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Nesterov smoothing
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Abstract

For minimizing a sum of finitely many proper, convex and lower semicontinuous
functions over a nonempty closed convex set in an Euclidean space we propose a
stochastic incremental mirror descent algorithm constructed by means of the Nes-
terov smoothing. Further we modify the algorithm in order to minimize over a
nonempty closed convex set in an Euclidean space a sum of finitely many proper,
convex and lower semicontinuous functions composed with linear operators. Next
a stochastic incremental mirror descent Bregman-proximal scheme with Nesterov
smoothing is proposed in order to minimize over a nonempty closed convex set in
an Euclidean space a sum of finitely many proper, convex and lower semicontinuous
functions and a prox-friendly proper, convex and lower semicontinuous function.
Different to the previous contributions from the literature on mirror descent methods
for minimizing sums of functions, we do not require these to be (Lipschitz) continu-
ous or differentiable. Applications in Logistics, Tomography and Machine Learning
modelled as optimization problems illustrate the theoretical achievements.

Keywords. Mirror descent method, stochastic algorithm, Nesterov smoothing, incre-
mental algorithm, proximal point algorithm, PET image reconstructions

1 Introduction

The original mirror descent method was introduced by Nemirovski in [47] (see also [48])
as a noneuclidean extension of the subgradient method for solving unconstrained con-
vex optimization problems and since then it has been subject to various developments
and employment in different areas (such as game theory [23, 58], inverse problems [3],
finance mathematics [35], machine learning [29, 34, 36, 58], reinforcement learning [39]
transport research [16, 58], signal and image processing [3, 10, 13, 30], compressed sens-
ing [5], labeling and classification problems [36, 40, 46], location research [59, 60, 62], net-
work optimization [31], system identification [16,20], optimal control [45], ranking prob-
lems [28, 63], basis pursuit [30], metric learning [33], generative adversarial networks
(GANs) [41], computer vision [37]), enjoying further an increasing popularity (proven,
for instance, by the about sixty papers on this topic uploaded last year only on the
preprint service arXiv). During these four decades it was noticed that it is (strongly) con-
nected to other iterative methods for solving various classes of optimization problems
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such as FTRL (follow the regularized leader) [40], Thomson sampling and Information
Radio [69], proximal gradient [66], Sinkhorn’s algorithm [43], conditional gradient [6,53],
AdaBoost [22] or dual averaging (also called lazy mirror descent) [32], being seen as a
generalization of the proximal point algorithm with a nonlinear distance function (that
could be a Bregman type one or, for instance, the Fenchel coupling [67, 68]) and an opti-
mal stepsize (see [37]) and as a dual approach to gradient descent (see [2]). Due to their
convergence properties, mirror descent algorithms proved to be especially suitable for
large-scale optimization problems. In [27] two main streams of current work on mirror
descent methods are identified, namely accelerating deterministic mirror descent (see,
for instance, [2, 28, 30, 35, 44, 59]) and stochastic mirror descent with access to noised gra-
dient oracle (like in [3, 5, 7, 16, 20, 26, 27, 36, 38, 42, 44, 46, 62, 63, 67, 68]). A further proof of
the lively and continuous interest generated by the mirror descent type algorithms in the
community is the fact that many of these articles were written during the last three years.

Algorithms of mirror descent type have been employed for solving not only uncon-
strained minimization problems (like in most of the cited references), but also constrained
optimization problems [7,8,10,31,57,59–62], bilevel optimization problems [3,26], matrix
optimization problems [21,33,43], variational inequalities [32,38,42,58], online convex op-
timization problems [33,40,62], stochastic optimization problems [8,26,64,67,68], saddle
point problems [38,41,63] and even multiobjective optimization problems [57]. Although
in most cases the involved functions are convex and differentiable, there have been exten-
sions of mirror descent towards nonsmooth optimization [10, 19, 22, 28, 29, 46, 53, 59–62]
and even nonconvex optimization [28, 64]. Generalizations of mirror descent methods
can be found, for instance, in [2, 10, 40], while for continuous versions (by means of dy-
namical systems) we refer to [23, 42, 44, 45, 68]. The mirror descent type algorithms are
usually employed for minimizing a single function, however in works like [6,13,14,19–21,
27,28,30,34,39,53,62,64] such methods were used for minimizing sums of (convex) func-
tions by considering splitting techniques, in order to solve problems arising from various
applications from fields such as machine learning or imaging. A specific feature of mir-
ror descent type algorithms is that the convergence statements are provided in terms of
values of objective functions, however in papers like [19,46,59,61,64] the convergence of
the generated iterative sequence is investigated, too.

In this paper we propose first a stochastic incremental mirror descent algorithm with
Nesterov smoothing for minimizing a sum of finitely many proper, convex and lower
semicontinuous functions over a given nonempty closed convex set in an Euclidean
space, motivated by applications in fields like machine learning or image processing. Un-
like the previous mirror descent methods for minimizing sums of functions, ours does not
ask these to be Lipschitz continuous. Different to the few other contributions where mir-
ror descent algorithms were introduced for minimizing functions lacking Lipschitz con-
tinuity like [36, 62], where a generalization of this property was considered, we employ
smooth approximations (via the Nesterov smoothing from [50]) of the involved func-
tions. To the best of our knowledge smoothing methods for the involved functions were
considered in connection to mirror descent algorithms only in [29, 30] (see also [22] for
objective functions somehow similar to the ones considered in our work) in contexts only
vaguely related to our study. Then we show that the algorithm can be modified in order
to minimize over a given nonempty closed convex set in an Euclidean space a sum of
finitely many proper, convex and lower semicontinuous functions composed with linear
operators mapping between two Euclidean spaces. Adding to the sum a further proper,
convex and lower semicontinuous function that is prox-friendly requires modifications
to the previously mentioned method. The resulting algorithm is a stochastic incremental
mirror descent Bregman-proximal scheme with Nesterov smoothing, and this is further
modified in order to minimize the sum over a given nonempty closed convex set in an
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Euclidean space of finitely many proper, convex and lower semicontinuous functions
composed with linear operators, and the mentioned prox-friendly proper, convex and
lower semicontinuous function. Different to the previous contributions from the litera-
ture on designing mirror descent methods for minimizing sums of functions mentioned
above (in particular [14,19,21,27,28,30,34]), the functions we consider need not be (Lips-
chitz) continuous or differentiable. Moreover, our approach does not require knowledge
of the Lipschitz constants or the subgradients of the involved functions, which sometimes
can be computationally expensive to determine. We also show that in case some of the in-
volved functions are Lipschitz continuous our methods can be easily combined with the
ones proposed in [14]. In [15] one can find a variable smoothing approach to minimize
convex optimization problems with stochastic gradients, so that large scale problems can
be addressed, where, different to our work, the Moreau-envelope, a special case of Nes-
terov smoothing, is used. In order to illustrate our theoretical achievements we consider
applications in Logistics (Location Optimization), Medical Imaging (Tomography) and
Machine Learning (Support Vector Machines) modelled as optimization problems that
are iteratively solved via the algorithms we propose in this work.

2 Preliminaries

In this section we give some basic definitions and notations, which we use in this paper.
In the following we assume that Rn is endowed with the Euclidean inner product

〈·, ·〉 and associated norm ‖ · ‖ =
√
〈·, ·〉. The closure of a set U ⊆ Rn is denoted by

cl U. For a convex function f : Rn → R := R ∪ {±∞} the effective domain is defined
as dom f := {x ∈ Rn : f (x) < +∞} and we say that f is proper, if f > −∞ and
dom f 6= ∅. The subdifferential of f at x ∈ Rn is given for f (x) ∈ R as ∂ f (x) := {p ∈
Rn : f (y) ≥ f (x) + 〈p, y− x〉∀y ∈ Rn} and otherwise as ∂ f (x) := ∅. We write f ′(x) for
an arbitrary subgradient of f at x ∈ Rn, which is an element of the subdifferential ∂ f (x).
For the gradient of a differentiable function f we write ∇ f (x). The function f is said to
be strongly convex if there exists β ∈ ]0,+∞[ such that for all x, y ∈ dom f and all λ ∈ [0, 1]
one has f (λy + (1− λ)x) ≤ λ f (y) + (1− λ) f (x)− λ(1− λ)β‖x− y‖2/2.

