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ABSTRACT
The Dzyaloshinskii–Moriya interaction is expected to be at the origin of interesting magnetic properties, such as multiferroicity, skyrmionic
states, and exotic spin orders. Despite this, its theoretical determination is far from being established, neither from the point of view
of ab initio methodologies nor from that of the extraction technique to be used afterward. Recently, a very efficient way to increase its
amplitude has been demonstrated near the first-order spin–orbit coupling regime. Within the first-order regime, the anisotropic spin
Hamiltonian involving the Dzyaloshinskii–Moriya operator becomes inappropriate. Nevertheless, in order to approach this regime and
identify the spin Hamiltonian limitations, it is necessary to characterize the underlying physics. To this end, we have developed a simple
electronic and spin–orbit model describing the first-order regime and used ab initio calculations to conduct a thorough methodological
study.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065213

I. INTRODUCTION

The anisotropic antisymmetric exchange interaction, also
called Dzyaloshinskii–Moriya Interaction (DMI), was introduced
phenomenologically in 1958 by Dzyaloshinskii1,2 in order to
describe the magnetic properties of R-Fe2O3. This interaction was
theorized by Moriya two years later,3,4 leading to the well-known
DM vector involved in the anisotropic spin Hamiltonian which, for
binuclear systems with spin S = 1/2 magnetic centers, writes

Ĥmodel = JABŜA ⋅ ŜB + ŜA ⋅DAB .̂SB + dAB .̂SA × ŜB, (1)

where Ŝi is the spin vector operator on center I = {A,B}, JAB is
the isotropic magnetic exchange, DAB is the symmetric anisotropy
tensors of exchange, and dAB is the DM vector, the three

components of which are here labeled dx, dy, and dz relatively to
the X, Y , and Z axes. Since its introduction, the DMI has been
used in the rationalization of many exotic magnetic properties.5–10

For instance, it favors a canting of the magnetic moments that may
stabilize magnetic texture such as skyrmions, which are promising
candidates for spintronic devices. It is also of interest in multifer-
roics, provided that the magneto-electric coupling is large enough.
Indeed, it has been established that polarization arising from the
through-ligand spin current is proportional to the vector product
between the centers A and B distance vector, eAB, and the DM dAB
vector.

As for the other parameters of magnetic anisotropy, the micro-
scopic origin lies in the concomitant presence of spin–orbit cou-
plings (SOCs) and particular symmetry conditions.11,12 Magnetic
anisotropy parameters have been intensively studied using quantum
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chemistry approaches,13–15 and the procedure of extraction of var-
ious parameters from the Hamiltonian theory has been proven to
be very efficient.12,16–21 Nevertheless, only a few papers from theo-
retical chemistry reporting calculations of the DMI22–25 have been
published and none of these works were devoted to a methodolog-
ical study. As this interaction comes from the spin–orbit coupling
(SOC) between the electronic ground and excited magnetic states, it
is expected that its amplitude is affected by electron correlation. Fur-
thermore, as we show here, this property not only strongly depends
on the state energies, which is essentially the case for the other
anisotropic parameters, but also strongly depends on the wave func-
tions. A method that revises the coefficients of the wave function
under the effect of electron correlation is required as well as a pro-
cedure of extraction that accounts for these corrections. For this
reason, we have developed a computational procedure that allows
us to use dynamically correlated wave functions instead of the non-
dynamically correlated complete active space self-consistent field
ones. This procedure is general, i.e., not solely applicable to the
computation of the DMI, since it is applicable to any situation for
which coupling between two relativistic (read MS components of
spin–orbit free states) references is required.

A very recent paper25 has identified through analytical deriva-
tions and ab initio calculations the main chemical ingredients that
govern both the orientation and amplitude of the DMI. We have
also proposed an analytical formula that reproduces very well the
magnitude of the DMI components far from the first-order SOC
regime. One of the main conclusions of this article was that an effi-
cient way to increase the DMI is to approach without reaching the
first-order SOC regime, i.e., to design complexes with geometries
where dx2−y2 and dxy (or eventually dxz and dyz) orbitals are quasi-
degenerate. Unfortunately, as soon as we approach this regime, the
usual method of extraction of DMI (i.e., directly from the spin–orbit
coupling of the lowest electronic states) fails. Moreover, in the first-
order SOC regime, the anisotropic multi-spin model Hamiltonian
[Eq. (1)] becomes unreliable and a first-order model that describes
all the almost degenerate states is required.

In this paper, we will therefore extract the matrix of this first-
order SOC model and show that the DMI results from both elec-
tronic and spin–orbit couplings involving excited states. The impact

of electron correlation on these matrix elements and consequently
on the DMI will be studied. Finally, a second-order expression of
the DMI only valid far enough from the first-order SOC regime will
be proposed.

The effective Hamiltonian theory26,27 is a very good method for
the extraction of parameters. Nevertheless, near the first-order SOC
regime, the projection of the ab initio states onto the model space
may become small. As this extraction procedure makes use of the
projected wave functions, one may wonder whether it is still valid in
such cases. We will show that the intermediate Hamiltonian theory,
which is specially designed to overcome this difficulty, gives exactly
the same value in the peculiar case of the extraction of the DMI,
i.e., the effective Hamiltonian theory remains valid even when the
projections onto the model space are weak.

This paper is organized as follows: In Sec. II, we have presented
the analytical derivation of the first-order SOC matrix, followed by
the ab initio methods used, the theory of extraction, and the com-
putational details. Section III, divided in two subsections, discusses
the results obtained on a model complex made of two Cu(II) ions. In
Subsection III A, dedicated to the methodological study, the impact
of (i) basis set expansion, (ii) active space content, (iii) electron cor-
relation, and (iv) extraction procedures is analyzed in detail with
the aim of determining the calculation conditions required to accu-
rately determine the DMI. Subsection III B is dedicated to unravel
the physical origin of the DMI close to the first-order SOC regime.

