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ABSTRACT In the context of mathematical morphology, component-graphs are complex but powerful
structures for multi-band image modeling, processing, and analysis. In this work, we propose a novel multi-
band object detection method relying on the component-graphs and statistical hypothesis tests. Our analysis
shows that component-graphs are better at capturing image structures compared to the classical component-
trees, with significantly higher detection capacity. Besides, we introduce two filtering algorithms to identify
duplicated and partial nodes in the component-graphs. The proposed method, applied to the detection of
sources on astronomical images, demonstrates a significant improvement in detecting faint objects on both
multi-band simulated and real astronomical images compared to the state of the art.

INDEX TERMS Morphology, Component-graphs, Object detection, Astronomical Object

I. INTRODUCTION

IN mathematical morphology, component-trees (CTs) and
component-graphs (CGs) are classical structures for im-

age modeling and analysis. These structures model images
as hierarchical representations using successive thresholding
where each node is a connected component. All CT variants
(Min-Tree, Max-Tree [1], [2], Tree of Shape [3]) benefit
from efficient construction and filtering algorithms [4], [5].
They have diverse applications related to connected filtering,
object detection, and segmentation, but those are limited to
single-band image processing. Extension to multi-band im-
age processing usually requires a total vectorial order (such
as lexicographic ordering, reduced ordering) that is usually
ad-hoc and application-dependent [6], [7].

On the other hand, CGs are designed to handle multi-
band images by relying on partial orderings [8], [9]. Beyond
the classical multivariate extensions of CTs, CGs efficiently
capture the whole structural information of multi-band im-
ages as directed acyclic graph (DAG) variants. Such DAG
variants are more general and more powerful at the cost of
a higher construction complexity. Component-graphs have
been increasingly considered for detection and segmentation
applications in the field [10]. This work explores the use of
the component-graphs for multi-band object detection and
proposes an application to astronomical images.

FIGURE 1: Component Graph Objects (CGO) filtering
method using component-graphs.

In astronomy, object/source extraction is fundamental pre-
liminary stage before entering any further analysis. The chal-
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FIGURE 2: Object deblending capacity: A two-band image
containing three overlapping circles. The middle circle ap-
pears in the CG as an isolated node while it is merged with
adjacent regions in the CT of separate bands. This color
information in the CG can help deblend overlapping objects.

lenge is to develop efficient and automated tool for the large
datasets/surveys. The most often used source finder is SEx-
tractor [11], an efficient and easy to use application. How-
ever, it fails at detecting some faint and diffuse objects. For
this reason, MTObject/Sourcerer [12], [13] was introduced
to improve the SExtractor thresholding strategy by using a
CT structure. More precisely, MTObject/Sourcerer relies on
statistical tests to identify nodes of a Max-Tree that are signif-
icantly different from the background. MTObject/Sourcerer
has already shown its capability at detecting faint astronom-
ical sources [14] while requiring far less parameter tuning
than SExtractor. However, both methods focus on single-
band processing while most optical astronomical surveys
are multi-band. To handle such images, that are expected
to lead to an increased sensitivity, we propose to generalize
the detection method based on statistical testing to CGs.
The main challenge is to effectively leverage multi-bands to
filter relevant information from the richer component-graph
structure.

This article extends our previous work [15] on Component
Graph Objects (CGO) - a novel multi-band object detection
framework with comprehensive analyses on both simulated
and real datasets. The overview of the proposed framework
is illustrated in Fig. 1. Intuitively, CGO models multi-band
images as component-graphs, then filters relevant nodes on
the component-graph, and transforms extracted information
back into the knowledge space.

By utilizing the CG structure, CGO attempts to improve
object detection sensitivity and to improve object deblending
capacity. First, the use of multi-band information improves
detection of lower signal-to-noise objects at the same level of
confidence. Second, the richness of the CG helps to deblend
overlapping objects that would have been merged with single
band analyses (see Fig. 2). In contrast to these advantages,
the component-graph is no longer a tree (see Fig. 4), but a di-
rected acyclic graph (DAG), which is significantly more chal-
lenging to process than the classical component-trees [10].