The (Fenchel) conjugate function f ∗ : Rn → R of a function f : Rn → R is defined as

f ∗(y) = sup
x∈Rn
{〈y, x〉 − f (x)} (y ∈ Rn)

and is a proper, convex and lower semicontinuous function. Note that f is proper, convex
and lower semicontinuous if and only if f ∗∗ = f , where f ∗∗ is the conjugate function
of f ∗. The infimal convolution of two proper functions f , g : Rn → R is the function
f�g : Rn → R, defined by ( f�g)(x) = infy∈Rn{ f (y) + g(x− y)}.

Definition 2.1. The Moreau-envelope of a proper, convex and lower semicontinuous func-
tion f : Rn → R of coefficient γ > 0 is

inf
y∈Rn

{
f (y) +

1
2γ
‖y− x‖2

}
,

and the proximal point of coefficient γ > 0 of f at x ∈ Rn is the unique optimal solution of
the minimization problem

Proxγ f (x) = arg miny∈Rn

{
γ f (y) +

1
2
‖y− x‖2

}
.

More generally, we call Proxγ f : Rn → Rn the proximity operator (or proximal point map-
ping) of f of coefficient γ.
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Let A : Rn → Rp be a linear operator. Its image is denoted by Im A = {Ax : x ∈ Rn}.
The operator A∗ : Rp → Rn, fulfilling 〈A∗y, x〉 = 〈y, Ax〉 for all x ∈ Rn and y ∈ Rp,
denotes the adjoint operator of A, while ‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1} denotes the norm
of A.

The mirror descent algorithm on which we build our study was considered in [49]
for the problem of minimizing a proper convex function f : Rn → R over a nonempty,
convex and closed set C ⊆ Rn, by involving a proper, lower semicontinuous and σ-
strongly convex function (where σ > 0) H : Rn → R such that C = cl(dom H) and
Im∇H∗ is a subset of the interior of the domain of f , consisting in the following iterative
scheme (where x0 lies in the interior of the domain of f , y0 ∈ Rn and tk > 0, k ≥ 0, are
positive stepsizes)

(∀k ≥ 0)
{

yk+1 = yk − tk f ′(xk),
xk+1 = ∇H∗(yk+1).

As noted in [14], this scheme generalizes the classical subgradient method and is close to
the subgradient projection algorithm.

3 A stochastic incremental mirror descent algorithm with Nes-
terov smoothing

Problem 3.1. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(x)

}
, (1)

where C ⊆ Rn is a nonempty, convex and closed set and for all i = 1, . . . , m, (m ∈N) fi : Rn →
R fulfills

fi(x) = max
u∈Ui
{〈Aix, u〉 − φi(u)}, x ∈ dom fi, (2)

where Ui ⊆ Rp is compact and convex, Ai : Rn → Rp is linear and φi : Rp → R a proper, lower
semicontinuous and convex function. We assume that C ∩ (∩m

i=1 dom fi) 6= ∅. Furthermore, let
H : Rn → R be a proper, lower semicontinuous and σ-strongly convex function (for σ > 0) such
that C = cl(dom H) and Im∇H∗ ⊆ ∩m

i=1 dom fi.

Due to the fact that H is a proper, lower semicontinuous and σ-strongly convex
function, its conjugate function H∗ is Fréchet differentiable and its gradient ∇H∗ is σ-
cocoercive (i.e. for all x, y ∈ Rn it follows σ‖∇H∗(x) −∇H∗(y)‖2 ≤ 〈x − y,∇H∗(x) −
∇H∗(y)〉) and ∇H∗ is (1/σ)-Lipschitz continuous. In the algorithms we propose in this
paper we have the map ∇H∗ as mirror map, which is induced by the function H. This
map mirrors each iterate onto the feasible set C. So we can choose H(x) = 1

2‖x‖2, for
x ∈ C and H(x) = +∞, otherwise, to obtain for the mirror map ∇H∗ the orthogonal
projection onto C. When C = Rn the map ∇H∗ reduces to the identity operator, how-
ever one can choose other mirror maps as well, depending on the structure of C and the
considered optimization problem.

Remark 3.2. The construction (2) guarantees that the functions fi, i = 1, . . . , m, are proper,
convex and lower semicontinuous. Note that for every proper, lower semicontinuous
and convex function f : Rn → R one has f (A·) = supu∈dom f ∗{〈A·, u〉 − f ∗(u)}, where
A : Rp → Rn is a linear operator. This supremum is a maximum, for instance, when
dom f ∗ is bounded, which happens when f is Lipschitz continuous (see [55]), while the
opposite implication is not known to hold. In this case f (A·) is of the form (2) with
fi = f ◦ A, Ai = A, Ui = dom f ∗ and φi = f ∗. For deeper insights and examples of this
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construction, we refer the reader to [50, 51], while in works like [4, 12, 65] it is employed
for designing algorithms for solving various classes of optimization problems, some of
which stemming from concrete applications.

To minimize the sum of the nonsmooth convex functions fi (i = 1, . . . , m) in Prob-
lem 3.1, at first we approximate them by smooth functions. For this we use the Nesterov
smoothing technique (see [50], also employed in works like [4,54,65]). One can of course
discuss which class of (splitting proximal point type) algorithms delivers the desired re-
sults faster and cheaper, however we opt to employ a mirror descent type technique
because of the known qualities of these methods, because the considered functions are
suitable for our approach and also because in many applications only certain conver-
gence properties of the values of the objective function, best obtained via mirror descent,
are relevant.

Definition 3.3. For i = 1, . . . , m, and β > 0, a continuous and β-strongly convex function
bUi : Rp → R is called the prox-function of the set Ui ⊆ Rp. Its prox-center is denoted
uc

i = arg minu∈Ui
bUi(u) and its prox-diameter by DUi = supu∈Ui

bUi(u).

Without loss of generality we set in the following β = 1 and assume that for all
i = 1, . . . , m, bUi(u

c
i ) = 0 and therefore bUi(u) ≥ 0 for all u ∈ Ui.

Next we approximate the functions fi (i = 1, . . . , m) by the smooth functions f γ
i :

Rn → R

f γ
i (x) = max

u∈Ui
{〈Aix, u〉 − φi(u)− γbUi(u)}, (3)

where γ > 0 is the smoothing parameter. This procedure originates from [50] (see also
[51]) and is called Nesterov smoothing. We define uγ

i (x) = arg maxu∈Ui
{〈Aix, u〉 − φi(u)−

γbUi(u)}. Furthermore, it holds

f γ
i (x) ≤ fi(x) ≤ f γ

i (x) + γDUi ∀x ∈ dom fi. (4)

Lemma 3.4. The functions f γ
i , i = 1, . . . , m, defined as above are well defined, convex, and

continuously differentiable at every x ∈ Ui. Furthermore, ∇ f γ
i = A∗i uγ

i which is ‖Ai‖2/γ-
Lipschitz continuous, and it holds

‖∇ f γ
i (x)‖2 ≤ 2‖Ai‖2(DUi + ‖u

c
i ‖2) ∀x ∈ Rn.

Proof. For the first part of the proof see [50, Theorem 1], where the continuity and finite-
ness of fi, i = 1, . . . , m, imposed in the hypothesis, were not employed.

