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We study the first and second orders of the asymptotic expansion, as the dimension goes to infinity, of the moments of the Hilbert-Schmidt norm of a uniformly distributed matrix in the p-Schatten unit ball. We consider the case of matrices with real, complex or quaternionic entries, self-adjoint or not. When p > 3, this asymptotic expansion allows us to establish a generalized version of the variance conjecture for the family of p-Schatten unit balls of self-adjoint matrices.

Introduction

Let F . . = R, C, or the quaternionic field H. For n ≥ 1, we work on F n which is seen as a βn-dimensional vector space over R, with β ∈ {1, 2, 4}. We generically denote by E either the space M n (F) of n × n matrices with entries from the field F, or the subspace of self-adjoint matrices in M n (F). We view E as a vector space over R, whose dimension d n depends on n, F, and whether or not we impose self-adjointness (see [START_REF] Barthe | Volume properties of high-dimensional Orlicz balls[END_REF] below for the exact formula). In any case, we equip E with the Euclidean structure defined by T 2

HS

. . = tr(T * T ), and with the Lebesgue measure denoted by dT . We write |A| for the Lebesgue measure of any Borel set A ⊆ E, when it is finite.

For every z ∈ F n , let For any matrix T ∈ M n (F), let s(T ) . . = (s 1 (T ), . . . , s n (T )) ∈ R n be the set of singular values of T , i.e., the eigenvalues of √ T * T . For every 1 ≤ p ≤ ∞, let σ p (T ) = s(T ) p : this defines a norm on M n (F), called the p-Schatten norm (see [10, Chapter IV]), and the corresponding normed space is denoted by S n p , with unit ball B(S n p ) . . = {T ∈ M n (F) : σ p (T ) ≤ 1}. In the special case p = 2, σ 2 (T ) = T HS and we recover the Euclidean structure.

z p . . = n i=1 |z i | p
Let us note that, when E is a space of self-adjoint matrices, all matrices in E are diagonalizable, and σ p (T ) is then the p-norm of the vector (λ 1 (T ), . . . , λ n (T )) of eigenvalues of T . Taking random Gaussian entries for T then leads to the classical orthogonal (GOE), unitary (GUE) and symplectic (GSE) ensembles in random matrix theory, see for instance [START_REF] Mehta | Random matrices. Third[END_REF]Chapter 2].

The purpose of this paper is to study the first and second orders in the asymptotic expansion, as n goes to infinity, of the q-inertia moment [START_REF] Alonso-Gutiérrez | Approaching the Kannan-Lovász-Simonovits and variance conjectures[END_REF] I q (B E (S n p )) . . = (E T q HS )

1 /q |B E (S n p )| 1 /dn ,
for T uniformly distributed in B E (S n p ) . . = B(S n p )∩E. These quantities appear in various conjectures in asymptotic geometric analysis that we now present.

1.1. Relevant conjectures in asymptotic geometric analysis. The interplay between the classical conjectures in asymptotic geometric analysis that are the hyperplane conjecture, the Kannan-Lovász-Simonovits conjecture and the variance conjecture, is quite intricate; we state them here briefly to provide context and refer the interested reader to [START_REF] Alonso-Gutiérrez | Approaching the Kannan-Lovász-Simonovits and variance conjectures[END_REF][START_REF] Brazitikos | Geometry of isotropic convex bodies[END_REF][START_REF] Klartag | The slicing problem by Bourgain[END_REF][START_REF] Lee | The Kannan-Lovász-Simonovits conjecture[END_REF] for an in-depth presentation of the field.

Let K be a symmetric convex body in R d . The isotropic constant of K is defined by [START_REF] Anderson | An introduction to random matrices[END_REF] L K . . = min

det(T )=1 1 √ d 1 |K| 1+ 2 d K T x 2 2 dx 1 2
, and its covariance matrix Σ is defined by

Σ i,j . . = 1 |K| K x i x j dx, 1 ≤ i, j ≤ d.
We say that K is in isotropic position when Σ = Id, in which case L K = 1 |K| 1/d and the minimum in Equation ( 2) is attained for T = Id. The hyperplane conjecture asks for a uniform upper bound on L K for all symmetric convex bodies and dimensions d, see [START_REF] Klartag | The slicing problem by Bourgain[END_REF][START_REF] Milman | Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space[END_REF]. The Kannan-Lovász-Simonovits (KLS) conjecture [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF] asks for the existence of a universal constant C such that, for every dimension d, every random vector X uniformly distributed on a symmetric convex body K ⊂ R d , and every smooth function

f on R d , (3) Var f (X) ≤ C max θ∈S d-1 E X, θ 2 • E ∇f (X) 2 2 .
This conjecture is satisfied for various families of convex bodies [START_REF] Alonso-Gutiérrez | Approaching the Kannan-Lovász-Simonovits and variance conjectures[END_REF], like the balls B n p [START_REF] Sodin | An isoperimetric inequality on the l p balls[END_REF], the Orlicz balls [START_REF] Barthe | Volume properties of high-dimensional Orlicz balls[END_REF][START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF]. In a recent breakthrough, Yuansi Chen [START_REF] Chen | An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture[END_REF], using methods introduced by Eldan in [START_REF] Eldan | Thin shell implies spectral gap up to polylog via a stochastic localization scheme[END_REF] and developed in [START_REF] Lee | Eldan's stochastic localization and the KLS hyperplane conjecture: an improved lower bound for expansion[END_REF], proved that inequality (3) is valid for a value C still depending on the dimension but smaller than any power of d, C = d o d (1) . Specifying the KLS conjecture to f (x) = x 2 2 one gets the following weaker conjecture.

Generalized variance conjecture. There is a constant C ≥ 1 such that for every dimension d and for every symmetric convex body K ⊂ R d , we have

(4) Var X 2 2 ≤ C max θ∈S d-1 E X, θ 2 • E X 2 2 = C Σ • tr(Σ)
where X is uniformly distributed on K and Σ is its covariance matrix.

Klartag [START_REF] Klartag | A Berry-Esseen type inequality for convex bodies with an unconditional basis[END_REF] proved this conjecture for every unconditional convex bodies, that means invariant under coordinate hyperplane reflections, while Barthe and Cordero [START_REF] Barthe | Invariances in variance estimates[END_REF] studied these questions for convex bodies with more general symmetries.

These conjectures were studied in the particular case of the unit balls of the p-Schatten normed spaces. König, Meyer and Pajor [START_REF] König | The isotropy constants of the Schatten classes are bounded[END_REF] established the hyperplane conjecture for these families of particular bodies. Guédon and Paouris [START_REF] Guédon | Concentration of mass on the Schatten classes[END_REF] proved a concentration of the volume through the study of the moments of the Hilbert-Schmidt norm of a random matrix uniformly distributed in B E (S n p ). This method was generalized by Radke and Vritsiou [START_REF] Radke | On the thin-shell conjecture for the Schatten classes[END_REF] and Vritsiou [START_REF] Vritsiou | Selberg-type integrals and the variance conjecture for the operator norm[END_REF] to prove the generalized variance conjecture when the space of matrices is equipped with the operator norm, that is the case p = ∞.

1.2. Results. We start by stating a result on the first order in the asymptotic expansion of I q (B E (S n p )). We give the exact computation of the limit of I q (B E (S n p )), correctly normalized by the square root of the dimension of E as a vector space over R. This dimension will be denoted by d n .

Theorem 1.1 (Limit of the normalized inertia). Let E be M n (F) or its restriction to self-adjoint matrices, equipped with the p-Schatten norm for some p ∈ [1, ∞). Then for every q > 0,

(5)

I q (B E (S n p )) √ d n = (E T q HS ) 1 /q √ d n |B E (S n p )| 1 /dn ---→ n→∞ e 1 2p -3 4 p π(p + 2) ,
where T is uniformly distributed in B E (S n p ).