II. THEORY AND COMPUTATION
In this article, we focus on the effective coupling between two

S = 1/2 magnetic sites. Let a (a′) and b (b′) be the magnetic orthog-
onal atomic orbitals (OAOs) of the triplet (singlet) state, i.e., the
orthogonalized orbitals bearing the unpaired electrons optimized for
the two states in a state specific manner. The magnetic orbitals are
different in the triplet and singlet states when they are optimized in
a state specific manner. The spin–orbit interaction couples the MS
components of the two electronic states differently generating the
components of both symmetric and antisymmetric anisotropic ten-
sors. The matrix of the model Hamiltonian of Eq. (1) in the basis of
the singlet and triplet spin components writes

�Ĥmodel� =

T+1 = �ab� T0
1 = �−ba + ab√

2
� T−1 = �ab� S1 = �b′a′ + a′b′√

2
�

�ab� J1

4
+ Dzz

4
Dxz − iDyz

2
√

2
(Dxx −Dyy − 2iDxy)

4
dy + idx

2
√

2

�−ba + ab√
2
� Dxz + iDyz

2
√

2
J1

4
− Dzz

4
+ (Dxx +Dyy)

4
−Dxz − iDyz

2
√

2
− idz

2

�ab� (Dxx −Dyy + 2iDxy)
4

−Dxz + iDyz

2
√

2
J1

4
+ Dzz

4
dy − idx

2
√

2

�b′a′ + a′b′√
2

� dy − idx

2
√

2
idz

2
dy + idx

2
√

2
−3J1

4
− Dzz

4
− (Dxx +Dyy)

4
,

(2)

where T+1 , T0
1 , T−1 are, respectively, the Ms = 1, Ms = 0, Ms = −1 components of the lowest triplet state T1 and S1 is the lowest singlet state;

J1 is the isotropic magnetic exchange; Dxy, Dxz , etc. are the components of the symmetric DAB tensor of anisotropic exchange;
and dx, dy, and dz are the respective X, Y, and Z components of the DM vector. The DMI only couples the singlet with the three Ms components
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of the triplet. Its determination therefore requires the calcula-
tion of the SOCs between these two electronic states. It should
be noted that as the DM components are related to off-diagonal
matrix elements, their amplitudes are completely determined by
the coefficients of the various determinants involved in the sin-
glet and triplet wave functions. As such, the DMI extracted from
ab initio calculations should be strongly dependent on the effects
of both non-dynamic and dynamic correlations on the wave
functions.

A. Analytical derivation of the first-order SOC matrix
Let us determine the spin–orbit matrix in the basis of the non-

coupled functions, i.e., the functions of a centrosymmetric molecule,
such as complex 1 with θ = 180○ (see Fig. 1), that cannot couple
for symmetry reasons. As the system will be distorted with the angle
θ = 170○, the following demonstration uses the symmetries of the C2v
point group. One should pay attention to the fact that the irreducible
representations have been relabeled in order to be compatible with
the C2 axis along the Y Cartesian axis. Considering two local d
orbitals per center, that can mix when applying a distortion, and the
six electrons that populate them, one may build four triplet and four
singlet states. Let us call a1 (a2) and b1 (b2) the dx2−y2 (dxy) OAOs
located on centers A and B, respectively. The lowest (O1 and O2)
and highest (O1

∗ and O2
∗) molecular orbitals (MOs) resulting from

the through bridging ligand interaction between the orthogonalized
atomic orbitals write

O1 = a1 + b1√
2

, O2 = a2 + b2√
2

, O1
∗ = a1 − b1√

2
, O2

∗ = a2 − b2√
2

. (3)

According to the values of the angles θ and φ, the MO diagram will
adopt two different profiles that are represented in Scheme 1. Far
from the first-order SOC regime, the MO diagram will be that shown
in Scheme 1(a) where the two unpaired electrons will be in the dx2−y2

orbitals. For a degeneracy of the local d orbitals [see Scheme 1(b)],
i.e., in the first-order SOC regime, the ground state will have the
unpaired electrons in both dx2−y2 and dxy orbitals.

Before distortion, i.e., when the angle �CuCl Cu = 180○, the four
lowest triplet and singlet states are not coupled. They will be called
“uncoupled” functions in the following and serve as basis for future
analysis. They can be written as linear combinations of determinants
expressed as functions of MOs or OAOs,

T1
1�3B2� = −�O1O1

∗� = �a1b1�, T0
1�3B2� = �a1b1� − �b1a1�√

2
,

S1�1A1� = �a1b1� + �b1a1�√
2

,

T1
2�3B2� = �O1O2� − �O1

∗O2
∗�√

2
= �a1b2� + �b1a2�√

2
,

T0
2�3B2� = �a1b2� + �b1a2� − �a2b1� − �b2a1�

2
,

S2�1B2� = �a1b2� + �b1a2� + �a2b1� + �b2a1�
2

,

T1
3�3A1� = �O1O2

∗� − �O1
∗O2�√

2
= −�a1b2� + �b1a2�√

2
,

T0
3�3A1� = −�a1b2� + �b1a2� − �a2b1� + �b2a1�

2
,

S3�1A1� = −�a1b2� + �b1a2� + �a2b1� − �b2a1�
2

,

T1
4�3B2� = −�O2O2

∗� = �a2b2�, T0
4�3B2� = �a2b2� − �b2a2�√

2
,

S4�1A1� = �a2b2� + �b2a2�√
2

,

(4)

where the valence bond ionic components (Cu3+–Cu+) have been
neglected.