For i ∈ {1, . . . , m}, and x ∈ Rn it holds

‖∇ f γ
i (x)‖2 ≤ ‖Ai‖2‖uγ

i (x)‖2 ≤ ‖Ai‖2 (2‖uγ
i (x)− uc

i ‖2 + 2‖uc
i ‖2)

which, taking into consideration the 1-strong convexity of bUi and that bUi(u
c
i ) = 0, yields

2‖uγ
i (x)− uc

i ‖2 ≤ 2bUi(u
γ
i (x))− 2bUi(u

c
i )− 2∇bUi(u

c
i )(u

γ
i (x)− uc

i ) ≤ 2DUi .

Hence
‖∇ f γ

i (x)‖2 ≤ 2‖Ai‖2(DUi + ‖u
c
i ‖2).

Remark 3.5. Notice that for i = 1, . . . , m, gi : Rp → R, φi = g∗i , bUi = (1/2)‖ · ‖2 and Ui =
dom g∗i is compact and convex for a γ > 0 the function f γ

i (·) = (gi�(1/(2γ))‖ · ‖2)(Ai·)
is the Moreau-envelope of gi ◦ Ai and∇ f γ

i (·) = (1/γ)
(
· − A∗i Proxγgi (Ai·)

)
. In this case

‖uc
i ‖ = 0.
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Remark 3.6. Other smoothing methods (like the general one presented in [12]) could be
employed as well in the framework we consider in this paper as long as they guarantee
the last result from Lemma 3.4, namely that the norms of the gradients of the smooth
approximations of the considered functions are bounded.

For the convergence analysis of the following algorithms we use two measures of
distance in the sense of Bregman.

Definition 3.7. Let H : Rn → R be a proper and convex function. The Bregman-distance-
like function of H is denoted as

dH : Rn × dom H ×Rn → R, dH(x, y, z) := H(x)− H(y)− 〈z, x− y〉.
Because of the subgradient inequality it holds that dH(x, y, z) ≥ 0 for every (x, y) ∈

Rn × dom H and all z ∈ ∂H(y).

Definition 3.8. The Bregman distance associated to a proper and convex function H :
Rn → R fulfilling dom∇H := {x ∈ Rn : H is differentiable at x} 6= ∅ is defined
as

DH : Rn × dom∇H → R, DH(x, y) := H(x)− H(y)− 〈∇H(y), x− y〉.
The following algorithm relies on the stochastic incremental mirror descent approach

of [14, Algorithm 3.2], but instead of using subgradients of the functions fi we smooth
them by the Nesterov smoothing approach (3) and employ the gradients of the smooth
functions, provided by Lemma (3.4).

Algorithm 3.9

Choose x0 ∈
m⋂

i=1
dom fi ∩ C, ym,−1 ∈ Rn, the smoothing parameters γk > 0 and the

stepsizes tk > 0, k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
y0,k := ym,k−1
for all i := 1, . . . , m do

yi,k := yi−1,k − εi,k
tk
pi
∇ f γk

i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
xk+1 := ψm,k

end for,
where εi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(εi,k = 1) = pi for
all 1 ≤ i ≤ m and k ≥ 0.

Remark 3.10. The hypothesis Im∇H∗ ⊆ ∩m
i=1 dom fi guarantees that the sequence {xk}k

generated by Algorithm 3.9 contains only elements that lie in the intersection of the do-
mains of the functions fi, i = 1, . . . , m.

Theorem 3.11. For Problem 3.1 let the sequence {xk}k generated by Algorithm 3.9 and for a
constant δ > 0 take γk := tkδ/σ, k ≥ 0. Then for all N ≥ 1 and y ∈ Rn it holds

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)
≤

dH(y, x0, y0,0) +
1
σ

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
(DUi + ‖uc

i ‖2)

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.
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Proof. The begin is as in the proof of [14, Theorem 3.3] (instead of fi we have f γk
i for all

i = 1, . . . , m, and instead of ‖ f ′i (ψi−1,k)‖2 ≤ L2
fi

we have from Lemma 3.4 ‖∇ f γk
i ‖2 ≤

2‖Ai‖2(DUi + ‖uc
i ‖2)). So we can start from [(6), [14]] for every k ≥ 0 with these modifi-

cations

E(dH(y, ψm,k, ym,k)) ≤ E(dH(y, xk, y0,k)) + tkE

(
m

∑
i=1

f γk
i (y)−

m

∑
i=1

f γk
i (xk)

)

+
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2( m

∑
i=1

1
p2

i

) 1
2

−E

(
m

∑
i=1

1
2

dH(ψi,k, ψi−1,k, yi−1,k)

)

+ E

(
tk

m

∑
i=1

( f γk
i (xk)− f γk

i (ψi−1,k))

)
. (5)

Using the Lipschitz continuity of ∇H∗ and ∇ f γk
i and Lemma 3.4 it yields for every

k ≥ 0
m

∑
i=1

( f γk
i (xk)− f γk

i (ψi−1,k)) ≤
m

∑
i=2

i−1

∑
j=1

( f γk
i (ψj−1,k)− f γk

i (ψj,k))

≤
m

∑
i=2

i−1

∑
j=1
〈∇ f γk

i (ψj−1,k), ψj−1,k − ψj,k〉 ≤
m

∑
i=2

i−1

∑
j=1
‖∇ f γk

i (ψj−1,k)‖‖ψj−1,k − ψj,k‖ ≤

m

∑
i=2

i−1

∑
j=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)‖ψj−1,k−ψj,k‖ ≤
m

∑
l=1
‖Al‖

√
2(DUl + ‖uc

l ‖2)
m

∑
i=2
‖ψi−1,k−ψi,k‖

≤
m

∑
l=1
‖Al‖

√
2(DUl + ‖uc

l ‖2)
m

∑
i=2
‖∇H∗(yi−1,k)−∇H∗(yi,k)‖

≤ 1
σ

m

∑
l=1
‖Al‖

√
2(DUl + ‖uc

l ‖2)
m

∑
i=2
‖yi−1,k − yi,k‖

=
1
σ

m

∑
l=1
‖Al‖

√
2(DUl + ‖uc

l ‖2)
m

∑
i=2
‖εi,k

tk

pi
∇ f γk

i (ψi−1,k)‖

≤ 1
σ

tk

m

∑
l=1
‖Al‖

√
2(DUl + ‖uc

l ‖2)
m

∑
i=1

εi,k

pi
‖Ai‖

√
2(DUi + ‖uc

i ‖2).

So, for every k ≥ 0 it holds

E

(
tk

m

∑
i=1

( f γk
i (xk)− f γk

i (ψi−1,k))

)

≤ 1
σ

t2
k

(
m

∑
l=1
‖Al‖

√
2(DUl + ‖uc

l ‖2)

)
E

(
m

∑
i=1

εi,k

pi
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)

≤ 1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2

. (6)

Inequality (4) yields for every k ≥ 0

tkE

(
m

∑
i=1

f γk
i (y)−

m

∑
i=1

f γk
i (xk)

)
≤ tk

(
E

(
m

∑
i=1

fi(y)−
m

∑
i=1

fi(xk)

)
+ γk

m

∑
i=1

DUi

)
. (7)
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Combining (5) with (6) and (7) gives for every k ≥ 0

E(dH(y, ψm,k, ym,k)) ≤ E(dH(y, xk, y0,k)) + tk

(
E

(
m

∑
i=1

fi(y)−
m

∑
i=1

fi(xk)

)
+ γk

m

∑
i=1

DUi

)

+
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2( m

∑
i=1

1
p2

i

) 1
2

−E

(
m

∑
i=1

1
2

dH(ψi,k, ψi−1,k, yi−1,k)

)

+
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2

.

