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Abstract  

This work is dedicated to study the conditions of diagonalization in the case of refined neutrosophic matrices, where 
it presents the necessary and sufficient conditions for the diagonalization of these matrices by finding a relationship 
with classical diagonalization of matrices. Also, it describes an algorithm to obtain all eigen values and eigen vectors 
of refined neutrosophic matrices from the classical ones.   

Keywords: Refined neutrosophic matrix, refined neutrosophic eigen value, refined neutrosophic eigen vector, 
refined neutrosophic diagonalization 

1. Introduction 

Neutrosophy is a new branch of philosophy founded by F. Smarandache [16] to deal with uncertainty in all fields of 
human knowledge, where it can be considered as a generalization of intuitionistic fuzzy logic. 

Neutrosophic algebraic studies began with the great efforts of Kandasamy and Smarandache in [12], where they 
studied for the first time neutrosophic rings and neutrosophic groups. 

In the literature, we find many neutrosophic algebraic results about spaces [11], modules [6], rings [5,13], number 
theory [15,17], and other related systems [23-25] 
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Neutrosophic matrices were defined in [9] as a useful tool to deal with indeterminacy and as a generalization of fuzzy 
matrices [10]. The algebraic properties of these matrices were studied in [8], such as their linear transformations and 
diagonalization problem [27]. 

In [7], Agboola et. al. presented the idea of splitting the indeterminacy element I into two levels of indeterminacy 
𝐼!, 𝐼" with the following property  𝐼!𝐼" = 𝐼"𝐼! = 𝐼!, 𝐼!" = 𝐼!, 𝐼"" = 𝐼" . This idea was used to defined refined 
neutrosophic groups [7], refined neutrosophic rings [1], modules [14,18], and matrices [4]. 

The invertibility, nilpotency, and idempotency of refined neutrosophic matrices were characterized in [4]. 

In this work, we study the problem of diagonalization of refined neutrosophic matrices, where we determine an 
algorithm to find all eigen vectors and values, and we use this idea to determine the necessary and sufficient condition 
for the diagonalization of refined neutrosophic matrices. 

All refined neutrosophic matrices through this study are considered over a refined neutrosophic field 𝐾(𝐼!, 𝐼"). 

2. Preliminaries 

Definition: [7] 

If 𝑋	is a set then 𝑋(𝐼!, 𝐼") = {(𝑎, 𝑏𝐼!, 𝑐𝐼"); 𝑎	, 𝑏	, 𝑐	 ∈ 𝑋	} is called the refined neutrosophic generated by 𝑋 , 𝐼!, 𝐼" . 

Definition: [1] 

Let (𝑅,+, . ) be a ring then (𝑅(𝐼!, 𝐼")	, +	, . ) is called a refined neutrosophic ring generated by	𝑅 ,𝐼!, 𝐼". 

Where 𝐼!" = 𝐼!	, 𝐼"" = 𝐼"	, 𝐼!𝐼" = 𝐼"𝐼! = 𝐼!. 

If R is an algebraic field, then 𝑅(𝐼!, 𝐼") is called a refined neutrosophic field. 

Definition: [4] 

Let 𝐴=4
𝑎!! … . 𝑎!#
⋮ ⋱ ⋮
𝑎$! … 𝑎$#

8 be an 𝑛 ×𝑚 mat انھ ةلداعملا بتكا .rix, if  𝑎%& = 𝑥 + 𝑦𝐼! + 𝑧𝐼" ∈ 𝑅"(𝐼), then it is called an 

refined neutrosophic matrix. Where 𝑅"(𝐼) is an refined neutrosophic field. 

Theorem: [4]  

Let  𝑋=𝐴 + 𝐵𝐼! + 𝐶𝐼" be a square 𝑛 × 𝑛 refined neutrosophic matrix, then it is invertible if and only if 

 𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 + 𝐶 are invertible. The inverse of 𝑋 is 

  𝑋'! = 𝐴'! + ((𝐴 + 𝐵 + 𝐶)'!−(𝐴 + 𝐶)'!)𝐼! + ((𝐴 + 𝐶)'!−𝐴'!)𝐼" . 