In the self-adjoint case, we note that this result can be established as a consequence of a weak law of large numbers proved by Kabluchko, Prochno and Thäle, [21, Theorem 4.7] combined with a truncation argument [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF]Theorem 11.1.2].

The general case is of particular interest, as it allows for instance, for q = 2 and E = M n (F), a computation of the limit of the isotropic constant of the unit ball S n p . Indeed, in this (and only in this) non self-adjoint case, the Schatten unit balls are in isotropic position [START_REF] Aubrun | Tensor products of convex sets and the volume of separable states on N qudits[END_REF][START_REF] König | The isotropy constants of the Schatten classes are bounded[END_REF][START_REF] Radke | On the thin-shell conjecture for the Schatten classes[END_REF], so that the left-hand side of (5) is the isotropic constant defined by (2), and Theorem 1.1 gives the precise value of its limit as n goes to infinity.

Our main result establishes, in the self-adjoint case, the second term in the asymptotic expansion of the quotient I q (B E (S n p ))/I 2 (B E (S n p )).

Theorem 1.2 (Asymptotic expansion of the q-inertia moment). Let E be the space of real symmetric, complex Hermitian or Hermitian quaternionic matrices equipped with the p-Schatten norm for some p ∈ (3, ∞). Then for every q > 0,

I q (B E (S n p )) I 2 (B E (S n p )) = 1 + (q -2)(p -2) 2 16p 2 d n + o 1 d n
as n goes to infinity, where I q is defined in (1).

As a corollary, we give a positive answer to the generalized variance conjecture for these families of convex bodies.

Corollary 1.3 (Variance conjecture in Schatten balls). Let p ∈ (3, ∞) and E be the space of real symmetric, complex Hermitian or Hermitian quaternionic matrices equipped with the Schatten p-norm. Then, for all n large enough,

Var( T 2 HS ) ≤ 1 2 Σ • tr(Σ),
where T is uniformly distributed in B E (S n p ) and Σ is the covariance matrix of B E (S n p ).

Indeed, specializing Theorem 1.2 to q = 4, we get

lim n→∞ d n Var( T 2 HS ) (E T 2 HS ) 2 = (p -2) 2 2p 2 < 1 2 .
We conclude using that E T 2 HS = tr(Σ) ≤ d n Σ .

Strategy of proof.

Recall that E is either M n (F) or the subspace of self-adjoint matrices in M n (F). Using a strategy developed by Saint-Raymond [START_REF] Saint-Raymond | Le volume des idéaux d'opérateurs classiques[END_REF], König, Meyer and Pajor [START_REF] König | The isotropy constants of the Schatten classes are bounded[END_REF], and pushed further by Guédon and Paouris [START_REF] Guédon | Concentration of mass on the Schatten classes[END_REF], Radke and Vritsiou [START_REF] Radke | On the thin-shell conjecture for the Schatten classes[END_REF] and Kabluchko, Prochno and Thäle [START_REF] Kabluchko | Intersection of unit balls in classical matrix ensembles[END_REF], we first reduce the computations of I q (B E (S n p )) to integrals over R n with respect to a Gibbs probability measure P n,p . This distribution governs a so called β-ensemble consisting of n unit charges interacting through a logarithmic Coulomb potential and confined with an external potential, see [START_REF] Brazitikos | Geometry of isotropic convex bodies[END_REF]. Kabluchko, Prochno and Thäle [START_REF] Kabluchko | Exact asymptotic volume and volume ratio of Schatten unit balls[END_REF][START_REF] Kabluchko | Intersection of unit balls in classical matrix ensembles[END_REF][START_REF] Kabluchko | Sanov-type large deviations in Schatten classes[END_REF] have shown that this connection with linear statistics of β-ensembles allows to establish, when the dimension tends to infinity, exact asymptotics for the volume of the Schatten unit balls as well as a weak law of large number for the joint law of the eigenvalues/singular values.

More precisely, defining L n,p . . = n -1 n i=1 δ x i to be the random empirical measure under P n,p , see [START_REF] Brazitikos | Geometry of isotropic convex bodies[END_REF], we recall in Lemma 2.2 that the computation of I q (B E (S n p )) can be expressed in terms of the normalization constant Z n,p appearing in the definition of P n,p , and the moment E L n,p , h 2 q /2 of the linear statistics associated with the function h 2 (x) . . = x 2 . Thus, the task essentially amounts to estimating asymptotics for the normalizing constant Z n,p and for these linear statistics associated with the function h 2 . Some of these asymptotics are now well understood in the literature on random matrices [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF][START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF][START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF][START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF]. Our proof of Theorem 1.1 clarifies the connection between the first order estimates of I q (B(S n p ) ∩ E) and the convergence of the empirical distribution towards the equilibrium measure due to Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF] that we state in Lemma 4.2, or Hiai-Petz [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF], see Lemma 4.6. To prove Theorem 1.2, we need to understand more precisely the fluctuations of the linear statistics L n,p , h 2 in the self-adjoint case. We rely here on recent results of Bekerman, Leblé, Serfaty [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF] (see also Lambert, Ledoux, Webb [START_REF] Lambert | Quantitative normal approximation of linear statistics of β-ensembles[END_REF]) concerning the CLT for fluctuations of β-ensembles with general potential. Let us note that in these results, the regularity of the external potential V in the Gibbs measure P n,p plays a prominent role. It was assumed to be a polynomial of even degree with positive leading coefficient in the seminal paper [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF]. This condition has then been relaxed over the last two decades to include real-analytic potentials [START_REF] Borot | Asymptotic expansion of β matrix models in the onecut regime[END_REF][START_REF] Kriecherbauer | Fluctuations of eigenvalues of matrix models and their applications[END_REF][START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of β matrix models in the multi-cut regime[END_REF] and, more recently, potentials of class C r with r reasonably large [START_REF] Bekerman | Transport maps for β-matrix models and universality[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Lambert | Quantitative normal approximation of linear statistics of β-ensembles[END_REF]. However we are working in a very specific case where V (x) is proportional to |x| p . Proposition 4.3 states that the result of [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF] applies when p > 3. It is proved by tracing back in the proof of [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF] various places where the regularity of V is needed, in particular to prove regularity of the solution to a key master equation.

1.4. Organization of the paper. In Section 2, we recall the formulas relating the q-inertia moment I q , the normalizing constant Z n,p , and the expected q-moment of the linear statistics L n,p , h 2 . We gather, in Section 3, some uniform moment bounds which are needed to accommodate the fact that we study a linear statistics for the unbounded function h 2 . This generalizes a classical truncation argument to all possible parameters in the density of P n,p . The proof of our main results is done in Section 4. We postpone to Section 5 the discussion on technical properties of the equilibrium measure and on the regularity of the solution to the master equation.

Reduction to integrals over R n

A function F : R n → R is said to be symmetric if for every x ∈ R n and every permutation π on {1, . . . , n} we have F (x 1 , . . . , x n ) = F (x π(1) , . . . , x π(n) ). Let E be M n (F) or its restriction to self-adjoint matrices. The following change of variable formula [START_REF] Anderson | An introduction to random matrices[END_REF]Propositions 4.1.1 & 4.1.3] makes a connection between the Schatten unit ball B E (S n p ) and the classical unit ball B n p ⊂ R n : for every symmetric, continuous function F : R n → R,

B E (S n p ) F s(T ) dT = c n B n p F (x) f a,b,c (x)dx,
where c n is a positive constant, Combining this change of variable with a classical trick in convexity leads to the following expression.

f a,b,c (x) . . = 1≤i<j≤n x a i -x a j b • n i=1 |x i | c , x . . = (x 1 , . . . , x n ) ∈ R n ,
Lemma 2.1 (Change of variables, [START_REF] Guédon | Concentration of mass on the Schatten classes[END_REF]). For every symmetric, continuous, positively homogeneous function F : R n → R of degree k ≥ 0, one has

B E (S n p ) F s(T ) dT = c n Γ 1 + dn+k p R n F (x) e -x p p f a,b,c (x) dx,
where Γ is Euler's Gamma function.