After some definitions in Sec. II, we introduce our new
method, called CGO in Sec. III, which is based on a set
of multi-band node attributes and two algorithms for dupli-
cated node differentiation and partial node detection. Sec. IV
proposes an application of CGO to detect sources on astro-

nomical images. Experimental results in Sec. V show that
CGO can detect faint sources on both simulated and real
multi-band images, with significantly better precision and
recall than the state-of-the-art method [12], [14]. In addition,
Sec. V also demonstrates that the component-graph is better
at capturing image structure comparing to the component-
tree.

II. COMPONENT-GRAPHS
We recall some definitions on graphs and component-graphs.
In-depth presentations of the component-graph can be found
in [9], [10].

A. ORDER RELATIONS
Order relation is essential to define the relationships between
components in the morphological structures. Given a finite
set of elements Γ, a binary relation≤ on Γ is an order relation
and (Γ,≤) is a finite ordered set if ≤ is reflexive, transitive,
and anti-symmetric. We say that ≤ is a partial order relation,
and that (Γ,≤) is a partially ordered set, if there exist non-
comparable elements in (Γ,≤), i.e., ∃x, y ∈ Γ, (x � y∧ y �
x). The order relation ≤ is a total order relation, and (Γ,≤)
is a totally ordered set, if ∀x, y ∈ Γ, (x ≤ y ∨ y ≤ x).

B. GRAPHS AND IMAGES
A graph G is a pair (V,E), where V is a finite set and E is
a set of pairs of distinct elements of V , i.e., E ⊆ {{x, y} ⊆
V | x 6= y}. An element of V is called a vertex of G, an
element of E is called an edge of G.

Given a graph G = (V,E) we say that a sequence of
elements (x0, . . . , xn) ∈ V is a path in V from x0 to xn
if {xi−1, xi} ∈ E,∀i ∈ {1, . . . , n}. A subset V ′ ⊆ V is said
to be connected if for any two distinct elements x, y ∈ V ′,
there exists a path from x to y. A connected component of G
is a maximal connected subset of V . The set of all connected
components of G, denoted as C[G], is a partition of V .

Let F be a function from V to a nonempty set V equipped
with an order relation ≤. We say that (G,F) is a vertex-
valued graph (or valued graph).

In practice, given a valued graph (G,F), the graph G can
be used to represent the domain of an image where each
vertex corresponds to a pixel and where edges correspond
to the adjacency relation between pixels [16]. The function F
then represents an image associating a possibly multivariate
value to any pixel/vertex.

C. COMPONENT-GRAPHS
Given a valued graph (G,F), we define the threshold set

Vv = {x ∈ V | F(x) ≥ v}, (1)

where v ∈ V. The threshold set Vv induces a subset Ev =
{{x, y} ∈ E | x, y ∈ Vv} and a sub-graph Gv = (Vv, Ev).
The set of connected components of the sub-graphs Gv of G
for all v ∈ V is denoted as

Ψ =
⋃
v∈V

C[Gv]. (2)
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FIGURE 3: Component-tree example: (a) A grayscale image
with values in V = {0, 1, 2, 3}; (b) The Max-tree of the
image; and (c-f) The threshold sets Vv for v ∈ V. The
letters (R, A, B, D) refer to the connected components cor-
responding to the nodes in the tree. Note that the connected
components in figures (c-f) are down-scaled by a factor of
two for visualization purpose.

• If (V,≤) is totally ordered, the partially ordered set
(Ψ,⊆) forms a Max-Tree of the valued graph (G,F)
(see Fig. 3).

• If (V,≤) is partially ordered, the partially ordered set
(Ψ,⊆) forms a component-graph, denoted by Θ, of the
valued graph (G,F) [8] (see Fig. 4).

In our work, we use a simplified version of the CG, denoted
Θ̈ (see Fig. 4c), where its set of connected components

Ψ̈ =

X ∈ Ψ

∣∣∣∣∣ ⋃
Y ∈Ψ
Y(X

Y 6= X

 (3)

contains only the connected components that contribute to
the visibility of the image F [9]. The CG Θ and the CG Θ̈
are both directed acyclic graphs. The set Ψ̈ is a subset of the
set Ψ. The CG Θ associated to the set Ψ containing all valued
connected components in the image is the most informative
structure, but also the most expensive to construct (O(n3)).
Since the CG Θ̈ takes into account only visible components
from the image, it is less expensive to construct (O(n2))
than the full CG Θ [10]. In the remainder, we always use
the simplified CG Θ̈. An element of Ψ̈ is called a node of
the CG Θ̈. Note that all three of CT, Θ and Θ̈ are lossless
representations of the same image and so no information is
lost in spite of the simplification.