Definition: [4]  

We defined the determinant of a square 𝑛 × 𝑛 refined neutrosophic matrix  as 

 𝑑𝑒𝑡𝑋 = 𝑑𝑒𝑡𝐴 + [det(𝐴 + 𝐵 + 𝐶) − det	(𝐴 + 𝐶)]𝐼! + [det(𝐴 + 𝐶) − 𝑑𝑒𝑡𝐴]𝐼". 
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3. Main results 

Definition 3.1: 

Let 𝐿 = 𝐴 + 𝐵𝐼! + 𝐶𝐼" be a refined neutrosophic matrix, and 𝑀 = 𝑋 + 𝑌𝐼! + 𝑍𝐼"  is a strong refined neutrosophic 
vector, then it is called a refined neutrosophic eigen vector of 𝐿 if and only if 

𝐿𝑀 =(𝑎 + 𝑏𝐼! + 𝑐𝐼")𝑀. 

The refined neutrosophic number 𝑎 + 𝑏𝐼! + 𝑐𝐼" is called a refined neutrosophic eigen value.   

Theorem 3.2: 

Let 𝐿 = 𝐴 + 𝐵𝐼! + 𝐶𝐼" be a refined neutrosophic matrix, then 𝑀 = 𝑋 + 𝑌𝐼! + 𝑍𝐼"  is a refined neutrosophic eigen 
vector with 𝑎 + 𝑏𝐼! + 𝑐𝐼"as the corresponding eigen value if and only if  𝑋, 𝑋 + 𝑍, 𝑋 + 𝑌 + 𝑍 are eigen vectors 
of	𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 + 𝐶	respectively. As well as, 𝑎, 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐  are the corresponding eigen values respectively. 

Proof: 

Suppose that 𝑀 = 𝑋 + 𝑌𝐼! + 𝑍𝐼"  is a refined neutrosophic eigen vector with 𝑎 + 𝑏𝐼! + 𝑐𝐼"as the corresponding 
eigen value, then	𝐿𝑀 =(𝑎 + 𝑏𝐼! + 𝑐𝐼")𝑀. By easy computing, we get 

(𝐴𝑋 + 𝐼![(𝐴 + 𝐵 + 𝐶)(𝑋 + 𝑌 + 𝑍) − (𝐴 + 𝐶)(𝑋 + 𝑍)] + 𝐼"[(𝐴 + 𝐶)(𝑋 + 𝑍) − 𝐴𝑋]= 

𝑎𝑋 + 𝐼![(𝑎 + 𝑏 + 𝑐)(𝑋 + 𝑌 + 𝑍) − (𝑎 + 𝑐)(𝑋 + 𝑍)] + 𝐼"[(𝑎 + 𝑐)(𝑋 + 𝑍) − 𝑎𝑋]. Which is equivalent to 

 𝐴𝑋 = 𝑎𝑋, (𝐴 + 𝐶)(𝑋 + 𝑍) = (𝑎 + 𝑐)(𝑋 + 𝑍), (𝐴 + 𝐵 + 𝐶)(𝑋 + 𝑌 + 𝑍) = (𝑎 + 𝑏 + 𝑐)(𝑋 + 𝑌 + 𝑍). Thus 

 𝑋, 𝑋 + 𝑍, 𝑋 + 𝑌 + 𝑍 are eigen vectors of	𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 + 𝐶	respectively. As well as, 𝑎, 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐  are the 
corresponding eigen values respectively. 

Conversely, we assume that 𝑋, 𝑋 + 𝑍, 𝑋 + 𝑌 + 𝑍 are eigen vectors of	𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 + 𝐶	respectively, with 𝑎, 𝑎 +
𝑐, 𝑎 + 𝑏 + 𝑐  are the corresponding eigen values respectively, then by the definition of eigen vectors we can write: 

𝐴𝑋 = 𝑎𝑋, (𝐴 + 𝐶)(𝑋 + 𝑍) = (𝑎 + 𝑐)(𝑋 + 𝑍), (𝐴 + 𝐵 + 𝐶)(𝑋 + 𝑌 + 𝑍) = (𝑎 + 𝑏 + 𝑐)(𝑋 + 𝑌 + 𝑍). 