We refer to [START_REF] Guédon | Concentration of mass on the Schatten classes[END_REF] for the details of the computations. Let (8)

γ p . . = Γ p 2 Γ 1 2 2Γ p+1 2 .
Applying Lemma 2.1 with F . . ≡ 1 (homogeneous of degree 0) yields, after a straightforward change of variables, ( 9)

B E (S n p ) = (abnγ p ) dn p • c n Γ 1 + dn p • Z n,p , where (10) Z n,p . . = R n e -abnγp x p p f a,b,c (x) dx.
Using now Lemma 2.1 with F (x) . . = ( n i=1 x 2 i ) q/2 (homogeneous of degree q), we obtain, for T uniformly distributed in B E (S n p ),

E T q HS = (abnγ p ) q p • Γ 1 + dn p Γ 1 + dn+q p • n q 2 R n 1 n n i=1 x 2 i q 2 P n,p (dx), (11) 
where P n,p (dx) is the probability

(12) P n,p (dx) . . = 1 Z n,p • f a,b,c (x) e -abnγp x p p dx, x ∈ R n .
We conclude this section by expressing the quantities appearing in Theorems 1.1 and 1.2 in terms of the integral of h 2 (x) . . = x 2 with respect to the random empirical measure L n,p . . = n -1 n i=1 δ x i under P n,p . Lemma 2.2 (From inertia to β-ensembles). For every q > 0, we have

(13) 1 √ d n I q (B E (S n p )) = 1 + o(1) e -1 p -3 4 √ 2π Z -1/dn n,p E L n,p , h 2 q 2 1 q and (14) I q (B E (S n p )) I 2 (B E (S n p )) = 1 - q -2 abp 2 n 2 + o 1 n 2 E L n,p , h 2 q /2 1 /q (E L n,p , h 2 ) 1 /2 .
Proof. Observe that

R n 1 n n i=1 x 2 i q 2 P n,p (dx) = E L n,p , h 2 q 2 .
By combining ( 11) and ( 9), the quantity appearing in Theorem 1.1 is

1 √ d n I q (B E (S n p )) = 1 √ d n (E T q HS ) 1 /q |B E (S n p )| 1 /dn = 1 √ d n   Γ 1 + dn p Γ 1 + dn+q p   1 q Γ 1 + dn p 1 dn c 1/dn n Z 1/dn n,p √ n E L n,p , h 2 q 2 1 q , ∼ 2 abn e -1 p c -1/dn n Z -1/dn n E L n,p , h 2 q 2 1 q , using that d n ∼ abn 2 /2 as n → ∞, Γ(1 + x) 1 x ∼
x/e and Γ(1 + x + α)/Γ(1 + x) ∼ x α as x → ∞, for any fixed number α. Thus, by the asymptotics of c n in [START_REF] Bekerman | Transport maps for β-matrix models and universality[END_REF],

1 √ d n I q (B E (S n p )) ∼ e -1 p -3 4 √ 2π Z -1/dn n,p E L n,p , h 2 q 2 1 q .
Regarding the quantity involved in Theorem 1.2, two applications of [START_REF] Borot | Asymptotic expansion of β matrix models in the onecut regime[END_REF] give

I q (B E (S n p )) I 2 (B E (S n p )) = (E T q HS ) 1 /q (E T 2 HS ) 1 /2 =   Γ 1 + dn+q p Γ 1 + dn p   -1 q •   Γ 1 + dn+2 p Γ 1 + dn p   1 2 • E L n,p , h 2 q /2 1 /q (E L n,p , h 2 ) 1 /2 .
We have d n ∼ abn 2 /2 and classical computations on the Γ function at infinity give that for any fixed r > 0 and p ≥ 1,

  Γ 1 + dn+r p Γ 1 + dn p   -1 r = d n p 1 p • 1 - p + r abp 2 n 2 + o 1 n 2 . Therefore   Γ 1 + dn+q p Γ 1 + dn p   -1 q •   Γ 1 + dn+2 p Γ 1 + dn p   1 2 = 1 - q -2 abp 2 n 2 + o 1 n 2
which finishes the proof of ( 14).

Moment bounds

Recall that P n,p (dx) is the probability whose density is defined on R n by

P n,p (dx) . . = 1 Z n,p • f a,b,c (x) e -abnγp x p p dx, where f a,b,c (x) . . = 1≤i<j≤n x a i -x a j b • n i=1 |x i | c .
In this section we consider a more general case where a is a positive integer, b > 0 and c ≥ 0. Prior to evaluating their asymptotics, we need to establish some uniform bounds on the quantities

(15) E L n,p , h r 1 r = R n |x 1 | r P n,p (dx) 1 r
where h r (x) . . = |x| r . The evaluation of (15) in the case r = 2 is the crucial part of the proof in [START_REF] König | The isotropy constants of the Schatten classes are bounded[END_REF] while it was also studied for larger values of r in [START_REF] Guédon | Concentration of mass on the Schatten classes[END_REF]. We prove here a stronger result. Following the method of proof of Theorem 11.1.2 (i) in [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF], which corresponds to the case a = 1 and c = 0, we establish an upper bound of the tail of the first marginal density of P n,p (dx) denoted by p n (x 1 ) and defined by

p n (x 1 ) . . = 1 Z n,p R n-1 f a,b,c (x 1 , . . . , x n ) e -abnγp n i=1 |x i | p dx 2 • • • dx n .
Theorem 3.1 (Moment and tail bounds on the first marginal). Let p ≥ 1 and R > 0.

Then there exist constants C, C ′ , C ′′ , X 1 , c 1 , c ′ > 0 depending only on a, b, c and on p, R such that, for every n ≥ 1:

(i) for every |x 1 | ≥ X 1 , p n (x 1 ) ≤ e -c 1 n|x 1 | p ;
(ii) for every r ≥ 1,

R n |x 1 | r P n,p (dx) 1 r ≤ X 1 + C r n 1 p ,
and thus

∀1 ≤ r ≤ Rn, R n |x 1 | r P n,p (dx) 1 r ≤ C ′′ ;
(iii) for every i = 1, . . . , n, and every B ≥ X 1 ,

P n,p (|x i | ≥ B) ≤ C ′ e -c ′ nB p .
Proof. The proof of (i) goes into three steps. 1) We first prove that there exists a constant C 1 > 0 independent of the dimension such that

R n |x 1 | p P n,p (dx) = R |x 1 | p p n (x 1 )dx 1 ≤ C 1 .
The proof of this inequality follows the lines of the proof of Corollary 7(a) in [START_REF] Guédon | Concentration of mass on the Schatten classes[END_REF]. For t > 0, we define

g(t) . . = R n f a,b,c (x) e -tabnγp x p p dx.
Then g(1) = Z n,p . Changing variable by putting x ← t -1/p y and using that f a,b,c is positively homogeneous of degree d nn, where d n . . = abn(n -1)/2 + (c + 1)n, we get

g(t) = t -n/p R n
f a,b,c (t -1/p y) e -abnγp y p p dy = t -dn/p g(1).