For symmetry reasons, the three triplets of B2 symmetry T1, T2,
and T4 interact together while the three singlets of A1 symmetry S1,
S3, and S4 interact together through the exact electronic Hamiltonian
HEl⋅ when the geometrical distortion induces a mixing (hybridiza-
tion) of the local dxy and dx2−y2 [i.e., a1 (b1) with a2 (b2)] orbitals. For
the triplet states, these interactions are

h1 = �T0
1 �HEl�T0

2� = �a1b1�HEl⋅�a1b2� − �a1b1�HEl⋅�a2b1�√
2

= �b1�Feff .
a1 �b2� − �a1�Feff .

b1
�a2�√

2
,

h2 = �T0
4 �HEl�T0

2� = �a2b2�HEl.�a1b2� − �a2b2�HEl.�a2b1�√
2

= �a2�Feff .
b2
�a1� − �b2�Feff .

a2 �b1�√
2

,

(5)

FIG. 1. Model complex 1 Cu2Cl5− (left) with angular deformations θ and φ generating a dz component of the DMI; one magnetic MO (right) of the triplet state resulting from
the mixing between dx2−y2 and dxy orbitals for the angles θ = 170○ and φ = 130○. The calculated DM vector (in red) is also represented (right) centered on the origin of the
axes frame [middle of the segment Cu(II)–Cu(II)].
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SCHEME 1. Molecular orbital diagrams
in the two limit cases: (a) far from the
first-order SOC regime; the unpaired
electrons occupy the dx2−y2 orbitals (S1
and T1 uncoupled functions) and (b)
in the first-order SOC regime; one of
the unpaired electrons occupies the MO
delocalized over the two dx2−y2 , while
the other occupies the MO delocalized
over the two dxy orbitals (S3 and T3
uncoupled functions).

where Feff ⋅ are effective Fock operators. The Fock operators are here
effective, as they would be zero for symmetry reasons if one calcu-
lates them within the subspace of the d orbitals only. These inter-
actions are mediated by the ligand orbitals that can mix with both
of them when distorting the system. This is what is usually called
hybridization in the language of chemists. Their values differ in
the singlet and triplet states since, due to the exchange integrals,
the Fock operators are different for these two states. For this last
reason, we will call h’ the interactions between the singlet states
(h′1 = �S1�HEl�S3� and h′2 = �S3�HEl�S4�). Let us call E1, E2 ≈ E3 and
E4 the energies of the singlet functions and K1, K2 ≈ K3 and K4 the
energy difference between the uncoupled singlet and triplet states of
the same electronic configuration (these effective interactions should
be close to twice the direct exchange integrals). All these electronic
interactions give rise to the coupled electronic states S′1, S′2, S′3, S′4, T′1,
T′2, T′3, and T′4 that are computed using ab initio methods. They are
linear combinations of the previously uncoupled states plus other

determinants (ionic and also excited configurations at dynamically
correlated levels of calculations). The energy differences between the
coupled singlet and triplet states of the same configuration are the
magnetic couplings and are called here after J1, J2, J3, and J4. They
are known to be very sensitive to electron correlation.28

The state interaction method introduces the SOC between all
Ms components of the coupled states (S′i and T′i). In order to
develop a model that introduces both the electronic and spin–orbit
interactions, the here proposed SOC matrix is expressed in the basis
of the uncoupled states (Si and Ti). The off-diagonal elements of
the SOC matrix can be analytically calculated using the spin–orbit

operator ĤSO = ξ��→̂l 1 .
�→̂
s1 +�→̂l 2 .

�→̂
s2�, where

�→̂
l i and

�→̂
si are the angular

and spin momenta, respectively, of electron i and ξ is the spin–orbit
constant (we consider a spherical approximation of the SOC). In
the Ms = 0 subspace, the Hamiltonian matrix involving both the
electronic Hamiltonian HEl and spin–orbit HSO interactions writes

�S1� �S2� �S3� �S4� �T0
1� �T0

2� �T0
3� �T0

4�
�S1� E1 h′1 iξ

√
2

�S2� E2

�S3� h′1 E3 ∼ E2 h′2 iξ
√

2 iξ
√

2
�S4� h′2 E4 iξ

√
2

�T0
1 � −iξ

√
2 E1 + K1 h1

�T0
2 � −iξ

√
2 −iξ

√
2 h1 E2 + K2 h2

�T0
3 � E3 + K3 =

∼ E2 + K2

�T0
4 � −iξ

√
2 h2 E4 + K4
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where some bielectronic integrals that are expected to be small have
not been reported, in particular, those between T0

1 and T0
4 and

between S1 and S4 that interact for symmetry reasons. Looking at
this matrix, one may first note that for symmetry reasons, the states
S2 and T0

3 do not interact with any other function and can be erased
from the model. It also appears that the SOC between S1 and T0

1 is
strictly zero, showing that the dz component of the DM vector is
not a direct interaction but arises from complex mechanisms that
go through both a SOC between S1 and T0

2 (T0
1 and S3) and an elec-

tronic coupling between T0
2 and T0

1 (S3 and S1). When these states
are far apart in energy, a second-order estimation of the matrix ele-
ment between the coupled singlet S′1 and triplet T′01 states would be
given by

�S′1�HSO�T′01 �(2) = �S1�HSO�T0
2��T0

2 �HEl�T0
1�

E2 + K2 − E1

+ �S1�HEl⋅�S3��S3�HSO�T0
1�

E3 + K3 − E1
. (6)

Higher-order mechanisms also contribute such as, for instance, the
following fourth-order one:

�S1�HEl⋅�S3��S3�HSO�T0
4��T0

4 �HEl⋅�T0
2��T0

2 �HEL.�T0
1�, (7)

and their contribution is expected to become important close to the
first-order SOC regime.