This means that (𝐴𝑋 + 𝐼![(𝐴 + 𝐵 + 𝐶)(𝑋 + 𝑌 + 𝑍) − (𝐴 + 𝐶)(𝑋 + 𝑍)] + 𝐼"[(𝐴 + 𝐶)(𝑋 + 𝑍) − 𝐴𝑋]= 

𝑎𝑋 + 𝐼![(𝑎 + 𝑏 + 𝑐)(𝑋 + 𝑌 + 𝑍) − (𝑎 + 𝑐)(𝑋 + 𝑍)] + 𝐼"[(𝑎 + 𝑐)(𝑋 + 𝑍) − 𝑎𝑋]. Which implies 

𝐿𝑀 =(𝑎 + 𝑏𝐼! + 𝑐𝐼")𝑀, thus 𝑀 = 𝑋 + 𝑌𝐼! + 𝑍𝐼"  is a refined neutrosophic eigen vector with 𝑎 + 𝑏𝐼! + 𝑐𝐼"as the 
corresponding eigen value. 

Theorem 3.3: 

Eigen values can be gotten by solving the refined neutrosophic equation det(𝐿 − (𝑎 + 𝑏𝐼! + 𝑐𝐼")𝑈$×$) = 0. 

Proof: 

Firstly, we have: 
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  det(𝐿 − (𝑎 + 𝑏𝐼! + 𝑐𝐼")𝑈$×$) = det	([𝐴 − 𝑎𝑈$×$] + [𝐵 − 𝑏𝑈$×$]𝐼! + [𝐶 − 𝑐𝑈$×$]𝐼") 

= det(𝐴 − 𝑎𝑈$×$) + 𝐼![det(𝐴 + 𝐵 + 𝐶 − (𝑎 + 𝑏 + 𝑐)𝑈$×$) − det(𝐴 + 𝐶 − (𝑎 + 𝑐)𝑈$×$)] + 𝐼"[det(𝐴 + 𝐶 −
(𝑎 + 𝑐)𝑈$×$) − det(𝐴 − 𝑎𝑈$×$)] = 0. This implies that 

det(𝐴 − 𝑎𝑈$×$) = det(𝐴 + 𝐶 − (𝑎 + 𝑐)𝑈$×$) = det(𝐴 + 𝐵 + 𝐶 − (𝑎 + 𝑏 + 𝑐)𝑈$×$) = 0. 

Hence, 𝑎, 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐 are eigen values of 𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 + 𝐶 respectively, which is equivalent to that 

 𝑎 + 𝑏𝐼! + 𝑐𝐼" is a refined neutrosophic eigen value of L. 

Example 3.4: 

Consider the following refined neutrosophic matrix 𝐿 = P1 − 𝐼! + 𝐼" 1 − 𝐼"
−𝐼! + 𝐼" −1 − 𝐼! + 4𝐼"

S. 

(a) L is written as 𝐿 = 𝐴 + 𝐵𝐼! + 𝐶𝐼". Where 𝐴 = T1 1
0 −1U , 𝐵 = T−1 0

−1 −1U , 𝐶 = (1 −1
1 4 ). 

(b) We have 𝐴 + 𝐶 = T2 0
1 3U , 𝐴 + 𝐵 + 𝐶 = (1 0

0 2). The set of eigen values of A is {1, −1}, for 𝐴 + 𝐶 it is {2,3}, 

and for 𝐴 + 𝐵 + 𝐶 it is {1,2}. 

(c) According to Theorem 3.2, the set of refined neutrosophic eigen values of L is 

{1 + 𝐼![1 − 2] + 𝐼"[2 − 1], 1 + 𝐼![2 − 2] + 𝐼"[2 − 1], 1 + 𝐼![1 − 3] + 𝐼"[3 − 1], 1 + 𝐼![2 − 3] + 𝐼"[3 − 1], −	1
+ 𝐼![1 − 2] + 𝐼"[2 + 1], −1 + 𝐼![2 − 2] + 𝐼"[2 + 1], −1 + 𝐼![1 − 3] + 𝐼"[3 + 1], −1
+ 𝐼![2 − 3] + 𝐼"[3 + 1]} 

= {1 − 𝐼! + 𝐼", 1 + 𝐼", 1 − 2𝐼! + 2𝐼", 1 − 𝐼! + 2𝐼", −1 − 𝐼! + 3𝐼", −1 + 3𝐼", −1 − 2𝐼! + 4𝐼", −1 − 𝐼! + 4𝐼"}. 

(d) We get the same values by solving the following refined neutrosophic equation: 

det(𝐿 − (𝑎 + 𝑏𝐼! + 𝑐𝐼")𝑈$×$) = (𝑎 + 𝑏𝐼! + 𝑐𝐼")" + (𝑎 + 𝑏𝐼! + 𝑐𝐼")(2𝐼! − 5𝐼") + (−1 − 4𝐼! + 7𝐼") = 0. For the 
solution, we can use the algebraic algorithm which was introduced in [3]. 

