
HAL Id: hal-03428846
https://hal.science/hal-03428846

Submitted on 15 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Plasmon recombination in narrowgap HgTe quantum
wells

V Ya Aleshkin, G Alymov, A A Dubinov, V I Gavrilenko, Frederic Teppe

To cite this version:
V Ya Aleshkin, G Alymov, A A Dubinov, V I Gavrilenko, Frederic Teppe. Plasmon recombination
in narrowgap HgTe quantum wells. Journal of Physics Communications, 2020, 4 (11), pp.115012.
�10.1088/2399-6528/abc9d8�. �hal-03428846�

https://hal.science/hal-03428846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Journal of Physics Communications

PAPER • OPEN ACCESS

Plasmon recombination in narrowgap HgTe
quantum wells
To cite this article: V Ya Aleshkin et al 2020 J. Phys. Commun. 4 115012

 

View the article online for updates and enhancements.

You may also like
Topological field-effect quantum
transistors in HgTe nanoribbons
Hua-Hua Fu, Jin-Hua Gao and Kai-Lun
Yao

-

Topological materials
Binghai Yan and Shou-Cheng Zhang

-

Electrodeposition of Crystalline HgTe from
a Non-Aqueous Plating Bath
Gabriela P. Kissling, Mohsin Aziz, Andrew
W. Lodge et al.

-

Recent citations
Auger recombination in narrow gap
HgCdTe/CdHgTe quantum well
heterostructures
V. Ya. Aleshkin et al

-

This content was downloaded from IP address 162.38.137.180 on 15/11/2021 at 11:17

https://doi.org/10.1088/2399-6528/abc9d8
https://iopscience.iop.org/article/10.1088/0957-4484/25/22/225201
https://iopscience.iop.org/article/10.1088/0957-4484/25/22/225201
https://iopscience.iop.org/article/10.1088/0034-4885/75/9/096501
https://iopscience.iop.org/article/10.1149/2.0421816jes
https://iopscience.iop.org/article/10.1149/2.0421816jes
https://doi.org/10.1063/5.0046983
https://doi.org/10.1063/5.0046983
https://doi.org/10.1063/5.0046983


J. Phys. Commun. 4 (2020) 115012 https://doi.org/10.1088/2399-6528/abc9d8

PAPER

Plasmon recombination in narrowgap HgTe quantumwells

VYaAleshkin1,2 , GAlymov3, AADubinov1,2, V IGavrilenko1,2 and FTeppe4

1 Department of Semiconductor Physics, Institute for Physics ofMicrostructures RAS,NizhnyNovgorod, 603950, Russia
2 Lobachevsky StateUniversity ofNizhnyNovgorod, NizhnyNovgorod, 603950, Russia
3 Laboratory of 2dMaterials forOptoelectronics,Moscow Institute of Physics andTechnology, Dolgoprudny 141700, Russia
4 Laboratoire Charles Coulomb,Université deMontpellier, CentreNational de la Recherche Scientique, 34095Montpellier, France

E-mail: aleshkin@ipmras.ru

Keywords: plasmon,mercury cadmium telluride, quantumwell, interband transitions, recombination rate

Abstract
The dispersion laws of two-dimensional plasmons in narrow-gapHgTe/CdHgTe quantumwells are
calculated taking into account the spatial dispersion of the electron susceptibility. At the energy scale
of the band gap the dependence of plasmon frequencies on thewave vector is shown to be close to
linear that changes significantly the critical concentration of noneqilibrium electron-hole gas
corresponding to ‘switching-on’ the carrier recombinationwith plasmon emission. The recombina-
tion rates with the plasmon emission have been calculated. The ‘plasmon’ recombination is shown to
dominate at the carrier concentration over (1.2–2) 1011 cm−2 in a 5-nm-wideHgTe quantumwell
(band gap of 35meV) thatmakes plasmon generation (spasing) in THz frequency range feasible.