It follows that g ′ (1) = -dn p g [START_REF] Alonso-Gutiérrez | Approaching the Kannan-Lovász-Simonovits and variance conjectures[END_REF]. On the other hand, differentiating the integral formula which defines g(t), we also get

g ′ (1) = -abnγ p R n x p p f a,b,c (x) e -abnγp x p p dx = -abn 2 γ p R n |x 1 | p f a,b,c (x) e -abnγp x p p dx.
We conclude that

R n |x 1 | p P n,p (dx) = R |x 1 | p p n (x 1 )dx 1 = - g ′ (1) g(1)abn 2 γ p = d n abpn 2 γ p .
It follows that R n |x 1 | p P n,p (dx) → 1/(2pγ p ) as n → ∞ and therefore is upper bounded by a constant C 1 .

2) In the second step we prove that there exist c 2 , X 2 > 0 independent of the dimension such that, for all |x 1 | ≥ X 2 ,

p n (x 1 ) ≤ Z n-1,p Z n,p e -c 2 n|x 1 | p .
For x ∈ R n , we denote

g n (x) . . = Z n,p P n,p (dx) dx = 1≤i<j≤n x a i -x a j b • n i=1 |x i | c • e -tabnγp x p p . For x . . = (x 2 , . . . , x n ) ∈ R n-1 and x . . = (x 1 , x), using that n x p p = n|x 1 | p +(n-1) x p p + x p p we get g n (x) = g n (x 1 , x) = g n-1 (x) e -abnγp|x 1 | p e -abγp x p p |x 1 | c n i=2 |x a i -x a 1 | b .
Hence ( 16) 

1 Z n-1,p R n-1 g n (x 1 , x)dx = |x 1 | c e -abnγp|x 1 | p R n-1 e -abγp x p p n i=2 |x a i -x a 1 | b P n-1,p (dx) 
Z n,p Z n-1,p p n (x 1 ) = 1 Z n-1,p R n-1 g n (x 1 , x)dx ≤ |x 1 | c e -abnγp|x 1 | p (1 + |x 1 | a ) (n-1)b D n-1 2 .
We conclude that for c 2 = abγ p /2 there exists X 2 > 0 independent of the dimension such that, for

|x 1 | ≥ X 2 , p n (x 1 ) ≤ Z n-1,p Z n,p e -c 2 n|x 1 | p .
3) In the third step, we establish that there exists c 3 > 0 such that

Z n-1,p
Zn,p ≤ e -c 3 n . Integrating equation ( 16) with respect to x 1 ∈ R we get (17)

1 Z n-1,p R n g n (x)dx = R |x 1 | c e -abnγp|x 1 | p R n-1 e -abγp x p p n i=2 |x a i -x a 1 | b P n-1,p (dx)dx 1 .
Applying Jensen's inequality to the integral on R n-1 with the probability measure P n-1,p and the convex function being the exponential, and applying also the bound obtained in Step 1, we have

e -abγp x p p n i=2 |x a i -x a 1 | b P n-1,p (dx) ≥ exp -abγ p x p p + b n i=2 log |x a i -x a 1 | P n-1,p (dx) ≥ exp -(n -1)abγ p C 1 + b n i=2 log |x a i -x a 1 | P n-1,p (dx) .
Plugging this inequality into Equation ( 17) and noticing that the left-hand side is equal to Z n,p /Z n-1,p we get

Z n,p Z n-1,p ≥ e -(n-1)abγpC 1 1 2 -1 2 |x 1 | c e -abnγp|x 1 | p exp b n i=2 log|x a i -x a 1 | P n-1,p (dx) dx 1 .
Applying again Jensen's inequality but with the uniform probability measure on

[-1 2 , 1 2 ] we deduce that Z n,p Z n-1,p ≥ e -(n-1)abγpC 1 exp 1 2 -1 2 c log |x 1 | -abnγ p |x 1 | p +b n i=2 log|x a i -x a 1 | P n-1,p (dx) dx 1 .
We then use Fubini's theorem and thus want to estimate from below the function g a defined for a ≥ 1 being an integer and x ∈ R by

g a (x) . . = 1 2 -1 2 log |x a -y a | dy.
Namely we shall prove that g a (x) ≥ -a(2 log 2 + 1). First notice that for a even the function (x, y) → x ay a is even in both variables, and for a odd, splitting the integral and changing variable one has

g a (x) = 1 2 0 log |x a -y a | + log |x a + y a | dy = 1 2 0 log |x 2a -y 2a | dy = 1 2 g 2a (x).
We are thus reduced to proving the lower bound of g a in the case where a is even. Then the function g a is even so we may assume that x ≥ 0 and we have

g a (x) = 2 1 2 0 log |x a -y a | dy.
For x ≥ 1 2 the function g a is increasing hence g a (x) ≥ g a (1/2). Moreover for every x, y > 0 one has |x ay a | ≥ y a-1 |x -y|, thus

g a (x) ≥ 2 1 2 0 (a -1) log y + log |x -y| dy.
Let ϕ be the convex function defined by ϕ(x) = x log x for x ≥ 0. A simple calculation shows that, for every 0 ≤ x ≤ 1 2 ,

g a (x) ≥ -(a -1)(log 2 + 1) + 2ϕ(x) + 2ϕ 1 2 -x -1.
From the convexity of ϕ, one has

ϕ(x) + ϕ 1 2 -x ≥ 2ϕ x + 1 2 -x 2 = 2ϕ 1 4 = -log 2.
We conclude that g a (x) ≥ -a(2 log 2 + 1). Applying this inequality in the lower bound of Z n,p /Z n-1,p we deduce that

Z n,p Z n-1,p ≥ exp -(n -1)abγ p C 1 -(2 log 2 + 1) c + (n -1)ab) - nabγ p (p + 1)2 p ≥ e -c 3 n ,
where c 3 . . = abγ p C 1 + (2 log 2 + 1)(c + ab)) + abγp (p+1)2 p , which finishes our third step. The final conclusion follows from combining the steps 2 and 3 which give that for every |x 1 | ≥ X 2 , one has

p n (x 1 ) ≤ Z n-1,p Z n,p e -c 2 n|x 1 | p ≤ e -c 3 n-c 2 n|x 1 | p .
Hence there exist c 1 , X 1 > 0 such that p n (x 1 ) ≤ e -c 1 n|x 1 | p for all |x 1 | ≥ X 1 .

(ii) The upper bound for the moment using the bound for the tail is standard and runs as follows. We first cut the integral into two parts and use the bound proved in (i):

R n |x 1 | r P n,p (dx) = R |t| r p n (t) dt ≤ X r 1 |t|≤X 1 p n (t)dt + |t|≥X 1 |t| r e -c 1 n|t| p dt ≤ X r 1 + 2 ∞ 0 t r e -c 1 nt p dt.
Changing variable, this last integral may be written as follows:

∞ 0 t r e -c 1 nt p dt = 1 p(c 1 n) r+1 p ∞ 0 s r+1 p -1 e -s ds = 1 p(c 1 n) r+1 p Γ r + 1 p .
Using a standard bound on the Gamma function we conclude that there exists C > 0 such that

R n |x 1 | r P n,p (dx) 1 r ≤ X 1 + 2 p(c 1 n) r+1 p Γ r + 1 p 1 r ≤ X 1 + C r n 1 p .
(iii) Using the bound (i), for B > X 1 and choosing c ′ . . = c 1 /2, we have