Definition 3.5: 

Let 𝑋 = 𝐴 + 𝐵𝐼! + 𝐶𝐼" be any refined neutrosophic matrix, then it is called diagonalizable if there exists an 
invertible refined neutrosophic matrix 𝑌 = 𝐹 + 𝐺𝐼! +𝐻𝐼" such that  𝑌'!𝑋𝑌 = 𝐷. Where D is a refined neutrosophic 
diagonal matrix. 

Theorem 3.6: 

Let 𝑋 = 𝐴 + 𝐵𝐼! + 𝐶𝐼" be any refined neutrosophic matrix, then it is diagonalizable if and only if 𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 +
𝐶 are diagonalizable. 

Proof: 

Suppose that	𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 + 𝐶 are diagonalizable, then there are three invertible matrices F,G,H such that 
𝐹'!𝐴𝐹 = 𝐷), 𝐺'!(𝐴 + 𝐵 + 𝐶)𝐺 = 𝐷!, 𝐻'!(𝐴 + 𝐶)𝐻 = 𝐷". Where 𝐷), 𝐷!, 𝐷"  are diagonal matrices. Put 𝑌 = 	𝐹 +
(𝐺 − 𝐻)𝐼! + (𝐻 − 𝐹)𝐼", 𝐷 = 𝐷) + (𝐷! −𝐷")𝐼! + (𝐷" −𝐷))𝐼". Now, let us compute 𝑌'!𝑋𝑌 = (𝐹'! + 𝐼![(𝐺 −
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𝐻 +𝐻 − 𝐹 + 𝐹)'! − (𝐻 − 𝐹 + 𝐹)'!] + 𝐼"[(𝐻 − 𝐹 + 𝐹)'! − 𝐹'!])(𝐴 + 𝐵𝐼! + 𝐶𝐼")^𝐹 + (𝐺 − 𝐻)𝐼! + (𝐻 − 𝐹)_  
= 

(𝐹'! + 𝐼![𝐺'! −𝐻'!] + 𝐼"[𝐻'! − 𝐹'!])(𝐴𝐹 + 𝐼![(𝐴 + 𝐵 + 𝐶)(𝐺) − (𝐴 + 𝐶)𝐻] + 𝐼"[(𝐴 + 𝐶)𝐻 − 𝐴𝐹]) =
𝐹'!𝐴𝐹 + 𝐼![𝐺'!(𝐴 + 𝐵 + 𝐶)𝐺 − 𝐻'!(𝐴 + 𝐶)𝐻] + 𝐼"[𝐻'!(𝐴 + 𝐶)𝐻 − 𝐹'!𝐴𝐹] = 𝐷) + (𝐷! −𝐷")𝐼! + (𝐷" −
𝐷))𝐼" = 𝐷. This means that X is diagonalizable. 

Conversely, we assume that X is diagonalizable, hence there exists an invertible refined neutrosophic matrix 𝑌 =
𝐹 + 𝐺𝐼! +𝐻𝐼" and a refined diagonal neutrosophic matrix 𝐷 = 𝐷) +𝐷!𝐼! +𝐷"𝐼" such that 𝑌'!𝑋𝑌 = 𝐷 (*). 

We shall compute equation (*): 

(𝐹'! + 𝐼![(𝐹 + 𝐺 + 𝐻)'! − (𝐹 + 𝐻)'!] + 𝐼"[(𝐹 + 𝐻)'! − 𝐹'!])(𝐴 + 𝐼![𝐵] + 𝐼"[𝐶])(𝐹 + 𝐼![𝐺] + 𝐼"[𝐻]) =
(𝐹'! + 𝐼![(𝐹 + 𝐺 + 𝐻)'! − (𝐹 + 𝐻)'!] + 𝐼"[(𝐹 + 𝐻)'! − 𝐹'!])(𝐴𝐹 + 𝐼![(𝐴 + 𝐵 + 𝐶)(𝐹 + 𝐺 + 𝐻) − (𝐴 +
𝐶)(𝐹 + 𝐻)] + 𝐼"[(𝐴 + 𝐶)(𝐹 + 𝐻) − 𝐴𝐹]) = 

𝐹'!𝐴𝐹 + 𝐼![(𝐹 + 𝐺 + 𝐻)'!(𝐴 + 𝐵 + 𝐶)(𝐹 + 𝐺 + 𝐻) − (𝐹 + 𝐻)'!(𝐴 + 𝐶)(𝐹 + 𝐻)] + 𝐼"[(𝐹 + 𝐻)'!(𝐴 +
𝐶)(𝐹 + 𝐻) − 𝐹'!𝐴𝐹] = 𝐷) +𝐷!𝐼! +𝐷"𝐼". 

