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Abstract
Lacito, CNRS

Université de Lorraine, IDMC

Recognizing lexical units in low-resource language contexts with supervised and unsupervised
neural networks

by Cécile Macaire

Automatic Speech Recognition (ASR) has made significant progress thanks to the advent of deep
neural networks (DNNs). In the context of under-resourced languages, for which few resources are
available, spectacular achievements has been reported. ASR systems are a step forward for language
documentation, as the annotation cost is considerably reduced for field linguists (manually annotated
an audio file can take a tremendous amount of time), and the language is preserved and perpetuated
through documentation. Previous ‘standard’ deep neural networks reached very good performances for
phonemic transcription (such as with Kaldi and ESPnet approaches).However, these methods only rely
on the phoneme-level. In this thesis, we explore recently published ASR approaches which have shown
to be effective on low-resource languages to produce word-level audio-aligned transcriptions. The first
approach, based on self-supervised learning, is a speech model that uses a Connectionist Temporal
Classification (CTC). The second, entitled wav2vec-U, proposes a framework intended to build an
ASR system in a fully unsupervised fashion. With few resources at our disposal, we try to assess the
usability that can be made from dictionaries. We conducted experiments on two low-resource corpora,
the Yongning Na and the Japhug from the Pangloss Collection. The experimental results from the
first approach demonstrate powerful word-level transcriptions with competitive error rates. Preliminary
results are reported on the second approach. By a coverage measure of dictionaries on the available
transcriptions, we show that these resources are not yet usable in the conducted approaches.

CC BY-SA 3.0 fr page 2

https://lacito.vjf.cnrs.fr/
https://www.univ-lorraine.fr/
https://idmc.univ-lorraine.fr/


CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

Acknowlegments
I warmly thank Alexis Michaud, Guillaume Wisniewski, and Séverine Guillaume for their kindness, pa-
tience, knowledge, and pedagogy throughout my internship at LACITO. Thanks for the precious advice,
the proofreading of this report, and the corrections.

I would particularly like to thank Alexis and Séverine for trusting me enough to renew the experience
for a second internship. Thanks to Guillaume for the numerous discussions, and all his help throughout
the months.

Thanks to Minh Châu, Chiara, Fatima for their warm welcome at Lacito, and for the many meals spent
together.

Thanks to Guillaume Jacques for being available to answer my questions, and for his interest in this
project. His feedback was essential to complete this work.

Thanks to Oliver Adams, Dan van Esch, Ben Foley, and more generally, to the whole Elpis project team.
Our exchanges and your advice have been very helpful.

Thanks to the teaching staff of the NLP master in Nancy, and more particularly to Claire Gardent, for
having given me the opportunity to meet Alexis and Séverine, and for the loan of the computer.

Special mention to Elsa for taking the time to correct this thesis, and for her always relevant remarks.

CC BY-SA 3.0 fr page 3



Contents

1 Context 12

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Work Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Lacito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Computational Language Documentation by 2025 project (CLD2025) . . . . . . 14

1.2.3 Technical choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 First approach: Fine-tuning XLSR-53 wav2vec 2.0 model 16

2.1 Self-supervised learning, pre-training & fine-tuning . . . . . . . . . . . . . . . . . . . . . 16

2.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Supervised pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Unsupervised pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Feature encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Contextualized representations with Transformers . . . . . . . . . . . . . . . . . 21

2.3.3 Quantization module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Unsupervised representation learning (pre-training) with wav2vec 2.0 . . . . . . 23

2.3.5 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Experiments 27

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Yongning Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Japhug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4



CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

3.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Definition of the vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Tokenizer and feature extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Performances on the test sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Phoneme Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Beam search decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Top k hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Word-based language model with KenLM . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 Optimization of the LM parameters . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.5 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Complementary experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.1 Predicting unseen speech files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.2 Transfer learning on another language . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.3 Handling of Chinese characters in the Japhug transcriptions . . . . . . . . . . . 48

4 Second approach: Wav2vec Unsupervised 51

4.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The wav2vec-U framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Self-supervised Learning of Speech Audio Representations . . . . . . . . . . . . . 53

4.2.2 Speech audio segments identification . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Audio segment representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Preprocessing of unlabeled text data . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.5 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.6 Unsupervised Cross-Validation Metric . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.7 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CC BY-SA 3.0 fr page 5



CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Preparation of audio data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Preprocessing unlabeled textual data . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 GAN training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Work on dictionaries 62

5.1 Structure of the dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Dictionaries coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Coverage on the corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Coverage on the training data . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.3 Coverage on the test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Discussion & Conclusion 68

A Additional materials 70

A.1 .tsv file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 xlsr-180-na predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3 xlsr-jya-600 predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.4 Predictions of an unseen Na speech file . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5 Predictions of an unseen Japhug speech file . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 77

CC BY-SA 3.0 fr page 6



List of Figures

2.1 Schema of a speech file cut into n frames, containing 10 milliseconds each. . . . . . . . 17

2.2 Illustration of the XLSR model which learns contextualized speech representations. . . . 21

2.3 Illustration of the naive algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Illustration of a valid alignment produced by the CTC for a given input sequence X. . . 25

2.5 Illustration of the dynamic programming algorithm computation. . . . . . . . . . . . . . 26

3.1 Map of the Yongning area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Location of the Japhug spoken community living in the Tibetan part of Sichuan (Google,
2021a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Example of an XML transcription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Pipeline developed in the context of this work to fine-tune a pre-trained XLSR model on
the two studied low-resource corpora, Yongning Na and Japhug. . . . . . . . . . . . . . 31

3.5 Confusion matrix of the reference phoneme ˩˥ and its predictions. . . . . . . . . . . . . . 39

3.6 Beginning of an oriented graph to visualize the 10-best hypotheses generated by the
beam search algorithm of a Na test set sentence. . . . . . . . . . . . . . . . . . . . . . 41

3.7 CER with respect to different training sizes (in minutes) when fine-tuning the XLSR-53
pre-trained model on the two low-resource corpora, the Yongning Na and the Japhug. . . 44

3.8 Character error rate on the training set for Japhug as training progresses (up to 20
epochs), using the XLSR-53 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Illustration of the wav2vec Unsupervised framework taken from Baevski et al., 2021. . . 53

4.2 Basic process of a GAN showing the interaction between the generator and the discrim-
inator networks (Hany and Walters, 2019). . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Illustration of how generator outputs and real phonemicized text are converted into inputs
to the discriminator. This schema is taken from Baevski et al., 2021. . . . . . . . . . . . 56

4.4 Beginning of the output file given by the rVad python library with the first line corre-
sponding to the path, and the second line with the silence intervals. . . . . . . . . . . . 58

7



CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

5.1 Example of a lexical entry from the Na dictionary. . . . . . . . . . . . . . . . . . . . . . 63

A.1 Beginning of the generated .tsv file with the audio file path in the ‘path’ column, and
the corresponding transcriptions in the ‘sentence’ column. . . . . . . . . . . . . . . . . . 71

CC BY-SA 3.0 fr page 8



List of Tables

2.1 Summary of the presented state-of-the-art methods with the corresponding amount of
unlabeled and labeled training data size. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Corpus information and statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Value of the hyperparameters used to fine-tune the XLSR model. . . . . . . . . . . . . . 34

3.3 WER, CER, and PER on the Na test set when training on Na low-resource labeled data
setups of 180 minutes. WER and CER on the Japhug test set when training on Japhug
low-resource labeled data setups of 600 minutes. . . . . . . . . . . . . . . . . . . . . . 36

3.4 Number of correct spaces, insertions and deletions associated to word boundaries ob-
served on the test set of the xlsr-na-180 model. . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Number of correct spaces, insertions and deletions associated to word boundaries ob-
served on the test set of the xlsr-jya-600 model. . . . . . . . . . . . . . . . . . . . . . . 37

3.6 WER and CER on the test set by removing tones from the predictions of xlsr-na-180
model, and by removing unmatched audio-transcription pairs from the predictions of
xlsr-jya-600 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Examples of reference phonemes and a corresponding example of a prediction by the
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Oracle WER and CER scores on top k hypotheses with the xlsr-na-180 and the xlsr-jya-
600 models on the test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 α and β parameters set up by the Optuna optimization framework to train different
n-grams KenLM language models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 WER and CER on the test sets with the xlsr-na-180 and the xlsr-jya-600 models by using
different n-gram KenLM language models. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 Samples of the predicted transcriptions by the xlsr-na-180 model of the “Appeal to the
gods to settle a quarrel” speech file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12 WER and CER of the predictions by the xlsr-na-180 model of the unseen speech file
entitled “Appeal to the gods to settle a quarrel”. . . . . . . . . . . . . . . . . . . . . . . 46

3.13 WER and CER of the predictions by the xlsr-jya-600 model of 15 speech segments from
the unseen speech file entitled hist150908_qianli_xundi.wav. . . . . . . . . . . . . . . . 47

9



CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

3.14 Predictions from the xlsr-jya-600 model on 3 segments from the “Mao he laohu” speech
file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.15 Comparison of the Error Rate per characters by taking all the predictions (Error Rate
global), by taking only the predictions of Pinyin transcriptions (Error Rate on Pinyin),
and by taking the predictions without the Pinyin (Error Rate without Pinyin). . . . . . . 50

4.1 Output produced by the k-means clustering method on the audio file
“crdo-NRU_F4_DOG2_Dog2S021.wav” given the phoneme sequence. . . . . . . . . . . 58

4.2 Results of the preprocessing step on unlabeled text data from left to right, the words
dictionary, the phonemicized words, and the phonemes dictionary. . . . . . . . . . . . . 59

4.3 Preprocessing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Hyperparameters of the GAN training. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 UER on the valid and test sets of the Yongning Na and the Japhug with different training
set sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Number of extracted lexical entries from each dictionary. . . . . . . . . . . . . . . . . . 63

5.2 Example of lexical entries extracted from both dictionaries. . . . . . . . . . . . . . . . . 64

5.3 Dictionary coverage and word count on the Na corpus by adding the retrieved words
from the examples from the dictionary, by varying the ending tones of words from the
dictionary, and by combining both in the known lexical entries list. . . . . . . . . . . . . 65

5.4 Comparison of words not in the dictionary (Baseline) according to the different experiments. 65

5.5 Number of words in each training corpus. . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Coverage of the dictionaries on the training data from Na and Japhug corpora. . . . . . 66

5.7 Number of words in each test corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 Coverage of the dictionaries on the test set from Na and Japhug corpora. . . . . . . . . 67

CC BY-SA 3.0 fr page 10



CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

List of Abbreviations
ASR Automatic Speech Recognition
ANR Agence Nationale de la Recherche
CLD2025 Computational Language Documentation 2025
CNN Convolutional Neural Network
CTC Connectionist Temporal Classification
DNN Deep Neural Network
ESPnet End-to-end Speech Recognition network
et al. et alii
GAN Generative Adversarial Network
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HMM Hidden Markov Model
INALCO Institut National des Langues et Civilisations Orientales
KIT Karlsruher Institut für Technologie
LIG Laboratoire d’Informatique de Grenoble
LISN Laboratoire Interdisciplinaire des Sciences du Numérique
LSTM Long Short-Term Memory
ML Machine Learning
NLP Natural Language Processing
RNN Recurrent Neural Network
SHL Shared Hidden Layer
TCN Temporal Convolutional Network
TL Transfer Learning
WSJ Wall Street Journal
XLSR Cross-lingual Learning of Speech Representations

CC BY-SA 3.0 fr page 11



Chapter 1

Context

1.1 Introduction

Over the last decade, Automatic Speech Recognition (ASR) has made significant progress. One dimen-
sion of progress comes from the advances of deep neural networks (DNNs), specifically Recurrent Neural
Networks (RNNs) and Bi-Directional Recurrent DNNs. Another comes from the enhancement of model
architectures, with the advent of end-to-end speech recognition models and Transformers (Vaswani et
al., 2017). ASR systems are now part of our everyday life, from voice assistants to the dictation of text
messages, e-mails, or home assistants (Szymański et al., 2020). These systems are trained on a large
amount of annotated data. Librispeech for instance is a corpus of 960 hours of audio and associated
transcriptions. The best current systems obtain an error rate of less than 10% on benchmark datasets
(Librispeech, WSJ, Callhome, Fisher, etc.) (Szymański et al., 2020).

Spectacular results are also observable for under-resourced languages, for which few resources are avail-
able (Besacier et al., 2014; Esch, Foley, and San, 2019). The term “under-resourced languages”
(Krauwer, 2003; Berment, 2004) refers to a language lacking a unique writing system or viable orthog-
raphy, having a limited presence on the web, an absence of linguistic expertise, and limited electronic
resources (monolingual corpus, dictionary, transcribed audio, etc.) (Besacier et al., 2014). Applying
Automatic Speech Recognition systems to this type of data has two main objectives. The first concerns
documentation from the point of view of language preservation and perpetuation. There is indeed an
urgent need to document the world’s declining linguistic diversity (Besacier et al., 2014; Thieberger,
2017; Littell et al., 2018; Esch, Foley, and San, 2019). Languages become threatened by various factors
(most saliently, the dominance of another language for economic, societal, or political reasons). The
second concern is the workload of field linguists: using ASR can help with the annotation of audio files,
which can take thousands of hours of work depending on the size of the corpus if done manually. In
2017, a survey was conducted on 51 linguists to get a picture of linguists’practices during transcription.
The results showed that one minute of audio data takes an average of 40 minutes to transcribe, which
varies according to the difficulty associated to the file (Foley et al., 2018). If field linguists could be
freed from (at least some of) the burden of repetitive tasks of data entry, they could then devote the
time thus saved to valuable tasks of language description and analysis (on the integration of phonemic
transcription to a language documentation workflow: Michaud et al., 2018).

Previous studies have shown that ‘standard’ deep neural networks can achieve very good results for
phonemic transcription (Michaud et al., 2019; Wisniewski, Michaud, and Guillaume, 2020). This task,
which is much simpler than full-fledged ASR, consists in predicting the sequence of phonemes and
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tones contained in an audio file. These models only require about ten hours of annotated recordings
to reach ceiling or near-ceiling accuracy (Michaud et al., 2019; Wisniewski, Michaud, and Guillaume,
2020) – remembering that phonemic transcription can never reach 100% accuracy, given the variability
of phonetic realizations in speech: not all phonemes contained in a word-level transcription are actually
present in the speech signal. The architecture used in these cases is based on the encoder-decoder type
trained with a Connectionist Temporal Classification (CTC) criterion (Graves et al., 2006) (see Section
2.3.5).

However, these methods only rely on the phoneme-level. Word-level transcriptions are the next step for
the ASR community for endangered languages. Specifically for linguists, retrieving word-level transcrip-
tions is a way to get a transcription that is as close as possible to the audio (occasional repetitions are
not always recognized, as well as word fillers). The linguists will be able to use the transcriptions to
document the language (for instance by producing word-level glosses or extracting dictionaries). Finally,
it will be easier to correct the produced transcriptions, as it will only be necessary to correct the word
boundaries, instead of having to build words from the phonemes.

Predicting sequences of words is a tall order within the ASR community in the case of low-resource
languages. Precisely, in an high-resource language context, moving from a phonemic level to a word
level can be resolved thanks to the use of a language model. However, this approach can not be
considered here due to the lack of textual content. The main objective of this work is to improve on
the previously presented methods that work on the phoneme level to transcribe audio recordings into
higher-level entities, here words. We will have to make do with the limitations of the resources at our
disposal, i.e. a small volume of transcriptions (between 5 and 30 hours of transcribed speech), and
dictionaries (with around 7,000 lexical entries for Japhug and 3,000 entries for Na).

To address this challenge, we are considering two low-resource languages, Yongning Na and Japhug.
We explore two complementary approaches that have proven successful in low-resource contexts. The
first, XLSR (Baevski et al., 2020; Conneau et al., 2020), is a speech model that uses a CTC, and the
second, wav2vec-U (Baevski et al., 2021), is a framework that builds speech recognition systems that
require no transcribed data at all. We describe, for both models, a method, intended for field linguists,
but also for computer engineers to reproduce the experiments carried out. Finally, we try to determine
whether the information gathered by field linguists to describe the language (dictionaries, grammars,
...) can be used to compensate for the small amount of available data.

The report is organized as follows. The present section sets out the subject and the background to
the project. In Section 1.2, the research lab Lacito where the present work took place is introduced as
well as the Computational Language Documentation by 2025 project (see Section 1.2.2). The technical
choices come next in Section 1.2.3. The first approach, consisting in fine-tuning the XLSR-53 wav2vec
2.0 model, is explained in Chapter 2. The related experiments are displayed in Chapter 3. The second
approach based on the wav2vec-U framework as well as the preliminary experiments are in Chapter
4. We continue with the work on dictionaries in Chapter 5. We end this work by a discussion and we
conclude in Chapter 6.

1.2 Work Environment

The work reported here was carried out during an internship at Lacito, Langues et civilisations à tradi-
tion orale, a research unit of French CNRS devoted to the documentation, description and analysis of
languages worldwide, with an emphasis on unwritten languages, undocumented languages, and endan-
gered/minority languages generally. Supervision was carried out by
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• Guillaume Wisniewski, assistant professor at Université de Paris and member of the Laboratoire
de Linguistique Formelle research unit (LLF, CNRS),

• Alexis Michaud, CNRS researcher,

• and Séverine Guillaume, engineer in computer science at Lacito, CNRS.

This work is part of the “Computational Language Documentation by 2025” ANR project (CLD2025,
ANR-19-CE38-0015-04), the main objective of which is to use computational methods to facilitate the
task of documenting endangered languages. This section will present the Lacito (Subsection 1.2.1) and
the CLD2025 project (Subsection 1.2.2). It will also describe the equipment and tools used in this work.

1.2.1 Lacito

Lacito is a research department based in Villejuif. It is one of the laboratories of CNRS, French National
Centre for Scientific Research, and is affiliated to two French universities: Sorbonne Nouvelle and
INALCO (Institut national des langues et civilisations orientales). The laboratory is currently directed
by Alexis Michaud and has over 50 members (including researchers, Ph.D. students, affiliate members,
engineers and technicians).

Founded in 1976, Lacito aims at exploring the linguistic diversity across the five continents by carrying
out fieldwork investigation among speaker communities. It also seeks to describe the languages in their
broader social, geographical, and historical dynamics. Specifically, their major interest concerns the
under-resourced languages of the world for which very few speakers are known (in opposition to the
under-resourced languages spoken by many). Their work focuses on different aspects:

• the immersive fieldwork in language communities (documentation and description of their linguistic
practices);

• the academic research in linguistics, language typology and linguistic anthropology;

• the university teaching, Masters and Ph.D. supervisions;

• the long-term archiving of language data and corpora;

• and the communication and awareness-raising for the general public and scientific communities.

1.2.2 Computational Language Documentation by 2025 project (CLD2025)

The emergence of Machine Learning (ML) tools (artificial neural networks) and their performance year
after year can contribute efficiently to the execution of specific tasks for language documentation:
automatic transcription of audio recordings, automatic glossing of texts, automatic word discovery. The
promise of ML based models is to reduce the annotation burden, which results in a time-saving. For
example, manually translating tens of hours of speech word by word can take thousands of hours of
work. These time-consuming tasks can easily be automated which thus facilitates the field linguists’
work.

Natural Language Processing (NLP) is still not widely used in linguistic literature. It can be explained by
the novelty of these methods, the lack of easy-to-use interfaces, and the small number of studies show-
ing its effectiveness when few resources are available. The main objective of the CLD2025 project is to
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implement techniques, models, and interfaces for the documentation and description of languages, es-
pecially endangered ones. The project will involve interdisciplinary collaboration between computational
scientists and field linguists and focus on the usability of the tools and methods developed.