D. COMPONENT-GRAPH CONSTRUCTION
For the sake of completeness, we briefly revisit the
component-graphs construction algorithms following [9],
[10]. Since the component-graph relies on partial ordering, it
raises structural and algorithmic differences compared to the
classical component-trees. Generally, all component-graph

variants can be built with greedy strategy, in which propaga-
tions are performed from all possible connected components.
In this paper, we use an alternative approach to construct
the component-graph Θ̈ more efficiently. In this component-
graph, all components are visible, i.e., each component con-
tains at least one pixel that is not covered by any smaller
component. From this observation, our alternative algorithm
builds Θ̈ by finding the right node for each pixel. First, it
models the input image as a region-adjacency graph (RAG)
where each vertex is a flat-zone and edges represent flat-
zone neighbors. The RAG vertices are kept in a priority
queue which guarantees that children nodes are visited before
parent nodes. Then, the nodes in the queue are visited to build
Θ̈ from leaves (pixel levels) to root.

E. COMPONENT-GRAPH ATTRIBUTES
Given the component-graph Θ̈ of the valued graph (G,F),
node attributes are essential for node filtering algorithms. Let
N be a node of the CG Θ̈, we formalize the basic attributes
of the CG as follows:
• The level L(N) is the infimum of vertex values in the

node N:
L(N) =

∧
{F(x), x ∈ N}. (4)

• The area a(N) is the number of vertexes belonging to
that node:

a(N) = |N |, i.e., the cardinality of N . (5)

• The parents parents(N) are the smallest nodes of the
CG Θ̈ larger than the node N:

parents(N) = min{X ∈ Ψ | N ( X}. (6)

As a consequence of the partial order relation ≤, a node
N may have several parent nodes.

• The significance sn(N, b), snsyn(N) and sn(N) are
predicates saying whether the node N is significant
respectively in the b-th band, in the synthesized band,
and in all bands, their designs are upon applications.
For instance, a measure of eccentricity can be used for
elongated object filtering, or compactness can be used
for round object detection. Our significance definitions
targeting astronomical sources are introduced in Section
IV-A.

• The closest significant ancestors snanc(N) are the
smallest significant ancestors of N:

snanc(N) = min{X ∈ Θ̈ | N ( X and sn(Y )}. (7)

Because of the partial order ≤, a node N ∈ Θ̈ may have
several closest significant ancestors.

III. FILTERING THE COMPONENT-GRAPH
We introduce Component-Graph Objects (CGO), a method to
handle multi-band object detection with CG. We first address
the transition of object detection from CT to CG, then we
present the filtering algorithm.
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FIGURE 4: Component-graphs example: (a)
A two-band image with multivariate values in
V = {(0, 0), (2, 1), (1, 2), (3, 3)} equipped with the
marginal partial order relation ≤m; (b-c) The CG Θ and
the simplified CG Θ̈ of the image; and (d-h) The threshold
sets Vv for v ∈ V. The CG Θ̈ does not contain the node A
because A is invisible (behind B and C) in the input image.

The CG is a directed acyclic graph while the CT forms
a tree, as the name implies. Fig. 5 visualizes the structural
differences between CT and CG via their similarity maps be-
tween each node and the ground-truth node of a single source
image. The similarity is measured by the Intersection over
Union (IoU) metric, defined as the area of the intersection
divided by the area of the union of the two components. In
both cases, there exist many candidate nodes (with high IoU
score) associated with the single object in the input image.
For the CT, filtering objects from those similar nodes is
straightforward, as good candidate nodes of an object form
a branch in the tree. On the other hand, the DAG structure
of the CG allows the candidate nodes to form many branches
associated with a single object.

We now present a novel algorithm to deal with the multi-
band object detection with the CG. The main filtering al-
gorithm Alg. 1 takes three inputs: the component-graph Θ̈
representing the input image; the significance attribute sn()
identifying significant nodes; and the function differ() mea-
suring the dissimilarity between nodes. It outputs a list of
object nodes. The algorithm is composed of two filtering
steps which are described in detail in the two following
sections. Intuitively, the first filtering attempts to remove
duplicated nodes in the component-graphs. The aim of the
second step is then to remove partial nodes referring to the
same object.