B. Computational information and procedure
of extraction

The MOLCAS(8.0)31–33 code has been used to perform Com-
plete Active Space Self-Consistent Field (CASSCF) calculations in
order to introduce non-dynamic correlation. To study the impact
of dynamic correlation on both the energies and wave functions,
Difference Dedicated Configuration (DDCI)34,35 calculations have
been performed with the CASDI code.36 To take into account the
relativistic contributions, the ab initio Spin–Orbit-State-Interaction
(SO-SI)37 method implemented in MOLCAS has then been used.
It proceeds in two steps: (i) the calculation of the electronic states
energies which can be performed at various levels of correla-
tions and (ii) the diagonalization of the SO-SI matrix obtained by
calculating the SOC between the MS components of the lowest
states. While the electronic energies introduced in the SO-SI matrix
(diagonal elements) can be easily changed in order to evaluate the
impact of dynamic correlation, the wave functions used in this
method are usually the CASSCF ones. To appreciate the impact
of correlated wave functions on the DMI, we have projected the
DDCI vectors onto the CASSCF ones and orthonormalized these
projections. These new correlated functions even if re-expressed in
the CASSCF determinant basis are “decontracted” under the effect
of dynamic correlation. They are then used in the second step of
the ab initio calculations, i.e., the SO-SI procedure. To evaluate the
impact of the basis set extension, we have used three different basis
ANO–RCC–V(D,T,Q)ZP,38 where D, T, and Q stand for double,
triple, and quadruple.

Concerning the values of the DMI, we have used three differ-
ent procedures of extractions: (i) the direct SO-SI matrix element
between the lowest triplet and singlet states, (ii) the effective Hamil-
tonian theory, and (iii) the intermediate Hamiltonian theory. Since

the effective and intermediate Hamiltonian theories provide identi-
cal results and as the former has been explained in many articles, we
have detailed these two procedures of extraction in the supplemen-
tary material. Finally, the numerical matrices of our electronic and
spin–orbit model expressed in the space of the six uncoupled func-
tions have been extracted from the ab initio results using the effective
Hamiltonian.

The effective Hamiltonian theory26 is a method of choice for
both the determination of appropriate model Hamiltonians and the
attribution of values to their various effective interactions. Neverthe-
less, in the present study, we are looking for geometrical structures
close to those in which first-order SOC applies. As a consequence,
the low energy spectrum is not limited to S′1 and T′01 . If one wants
to restrict to these two states, the projections of the ab initio wave
functions onto the model space may become quite low and one may
wonder whether the effective Hamiltonian theory is still valid. In
order to demonstrate the reliability of the effective Hamiltonian the-
ory, we have also used another method of extraction based on the
intermediate Hamiltonian theory that works on the six above men-
tioned states. This last method was first proposed in the context of a
multireference coupled cluster theory29,30 and has been adapted here
for the extraction of effective interactions. In order to explain the
advantages of the intermediate Hamiltonian theory over the effec-
tive Hamiltonian one, we recall both methods in the supplementary
material and detail both procedures of extractions in the simple case
of the extraction of dz. In the case where it is possible to calculate
ab initio all the target states, the intermediate Hamiltonian theory
provides exactly the same results as the effective Hamiltonian one,
which shows that the latter method is still reliable even if the pro-
jection of the states becomes low. We invite the interested reader
to refer to Sec. S1. Nevertheless, one should stress that when the
projections are too low, it is the model Hamiltonian that becomes
unreliable.

III. RESULTS AND DISCUSSION
Calculations have been performed on a model dinuclear sys-

tem of Cu(II) bridged by a Cl− ion, namely, the Cu2Cl5− system (see
Fig. 1). This choice is guided by three reasons: (i) we are not aware
of any available experimental data on dicopper(II) complexes, (ii)
cases for which experimental data are available are very rare and too
complicated as explained in Ref. 25, and (iii) this small and easily
deformable toy model allows a detailed study of the first-order SOC
regime and of electron correlation effects.

In the studied geometries, an angle θ = �CuCl Cu = 170○ (with
the bridging Cl−) has been introduced in order to create a DM
vector along the Z direction and a value of the angle φ = �Cl CuCl= 130○ (with external Cl−) has been imposed such that the local envi-
ronment of both Cu(II) is close to D3h symmetry point group, i.e., a
non-negligible first-order SOC contribution to the DMI is expected.
In order to appreciate the impact of the first-order SOC on the relia-
bility of both the calculation of DMI and its extraction, calculations
have also been performed for angles varying between φ = 120○ and
170○. As already seen in Ref. 25 for the angle φ = 120○, the first-order
SOC results in an almost degenerate spectrum and the spin Hamilto-
nian of Eq. (1) that is spanned on the product of a single doublet per
center is no more valid. The considered distortions only create a DM
vector in the Z direction; hence, only the magnitude of the algebraic
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FIG. 2. Cu2Cl5− with angles θ = 170○
and φ = 130○. Vertical spectrum in
cm−1 of the four triplet (noted T′) and
four singlet (noted S′) states obtained
from the CAS(18,10)SCF (dashed lines)
and CAS(6,4)SCF (plain lines) calcu-
lations with double zeta (VDZP), triple
zeta (VTZP), and quadruple zeta (VQZP)
basis sets. The triplet states obtained
at the CAS(2,2)SCF level appear with
dotted-dashed lines. The lowest singlet
is taken as zero of energy in all calcula-
tions.

value dz of the vector varies (and not its orientation). The mag-
netic orbitals are linear combinations of the dx2−y2 and dxy orbitals;
one magnetic MO obtained using a state specific CAS(2,2)SCF for
the triplet state is depicted in Fig. 1. One should mention that
visually, it is difficult to appreciate the difference between this
orbital and those optimized with a larger active space and/or in an
average way.