It is in this perspective that the Elpis project (Foley et al., 2018) is currently jointly developed by a team
based in Australia1 and the Lacito. Elpis is a graphical interface which allows linguists and language
workers with basic computational knowledge to build their own speech recognition models. It relies on
the Kaldi ASR toolkit, and recently on ESPnet (Adams et al., 2020). The goal is to save time to
linguists by taking away the technical burden of training an ASR model from scratch.

The project coordinator of the CLD2025 project is Gilles Adda, from the LISN (“Laboratoire Interdisci-
plinaire des Sciences du Numérique”) and involves the Lacito, LISN, LPP (“Laboratoire de Phonétique et
Phonologie”), LIG (“Laboratoire d’Informatique de Grenoble”), KIT (“Karlsruher Institut für Technolo-
gie”) and EmpSprWiss Universität Frankfurt / Institut für Empirische Sprachwissenschaft in Germany.

1.2.3 Technical choices

The present work has involved the implementation and the training of deep learning models. For this
purpose, we used, during the first month of the present work, Google Colaboratory2 which enables to
write and execute Python code in a browser. The primary advantage of this platform is the free access
to GPUs. We then chose to move on to the Huma-Num servers, which provide access to a GPU Ampere
card (NVIDIA A100-PCIE-40GB MIG 4g.20gb) and initialized with a basic version of Python (3.8), via a
ready-to-use Anaconda Environment. The deep learning library PyTorch3 and data science libraries such
as Pandas4 and NumPy5 were used. The scripts and information related to the project are available in
a GitHub repository6.

1from the Australian Research Council Centre of Excellence for the Dynamics of Language.
2https://colab.research.google.com
3https://pytorch.org/
4https://pandas.pydata.org/
5https://numpy.org/
6https://github.com/macairececile/internship_lacito_2021

CC BY-SA 3.0 fr page 15

https://colab.research.google.com
https://pytorch.org/
https://pandas.pydata.org/
https://numpy.org/
https://github.com/macairececile/internship_lacito_2021


Chapter 2

First approach: Fine-tuning XLSR-53
wav2vec 2.0 model

This chapter presents a novel approach, called XLSR, introduced in Conneau et al., 2020. The goal of
this approach is to extract new types of input vectors for acoustic models from raw audios thanks to
pre-training and self-supervised learning. The process is divided into two parts: the first part of the
model learns cross-lingual representations of the audio signal from a large amount of unlabeled data
by pre-training a single model on audio recordings of several languages; the second part uses these
representations to fine-tune a model for a specific language on a small amount of labeled data. Since a
pre-training step is performed, less data is needed for fine-tuning.

The objective of this section and Chapter 3 is to determine to what extent the use of a pre-trained
model on a large amount of data, followed by a fine-tuning on the two low-resource corpora studied1,
allows us to recognize word entities, and to obtain a lower error recognition rate compared to previous
studies based on Kaldi and ESPnet (Adams et al., 2020).

To answer this question, we define some of the terms (see Section 2.1) before explaining state-of-the-art
approaches (see Section 2.2) as well as the proposed XLSR architecture (see Section 2.3). Chapter 3
will present the experiments and the obtained results.

2.1 Self-supervised learning, pre-training & fine-tuning

The principle of self-supervised learning is to acquire background knowledge from a large database and
use it to recognize and understand patterns from a narrowed, less common problem. Self-supervised
learning is a popular topic within the NLP community, including approaches such as word2vec (Mikolov
et al., 2013b), GloVE (Pennington, Socher, and Manning, 2014), XLM-R (Conneau et al., 2019), BERT
(Devlin et al., 2018) and others. Recently, a novel architecture entitled Transformers was presented in
the paper “Attention Is All You Need” (Vaswani et al., 2017). It solves sequence-to-sequence (seq2seq)
tasks by transforming a large quantity of unstructured data into interpretable information sequentially.
This architecture was first successfully introduced in NLP tasks such as machine translation and text
summarization. Several studies showed the applicability of the Transformers architecture in other do-
mains, such as speech recognition (Dong, Xu, and Xu, 2018; Karita et al., 2019) and image processing
(Chen et al., 2021).

1Yongning Na and Japhug.
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Suppose we have an input sequence (words, speech, frames, etc.), the Transformers architecture objec-
tive is to associate each element to a vector representation. The way to define the representations is to
leave aside some part of the sequence (called the hidden parts) with a mask and, then, try to recover
the past or the future hidden sections from the current ones (the observed data). In the case of a
speech audio sequence, Transformers model learns representations of audio frames. Figure 2.1 presents
a speech file cut into n frames, containing 10 milliseconds each.

Figure 2.1: Schema of a speech file cut into n frames, representing 10 milliseconds each.

In the self-supervised learning approach, the first step is called pre-training: the model uses large
amounts of unlabeled data to build a specific model (which predicts the parts that have been masked).
In doing so, the model learns robust representations. Theses representations are then used in a second
step that aims at fine-tuning them for a particular task, such as classifying the topic of a text. In this
step, labeled data are used to “adapt” the model thanks to a standard supervised learning approach
(i.e. minimization of a loss function over a training set).

Before explaining the XLSR model, we present the different state-of-the-art approaches.

2.2 State-of-the-art

Current models in speech processing require large amount of labeled data2 to reach good performances
(Amodei et al., 2016). The pre-training of neural networks, is a viable solution to overcome the scenario
of restricted labeled data (Schneider et al., 2019; Zhang et al., 2021). Learning representations of
speech via pre-training can be done in a supervised (with labeled data)3 or unsupervised4 fashion (with
unlabeled data).

Table 2.1 summarizes the state-of-the-art approaches as well as the corresponding amount of unlabeled
and labeled data used for the training step.

2The order of magnitude here is thousands of hours of labeled data.
3(see Section 2.2.1)
4(see Section 2.2.2)
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Method Unlabeled data size Labeled data size

Supervised pre-training

DNN multilingual (Heigold et al., 2013) - 10k h
SHLMDNN (Huang et al., 2013) - 460 h
Multi-lingual Bottleneck features (Veselỳ et al., 2012) - 125.9 h

Unsupervised pre-training

CPC (Oord, Li, and Vinyals, 2018) 100 h -
Speech2Vec (Chung and Glass, 2018) 500 h -
Wav2Vec large (Schneider et al., 2019) 960 h -
Vq-wav2vec (Baevski, Schneider, and Auli, 2019) 960 h -
Wav2vec 2.0 (Baevski et al., 2020) 960 h -

Table 2.1: Summary of the presented state-of-the-art methods with the corresponding amount of unla-
beled and labeled training data size.

2.2.1 Supervised pre-training

In Heigold et al., 2013, a novel multilingual approach based on deep neural networks (DNNs) is presented
which contains a shared feature extraction module to learn speech representations on a large supervised
corpus. Specifically, the multilingual architecture is made of a language-independent feature extraction
and language specific classifiers. Experiments were conducted by training the network on eleven Romance
languages with a total amount of 10k hours of labeled data. It was shown that using multilingual
training and transfer learning on low resource languages improved the Word Error Rate (WER) by 5%
in comparison to the monolingual training.

In Huang et al., 2013, a shared-hidden-layer multilingual DNN (SHLMDNN) with language -independent
hidden layers and softmax layers dependent from the language is introduced. After the training of this
architecture on a multilingual supervised corpus, the shared hidden layers (SHLs) were used in a cross-
lingual transfer procedure to distinguish phones from a new language. These hidden layers can be seen
as a feature extraction module which carried over phonemic information from multiple languages. It
was demonstrated that the transfer of the learned hidden layers reduced the error recognition of a new
language, whether the language is in the same family as the languages included in the training corpus
or not.

In Veselỳ et al., 2012, a novel language-independent bottle-neck (BN) feature extraction framework
based on Multilingual Artificial Neural Network is proposed. As in the previous studies, the features of
all the source languages are captured by the hidden layers and the output layer models a unique language.
The evaluation of the cross-lingual transfer on 3 languages with a training on a supervised multilingual
dataset showed the effectiveness of the model to produce good bottle-neck features (BN-features) even
for languages that were not included in the training corpus.

Supervised pre-training became highly popular, but a limitation is that it requires huge amounts of
annotated data (parallel corpora of speech and orthographic transcriptions) (Riviere et al., 2020), which
are not available in the case of acutely under-documented languages.
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2.2.2 Unsupervised pre-training

Unsupervised representation learning has the advantage of employing large amounts of unlabeled speech
data (Zhang et al., 2021) to discover a suitable representation of speech frames.

Oord, Li, and Vinyals, 2018 introduces Contrastive Predictive Coding (CPC), an approach able to
extract representation from high-dimensional data in an unsupervised learning frame. With the use of
autoregressive models, representations were taught by predicting the future in the latent space. The
final step to capture information is based on probabilistic contrastive loss which will be more effective
in predicting the future samples. The model was trained using a 100-hour subset of the Librispeech
benchmark dataset. The effectiveness of this approach to learn powerful representations that achieve
strong performances was demonstrated.

Another framework, called Speech2Vec (Chung and Glass, 2018), based on a deep neural network
architecture was implemented to learn a fixed-length vector representation of audio segments. It can be
thought of as a speech implementation of the popular Word2Vec model (Mikolov et al., 2013a) where the
vectors represent the semantic information of the speech utterances. The closer the word embeddings
learned by Speech2Vec skipgrams are semantically, the closer the vectors will be in the embedding space.
This RNN Encoder-Decoder framework was trained on a 500-hour subset of Librispeech and evaluated
on 13 benchmarks datasets. This work demonstrated the robustness of the computed representations
via similarity ratings by humans.

Within the Fairseq sequence-to-sequence toolkit released by Facebook AI, a framework called wav2vec
(and all its variants) (Schneider et al., 2019; Baevski, Schneider, and Auli, 2019) aims to extract
new types of speech representations for acoustic models from raw audio. In more details, wav2vec
(Schneider et al., 2019) is a fully convolutional architecture that takes raw audios as input, and general
representations of speech as output. The pre-training approach consists of two networks that are
stacked on top of each other. The first one, the encoder network f : X 7→ Z, transforms the raw
speech samples xi ∈ X into a feature representation zi ∈ Z every 10 ms with the use of a five-layer
convolutional network. The second, called the context network g : Z 7→ C takes the output of the
encoder network to compute a single contextualized tensor ci. The computed representations are used
to solve a self-supervised prediction task. Precisely, wav2vec generates distractor examples within 10-
second audio clips drawn from a proposal distribution. The objective is to distinguish them from a true
sample that is k steps in the future by minimizing a contrastive loss. Finally, wav2vec is used as an input
to an acoustic model, for example, a grapheme-based ASR model. By learning wav2vec representations
on 1,000 hours of unlabeled speech from the LibriSpeech dataset, and then training a speech recognition
model on these representations, the recognition performances improved as compared to the best-known
supervised ASR models (Deep Speech 2 (Amodei et al., 2016), supervised transfer-learning (Ghahremani
et al., 2017), etc.).

Vq-wav2vec (Baevski, Schneider, and Auli, 2019), a self-supervised learning of discrete speech repre-
sentations ties in with wav2vec, and relies on vector quantized (VQ) representations of audio data. In
this case, the vectors take their value in a predefined set instead of continuous values. In addition to
the two networks from the wav2vec architecture, vq-wav2vec adds a quantization network q : Z 7→ Ẑ,
where Z is a dense representation of the raw audio X, and Ẑ is the quantized representation that will
be used by the context network C. The quantization network uses either K-means clustering or the
Gumbel-Softmax approach (Jang, Gu, and Poole, 2016) as constraints in a Vector Quantized Varia-
tional Autoencoders. A deep bidirectional Transformer model called BERT (Devlin et al., 2018) was
trained on the discretized unlabeled speech data and used as input to an acoustic model. Performances
reached state-of-the-art results on Wall Street Journal (WSJ) dataset. The quantization module makes
it suitable for algorithms that require discrete data.
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The last approach is called wav2vec 2.0 (Baevski et al., 2020), a framework for self-supervised learning
of speech representations. It builds context representations from continuous speech representations
and dependencies are obtained by the self-attention mechanism across the entire sequence of latent
representations end-to-end. Wav2vec 2.0 architecture is explained in Section 2.3.

However, the presented unsupervised pre-training state-of-the art studies focused on monolingual repre-
sentation learning, i.e. the representations are computed for only one language. Moreover, the amount
of training data is much larger than what we have (remember that the number of labeled data is between
5 and 30 hours).

A novel approach called XLSR (Conneau et al., 2019) bases its architecture on cross-lingual learning, an
effective approach for low-resource languages (Lample and Conneau, 2019). Its goal is to build models
that learn meaningful speech representations from multiple languages via pre-training and transfer them
to the target language (Conneau et al., 2020). This form of transfer learning is useful when occurring
between two entities that share some underlying structure. In the case of speech, many languages share
common linguistics structures, from phonemes to tones. This approach builds a single multilingual
speech recognition model, which is competitive with strong individual models. As for the pre-training
approach, XLSR uses the learned representations from wav2vec 2.0, shared across languages. Specifi-
cally, it has been demonstrated that a model pre-trained on 53 languages with more than 56k hours of
unlabeled speech data (XLSR-53) constructs better speech representations that transfer to low-resource
languages (Conneau et al., 2019).

2.3 Model architecture

The first module of the XLSR approach aims at learning cross-lingual speech representations thanks
to wav2vec 2.0 introduced by Baevski et al., 2020 and extended to the cross-lingual setting. We
can divide the architecture into three modules: the feature encoder, the context network, and the
quantization module.

2.3.1 Feature encoder

The feature encoder aims at encoding the input raw audio X into latent speech representations z1, ..., zT
for T time-steps. It consists of a multi-layer temporal convolutional network, a normalization layer (Ba,
Kiros, and Hinton, 2016) and a GELU activation function (Hendrycks and Gimpel, 2016). Temporal
Convolutional Networks (TCNs) can be seen as a variation of Convolutional Neural Networks (CNNs)
for sequence modeling tasks. Several advantages are to be noted: less memory is needed for training in
comparison with recurrent architectures (a lot of memory can be used to store partial results from the
multiple cell gates), inputs of variable length can be handled, and the performances are better than those
of Long Short-Term Memory (LSTM)/Gated Recurrent Unit (GRU) architectures. Layer normalization
has shown a tendency to stabilize the hidden state dynamics, but also to reduce the training time.
The GELU activation function is used here to enable faster and better convergence of the network. A
normalization step to zero mean and unit variance is performed over the raw input audio. The feature
encoder takes the raw speech as input because better performances were demonstrated in comparison
to spectral feature based system with CNN-based systems (Palaz, Collobert, et al., 2015). Finally, the
T time-steps are defined by the total number of strides of the encoder, and that will be fed as input to
the context network.

CC BY-SA 3.0 fr page 20



CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

Figure 2.2: Illustration of the XLSR model which learns contextualized speech representations. A
quantization module over feature encoder representations produces multilingual quantized speech units
whose embeddings are then used as targets for a Transformer trained by contrastive learning. The
approach uses as input the raw multilingual unlabeled speech data. Reproduced from Baevski et al.,
2020.

2.3.2 Contextualized representations with Transformers

The context network is implemented with a Transformer architecture (Vaswani et al., 2017; Devlin
et al., 2018; Liu et al., 2019). The goal here is to learn contextualized representations c1, ..., cT from
the latent speech representations z1, ..., zT . Contextualized representations of each speech frame is the
concatenation of the left-to-right and right-to-left representations. The major benefit is to take into
account the context, which results in building more powerful representations.

The following explanation is based on blog posts from Jay Alammar5 and Olivier6. The Transformer
architecture contains two main components:

• a stack of encoders (six on top of each other),

• a decoding module with a stack of six decoders.

The general idea of the encoder-decoder is to build contextualized representations of speech frames.
Their definition depends on all the other frames in the sequence. To do so, the network will employ
an attention mechanism where it will learn to look at relevant parts of the sequence to build the
representations by combining the linear representations of the other speech frames associated to the
learning weights.

Specifically, the encoders contain two sub-layers. The first one, the self-attention layer will focus on
other frames in the input sequence during the encoding of a specific frame. By looking at other positions

5https://jalammar.github.io/illustrated-transformer/
6https://ledatascientist.com/a-la-decouverte-du-transformer/
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in the input sequence, the self-attention layer will then be able to find clues to best encode. The output
of this layer will be fed into a feed-forward neural network layer. The decoder follows the same structure
but an attention layer is added between the two, which goal will be to help focusing on relevant parts
of the input sequence.

In the XLSR approach, a convolutional layer encodes the latent speech representations into relative
positional embeddings (a list of vectors). This step takes place in the first encoder of the stack. The
other encoders will take the output of the preceding encoder as input. This list of vectors will then be
processed by the two layers of the encoder mentioned earlier.

The particularity of the Transformer architecture is the use of a multi-head attention mechanism. Its
purpose is to have multiple representation spaces that prevent the representation from being totally
biased if one layer (head) of attention is.

The self-attention layer creates three vectors for each input vector (the embedding):

• a ‘Query’ vector q,

• a ‘Key’ vector k,

• and a ‘Value’ vector v.

Each vector (q, k, and v) is defined by the multiplication of the embedding with three matrices (Q, K
and V ) obtained during the Transformer training process. Each frame from the input sequence will be
assigned with a score. The score is calculated by the dot product between the query vector and the key
vector and is then divided by the square root of the dimension of the key vectors. This division ensures
a stable gradient by minimizing the result of the dot product. A softmax normalization is performed to
get a score between 0 and 1. It will give the probability of the ith frame. Finally, each value vector v
will be multiplied by this softmax score before being added up. At each time step, the self-attention
layer will produce an output.

Each sub-layers which constitutes the encoders, as well as for the decoders has a residual connection
followed by a layer-normalization.

The output of the top encoder is transformed into a set of attention vectors k and v that will be
processed by the decoding module (i.e. by each decoder layer). The decoder will therefore be able to
focus its attention on the relevant information from the input sequence. Finally, as for the encoding
module, the output of each decoder is fed into the next decoder in the stack.

The result of the Transformer network g : Z 7→ C is the contextualized representations from the speech
inputs.

2.3.3 Quantization module

The last module of the XLSR approach is the use of a quantization module Z 7→ Q which takes the
latent speech representations computed by the feature encoder z and transforms them into a finite set
of speech representations via product quantization (Jegou, Douze, and Schmid, 2010). As in Baevski,
Schneider, and Auli, 2019, the original representation z is replaced with this quantization module by
ẑ = ei from a fixed size codebook e ∈ RV×d where V is the number of representations of size d. In the
XLSR model, G = 2 codebooks with V = 320 entries each were chosen. The discretized representation
q are obtained via the concatenation of the resulting vectors e1, ..., eG.
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2.3.4 Unsupervised representation learning (pre-training) with wav2vec 2.0

To pre-train the model, a contrastive task is resolved over masked latent feature encoder outputs
(proportion of time-steps), similarly to the masked language modeling in BERT (Devlin et al., 2018). In
other words, for each masked time-step, the objective is to correctly identify the quantized latent audio
representation from a set of distractors.

Masking

To be more specific, after masking some time-steps of the feature encoder outputs, they will be fed to
the context network. However, the quantization module does not use the masked inputs. To define the
latent speech representations that will be masked, one defines the starting indices by randomly sampling
some proportion p of all time steps. The consecutive time steps M are then masked from every sampled
index.

Objective

The objective here is to solve a contrastive task Lm the principle of which is based on the identification
of the true quantized latent speech representations from a set of distractors for a given masked time
step. In other words, the learning of speech audio representations is given by the formula:

L = Lm + αLd (2.1)

where Lm is the contrastive loss, Ld corresponds to the diversity loss and α is a tuned hyperparameter.

Given the context network output ct from a t time-step, the contrastive loss is defined as

Lm = − log exp(sim(ct, qt)/k)∑
q̃∼Qt

exp(sim(ct, q̃t)/k)
(2.2)

where qt is the true quantized latent speech representation, q̃ ∈ Qt is the set of quantized candidate
representations with K distractors and sim(ct, b) is the cosine similarity between context representations
ct and the quantized latent speech representations (He et al., 2020; Chen et al., 2020). To increase the
use of quantized codebook representations, the diversity penalty Ld is introduced (Dieleman, Oord, and
Simonyan, 2018).