A. DUPLICATED OBJECT DETECTION
In the morphological data structures (the CT and the CG),
objects appear differently at different thresholding levels as
sequences of significant nodes. For instance, in the case of
a single-band input, the object in Fig. 3a is represented by

FIGURE 5: CT and CG structure differences: (top) A two-
band input image containing a single faint source and its
ground-truth; (bottom) The CG (of the both bands) and the
CT (of the first band) of the input image where the node color
represents the similarity between the ground-truth and the
node. Note that the parent relations are not drawn, to simplify
the illustrations.

Algorithm 1 Filtering the component-graph Θ̈

Require: Component-Graph Θ̈.
Require: Function sn() determines significant node.
Require: Function differ() distinguishes two nodes.
Ensure: List of object nodes.

/* Filter duplicated nodes */
1: for N ∈ {X ∈ Θ̈ | sn(X)} from root to leave do
2: if snanc(N) = ∅ or differ(N, Y ) ∀Y ∈ snanc(N) then
3: objs← objs∪N

/* Filter partial nodes */
4: for node N ∈ objs do
5: if snsyn(N) then

continue
6: if partial(N, Θ̈, b) ∀ band b such that sn(N, b) then
7: objs← objs \{N}
8: return objs

the three nodes {A,B,D} in the Max-Tree (see Fig. 3b).
In the case of a multi-band input (see Fig. 6a), three nodes
{B,C,D} in the component-graph Θ̈ (see Fig. 6b) may
correspond to one or two objects. Specifying objects among
those potentially overlapping nodes is not straightforward on
either the CT or the CG.

In the context of the CT with a total order, the function
differ() can rely on the main branch assumption [12]: a node
and its main branch node reside in the same object, where
the main branch node is defined as the largest significant
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(0,0)

(2,1) (1,2)(3,3)

(a) (G,F)

R

B

D

Branch 1

C
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(e) V(1,2)
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(f) V(3,3)

FIGURE 6: Duplicated objects detection: (a) A two-band
image, (b) The CG Θ̈, where significant nodes are marked
yellow. Branch 1 and Branch 2 are incomparable and
growing to the same leaf node.

descendant of a node. A sequence of main branch nodes
following a node forms the main branch. Then, all nodes
in a main branch represent the same object. Back to the
single-band example (in Fig. 3a and Fig. 3b)), three nodes
{A,B,D} simply belong to the main branch (A→ B → D)
in the Max-Tree, then they all represent a single object.

However, in the context of the CG with partial orders, there
may exist several branches containing non-comparable nodes
belonging to a single object. The main branch assumption is
thus not enough to differentiate these branches in the new
multi-band context. For example in Fig. 6a and Fig. 6b, both
branches (B → D) and (C → D) in the CG Θ̈ may
correspond to one or two objects. We propose to generalize
the main branch approach by using a generic function that
measure dissimilarity between two nodes and that should
be designed specifically for each application. Alg. (1) then
identifies candidate nodes by browsing significant nodes
from the root to the leaves of the CG (line 1): If the current
significant node does not have any significant ancestor or if it
is significantly different (according to the function differ())
from all its significant ancestors then it is an object candidate
(line 2); Otherwise, the node is considered a duplicated
node. A practical differ() function for astronomical images
is described in IV-B.

B. PARTIAL NODE DETECTION
In the CG, significant adjacent nodes can be non-comparable
when marginal orders in separate bands disagree. Those
nodes can be captured as isolated objects whereas they
may belong to the same object. An example is shown in
Fig. 7, where three significant adjacent nodes E,F,G are
non-comparable in a two-band image, but they appear to be
detected as three separated objects associated to the three
branches (R,E), (R,F ), (R,G).

We propose a partial detection step to validate the signifi-

(0,0)

(2,0) (0,2)(1,1)

(a) A two-band image

R

E G F

(b) Θ̈

R

(c) V(0,0)

E

(d) V(2,0)

G

(e) V(1,1)

F

(f) V(0,2)

FIGURE 7: Partial object detection: (a) A two-band image
I valued on V = {(0, 0), (2, 0), (0, 2), (1, 1)} equipped with
the marginal order relation ≤m; (b) The CG Θ̈ of the input
image where yellow nodes are significant; and (c-f) The
threshold sets Vv for v ∈ V. Considering the first band, nodes
E andG should be considered as two parts of a single object,
but they are isolated because of the order disagreement in the
two-band space. The situation is similar for nodes F and G
in the second band.