Our ab initio methodological study consists in testing the effect
of the basis sets, the impact of the active space extent, the role of
having different orbitals sets, and the impact of dynamic correlation.
We will also endeavor to show the impact of the extraction method
on the DMI values in cases where we approach a situation where the
first-order SOC becomes non-negligible.

A. Spin–orbit free results
Three different active spaces have been considered including

(i) the five 3d orbitals of each Cu(II) leading to a CAS(18,10)SCF
in which the orbitals have been averaged separately for 25 triplets
and 25 singlets (corresponding to all single excitations on each cop-
per), (ii) only the dx2−y2 and dxy orbitals of each copper (as only these
orbitals mix in the distorted structure), leading to a CAS(6,4)SCF
in which the orbitals have been averaged separately for four triplets

and four singlets, and (iii) the two magnetic orbitals leading to a
state specific CAS(2,2)SCF (that are linear combinations of dx2−y2

and dxy). Finally, a CAS(2,2) singlet state calculation has been per-
formed using the CAS(2,2)SCF orbitals of the triplet state in order
to illustrate the importance of having two different orbitals sets to
calculate the DMI. Figure 2 reports the spectra obtained for these
three active spaces and using double-, triple-, and quadruple-zeta
plus polarization basis sets.

While it is quite well known that the electronic energies slowly
converge as functions of the basis set extension, we may see that the
vertical spectrum is converged here as soon as we use the triple zeta
basis set. As the VDZP basis set is not reliable enough, we will only
study the dependence of the parameters on the VTZP and VQZP
basis sets in the following.

The spectrum changes little for the different choices of active
spaces and the largest discrepancy is obtained for the highest triplet
and singlet states indexed 4. Nevertheless, one may note that the
magnetic couplings Ji = E(T′i)−E(S′i) are very similar for the
CAS(6,4) and CAS(18,10) active spaces as can be seen in Table I.
Two kinds of calculations were carried out using (i) two sets of aver-
age MOs: one for the singlets and the other for the triplets (noted
CASSCF) and (ii) a single set of MOs averaged on the triplets (noted
CASCI).

TABLE I. Cu2Cl5− with angle θ = 170○ and φ = 130○. Magnetic couplings (see the text) obtained with the three different
active spaces and the VTPZ and VQZP basis sets. CASCI results appear in bold.

CAS(2,2)SCF/ CAS(6,4)SCF/ CAS(18,10)SCF∗/
CAS(2,2)CI CAS(6,4)CI CAS(18,10)CI ∗

cm−1 VTZP VQZP VTZP VQZP VTZP VQZP

J1 365/254 361/251 335/310 331/306 312/303 307/301
J2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −12/−29 −12/−30 −25/−31 −26/−31
J3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −43/−28 −42/−27 −33/−30 −33/−30
J4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 182/183 182/183 199/194 198/195
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TABLE II. Cu2Cl5− with angles θ = 170○ and φ = 130○. Magnetic couplings (see the
text) in cm−1 obtained at the CAS(6,4) + DDCI level using the averaged MOs of the
triplets and the VTZP basis set.

cm−1
E(triplet)-E(singlet)

CAS(6,4)DDCI

J1 843
J2 −33
J3 −5
J4 424

Although the results are quite consistent, it is well known that
magnetic couplings are very sensitive to dynamic correlation, mean-
ing that an important part of the physics is still missing. DDCI cal-
culations were therefore performed using the CAS(6,4) zeroth-order
space and the triple zeta basis, which both happen to provide similar
results than CAS(18,10) and the quadruple zeta basis. The validity of
the DDCI method is based on the non-differential effect of inactive
di-excitations on the states generated by the CAS. This strict can-
cellation at the second-order of perturbations of the di-excitations
effect on the spectrum is only possible if the MOs are identical for
all states. Calculations have therefore been performed on the triplet
averaged orbitals as it is usually done in magnetic systems. The mag-
netic couplings obtained at the DDCI level are reported in Table II. It

reveals the dramatic effect of dynamic correlation and, in particular,
the expected important increase of the antiferromagnetic contribu-
tion.28 The coefficients of these coupled functions on the uncoupled
functions are given at both levels of calculations (CASCI and CAS+ DDCI) in Table III. The DDCI wave functions have been pro-
jected onto the CAS space and the projections have been renormal-
ized. One may notice that dynamic correlation increases the mixings
between S1 and S3 slightly, and between T1

0 and T2
0 dramatically,

which should have consequences on the value of the DMI. Finally,
the norms of the projections of the coupled electronic states S′i onto
the coupled functions Si are reported in Table IV.

B. Spin–orbit results
The physical origin of DMI lies in the relativistic effects. Its

magnitude has been extracted from the ab initio calculations either
directly from the elements of the SO-SI method between the low-
est singlet and triplet states or using the effective and interme-
diate Hamiltonian theories that provide the same values. Results
are reported in Table V. The diagonal elements of the SO-SI
matrix are the energies of the mentioned functions (either CASSCF
or CASCI).

First of all, one may notice that the two kinds of extractions
using either the effective or intermediate Hamiltonian theory lead
to the same values for the CAS(2,2)SCF calculations, as already

TABLE III. Cu2Cl5− with angles θ = 170○ and φ = 130○. Coefficients of the uncoupled wave function Si and Ti in the coupled functions S′ i and T′ i obtained at the CAS(6,4)CI
or CAS(6,4) + DDCI (in bold) levels with the MOs average on the triplets. The DDCI functions have been projected onto the CAS(6,4) and renormalized.