The entropy of the averaged softmax distribution is maximized over the codebook entries for each
codebook p̄g across a batch of utterances with,

Ld =
1

GV

G∑
g=1

−H(p̄g) =
1

GV

G∑
g=1

V∑
v=1

p̄g,v log p̄g,v (2.3)

where G is the number of codebooks, V the number of entries, and H the entropy.

The pre-training involves the definition of multilingual batches (Devlin et al., 2018; Lample and Conneau,
2019) because the model learns contextualized representations over L languages. The batches are
computed by the sampling of the speech samples from a multinomial distribution (pl)l=1,...,L where
pl ∼ (nl

N
α) with nl, a language’s l number of pre-training hours, N , the total number of hours, and α,

the upsampling factor, i.e. the weight given to high-resource languages versus low-resource languages.
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2.3.5 Fine-tuning

Fine-tuning is the part on which the experiments will be based. This step comes after the pre-training
of a model on multiple languages. The fine-tuning for speech recognition involves a vocabulary, with C
classes (i.e. the number of tokens). The vocabulary is added on top of the context network thanks to
a randomly initialized linear projection (Baevski, Auli, and Mohamed, 2019). A classifier on top of the
model will represent the output vocabulary, trained on labeled data thanks to a Connectionist Temporal
Classification (CTC) loss (Graves et al., 2006).

Connectionist Temporal Classification (CTC)

To give an insight of how the CTC algorithm works, we will base our explanation on Hannun, 2017.
Connectionist Temporal Classification is an approach to be considered when the alignment between the
audio and the transcription is unknown. Given input sequences X = [x1, x2, ..., xT ] such as audio, and
output sequences Y = [y1, y2, ..., yU ] such as transcripts, the goal is to find the optimized mapping from
X to Y . Some challenges are encountered but can be overcome by the CTC algorithm, for example,
the variable lengths of the sequences or the variation of the ratio of lengths of X and Y . An output
distribution over all possible Y is computed over a given X. This distribution can be used in two ways:
the first one to infer a likely output, and the second one, to evaluate the probability of a given output.

The algorithm works in the following way: the probability of an output from an input is computed by
adding up the probability of all possible alignments between the two. In a naive approach, an output
character will be assigned to each input step. For example, we can consider an input of length 8 and
Y = [b, o, a, t]. A possible alignment can be seen in Figure 2.3.

Figure 2.3: Illustration of the naive algorithm. An output character is assigned to each input character
based on a computed probability.

However, in the case of speech recognition, the speech contains silences or sounds that do not correspond
to a specific output. Moreover, it does not take into account an output with multiple characters. For
example, the alignment [b, b, u, u, b, b, b, l, e, e] will be considered as ‘buble’ instead of ‘bubble’. In the
CTC approach, a new token, the blank token ϵ is introduced in the set of allowed outputs. Therefore,
the alignments produced by the CTC approach are of the same length. At the end, blank tokens as well
as repetitions will be removed.
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Figure 2.4: Illustration of a valid alignment produced by the CTC for a given input sequence X =
[x1, x2, ..., xT ]. The blank token ϵ is introduced.

In Figure 2.4, a valid alignment must have a blank token between two identical characters. Several
advantages are notable. The alignments betweenX and Y are monotonic, meaning that we are assuming
that source and target sequences are roughly monotonically aligned. Also, the alignment can be described
as many-to-one, because one or several input elements can be aligned to the same output character
whereas the opposite is not true. Therefore, the length of Y can be larger than the one of X.

The CTC objective is defined as:

p(X|Y ) =
∑

A∈AX,Y

T∏
t=1

pt(at|X) (2.4)

where pt(at|X) is the probabilities per time-step and the sum marginalizes the probabilities over the
set of valid alignments. The probabilities are estimated with a deep neural network, that will take into
account the context from the input. The CTC-loss is time and resource expensive, the use of a dynamic
programming algorithm overcomes this challenge by merging the alignments that have reached the same
output at the same time step. Let’s take the example of a sequence Z = [ϵ, y1, ϵ, y2, ..., yU , ϵ]. We
define α, the CTC score of the merged alignments (the subsequence Z1:s) after t time step. The final
CTC score will be obtained by the last time-step α, if and only if the previous α time-step score is
known.
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Figure 2.5: Illustration of the dynamic programming algorithm computation. Two starting and ending
nodes are possible (ϵ is optional) (Hannun, 2017).

Figure 2.5 shows how the computation is performed by the dynamic programming algorithm, where two
starting and ending nodes are possible (ϵ is optional). The resulting probability is the sum of the two
final nodes. The loss function is computed efficiently.

The following steps involve the computation of the gradient and the training of the model. Specifically,
the gradient of the loss function is computed thanks to the unnormalized output probabilities. Let’s
define a training set D, the negative log-likelihood is minimized by the model’s parameters tuning defined
by ∑

(X,Y )∈D

− log p(Y |X) (2.5)

Finally, the last step is to find the output at each time step that maximize the probability for a given
input. Specifically, the alignment with the highest probability is defined by

A∗ = argmaxA

T∏
t=1

pt(at|X) (2.6)

The resulting alignment comes up with the deletion of repetitions and blank tokens.
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Chapter 3

Experiments

The experiments carried out during this work involve two labeled datasets that will be described in
Section 3.1. Their goal was to determine the feasibility of fine-tuning the XLSR model on two“under-
resourced language”corpora and evaluate the performances of the trained models. To do so, a specific
pipeline was constructed that relies on the HuggingFace library. This library provides pre-trained models
(and in particular the XLSR-53 model described in the previous chapter1) as well as an high-level API
to fine tune these models. Our pipeline is based on the tutorial provided by HuggingFace2 to fine tune
the XLSR model.

We first introduce the datasets and the languages used in our experiments (see Section 3.1). We continue
with a detailed description of the pipeline (see Section 3.2), the evaluation metrics (see Section 3.3),
and the results (see Section 3.4). The two last sections present experiments linked to the beam search
algorithm (see Section 3.5) as well as complementary experiments (see Section 3.6).

3.1 Datasets

As the objective is to build a system able to automatically transcribe speech into words in a low-resource
context, we focus on two corpora to fine-tune the XLSR model, the Yongning Na and the Japhug corpora.
The data are available in the Pangloss Collection (CNRS, 2021a). This collection was initiated in 1995 by
the Lacito to provide an online storage for endangered language recordings, with a view to safeguarding
and making available the linguistic heritage (Michailovsky et al., 2014). This collection is anchored in
a desire to make science as widely available as possible (open science). It allows the conservation and
referencing of researchers’ work through time as well as unlimited access to this work for all. To give a
few figures, more than 3,600 audio recordings are available from 170 languages across the world. The
audio recordings range from storytelling and songs to conversations and recipes. More than half of the
recordings have transcriptions, which is the case for the two languages considered in our work, Yongning
Na (see Section 3.1.1) and Japhug (see Section 3.1.2).

1https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html
2This tutorial is available at https://huggingface.co/blog/fine-tune-xlsr-wav2vec2
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3.1.1 Yongning Na

Yongning Na (CNRS, 2021c) (also known as Narua and Mosuo) is a language spoken on the border of
China’s Yunnan and Sichuan provinces around Lake Lugu (泸沽湖) (see Figure 3.1).

Yongning Na belongs to the Naish group of the Sino-Tibetan family. Around 47,000 speakers of
Yongning Na were estimated in the Ethnologue database, based on the Summer Institute of Linguistics’
own sources (Lewis and (eds.), 2016), but this number is continuously decreasing as more and more
people communicate using China’s main language (standard Mandarin). The resources were collected
by Alexis Michaud. The corpus contains recordings of a single speaker: Dashilame Latami. The vast
majority of the resources were recorded in the Yongning plain (永宁). A detailed description of the
language can be found in Michaud, 2017.

Figure 3.1: Map of the Yongning area. Designed by Jérôme Picard. Sources: Geofabrik, ASTER GDEM
(a product of METI and NASA) and OpenStreetMap (Michaud, 2017).
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3.1.2 Japhug

Japhug (CNRS, 2021b) is spoken by a minority of about 10,000 people living in the Tibetan part of
Sichuan (see Figure 3.2) (Jacques, 2015). These resources were collected by Guillaume Jacques, a
CNRS researcher specialized in the descriptive and historical linguistic of Sino-Tibetan languages. The
work on this language began in 2002, and many publications are available on this subject, notably on
the “Phonology and morphology of Japhug (rGyalrong)” (Jacques, 2004) and a Japhug-Chinese-French
dictionary (Jacques, 2016). Most of the recordings are from a single speaker, Tshendzin, but other
speakers were also recorded. A comprehensive description of the language can be found in the recently
published book entitled “A grammar of Japhug” (Jacques, 2021).

Figure 3.2: Location of the Japhug spoken community living in the Tibetan part of Sichuan (Google,
2021a).

Both corpora contain pairs of audios and their transcriptions: the audio are in WAV format with a
corresponding IPA-based transcription in the XML format. Each transcription includes sentence-level
timecodes. Timecodes are useful in the case of automatic speech recognition because it is easy to
recover small audio segments, as the model can only encode very short ones (up to 30 seconds).
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Figure 3.3: Example of an XML transcription. The <HEADER> describes the title and the soundfile
name. The <S> tag refers to a specific sentence with the corresponding timecodes.

Figure 3.3 shows an example of a transcription associated to an audio recording. The tag <S> indicates
the beginning of the sentence and </S> indicates the end. In between, we find the timecodes defined
with an <AUDIO> tag, and the transcription in International Phonetic Alphabet (IPA) written in a <FORM>
tag.

Table 3.1 presents the statistics associated to each corpus.

Corpus Yongning Na Japhug
Number of files 57 <audio, xml> 357 <audio, xml>
Number of sentences 2,484 31,864
Total duration (in minutes) 209.52 (≈ 3h30) 1907.57 (≈ 31h47)
Number of speakers 1 female speaker 2 male and 2 female speakers

Table 3.1: Corpus information and statistics.

The key differences between the two are the size of the corpora. The Na corpus has less than 4 hours
of recordings corresponding to a “typical” situation for a low-resource language. In opposition, Japhug
corpus has over 30 hours of labeled audio recordings, but is still much lower than the benchmark datasets
in ASR. Furthermore, there are multiple speakers in the Japhug corpus, but only a single one in the
Na dataset. It is worth noting that most of the corpora in the Pangloss Collection have very few or
no annotated audio files, and very limited resources (a few minutes recorded). The use of these two
corpora will allow us to have an upper bound on the performance of the XLSR approach. Moreover, the
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field linguists, experts of these two languages, were ready to collaborate and to give us feedback on the
outputs generated by the model.

3.2 Pipeline

Figure 3.4 gives an overview of our pipeline. The first steps consists in preprocessing the data (see
Section 3.2.1). The vocabulary is then defined from the transcriptions (see Section 3.2.2). The text
is tokenized and the features are extracted from the speech files (see Section 3.2.3). The pretrained
model is loaded and fine-tuned on the previously processed data (see Section 3.2.4). The final phase is
the generation of the predictions, namely the decoding step.

Preprocessing the
data (audio &
transcriptions)

Extraction of the
vocabulary from
the transcriptions

Tokenization
of the text

Feature extrac-
tion of speech

Load the pre-
trained model

Fine-tuning

Generate predic-
tions (decode)

Figure 3.4: Pipeline developed in the context of this work to fine-tune a pre-trained XLSR model on the
two studied low-resource corpora, Yongning Na and Japhug.

3.2.1 Preprocessing

A preprocessing step is required to fine-tune the XLSR model pretrained on 53 languages. The model
requires the use of high quality speech files (no background noises, silences, etc.). Transcriptions should
be aligned at the sentence level with the corresponding audio, and cleaned (by removing the punctuation

CC BY-SA 3.0 fr page 31



CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

or converting the transcriptions to lowercase, for instance).

More precisely, the preprocessing consists of the following steps:

• Each audio file is cut according to the corresponding sentence segments in the transcription, which
creates a .tsv file (see Appendix A.1 for details),

• The data are split into train, validation, and test sets, which represent respectively 70, 15, and
15% of the total amount of data,

• The transcriptions are then ‘cleaned’ before fine-tuning the pretrained model. Cleaning consists
first in removing punctuation marks, spaces and line breaks. Without a language model, it is
much harder to classify speech chunks to special characters because they do not correspond to
a specific sound unit. Then, some language-specific preprocessing rules are applied. These rules
require knowledge of the conventions used to annotate the corpus. For instance, the Na corpus
contains specific characters such as ‘...’ or ‘↑’ that have to be removed, as well as the transcriptions
between square brackets [...]. These rules were inspired by the ones developed by Oliver Adams
in persephone3 (Adams et al., 2018). For the Japhug corpus, specific rules were developed to
remove comments by the linguist (such as (superlative), (causative), etc.). The corpus
contains small portions of speech in Chinese, transcribed in Chinese characters. We made the
choice to keep these information because removing them would result in a mismatch between the
audio and the transcription. Finally, the space between words is replaced by ‘|’.

As an example, the sentence from the audio file entitled “Dog: How dog and man exchanged their
lifespan (version 2)”4 from the Na corpus:

Ref: ʈʂʰɯ˧ne˧-ʝi˥ | tʰi˧-tɕɯ˧-ɲi˥-tsɯ˩ ◊ -mv̩˩. |

becomes:

Ref_processed: ʈʂʰɯ˧ne˧ʝi˥|tʰi˧tɕɯ˧ɲi˥tsɯ˩|mv̩˩

Ref stands for the reference sentence, i.e. the initial sentence from transcription. Here, the ‘|’ refers
to a tone group boundary, not a word boundary. Ref_processed is the sentence resulting from the
preprocessing, and the sentence that we want to retrieve using the model. As we see, the hyphen is
deleted, as well as the ‘◊’ and the tone group boundary, which do not refer to a specific phoneme.

3.2.2 Definition of the vocabulary

For each corpus that will be used during the fine-tuning of the pretrained model, a vocabulary is
generated and is fed to the tokenizer5. The vocabulary is the list of symbols (or tokens) that will be
recognized by the model. The model will be able to predict the tokens during the decoding process
powered by the CTC module (see Section 2.3.5). We do not consider phoneme units but character
units. Here, a phoneme is encoded in several units if the phoneme contains multiple characters (e.g. ʈʂʰ

3https://github.com/persephone-tools/persephone/blob/master/persephone/datasets/na.py
4https://doi.org/10.24397/pangloss-0004660#S21
5https://huggingface.co/transformers/model_doc/wav2vec2.html#wav2vec2ctctokenizer
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encoded into 3 units ʈ, ʂ, and ʰ). As the model needs to learn how to predict word boundaries (or else
the model would print a sequence of characters, which is not our goal here), the space is encoded into
a special character. We chose the same as in the tutorial: a pipe symbol ‘|’.

The vocabulary size is 57 for Na and 92 for Japhug. This vocabulary includes two special tokens: [UNK],
the unknown token (to deal with characters not encountered in the training set), and [PAD], the token
used for padding (a main component of the CTC algorithm).

3.2.3 Tokenizer and feature extractor

The tokenizer’s goal is to convert the text into the corresponding token IDs. It will also process the
model’s output format to text. The tokenizer takes as arguments the vocabulary file, the [UNK] token,
the [PAD] token, and the word delimiter token | . The feature extractor transforms the speech signal
into the model’s input format. The following arguments are taken into account:

• the feature size — the input of speech models are a sequence of feature vectors. While the
duration of this sequence will certainly vary, the size of the features should not. With wav2vec
2.0, the feature size is 1 because the pre-trained model used raw speech signal.

• the sampling rate — this value has to be set according to the sampling rate on which the model
is pre-trained.

• the padding token ID value,

• do_normalize — decides whether the input should be normalized (zero-mean-unit-variance) or
not. In the case of speech models, the performances are better when the input is normalized.

• return_attention_mask — influences whether the model should use an attention mask for batched
inference (which is the case with the XLSR model) or not.

If we take the example of a Japhug sentence,

stu kɯwxti chondɤre nɯ ɯpa nɯ tɯlɤt ni wuma ʑo pjɤɕqraʁndʑi

the tokenizer will convert it into a sequence of token ids [25, 11, 15, 47, 20, 34, 23, 5, 11, 26, ...] and the
feature extractor will extract the features from speech as a sequence of vectors of floats.

3.2.4 Fine-tuning

The XLSR model is pretrained on 53 languages before being fine-tuned on one of the two corpora
considered in the present work (Japhug and Na). The pretrained model was trained with resources from
3 corpora:

• the Multilingual LibriSpeech dataset (Pratap et al., 2020) which includes 8 languages and 50k
hours of audio files,

• the CommonVoice corpus6, a multilingual corpus of read speech containing more than two thou-
sand hours of speech data in 38 languages (Ardila et al., 2019),

6https://voice.mozilla.org/en/languages
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• and the Babel corpus7, a multilingual corpus of conversational telephone speech from IARPA, with
Asian and African languages. In this case, resources from 10 languages were considered (Gales
et al., 2014).

Table 3.2 reports the hyperparameters and the training arguments used to fine-tune the model. The
values of these parameters are those recommended in the HuggingFace documentation.

parameter value
pretrained model wav2vec2-large-xlsr-53
attention_dropout 0.1
hidden_dropout 0.1
feat_proj_dropout 0.1
mask_time_prob 0.075
layerdrop 0.1
ctc_loss_reduction mean
train_batch_size 8
num_train_epochs 60
fp16 True
learning_rate 3e-4

Table 3.2: Value of the hyperparameters used to fine-tune the XLSR model.

3.3 Evaluation metrics

Two evaluation metrics were used to track the performances along the training time: the Word Error
Rate (WER)8 and the Character Error Rate (CER)9 (Morris, Maier, and Green, 2004). These are two
standard metrics used to evaluate automatic speech recognition systems. The distance between the
hypothesis of the model and the reference sequence is computed as the lowest number of modifications
required to correct one into the other. These measures are derived from the Levenshtein distance.
Dynamic string alignment is performed to align the sequence predicted by the ASR system (hypothesis)
and the reference sequence. The lower the value, the better the performance of the ASR system. Note
that the spaces predicted by the model are used to identify the words. This is why space is a specific
character in the vocabulary.

The WER works on the word-level and is defined as follows:

WER =
S +D + I

N

=
S +D + I

S +D + C

(3.1)

where S is the number of substitutions, D the number of deletions, I the number of insertions, C the
number of correct words and N = S +D + C.

7https://catalog.ldc.upenn.edu/byyear
8https://huggingface.co/metrics/wer
9https://huggingface.co/metrics/cer
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The following example (A) gives a reference sentence, and a corresponding hypothesis that could be
predicted by an ASR model.

Ref: kɯki nɤki qaliaʁ lɯlu phaʁrgot nɯra ɲɯŋu
Hyp: kɯki nɤki qaliaʁ lɯlu

Here, we can see that the ASR model predicted 3 deletions, emphasized in red:

WER =
0 + 3 + 0

7

=
3

7
≈ 42.8%

(3.2)

The CER is computed on the character level. It follows the same formula (3.1) but C describes the
number of correct characters, and N corresponds to the number of characters in the reference sentence.
In this case, for example (A), the ASR model, on the character level, predicted 19 deletions:

CER =
0 + 19 + 0

40

=
19

40
= 47.5%

(3.3)

Considering another example (B):

Ref: iɕqha nɯ kupa ɣɯ nɤki tɕhaŋkha nɯ tɕe fse wo
Hyp: iɕqha nɯ kupa ɣɯ nɤki tɕhaŋkha nɯ tse se wo

, the ASR model applied, on the word level, and on the character level, 1 substitution and 1 deletion,
given in red, where:

WER =
1 + 1 + 0

10

=
1

5
= 20%

(3.4)
CER =

1 + 1 + 0

44

=
1

22
≈ 4.54%

(3.5)

A final metric was defined, but only used to assess the performance of the Na model on the test set, the
Phoneme Error Rate (PER). It is based on the same principle as the two previous metrics, but the PER
is computed on the phoneme-level where C is the number of correct phonemes, and N is the number of
phonemes in the reference sentence. The PER was not computed for the Japhug because this language
consists of 8 vowels and 50 consonantal phonemes, all occurring as simple onsets (Jacques, 2021). In
this case, the PER of the Japhug corresponds to the CER value. The following example gives a reference
sentence cut into phoneme units, with the corresponding hypothesis that can be produced by an ASR
model. Here, <S> defines a space.