1. Introduction

Despite immeasurable bulk of work conducted recently, terahertz (THz) frequency range still lacks compact
and effective emitters that are required formany applications. Quantum cascade lasers (QCLs)demonstrate
remarkable performance in the spectral range from1THz to 5THz [1, 2] and above 15 THz [3]. Nowadays, the
majority of theQCLs exploit GaAs and InP semiconductors, in which lattice absorption becomes very strong at
wavelengths longer than 20μm. In 20–28μmrange, operation of theQCLs has been demonstrated only for
several specific wavelengths [4–7]. GaNQCLs attempt to enter the 5–15THz ‘gap’ from the low-frequency side,
but their performance is yet to be improved [1, 8]. The spectral range from28μmto 60μmis nowpartly covered
onlywith the lead salt diode lasers, which provide emissionwavelengths up to 50μm [9]. In PbSnSe(Te) ternary
alloys the nonradiative Auger recombination is known to be suppressed due to the symmetry between the
dispersion laws in the conduction band and in the valence band [10]. For symmetric electron-hole dispersion
energy-momentum conservation laws impose an energetic threshold for Auger processes. However, the output
power and operation temperature of lead salt lasers are limited by the growth technology.

In recent years, a significant advance in regard to thewavelength of coherent emission has been
demonstrated inHg(Cd)Te/CdHgTe quantumwell (QW) heterostructures, grown bymolecular beam epitaxy
(MBE) (up to 19,5μm [11] and 24μm [12]). The abovementioned symmetry of electron-hole dispersion laws
takes place in suchQWs aswell, whereas transverse optical phonons inHgCdTe have low energies compared to
GaAs and InP, suggesting that lasing should be possible at wavelengths up to 50 um (6.2 THz) [13]. However,
quite strong two-phonon absorption of 40–100 cm−1 is not so easy to overcome in thewavelength range above
35μm (see, e.g. [14]).Moreover, growing thick (over 20μm)HgCdTe structures, required to form a dielectric
waveguide for such long radiationwavelengths, is a challenge forMBE technology.

Employing two-dimensional (2D)/surface plasmon amplification inQWs one can achieve a dramatic
increase in the gain at interband transitions. Due to the relatively small group velocity of the plasmon, the
amplification coefficient can be large, substantially exceeding the amplification coefficient in structures with
dielectric light waveguides. During the last decade 2Dplasmons have attracted a lot of attention in regard to
generating and detecting far-infrared radiation [15–19]. In graphene and narrow-gapQWs 2Dplasmons can be
generated at the interband transitions of electrons [17–20], i.e. plasmon emission is an ‘additional’mechanism
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of the interband electron recombination in such systems. The electricfield of 2Dplasmawave is highly localized
near theQW, so there is no need to grow thickwidegap layers for dielectric waveguide. However, while 2D
plasmons and their role in recombination in graphene have been studied in details (see, e.g. [20]), there are only a
fewworks on plasmons in narrow-gapHgTeQWs [13, 19]. Note that both in [13] and [19] the spatial dispersion
of the electron-hole gas susceptibility was not taken into account. As a result, theseworks implemented the
square root dependence of the plasmon frequencyω on the plasmonwavevector q w ~ q ,which is a poor
approximation for the plasmon energies larger than 20meV, as shown in the present work.

This paper is organized as follows. In section 2we find the dispersion law for 2Dplasmons in narrow-gap
HgTeQWs focusing on plasmon energies of 30–60meV. Section 3 is devoted to investigation of the ‘plasmon’
contribution into the interband recombination of nonequilibrium carriers inHgTeQWs.

2. Plasmon inHgTe quantumwell structure

Weconsider the plasmon dispersion in the quasistatic approximation, when the plasmonwavevector q ismuch
larger than that of the photonwith the same frequency. The expression for 2Ddimensional plasmon dispersion
is well known for the case when the spatial dispersion of the the electron-hole gas susceptibility is neglected [21]:
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In (1) n and p are sheet electron and hole concentrations respectively,κ is the dielectric constant of the
medium at the plasmon frequency,me andmh are electron and hole effectivemass respectively, and e is the
electron charge. The spatial dispersion of the susceptibility of the electron-hole gas can be disregarded for
plasmonswith small wavevectors. However, as shown below, this is not the case for the plasmonswith energies
exceeding the band gap ofHgTeQWsunder consideration. Inwhat followswe assume that theQW thickness is
small compared to 1/q, which is a good approximation for theQWs under study (see, e.g. [19]). In this case, the
dispersion law of 2Dplasmonsω(q) that takes into account the spatial dispersion can be obtained from the
following equation:
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In equation (3) ( )e ke h, are electron and hole energies, ( )f ke h, are electron and hole distribution functions, ħ is
the Planсk constant.We note that equation (2) takes into account only the intraband contributions of electrons
and holes to the susceptibility. Numerical estimations show that the contribution of the interband electronic
transitions to the susceptibility is negligible. Equation (3) can be obtained from the expression for the density
matrix in the τ-approximation for the relaxation of the off-diagonal components of the densitymatrix [22].
Frequencies νe,h, which stand for the electron and hole phase relaxation, are further assumed to be independent
of themomentum for the sake of simplicity. They are set equal to themomentum relaxation rates that can be
estimated from themeasuredmobilities of electron and hole gasesμe,h in similarQWs:

( )/m n= e me h e h e h, , ,

whereme,h is electron or hole effectivemass at the corresponding Fermi energy. Note that in equation (3) the
wavevector q is assumed to be real, while the frequencyω can be complex.