Because ψm,k = xk+1, ym,k = y0,k+1 and dH(ψi,k, ψi−1,k, yi−1,k) ≥ 0 as yi−1,k ∈ ∂H(ψi−1,k)
it holds for every k ≥ 0

E(dH(y, xk+1, y0,k+1)) ≤E(dH(y, xk, y0,k)) + tkE

(
m

∑
i=1

fi(y)−
m

∑
i=1

fi(xk)

)
+ tkγk

m

∑
i=1

DUi

+
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1

 .

Summing up the inequality from k = 0 to N − 1, where N ≥ 1, we obtain

N−1

∑
k=0

tkE

(
m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)
+ E(dH(y, xN , y0,N)) ≤ E(dH(y, x0, y0,0))

+
m

∑
i=1

DUi

N−1

∑
k=0

γktk +
1
σ

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1

 N−1

∑
k=0

t2
k .

Since dH(y, xN , y0,N) ≥ 0, as y0,N ∈ ∂H(xN), and γk =
tkδ
σ , we get

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)
≤

dH(y, x0, y0,0) +
1
σ

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
(DUi + ‖uc

i ‖2)

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

In the following corollary we give the optimal stepsize choice for Algorithm 3.9,
which follows from [11, Proposition 4.1].

Corollary 3.12. Let x∗ ∈ dom H be an optimal solution to (1) and for a constant δ > 0 let
γk := tkδ/σ, k ≥ 0. Then the optimal stepsize for the algorithm above is given by

tk :=

√√√√√√
σdH(x∗, x0, y0,0)

δ
m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
(DUi + ‖uc

i ‖2)

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

) 1√
k

, ∀k ≥ 0
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which yields for every N ≥ 1

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(x∗)

)

≤ 2√
N

√√√√√√dH(x∗, x0, y0,0)

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
(DUi + ‖uc

i ‖2)

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
σ

.

Let us consider now the following optimization problem consisting in minimizing
a sum of functions fulfilling (2) when composed with linear operators. Such problems
can be seen both as special cases and generalizations of Problem 3.1 as mentioned in
Remark 3.2. Taking into consideration this remark, only the maximum in the construction
(2) needs to be attained in the case of such compositions when the involved functions are
proper, convex and semicontinuous, and the operators linear, in which case we say that
they fulfill the property (2′). Unlike the construction proposed in [14], our approach is
flexible enough to allow modifying Algorithm 3.9 in order to solve such problems as well.

Problem 3.13. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(Aix)

}
, (8)

where C ⊆ Rn is a nonempty, convex and closed set, fi : Rp → R, i = 1, . . . , m are proper,
convex and semicontinuous functions and Ai : Rn → Rp linear operators, such that (2′) holds
for them and C ∩ (∩m

i=1 dom( fi ◦ Ai)) 6= ∅.

For i = 1, . . . , m, we smooth the functions fi ◦ Ai via the Moreau-envelope which
is a special case of Nesterov smoothing as mentioned above, obtaining ( fi ◦ Ai)

γ(·) =
( fi�(1/2γ)‖ · ‖2)(Ai·) with the gradients ∇( fi ◦ Ai)

γ(·) = (1/γ)(· − A∗i Proxγ fi(Ai·)),
where γ > 0.

Then we obtain the following mirror descent proximal point algorithm.

Algorithm 3.14

Choose x0 ∈
m⋂

i=1
dom( fi ◦ Ai) ∩ C, ym,−1 ∈ Rn, the smoothing parameters γk > 0 and

the stepsizes tk > 0, k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
y0,k := ym,k−1
for all i := 1, . . . , m do

yi,k := yi−1,k − εi,k
tk

γk pi

(
ψi−1,k − A∗i Proxγk fi (Aiψi−1,k)

)
ψi,k := ∇H∗(yi,k)

end for
xk+1 := ψm,k

end for,
where εi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(εi,k = 1) = pi for
all 1 ≤ i ≤ m and k ≥ 0.

Because this algorithm is derived from Algorithm 3.9 the convergence result of The-
orem 3.11 is also valid, where DUi = Ddom f ∗i = supu∈dom f ∗i

1
2‖u‖2 and ‖uc

i ‖ = 0.
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Theorem 3.15. For Problem 3.13 let the sequence {xk}k generated by Algorithm 3.14 and for a
constant δ > 0 take γk := tkδ/σ, k ≥ 0. Then for all N ≥ 1 and y ∈ Rn it holds

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)
≤

dH(y, x0, y0,0) +
1
σ

(
δ

m
∑

i=1
Ddom f ∗i + 2

(
m
∑

i=1
‖Ai‖

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

Analogously, the optimal stepsize choice for Algorithm 3.14 is given in the following
corollary.

Corollary 3.16. Let x∗ ∈ dom H be an optimal solution to (8) and for a constant δ > 0 let
γk := tkδ/σ, k ≥ 0. Then the optimal stepsize for Algorithm 3.14 above is given by

tk :=

√√√√√√
σdH(x∗, x0, y0,0)

δ
m
∑

i=1
Ddom f ∗i + 2

(
m
∑

i=1
‖Ai‖

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

) 1√
k

, ∀k ≥ 0

which yields for every N ≥ 1

E

(
min

0≤k≤N−1

m

∑
i=1

fi(Aixk)−
m

∑
i=1

fi(Aix∗)

)

≤ 2

√√√√√√dH(x∗, x0, y0,0)

(
δ

m
∑

i=1
Ddom f ∗i + 2

(
m
∑

i=1
‖Ai‖

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
σ

1√
N

.

Remark 3.17. The difference between Algorithm 3.9 and its counterpart in the Lips-
chitzian case [14, Algorithm 2.2] is that we do not need to know the Lipschitz constants
or the subgradients of the functions fi (i = 1, . . . , m), which sometimes can be compu-
tationally expensive to determine (cf. [1, 17, 24, 52]), but (in particular for its special case
Algorithm 3.14) their proximal point mappings which, for many functions, including
the ones which usually occur when modelling applications in fields like image deblur-
ring and denoising or machine learning, are already known. A further advantage of our
method is that we do not need to impose the Lipschitz continuity of the gradients of
the objective functions, as the gradients of their Nesterov smooth approximations satisfy
this hypothesis by construction. Instead we ask the weaker condition of closedness of
the domains of their conjugates. Note also that by employing the parameters γk > 0,
k ≥ 0, Algorithm 3.9 presents additional flexibility when compared with its mentioned
counterpart.

Remark 3.18. Additionally assuming the functions fi, i = 1, . . . , m, Lipschitz continuous
does not make Algorithm 3.9 collapse to [14, Algorithm 3.2] and also the assertion of The-
orem 3.11 does not rediscover its counterpart [14, Theorem 3.3] because of the different
constructions. This has motivated us to include in our study the results in Subsection 4.1
where combinations of these algorithms are proposed.
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4 Incremental mirror descent Bregman-prox-scheme with Nes-
terov smoothing

In this section we consider an extension of the optimization problem (1) by adding an-
other nonsmooth function to its objective function. The iterative scheme we propose for
solving it is an extension of Algorithm 3.9, but instead of smoothing the new function,
we evaluate it by a proximal step of Bregman type. For this we need additional differen-
tiability assumptions on the function which induces the mirror map.

Problem 4.1. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(x) + g(x)

}
, (9)

where C ⊆ Rn is a nonempty, convex and closed set, for i = 1, . . . , m, the functions fi : Rn → R

are defined like in Problem 3.1 and g : Rn → R is a proper, convex and lower semicontinuous
function such that C ∩ (∩m

i=1 dom fi ∩ dom g) 6= ∅. Furthermore, let H : Rn → R be a proper,
lower semicontinuous and σ-strongly convex function (for σ > 0) such that C = cl(dom H), let
H be continuously differentiable on int(dom H), Im∇H∗ ⊆ (∩m

i=1 dom fi) ∩ int(dom H) and
int(dom H) ∩ dom g 6= ∅.

