M. (2017). Pavement cells and the topology puzzle. Development 144,
4386-4397. doi:10.1242/dev.157073

Chan, C. J., Heisenberg, C.-P. and Hiiragi, T. (2017). Coordination of
morphogenesis and cell-fate specification in development. Curr. Biol. 27,
R1024-R1035. doi:10.1016/j.cub.2017.07.010

Chan, C. J., Costanzo, M., Ruiz-Herrero, T., Mönke, G., Petrie, R. J., Bergert, M.,
Diz-Mun ̃oz, A., Mahadevan, L. and Hiiragi, T. (2019). Hydraulic control of
mammalian embryo size and cell fate. Nature 571, 112-116. doi:10.1038/s41586-
019-1309-x

Chen, H. H. and Brodland, G. W. (2000). Cell-level finite element studies of viscous
cells in planar aggregates. J. BioMech. Eng. 122, 394-401. doi:10.1115/1.
1286563

Chiou, K. K., Hufnagel, L. and Shraiman, B. I. (2012). Mechanical stress inference
for two dimensional cell arrays. PLoS Comput. Biol. 8, e1002512. doi:10.1371/
journal.pcbi.1002512

Clapham, C. and Nicholson, J. (2009). The Concise Oxford Dictionary of
Mathematics. Oxford: Oxford University Press.

Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Molin, M. D., Sakai, N.,
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Träber, N., Uhlmann, K., Girardo, S., Kesavan, G., Wagner, K., Friedrichs, J.,
Goswami, R., Bai, K., Brand, M., Werner, C. et al. (2019). Polyacrylamide bead
sensors for in vivo quantification of cell-scale stress in Zebrafish development.Sci.
Rep. 9, 17031. doi:10.1038/s41598-019-53425-6

Vasan, R., Maleckar, M. M., Williams, C. D. and Rangamani, P. (2019). DLITE
uses cell-cell interface movement to better infer cell-cell tensions. Biophys. J. 117,
1714-1727. doi:10.1016/j.bpj.2019.09.034

Veldhuis, J. H., Mashburn, D., Hutson, M. S. and Brodland, G. W. (2015).
Practical aspects of the cellular force inference toolkit (CellFIT). Meth. Cell Biol.
125, 331-351. doi:10.1016/bs.mcb.2014.10.010

Veldhuis, J. H., Ehsandar, A., Maître, J.-L., Hiiragi, T., Cox, S. and Brodland,
G. W. (2017). Inferring cellular forces from image stacks. Philos. Trans. R. Soc.
Lond. B 372, 20160261. doi:10.1098/rstb.2016.0261
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Supplementary information

TECHNICAL EXPLANATIONS
For experienced users we develop two technical points alluded to in the main text.

Regarding condition number

Imagine one is solving two equations with two unknowns (a, b). In the mathematical plane (a, b), each equation has solutions represented
by a line, and the solution of the system is the point (a0, b0) where these lines intersect. If at (a0, b0) both lines are nearly perpendicular
to each other, it means that the equations provide really independent information, and the solution (a0, b0) is determined with precision
and robustness. When the lines representing the equations intersect with a very acute angle, they are not truly independent, and the value
of (a0, b0) is sensitive to the exact positioning of the lines, to noise and to solver errors. The condition number generalises that idea to
several equations with many unknowns (Brodland et al., 2014; Ehsandar, 2015; Veldhuis et al., 2015; Mashburn, 2015).

Regarding out of equilibrium situations

To generalise Eqs. (1,2) to out of equilibrium situations, it helps to understand their origin. These equations do not result from Newton’s
second law of motion, that of inertia, which applies to systems with a mass. Here the vertices and junctions have a negligible mass,
and whether they are accelerated or not does not change the mechanical balance. In fact, Eqs. (1,2) result from Newton’s third law of
motion, namely the equality of action and reaction (here between cell contour and cytoplasm), which always holds, whether at or out of
equilibrium (Viennot and Décamp, 2020). In out of equilibrium situations, the equations should include dissipative interactions such as
arising from viscosity.