Ref: m ɤ ˧ b i ˧ z e ˧ <S> ə ˧ z ɯ ˩ <S> h ĩ ˧ <S> tɕʰ i ˧ <S> tʰ ɑ ˧ m ɤ ˧ ʝ i ˧ z e
Hyp: m ɤ ˧ b i ˧ z e ˧ <S> ə ˧ z ɯ ˩ <S> h ĩ ˧ <S> tɕʰ i ˧ <S> tʰ ɑ ˩ m ɤ ˩ ʝ i ˩ z e

In this case, the ASR model made 3 substitutions where:

PER =
3 + 0 + 0

32

=
3

32
≈ 9.37%

(3.6)
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3.4 Results

This section presents the results of the experiments described above. In Section 3.4.1, we report the
performances on the test sets on both corpora. The results are supplemented with several examples to
determine the sources of possible errors from the model predictions. The phoneme error rate associated
with the Yongning Na experiments is explored in Section 3.4.2.

3.4.1 Performances on the test sets

The main objective is to build ASR systems that can recognize word-level entities in a low-resource
context. To do so, the pre-trained xlsr-53 model was fine-tuned on different dataset sizes from the
Yongning Na and Japhug corpora. The performances were evaluated on the test data, respectively 32
minutes for the Na, and 21 for the Japhug. The WER, the CER and the PER are reported in Table 3.3.

Model Training size (in minutes) WER (%) CER (%) PER (%)

xlsr-na-180 180 41.51 7.97 6.59
xlsr-jya-600 600 18.56 7.44 -

Table 3.3: WER, CER, and PER on the Na test set when training on Na low-resource labeled data
setups of 180 minutes. WER and CER on the Japhug test set when training on Japhug low-resource
labeled data setups of 600 minutes.

Previous work (Adams et al., 2020) reports CER scores on the same corpora but with different training
and test sets with ESPnet, an end-to-end neural network-based speech recognition toolkit (Watanabe
et al., 2018). For Na, our model (xlsr-na-180) outperforms ESPnet by more than 7 percentage points
(pp) with a CER of 7.97% while ESPnet achieves a CER of 14.5%. The performance on the Japhug
increased by 5.36pp, from 12.8% with ESPnet to 7.44% with the best proposed model xlsr-jya-600.

The CER scores of both models are very low, which makes their use in “real life” possible.

We see in the examples below the prediction from the xlsr-na-180 model of a reference sentence.
Complementary predictions can be found in the Appendix (see Figure A.2).

The first one, below, will help identify the type of errors encountered on phonemes and the correctness
of word boundaries definition.

Ref: ɖʐe˧ dʑɤ˩˥ ɖɯ˧mɤ˧kv̩˧tsɯ˥ mv̩
Hyp: ɖʐe˧ tɕɤ˩˥ ɖɯ˧mɤ˧kv̩˩tsɯ˥ mv̩

We use a red font to highlight the differences between the two strings. We notice the error on two
phonemes, but especially the wrong prediction of the Mid tone ˧ into a Low tone ˩. However, boundaries
between words are well-defined. It is not the case in the second example in which two words are combined:

le˧dʑi˧se˥dʑo˩
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The last example shows a word that is split into two parts in the prediction:

ʝi˧lv̩˧ kv̩˧˥z

To get a better idea of how many times spaces are incorrectly predicted, and thus, of how many times
words are incorrectly defined on the test set, we calculated the number of insertions and deletions
associated to the space. These are reported in Table 3.4.

Model Correct spaces Number of insertions Number of deletions

xlsr-na-180 2686 186 182

Table 3.4: Number of correct spaces, insertions and deletions associated to word boundaries observed
on the test set of the xlsr-na-180 model.

374 sentences make up the test data. To give an order of magnitude, in almost all test sentences, two
words are combined, or one word is split into two parts. There is a high error rate specifically for the
definition of space.

Here are some hypotheses predicted by the xlsr-jya-600 model (complementary results are reported
in Appendix A.3):

Ref: tɤmu kɤtsa ci pjɤtundʑi tɕe
Hyp: tɤmɯ kɤtsa ci pjɤtu tʑɕe tɕe

Ref: tɕendɤre nɤki tshɤ tshɤnmu nɯ tɤrga kɯ pjɤsɤre
Hyp: tɕendɤre nɤki tshɯ tshɤtnmu nɯ tɤrga kɯ pjɤsere

The same error is observed for the word prediction where one word is split into two parts for the first
Japhug example. We also specified the number of errors associated to the definition of space in Table
3.5.

Model Correct spaces Number of insertions Number of deletions

xlsr-jya-600 2460 160 100

Table 3.5: Number correct spaces, insertions and deletions associated to word boundaries observed on
the test set of the xlsr-jya-600 model.

For the Japhug, 350 sentences are in the test set. To approximate, about one third of sentences contain
a space insertion or deletion. In general, the error rate at the space level is quite low for Japhug.

Another statement is the misprediction of vowels from the second Japhug example: ɤ predicted into ɯ
and ɤ predicted into e.
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When analyzing the predictions of the fine-tuned models in more detail, two major observations were
made:

• the main incorrect predictions for the Na come from the tones (uni tones and bi tones),

• wholly mistaken assumptions of Japhug reference sentences, meaning that the audio does not
match the reference sentence.

To support these comments, we conducted two other evaluations (cf. Table 3.6) by removing the tones
for the first one (thanks to a python script), and removing the sentences with non-matching audio
and transcriptions. This last step was done manually, by listening to the audio corresponding to a test
sentence for which the reference and hypothesis were in red, for example:

Ref: cai ɯjwaʁ ɯtaʁ ri ɲɯβze ɲɯŋu
Hyp: bɣɤʑu qhe ʑɯrɯʑɤri

Model Experiment WER (%) CER (%)

xlsr-na-180 Removing tones 33.78 7.27
xlsr-jya-600 Removing unmatched <audio,transcription> 17.21 6.22

Table 3.6: WER and CER on the test set by removing tones from the predictions of xlsr-na-180 model,
and by removing unmatched audio-transcription pairs from the predictions of xlsr-jya-600 model.

By comparing with the results from Table 3.3, the CER of the Na decreases from 7.97% to 7.27%.
The difference is of over 1 point for the CER of the Japhug: from 7.44% down to 6.22%. We made
the choice not to delete sentences with one or two missing words in the transcriptions even though it
generates a higher error rate, because this kind of error was not just occasional and correcting it would
have been very cumbersome. For instance:

Ref: ɯku ɯtaʁ kutɯtɯɣ ʑo tɕe tɕendɤre
Hyp: ra ɲɤsɯso ri ɯku ɯtaʁ kutɯtɯɣ ʑo tɕe tɕendɤre

3.4.2 Phoneme Error Rate

The last but not least evaluation was conducted on the phonemes (on the Na data only). To be more
specific, the Na corpus contains uni-phones such as ə or ʑ, bi-phones such as dʑ or jæ, and tri-phones
such as tɕʰ or wæ̃. To compute the PER, we decided to plot a confusion matrix where each row cor-
responds to a phoneme from the reference matched with its predicted phoneme. This method is easy
to implement and useful to see how each phoneme was predicted. Because of the matrix size [23,606
× 23,606], the algorithm only retrieves the phonemes that were incorrectly predicted or the confusion
matrix of a specific filled in phoneme.
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Table 3.7 below shows examples of reference phonemes and their predicted phonemes. The star symbol
∗ is a mark of deletions and substitutions.

Ref. phoneme Pred. phoneme Ref. phoneme Pred. phoneme
* <space> k* kʰ
** ɻ ̍ ŋ g
*dʑ ʈʂʰ ˩ ˧
*z dz ʈ*ʰ ʈʂʰ
*ɑ wæ p b
*ʂ ʈʂ p* pʰ

mmm... *mm... i ɯ
əəə... əə*... ɑ ɤ

Table 3.7: Examples of reference phonemes and a corresponding example of a prediction by the model.

Some interesting errors are the definition of spaces, the hesitations, and some vowels and tones. In
Figure 3.5, we can see the confusion matrix computed for the specific phoneme ˩˥. We clearly see how
the phoneme was predicted. In most cases (i.e. 328 times), the phoneme was correctly predicted.
However, in a few examples, the hypothesis made by the model is wrong. In 8 cases, ˩˥ became ˧˥, and
in 7 cases, it became a single tone ˩.

Figure 3.5: Confusion matrix of the reference phoneme ˩˥ and its predictions.

We have seen that the predictions made by the model contain several issues. Several methods to improve
the error rate specifically at the word level will be presented in Section 3.5.
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3.5 Beam search decoding

As seen in Section 2.3.5, the CTC decoder makes a conditional independence assumption over the
characters in the output sequence (Viterbi lattice) at each timestep t. Greedy search, the default
method, is an algorithm that will select the token with the highest probability of the n-th window from
a CTC matrix, knowing the previously predicted tokens. It is defined as:

wt = argmaxwP (w|w1:t−1) (3.7)
where wt is the token probability at timestep t.

However, Greedy search’s main limitation is the lack of consideration for other alignments that could
have a much higher probability. Let’s suppose we have the alignments [a, a, ϵ] and [a, a, a]. They
individually have lower probability than [b, b, b], but the sum of their probabilities is higher. Greedy
search will predict Y = [b] as the best hypothesis, at the expense of [a]. Thankfully, the beam search
algorithm alleviates this problem where the algorithm states that [a, a, a] and [a, a, ϵ] result in the same
output.

3.5.1 Top k hypotheses

Beam search algorithm keeps a fixed number of beam hypotheses at each time step. Hidden high
probability word sequences are less likely to be missed. For example, if we take a beam size of 4, at
each time step, the algorithm will keep track of the 4 most likely hypotheses. Another feature that is
available in the beam search method is the generation of the top beams. Simply, instead of printing the
best hypothesis, we can set the k parameter corresponding to the number of the highest scoring beams
that should be returned.

The WER and the CER oracle scores are computed on this top k prediction list, where Table 3.8 describes
the oracle scores by using the xlsr-na-180 model, and by the xlsr-jya-600 model. Let us suppose
that, for N input sentences, the beam search algorithm generates k hypotheses. In total, it creates
N × k predictions. For each input sentence, the oracle method takes the prediction that maximizes the
CER and WER scores over the list of k hypothesis. Finally, the CER and WER are computed on this
new set of hypotheses list of size N . The oracle score gives an upper bound on the gains that can be
achieved during the CTC decoding with beam search.

Model K Oracle CER (%) Oracle WER (%)
xlsr-na-180 50 7.05 36.51

100 6.88 35.54
150 6.78 35.05
200 6.71 34.5
250 6.67 34.2

xlsr-jya-600 50 6.81 16.41
100 6.65 15.79
150 6.56 15.61
200 6.50 15.53
250 6.46 15.31

Table 3.8: Oracle WER and CER scores on top k hypotheses with the xlsr-na-180 and the xlsr-jya-600
models on the test sets.
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The hypotheses generated by the top k beam search decoding algorithm show an overall improvement
of 1 pp for the CER for both models in comparison with the results from Table 3.3 (6.67% against
7.97% of CER for the Na, and 6.46% against 7.44% of CER for the Japhug).

The WER score gains more than 6 pp for the Na (34.2% against 41.51% on Table 3.3), and over 3 pp
for the Japhug (15.31% against 18.56% in Table 3.3). Moreover, the greater the number of hypotheses
generated, the better the performance.

The tool VisTools created by OpenNMT provides a visualization of the top k beam search output. We
adapted the code to fit our implementation. The core of the implementation is a Python script, which
takes a json file as input with three pieces of information for each hypothesis: the predicted IDs of the
tokens, the scores associated to each token, and the tokens. The output file is in an HTML format,
which must be opened in a browser. The first node is the root, and the other nodes each represent
a symbol with their corresponding scores. The path splits when the predicted symbol of a hypothesis
is different from the best hypothesis. In the end, the directed graph has n-paths with, for each, the
final node with the overall score. This visualization makes it easier to see the differences between the
assumptions and the final score. An example of the visualization of the beginning of the oriented graph
can be seen in Figure 3.6.

Figure 3.6: Beginning of an oriented graph to visualize the 10-best hypotheses generated by the beam
search algorithm of a Na test set sentence.

3.5.2 Word-based language model with KenLM

A standard method in ASR to improve the predictions of the model is to use the beam search algorithm
with an independently trained language model (LM). The use of a language model has been shown to
significantly improve the accuracy of speech recognition systems (Heafield et al., 2013). The language
model probability can be included into the beam search, and will re-score the list of n-best hypotheses
(Hrinchuk, Popova, and Ginsburg, 2020). The language model can be included as a factor using,

Y ∗ = argmax
Y

p(Y |X) · p(Y )α + L(Y )β (3.8)

where p(Y |X) is the CTC conditional probability, p(Y )α the language model probability, and L(Y )β

the word insertion bonus. However, the integration of a LM can be difficult in the current CTC systems.
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The use of a LM in a CTC was only tested on a LM constructed with a large amount of data – the
benchmark Librispeech defines a LM with 200K words, other corpora contain approximately 1M words
(Ruder, 2021). Moreover, the LM is defined with a different corpus that the one to learn the phonetic
model. These are not the conditions found for Japhug and Na where the corpora are resource-limited
and in an IPA-based format.

We describe here the use of a word-based language model. The chosen library10 supports a KenLM
n-gram language model (Heafield, 2011), which uses the modified Kneser-Ney smoothing. CTCdecode
library was adopted because it proposes an implementation of CTC beam search decoding for PyTorch,
and several people have demonstrated its efficiency for wav2vec 2.0 decoding11. To construct the
KenLM for the Na, 2,110 sentences were used. For the Japhug, we built a KenLM with 28,660 sentences.
The data come from the same corpora as those used to fine-tune the XLSR model (i.e. the training
data).

3.5.3 Optimization of the LM parameters

Different parameters had to be set to decode the CTC output with a word-based KenLM language
model:

• labels — tokens used to train the model (the vocabulary),

• α — weight associated to the language model probabilities,

• β — weight associated with the number of words within the beam,

• the beam width — extent of the beam search, the higher the value, the higher the probability of
finding the top beams.

• cutoff_top_n — cutoff number in pruning, meaning that only the top n characters with the
highest probability in the vocabulary will be taken into account,

• blank_id — index of the CTC blank token.

An optimization script was proposed by the Language Technologies Unit of Prifysgol Bangor University12

to train a KenLM language model13 with Optuna, an open source hyperparameter optimization python
library14 (Akiba et al., 2019). In this specific case, this framework was used to set α and β parameters.
Both beam width and top k hypotheses parameters have been initialized to 100. The python script was
adapted to fit the requirements regarding the previously implemented scripts.

This optimization step was applied to different n sizes of KenLM language models, specifically on 2-,
3-, and 4-grams, on the two fine-tuned models for each language on the test sets (cf. Table 3.9).

10https://github.com/parlance/ctcdecode
11https://discuss.huggingface.co/t/language-model-for-wav2vec2-0-decoding/4434
12http://techiaith.bangor.ac.uk/
13https://github.com/techiaith/docker-wav2vec2-xlsr-ft-cy/blob/main/train/python/train_kenlm.py
14https://optuna.org/
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xlsr-na-180 xlsr-jya-600

2-gram KenLM α = 2.77, β = 0.12 α = 2.058, β = 2.97

3-gram KenLM α = 2.54, β = 0.01 α = 1.89, β = 0.32

4-gram KenLM α = 2.51, β = 0.0048 α = 1.85, β = 0.006

Table 3.9: α and β parameters set up by the Optuna optimization framework to train different n-gram
KenLM language models.

3.5.4 Results

Table 3.10 refers to the WER and CER scores for the predictions computed by the best fine-tuned
models of each language when decoding with different n-gram size KenLM on the test set.

Model n-gram KenLM WER (%) CER (%)

xlsr-na-180 2 42.51 10.88
3 42.18 10.54
4 42.13 10.53

xlsr-jya-600 2 19.15 8.04
3 19.28 8.1
4 19.28 8.1

Table 3.10: WER and CER on the test sets with the xlsr-na-180 and the xlsr-jya-600 models by using
different n-gram KenLM language models.

The word-based KenLM language model is counter-intuitive. It does not outperform the previous results
from Table 3.3. With xlsr-na-180, we observe a WER score of 42.13% with the 4-gram KenLM
language model, where the WER score in Table 3.3 is equal to 41.51%. The same behavior is seen
with xlsr-jya-600 with a WER score of 19.15% against 18.56% in Table 3.3 with the 2-gram KenLM
language model.

The comparison between the oracle scores (cf. Table 3.8) and the KenLM language models on the
test set shows a higher gain by the oracle scores. The WER is equal to 34.2% when computing the
oracle WER on the top 250 hypotheses with the xlsr-na-180 against 42.13% using a 4-gram KenLM.
Similarly, we observe for the xlsr-jya-600 a WER of 15.31% from the oracle WER top 250 hypotheses
against 19.28% with the 4-gram KenLM.

By training several models with less training data on the Japhug, for example with 250 minutes, the
KenLM gains are greater on the test data. With the xlsr-jya-250, the WER on the test set is 23.9%,
which drops to 20.28% with a 4-gram KenLM.
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3.5.5 Learning curves

An important aspect of the training of a ML model consists in assessing how the model acts with
different training dataset sizes. Learning curves are a suitable measure to diagnose problems such as
underfitting or overfitting, and see if the datasets are correctly representative. It is also a way to find out
how much data is needed to get “correct” performance (this depends on the linguists’ requirements),
and whether the approach can be generalized to other languages.

Figure 3.7 reports the learning curves on the Na and the Japhug data. For different training sizes, the
graph shows the CER on the training set. In this case, we see how much data are required to get high
performances.

0 12 24 37 50 75 100 125 150 180 200 250

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Training size (in minutes)

Ch
ar
ac
te
rE

rro
rR

at
e
(C

ER
)

xlsr-na
xlsr-japhug

Figure 3.7: CER with respect to different training sizes (in minutes) when fine-tuning the XLSR-53
pre-trained model on the two low-resource corpora, the Yongning Na and the Japhug.

We observe a significant decrease of the CER scores when the training size increases from 12 minutes to
24 minutes. It continues to decrease for the Na, but the performances on the Japhug reaches a threshold
around 150 minutes of training size with a CER between 11 and 12%. However, the global observation
here is that overall good performances are reached with less than 1 hour of training data. It shows
that this model can be trained from very little labeled data and having more training data does not
necessarily bring more information. This opens the door wide to a large-scale use of this approach for
linguistic documentation, as the amount of labeled data corresponds to an amount that can realistically
be expected in language fieldwork settings (a corpus size that field linguists can produce manually).
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3.6 Complementary experiments

The results reported in the previous two sections raise several questions. The ultimate goal to build
Automatic Speech Recognition models for the language documentation workflow is to use the models
to produce the transcription of untranscribed speech files. While WER and CER allows us to evaluate
the performance of the system quantitatively, these scores do not indicate whether the systems will be
useful in practice. In this context, the Section 3.6.1 presents experiments and feedback on the produced
transcriptions by linguists on speech files of both studied languages. Through numerous discussions
in the course of the present project, an interesting research path has emerged as clearly worthy of
investigation: estimating to what extent a fine-tuned model could possibly be used to transcribe speech
files of a related language (see Section 3.6.2). Another issue that recurs in exchanges with linguists is
the treatment of multilingualism: code-switching and blending of materials from two or more languages
is common in minority languages, and hence, is present in fieldwork corpora. Thus, as explained in
Section 3.2.1, the Japhug transcriptions contain Chinese characters. We will see in Section 3.6.3 how
the model behaves with Chinese characters converted into Pinyin format, an international transcription
(romanization) of Mandarin Chinese pronunciation.