Definition 4.2. Let h : Rn → R be a proper, convex, lower semicontinuous function.
The Bregman-proximal operator of h with respect to the proper, lower semicontinuous and
σ-strongly convex function H is defined as

ProxH
h : dom∇H → Rn, ProxH

h (x) := arg minu∈Rn{h(u) + DH(u, x)}.

Because H is σ-strongly convex, the Bregman-proximal operator is well defined. For
H = (1/2)‖ · ‖2 the Bregman-proximal operator is the classical proximity operator.

We propose the following algorithm for solving the optimization problem (9).

Algorithm 4.3

Choose x0 ∈ Im∇H∗ ∩ C, the smoothing parameters γk > 0 and the stepsizes tk > 0,
k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
for all i := 1, . . . , m do

ψi,k := ∇H∗(∇H(ψi−1,k)− εi,k
tk
pi
∇ f γk

i (ψi−1,k))

end for
xk+1 := ProxH

tk g(ψm,k)
end for,
where εi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(εi,k = 1) = pi for
all 1 ≤ i ≤ m and k ≥ 0.

Remark 4.4. Note that when g = 0 Algorithm 4.3 turns into Algorithm 3.9. But even for
this case the constants obtained in the convergence result given below and in Theorem
3.11 are not the same due to the construction of the algorithms and therefore to some
main differences in the proofs.

Theorem 4.5. Let the sequence {xk}k generated by Algorithm 4.3 and for a constant δ > 0 let
γk := tkδ/σ. Then for all N ≥ 1 and all y ∈ Rn one has

E

(
min

0≤k≤N−1

(
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)
≤
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DH(y, x0) +
1
σ

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
DUi + ‖uc

i ‖2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

Proof. When y /∈ ∩m
i=1 dom fi ∩ dom g the assertion follows automatically, so we consider

further y ∈ ∩m
i=1 dom fi ∩dom g. We start the proof with inequalities (5) and (6) from The-

orem 3.11 and use instead of the Bregman distance like functions the Bregman distance
to obtain

E(DH(y, ψm,k)) ≤ E(DH(y, xk)) + tkE

(
m

∑
i=1

f γk
i (y)−

m

∑
i=1

f γk
i (xk)

)

+
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1

−E

(
m

∑
i=1

1
2

DH(ψi,k, ψi−1,k)

)
.

(10)
Like in [(12), [14]] we get for every k ≥ 0

tkE((g(xk+1)− g(y))) + E(DH(y, xk+1)) ≤ E(DH(y, ψm,k))−E(DH(xk+1, ψm,k)). (11)

By combining (10) and (11) we obtain for every k ≥ 0

tkE((g(xk+1)− g(y))) + tkE

(
m

∑
i=1

f γk
i (xk)−

m

∑
i=1

f γk
i (y)

)
+ E(DH(y, xk+1))

≤ E(DH(y, xk)) +
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1


−E(DH(xk+1, ψm,k))−

m

∑
i=1

1
2

E(DH(ψi,k, ψi−1,k)).

We add and subtract tkE(∑m
i=1 f γk

i (xk+1)) to get

tkE

((
m

∑
i=1

f γk
i + g

)
(xk+1)−

(
m

∑
i=1

f γk
i + g

)
(y)

)

+ tkE

(
m

∑
i=1

f γk
i (xk)−

m

∑
i=1

f γk
i (xk+1)

)
+ E(DH(y, xk+1))

≤ E(DH(y, xk)) +
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1


−E(DH(xk+1, ψm,k))−

m

∑
i=1

1
2

E(DH(ψi,k, ψi−1,k)).

Because of the differentiability and convexity of f γk
i , (i = 1, . . . , m) for all k ≥ 0 we have

−tkE

(
m

∑
i=1

f γk
i (xk+1)−

m

∑
i=1

f γk
i (xk)

)
≥ −tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖xk − xk+1‖)
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and from (4) it follows that

tk

(
E

((
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)
− γk

m

∑
i=1

DUi

)

− tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖xk − xk+1‖) + E(DH(y, xk+1))

≤ E(DH(y, xk)) +
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2(DUi + ‖uc

i ‖2)

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1


−E(DH(xk+1, ψm,k))−

m

∑
i=1

1
2

E(DH(ψi,k, ψi−1,k)). (12)

By the triangle inequality we get for every k ≥ 0

tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖xk − xk+1‖) ≤ tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖xk − ψm,k‖)

+ tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖ψm,k − xk+1‖) . (13)

Due to Lemma 3.4, Young’s inequality and the strong convexity of H we have

tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖ψm,k − xk+1‖) ≤ tkE

(
m

∑
i=1
‖∇ f γk

i (xk+1)‖
)

E (‖ψm,k − xk+1‖)

≤ tk

m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2E (‖ψm,k − xk+1‖)

≤ 1
2σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2

)2

+
σ

2
E (‖ψm,k − xk+1‖)2

≤ 1
2σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2

)2

+E(H(xk+1)−H(ψm,k)−〈∇H(xk+1), xk+1−ψm,k〉)

=
1

2σ
t2
k

(
m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2

)2

+ E(DH(xk+1, ψm,k)),

and since

‖xk − ψm,k‖ =
∥∥∥∥∥ m

∑
i=1

(ψi−1,k − ψi,k)

∥∥∥∥∥ ≤ m

∑
i=1
‖ψi−1,k − ψi,k‖ ,

the inequality (13) becomes

tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖xk − xk+1‖) ≤
1

2σ
t2
k

(
m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2

)2

+E(DH(xk+1, ψm,k)) + tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E

(
m

∑
i=1
‖ψi−1,k − ψi,k‖

)
.
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Using again Lemma 3.4, Young’s inequality and the strong convexity of H we get for
every i = 1, . . . , m, and every k ≥ 0

tk

∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥ ‖ψi−1,k − ψi,k‖ ≤
1
σ

t2
k

(
m

∑
j=1
‖Aj‖

√
2DUj + 2‖uc

j‖2

)2

+
σ

4
‖ψi−1,k − ψi,k‖ ≤

1
σ

t2
k

(
m

∑
j=1
‖Aj‖

√
2DUj + 2‖uc

j‖2

)2

+
1
2

DH(ψi,k, ψi−1,k),

so we have

tkE

(∥∥∥∥∥ m

∑
i=1
∇ f γk

i (xk+1)

∥∥∥∥∥
)

E (‖xk − xk+1‖) ≤
1

2σ
t2
k

(
m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2

)2

+ E(DH(xk+1, ψm,k)) +
1
σ

mt2
k

(
m

∑
j=1
‖Aj‖

√
2DUj + 2‖uc

j‖2

)2

+
m

∑
i=1

1
2

DH(ψi,k, ψi−1,k). (14)

Combining (14) and (12) we obtain

tkE

((
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xk+1)) ≤ E(DH(y, xk))

+
1
σ

t2
k

(
m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2

)2
( m

∑
i=1

1
p2

i

) 1
2

+
3
2
+ m

+ tkγk

m

∑
i=1

DUi .

Summing up this inequality from k = 0 to N − 1, for N ≥ 1, we get

N−1

∑
k=0

tkE

((
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xN)) ≤ E(DH(y, x0))

+
1
σ

(
m

∑
i=1
‖Ai‖

√
2DUi + 2‖uc

i ‖2

)2
( m

∑
i=1

1
p2

i

) 1
2

+
3
2
+ m

 N−1

∑
k=0

t2
k +

m

∑
i=1

DUi

N−1

∑
k=0

γktk.