In the calculations, the distribution functionwas chosen as:
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where kB is the Boltzmann constant,T* is the effective carrier temperature, Fc v, are the quasi Fermi level in the
conduction band and valence band respectively.

As can be seen from equations (2) and (3), it is necessary to calculate the dispersion laws of electrons and
holes tofind the dispersion law of the 2Dplasmon. To this end, we used the 4-bandKaneHamiltonian [23]
taking into account the deformation effects. Calculation details andmaterial parameters can be found in [24].
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In the followingwe present the calculation results for a 5-nm-wide typical HgTe/Cd0.7Hg0.3TeQWgrown
onGaAs substrate withCdTe(013) buffer layer (see e.g. [25]). The band gap in thisQW is about 35meV. The
calculated band diagram is given in the figure 1.

Figure 2 shows the calculated dependences of the real part of the plasmon frequency on its wave vectorω(q)
for the sameQW for the lattice temperatureT=4.2 K and various nonequilibrium carrier concentrations
(n=p) and effective carrier temperaturesT*. It can be clearly seen from this figure thatω is proportional to q1/2

at small q (q<0.02 nm−1), while at larger q the dependenceω(q) is close to the linear one. The reason for the
deviation from the square root dependence is the spatial dispersion of the susceptibility (see equation (3)). Note
that at largewavevectors the dependence of the plasmon frequency on thewavevector is close to the linear one in
graphene as well [20]. Figure 2 shows aweak dependence of the 2Dplasmon dispersion on the temperature of
charge carriers.

Figure 1.Calculated band diagramof a 5-nm-wideHgTe/Cd0.7Hg0.3Te(013)QWatT=4.2 K. Thewave vector k is in [100]
direction. The arrow illustrates the interband recombinationwith a plasmon emission.

Figure 2.Calculated dependences of the real part of plasmon energy ħω on thewavevector (q || [100]) for a 5-nm-wideHgTe/
Cd0.7Hg0.3Te(013)QWwith different carrier concentrations n=p and effective carrier temperaturesT*. The green line shows the
dependence of theminimum energy of the interband transition due to plasmon emission Eg

eff(q) (i.e. the ‘effective’ bandgap) on the
plasmonwavevector. Two dark yellow curves correspond to the square root dependencies of the plasmon energy on thewavevector
given by equation (1) (i.e. the spatial dispersion of susceptibility in not taken into account). The upper one (0) has been calculated for
electron and hole effectivemasses at the corresponding band edgeswhile the bottomone (F)—for those at the Fermi energies. The
hatched area correspond to the Landau damping calculated forT=T*=4.2 K.
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To illustrate how the spatial dispersion of susceptibility affects the 2Dplasmon dispersion figure 2 also shows
twoω(q) dependences calculated neglecting the spatial dispersion (see two dark yellow curves, n=p=4*

1011 cm−2). The upper one (0)was calculated by substituting the electron and hole effectivemasses at the bottom
of the conduction band and at the top of the valence band, correspondingly into equation (1), the sameway as in
thework [19]. However, within this approach it seemsmore reasonable to substitute the conductivity effective
masses of the charge carriers at the Fermi energy ( ) ∣/e e= ¶ ¶ e

-
=m h k2 ,e h e h E,

2
,

2
F
which are significantly larger

due to the band nonparabolicity. Exploitingmasses at the Fermi energy results in the bottomdependence (F).
It goes significantly lower than the curve that was calculated taking into account the spatial dispersion of the
susceptibility for the same carrier concentration n=p=4*1011 cm−2 (red curve in the figure 2) and does not
cross Eg

eff(q) dependence (green curve infigure 2) at reasonable wavevectors.
The hatched area infigure 2 corresponds to the regionwhere plasmons are poorly defined on account of

Landau damping that delivers a large attenuation of the plasmon, exceeding possible amplification due to the
interband electron transitions [19]. The upper boundary of this area corresponds to the plasmon absorption by
electronswith the Fermi energy, i.e. it is found from the equation ħωmax(q)=ε(kF+q)−ε(kF) [19]. Since the
Fermi velocity of holes is less than that of electrons at n=p, the plasmon absorption by holes has no effect on
ħωmax(q). Note that with the increase in the effective carrier temperature ħωmax(q) is enhanced owing to the
filling by electrons states above the Fermi energy.