P n,p (|x i | ≥ B) ≤ 2 ∞ B e -c 1 nt p dt ≤ 2 e -c ′ nB p ∞ 0 e -c ′ nt p dt ≤ C ′ e -c ′ nB p .
Because of the above uniform bounds, the random measure L n,p is mostly concentrated on a compact interval. As a result, testing L n,p against a general function f is on average not very different from using a truncated version of f instead. Proof. As f and g are polynomially bounded, there exist constants A 1 , A 2 , s, t ≥ 1 such that for every y ∈ R, |f (y)| ≤ A 1 + |y| s and |g(y)| ≤ A 2 + |y| t . Hence, we can find constants A, r ≥ 1 such that, for every

x ∈ R n , |g( L n,p (x), f )| = g 1 n n i=1 f (x i ) ≤ A + 1 n n i=1 |x i | r = A + L n,p (x), h r
(e.g., A . . = 2 t A 1 + A 2 and r . . = st, using Jensen's inequality). Since 0 ≤ φ ≤ 1 on R, we get the same bound for

|g( L n,p (x), f φ )| ≤ A + L n,p (x), h r . As φ ≡ 1 on [-B, B], |g( L n,p (x), f ) -g( L n,p (x), f φ )| ≤ 21 {∃i:|x i |>B} A + L n,p (x), h r .
Since r is a constant, we have by Theorem 3.1.(ii),

E L n,p (x), h r 2 = E 1 n n i=1 |x i | r 2 ≤ E 1 n n i=1 |x i | 2r ≤ C ′′2r .
Combining Theorem 3.1.(iii) with a union bound,

P n,p (∃i : |x i | > B) ≤ nC ′ e -c ′ nB p .
Therefore, by Cauchy-Schwarz inequality, we conclude that

E g L n,p , f -g L n,p , f φ ≤ 2nC ′ e -c ′ nB p (A + C ′′r ).
This is O(α n ) with e.g. α = e -c ′ B p 2 .

Asymptotics

In this section, we prove Theorems 1.1 and 1.2 by completing the asymptotic expansions initiated in Lemma 2.2. As previously explained, we will appeal to the literature on random matrices, as L n,p corresponds to the empirical distribution of the so called βensemble with potential V (x) ∝ |x| p and Z n,p is the so called partition function. We split the discussion into two cases, according to Table 1. In the first case (a = 1), we prove both Theorems 1.1 and 1.2, where matrices in B E (S n p ) all have symmetries with respect to their diagonal and L n,p thus corresponds to empirical distributions of real eigenvalues. The second case (a = 2) pertains to Theorem 1.1 only and is treated more conveniently by working with R + -valued measures.

4.1. The self-adjoint case (a = 1). In view of Table 1, we have a = 1, b = dim R (F) and c = 0. Hence, from [START_REF] Brazitikos | Geometry of isotropic convex bodies[END_REF], the probability P n,p can be written [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF] P n,p (dx

) = 1 Z n,p • e -b 2 n 2 Hn,p(x) dx,
with the Hamiltonian

H n,p (x) . . = 2 n n i=1 γ p |x i | p - 1 n 2 i =j log |x i -x j |,
where γ p is defined in [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF]. Heuristically this Hamiltonian is approximated as n → ∞ by

I p (µ) . . = 2 R γ p |x| p µ(dx) - R 2 = log |x -y| µ(dx)µ(dy),
where R 2 = . . = {(x, y) ∈ R 2 : x = y}, provided that the probability measure µ is sufficiently close to the empirical measure L n,p (x) . . = n -1 n i=1 δ x i . Thus, because of ( 18), we expect that L n,p concentrates as n → ∞ around a probability measure minimizing the functional I p . This idea constitutes the cornerstone of large deviation principles for the empirical spectral distribution of large random matrices, as originally derived by Ben Arous and Guionnet [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF]. The next two lemmas formalize what we need. We refer to the textbooks [14, Chapter 6] and [2, Section 2.6] or the recent article [START_REF] Dupuis | Large deviations for configurations generated by Gibbs distributions with energy functionals consisting of singular interaction and weakly confining potentials[END_REF] for deeper results.

Lemma 4.1 (Equilibrium measure).

There exists a unique element µ p minimizing the functional I p over the space P(R) of real probability measures:

inf µ∈P(R) I p (µ) = I p (µ p ).
Furthermore, µ p has the following properties: (i) µ p is compactly supported, with support [-1, 1]; (ii) µ p is absolutely continuous with respect to the Lebesgue measure, with density

f p (x) . . = p|x| p-1 π 1 |x| v -p √ 1 -v 2 dv, |x| ≤ 1; 
(iii) I p (µ p ) = log 2 + 3 2p .

Proof. The existence and uniqueness of the minimizer µ p follows from [36, Theorem I. Lemma 4.2 (Convergence towards the equilibrium measure). Let L n,p be the empirical measure of x drawn from the probability P n,p defined in [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF]. Then:

(i) For every continuous, polynomially bounded functions f, g : R → R, it holds that

lim n→∞ E g( L n,p , f ) = g( µ p , f ).
(ii) We have

lim n→∞ - 1 d n log Z n,p = log 2 + 3 2p ,
where the normalizing constant Z n,p is defined in [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF].

Proof. (i) By Corollary 3.2, we may reduce to f bounded. Thus the random variable g( L n,p , f ) is uniformly bounded, and letting ∆ n,p (f ) . . = L n,p , fµ p , f we see from the Borel-Cantelli lemma and the dominated convergence theorem that it suffices to show that

∞ n=1 P(|∆ n,p (f )| > ε n ) < ∞,
for some null sequence (ε n ). Thanks to [19, Theorem 2.1], we have that

α n . . = 1 n log E exp n|∆ n,p (f )| ---→ n→∞ 0.
Choosing now ε n as, e.g., ε n . . = α n /2 + (log n)/n, we see from Markov's inequality that

P(|∆ n,p (f )| > 2ε n ) = P(exp(n|∆ n,p (f )|) > exp(2nε n )) = O e -(2εn-αn)n = O 1 n 2 ,
and the first point of the lemma is proved.

(ii) This point follows from [19, Corollary 4.3] and Lemma 4.1.(iii).

We now have all the ingredients to give a simple proof of Theorem 1.1 in the case a = 1.

Proof of Theorem 1.1, case a = 1. We start by recalling (13): as n → ∞,

1 √ d n I q (B E (S n p )) ∼ e -1 p -3 4 √ 2π Z -1/dn n,p E L n,p , h 2 q 2 1 q .
By Lemma 4.2, we have

Z -1/dn n,p → 2 e 3 2p
and

lim n→∞ E L n,p , h 2 φ q 2 = µ p , h 2 φ q 2 .
Plugging in the value of µ p , h 2 computed in Lemma 5.1, we conclude that

lim n→∞ 1 √ d n I q (B E (S n p )) = e 1 2p -3 4 p π(p + 2)
.

The proof of Lemma 4.2 informs us rather poorly on the speed of convergence of the linear statistics L n,p , f towards µ p , f . In fact, a necessary condition for Theorem 1.2 to hold is

Var L n,p , h 2 = O 1 n 2 ,
so we expect that L n,p , h 2µ p , h 2 = O(n -1 ). Besides, to identify the actual limit in Theorem 1.2, we need to understand precisely the asymptotic behavior of the fluctuations n( L n,p , h 2µ p , h 2 ).

There has been an increasing wealth of literature on such fluctuations of linear statistics. Given a general potential V , let L n . . = n -1 n i=1 δ x i be the empirical distribution associated with an ensemble x . . = (x 1 , . . . , x n ) ∈ R n of particles which are subject to the confining potential V and pairwise repulsive logarithmic interaction. Then, the convergence to a Gaussian distribution as n → ∞ of the random variable [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF] F n (ξ

) . . = n L n , ξ -µ V , ξ ,
where ξ is a given test function and µ V is the equilibrium distribution, has been widely studied.