Since E(DH(y, xN)) ≥ 0 and γk = tkδ/σ, k ≥ 0, we obtain

E

(
min

0≤k≤N−1

(
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)
≤

DH(y, x0) +
1
σ

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
DUi + ‖uc

i ‖2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

In the following corollary we give the optimal stepsize choice for Algorithm 4.3,
which follows from [11, Proposition 4.1].
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Corollary 4.6. Let x∗ ∈ dom H be an optimal solution to (9) and for a constant δ > 0 let
γk := tkδ/σ, k ≥ 0. Then the optimal stepsize for Algorithm 4.3 is given by

tk :=

√√√√√√
σDH(x∗, x0)

δ
m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
DUi + ‖uc

i ‖2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

) 1√
k
∀k ≥ 0

which yields for every N ≥ 1

E

(
min

0≤k≤N−1

(
m

∑
i=1

fi + g

)
(xk)−

(
m

∑
i=1

fi + g

)
(x∗)

)

≤ 2

√√√√√√DH(, x0)

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
‖Ai‖

√
DUi + ‖uc

i ‖2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

))
σ

1√
N

.

As in the previous section we modify the considered problem by composing the
smoothed functions with the linear operators used in their construction.

Problem 4.7. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(Aix) + g(x)

}
,

where C ⊆ Rn is a nonempty, convex and closed set, fi : Rp → R, i = 1, . . . , m are proper,
convex and semicontinuous functions and Ai : Rn → Rp linear operators, such that (2′) holds
for them and g : Rn → R is a proper, convex and lower semicontinuous function such that
C ∩ (∩m

i=1 dom( fi ◦ Ai)) ∩ dom g 6= ∅. Furthermore, let the function H defined as in Problem
4.1.

By smoothing the functions fi (i = 1, . . . , m) via the Moreau-envelope, we obtain
( fi ◦ Ai)

γ(·) = ( fi�(1/2γ)‖ · ‖2)(Ai·) with the gradients ∇( fi ◦ Ai)
γ(·) = (1/γ)(· −

A∗i Proxγ fi(Ai·)) as in the previous section. Then we obtain from Algorithm 4.3 the fol-
lowing mirror descent proximal point algorithm for solving Problem 4.7.

Algorithm 4.8

Choose x0 ∈ Im∇H∗ ∩ C, the smoothing parameters γi > 0 and the stepsizes tk > 0,
k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
for all i := 1, . . . , m do

ψi,k := ∇H∗(∇H(ψi−1,k)− εi,k
tk

γk pi

(
ψi−1,k − A∗i Proxγi fi (Aiψi−1,k)

)
end for
xk+1 := ProxH

tk g(ψm,k),
end for
where εi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(εi,k = 1) = pi for
all 1 ≤ i ≤ m and k ≥ 0.

Because this algorithm is derived from Algorithm 4.3 the convergence result follows
directly from Theorem 4.5, where DUi = Ddom f ∗i = supu∈dom f ∗i

1
2‖u‖2 and ‖uc

i ‖ = 0.
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Theorem 4.9. Let the sequence {xk}k generated by Algorithm 4.8 and for a constant δ > 0 let
γk := tkδ/σ, k ≥ 0. Then for all N ≥ 1 and all y ∈ Rn one has

E

(
min

0≤k≤N−1

(
m

∑
i=1

fi ◦ Ai + g

)
(xk+1)−

(
m

∑
i=1

fi ◦ Ai + g

)
(y)

)
≤

DH(y, x0) +
1
σ

(
δ

m
∑

i=1
Ddom f ∗i + 2

(
m
∑

i=1
‖Ai‖

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

Analogously, the optimal stepsize choice for Algorithm 4.8 is given by the following
corollary.

Corollary 4.10. Let x∗ ∈ dom H be an optimal solution to Problem 4.7 and for a constant δ > 0
let γk := tkδ/σ, k ≥ 0. Then the optimal stepsize for Algorithm 4.8 is given by

tk :=

√√√√√√
σDH(y, x0)

δ
m
∑

i=1
Ddom f ∗i + 2

(
m
∑

i=1
‖Ai‖

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

) 1√
k

, ∀k ≥ 0

which yields for every N ≥ 1

E

(
min

0≤k≤N−1

(
m

∑
i=1

fi ◦ Ai + g

)
(xk)−

(
m

∑
i=1

fi ◦ Ai + g

)
(x∗)

)

≤ 2

√√√√√√DH(y, x0)

(
δ

m
∑

i=1
Ddom f ∗i + 2

(
m
∑

i=1
‖Ai‖

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

))
σ

1√
N

.

Remark 4.11. One can provide counterparts to [14, Remark 3.7 and Remark 4.7] in the
framework considered in this work, too. We leave them to the interested reader.

4.1 Stochastic incremental mirror descent algorithms with subgradient and
Nesterov smoothing

In the following we combine the mirror descent algorithms proposed above, which use
the Nesterov smoothing approach, and the mirror descent algorithms proposed in [14],
which use the subgradients of the objective functions to minimize.

Problem 4.12. We consider the convex optimization problem

min
x∈C

{
m1

∑
i=1

fi(x) +
m2

∑
i=m1+1

fi(x)

}
, (15)

where C ⊆ Rn is a nonempty, convex and closed set such that C ∩ (∩m2
i=1 dom fi) 6= ∅, for

all i = 1, . . . , m1 (m1 ∈ N), the functions fi : Rn → R are proper, convex and L fi -Lipschitz
continuous on Im∇H∗, where H is defined as in Problem 4.1, and for all i = m1 + 1, . . . , m2
(m1 ≤ m2 ∈ N), the functions fi : Rn → R fulfill fi(x) = maxu∈Ui{〈Aix, u〉 − φi(u)} for
x ∈ dom fi, where Ui ⊆ Rp is a compact and convex set, Ai : Rn → Rp are linear operators and
φi : Rp → R are proper, lower semicontinuous and convex functions.
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For the following algorithm we use the subgradients of the first m1 functions fi and
the gradients of smooth functions f γk

i for i = m1 + 1, . . . , m2.

Algorithm 4.13

Choose x0 ∈
m2⋂
i=1

dom fi ∩ C, ym2,−1 ∈ Rn, the smoothing parameters γk > 0 and the

stepsizes tk > 0, k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
y0,k := ym2,k−1
for all i := 1, . . . , m1 do

yi,k := yi−1,k − εi,k
tk
pi

f ′i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
for all i := m1 + 1, . . . , m2 do

yi,k := yi−1,k − εi,k
tk
pi
∇ f γk

i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
xk+1 := ψm2,k

end for,
where εi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(εi,k = 1) = pi for
all 1 ≤ i ≤ m2 and k ≥ 0.

In the following statement we give the convergence result for this algorithm. The
proof is basically a combination of the ones of Theorem 3.11 and [14, Theorem 3.3], hence
it is skipped.

Theorem 4.14. For Problem 4.12 let the sequence {xk}k generated by the algorithm above and
for a δ > 0 γk := tkδ/σ. Then for all N ≥ 1 and y ∈ Rn it holds

E

(
min

0≤k≤N−1

m2

∑
i=1

fi(xk)−
m2

∑
i=1

fi(y)

)
≤

dH(y, x0, y0,0) +
1
σ C

N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

,

where

C = δ
m2

∑
i=m1+1

DUi +

(
m1

∑
i=1

L fi

)2
(m1

∑
i=1

1
p2

i

) 1
2

+ 1


+2

(
m2

∑
i=m1+1

‖Ai‖
√

DUi + ‖uc
i ‖2

)2
( m2

∑
i=m1+1

1
p2

i

) 1
2

+ 1

 .

The optimal stepsize choice for Algorithm 4.13 can be deduced from [11, Proposition
4.1].