R

N N’

U = N∪N′

(a) L(N)b > L(N′)b

R

U

N

R

N N’

U = N∪N′

(b) L(N)b ≤ L(N′)b

R

U

N’

FIGURE 8: The max-tree of N, adjacent N′, and the union
U = N∪N′ in band b.

cance of the candidates band-by-band to eliminate the partial
nodes. The algorithm Alg. (1) checks each candidate node N
(line 4): If N is significant in the synthesized band, then N
is an object node (line 5); Otherwise, the node N is partial if
N is partial in all the bands where N is significant (line 6-7)
(Alg. (2) determines whether a node is partial in a specific
band b).

The idea of Alg. (2) is to test whether N expands any
adjacent node of N. For each node N′ adjacent to N (line 1),
we look at the Max-Tree of N, N′ and the union U = N∪N′,
see Fig. 8:
• If L(N)b > L(N′)b, N is an isolated significant node

in the Max-Tree in band b, then N is an object node
regardless of the significance of the union U (line 2-3),
i.e., N is not partial, see Fig. 9(a-b).

• If L(N)b ≤ L(N′)b, then N is included as a part of the
union U in the Max-Tree in the band b, see Fig. 9(c-f),
there are two possibilities that make the candidate node
N be partial: First, the union U is not significant in band
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R
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FIGURE 9: The possible links between nodes in the max-tree
of N, N′ adjacent to N, and U = N∪N′ in the band b: (a-b)
L(N)b > L(N′)b and (c-f) L(N)b ≤ L(N′)b.

b, then N becomes part of the non-significant union U
(line 4-5), see Fig. 9(c-d); Second, the union U and N′

are both significant, then N is part of the object node
U which is represented by N′ (line 6-7), see Fig. 9(e);
Otherwise, N′ is non-significant while the union U is
significant, then N remains as object node, i.e., N is not
partial, see Fig. 9(f).

Back to the example in Fig. 7 where E,F,G are the three
candidate nodes in the graph Θ̈. The partial detection would
validate E as isolated object because it is significant in the
first band and it merges to the root in the second band.
Similarly, F is also marked as isolated object. For G in the
first band, it expands into the union C = G∪E: If the union
C is significant, then G is part of the significant union C;
Otherwise, G is non-object node. The situation is similar for
G and F in the second band. All in all, E and F are kept as
object nodes.

Practically, the adjacent nodes Adj(N) of the node N
is costly to retrieve from the CG (with complexity O(n2)
with n the number of nodes). In this work, we approximate
Adj(N) by the adjacent sibling set, which is more efficient to
retrieve. In the component-graph, the sibling set of a node is
reachable in constant time. Theoretically, checking whether
two nodes are adjacent costs O(n). Then the complexities of
Alg. 1 and Alg. (2) are respectively O(n.k.m) and O(n.k)
with n the number of nodes in the component-graph, k the
average number of siblings of the significant nodes, and m
the number of candidate nodes. In general, the number m
and k are significantly smaller than the number of nodes n.

IV. APPLICATION TO ASTRONOMICAL IMAGES
We describe an application of the proposed method CGO to
detect sources on multi-band astronomical images. As the
CGO filtering algorithm requires, we design a significant
attribute (IV-A) and a node dissimilarity measure (IV-B).

A. SIGNIFICANCE ATTRIBUTE OF ASTRONOMICAL
SOURCES
For astronomical images, we extend the idea of the MTObject
significance test [12] to the multi-band context. This signif-
icance measure is based on a chi-square distribution of the
brightness of the component pixels, assuming additive white
Gaussian noise. More precisely, the area of the component

Algorithm 2 Partial detection: partial(Θ̈,N, b)

Require: Θ̈, a component-graph.
Require: N ∈ Θ̈, a candidate node.
Require: b, a significant band.
Ensure: true if N is a partial node in band b.