The regularity of the external potential V plays a prominent role. It was assumed to be a polynomial of even degree with positive leading coefficient in the seminal paper of Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF]. This condition has then been relaxed during the last two decades to include real-analytic potentials [START_REF] Borot | Asymptotic expansion of β matrix models in the onecut regime[END_REF][START_REF] Kriecherbauer | Fluctuations of eigenvalues of matrix models and their applications[END_REF][START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of β matrix models in the multi-cut regime[END_REF] and, more recently, potentials of class C r with r reasonably large [START_REF] Bekerman | Transport maps for β-matrix models and universality[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Lambert | Quantitative normal approximation of linear statistics of β-ensembles[END_REF].

In our setting (specifically, of Theorem 1.2), the potential is V = V p . . = 2γ p h p with a lack of regularity at 0, the β-ensemble x has the distribution P n,p with a = 1, b = β, and c = 0 (cf. ( 18)), and the equilibrium measure µ V is of course the probability distribution µ p of Lemmas 4.1 and 4.2. We only need to establish the central limit theorem for ξ = h 2 , that is the convergence of F n (h 2 ). As V p is not always a polynomial nor real-analytic, we choose to work with the currently most general version due to Bekerman, Leblé and Serfaty [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF]. Like in Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF], the central limit theorem is obtained by establishing convergence of the moment generating function (a.k.a. Laplace transform) of [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF]. 

F n,p . . = n L n,p , h 2 φ -µ p , h 2 ,
with φ being the truncation function of Corollary 3.2. Then (F 2 n,p ) n≥1 is uniformly integrable, i.e., lim

K→∞ lim sup n→∞ E F 2 n,p 1 {F 2 n,p >K} = 0. Furthermore, lim n→∞ Var F n,p = 1 4b .
Remark 4.4. When p ≥ 6, this proposition is a direct consequence of [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF]Theorem 1]. Indeed, we are in the so called "one cut" regime which corresponds to m = n = k = 0, and we remark that ξ = h 2 φ is C ∞ and V = V p is C 6 when p ≥ 6.

Observe that for p ≥ 8, this is also a direct consequence of the CLT of Lambert, Ledoux and Webb [29, Theorem 1.2], which they derived alternatively using Stein's method. Proof. To explain why it is enough to assume p > 3, and for the sake of clarity, we reproduce the key arguments of Bekerman, Leblé and Serfaty [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF], introducing in particular the key master equation [START_REF] Kabluchko | Intersection of unit balls in classical matrix ensembles[END_REF], and underlining where the regularity of its solution is required.

The goal is to prove that, when p ∈ (3, ∞), the moment generating function of F n,p converges to that of a Gaussian variable N with variance 1/4b, that is, there exists m p . . = m p (h 2 φ) ∈ R such that [START_REF] Kabluchko | Exact asymptotic volume and volume ratio of Schatten unit balls[END_REF] lim

n→∞ E e sFn,p = exp sm p + s 2 2 1 4b
holds for all s ∈ R with |s| sufficiently small. It entails the convergence in distribution of F n,p towards N ∼ N (m p , 1 4b ), together with the convergence of all moments

E F k n,p → E N k , k ∈ N.
In particular, (F 2 n,p ) n≥1 will be uniformly integrable and lim n→+∞ Var F n,p = 1/4b.. First, by Theorem 3.1.(iii) and union bound, we can choose B > 1 sufficiently large such that P n,p (∃i ≤ n :

|x i | ≥ B) ≤ C ′ n e -c ′ nB p for some constants c ′ , C ′ > 0. Observing that F n,p (h 2 φ) ∞ = O(n)
we deduce that as soon as |s| is sufficiently small, lim n→∞ E e sFn,p 1 {∃i≤n:|x i |≥B} = 0. Thus, we may restrict to x ∈ U n 0 with U 0 . . = (-B, B). Now, the strategy, adopted in [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF] and developed already in [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF], is to perturb the Hamiltonian H n,p in (18) as follows:

H t n,p (x) . . = H n,p (x) + t n n i=1 x 2 i = 1 n n i=1 V p (x i ) + tx 2 i - 1 n 2 1≤i =j≤n log |x i -x j |,
where we have set t . . = -2s bn . Then, we write E e sFn,p = o(1) + e -sn µp,h 2 E e sn Ln,p,h 2 1

U n 0 = o(1) + e -sn µp,h 2 Z n,p U n 0 e -b 2 n 2 H t n,p (x) dx.
Next, one applies in the last integral a change of variables x i ← ϑ t (y i ) for 1 ≤ i ≤ n and for some well-chosen C 1 -diffeomorphism ϑ t : U t → U 0 depending on t. We get

E e sFn,p = o(1) + e -sn µp,h 2 Z n,p U n t e -b 2 n 2 H t n,p •ϑt(y) n i=1 |ϑ ′ t (y i )| dy = o(1) + e -sn µp,h 2 E e -b 2 n 2 (H t n,p •ϑt-Hn,p)+n Ln,p,log |ϑ ′ t | 1 U n t .
The idea is that, for a judicious choice of ϑ t , the exponent in the last expectation becomes simple enough to establish the convergence towards the moment generating function of a Gaussian distribution. The diffeomorphism is chosen as ϑ t (y) . . = y +tψ p (y) where, in our setting, ψ p : R → R is the solution to the equation ( 21)

Ξ p ψ = 1 2 h 2 + c h 2
for some constant c h 2 , where Ξ p is the so called "master operator" acting on C 1 functions and defined for x ∈ R by

Ξ p ψ(x) = - 1 2 V ′ p (x)ψ(x) + ψ(x) -ψ(y)
xy µ p (dy).

We show in Section 5.2 that ψ p is an odd function, we give its explicit expression and check that it is of class C ⌈p⌉-1 ⊂ C 1 . Then, by the local inversion theorem, ϑ t = Id +tψ p becomes a C 1 -diffeomorphism U t → U 0 provided |t| = 2|s|/bn ≤ τ is sufficiently small (equivalently, n is sufficiently large), and we have

(22) E e sFn,p = o(1) + e -sn µp,h 2 E e -b 2 n 2 (H t n,p •ϑt-Hn,p)+n Ln,p,log (1+tψ ′ p ) 1 U n t , where U t . . = (-A t , A t ) and ϑ t (A t ) = A t + tψ p (A t ) = B.
Furthermore, we know from the implicit function theorem that A t , |t| ≤ τ, depends continuously on t, and thus choosing τ small enough we can assume that

1 < inf |t|≤τ A t < sup |t|≤τ A t < ∞.
The remaining of the proof is to Taylor-expand as t → 0 (i.e., n → ∞) the terms H t n,p • ϑ t -H n,p and log (1 + tψ ′ p ) appearing in the right-hand side of ( 22) up to the order O(t 3 ). After a rather lengthy but not difficult calculation (see [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF]Section 4]), and using that ψ p solves [START_REF] Kabluchko | Intersection of unit balls in classical matrix ensembles[END_REF], we obtain that ( 23)

E e sFn,p = o(1) + e smp+ s 2 2 Σ 2 (h 2 ) E exp - s n A n [ψ p ] + O(nt 2 ) + O(n 2 t 3 ) 1 U n t ,
where O(nt 2 ) and O(n 2 t 3 ) are random quantities converging uniformly to 0 as n → ∞ (recall that t . . = -2s bn ), m p . . = µ p , ψ ′ p is the limiting mean,

Σ 2 (h 2 ) . . = 1 2bπ 2 1 -1 1 -1 (x + y) 2 (1 -xy) √ 1 -x 2 1 -y 2 dxdy
is the limiting variance, and, lastly,

A n [ψ p ] . . = n 2 ψ p (x) -ψ p (y) x -y (L n,p -µ p )(dx)(L n,p -µ p )(dy)
is the so called anisotropy term. A careful inspection of the proof of [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF]Proposition 5.4] shows that, for |s| sufficiently small, ( 24)

lim n→∞ log E exp - s n A n [ψ p ] = 0
holds provided ψ p is of class C 3 . This is true as soon as p > 3; we postpone the proof of this key technical point to Section 5.2, see Lemma 5.3. Note that [START_REF] Klartag | A Berry-Esseen type inequality for convex bodies with an unconditional basis[END_REF] is the only place where the hypothesis p > 3 is used. It then follows by the Cauchy-Schwarz inequality that the expectation in the right-hand side of (23) tends to 1. As the value of Σ 2 (h 2 ) simplifies to 1/4b thanks to Lemma 5.2, this establishes [START_REF] Kabluchko | Exact asymptotic volume and volume ratio of Schatten unit balls[END_REF].