S′1
CASCI/DDCI

S′2
CASCI/DDCI

S′3
CASCI/DDCI

S′4
CASCI/DDCI

T′10

CASCI/DDCI
T′20

CASCI/DDCI
T′30

CASCI/DDCI
T′40

CASCI/DDCI

S1 0.9874/0.9814 0.0/0.0 −0.1520/−0.1672 +0.0019/+0.0228 T1
0 0.9986/0.9924 0.0512/−0.1232 0.0/0.0 −0.0114/−0.0164

S2 0.0/0.0 0.9985/0.9954 0.0/0.0 0.0/0.0 T2
0 −0.0518/0.1165 0.9869/0.9757 0.0/0.0 −0.1477/−0.1626

S3 0.1499/0.1629 0.0/0.0 0.9854/0.9850 +0.0693/−0.0146 T3
0 0.0/0.0 0.0/0.0 1.0/0.9999 0.0/0.0

S4 −0.0128/−0.0194 0.0/0.0 −0.0675/+0.0180 0.9964/0.9961 T4
0 0.0042/0.0348 0.1465/0.1545 0.0/0.0 0.9884/0.9856

TABLE IV. Cu2Cl5− with angle θ = 170○ and φ = 130○. Weight of the coupled singlet and triplet functions onto the uncoupled ones, calculated at the DDCI level for an angle of
130○.

S′1 onto S1 S′2 onto S2 S′3 onto S3 S′4 onto S4 T′10 onto T1
0 T′20 onto T2

0 T′30 onto T3
0 T′40 onto T4

0

0.8681 0.8945 0.9408 0.8851 0.8991 0.8599 0.9134 0.8859

TABLE V. Cu2Cl5− with angles θ = 170○ and φ = 130○. Values in cm−1 of the DMI extracted from either the SO matrix
element of the SO-SI method or the effective and intermediate Hamiltonian theories. Two different MO sets are used, see the
text. CASCI results appear in bold.

(cm−1)
Basis

set
CAS(2,2)SCF/
CAS(2,2)CI

CAS(6,4)SCF/
CAS(6,4)CI

CAS(18,10)SCF/
CAS(18,10)CI

�d� from SO matrix VTZP 250/1.8 228/221 231/228
VQZP 251/1.8 228/221 232/228

�d� from Heff or Hint VTZP 250/1.8 156/151 153/151
VQZP 251/1.8 155/150 152/149
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mentioned in Sec. II. We will therefore only use the effective Hamil-
tonian theory procedure in the following.

DMI values obtained using both basis sets are very similar,
confirming that VTZP is enough for the DMI calculation. The com-
parison of the results obtained with different active spaces shows
that while the CAS(6,4) and CAS(18,10) provide similar results, the
CAS(2,2) gives quite different DMI values. One should note that, as
expected from the analytical derivation reported in a previous arti-
cle,25 the use of a unique set of MOs produces zero (or almost zero)
DMI values if the two states are obtained using two magnetic orbitals
resulting from the simple combination of the local d orbitals (plus
“tails” on the ligands of course), i.e., at the state average CAS(2,2)CI
level.

When using two different sets of MOs, i.e., at the state spe-
cific CAS(2,2)SCF level, the mixing of the dx2−y2 and dxy orbitals
takes place with a somewhat larger flexibility, which is reflected in
the appearance of different coefficients in the following magnetic
orbitals a(b) and a′(b′) for the two states:

a = αa1 + βa2, b = −αb1 + βb2,

a′ = α′a1 + β′a2, b′ = −α′b1 + β′b2,
(8)

where the α (α′) and β (β′) coefficients are the mixing coefficients
between the d orbitals in the triplet (singlet) state. This hybridization
of the orbitals actually mixes T1 with T2 and T4 and S1 with S3 and
S4 in a constrained manner that results in the following functions:

T′01 = −α2T0
1 + β2T0

4 + αβ
√

2T0
2 ,

S′1 = −α′2S1 + β′2S4 + α′β′√2S3.
(9)

As soon as the active space contains both local dx2−y2 and dxy

orbitals, i.e., CAS(6,4), one sees that the αβ (α′β′) product [that
is actually the coefficient on the T2 (S3) state] is not strictly equal
to
�

α2β2 (�α′2β′2), i.e., the optimization of the four states simulta-
neously revises the coefficients of the uncoupled states in the coupled
ones. Then, a state specific optimization of the MOs is no more com-
pulsory and the flexibility of both wave functions in the state average
enlarged CASCI calculations is enough to provide accurate results.
This reasoning is generalizable to geometries that would mix more
than two local d orbitals. Indeed, as already observed previously for
distortions that create two component DMI,25 the active space must
contain all d orbitals that mix in the magnetic MOs.

One should note that at the CAS(2,2)SCF level, the variational
procedure tries to capture this effect only through the SCF proce-
dure and the flexibility of the wave function is not enough as soon as
the state mixing is important, i.e., when approaching the first-order
SOC regime. To verify this statement, the results obtained for vari-
ous angles φ are reported in Table VI. It is interesting to note that far
from the first-order SOC regime, the two active spaces [CAS(2,2)CI
and CAS(6,4)CI] provide similar results, which can be attributed to
the fact that simple rotations of the orbitals can capture the main
physics in this regime. Another important result is that the DMI
values extracted from the SO matrix and from the effective Hamil-
tonian theory are very similar far for the first-order SOC regime
and become more and more different when approaching first-order
SOC. Let us note that for φ = 130○, while the spectrum is far from
being degenerate, the impact of the first-order SOC is already quite

TABLE VI. Values in cm−1 of the DMI extracted either from the SO matrix element
of the SO-SI method or from the effective Hamiltonian theory for various φ angles.
CASCI calculations have been performed using the triplet average orbitals.