Due to the anisotropy of both the electron and the hole dispersion the plasmon spectrum is also anisotropic;
however, this anisotropy is rather weak. To illustrate it, figure 3 shows the dependence of the plasmon energy
Versus the direction of thewavevector with afixedmodule q=0.1 nm−1. One can see that the plasmon energy
getsmaximumatq || [03–1] thatmakes the angleπ/2with [100] direction. Note that the difference between the
maximumand theminimumenergies is only about 2%.

In the conclusion of this section it is worth considering the dependences of real and imaginary parts of the
plasmon frequency on νe,h.Within awide range of νe,h corresponding to the experimentally observedmobilities
[25, 26] (μe>100 cm2/V*s,μh>10 cm2/V*s), the real part of the frequency is practically independent of νe,h.
The imaginary part is of the same order as νe,h, seefigure 4.

3. Plasmon recombinationmechanism innarrow-gap quantumwells

Plasmonswith energies exceeding the effective bandgap can participate in the recombination of the
nonequilibrium carriers. Tofind the recombination rate associatedwith the emission of a plasmon, it is
necessary to quantize the plasmonfield. One should keep inmind that the plasmonfield energy consists of two
parts: the electromagnetic part and the kinetic one. In the quasistatic approximation, the electromagnetic part of
the plasmon energy is zero. Carrying out the standard quantization procedure, one can obtain the following
expression for the vector potential operator lying in the plane of the quantumwell:

Figure 3.Plasmon energy versus propagation angle (calculated from [100]direction) for q=0.1 nm−1, n=p=2*1011 cm−2,
T=T*=4.2 K.
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where c is the speed of light in the vacuum, S is the area of the quantumwell, +c ,k ck are the plasmon creation and
annihilation operators, ( ) ( )c c w c w= +q q, , .e h Using equation (4) and the golden rule of quantum
mechanics it is possible to obtain the following expression for the probability of spontaneous recombination of
an electronwith thewavevector k due to the emission of a 2Dplasmon:
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where vi,f is thematrix element of the velocity operator between the initial state of the electron in the conduction
band and itsfinal state in the valence band. The recombination rate due to thismechanism is:
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As it has been shown in the previous section, the dependence of the plasmon energy on the direction of its
propagation is weak. Therefore, when calculating the rate of spontaneous recombination, we assume that the
plasmon frequency and the susceptibility of the electron gas are independent of the direction of the plasmon
wavevector. In this approximation, equation (6) can be represented as:

( )
∣ ∣ ( ) ( ( ) ( ) ( )) ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟òp w

c w
w

d e e w=
¶

¶
+ - - -

-

R d kd q
q

q
q f f k

v q
k k q k q

2

2

,
7

if
e h h e3

2 2
2

2 2

1

Integration over q in equation (7) is carried out in the interval 0�q�qmax, where qmax corresponds to the
intersection of the Re(ħω(q)) dependencewith the hatched area in thefigure 2where plasmons are poorly
defined due to Landau damping. It can be seen from equation (7) that, in contrast to recombinationwith the
emission of photons, one cannot neglect the change in the electronwave vector in the case of recombination
with the emission of plasmons, i.e. transitionswith plasmon emission are not vertical (see figure 1). To comply
with the energy andmomentum conservation laws at such transitions, the plasmon energy with thewavevector q
must exceed the effective bandgap Eg

eff(q) (green curve in thefigure 2) that is theminimumof the function
εe(k)+εh(k−q) in the variable k. The latter is possible when the carrier concentration exceeds a certain
threshold value [19]. Figure 2 shows that as the carrier concentration is decreased, the intersection of the
dependences Eg

eff(q) andRe(ħω(q)) occurs at higher plasmon energies, exceeding significantly the actual
bandgap. Thus, the lower the carrier concentration gets, the higher is the energy of the plasmon that can take
part in the recombination. Therefore, only carriers with kinetic energy high enough can participate in the
plasmon recombination, while the number of high-energy carriers decreases with decreasing concentration.
Thus, the probability of the plasmon recombination dropswith a decrease in the carrier concentration.
Moreover, we should also exclude from the consideration those plasmons, for which the dispersion Re(ħω(q))
crosses theEg

eff(q) dependence in the hatched area of the figure 2 (where plasmons are poorly defined because of