ASSESSMENT ON MOUSE EMBRYOS OF 3D STRESS INFERENCE PIPELINE
To assess the various steps of the pipeline used in practice, here we conducted 3D stress inference and micropipette aspiration on
preimplantation mouse embryos (8- and 16-cell stage). Pipettes can measure tensions of contact surfaces between outer cells and the
medium, hereafter noted tcm and called outer tension for brevity. We first analysed the images (Fig. S1a) presented in Veldhuis et al.
(2017). Our procedure (Fig. 7) consists in manually segmenting cells, then rotating the reconstructed embryo to visualize a section
perpendicular to each three-cell edge, and extract angles; tensions are then automatically inferred. We inferred a consistently higher
outer tension tcm compared to the cell-cell tension tcc/2 at 90 min and 240 min post division during compaction (Fig. S1b). This
difference between tcm and tcc/2 increased with time during compaction, consistent with previous study (Maître et al., 2015). We found
no correlation between pipette tension and inferred tension between individual cells in the same embryo (Fig. S1c). This could be due
to the small range of measured tension in the same embryo that is too small to be resolved with the stress inference detection precision.
Alternatively, we note that the micropipette aspiration itself incurs some experimental errors. The resolution of the applied pressure in the
setup is about 10 Pa, which translates to an error of pipette tension in the range of 30 to 50 pN/µm. This could generate the intra-embryo
variability in pipette tension in Fig. S1c.

We next studied the outer tension of “reduced embryos" (Maître et al., 2015; Chan et al., 2019). Briefly, embryos at the 4-cell stage
were washed with pronase to remove the zona pellucida. The embryos were then washed in calcium-free medium, and the dissociated
blastomeres (1/4 embryos) were cultured to reach the 16-cell stage, which we term the 4/16 embryos. Similarly, 8/16 embryos were made
by aggregating two dissociated blastomeres at the 4-cell stage and cultured to reach the 16-cell stage.

Performing stress inference on these reduced embryos, we inferred consistently higher outer tensions compared to cell-cell tensions,
for both the 4/16 and 8/16 embryos (Fig. S1d, h), consistent with the case of full embryos (Maître et al., 2015). This demonstrates that
3D stress inference can detect region-specific differences in tension within a tissue, at different developmental stages and with different
cell geometries.

We observed a better correlation between pipette tension and inferred tension in the 8/16 embryos (Fig. S1i) than in the 4/16 embryos
(Fig. S1f). This could be due to the too small range of pipette tensions in the 4/16 embryos. We had previously shown that the outer
tension correlates with cell stretching in early mouse embryos (Chan et al., 2019). Hence, the small variability of pipette tensions in

4/16 embryos may be due to the fact that the outer cells in these embryos are more equally stretched (Fig. S1e) while those of the 8/16
embryos are stretched to various different degrees (Fig. S1g).

We had previously shown that the reduced embryos have higher outer tensions compared to that of the full embryos, due to the cells
being more stretched (Chan et al., 2019). We therefore investigated whether this trend can be captured by 3D stress inference. Indeed,
we inferred a higher outer tension (normalised to the cell-cell tension) in the 4/16 embryos, compared to that of the 8/16 embryos (Fig.
S2b). This is consistent with the measured pipette tensions (Fig. S2a), which further validates the robustness of 3D stress inference on a
statistical level.

Development: doi:10.1242/dev.192773: Supplementary information
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Supplementary Figures

Fig. S1. Stress inference detects spatial and temporal changes of tension in early mouse embryos on a statistical level. (a) 8-cell stage mTmG mouse embryo.
(b) Plot of inferred outer tensions tcm and cell-cell tensions tcc between inner cells at 90 min and 240 min post division time (8-cell stage). One embryo per
timepoint was analyzed, containing each 8 cells with 21 junctions each. (c) Plot shows a lack of correlation between measured and inferred outer tensions
in the same embryo measured at early (close circles) and late (open circles) 8-cell stage. (d) Plot of inferred outer tensions and cell-cell tensions in 4/16
embryos. Stress inference can detect the difference between the two tensions in the same embryo. 7 embryos were analyzed, containing each 4 cells which
represent between 9 and 11 junctions per embryo. (e) 4/16 mTmG embryos. (f) Plot shows a lack of correlation between the measured and inferred outer
tensions within the same 4/16 embryo. Each curve corresponds to one embryo, pipette tension was measured for 2, 3 or 4 cells per embryo according to their
accessibility. (g) 8/16 mTmG embryos. (h) Plot of outer tensions and cell-cell tensions in 8/16 embryos. Stress inference again detects the difference between
tensions in the same embryo. Two embryos were analyzed, with 8 cells and 21 junctions per embryo. (i) Plot shows a correlation between the measured and
inferred outer tensions within the same 8/16 embryo.
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(a) (b)

Fig. S2. 4/16 mouse embryos have higher outer tensions compared to that of 8/16 embryos, as measured by micropipettes (a) and inferred by stress inference
(b). In (b), each data point indicates the average outer tension tcm normalised to the average cell-cell tension tcc per embryo. 4/16 embryos: 28 cells and 63
interfaces in 7 embryos; 8/16 embryos: 16 cells and 65 junctions in 2 embryos.
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