φ (deg)

CAS(2,2)SCF CAS(6,4)CI

�d� from SO
matrix = �d� from Heff

�d� from
SO matrixa

�d� from
Heff

120 1252 1270 812
130 250 221 151
140 120 106 93
150 85 75 70
160 71 61 59
170 63 54 52
aDirectly taken from the relevant off-diagonal element of the SO-SI matrix (i.e., excited
state contributions being neglected).

important: a CAS(6,4) calculation is compulsory and the effective
Hamiltonian theory must be used to extract the DMI value.

Let us now analyze the impact of dynamic correlation.
Table VII reports the values obtained using (i) the CASCI energies
and wave functions, (ii) the DDCI energies and the CASCI wave
functions, and (iii) the DDCI energies and wave functions. First of
all, we can note the same discrepancy at the DDCI level that observed
at the CASCI level between the values extracted from the SO matrix
and the effective Hamiltonian theory. For the two first calculations,
the wave functions are identical and the DMI values obtained from
the SO matrix are of course identical as the off-diagonal elements do
not depend on the energies but only on the wave functions. On the
contrary, the effective Hamiltonian theory uses the energies of the
excited states and therefore provides different values for different
spectra. In the last column, both the energies and the wave func-
tions are obtained at the correlated level. The impact of dynamic
correlation is dramatic with both methods of extraction, showing
that using a correlated wave function is crucial to calculate the DMI.
One may note that the norms of the projections of the two lowest
SO states onto the S1 and T1 uncoupled functions are 62% and 65%,
respectively.

We would like now to understand why dynamic correlation
increases the DMI. In the first place, we report the SO matrices (see
Table VIII) of the SO-SI method obtained using both the CAS(6,4)
and CAS(6,4) + DDCI energies and their corresponding S′ and T′
wave functions projected onto the CAS space.

TABLE VII. Cu2Cl5− with angle θ = 170○ and φ = 130○. DMI values obtained from (i)
CAS(6,4)CI energies and wave functions (column 2), (ii) CAS(6,4) DDCI energies and
CAS(6,4)CI wave functions (column 3), and (iii) CAS(6,4) + DDCI energies and wave
functions (column 4). Calculations have been performed using the triplet averaged
orbitals.

cm−1
CAS(6,4)CI
CASCI WF

CAS(6,4)+ DDCI
CASCI WF

CAS(6,4)+ DDCI
DDCI WF

�d� from SO matrix 226 226 622�d� from Heff 155 80 444

J. Chem. Phys. 155, 164305 (2021); doi: 10.1063/5.0065213 155, 164305-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE VIII. Cu2Cl5− with angle θ = 170○ and φ = 130○. SOC matrix in the basis of the coupled functions extracted using either the CAS(6,4)CI or from the CAS(6,4) + DDCI
(in bold) electronic calculations. Values are in cm−1.

CAS/DDCI S′1 S′2 S′3 T′10 T′20 T′30

S′1 0 0 0 −110i/−311i 1078i/1031i −4.3i/−6.1i
S′2 0 1860/2618 0 −1087i/−1082i −23.5i/−120i −1082i/−1064i
S′3 0 0 3166/3898 −18.5i/−114i 1087i/1086i 87.5i/196i
T′10 110i/311i 1087i/1082i 18.5i/114i 310/843 0 0
T′20 −1078i/1031i 23.5i/120i −1087i/−1086i 0 1546/1892 0
T′30 4.3i/6.1i 1082i/1064i −87.5i/−196i 0 0 3349/4322

Then, in order to check the validity of our analytical approach
of the first-order SOC regime, we have extracted the SO matrices in
the uncoupled (S and T) functions basis using the effective Hamilto-
nian theory working on the model space of the six electronic states.
Table IX reports the matrix elements obtained using the CAS(6,4)
and CAS(6,4)+DDCI energies and their corresponding S′ and T′
wave functions projected onto the uncoupled functions.

The spin–orbit part of the matrices is identical to that calcu-
lated analytically, except for the numerical uncertainties. It allows
us to extract a spin–orbit constant of ∼770 cm−1 in agreement
with the expected value for a Cu(II) in a complex, i.e., slightly less
than that of the free ion 830 cm−1.39 Regarding the electronic part,
we also observe very similar matrices to that derived analytically
with fairly low values of the bielectronic integrals �S1�HEl�S4� and
�T0

4 �HEl�T0
1� assumed to be small in the model matrix (but that could

be accounted for if necessary).
The important point here is to note that the direct coupling

between S1 and T1 is strictly zero, as expected from the analytical
derivation. This shows the crucial role of the mixings with excited
uncoupled functions. A second-order perturbative estimate of their
effective coupling (i.e., between S′1 and T′1) after mixing with T2
and S3 can be obtained using Eq. (5),

1
2
��S′1�HSO�T′01 � + �T′1�HSO�S′01 ��(CASCI)
= 1

2
� h′1√2iξ

E(S3) − E(S1) +
h′1√2iξ

E(S3) − E(T1)�
+ 1

2
�

√
2iξh1

E�T0
2� − E(S1) +

√
2iξh1

E�T0
2� − E(T1)�

= −184i + 52i = −132i (cm−1), (10)

where we have taken the mean value of the off-diagonal ele-
ments since the quasi-degenerate perturbation theory provides
non–Hermitian matrices. Note that, despite the fact that we
approach the first-order SOC regime, the values are quite close
to those of the SO matrix elements provided by SO-SI, i.e., in
the S′ and T′ coupled function basis: −i�d�/2 = −220i/2 (Table V)= −110i (Table VII). One may also note that the contributions of
the S3 and T2 excited states to the effective coupling are of opposite
sign.