3.6.1 Predicting unseen speech files

An interesting experiment consists in using the best fine-tuned models on unseen audio files to evaluate
the quality of the output, and its usability in the intended workflow: as part of language documentation,
description and conservation.

The audio file entitled “Appeal to the gods to settle a quarrel”15, available in the Pangloss Collection,
was used as a test file for the Na language. The speech was cut into small segments of 15 seconds. The
first 5 segments were corrected and evaluated by Alexis Michaud. Table 3.11 prints the transcriptions
suggested by the fine-tuned model.

As a global view, Alexis Michaud points out the high quality of the predictions, probably at the (un-
bridgeable) upper limit of what is possible in a “phonemic” level (without filtering through a word search
or using a language model, or even checking that the sequences are phonologically well formed). Taking
the example of mis-transcription of /hwɤ˩/ as /hoɤ˩/, a first thing to note is that [oɤ] and [wɤ] are pho-
netically really close, so that, from a phonetic point of view, the mistake is not at all egregious. Using
a phonotactic system would allow the detection of wrong sequences such as /hoɤ˩/, as the sequence
/oɤ/ is not well-formed in the Na language: the two vowels /o/ and /ɤ/ cannot follow each other inside
the same syllable. The actual sequence can only be a semi-vowel combined with a vowel, such as /wɤ/,
which, together with the (correctly detected) initial consonant and the tone, yields the syllable /hwɤ˩/.
Among the global remarks, Alexis Michaud also pointed out:

• the misprediction of /hwɤ/ twice in the first sentence,

• the mistakes in tones such as /˧/ in /˥/,
• errors in the fourth sentence when the speaker repeats 3 times, very quickly, the same expression,

swallowing their words a little.
15https://doi.org/10.24397/pangloss-0004857
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Ref: ə˧ʝi˧-ʂɯ˥ʝi˩-dʑo˩, ə˩-gi˩, zo˩no˥, hĩ˧ ʈʂʰɯ˧-dʑo˩, əəə... ɖʐwæ˧ ɖʐwæ˥-hwɤ˩ hwɤ˩, mmm... pi˧-dʑo˩,
ʈʂɯ˧ʈʂɯ˩ ɻæ˧ɻæ˧ tʰv̩˧, ɖʐwæ˧ ɖʐwæ˥-hwɤ˩ hwɤ˩ tʰv̩˩ pi˧-kv̩˩ mæ˩,

Hyp: ə˧ʝi˧ʂɯ˥ʝi˩dʑo˩ ə˩gi˩ zo˩no˥ hĩ˧ʈʂʰɯ˧dʑo˩ əə... ɖʐwæ˧ ɖʐwæ˥hoɤ˩ mə... pi˧dʑo˩ ʈʂɯ˧ʈʂɯ˩
ɻæ˧ɻæ˧tʰv̩˧ ɖʐwæ˧ ɖʐwæ˥hwɤ˩hɤ˩ tʰv̩˩ pi˧kv̩˩mæ˩

Ref: tʰi˩˥ ə˧ʝi˧-ʂɯ˥ʝi˩-dʑo˩ tʰi˩˥ zo˩no˥ mmm... sɯ˧pʰi˧-ki˧ qwɤ˧ qwɤ˩ bi˩-kv̩˩ mæ˩.
Hyp: tʰi˩˥ ə˧ʝi˧ʂɯ˥ʝi˩dʑo˩ tʰi˩˥ zo˩no˥ mm... sɯ˧pʰi˧ki˧ qwɤ˧qwɤ˩bi˩kv̩˩mæ˩
Ref: sɯ˧pʰi˧-ki˧ le˧-qwɤ˧ qwɤ˩-se˩-dʑo˩ tʰi˩˥ sɯ˧pʰi˧ no˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧-ʁo˧, njɤ˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧-ʁo˧,

ɲi˧ʑi˩ do˧bv̩˧ lɑ˧-kv̩˥-ze˥ mæ˩ !
Hyp: sɯ˧pʰi˧ki˧ le˧qwɤ˥qwɤ˩se˩dʑo˩ tʰi˩˥ sɯ˧pʰi˧ no˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧ʁo˧ njɤ˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧ʁo˧ ɲi˧ʑi˩

do˧bv̩˧ lɑ˩kv̩˩ze˩mæ˩
Ref: tʰi˩˥, do˧bv̩˧ lɑ˧˥ dʑo˩ tʰi˩˥, wɤ˩˥ le˧-ɖʐwæ˧ ɖʐwæ˥ le˧-ɖʐwæ˧ ɖʐæ˥ le˧-ɖʐwæ˧ ɖʐwæ˥ -dʑo˩ tʰi˩˥, mɤ˧-

tsɤ˧, mmɤ˧ho˧ ho˥...
Hyp: tʰi˩˥ do˧bv̩˧ lɑ˧˥ dʑo˩ tʰi˩˥ wɤ˩˥ le˧ɖʐwæ˧ɖʐæ˥ le˧ɖʐwæ˧ʐwɤ˥ le˧ʐwæ˧ʐwæ˥dʑo˩ tʰi˩˥ mɤ˧tsɤ˧

mv̩˧ho˧ho˧
Ref: ʈʰææ̃˧ ho˩ho˥ mɤ˧tʰɑ˧ ho˧ho˥ mɤ˧tʰɑ˩dʑo˩ tʰi˩˥ əəə... sɯ˧pʰi˧ɳɯ˧ no˧sɯ˩kv̩˩ tʰɑ˧ɖʐwæ˧ ɖʐwæ˥ze˩

ɖæ˩mi˧qo˧ kɤ˧ʈʂɯ˩ ʝi˩ hõ˩ ! pi˧kv̩˩tsɯ˩ mv̩˩
Hyp: ʈʰææ̃˧ ho˩ho˥ mɤ˧tʰɑ˧ ho˧ho˥ mɤ˧tʰɑ˩dʑo˩ tʰi˩˥ əəə... sɯ˧pʰi˧ɳɯ˧ no˧sɯ˩kv̩˩ tʰɑ˧ɖʐwæ˧ ɖʐwæ˥ze˩

ɖæ˩mi˧qo˧ kɤ˧ʈʂe˩ hĩ˩hõ˩ pi˧kv̩˩tsɯ˩ mv̩˩

Table 3.11: Samples of the predicted transcriptions by the xlsr-na-180 model of the “Appeal to the gods
to settle a quarrel” speech file. In red, the deletions, insertions and substitutions.

Model Words count WER (%) CER (%)

xlsr-na-180 71 38.46 5.73

Table 3.12: WER and CER of the predictions by the xlsr-na-180 model of the unseen speech file entitled
“Appeal to the gods to settle a quarrel”.

Overall, by computing the CER and the WER scores from the examples below, we see that the scores
are really close to what was observed on the test set with the xlsr-na-180 model (cf. Table 3.3).
Keep in mind that these scores were only measured on a set of 5 sentences. A future work would be to
generate transcriptions for several hundred audio segments to be corrected afterwards, and reports the
scores.

Guillaume Jacques has provided the audio file entitled hist150908_qianli_xundi.wav to transcribe. Be-
cause the speech file lasts more than 36 minutes, we only cut the beginning of the file (approximately
2 minutes) into small segments of 10 seconds resulting in 15 samples to predict. Guillaume Jacques
corrected the generated transcriptions which were taken as the reference sentences. Table 3.13 shows
the CER and WER scores between the reference and the predicted sentences.

The prediction computed by the model is printed in the example below as well as the reference sentence.
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Model Words count WER (%) CER (%)

xlsr-jya-600 236 5.48 1.34

Table 3.13: WER and CER of the predictions by the xlsr-jya-600 model of 15 speech segments from
the unseen speech file entitled hist150908_qianli_xundi.wav.

Words starting with an @ refer to Chinese words.

Ref: tɕendɤre nɯ ɯqhu tɕe tɕendɤre kɯki @zhangxiaobing nɯnɯ @henan nɯtɕu lorɤʑi qhe
Hyp: tɕendɤre nɯ ɯqhu tɕe tɕendɤre kɯki @zhangxiaobin nɯnɯ @huolan nɯtɕu lorɤʑi qhe

The CER and WER scores are very low. A few errors (written in red) are observed in this example —
as well as in other predictions (see appendix A.5). From a general point of view, Guillaume Jacques
described the predictions as “an impressive result and beyond expectations”. The main errors come
either from poorly audible parts of sentences, which are also a problem for him, or from Chinese words.
Concerning the latter, an example is henan ‘Henan Province’, which is transcribed as huolan: as noted
above for Na, the transcription here cannot be said to be inaccurate from a phonetic point of view,
given the local pronunciation of Chinese (Sichuanese). If one tried to write Sichuanese in Pinyin (a
system designed for Beijing Mandarin), then huolan would be a very good match. Thus, all in all, the
performance obtained was deemed truly brilliant.

3.6.2 Transfer learning on another language

As explained in Joshi et al., 2020, Transfer Learning (TL) is getting attention in ASR systems as a way
to transfer knowledge about one language to the processing of another. With this in mind, we wonder if
the knowledge acquired during the fine-tuning of the model on Japhug data could be use to transcribe
audio files in a related language, namely Situ.

Situ is a language spoken in Sichuan, China. It is part of the rGyalrong language branch, the same as for
the Japhug. The corpus was provided by Shuya Zhang and contains two speech files, “Mao he laohu”16

and “Stongsen Mnyasca”17 with their corresponding transcriptions. The same data preprocessing as in
Section 3.6.1 was applied involving the split of the speech files into small segments. To conduct the
experiment, 3 segments of the “Mao he laohu” file were created. The xlsr-jya-600 model was used.
The predictions are displayed in Table 3.14.

Ref: kəscâ-j kəscâ-j mənaŋorɐnə, tɐrú nə khəŋ́ nɟe mənaŋorɐ nə, chiɛ-́s na-kə-́nə-ntɕ ka-tsə̂ nǒ-ŋɐs.
Hyp: tkɯtrɤr kɯrse ɯjto re nɤ tɤru tanɯmnditɤɕe zno kɣts kotcu ma
Ref: majnə tɐrú kə mənaŋorɐ nə, khəŋ́ tə rə-chə̂ nəvlɐ-́ŋ râ rɐ-kə-səsô-u nə-́ŋɐs ko.
Hyp: tɤjrɯβɣɯno re nɤ rchi nɯ brɤŋgraʁ ra ɣɯ pɯkɯsɤnɤ suko
Ref: tɐrú tə kə-tsitsí, avə, kə-tsitsí wo-ka-viɛ∼viɛ̂ kə-dân tə kənə, kə-mkhâs na-kə-ŋôs nǒ-ŋɐs.
Hyp: tɤʁru tɤkɯtɕɯtɕi tutsij kɯda nɯ ŋɯ nɯ kɯmqhazna akɯŋu nɤ

Table 3.14: Predictions from the xlsr-jya-600 model on 3 segments from the “Mao he laohu” speech
file.

16https://doi.org/10.24397/pangloss-0007314
17https://doi.org/10.24397/pangloss-0007316
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We notice that the predictions do not match the reference transcriptions. This result was to be ex-
pected because the fine-tuned model only knows the vocabulary on which it was trained, in this case,
the vocabulary of the Japhug language (not to mention significant differences in phonetics and phonol-
ogy between Japhug and Situ). Even though some predictions are phonetically close to the reference
transcriptions, such as tɐrú predicted as tɤru, and tə kə-tsitsí predicted as tɤkɯtɕɯtɕi, the conclusion for
the present is that, clearly, the model created for one language only gives high-level performance for the
same language, and across-the-board application to a related language should not be expected to yield
acceptable results (results that can profitably be used by a linguist for further work).

3.6.3 Handling of Chinese characters in the Japhug transcriptions

The Japhug corpus contains audio files in which the speaker talks in both Japhug and Southwestern
Mandarin.

From the file entitled hist-14-tApitaRi18, we initially had a sentence with no Pinyin romanization of
passages in Chinese, which were transcribed using Chinese characters. The sentence thus switched from
International Phonetic Alphabet (for Japhug) to Chinese characters, thus: tɕe ɯ-me nɯnɯ andi小水沟
kɯre tha-zmɤrʑaβ-nɯ tɕe, nɯre thɯ-ɣe. The new version provided by the linguist (Guillaume Jacques)
includes a Pinyin transcription, e.g. tɕe ɯ-me nɯnɯ andi @xiaoshuigou kɯre tha-zmɤrʑaβ-nɯ tɕe, nɯre
thɯ-ɣe. Note that the Pinyin characters are in common with the Japhug characters. The preprocessing
step on these new data involved the deletion of the @ mark, but also of the Chinese characters that
were kept in addition to the Pinyin transcription. By taking 10,000 sentences as training set, we obtain
the following CER score according to the epoch number in Figure 3.8 during the training time. The
same hyperparameters as in Section 3.2.4 were used to fine-tuned the XLSR-53 model.
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Figure 3.8: Character error rate on the training set for Japhug as training progresses (up to 20 epochs),
using the XLSR-53 model.

18https://doi.org/10.24397/pangloss-0003507
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The learning curve shows that the model is unable to learn. The best CER score is seen on epoch 2
with an error rate of more than 20%. We can explain the behavior of the training because the Pinyin
transcriptions have common characters with the Japhug transcriptions, but it does not necessarily refer
to the same sound. To support this statement, we conducted an evaluation on the test set which
assessed the character error rate by:

• taking all the transcriptions,

• retrieving only the words in Pinyin and their predictions,

• keeping only the transcriptions and corresponding predictions without the Pinyin parts.

Each character of the reference is retrieved with the corresponding hypothesis. Then the Error Rate
(ER) is computed by dividing the number of false predictions with the number of occurrences of the
character. The scores are displayed in Table 3.15.

We notice a higher error rate on the Pinyin transcriptions on the character level. Especially, if we
take the character c, the CER on the Pinyin transcriptions is equal to 66.67% in comparison with the
Japhug transcriptions with a score of 13.1%. This is to be expected, since c and ch in Pinyin transcribe
aspirated affricates, /tsʰ/ and /tʃʰ/, whereas in the International Phonetic Alphabet it refers to a palatal
stop: the sounds have different places of articulation and modes of articulation.

Generally, the CER score on the Pinyin is far worse than the score associated to the Japhug transcriptions.
A simple solution to implement would be to transform the Pinyin transcriptions into a specific encoding
that does not have common characters with the Japhug one.
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Characters ER global (%) ER on Pinyin (%) ER without Pinyin (%)

x 13.16 66.67 8.57
c 14.86 66.67 13.10
j 16.67 66.67 14.76
y 63.64 60.00 0.00
e 8.49 55.56 8.16
r 7.20 50.00 7.03
u 13.59 40.91 12.18
g 14.67 38.46 9.68
d 11.24 33.33 10.00
w 20.41 33.33 20.00
i 15.01 33.33 14.18
b 19.51 33.33 17.14
o 13.15 30.77 12.78
n 9.78 27.59 9.15
l 12.61 22.22 10.91
h 10.42 12.50 10.65
s 8.16 7.69 8.18
a 8.50 6.45 8.45
k 8.13 0.00 8.51
z 15.52 0.00 14.91
p 7.17 0.00 6.76
m 9.41 0.00 9.43
q 14.50 0.00 14.62
t 7.52 0.00 7.66
f 9.46 0.00 9.59

Table 3.15: Comparison of the Error Rate per characters by taking all the predictions (Error Rate
global), by taking only the predictions of Pinyin transcriptions (Error Rate on Pinyin), and by taking
the predictions without the Pinyin (Error Rate without Pinyin).
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Chapter 4

Second approach: Wav2vec
Unsupervised

As explained in Section 1.1, a second approach that has proven to be efficient in building ASR systems
in a low resource context was recently proposed in Baevski et al., 2021. The main advantage to build
unsupervised systems is that it does not require any labeled data. An unsupervised approach could save
a huge amount of human labeling costs for developing ASR systems by focusing on massive unlabeled
speech data.

In this Chapter, we first introduce the state-of-the-art approaches for unsupervised speech recognition
(see Section 4.1). We continue with the description of the framework (see Section 4.2), and the
experiments carried out (see Section 4.3). We finally discuss about the obtained results (see Section
4.4).

4.1 State-of-the-art

Thanks to the advent of semi-supervised learning (Xu et al., 2020; Park et al., 2020), and self-supervised
learning (Oord, Li, and Vinyals, 2018; Chung and Glass, 2018; Chung et al., 2019; Baevski et al., 2020),
an important breakthrough has been observed on speech recognition performance on the famous English
Librispeech benchmark (Panayotov et al., 2015). As we have seen in Chapter 2, these approaches
require transcribed speech data. Specifically for low-resource languages, these types or data are not
always available. Notably, there are only speech recognition systems for 125 languages in the famous
Speech-to-text Google tool (Google, 2021b).

Successful results have been observed in machine translation systems with the use of no labeled training
data (Conneau et al., 2017; Lample et al., 2017; Artetxe et al., 2017). A few works focusing on speech
recognition have been conducted in an unsupervised fashion.

We can cite the work of Yeh et al., 2018 in which a fully unsupervised learning algorithm was proposed.
This framework is intended to solve two sub-problems: (1) learning a phoneme classifier by taking a
set of phoneme segmentation boundaries, and (2) using a classifier to refine the phoneme boundaries.
A novel unsupervised cost function was introduced for the resolution of the first sub-problem entitled
Segmental Empirical Output Distribution Matching (SEODM) based on the work of Liu, Chen, and
Deng, 2017. The second sub-problem uses an approximate MAP approach inspired by the work of
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Wang, Chung, and Lee, 2017. The experiments were conducted on the TIMIT benchmark dataset1,
an acoustic-phonetic continuous speech corpus which provides broadband recordings of 630 speakers of
American English with the corresponding time-aligned orthographic, phonetic and word transcriptions.
A Phoneme Error Rate (PER) of 41.6% was computed. While this does not surpass the results from
the state-of-the-art supervised systems, it has shown the feasibility of building unsupervised speech
recognition systems.

Two complementary papers based their approach on adversarial learning. The first one by Liu et al., 2018
proposed an unsupervised phoneme recognition system, or in other words, a mapping between audio
signals and phoneme sequences without any phoneme-labeled audio data. The method first clusters the
embedded acoustic tokens, and then uses a Generative Adversarial Network (GAN) to propose a mapping
between the cluster sequences and the unknown phoneme sequences. The preliminary results showed
an unsupervised phoneme recognition accuracy of 36% on the TIMIT dataset. In Chen et al., 2019,
they proposed a GAN, with a Generator G and a Discriminator D which improve their performances by
learning from both. A complementary module, a set of Hidden Markov Models (HMMs) was developed,
whose purpose is to refine is to refine the generated labels of the GAN. In comparison with the previous
state-of-the-art approaches, a PER of 33.1% was achieved on the TIMIT dataset.

These previous studies have shown that unsupervised speech recognition is possible. However, the
error rates remain high and the experiments were only conducted on the TIMIT benchmark dataset.
The proposed model wav2vec-U, or wav2vec Unsupervised (Baevski et al., 2021), leverages self-
supervised speech representations from wav2vec 2.0 (Baevski et al., 2020) to segment unlabeled audio
data with a k-means clustering method, and learn, with adversarial training, a mapping between the
representations and the phonemes. The experiments were conducted on multiple benchmark datasets,
as well as different settings and languages. On the famous benchmark TIMIT dataset, a PER of 11.3%
was computed as well as a WER of 5.9% on the Librispeech benchmark. Moreover, an evaluation on
European languages and non-European low-resource languages was presented which demonstrated the
viability of this approach. It is in this low-resource context that the experiments in this work were carried
out (see Section 4.3). We first present the model in Section 4.2.