We can now give a proof of Theorem 1.2.

Proof of Theorem 1.2. Recall the earlier computation ( 14) (with a = 1):

as n → ∞, (25) 
I q (B E (S n p )) I 2 (B E (S n p )) = 1 - q -2 bpn 2 + o 1 n 2 E L n,p , h 2 q /2 1 /q (E L n,p , h 2 ) 1 /2 .
We must expand both the numerator and denominator of that latter fraction. By Corollary 3.2, referring to the truncation function φ there, we may replace h 2 by h 2 φ as this only induces a o(n -2 ) error:

(26) E L n,p , h 2 q /2 (E L n,p , h 2 ) q /2 = E L n,p , h 2 φ q /2 + o( 1 n 2 ) E L n,p , h 2 φ + o( 1 n 2 ) q /2 .
Applying Taylor-Lagrange's formula to the function x → x q /2 between x 0 . . = µ p , h 2 > 0 and x 0 + h yields

(x 0 + h) q 2 -x q/2 0 - q 2 h - q(q -2) 8 h 2 1 {|h|≤ x 0 2 } ≤ C q,x 0 |h| 3 ,
for some constant C q,x 0 depending on q and x 0 . Up to enlarging C q,x 0 , we also have

x q/2 0 + q 2 h + q(q -2) 8 h 2 1 {|h|> x 0 2 } ≤ C q,x 0 h 2 1 {|h|> x 0 2 } .
We write L n,p , h 2 φ = x 0 + h with h . . = 1 n F n,p = L n,p , h 2 φµ p , h 2 and note that |h| ≤ h 2 φ ∞ + x 0 . Then, on the one hand, using the above inequalities according to whether |h| ≤ x 0 /2 or |h| > x 0 /2 gives

n 2 E L n,p , h 2 φ q 2 1 {|Fn,p|≤ nx 0 2 } -µ p , h 2 q 2 - q 2n E F n,p - q(q -2) 8n 2 E F 2 n,p ≤ C q,x 0 E |F n,p | 3 n + E F 2 n,p 1 {|Fn,p|> nx 0 2 } ≤ C q,x 0 K 3/2 n + ( h 2 φ ∞ + x 0 ) E F 2 n,p 1 {F 2 n,p >K} + E F 2 n,p 1 {|Fn,p|> nx 0 2 } ≤ C q,x 0 K 3/2 n + ( h 2 φ ∞ + x 0 + 1) E F 2 n,p 1 {F 2 n,p >K} , (27) 
for any 0 < K ≤ n 2 x 2 0 /4. On the other hand, for such n and K,

(28) n 2 E L n,p , h 2 φ q 2 1 {|Fn,p|> nx 0 2 } ≤ 4 x 2 0 h 2 φ q/2 ∞ E F 2 n,p 1 {F 2 n,p >K} .
Proposition 4.3 tells us that the right-hand sides of ( 27) and ( 28) vanish (letting n → ∞ first then K → ∞), and that Var F n,p → 1 4b as n → ∞. Hence, by triangle inequality

E L n,p , h 2 φ q 2 = µ p , h 2 q 2 + q 2n E F n,p + q(q -2) 8n 2 E F 2 n,p + o 1 n 2 .
This holds in particular when q = 2, and going back to [START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF] we get

E L n,p , h 2 q /2 (E L n,p , h 2 ) q /2 = E L n,p , h 2 φ q /2 + o( 1 n 2 ) E L n,p , h 2 φ + o( 1 n 2 ) q /2 = µ p , h 2 q 2 + q 2n E F n,p + q(q-2) 8n 2 E F 2 n,p + o 1 n 2 µ p , h 2 q 2 + q 2n E F n,p + q(q-2) 8n 2 (E F n,p ) 2 + o 1 n 2 = 1 + q(q -2) 8 µ p , h 2 • Var F n,p n 2 + o 1 n 2 = 1 + q(q -2)(p + 2) 2 8bp 2 n 2 + o 1 n 2 ,
where we also replaced the value of µ p , h 2 computed in Lemma 5.1. Raising this expansion to the power 1/q and returning to [START_REF] Klartag | The slicing problem by Bourgain[END_REF], we obtain

I q (B E (S n p )) I 2 (B E (S n p )) = 1 + (q -2)(p -2) 2 16p 2 d n + o 1 d n ,
because d n ∼ bn 2 /2 (for a = 1).

4.2.

The case E = M n (F) (a = 2). We suppose in this section that a = 2. We reduce to measures and integrals over R + by performing the change of variables y i . . = |x i | 2 for all 1 ≤ i ≤ n. Specifically, the pushforward of P n,p by the map x ∈ R n → y ∈ (R + ) n is the probability 1 P n,p (dy

) . . = 1 Z n,p • 1≤i<j≤n |y i -y j | b • n i=1 y c-1 2 i
• e -2bnγp y p/2 p/2 dy, y ∈ (R + ) n .

In particular, for every measurable functions f : R + → R, and g : R → R,

(R + ) n g 1 n n i=1 f (y i ) P n,p (dy) = R n g 1 n n i=1 f x 2 i P n,p (dx). (29) 
It is here convenient to work with the empirical probability measure L n,p . . = n -1 n i=1 δ y i where y ∈ (R + ) n is sampled from P n,p , and we note that Corollary 3.2 obviously still applies with L n,p in place of L n,p . Similarly to the previous section, we introduce

I p (µ) . . = 4 R + γ p |y| p/2 µ(dy) - (R + ) 2 = log |x -y| µ(dx)µ(dy).
The counterparts of Lemmas 4.1 and 4.2 are as follows. 1 The normalizing constant Z n,p remains unchanged; it is just as in [START_REF] Bhatia | Matrix analysis[END_REF] but with a = 2. Lemma 4.5 (Equilibrium measure). There exists a unique element µ p minimizing the functional I p over the space P(R + ) of probability measures on R + :

I p ( µ p ) = inf µ∈P(R + ) I p (µ).
Furthermore, µ p coincides with the image measure of µ p by the map x → x 2 , and it has the following properties: (i) µ p is compactly supported, with support [0, 1]; (ii) µ p is absolutely continuous with respect to the Lebesgue measure, with density

d µ p dy = py p 2 -1 π 1 √ y u -p √ 1 -u 2 du, 0 ≤ y ≤ 1;
(iii) I p ( µ p ) = 2 log 2 + 3 p .

Proof. In the previous section, the minimization over all real probability measures of the functional I p corresponding to the weight function w : x → exp(-γ p |x| p ) gave rise to the minimizer µ p . We are now facing the minimization problem for probability measures on R + = {x 2 : x ∈ R}, with the weight function being v : y → exp(-2γ p y p/2 ) = w( √ y) 2 .

According to [36, Theorem IV.1.10.(f)], the solution of the latter is simply the image measure of µ p by the map x → x 2 . From this, (i)-(iii) easily follow. (i) For every continuous, polynomially bounded functions f, g : R + → R, it holds that lim n→∞ E g L n,p , f = g( µ p , f ).