A comparison of the matrices obtained using either the CASCI
or the CAS + DDCI electronic results enables us to measure the
impact of electron correlation. One first sees that electronic interac-
tions increase with dynamic correlation while the spectrum expands.
The second-order perturbative estimate of the SOC between the two
lowest singlet and triplet states is −92.8i–231.8i = −324.6i cm−1,
which here again compares quite well with the value extracted from
the SO-SI method (−i�d�/2 = −622i/2 = −311i) (see Tables VII and
VIII). The qualitative impact of dynamic correlation lies in the
change of sign of the h1 effective interaction between T1 and T2,
resulting in the two contributions of the same sign that sum up to
give a very large negative value. A deep inspection of the mech-
anisms involved in this effective interaction would of course be
of interest, even if quite tedious, but is out of the scope of the
present study that focuses more specifically on the procedures of
calculation and extraction. It is worth noting for a reader unfa-
miliar with the effective Hamiltonian theory that effective inter-
actions between functions of the model space can be very dif-
ferent from those of the exact Hamiltonians since they take into
account effects passing through excited configurations up to the infi-
nite order of perturbations. It is not surprising that these effective
interactions can even change sign and sometimes values by orders
of magnitude.

TABLE IX. Cu2Cl5− with angle θ = 170○ and φ = 130○. SOC matrix in the basis of the uncoupled functions extracted using
either the CAS(6,4)CI or CAS(6,4) + DDCI (in bold) electronic calculations. Values are in cm−1.

CAS/DDCI S1 S3 S4 T1
0 T2

0 T4
0

S1 0/0 −277/−428 26/80 0 1086i 0
S3 −277/-428 1781/2472 93/−10 1086i 0 1086i
S4 26/80 93/−10 3116/3822 0 1086i 0
T1

0 0 −1086i 0 270/785 67/−117 −26/−76
T2

0 −1086i 0 −1086i 67/−117 1538/1866 −262/−389
T4

0 0 −1086i 0 −26/−76 −262/−389 3266/4183
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Usually in magnetic systems based on transition metal ions,
unpaired electrons are sheltered by well-defined magnetic orbitals,
i.e., having an occupancy close to 1. They are coupled through
exchange integrals, the amplitude of which determines most of the
spectrum characteristics. The resulting states have wave functions
very close to those of the S1 and T1 uncoupled states described
above. In most transition metal complexes, SOC has a low ampli-
tude effect: it slightly affects the energies of the states and removes
degeneracy between MS components of non-zero spin states. When
approaching the first-order SOC regime, the physical content of
these states changes dramatically. The functions of the two states dif-
fer from those of the functions S1 and T1 by (i) their spatial part that
results from an electronic coupling with excited electronic states;
it is impossible to identify only two local singly occupied orbitals
from which a zeroth-order wave function possessing the essentials
of physics could be constructed as the functions are multireferen-
tial and (ii) the spin part. Indeed, a strong mixing of different spin
states due to non-negligible SOC occurs. Finally, the functions SA
and SB used in Eq. (1) could be seen as pseudo-orbital pseudo-spin
functions, as it is quite often the case in lanthanide complexes.

IV. CONCLUSION AND PERSPECTIVES
A first objective of this work consisted in determining the

methodological factors (basis sets, active spaces, level of dynamic
correlation) appropriate to calculate the DMI. We focused on the
determination of giant values of DMI, i.e., obtained when approach-
ing the first-order SOC regime. For this purpose, we have studied a
model system to which we have imposed a deformation that induces
large single component DMI values (coming from an orbital mixing
of the dx2−y2 and dxy orbitals). Beyond the analysis of that specific
regime, this work has helped to better understand the physical origin
of this interaction and, in particular, it revealed the following:

(i) The direct term between the uncoupled functions that are
supposed to be the basis of the model Hamiltonian in which
the DMI is defined is strictly zero. It is therefore the indirect
coupling via the excited states that determines the magni-
tude of this interaction and we have seen that it is possible
to get a reasonable estimate of this coupling owing to the
quasi-degenerate perturbation theory.

(ii) The extraction of the DMI directly from the SO matrix calcu-
lated with the SO-SI method is valid far from the first-order
SOC regime but it becomes irrelevant as soon as we enter this
regime. In such a case, effective Hamiltonian theory extrac-
tions should be used. The intermediate Hamiltonian theory
enabled us to extract this interaction in the case of poor pro-
jections of the target states onto the model space. In the two-
state considered case, the two theories lead exactly to the same
values, but this method could be of interest when some of the
target states cannot be calculated. An important conclusion
here is that the effective Hamiltonian theory may be relevant
even in cases where the projections onto the model space are
low.

(iii) The values of the DMI are strongly dependent on dynamic
correlation whatever the method of extraction is. Contrary
to what has already been observed for the determination of
the Zero-Field Splitting parameters, the sole use of the cor-
related energies is not sufficiently reliable to reach stable

values. Indeed, correlated wave functions lead to very different
extracted values and it would be interesting to extend the pro-
posed strategy that uses the dynamically correlated projected
wave functions to calculate other spin–orbit properties.

This work shows an important discrepancy of the values determined
from different ab initio methods, which are also strongly depen-
dent on the extraction method. Establishing benchmarks on real
molecules studied experimentally is obviously the next crucial step.

SUPPLEMENTARY MATERIAL

See the supplementary material for the effective Hamiltonian
theory and a method of extraction based on the intermediate Hamil-
tonian theory.
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