1: for N′ ∈ Adj(N) do
2: if L(N)b > L(N′)b then
3: continue
4: if not sn(N∪N′, b) then
5: return true
6: if sn(N∪N′, b) and sn(N′, b) then
7: return true
8: return false

(i.e., the number of pixels) is the number of degrees of free-
dom of the chi-square distribution where each pixel bright-
ness is considered (a contrario) as an independent normal
random variable. Its computation relies on two component-
attributes: the node normalized power and the node area. Let
N be a node. The node power is the sum of the squared
difference between the node pixel values and the level of the
parents. Since a node in the CG Θ̈ may have several parents,
this definition uses the supremum (average, infimum, max
area node can also be used) of the parent levels as a reference:

E(N) =
∑
x∈N

F(x)−
∨

y∈parents(N)

L(y)

◦2 , (8)

where
∨

is the supremum operator and ◦ is the element-wise
power.
The node normalized power normalizes the node power by
the local background variance:

E ′(N) = E(N)� σ̂2
bg, (9)

where � is element-wise division; µ̂bg, σ̂bg ∈ Rc stand for
the mean and the standard deviation of the background of the
image F. The background is approximated by the combina-
tion of flat tiles which are determined using D’Agostino’sK2

test [12].
The node significance relies on hypothesis testing. Let b be
a band number, the single band significance test sn(N, b) is
the same as in [12]:

sn(N, b) = E ′(N)b > cdfχ2(α, a(N)), (10)

where E ′(N)b is the normalized node power in band b,
cdfχ2() is the chi-square cumulative distribution function, α
is a significance level, and a(N) is the area of the node N.
The test is extended to a multi-band significance test sn(N)
defined as follows:

sn(N) =
(
∃b ∈ [0, c), sn(N, b)

)
or
(

snsyn(N)
)
, (11)

where

snsyn(N) =
( c∑

b=0

E ′(N)b > cdfχ2(α, c a(N))
)

(12)
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is the synthesized band significance test and c the number of
band.

A node is considered significant if it is so in a single band
or in the synthesized band. We leverage the multi-band in-
formation in the synthesized band to detect significant nodes
even if their signal in separated bands are all non-significant.
For checking the separated bands, the first term in Eq. (11)
guarantees to capture whatever the single-band significance
test can capture in each band. For checking the synthesized
band, the second term in Eq. (11) takes into account the
combined power attribute to determine whether the combined
signal is statistically significant. Since the multi-band test
evaluates all bands simultaneously, it can indeed detect cases
where a node is non-significant in all separated bands, but is
significant in the synthesized band.

B. DUPLICATED ASTRONOMICAL SOURCE DETECTION
The center of astronomical sources is usually brighter and
better localized than the outer parts. This observation means
that, in the CG, two significant nodes with similar centers
likely represent the same object. We define a predicate
differ() expressing whether two nodes belong to the same
object as

differ(N1,N2) = || center(N1)− center(N2)|| < r, (13)

where N1,N2 ∈ Θ̈ are two nodes, the function center()
returns the center pixel of a node, e.g. the brightest pixel
of the node, and r is a thresholding radius. The center pixel
could also be defined as the center of mass or as the center of
the best fitting ellipse of the node.

V. EXPERIMENTS
This section shows the relevance of our proposed method for
object detection in astronomical images. In all the experi-
ments, the graph G is the classic 4-connected one. We com-
pare CGO with the state-of-the-art method MTObject [14] on
simulated and real images in the following experiments:
• Statistical Test Boundaries (sec. V-A) investigates the

detection boundary difference between single-band and
multi-band statistical tests.

• Detection Capacity (sec. V-B) studies how well the
component structures are preserved in the CT and the
CG via simulations.

• Evaluation on a simulation (sec. V-C) assesses the
methods on simulated astronomical images.

• Evaluation on real images (sec. V-D) assesses the
methods on real astronomical surveys.

A. STATISTICAL TEST BOUNDARIES
Both CGO and MTObject rely on statistical hypothesis test-
ing to identify significant components. It is important to
formalize and visualize the difference between the tests: the
single-band test (with respect to MTObject) and the multi-
band test (with respect to CGO). If we assume that the noise
is Gaussian, then the node normalized power attribute follows

FIGURE 10: Visualization of statistical test rejection bound-
aries of single-band and multi-band components at the same
level of significance α = 10−6.