4.2 The wav2vec-U framework

A global view of the framework is printed in Figure 4.1. This approach is not end-to-end, meaning that
we have to launch and train different modules to obtain the results.

The first step is the learning of self-supervised representations with wav2vec2.0 using only unlabeled
speech files (see Section 4.2.1). The identification of clusters in the representations comes in second place
with the use of a k-means clustering technique (see Section 4.2.2). Then, the segment representations
are built by mean pooling wav2vec 2.0 representations with a Principal Component Analysis (PCA) to
keep the most important features and reduce the dimensionality of the data (see Section 4.2.3). These
representations are then fed to the generator to produce a phoneme sequence which is used as input
to the discriminator similarly to phonemicized unlabeled text (see Section 4.2.4). The last step is the
training of a GAN model (see Section 4.2.5).

1https://catalog.ldc.upenn.edu/LDC93S1
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Figure 4.1: Illustration of the wav2vec Unsupervised framework taken from Baevski et al., 2021.

4.2.1 Self-supervised Learning of Speech Audio Representations

First of all, the representations of speech audio signal are learnt using self-supervised learning from
wav2vec 2.0 model2. Specifically, the context Transformer network c1, ..., cT representations will be
used.

This step involves a preprocessing treatment over the speech file and the deletion of silences. In the
case of audio data, it may happen that some parts do not correspond to any transcription, i.e. silence
sections. rVad (Tan, Dehak, et al., 2020) proposes an unsupervised voice activity detection model able
to identify which segments in the speech file correspond to silences. The identified sections are then
removed.

4.2.2 Speech audio segments identification

Once we have the speech audio representations, we identify the speech audio segments. The purpose
being to get segments from speech that correspond to meaningful units and can thus be matched
with phonemes. A simple method to apply from the wav2vec 2.0 speech representations c1, ..., cT is
to perform k-means clustering to identify K clusters. The Faiss library3 implements a fast clustering
method (Johnson, Douze, and Jégou, 2019). Then, once the k-means clustering method produces the
clusters, each contextual representation ct is labeled into the corresponding cluster ID it ∈ 1, ...,K. A
boundary between speech segments is introduced if the cluster ID changes. In a global perspective,
segmentation is a key feature to predict correct output sequence if the input representation boundaries
are properly defined (Chung et al., 2018).

2See Section 2.3
3https://github.com/facebookresearch/faiss
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4.2.3 Audio segment representations

The next step following the segmentation of speech audio representations is the construction of audio
segment representations. A Principal Component Analysis (PCA) is performed over all speech repre-
sentations from the wav2vec 2.0 training set output. In few words, PCA is a dimensionality-reduction
method intended to reduce the dimensionality of large datasets (Jaadi, 2021). It tries to create the
best data distribution representation by finding the most relevant combination of features. A main
advantage is the efficiency to visualize and analyze data for machine learning algorithms. For a specific
segment, the corresponding PCA representations are mean-pooled. The segment will have an associated
average representation thanks to a selection of the most important features during the PCA. Pairs of
adjacent segment representations are also mean-pooled to mitigate the effects of segment boundary
noises. The final output gives sequences of speech segment representation S = s1, ..., st, S ∈ S for a
given utterance.

4.2.4 Preprocessing of unlabeled text data

Wav2vec-U involves the use of unlabeled text data. A preprocessing step is performed whose goal is to
create suitable units for unsupervised learning.

We distinguish, first, the phonemicization of the text. Each sequence of words Y that makes up the text
is converted into a corresponding sequence of phonemes P = [p1, ..., pM ] ∈ O∗, with O as the phoneme
dictionary. It is indeed easier to learn a mapping between phonemes and speech audio segments in
comparison with words or letters.

The second step goes by the name of silence token insertion to deal with the silences still encountered in
the speech audio. Precisely, unsupervised silence removal that was applied over the speech audio is not
entirely accurate. The unsupervised model may therefore label some audio segments with a phonemic
silence token, i.e. <SIL>. Silence markers are added into the unlabeled text data, otherwise it will
lead to difficulties during the adversarial learning. Indeed, the model will predict a phoneme to label
silences which decreases the performance. This silence token is defined in the beginning, end and inside
according to a defined rate of silence token insertion of the phonemicized unlabeled text sentences.

4.2.5 Model architecture

The unsupervised speech recognition model architecture is implemented with a Generative adversarial
network (GAN) (Goodfellow et al., 2020).

As seen in Figure 4.2, the GAN is composed of:

• a generator network G which generates fake samples. The goal is to make the fake samples as
close as possible to the real samples, indiscernible by the discriminator.

• a discriminator/critic network C, a classification network, whose job is to tell whether a given
sample is false or true.

In other words, the generator does everything possible to deceive the discriminator into making a wrong
decision, while the discriminator does everything possible to distinguish fake samples from true ones.
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Figure 4.2: Basic process of a GAN showing the interaction between the generator and the discriminator
networks (Hany and Walters, 2019).

Figure 4.3 illustrates the transformation of the generator output and the phonemicized text to feed them
to the discriminator. The input of G is a sequence of T segment representations S = [s1, ..., sT ] mapped
to a sequence of M phonemes P = [p1, ..., pM ]. The generator network predicts, for each segment, a
distribution over the phoneme set O. The phoneme with the highest probability is the output. Moreover,
when the same phoneme is consecutively predicted for a set of segment, the average is computed across
all possible phoneme predictions (M ≤ T ). The discriminator takes as input a sequence P r ∈ Pr of
one-hot vectors of dimension |O| corresponding to the phoneme representations of the phonemicized
text or a sequence of outputs from the generator P . Both networks are implemented as a single layer
convolutional neural network (CNN), with the discriminator which indicates the probability of a sample
to be from the data distribution.

Objective

The GAN objective (Goodfellow et al., 2020) is described as

min
G

max
C

E
P r∼Pr

[log C(P r)]− E
S∼S

[log(1− C(G(S)))]− λLgp + γLsp + ηLpd (4.1)

where P r ∈ Pr is the phonemicized unlabeled text, G(S) corresponds to the output of the generator
(the transcription) when segment representations S are inputs coming from unlabeled speech audio.
The first term trains the discriminator to give real transcriptions a high probability. The second term
urges the discriminator to assign to generator outputs a low probability. Furthermore, the GAN objective
is defined with:

• a gradient penalty Lgp whose goal is to stabilize the training,

• a segment smoothness penalty Lsp to encourage the generator to generate comparable outputs
for adjacent segments,

• and a phoneme diversity loss Lpd to penalize the generator network’s poor use of the phoneme
vocabulary at the batch level.
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Figure 4.3: Illustration of how generator outputs and real phonemicized text are converted into inputs
to the discriminator. This schema is taken from Baevski et al., 2021.

4.2.6 Unsupervised Cross-Validation Metric

To assess the performance of the proposed unsupervised speech recognition model, a novel metric was
introduced entitled unsupervised cross-validation metric. It based its computation on two quantities:

• the language model entropy, which indicates how fluent a given transcription is. This quantity is
computed with a language model pLM trained on phonemicized text data.

• the vocabulary usage, which gives the number of phoneme vocabulary used by the model via
Viterbi decoding. It is a great indicator to know if the model has a deviant behavior, meaning if
it outputs trivial transcriptions.

4.2.7 Decoding

The best checkpoint identified after the GAN training (chosen using the unsupervised metric introduced
in the previous paragraph) is used to generate phone labels. The decoding involves a KenLM language
model which works better on features before the adjacent timestep mean-pooling step.
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4.3 Experiments

We recall that our objective is to know if it is possible to build automatic speech recognition models in a
complete unsupervised fashion, but specifically on the two studied low-resource languages, the Yongning
Na and the Japhug. We followed the pipeline of the framework described in Section 4.2 that was applied
to low-resource languages from CommonVoice in Baevski et al., 2021. We took the code available in
the fairseq library4. To summarize, we distinguish two main steps: the preparation of audio data, and
the preprocessing of the text data.

4.3.1 Datasets

The same corpora were used as for the XLSR approach (see Section 3.1). From the preprocessed data,
described in Section 3.2.1, three files were created:

• train.wrd containing the ‘cleaned’ IPA-based transcription. The first three sentences of the
training set file are:

ʐwæ˩mi˩tʰv̩˩v̩˩˥ dʑo˩ tʰi˩˥ ə˧mi˧ɻæ˩ɳɯ˩ le˧ʐɤ˧
mɑ˩pv̩˩˥ no˧ ə˧sɯ˥ sɯ˧ʝi˧ mæ˩
hĩ˧ mo˥hĩ˩dʑo˩ ʑi˧qʰwɤ˧qo˧ tʰv̩˧ne˧ʝi˥ tʰi˧dzi˩

• train.ltr which is the transcriptions cut by characters. The first three sentences of the training
set file cut by characters are:

ʐ w æ ˩ m i ˩ t ʰ v ̩ ˩ v ̩ ˩ ˥ | d ʑ o ˩ | t ʰ i ˩ ˥ | ə ˧ m i ˧ ɻ æ ˩ ɳ ɯ ˩ | l e ˧ ʐ ɤ ˧ |
m ɑ ˩ p v ̩ ˩ ˥ | n o ˧ | ə ˧ s ɯ ˥ | s ɯ ˧ ʝ i ˧ | m æ ˩ |˩
h i ̃ ˧ | m o ˥ h i ̃ ˩ d ʑ o ˩ | ʑ i ˧ q ʰ w ɤ ˧ q o ˧ | t ʰ v ̩ ˧ n e ˧ ʝ i ˥ | t ʰ i ˧ d z i ˩ |

• train.phn containing the transcriptions cut by phonemes. The first three sentences of the
training set file cut by phonemes are:

ʐ wæ ˩ m i ˩ tʰ v̩ ˩ v̩ ˩˥ dʑ o ˩ tʰ i ˩˥ ə ˧ m i ˧ ɻ æ ˩ ɳ ɯ ˩ l e ˧ ʐ ɤ ˧
m ɑ ˩ p v̩ ˩˥ n o ˧ ə ˧ s ɯ ˥ s ɯ ˧ ʝ i ˧ m æ ˩
h ĩ ˧ m o ˥ h ĩ ˩ dʑ o ˩ ʑ i ˧ qʰ wɤ ˧ q o ˧ tʰ v̩ ˧ n e ˧ ʝ i ˥ tʰ i ˧ dz i ˩

4.3.2 Preparation of audio data

The preparation of audio data involves, first, the creation of audio files with no silences. To do so, we
applied the rVad python library5 which gives the boundaries time on which a silence is identified. Figure
4.4 gives an example of the output produced by the rVad method.

4The code is available in https://github.com/pytorch/fairseq/tree/master/examples/wav2vec/unsupervised
5https://github.com/zhenghuatan/rVADfast

CC BY-SA 3.0 fr page 57

https://github.com/pytorch/fairseq/tree/master/examples/wav2vec/unsupervised
https://github.com/zhenghuatan/rVADfast


CLD2025 ANR-19-CE38-0015 PRCI - International ANR-DFG WP1

Figure 4.4: Beginning of the output file given by the rVad python library with the first line corresponding
to the path, and the second line with the silence intervals.

A python script6 then removes the identified silences.

Next, a bash script7 preprocesses the audio data. Precisely, the speech audio representations were
extracted using the self-supervised learning method from the wav2vec2.0 model. A pretrained model
was used, and the number of the layer from which the representations need to be extracted had to
be specified. Once the representations were computed, the k-means clustering method was applied to
identify the speech audio segment. Each audio file is encoded as a sequence of cluster IDs corresponding
to each identified audio segments. An example of an output produced by the k-means is displayed in
Table 4.1.

Audio path: crdo-NRU_F4_DOG2_Dog2S021.wav
Phoneme sequence: ʈʂʰ ɯ ˧ n e ˧ ʝ i ˥ tʰ i ˧ tɕ ɯ ˧ ɲ i ˥ ts ɯ ˩ m v̩ ˩
Cluster IDs: 117 26 118 118 103 103 103 0 103 92 7 96 10 125 104 104 79 100 96 32 80

12 12 104 104 88 88 88 88 31 7 96 86 101 97 97 30 30 30 114 43 22 124 124
32 33 33 127 33 110

Table 4.1: Output produced by the k-means clustering method on the audio file “crdo-
NRU_F4_DOG2_Dog2S021.wav” given the phoneme sequence.

Finally, a PCA with a mean-pool step was performed to construct audio segment representations.

4.3.3 Preprocessing unlabeled textual data

The preprocessing step associated to the text data was performed with a bash script8 which has been
modified to match the chosen corpora. From the IPA transcriptions, a dictionary was created with words
sorted by their frequency (see the first column of Table 4.2) as well as a list of words.

The next step involved the phonemicization of the text. However, this is not required here because the
Yongning Na and the Japhug text data are already in a phonemic format with IPA-based transcriptions.
From the list of words, the phones.txt was created which contains the words cut into phonemes (see
the middle column of Table 4.2). A lexicon was generated with a first column containing the words, and
a second column with the words into the corresponding sequence of phonemes. The list of phonemes
with their corresponding frequency was then added into a phoneme dictionary (see the last column of

6https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/unsupervised/scripts/remove_
silence.py

7https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/unsupervised/scripts/prepare_
audio.sh

8https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/unsupervised/scripts/prepare_
text.sh
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Words dictionary

tʰi˩˥ 929
əəə... 385
mv̩˩ 31
ʈʂʰɯ˧ne˧ʝi˥ 213

Phonemization

tʰ i ˩˥ 929
əəə... 385
m v̩ ˩ 31
ʈʂʰ ɯ ˧ n e ˧ ʝ i ˥ 213

Phonemes dictionary

˧ 5733
˩ 5632
i 2617
ɯ 2328

Table 4.2: Results of the preprocessing step on unlabeled text data from left to right, the words
dictionary, the phonemicized words, and the phonemes dictionary.

Table 4.2). The final step was the silence token insertion according to a specific insertion rate.

<SIL> ʐ wæ ˩ m i ˩ tʰ v̩ ˩ v̩ ˩˥ dʑ o ˩ tʰ i ˩˥ <SIL> ə ˧ m i ˧ ɻ æ ˩ ɳ ɯ ˩ l e ˧ ʐ ɤ ˧ <SIL>
<SIL> m ɑ ˩ p v̩ ˩˥ n o ˧ <SIL> ə ˧ s ɯ ˥ s ɯ ˧ ʝ i ˧ <SIL> m æ ˩ <SIL>

As we see in the Na examples below, the silence token <SIL> is defined at the beginning, the end, and
inside the phonemicized sentence according to a specific insertion rate.

Different phoneme-based kenLM language models were defined (4-gram and 6-gram).

The following table 4.3 recaps the parameters set during the preprocessing steps. These were defined
according to the one specified in the documentation of wav2vec-U.

parameter value

PCA dimensionality 512
index layer 14
number of clusters 128
pretrained wav2vec2.0 model XLSR-53

Table 4.3: Preprocessing parameters.

4.3.4 GAN training

A GAN model was trained to build an unsupervised ASR model. The data preparation on the speech
audio data and on the unlabeled text data is mandatory to enable the generator to map speech units
to text in an unsupervised way. A script was written which specifies:

• the path to the mean-pooled audio segment representations,

• the path to processed text data,

• the KenLM 4-gram phoneme language model,

• the config name file.
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Table 4.4 presents the chosen hyperparameters. A complete description of the parameters can be found
in the documentation9.

parameter value

code_penalty 2,4
gradient_penalty 1.5,2.0
smoothness_weight 0.5,0.75,1.0
seed range(0,5)
batch_size 160
max_update 150,000

Table 4.4: Hyperparameters of the GAN training.

4.4 Results

A first experiment was conducted by taking all the available data from each corpus, 180 minutes as the
training size for the Na, and around 25 hours of data for the Japhug. This allows to know the viability
of this approach by comparing the obtained results with the one assessed in the article. The results are
displayed in Table 4.5.

Dataset Training size
(in minutes)

Valid size (in
minutes)

Test size (in
minutes)

UER valid (%) UER test (%)

Na 180 30 30 86.03 86.3
42 30 30 89.59 89.02
30 30 30 83.37 83.48

Japhug 1500 190 190 100 100
180 30 30 86.48 86.6

Table 4.5: UER on the valid and test sets of the Yongning Na and the Japhug with different training
set sizes.

We notice an Unsupervised Error Rate (UER) of 86.03% on the valid set for the Na, and a UER of
100% for the Japhug. The most likely interpretation is that the GAN ‘simply’ does not learn a mapping
between speech segments and phonemes. We can see it very well in the proposed output of the GAN
from the Na:

Ref: h æ ˧ n i ˩ tʰ i ˧ ʑ i ˧ m ɤ ˥ k v̩ ˩ m æ ˩ tʰ i ˧ dz i ˩ kʰ ɯ ˩
Hyp: tʰ m ə ˧ m ɤ ˩ h i ˥ n o ˥ dʑ o ˩ n v̩ ˩ wɤ v̩ wɤ ˩ h ĩ ˥ ˧ ɯ o ˥ z m ˩

In the case of the Japhug model, the predictions are empty.
9https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/unsupervised/config/gan/w2vu.

yaml
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When using the same amount of training data for the Japhug, we obtain the same UER score as for the
Na experiment. An example of an output printed by the model is

Ref: t ɕ e i ɕ q h a n ɤ k i n ɯ r g ɤ t p u n ɯ k ɯ i ɕ q h a k ɯ r ɯ t s h o ŋ w a ɣ ɯ n ɯ n
ɯ m ɤ k ɯ p e n ɯ k ɤ ɤ t ɯ ɣ n ɯ n ɯ r a t o k o t s o

Hyp: a m ɕ l d β r a t ɕ p s h p ʂ β m k β s β u β ɣ p i ɣ ʂ a β v t u n e x t ɕ β k h b n a β k ɯ
β z t z e

We considered applying the GAN on a smaller amount of training data. By taking 30 minutes as the
training set from the Na corpus, we gained over 3 percentage points on the UER score. However, the
performance is still very low in comparison with the experiments carried out in Baevski et al., 2021 on
several low-resource corpora with a PER score of 25% for the Tatar and the Kyrgyz, and 52.6% PER
for the Swahili.

Several factors could explain these observations. A first thought that might be considered is a pre-
processing stage wrongly executed. However, we were not able to detect any issues with this step. A
second hypothesis could be the misidentification of speech audio representations. But we used the same
pre-training model as in Chapter 2 to fine-tune the XLSR model. Had the representations been biased,
we would not have been able to observe the computed performances.

A solution that is still being explored is to reproduce the experiments on the Librispeech benchmark
dataset. Checking out the documentation, and the feedback and discussions on forums, it seems that
other people are likewise experimenting difficulty getting similar results on these data reported in Baevski
et al., 2021, with an unusually high error rate score.
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Chapter 5

Work on dictionaries

As presented in Section 1.1, we want to determine how to leverage the various sources of information
found in resources gathered by field linguists. The objective is to compensate for the small amount of
available training data (transcribed audio). Specifically, this chapter will focus on the dictionaries that
are available for the two low-resource languages that were explored in the presented approaches (XLSR,
wav2vec-U), i.e. the Yongning Na & Japhug languages.

5.1 Structure of the dictionaries

The two dictionaries that will be studied are the Na dictionary and the Japhug dictionary. The Japhug
dictionary was written by Guillaume Jacques, and the Na dictionary by Alexis Michaud. They are both
available in the Pangloss Collection1 in the PDF, HTML and XML formats. The latter format will be
used to extract the data. In more detail, the Japhug dictionary (Japhug-Chinese-French)2 contains over
7,000 entries, and the Na dictionary (Na-English-Chinese)3 about 3,000 entries. Figure 5.1 shows an
example entry from the Na dictionary. Each lexical entry as a unique ID, and its related forms. The
associated senses (meanings) are described, with a corresponding translation. Some of them contain a
text representation with an example of a sentence in which the lexical entry is found.