Corollary 4.15. Let x∗ ∈ dom H be an optimal solution to (16), for a δ > 0 take γk := tkδ/σ,
k ≥ 0, and

P := δ
m2

∑
i=m1+1

DUi +

(
m1

∑
i=1

L fi

)2
(m1

∑
i=1

1
p2

i

) 1
2

+ 1


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+2

(
m2

∑
i=m1+1

‖Ai‖
√

DUi + ‖uc
i ‖2

)2
( m2

∑
i=m1+1

1
p2

i

) 1
2

+ 1

 .

Then the optimal stepsize for the algorithm above is given by

tk :=

√
σdH(x∗, x0, y0,0)

P
1√
k

,

for all k ≥ 0, which yields for every N ≥ 1

E

(
min

0≤k≤N−1

m2

∑
i=1

fi(xk)−
m2

∑
i=1

fi(x∗)

)
≤ 2

√
dH(x∗, x0, y0,0)P

σ

1√
N

.

Adding another nonsmooth function to the objective function of Problem 4.12 brings
into attention the following problem, which can be solved by the algorithm below it.

Problem 4.16. We consider the convex optimization problem

min
x∈C

{
m1

∑
i=1

fi(x) +
m2

∑
i=m1+1

fi(x) + g(x)

}
, (16)

where (m1 + 1 < m2 ∈ N), C ⊆ Rn is a nonempty, convex and closed set, the functions
fi : Rn → R (for i = 1, . . . m1) and fi : Rn → R (for i = m1 + 1, . . . m2) are defined like in
Problem 4.12 and g : Rn → R is a proper, convex and lower semicontinuous function such that
C ∩ (∩m2

i=1 dom fi ∩ dom g) 6= ∅. Let H : Rn → R be defined like in Problem 4.1.

Algorithm 4.17

Choose x0 ∈ Im∇H∗ ∩ C, ym2,−1 ∈ Rn, the smoothing parameters γk > 0 and the
stepsizes tk > 0, k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
y0,k := ym2,k−1
for all i := 1, . . . , m1 do

yi,k := yi−1,k − εi,k
tk
pi

f ′i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
for all i := m1 + 1, . . . , m2 do

yi,k := yi−1,k − εi,k
tk
pi
∇ f γk

i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
xk+1 := ProxH

tk g(ψm2,k).
end for,
where εi,k ∈ {0, 1} is random variable independent of ψi−1,k and let P(εi,k = 1) = pi
for all 1 ≤ i ≤ m2 and k ≥ 0.

The convergence result and the optimal stepsize tk, k ≥ 0, for this algorithm are
derivable via Theorem 4.5 and [14, Theorem 4.5], and [11, Proposition 4.1], respectively.

Theorem 4.18. Let the sequence {xk}k generated by Algorithm 4.17 and for a δ > 0 γk :=
tkδ/σ. Then for all N ≥ 1

E

(
min

0≤k≤N−1

(
m2

∑
i=1

fi + g

)
(xk+1)−

(
m2

∑
i=1

fi + g

)
(y)

)
≤

DH(y, x0) +
1
σ C

N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

,
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where

P = δ
m2

∑
i=m1+1

DUi + 2

(
m2

∑
i=m1+1

‖Ai‖
√

DUi + ‖uc
i ‖2

)2
( m2

∑
i=m1+1

1
p2

i

) 1
2

+ 1



+

(
m1

∑
i=1

L fi

)2
(m1

∑
i=1

1
p2

i

) 1
2

+ 1

+
3
2

((
m1

∑
i=1

L fi

)
+ 2

m2

∑
i=m1+1

‖Ai‖
√

DUi + ‖uc
i ‖2

)2

.

Corollary 4.19. Let x∗ ∈ dom H be an optimal solution to (16), for a δ > 0 take γk := tkδ/σ,
k ≥ 0, and

P = δ
m2

∑
i=m1+1

DUi + 2

(
m2

∑
i=m1+1

‖Ai‖
√

DUi + ‖uc
i ‖2

)2
( m2

∑
i=m1+1

1
p2

i

) 1
2

+ 1



+

(
m1

∑
i=1

L fi

)2
(m1

∑
i=1

1
p2

i

) 1
2

+ 1

+
3
2

((
m1

∑
i=1

L fi

)
+ 2

m2

∑
i=m1+1

‖Ai‖
√

DUi + ‖uc
i ‖2

)2

.

Then the optimal stepsize for Algorithm 4.17 is given by

tk :=

√
σDH(y, x0)

P
1√
k

,

for all k ≥ 0, which yields for every N ≥ 1

E

(
min

0≤k≤N−1

(
m2

∑
i=1

fi + g

)
(xk)−

(
m2

∑
i=1

fi + g

)
(x∗)

)
≤ 2

√
DH(y, x0)P

σ

1√
N

.

5 Applications

We consider three applications that can be modeled as optimization problems of the for-
mat considered in this work. The first of them stems from Logistics and was modeled
in [50] as a continuous location optimization problem. We compare the performance of
our algorithm with those of three versions of the method proposed in [14]. The other two
applications, one in Medical Imaging (more precisely in Tomography) and one in Ma-
chine Learning (Support Vector Machines) were discussed in [14], too, and we compare
the performance of our algorithm to the stochastic version of the method introduced
there. We use the proximal points of the smoothed objective functions instead of their
subgradients, motivated also by the fact (noted, for instance, in [25]) that proximal point
algorithms tend to solve certain optimization problems faster and cheaper than subgra-
dient methods. To this end we smooth the involved functions in the second and third
application with the Moreau-envelope, in the first application with Nesterov’s smooth-
ing approach. The experiments were carried out for one run of the algorithms and then
averaged over 10 runs (and 100 runs for the first application) of the algorithms as the
stochastic methods perform slightly differently on each run due to the stochastic compo-
nent.

5.1 Continuous location problem

We consider the following location problem: given m locations placed at points ci ∈ R2,
each of them weighted with a parameter wj > 0, i = 1, . . . , m, find a position x ∈ R2 for
a service center so that the sum of the distances from it to the m locations is minimized
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under the restriction that the distance from the service center to the origin is less than or
equal to a given radius r > 0. We can write this problem as

min
x∈S

m

∑
i=1

wi‖x− ci‖,

where S = {x ∈ R2 : ‖x‖ ≤ r}. The function fi(x) = wi‖x− ci‖ is Lipschitz continuous
for all i = 1, . . . , m, and so it follows that dom f ∗i is bounded, hence we can apply Algo-
rithm 3.9 for solving this problem. For smoothing the functions fi, i = 1, . . . , m, we use
Nesterov’s smoothing approach and obtain for the smooth functions f γk

i (see [50, Section
4.2])

f γk
i (x) = wi

{
‖x−ci‖2

2γk
, ‖x− ci‖ ≤ γk,

‖x− ci‖ − γk
2 otherwise,

while the gradients ∇ f γk
i can be written as

∇ f γk
i (x) =

{wi(x−ci)
γk

, ‖x− ci‖ ≤ γk,
wi(x−ci)
‖x−ci‖ otherwise.

We choose H(x) = 1
2‖x‖2 for x ∈ S, and H(x) = +∞ otherwise, so that we obtain for the

mirror map the orthogonal projection onto the set S.
In our numerical experiments we choose m = 1000000, r = 0.3 and the m locations

such that ci ∈ [−1, 1]× [−1, 1] and the weights wi ∈ (0, 1), i = 1, . . . , m, are beta randomly
distributed. A histogram for the the number of locations for the different weights is
presented in the left picture of Figure 1. In the right picture of Figure 1, the positions of
the m locations are shown as blue dots. The greater the weight of the respective location,
the larger the point. The red circle with radius r represents the feasible set for the position
of the service center. The calculated position of the service center is shown as the red dot.