FIGURE 11: Detection upper bounds of the morphological
structures.

a chi-square distribution. At a given significant level α, the
rejection boundary for the statistical test is then equal to

b(n) =
{

(a, p) ∈ R2 | a ∈ N, 1−cdfχ2(n×a, n×p) = α
}
,

(14)
where n is number of bands; a, p denote the node area
and the normalized power; and cdfχ2() is the chi-square
cumulative distribution. Fig. 10 and Eq. (14) distinctly reveal
the theoretical gap between rejection boundaries, i.e., at the
same confidence level, the multi-band statistical test is more
sensitive to weak signal than the single-band statistical test.
We note that the multi-band gain is not linear with the number
of bands.

B. UPPER BOUND DETECTION CAPACITY OF THE CT
AND THE CG
To detect target objects, it is critical that the morphological
representation of the image capture them as nodes. In this
experiment, we assess how well objects are captured in the
CT and the CG by studying their node similarity upper
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FIGURE 12: Single Source Simulation: (left) A synthetic
image with singal-to-noise ratio−0.93 and (right) The corre-
sponding ground truth.

bounds on a synthetic dataset. For a set of nodes Ψ̈ and a
ground-truth node gt, we define the similarity upper bound
as

Sup(Ψ̈, gt) = max
N∈Ψ̈

J(N, gt), (15)

where J stands for the Jaccard distance between two compo-
nents. As we can see, the higher the similarity upper bound,
the more likely target objects can be detected and segmented
properly. The node associated to the similarity upper bound
Sup(Ψ̈, gt) can be interpreted as the best object-like node
existing in the set Ψ̈.

We analyze the similarity upper bounds on a single source
simulation, as shown in Fig. 12. The simulation includes
104 three-band images of size (50, 50) pixels. Each image
contains a single point source with Gaussian noise, and
the ground-truth is defined as the region covering 99% of
the source brightness. The component-trees of the separate
bands, the average band, and the component-graph of the
three-band image are constructed. Fig. 11 shows the average
similarity upper bounds with respect to the signal-to-noise
ratio of the simulated sources. On this synthetic dataset, the
component-graph provides higher similarity upper bounds
than the component-tree, i.e., it has better detection capacity
comparing to the component-tree.

C. EVALUATION ON AN ASTRONOMICAL SIMULATION
This experiment assesses detection capacity of the proposed
CGO and the state-of-the-art MTObject [12] [14] for astro-
nomical object detection on a multi-band simulated dataset.
For fair comparisons, we suggest M-MTObject in Sec. V-C3
- a straightforward extension of the default single-band MT-
Object to process multi-band images.

1) FDS Simulation
We rely on a simulated three-band astronomical dataset with
ground-truth imitating the Fornax Deep Survey [17], a wide
field imaging survey of the Fornax Cluster using ESO’s VST
telescope. It contains 1500 stars and 4000 galaxies. Because
the Θ̈ construction is computationally expensive (O(n2)), we
performed the simulation into tiles of size (500, 500) pixels
with an overlapping of 250 pixels. For each tile, we have a

FIGURE 13: FDS simulation: (left) The three-band sim-
ulated image and (right) the ground-truth map represent
stars/galaxies as separate color blocks.

FIGURE 14: Evaluation on the FDS Simulation.

three-band image with a ground-truth segmentation. The full-
size simulation is visualized in Fig. 13.

2) Metric
We use precision, recall, and F1-score, as in [14]. The eval-
uation matches at most one detected object in the detection
map to each target object in the ground-truth map. Each target
object in the ground-truth map is represented by its brightest
pixel called its representative pixel, hence each representative
pixel is included in at most one object in the detection map.
If a detected object contains several representative pixels of
different target objects, then the detected object is associated
to the target object with the brightest representative pixel.

3) M-MTObject
Along with the state-of-the-art single-band MTObject [14],
we propose an extension of MTObject to multi-band images
called M-MTObject, where the Max-Tree is computed on the
best signal-to-noise ratio band but the component attributes
and the statistical test use the information from all the bands.

In detail, M-MTObject firstly constructs the Max-Tree of
the best signal-to-noise ratio band of the multi-band input
image. The filtering strategy is the same as the MTObject
statistical test, but node attributes are accumulated from all
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(a) SDSS cutout band g. (b) CGO result on band (g,r).

(c) MTObject result on band g. (d) MTObject result on band r.