5.2 Dictionaries coverage

A first interesting measure is the coverage of the dictionaries on the transcriptions. This will show
whether the dictionaries can provide additional information. If coverage of 90% is observed, a correction
can be made on the transcriptions (9 words out of 10). On the other hand, coverage of 10% will not
bring any information, especially if the correction is made on the word level. For this purpose, the first
step included the extraction of the lexical entries and of the linked information for each.

From the Na dictionary, we extracted:
1https://pangloss.cnrs.fr/dictionnaires
2https://pangloss.cnrs.fr/dictionaries_content/japhug/dictionary.pdf
3https://pangloss.cnrs.fr/dictionaries_content/na/dictionary_eng_mp3.pdf
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Figure 5.1: Example of a lexical entry from the Na dictionary.

• the <SurfaceForm> content of each lexical entry,

• the <WrittenForm> content of each lexical entry.

And from the Japhug dictionary, we extracted:

• the <RelatedForm> of each lexical entry,

• the <variantForm> of the lexical entry lemma,

• and the lexeme of the entry from the <Lemma> tag.

Table 5.1 recaps the number of lexical entries extracted from each dictionary.

Dictionary Number of lexical entries

Na 4,147
Japhug 7,649

Table 5.1: Number of extracted lexical entries from each dictionary.

The Table 5.2 below prints some lexical entries that were extracted from both dictionaries. No cleaning
steps were performed (removing specific characters, punctuation marks, lowercase, etc.).
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Yongning Na Japhug

si˧ ndzɯɣ
to˧to˧ tɤŋgɤr

ʁo˧qʰwɤ˩ aʑaʁ
gæ˧ɻæ˩ kɤtɕhɯ
ʝi˧qv̩˥ nɯɟɯɣɟɯɣ

mv̩˩zɯ˩ni˥mi˩ sɤmtshɤr
ʐwæ˩mi˩˥ sthɯt
hĩ˧mo˩ rɤmbɯmbri

qʰv̩˩ɖʐæ˩ aŋgɤrŋgɤr
tʰo˧li˧-kʰv̩˧˥ tɯ-rqɤpa

Table 5.2: Example of lexical entries extracted from both dictionaries.

The second step included the extraction of the transcriptions and the split into words. To do so, for each
file, we retrieved the content of the <FORM> tag within the <S> tag. An example of a transcription
file in the XML format can be seen in Figure 3.3.

A preprocessing step was required to match the words extracted from the dictionaries. Characters such
as punctuation marks (?, !, :, {, }, ), etc.) and special characters (‘D’, ‘F’, ‘’̃, ‘...’, ‘=’, ‘↑’, ‘:’) had to
be removed.

The total number of words in the Na corpus is equal to 6,070 words, and 19,617 words in the Japhug
corpus.

Linguists will be able to use the implemented script to help them develop dictionaries.

5.2.1 Coverage on the corpora

In this Section, the coverage of dictionaries on all available text data from both corpora is given. The
goal is to find out if the words in the transcriptions can be found in the corresponding dictionary and
thus if it is useful to use this information in the ASR task.

Yongning Na corpus

Considering the Na corpus, the dictionary coverage is equal to 13.69% when all the transcriptions are
taken into account. Some examples of words that are not in the dictionaries and whose frequency is
equal or higher than 20 are: əəə..., mv̩˩, dʑo˩, ə˩gi˩, mmm..., ɖɯ˧v̩˧, pi˧zo˩, ʈʂʰɯ˧ne˧, pi˧dʑo˩, ɖɯ˧ɭɯ˧.

Different observations could be pointed out:

1. Some of the words printed above are visible in the examples of a specific lexical entry in the
dictionary but is not a lexical entry on its own. The words ə˩gi˩ and ɖɯ˧v̩˧ are described in many
examples but are not a specific lexical entry.
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2. From the list, some words are filled in the dictionary with a different ending tone, i.e. ˩ instead
of ˩˥.

3. Some words are associated with another part to form a lexical unit, such as li˩ which is combined
to di˩ to form the lexical unit di˩li˩.

4. Some words contain the character ‘-’, for example the word ɖɯ˧-kʰv̩˧˥, which is not the case for
the corresponding lexical unit in the dictionary written as ɖɯ˧ kʰv̩˧˥.

To support these remarks, we conducted complementary experiments that, first, retrieve the examples
associated to each lexical units, and second, generate all the possible forms of the words by changing
the final tone. The results are displayed in Table 5.3.

Experiment Word count Coverage (%)

Retrieving words from examples (2) 6,797 24.27
Tonal variability (3) 19,299 18.11
(2) + (3) 32,273 29.24

Table 5.3: Dictionary coverage and word count on the Na corpus by adding the retrieved words from
the examples from the dictionary, by varying the ending tones of words from the dictionary, and by
combining both in the known lexical entries list.

Table 5.4 below gives a comparison of the presence of words that are not in the dictionary with the
different experiments. When the ‘-’ is printed, the word is contained in the extracted list retrieved during
the experiment.

Experiment Baseline (1) (2) (3) (2) + (3)

Examples ə˩-gi˩ ə˩-gi˩ ə˩-gi˩ ə˩-gi˩
ɖɯ˧-v̩˧ - ɖɯ˧-v̩˧ -
pi˧-zo˩ pi˧-dʑo˩ pi˧-zo˩ pi˧-dʑo˩
ʈʂʰɯ˧ne˧ - ʈʂʰɯ˧ne˧ -
pi˧-dʑo˩ pi˧-dʑo˩ - -
ɖɯ˧-ɭɯ˧ - ɖɯ˧-ɭɯ˧ -

mv̩˩ - - -
ʈʂʰɯ˧-dʑo˩ ʈʂʰɯ˧-dʑo˩ ʈʂʰɯ˧-dʑo˩ ʈʂʰɯ˧-dʑo˩

ə˧ʝi˧-ʂɯ˥ʝi˩-dʑo˩ ə˧ʝi˧-ʂɯ˥ʝi˩-dʑo˩ ə˧ʝi˧-ʂɯ˥ʝi˩-dʑo˩ ə˧ʝi˧-ʂɯ˥ʝi˩-dʑo˩
ɖɯ˧-tɑ˧˥ - ɖɯ˧-tɑ˧˥ -
pi˧-tsɯ˩ pi˧-tsɯ˩ pi˧-tsɯ˩ pi˧-tsɯ˩
dʑo˩ - - -

Table 5.4: Comparison of words not in the dictionary (Baseline) according to the different experiments.
The ‘-’ confirms the presence of the word in the extracted list.
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We clearly see that retrieving words from the examples of each lexical units (2) reduces the number
of unknown words. The greatest improvement comes from the combination of retrieving words from
examples of the lexical units and the generation of the tonal variability of each (29.24% of coverage).

Despite this improvement, more than 70% of the words from the transcriptions are not in the dictionary,
which is far from maximum coverage.

Japhug corpus

Considering the Japhug corpus and all the available transcriptions, the dictionary coverage is equal to
37.58%. Here are some examples of words that are not a lexical entry in the dictionary but whose
frequency is equal or higher than 20 are: tɕe, ɲɯ, smɤnmimitoʁ, tɯ, pjɤ, iɕqha, nɤkinɯ, nɤki, nɯreri,
qhe, chondɤre, tɤpɤtso.
We clearly see the presence of fillers such as nɤkinɯ or nɤki. The coverage score can be explained by
the absence of inflected form of verbs and nouns which constitutes a major part of the corpus.

5.2.2 Coverage on the training data

We are also interesting to know the coverage of the dictionaries on the data sets (i.e. train and test
sets) corresponding to what was used during the training and the evaluation of the presented automatic
speech recognition approaches (XLSR & Wav2vec-U).

Table 5.5 summarizes the number of words in each training corpus.

Language Training size (in minutes) Words count

Na 180 5,483
Japhug 1500 16,583

Table 5.5: Number of words in each training corpus.

Table 5.6 below describes the coverage scores from both languages.

Language Experiments Coverage (%)

Na Baseline (1) 14.34
Retrieving words from examples (2) 25.5

Tonal variability (3) 18.95
(2) + (3) 30.48

Japhug - 40.33

Table 5.6: Coverage of the dictionaries on the training data from Na and Japhug corpora.
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5.2.3 Coverage on the test data

We conducted the same experiments but on the test data. The number of words in the test set of the
Japhug corpus and on the Na corpus is displayed in Table 5.7.

Language Test size (in minutes) Words count

Na 30 1,541
Japhug 20 956

Table 5.7: Number of words in each test corpus.

Language Experiments Coverage (%)

Na Baseline (1) 22.32
Retrieving words from examples (2) 38.29

Tonal variability (3) 28.81
(2) + (3) 43.02

Japhug - 54.9

Table 5.8: Coverage of the dictionaries on the set data from Na and Japhug corpora.

For both corpora, the coverage of dictionaries is higher on the test sets in comparison with the train
sets and when all the data are taking into account.

We have seen that the coverage scores of dictionaries on the transcriptions from the Na and the Japhug
corpus are less than 50%. Specifically on the Na corpus, by retrieving the words from the examples
of each lexical unit and by generating the tonal variability on the dictionary words, the coverage score
slightly increase. Despite this, many words are still missing from the dictionary. The pre-processing
step on the transcriptions has to be taken into account in the calculation of these scores. Indeed, it is
possible that some words have been modified and thus generate a bias in the results. However, these
scores still allow us to obtain an order of magnitude of the coverage of the dictionaries on the studied
corpus. Feedback from a linguist (Alexis Michaud) suggests that procedures for word segmentation
would need to be adapted in order to improve the results: splitting words where hyphens are found in
the transcriptions.
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Chapter 6

Discussion & Conclusion

This work focused on the automatic speech recognition of audio recordings, to provide transcripts for
linguists to use down the line in the language documentation workflow. There were multiple challenges:
(i) recognizing entities from a higher level, here words, than had been done in previous work (that
‘only’ recognized phonemes), which involves correctly identifying word boundaries, and (ii) dealing with
a scarce-resource context, where labeled data are only available in small amounts: in this case, in a low-
resource context from oral languages which lack a unique writing system and online resources (extensive
transcribed audio recordings, corpora of texts with translations, etc.). Providing a system able to predict
words from a speech file is a need for field linguists and the language documentation workflow as an
automated approach to producing sound-aligned transcriptions will considerably reduce the workload.

The first considered approach consists in fine-tuning a pre-trained XLSR wav2vec 2.0 model on two
low-resource corpora (the Yongning Na and Japhug corpora of the Pangloss Collection, an online open
archive). This approach fulfilled the task of predicting word sequences: a quantitative analysis, which
consists of calculating the smallest number of modifications to be made to correct the model’s prediction
into the reference sentence, outperformed previous studies (based on Kaldi and ESPnet approaches).
Through discussions with expert linguists, a qualitative analysis was performed. Alexis Michaud pointed
out the high quality of the Na predictions, which is at the upper limit of what is possible to achieve
at a “phonemic” level (recognizing sounds, not words). The same observation was made by Guillaume
Jacques for Japhug. It is a major leap forward for linguistic documentation. Guillaume Jacques states:
“It took me less than three minutes to correct the model’s predictions”. Through the discussions
with NLP researchers and linguists, it appears that there is no need to further improve the observed
performances on the word recognition: the problem of automatically discovering word boundaries, which
constitutes the goal of a great many research projects – we can cite, for instance, the PhD thesis of Pierre
Godard entitled “Unsupervised word discovery for computational language documentation” (Godard,
2019) – can be considered as solved as soon as a modest amount of annotated data is available. More
broadly, obtaining a reliable transcription at the word level opens up wide perspectives. A link can be
created with dictionaries, by adding lexical information. We have seen that the coverage of Na and
Japhug dictionaries on the available transcriptions is still limited, yet these resources are essential for
the understanding and documentation of a language. The corpora can thus be enhanced. Glosses could
be easily added (text with interlinear glosses), and a translation could be offered with a tool to facilitate
the production of “Pangloss-like” documents, which have not only a transcription (in sentences, broken
down into words) but also the whole philological apparatus used by linguists for research purposes.

From a technical point of view, XLSR implementation is fast, inexpensive in computational resources,
and easy to set up. All we have to do is train the neural network and use a script that runs each step
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from start to finish. In comparison with the previous approach, ESPnet, Benjamin Galliot, an expert
programmer participating in the development of Elpis, took around one month to train it and get a
working ASR system on the same corpora. Moreover, XLSR fine-tuning only requires the use of a single
GPU and takes less than a day to train. This first approach is not only operable, but also used. Indeed,
the pipeline to follow was explained to Séverine Guillaume, the engineer in charge of the Pangloss
Collection, who will be able to transcribe new audios from the fine-tuned models of the Na and Japhug,
but also to train a new model according to the resources at her disposal. Around 60 languages in the
Pangloss Collection contain more than 30 minutes of labeled data, and around 45 languages include at
least 1 hour of labeled data (Japhug and Na are counted in).

We must not forget the many remaining challenges. The experiments were conducted only on two low-
resource languages, on monolingual corpora, and with only a few speakers. From the learning curves, the
trend tells us that less than an hour of labeled data is sufficient to achieve low error rates. But how well
can we generalize this observation to other languages? And how do we give feedback to field linguists on
the quantity and quality of data to be provided for the ASR task? It is thus necessary to keep up a two-
way exchange between linguists and NLP experts in this task. In particular, a seminar presentation was
given to present the experiments carried out in this work and the computer tools available for linguistic
documentation for field linguists (especially PhD students, who as budding linguists stand to gain a lot
from leveraging the power of state-of-the-art computational tools). Moreover, a potential limitation we
could pointed out concerns the word boundary symbol. The standard convention for separating words,
the pipe symbol, was used with a different meaning in the training corpus (as a tonal group boundary).
Another notation would be appropriate to avoid confusion. Fine adjustments are to be made according
to the characteristics of the language studied, and the characteristics of the reference transcriptions.

The second approach, entitled wav2vec-U, fully unsupervised, did not achieve the expected results on
the same studied corpora. It was not possible to overcome the initial disappointing results, due to the
limited literature available on the topic and the low amount of replication of this approach by other NLP
researchers so far. However, even if unsupervised methods have many advantages from the point of
view of technical deployment (it is easier to obtain unlabeled data, it reduces the complexity compared
to supervised methods), supervised methods appear suitable for workflows in linguistic documentation,
in view of the fact that corpus production constitutes a labor of love for field linguists, who standardly
carry out the work of annotating their corpus themselves, producing “beautiful data”: handcrafted data
sets with a high degree of precision.

The work reported here allowed me to learn about the latest approaches and trends applied to ASR.
Through the knowledge taught throughout the NLP Master, I was able to understand and grasp the
issues of each studied method. The installation of the different libraries on the server posed some
difficulties at the beginning, but these were quickly solved by the help of the technical expert at the
Très Grande Infrastructure de Recherche Huma-Num.
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Appendix A

Additional materials

A.1 .tsv file

Figure A.1: Beginning of the generated .tsv file with the audio file path in the ‘path’ column, and the
corresponding transcriptions in the ‘sentence’ column.
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A.2 xlsr-180-na predictions

Ref: tʰi˩˥ hĩ˧ ʈʂʰɯ˧ʂæ˧ʂæ˧hĩ˧qo˩ le˧tsʰɯ˩ɲi˩mæ˩
Hyp: tʰi˩˥ hĩ˧ ʈʂʰɯ˧ ʂæ˧ʂæ˧hĩ˧qo˩ le˧tsʰɯ˩ɲi˩mæ˩
Ref: hĩ˧ gi˩˥ wɤ˩˥ dzɑ˧hĩ˧ki˧ ʂe˧bi˧v̩˩tʰv̩˩hĩ˩ʈʂʰɯ˩dʑo˩ mɤ˧tsɤ˧ze˧ pi˧zo˩ tʰi˩˥ le˧wo˧tʰo˥tɕo˩ le˧tsʰɯ˩zo˩
Hyp: hĩ˧ dʑi˧ dzɑ˧hĩ˧ki˧ ʂe˧bi˧vo˩tʰv̩˩hĩ˧ ʈʂʰɯ˧dʑo˩ mɤ˧tsɤ˧ze˩ pi˧zo˩ tʰi˩˥ le˧wo˧tʰo˥tɕo˩ le˧tsʰɯ˩zo˩
Ref: ə˧mv̩˧ki˥ ʈʂʰɯ˧ne˧ʝi˥ ʝi˧lo˧ mɤ˧dʑɤ˩ ɲi˩ze˩mæ˩
Hyp: ə˧mv̩˧ki˥ ʈʂʰɯ˧ne˧ʝi˥ ʝi˧lo˧ mɤ˧dʑɤ˩ ɲi˩ze˩ mæ˩
Ref: ni˧mi˧ʈʂʰɯ˧ zo˩no˥ go˧mi˧ʈʂʰɯ˧ hĩ˧ki˧ki˩ pi˧dʑo˩ ni˧mi˧ ɲi˥ze˩mæ˩ ə˩gi˩
Hyp: ni˧mi˧ʈʂʰɯ˧ zo˩no˥ go˧mi˧ʈʂʰɯ˧ hĩ˧ki˧ki˩ pi˧dʑo˩ ni˧mi˧ɲi˥ze˩mæ˩ ə˩gi˩
Ref: dʑɯ˧ʈʂʰwæ˧
Hyp: dze˧ʈʂʰwɤ˥
Ref: njɤ˧ ə˧si˧ɳɯ˧ zo˩no˥ ə˧sɯ˩kv̩˩ no˧sɯ˩kv̩˩ zo˩no˥ le˧ʐwɤ˩pi˩dʑo˩
Hyp: njɤ˧ ə˧si˧˧ ˧ zo˩no˥ ə˧sɯ˩kv̩˩ no˧sɯ˩kv̩˩ zo˩no˥ le˧ʐwɤ˩ pi˩dʑo˩
Ref: ʈʂʰɯ˧ne˧ʝi˥ le˧tɕɯ˧ɭɯ˧ le˧tɕɯ˧ɭɯ˧ ʈʂʰɯ˧ne˧ʝi˥ le˧gv̩˩
Hyp: ʈʂʰɯ˧ne˧i˥ le˧tɕɯ˧ɭɯ˧ le˧tɕɯ˧ɭɯ˧ ʈʂʰɯ˧ne˧ʝi˥ le˧gv̩˩
Ref: mv̩˧dze˧ ki˧ɲi˥tsɯ˩ mv̩˩ qʰɑ˧dze˧ ki˧ɲi˥tsɯ˩ mv̩˩ ɕi˧ɭɯ˧ ki˧ɲi˥tsɯ˩ mv̩˩
Hyp: mv̩˧dze˧ ki˧ɲi˥tsɯ˩ mv̩˩ qʰɑ˧dze˧ki˧ɲi˥tsɯ˩ mv̩˩ sɕi˧ɭɯ˧ ki˧ɲi˥tsɯ˩ mv̩˩
Ref: njɤ˧ t njɤ˧ le˧ʂv̩˧ɖv̩˧zo˥ no˧ki˧ ʂe˧tsʰɯ˩ɲi˩
Hyp: njɤ˧ njɤ˧ le˧ʂv̩˧ɖv̩˧zo˥ no˧ ki˧ ʂe˧tsʰɯ˧ɲi˩
Ref: tʰi˩˥ ʈʂʰæ˧ɣɯ˧ki˩hĩ˩ dʑɤ˩˥ mɤ˧dʑo˩
Hyp: tʰi˩˥ ʈʂʰæ˧ɣɯ˧ki˩hĩ˩ dʑɤ˩˥ mɤ˧dʑo˩
Ref: wɤ˩˥ le˧tɕɯ˩tɕɯ˩ le˧po˧tsʰɯ˧˥ wɤ˩˥ ɬi˧di˩ tɕʰi˧kv̩˥mæ˩
Hyp: wɤ˩˥ le˧tɕɯ˩tɕɯ˩ le˧po˧tsʰɯ˧˥ wɤ˩˥ ɬi˧di˩ tɕʰi˧kv̩˧˥ mæ˩
Ref: kʰv kʰv̩˩mi˩ʈʂʰɯ˥dʑo˩ njɤ˧le˧gv̩˧ ʐo˩˥ ɖɯ˧mɤ˧kv̩˧tsɯ˥ mv̩˩
Hyp: kʰv̩˧˥ no˧ kʰv̩˩mi˩ʈʂʰɯ˥dʑo˩ njɤ˧ le˧gv̩˧ ʐo˩˥ ɖɯ˧mɤ˧kv̩˧tsɯ˥ mv̩˩
Ref: wɤ˩˥ kɯ˧ʈʂʰwɤ˩ ɖɯ˧tɕʰi˧ gv̩˩ dʑɤ˩tsʰo˧ hĩ˧ɻæ˧ki˥
Hyp: wɤ˩˥ kɯ˧ʈʂʰwɤ˩ ɖɯ˧tɕʰi˩ gv̩˩ dʑɤ˩tsʰo˧hjæ˧ki˧
Ref: zo˩no˥ ʈ ʈæ˧bɤ˧ʈʂʰɯ˧dʑo˩ ʈʂʰæ˧ɣɯ˧ mɤ˧dʑo˧ɲi˥ ʈʂʰo˧lɑ˧kv̩˥
Hyp: zo˩no˥ ʈ ʈæ˧bɤ˧ʈʂʰɯ˧dʑo˩ ʈʂʰæ˧ɣɯ˧ mɤ˧dʑo˧ɲi˥ ʈʂʰo˧lɑ˧kv̩˥
Ref: tʰi˩˥ ə˧mi˧ le˧ʂɯ˧ɲi˥ho˩ze˩wɤ˩ æ˧ʂæ˧tɑ˩mv̩˩dʑo˩
Hyp: tʰi˩˥ ə˧mi˧ le˧ʂɯ˧ɲi˥ho˩ze˩wɤ˩˥ æ˧ʂæ˧tɑ˩mv̩˩dʑo˩
Ref: əəə... ʐv̩˧tsʰi˩gv̩˩hɑ̃˩ ɖɯ˩kʰv̩˩ mmm... lv̩˩ kʰɯ˩zo˩kv̩˥pi˩
Hyp: əəə... ʐv̩˧tsʰi˩gv̩˩hɑ̃˩ ɖɯ˧kʰv̩˩ lv̩˧kʰɯ˩zo˩kv̩˩ pi˩
Ref: hæ̃˧pɤ˧ tʰi˧mv̩˧kʰɯ˧se˥ dʑo˩ tʰi˩˥ dʑɯ˧ki˥ tʰi˧ki˩kʰɯ˩
Hyp: hæ̃˧pɤ˧ tʰi˧mv̩˧kʰɯ˧se˥dʑo˩ tʰi˩˥ ɖʑɯ˧ki˥ tʰi˧ki˩kʰɯ˩
Ref: dʑɤ˩tsʰo˧dʑo˧ ə˧ʝi˧ʂɯ˥ʝi˩ mmm... dʑo˩ kɤ˧kɤ˩ tʰi˧dzi˩dʑo˩
Hyp: dʑɤ˩tsʰɯ˧dʑo˥ ə˧ʝi˧ʂɯ˥ʝi˩ ... dʑo˩ kɤ˧kɤ˩ tʰi˧dzi˩dʑo˩
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A.3 xlsr-jya-600 predictions