Figure 1: The left picture shows the histogram for the number of locations (y-axis) for
the different weights (x-axis). The right picture shows the position of 1000 locations ran-
domly selected from the set of the m locations as blue dots, the service center, which is
determined with Algorithm 3.14, as a red dot and the feasible set as the red circle.
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Figure 2: The plots show ( fN − f (xbest)/( f (x0) − f (xbest), where fN := min0≤k≤N f (xk), as a
function of time, so xk is the last iterate before a given point in time. In the first row we see the
results after 17.5 seconds for one run left and 100 runs right. In the second row we see the results
after 1 second for one run left and 100 runs right.

We compared our algorithm 3.9 (stochastic incremental smooth) to three versions of
the algorithms described in [14]. The stochastic incremental version is the basic version of
algorithm proposed in [14]. The non-incremental version takes a full subgradient step of
the objective function f (x) in each iteration instead of the single components fi(x), so
basically it is a special case of the stochastic incremental version for m = 1 and ε1,k = 1
for every k ≥ 0. The incremental version is the same as the stochastic incremental version,
if we choose εi,k = 1 for every i = 1, . . . , m, and every k ≥ 0, so that we use the subgra-
dient of all single components instead of a random choice. We choose pi = 0.000001 for
every i = 1, . . . , m, for the stochastic algorithms. In Figure 2 in the first row one can see
the comparison of all four algorithms after one run in the left and 100 runs in the right
respectively. There one can note that the stochastic algorithms clearly outperform their
non-stochastic versions. In the second row we compared only the stochastic algorithms
to have a better look after 1 second CPU time for one run and 100 runs. Here we can see
that our algorithm performs slightly better than the stochastic incremental one.

5.2 Tomography

We consider the following optimization problem, which was proposed in [13] for recon-
structing of images in PET,

min
x∈∆

{
−

m

∑
i=1

yi log

(
n

∑
j=1

rijxj

)}
,
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where ∆ := {x ∈ Rn : ∑n
j=1 xj = 1, x ≥ 0} and rij > 0 is for i = 1, . . . , m, and j = 1, . . . , n,

the entry of the i-th row and the j-th column of the matrix R ∈ Rm×n. Furthermore, yi is
for i = 1, . . . , m, the positive number of photons measured in the i-th bin. As mirror map
we choose H(x) = ∑n

i=1 xi log(xi) for x ∈ ∆ and H(x) = +∞, otherwise.
The function fi(x) = −yi log

(
∑n

j=1 rijxj

)
is Lipschitz continuous for all i = 1, . . . , m,

and so it follows that dom f ∗i is bounded, so we can apply Algorithm 3.14. The proximal
point mapping of the function fi can be deduced from [9, Lemma 6.5 and Theorem 6.15]
and is given by

Proxγ fi(v) = v +
1
α

R>i

√
(Riv)2 + 4γαyi − Riv

2
,

where

Ri = (ri1, . . . , rin), α =
n

∑
j=1

r2
ij

and R>i is the transposed vector of Ri.
We can see in Figure 3 that both algorithms have similar numerical performances,

with the one proposed in this work reaching slightly lower objective function values.

Figure 3: The plots show ( fN − f (xbest)/( f (x0) − f (xbest), where fN := min0≤k≤N f (xk), as a
function of time, so xk is the last iterate before a given point in time. In the first row we see the
results for n = 1000 and m = 6000 for one run in the left plot and the average values of 10 runs in
the right plot (with pi = 0.01667, i = 1, . . . , m). In the second row we see the results for n = 5000
and m = 15000 for one run and the average values of 10 runs , respectively (with pi = 0, 00667,
i = 1, . . . , m).

5.3 SVM

In this subsection we consider an optimization problem of classifying images via support
vector machines. The given data set for classification consists of 5570 training images and
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1850 test images of size 28× 28 and was taken from [56]. In the following optimization
problem we search for a decision function x based on a pool of handwritten digits show-
ing either the number 5 or the number 6, labeled by +1 and −1, respectively,

min
x∈Rn

{
m

∑
i=1

max{1−Yi〈x, Xi〉, 0}+ λ‖x‖1

}
, (17)

{(X1, Y1), . . . , (Xm, Ym)} ⊆ Rd × {+1,−1} is the given training data set with the training
images Xi and the labels Yi (here d = 28 · 28 = 784). The 1-norm is a regularization term
with the regularization parameter λ > 0. We set as in [14] H = (1/2)‖ · ‖2, so we obtain
the identity as mirror map as this problem is unconstrained.

We can write the optimization problem as

min
x∈Rn

{
m

∑
i=1

fi(x) + g(x)

}
,

where fi(x) = max{1 − Yi〈x, Xi〉, 0} and g(x) = λ‖x‖1. The function fi is Lipschitz
continuous for all i = 1, . . . , m, and so it follows that dom f ∗i is bounded, so we can
employ our algorithm. The proximal point mapping of the function fi can be found
in [18] and is given by

Proxγ fi(v) = v +


γYiXi, si ≥ γ‖Xi‖2

0, si ≤ 0
YisiXi
‖Xi‖2 otherwise,

where si = 1−Yi〈v, Xi〉, i = 1, . . . , m.

Figure 4: The plots show f := min0≤k≤N f (xk) as a function of time, so xk is the last
iterate before a given point in time. We see the results for γ = 0.001 and pi = 0, 0082,
i = 1, . . . , m, for one run in the left plot and the average values of 10 experiments in the
right plot.

Table 1: Numerical results for the SVM problem for stochastic incremental algorithm [14, Algo-
rithm 4.2] (SI) and stochastic incremental smoothing algorithm (Algorithm 4.8) (SIS). The results
are for one run and in the brackets over 10 runs for pi = 0, 0082, i = 1, . . . , m.

regularization parameter algorithm decrease obj.function value misclassified in %
λ = 0.01 SI 99.928 (99.923) 2.595 (2.595)

SIS 99.929 (99.924) 2.324 (2.654)
λ = 0.001 SI 99.923 (99.927) 3.027 (2.605)

SIS 99.922 (99.923) 2.432 (2.568)
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The plots presented in Figure 4 show also for this application similar numerical per-
formance of the employed algorithms, with a slightly better classification by the method
proposed in this work.

6 Conclusions

In this paper we present two incremental stochastic mirror descent algorithms meant to
minimize sums of finitely many nonsmooth convex functions over convex sets. Differ-
ent to the similar approach from [14], we use the gradients of the smoothed summands
of the objective function of the problem instead of their subgradients. For this we use
the Nesterov smoothing technique, but since the Moreau-envelope is a special case of
this smoothing technique, these algorithms can also be formulated with proximal steps,
too. Moreover these algorithms can be modified for minimizing sums of finitely many
compositions of convex functions with linear operators in similar contexts. We managed
to obtain the same convergence order O(1/

√
k) in expectation for the kth best objective

function value and could show similar numerical performance as in [14], with slight im-
provements. Due to the fact that we do not need subgradients of the summands of the
objective function, we have more variations of the proposed algorithms, so the most suit-
able smoothing method can be chosen depending on the structure of the considered op-
timization problem. If we use the Moreau-envelope we have uniquely defined proximal
points, which have closed formulae for a variety of commonly used functions, instead
of subgradients which one would have to pick from the subdifferentials of the involved
functions at the given points and can sometimes be hard to determine. Moreover, the
involved functions are not required to be (Lipschitz) continuous or differentiable, as they
are usually taken in the literature on mirror descent methods. As subsequent develop-
ments we are interested in accelerating the proposed algorithms and in modifying them
in order to solve optimization problems like (9) where the prox-friendly proper, convex
and lower semicontinuous function is composed with a linear operator or consists in a
sum of such functions.
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