FIGURE 15: Experiment on a two-band SDSS image.

the bands. With this strategy, all the bands are forced to
follow the selected Max-Tree, i.e., to follow the total order of
the best signal-to-noise ratio band. This approach is simple,
but we can see that each band has its own total order which
likely disagrees with the total order of the selected band in
some regions. These conflicted regions will introduce falsely
significant nodes, leading to false positive detection.

4) Quantitative Result and Discussion

We compare CGO versus MTObject/M-MTObject on the
FDS Simulation. Since the signal close to the border of
the image is less reliable, we skip objects whose center is
lying within 100 pixels from the borders. Precision and recall
curves are presented in Fig. 14.

As can be seen from the curves, our proposed method
CGO significantly improves on MTObject/M-MTObject on
both precision and recall metrics in the FDS Simulation.
All methods demonstrate robustness to the choice of hyper-
parameter with favorable recalls (> 0.7). As MTObject is
designed for single-band processing, M-MTObject’s perfor-
mance on multi-band image could not surpass MTObject
on separated bands. Particularly, M-MTObject’s precision
drops significantly compared to the other methods. This can
be explained by the inconsistency between the single-band
Max-Tree structure and the multi-band attributes. On the
other hand, CGO efficiently leverages multi-band informa-
tion, leading to better precision and recall compared to the
state of the art in this simulation setting.

D. EVALUATION ON REAL ASTRONOMICAL SURVEYS
We assess CGO versus MTObject/M-MTObject on real
multi-band astronomical images SDSS, KiDS, and HST.

1) Real Datasets

We use three astronomical multi-band Surveys: the Sloan
Digital Sky Survey (SDSS), the Kilo-Degree Survey (KiDS,
[18]), and the Hubble Space Telescope Cosmic Assem-
bly Near-infrared Deep Extragalactic Legacy Survey (HST

FIGURE 16: Evaluation on the KiDS-HST Dataset.

CANDELS, [19]). The results of CGO and MTObject on the
real images are shown in Fig. 15.

2) Ground-truth
We used 100 image pairs, where each pair consisted of KiDS
and HST CANDELS cutouts sharing the same field of view
and centered on the same galaxies. All cutouts were taken
from the same four source tiles: three KiDS tiles in u, g
and r bands, and one HST CANDELS tile observed with the
Advanced Camera for Surveys (ACS) in the F814W filter.
All cutouts were located in RA range [53.0; 53.2] and DEC
range [-27.9; -27.7] in the KiDS-South region of sky. Since
HST CANDELS cutouts have much higher resolution and
signal-to-noise ratio, we used the detection results obtained
with MTObject on these cutouts as the ground-truth for the
KiDS images.

3) Metric
We use the same metrics as mentioned in Sec. V-C.

4) Quantitative Result and Discussion
We compare CGO and MTObject/M-MTObject [12] on the
registered KiDS-HST images. As shown in Fig. 16, CGO
achieves better F1-scores than MTObject/M-MTObject on
this real dataset. Similarly to the previous simulation setting,
M-MTObject on multi-band images is again not better than
MTObject on single-band images, i.e., adding multi-band
information confuses the object detector in the case of MT-
Object. These results are consistent with the experiment per-
formed in the FDS Simulation and with visual assessments.
Note that all the F1-scores on the KiDS-HST experiment are
much lower than the F1-scores in the FDS Simulation test.
This is due to HST images (reference images) being much
deeper than KIDS images, i.e., more objects are visible in the
HST images, therefore many objects in the reference images
are simply undetectable on the KiDS images. All in all, CGO
outperforms the state of the art for source detection in the real
KiDS-HST dataset.
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VI. CONCLUSION
We have explored how the component-graph structure can
handle object detection on multi-band data. We have pro-
posed Component-Graph Objects (CGO) – an object de-
tection method along a set of novel node attributes on the
component-graphs with application to multi-band astronom-
ical images. Theoretically, our studies have shown that the
component-graphs are better at preserving object structures
compared to the classical component-trees. Practical exper-
iments on both simulation and real astronomical surveys
consistently confirm that CGO outperforms the state of the
art on precision, recall, and F1-score metrics.

However, a current limitation of the proposed approach
is its time complexity which may hamper the process-
ing of large images. In future work, we plan to speed-up
component-graph exploration with shape space filtering [10],
[20].
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