Ref: rtazga nɯ pjɯ́wɣta ŋu
Hyp: ɤzga nɯ pjɯ́wɣta ŋu
Ref: tɕe ma nɤkinɯ ɯru nɯnɯ fsapaʁndza pe
Hyp: tɕe ma nɤkinɯ ɯru nɯnɯ fsapaʁndza pe
Ref: pɯnɯcinɯ ʑo tɕe nɯ kunaχthɤβ tɕe
Hyp: pɯnɯcinɯ ʑo tɕe tɕe nɯ kunaχthɤβ tɕe
Ref: tɤrɤku ra ɣɯmɯrki ra ma me
Hyp: tɤrɤku ra ɣɯmɯrki ra ma me
Ref: tɕe li kɯnɯkho joɕe
Hyp: tɕe li kɯnɯkho joɕe
Ref: iɕqha tɤtɕɯ tɯlɤt nɯnɯ nɤkinɯ kɯmaʁ li kɯrɤtsɣe ra nɯrca joɕe tɕe
Hyp: ɕqha tɤtɕɯ tɯlɤt nɯnɯ nɤkinɯ kɯmaʁ li kɯrɤtsɣe ra nɯrca joɕe tɕe
Ref: ma nɯnɯ zrɯɣ nɯ li saʁnɤt
Hyp: ma nɯnɯ zrɯɣ nɯ li saʁnɤt
Ref: nɯnɯ nɯɬoʁ ʑo tɕe tɕe tukɯnɯna pjɤjɤɣ ɲɯŋu
Hyp: nɯnɯ nɯɬoʁ ʑo tɕe tɕe tukɯnɯna pjɤjɤɣ ɲɯŋu
Ref: tuʁndi pjɯsat nɯra ɲɯŋgrɤl tɕe tɕe
Hyp: tuʁndi pjɯsat nɯra ɲɯŋgrɤl tɕe tɕe
Ref: si nɯ apɯndzur qhe
Hyp: si nɯ apɯmdzu qhe ki
Ref: longtou ɯpɤrthɤβ ri nɯro ki ʑo tustunɯ ra
Hyp: noŋthɯɣ pɤrthɤβ ri nɯro ki ʑo tustunɯ ra
Ref: sɯŋgɯ ri kurɤʑi ɕti tɕe
Hyp: sɯŋgɯ ri kurɤʑi ɕti tɕe
Ref: χsɯɣjɤn tɤatɕhɯza tɕe tɕendɤre nɯ spjaŋkɯ ɲɯβzea ŋu tɕe
Hyp: χsɯɣjɤn tatɕhɯza tɕe tɕendɤre spjaŋkɯ ɲɯβzea ŋu tɕe
Ref: kɤtaʁ kɤ́wɣthɯ tɕe tɕendɤre
Hyp: kɤtaʁ kɤ́wɣthɯ tɕe tɕendɤre
Ref: tɕendɤre ʑmbrɯ ɯtaʁ toɕe tɕe nɯ ɕɯŋgɯ ɯʑo ɯsɤtɕha nɯ tɕu nɤki yalishan kɤti nɯnɯtɕu
Hyp: tɕendɤre ʑmbrɯ ɯtaʁ toɕe tɕe nɯ ɕɯŋgɯ ɯʑo ɯsɤtɕha nɯtɕu nɤki yalishan kɤti nɯnɯtɕu
Ref: ɲɤlɤt tɕe tɕendɤre iɕqha nɯ
Hyp: ɲɤlɤt tɕe tɕendɤre iɕqha nɯ
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Ref: ɯku ɯtaʁ kutɯtɯɣ ʑo tɕe tɕendɤre
Hyp: ra ɲɤsɯso ri ɯku ɯtaʁ kutɯtɯɣ ʑo tɕe tɕendɤre
Ref: nɯ ɯtaʁ nɯtɕu iɕqha pjɯrɯ chonɤ rɯnbotɕhi nɯra kundzoʁ ɲɯŋgrɤl tɕe tɕe iɕqha
Hyp: nɯ ɯtaʁ nɯtɕu iɕqha pjɯrɯ chonɤ rɯnbotɕhi nɯra kundzoʁ ɲɯŋgrɤl tɕe tɕeiɕqha

A.4 Predictions of an unseen Na speech file

Ref: ə˧ʝi˧ʂɯ˥ʝi˩dʑo˩ ə˩gi˩ zo˩no˥ hĩ˧ ʈʂʰɯ˧dʑo˩ əəə... ɖʐwæ˧ɖʐwæ˥hwɤ˩hwɤ˩ mmm... pi˧dʑo˩
ʈʂɯ˧ʈʂɯ˩ ɻæ˧ɻæ˧ tʰv̩˧ ɖʐwæ˧ɖʐwæ˥hwɤ˩hwɤ˩ tʰv̩˩ pi˧kv̩˩ mæ˩

Hyp: ə˧ʝi˧ʂɯ˥ʝi˩dʑo˩ ə˩gi˩ zo˩no˥ hĩ˧ʈʂʰɯ˧dʑo˩ əə... ɖʐwæ˧ ɖʐwæ˥hɤ˩hoɤ˩ mə... pi˧dʑo˩ ʈʂɯ˧ʈʂɯ˩
ɻæ˧ɻæ˧tʰv̩˧ ɖʐwæ˧ ɖʐwæ˥hwɤ˩hɤ˩ tʰv̩˩ pi˧kv̩˩mæ˩

Ref: tʰi˩˥ ə˧ʝi˧ʂɯ˥ʝi˩dʑo˩ tʰi˩˥ zo˩no˥ mmm... sɯ˧pʰi˧ki˧ qwɤ˧qwɤ˩ bi˩kv̩˩ mæ˩
Hyp: tʰi˩˥ ə˧ʝi˧ʂɯ˥ʝi˩dʑo˩ tʰi˩˥ zo˩no˥ mm... sɯ˧pʰi˧ki˧ qwɤ˧qwɤ˩bi˩kv̩˩mæ˩
Ref: sɯ˧pʰi˧ki˧ le˧qwɤ˧qwɤ˩se˩dʑo˩ tʰi˩˥ sɯ˧pʰi˧ no˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧ʁo˧ njɤ˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧ʁo˧

ɲi˧ʑi˩ do˧bv̩˧ lɑ˧kv̩˥ze˩ mæ˩
Hyp: sɯ˧pʰi˧ki˧ le˧qwɤ˥qwɤ˩se˩dʑo˩ tʰi˩˥ sɯ˧pʰi˧ no˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧ʁo˧ njɤ˧ɻ ̍˩ dʑɤ˩ pi˧ mɤ˧ʁo˧

ɲi˧ʑi˩ do˧bv̩˧ lɑ˩kv̩˩ze˩mæ˩
Ref: tʰi˩˥ do˧bv̩˧ lɑ˧˥ dʑo˩ tʰi˩˥ wɤ˩˥ le˧ɖʐwæ˧ɖʐwæ˥ le˧ɖʐwæ˧ɖʐwæ˥ le˧ɖʐwæ˧ɖʐwæ˥ dʑo˩ tʰi˩˥ mɤ˧tsɤ˧

mɤ˧ho˧ho˥...
Hyp: tʰi˩˥ do˧bv̩˧ lɑ˧˥ dʑo˩ tʰi˩˥ wɤ˩˥ le˧ɖʐwæ˧ɖʐæ˥ le˧ɖʐwæ˧ʐwɤ˥ le˧ʐwæ˧ʐwæ˥dʑo˩ tʰi˩˥ mɤ˧tsɤ˧

mv̩˧ho˧ho˧
Ref: ʈʰææ̃˧ ho˩ho˥ mɤ˧tʰɑ˧ ho˧ho˥ mɤ˧tʰɑ˩dʑo˩ tʰi˩˥ əəə... sɯ˧pʰi˧ɳɯ˧ no˧sɯ˩kv̩˩ tʰɑ˧ɖʐwæ˧ ɖʐwæ˥ze˩

ɖæ˩mi˧qo˧ kɤ˧ʈʂɯ˩ ʝi˩ hõ˩ pi˧kv̩˩tsɯ˩ mv̩˩
Hyp: ʈʰææ̃˧ ho˩ho˥ mɤ˧tʰɑ˧ ho˧ho˥ mɤ˧tʰɑ˩dʑo˩ tʰi˩˥ əəə... sɯ˧pʰi˧ɳɯ˧ no˧sɯ˩kv̩˩ tʰɑ˧ɖʐwæ˧ ɖʐwæ˥ze˩

ɖæ˩mi˧qo˧ kɤ˧ʈʂe˩ hĩ˩hõ˩ pi˧kv̩˩tsɯ˩ mv̩˩

A.5 Predictions of an unseen Japhug speech file

Ref: tɕe kɯɕɯŋgɯ tɕe iɕqha mingchao ɯraŋ nɯtɕu pjɤŋu tɕendɤre iɕqha nɤki yanguo kɤti rɟɤlkhɤβ
ɣɯ nɯrɟɤlpu nɯ kɯ iɕqha nɯ

Hyp: tɕe kɯɕɯŋgɯ tɕe iɕqha minchaouɯraŋg nɯ tɕu pjɤŋu tɕendɤre iɕqha nɤki yanguo kɤti rɟɤlkhɤβ
ɣɯ nɯrɟɤlpu nɯ kɯ iɕqha nɯ

Ref: iɕqha nɯ ɯftsa nɯnɯ rɟɤlpu lusɯndɤm pjɤsɯso
Hyp: iɕqha nɯ ɯftsa nɯnɯ rɟɤlpu lusɯndɤm pjɤsɯso
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Ref: tɕe nɯ rɟɤlpu lusɯndɤm pjɤsɯso tɕe tɕendɤre nɤkinɯ sɤtɕha ra tosɤtʂoʁloʁnɯ ʑo ɕti tɕe
tɕendɤre iɕqha nɯ

Hyp: tɕe nɯ rɟɤlpu lusɯndɤm pjɤsɯso tɕe tɕendɤre nɤkinɯ sɤtɕha ra tosɤtʂoʁloʁnɯ ʑo ɕti tɕe
tɕendɤre iɕqha nɯ

Ref: shandong nɯtɕu ɯrmi zhangxiaobing kɯrmi ci tɯtsɣe ɯkɯβzu ci pjɤtu tɤtɕɯ
Hyp: shandong nɯtɕu ɯrmi zhangxiaobing kɯrmi ci tɯtsɣe ɯkɯβzu ci pjɤtu tɤtɕɯ
Ref: tɕendɤre ɯrʑaβ nɯ ɯskhrɯ mɯɲɤβdi χsɯsla ma mɯtoβzu ri tɕendɤre ɯpɕi joɬoʁndʑi

ɲɤphɣondʑi pjɤra matɕi
Hyp: tɕendɤre ɯrʑaβ nɯ ɯskhrɯ mɯɲɤβdi χsɯsla ma mɯtoβzu ri tɕendɤre ɯpɕi joɬoʁndʑi

ɲɤphɣondʑi pjɤra matɕi
Ref: sɤtɕha ra pjɤkɤtʂoʁloʁci qhe tɕe nɯra tɕetha kɯsɤɣʑi ra pɯme ma ɲɤsɯsondʑi qhe tɕe nɯ

jophɣondʑi
Hyp: sɤtɕha ra pjɤkɤtʂoʁloʁci qhe tɕe nɯra tɕetha kɯsɤɣʑi ra pɯme ma ɲɤsɯsondʑi qhe tɕe nɯ

jophɣondʑi
Ref: tɕeri tʂu jɤarindʑi tɕe tɕendɤre kɯdɤn mɯtotsundʑi ma tɕendɤre ʁmaʁ ra pjɤdɤn qhe nɯra

tɯrme kɯnɤphɯphɣo nɯra qhe tówɣsɤtʂoʁloʁnɯ ʑo ɕti qhe ɯrʑaβ ɲɤ́wɣsɯβde
Hyp: tɕeri tʂu jɤarindʑi tɕe tɕendɤre kɯdɤn mɯtotsundʑi ma tɕendɤre ʁmaʁ ra pjɤdɤn qhe nɯra

tɯrme kɯnɤphɯphɣo nɯra qhe tówɣsɤtʂoʁloʁnɯ ʑo ɕti qhe ɯrʑaβ ɲɤ́wɣsɯβde
Ref: qhe ʁzɤmi ni ʑaka jonɯɕendʑi tɕe tɤtɕɯ nɯ kɯ ɯrʑaβ ɯskhrɯm mɤkɯβdi nɯ pjɤnɯzdɯɣ

tɕe aʁɤndɯndɤt ʑo ɲɤɕar ri maka mɯpjɤmto
Hyp: qhe ʁzɤmi ni ʑaka jonɯɕendʑi tɕe tɤtɕɯ nɯ kɯ ɯrʑaβ ɯskhrɯm mɤkɯβdi nɯ pjɤnɯzdɯɣ

tɕe aʁɤndɯndɤt ʑo ɲɤɕar ri maka mɯpjɤmto
Ref: mɯpjɤmto qhe tɕendɤre nɤkinɯ iɕqha nɯ ɯrʑaβ nɯ ma kɯ ɯʁjɯβ cinɤ kɤmto mɯpjɤcha

qhe wuma ʑo pjɤnɯzdɯɣ
Hyp: mɯpjɤmto qhe tɕendɤre nɤkinɯ iɕqha nɯ ɯrʑaβ nɯ ma kɯ ɯʁjɯβ ci nɤ kɤmto mɯpjɤcha

qhe wuma ʑo pjɤnɯzdɯɣ
Ref: tɕe pjɤnɯzdɯɣ ri kɤpa pjɤme qhe joɕe qhe tɕendɤre tɯsŋi qhe nɤkinɯ iɕqha nɯ
Hyp: tɕe pjɤnɯzdɯɣ ri kɤpa pjɤme qhe joɕe qhe tɕendɤre tɯsŋi qhe nɤkinɯ iɕqha nɯ
Ref: li iɕqha kɯnɤphɯphɣo ra nɯrca nɯtɕu tɕe joɣi tɕe shandong pjɤrɤʑi ɕti ri nɯra kɤɕar ntsɯ

kɯ henan jozɣɯt
Hyp: li iɕqha kɯnɤphɯphɣo ra nɯrca nɯtɕu tɕe joɣi tɕe shandong pjɤrɤʑi ɕti ri nɯra kɤɕar nts ke

huolan ɲozɣɯt
Ref: henan nɯnɯ jozɣɯt qhe tɕendɤre nɯtɕu qhe tɕe nɤkinɯ tɯtsɣe ɯkɯβzu tsuku ɲɤkɤtɯɣci

qhe nɯ ɕɯŋgɯ ɯkɤnɯfse ci ɲɤkɤtɯɣci
Hyp: huolan nɯnɯ jozɣɯt qhe tɕendɤre nɯtɕu qhe tɕe nɤkinɯ tɯtsɣe ɯkɯβzu tsuku ɲɤkɤtɯɣci

qhe nɯ ɕɯŋgɯ ɯkɤnɯfse ci ɲɤkɤtɯɣci
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Ref: tɕe nɯ kɯ ɲɤ́wɣnɯkhɤda qhe manɯtɯnɯzdɯɣ tɕe toti tɕe iɕqha tɯtsɣe sɤβzu ɣɯ ɯʁdɤnba
ra ɲɤ́wɣznɤŋgɯ qhe

Hyp: tɕe nɯ kɯ ɲɤ́wɣnɯkhɤda qhe manɯtɯnɯzdɯɣ tɕe toti tɕe iɕqha tɯtsɣe sɤβzu ɣɯ ʁdɤnba ra
ɲɤ́wɣznɤŋgɯ qhe

Ref: tɕendɤre nɯra nɤʑo tɯtsɣe tɤβze toti
Hyp: tɕendɤre nɯra nɤʑo tɯtsɣe tɤβze toti
Ref: tɕendɤre nɯ ɯqhu tɕe tɕendɤre kɯki zhangxiaobing nɯnɯ henan nɯtɕu lorɤʑi qhe
Hyp: tɕendɤre nɯ ɯqhu tɕe tɕendɤre kɯki zhangxiaobin nɯnɯ huolan nɯtɕu lorɤʑi qhe
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