Figure 4.Calculated dependences of the imaginary part of the plasmon energy on thewave vector for ħνe=1meV, ħνh=2meV.
T=T*=4.2K, n=p, cm−2: 1011 (1), 2*1011 (2).
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Landau damping). Thus, below a certain critical carrier concentration the plasmon generation is ‘switched-off’.
For 5-nm-wideHgTeQWunder consideration atT=T*=4.2 K this critical concentration is 1.2*1011 cm−2.
Note that in [19], where the spatial dispersion of the susceptibility of charge carriers has not been taken into
account, the critical concentrationwas estimated as 2*1011 cm−2. The critical concentration increases with the
effective temperature, because the area of Landau damping enlarges.

Dependences of the recombination frequencies 1/τ=R/n on the effective carrier temperature for two
concentrations of the nonequilibrium carriers are given in the figure 5.One can see that the increase in the
effective temperature results in the decrease of the plasmon recombination frequency. The reason is a decrease
in the filling of electron and hole states involved in the plasmon recombinationwith the rise of effective carrier
temperature.

It is worth comparing different recombinationmechanisms for 5-nm-wideHgTe/Cd0.7Hg0.3TeQWunder
consideration. In aQWwith lownumber of defects the Shockley-Read-Hall recombination rate is negligible
compared to the radiative recombination one [27]. Figure 6 presents the inverse carrier lifetime versus carrier
concentration for three types of recombination: the radiative one, Auger recombination, and the recombination
with the emission of plasmons. The inverse carrier lifetimes for radiative recombination andAuger
recombinationwere calculated in the framework of the previously usedmodels that are given in [27] and [28],
respectively. Though nonradiative Auger recombination is supposed to be suppressed inHgTeQWdue to a
symmetry of the electron-hole energy-momentum laws (see figure 1) its probability increases with reducing the
bandgapwhile that of the radiative recombination, on the contrary, decreases. One can see fromfigure 6 that for
theQWunder consideration having the band gap of 35meV (that corresponds to thewavelength of 35μm) the
probability of Auger recombination is (inmost cases) several orders higher than that of the radiative
recombination. This complicates furthering the stimulated photon emission above recently achieved
wavelength 24μm [12]. Figure 6 also shows that for carrier concentrations over (1.2–2)*1011 cm–2, the
plasmon recombination is ‘switched-on’ and its frequency is several orders ofmagnitude higher than that of
Auger recombination. This opens a possibility for plasmon generation (spasing) in THz rangewith subsequent
plasmon conversion into the electromagnetic radiation in free space.

4. Conclusion

To conclude, we have calculated the dispersion laws of 2Dplasmonswith energies exceeding the bandgap in a
narrow-gapHgTe quantumwell with nonequilibrium electron-hole gas. It is shown that taking into account
the spatial dispersion of the charge carriers susceptibility is crucial for the proper description of the plasmon
dispersion. At the energy scale of the order of the bandgap the plasmon energy demonstrates nearly linear
dependence on thewavevector rather than the square root one as considered earlier. The latter results in
significant changes in the critical carrier concentration for the onset of the interband recombination via plasmon
emission. The corresponding recombination rates have been calculated showing that the plasmon
recombinationmechanismdominates in narrow-gap quantumwells at high enough concentrations of
nonequilibrium carriers (n>1.2*1011 cm−2 for 5-nm-wideHgTeQW). Thus, the plasmon recombination

Figure 5.Dependences of the plasmon recombination frequency on the effective carrier temperatureT* for two concentrations
n=p, cm−2: Line 1 corresponds to n=5*1011, line corresponds to n=1012. Lattice temperature is 4.2K.
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with subsequent plasmon conversion into the outcoming photons can be expoited for developing highly
effective emitters in THz range, namely in 5–10 THz region, whereQCLs are scarce at themoment.
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AppendixA

Formula for susceptibility of the electron gas in a quantumwell
Let us consider the effect of an electric field of an electromagnetic wave on the electron gas. Let the electric field
present in the sample create an electric potential

( ) ( ) ( )j j w= -t i i tr qr, exp A.10

This potential leads to the appearance of an additive to the potential energy of the form