This implies that 𝐹'!𝐴𝐹 = 𝐷), (𝐹 + 𝐻)'!(𝐴 + 𝐶)(𝐹 + 𝐻) − 𝐹'!𝐴𝐹 = 𝐷", (𝐹 + 𝐺 + 𝐻)'!(𝐴 + 𝐵 + 𝐶)(𝐹 + 𝐺 +
𝐻) − (𝐹 + 𝐻)'!(𝐴 + 𝐶)(𝐹 + 𝐻) = 𝐷! 

Thus (𝐹 + 𝐻)'!(𝐴 + 𝐶)(𝐹 + 𝐻) = 𝐷) +𝐷", (𝐹 + 𝐺 + 𝐻)'!(𝐴 + 𝐵 + 𝐶)(𝐹 + 𝐺 + 𝐻) = 𝐷) +𝐷! +𝐷". Which 
means that 𝐴, 𝐴 + 𝐶, 𝐴 + 𝐵 + 𝐶 are diagonalizable. 

Remark 3.7: 

If   𝐹, 𝐺, 𝐻 are the diagonalization matrices of 𝐴, 𝐴 + 𝐵 + 𝐶, 𝐴 + 𝐶 respectively, then  𝐹 + (𝐺 − 𝐻)𝐼! + (𝐻 − 𝐹)𝐼"  
is the diagonalization matrix of 𝑋. Also, the corresponding diagonal matrix of 𝑋 is 

 𝐷 = 𝐷) + (𝐷! −𝐷")𝐼! + (𝐷" −𝐷))𝐼", where 𝐷), 𝐷!, 𝐷" are the corresponding diagonal matrices of 𝐴, 𝐴 + 𝐵 +
𝐶, 𝐴 + 𝐶 respectively.      . 

Example 3.8:  

Consider the refined neutrosophic matrix defined in the Example 3.4, we have: 

(a) The diagonalization matrix of 𝐴 is 𝐹 = ( 1 1
−2 0) , the corresponding diagonal matrix is 𝐷) = (−1 0

0 1). It is clear 

that 𝐹'!𝐴𝐹 = 𝐷).  

(b) The diagonalization matrix of 𝐴 + 𝐵 + 𝐶 is 𝐺 = (1 0
0 1) , the corresponding diagonal matrix is 𝐷! = (1 0

0 2). It 

is clear that 𝐺'!(𝐴 + 𝐵 + 𝐶)𝐺 = 𝐷!. 

(c) The diagonalization matrix of 𝐴 + 𝐶 is 𝐻 = ( 1 0
−1 1), the corresponding diagonal matrix is 𝐷" = (2 0

0 3). It is 

clear that 𝐻'!(𝐴 + 𝐶)𝐻 = 𝐷" . 

(d) The refined neutrosophic diagonalization matrix of L is : 
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𝑌 = 𝐹 + (𝐺 − 𝐻)𝐼! + (𝐻 − 𝐹)𝐼" = ( 1 1 − 𝐼"
−2 + 𝐼! + 𝐼" 𝐼"

).  The corresponding diagonal matrix is 

𝐷 = 𝐷) + (𝐷! −𝐷")𝐼! + (𝐷" −𝐷))𝐼" = (−1 − 𝐼! + 3𝐼" 0
0 1 − 𝐼! + 2𝐼"

).  

(e) 𝐹'! = `
0 − !

"

1 !
"

a , 𝐺'! = T1 0
0 1U ,𝐻

'! = T1 0
1 1U , 𝑌

'! = 𝐹'! + (𝐺'! −𝐻'!)𝐼! + (𝐻'! − 𝐹'!)𝐼" 

= (
𝐼" − !

"
+ !

"
𝐼"

1 − 𝐼!
!
"
+ !

"
𝐼"
), 𝑌'!𝐿𝑌 = 𝐷. 

Conclusion 

In this article, we have studied the necessary and sufficient conditions for the diagonalization of refined neutrosophic 
matrices. Also, we have determined an algorithm to compute all refined neutrosophic eigen values/vectors which are 
related to these matrices. 
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