( ) ( ) ( )j w= -U t e i i tr qr, exp A.20

which leads to the appearance of an addition to the off-diagonal components of the densitymatrix:
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where ( ) r= =f f kk k k, is the electron distribution function, ( )e e= kk is the electron energy. Equation (A.3)
can be obtained from the equation for off diagonal element of the densitymatrix [22]:

[ ] ( )r r r u= -- - - i H i A.4k k q k k q k k q, , ,

where u is the phase relaxation frequency.
The induced charge density is:
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Figure 6.Dependences of the recombination frequency (inverse lifetime) on the concentration of nonequilibrium carriers for three
recombinationmechanisms in 5-nm-wideHgTeQW. Solid lines correspond to the effective carrier temperature 4.2 K, dashed ones—
to that of 77K. Lattice temperature is 4.2 K.
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where S is the square of a quantumwell. In (A.5)we take in to account spin degeneracy. The polarization satisfies
the following relation s- =divP , fromwhich in the considered case we obtain /s= i qP q .2 On the other
hand, the potential is related to themagnitude of the electric field: j j= - = -iE q .Using these relations,
wefind the relationship between the polarization and the electric field:
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From (A.6)wefind experssion for electron susceptibility
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that corresponds with equation (3) of paper. If u  0 then (A.7) becomes Lindhard formula for 2D electron
gas [21].

Appendix B

Plasmonquantization
The energy of the electromagnetic field in a dispersivemedium is (L.D.Landau, E.M. Lifshchits, Electrodynamics
of ContinuousMedia, v. 8 of Theoretical Physics , A. Vagov, et al,Phys. Rev.B 93, 195414 (2016))

˜ ( )
⎡
⎣⎢

⎤
⎦⎥òp

we
w

= +H d x
d

d
H HE E

1

16
. B.1e q q q q

3 * *

In the quasi-static approximation, when the speed of the plasmon ismuch less than the speed of light, the last
termmakes a small contribution, so it can be neglected (H∼Eqc/ω=E). The dielectric constant can be
represented as:

˜ ( ) ∣∣
˜ ( )
e e pcd
e e
= +

= ^
z E q

E q

4 ,

, B.2

where e is the dielectric constant of the barriers. Taking these factors into account, (B.1) can be rewritten as

( ( )) ( ) ( )∣∣ ∣∣
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭ò p
e pcd pwd

c
w

e= + +
¶
¶

+H
d r

E E z z E E
16

4 4 B.3e q q qz qz

3
* *

We represent the plasmon potential in the form:

[ ( ) ( )] ( ∣ ∣) ( )j w w= - + - + -a i i t a i i t q zqr qrexp exp exp B.4q q q*

Then the electric field vector directed along q is equal to

[ ( ) ( )] ( ∣ ∣) ( )∣∣ w w= - - - - + -i a i i t a i i t q zE q qr qrexp exp exp B.5q q q*

For zfield componentwe have:

[ ( ) ( )] ( ∣ ∣) ( ) ( )w w= - + - + -E q a i i t a i i t q z sign zqr qrexp exp exp B.6qz q q*

Substituting (B.5) and (B.6) into (B.3), we obtain:

∣ ∣ ( ∣ ∣)
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¶
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q a S

q

q a S

exp 2

8
2 4 4

8

2
4 4

2
B.7

e
q

q q

2 2

2 2 2 2

where S is the area of the structure. Thefirst term in square brackets (B.7) of the expression in the third line is
equal to zero, since the plasmon dispersion law is obtained from the expression e p c+ =q2 0.

Let’s introduce the canonical variables:

( ) ( )
w

c
w

w
w

c
w

=
¶
¶
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¶
¶

-Q
Sq

a a P
i Sq a a

1

2
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2
q qk k k k

2 2
* *
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Then

( ) ( )w= +H P Q
1

2
B.8e q q

2 2 2

Let us introduce the operators of plasmon creation and annihilation:
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q q

q

Nowwe can express aq in terms of the birth and destruction operators:
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B.10q q q q2
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1

*

Using the relation = -
¶
¶c t

E
A
for vector potential wefind expression for its components lying in the plane of

the quantumwell:

( ( ) ( )) ( )⎜ ⎟⎛
⎝

⎞
⎠w

c
w

w w= -
¶
¶

- + - +
-

+c

Sq
c i i t c i i tA

q
qr qr

2
exp exp B.11q q q2

1

that corresponds to equation (4) of paper.
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