(ii) We have

lim n→∞ - 1 d n log Z n,p = log 2 + 3 2p . 
Proof. We apply 2 [18, Theorem 5.5.1]. This theorem provides the limit of Z 1 /dn n,p stated in (ii), as well as a large deviation principle with good rate function b 2 I p -I p ( µ p ) for the random probability measures L n,p . By the Borel-Cantelli lemma (see e.g. [18, p. 212] for details), this entails that L n,p converges almost surely towards µ p in the sense of weak convergence of probability measures, that is L n,p , f → µ p , f P-a.s. for every continuous, bounded function f : R + → R. As before, point (i) then follows from the dominated convergence theorem and Corollary 3.2.

It is now easy to derive a simple proof of Theorem 1.1 in the case a = 2.

2 At first sight, the application of Theorem 5.5.1 in [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF] seemingly requires that γ(n) . .≡ c-1 2 be nonnegative (which is not true if c = 0). It appears this condition is stated merely for simplicity and, referring to the notation there, the proof of the theorem remains valid as long as 2αβ + γ ≥ 0 and γ > -α.

Proof of Theorem 1.1, case a = 2. Recalling (13) and taking into account the change of variable (29), we have

1 √ d n I q (B E (S n p )) ∼ e -1 p -3 4 √ 2π Z -1/dn n,p E L n,p , h 1 q 2 1 q ,
where h 1 (y) 

E L n,p , h 1 q 2 = µ p , h 1 q 2 .
Plugging in the value of µ p , h 1 given by Lemma 5.1, we find

1 √ d n (E T q HS ) 1 /q |B E (S n p )| 1 /dn ∼ e 1 2p -3 4 p π(p + 2)
.

4.3.

Asymptotics of c n . It remains to establish the asymptotics [START_REF] Bekerman | Transport maps for β-matrix models and universality[END_REF] for the coefficient c n involved in Weyl's integration formulas. This is well known from the formulas given in [START_REF] Anderson | An introduction to random matrices[END_REF], see for example [START_REF] Kabluchko | Sanov-type large deviations in Schatten classes[END_REF]Lemma 3.3] in the self-adjoint case. We detail the proof for completeness.

Lemma 4.7 (Asymptotics of c n ). We have

√ n • c 1/dn n ∼ e 3 4 4π ab as n → ∞.
Proof. The coefficient c n is related to the volume of the unitary group U n (F). Specifically, supposing first a = 1, we know after [2, Propositions 4.1.1] that

c n = |U n (F)| |U 1 (F)| n n! ,
where, according to [2, Proposition 4.1.14],

|U n (F)| = (2π) bn(n+1) 4 • 2 n(1-b 2 ) n k=1 Γ b 2 k . Since log Γ(z) = z log z -z + o(z) as z → ∞, we have log Γ b 2 k = b 2 k log k + b 2 log b 2 -1 k + o(k), k → ∞. Therefore, using that n k=1 k log k = 1 2 n 2 log n -1 4 n 2 + o(n 2 ) and d n ∼ bn 2 /2, we find 1 d n log n k=1 Γ b 2 k = 1 2 log n + 1 2 log b 2 - 3 4 + o(1). Hence 1 d n log c n = 1 d n log |U n (F)| + o(1) = - 1 2 log n + 1 2 log 4π b + 3 4 + o(1),
which leads to the statement in the case a = 1. When a = 2, we have instead d n ∼ bn 2 and, after [2, Proposition 4.1.3],

c n = |U n (F)| 2 |U 1 (F)| n n! 2 -bn(n-1)

2

.

So the difference with above is that, here,

1 d n log c n = 2 d n log |U n (F)| - 1 2 log 2 + o(1) = - 1 2 log n + 1 2 log 2π b + 3 4 + o(1).
Hence the statement in the case a = 2.

Remark 4.8. We can recover the asymptotic volumes of the Schatten unit balls. These were recently derived in [21, Theorem 3.1] and [20, Theorem 1], completing the much earlier computations of Saint-Raymond [START_REF] Saint-Raymond | Le volume des idéaux d'opérateurs classiques[END_REF]. Indeed, starting from the expression of the volume of B E (S n p ) in (9) and plugging in the asymptotics of Z n,p (Lemmas 4.2 and 4.6) and of c n (Lemma 4.7), we find

B E (S n p ) 1 dn = (abnγ p ) 1 p • c 1 /dn n Γ 1 + dn p 1 /dn • Z 1/dn n,p ∼ (abnγ p ) 1 p • e 3 /4 4π nab dn ep 1 /p • 1 2 e -3 2p . Hence, because d n ∼ abn 2 /2, lim n→∞ n 1 2 + 1 p |B E (S n p )| 1 dn = (2pγ p ) 1 p e 3 4 -1 2p π ab .

Properties of the equilibrium measures

In this section we gather some auxiliary results on the equilibrium measure µ p of Lemma 4.1. We first carry out some easy computations. Next, we establish the regularity of the solution to the master equation occurring in the proof of Proposition 4.3. 5.1. Some integral computations. We recall the notation h 2 (x) . . = x 2 , h 1 (y) . . = y, and the equilibrium measures µ p and µ p , see Lemmas 4.1 and 4.5. We further denote by ̺(dx) . . = (π √ 1x 2 ) -1 1 {|x|<1} the standard Arcsine distribution on [-1, 1].

Lemma 5.1. We have µ p , h 2 = µ p , h 1 = p 2p + 4 .

Proof. First, µ p , h 2 = µ p , h 1 because µ p is the image measure of µ p by h 2 . Next we know [3, Lemma 4.1] that µ p is the distribution of AB where A and B are independent variables with A following ̺ and B following the Beta(p, 1) distribution. We easily conclude that

µ p , h 2 = E A 2 • E B 2 = 1 2 • p p + 2 .
Lemma 5.2. We have

1 π 2 1 -1 1 -1 (x + y) 2 (1 -xy) √ 1 -x 2 1 -y 2 dxdy = 1 2 .
Proof. Let X, Y be independent variables with law ̺. Then the left-hand side is

E (X + Y ) 2 (1 -XY ) = E (X + Y ) 2 -2 E X 2 E Y 2 -E X 3 E Y -E X E Y 3 = 1 2 ,
using that E X = E Y = 0 and E X 2 = E Y 2 = 1 2 .

5.2. Regularity of the solution to the master equation. We establish the regularity of the solution ψ p to the master equation ( 30)

Ξ p ψ = 1 2 h 2 + c h 2 ,
where Ξ p ψ(x) . . = -1 2 V ′ p (x)ψ(x) + ψ(x)ψ(y)

xy µ p (dy), x ∈ R.

A general expression in terms of the test function and of the equilibrium measure is given in [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF]Lemma 3.3], see also Section B.5 there. The inversion of the master operator was first achieved in [START_REF] Bekerman | Transport maps for β-matrix models and universality[END_REF]Lemma 3.2]. In our framework, the expression of ψ p can be made quite explicit: first, we compute c h 2 = -1/4, and (31)

ψ p (x) =            - x √ 1 -x 2 2πf p (x) , if |x| ≤ 1, - |x| √ x 2 -1 2ζ ′ p (x) , if |x| > 1,
where (32) f p (x) . . = px p-1 π 

1 x v -p √ 1 -v 2 dv,
v -p √ v 2 -1 dv, (33) 
see [36, pp. 240-241]. We further observe the similarity between [START_REF] Mehta | Random matrices. Third[END_REF] and [START_REF] Milman | Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space[END_REF]: applying the change of variable t ← (1v)/x, we have, for every 0 < x < 1,

πf p (1 -x) = p(1 -x) p-1 π 1 1-x u -p √ 1 -u 2 du = p(1 -x) p-1 √ x 1 0 (1 -xt) -p √ 2 -xt dt √ t = √ x w p (-x),
where we have set [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF] w p (u) . . = p(1 + u) p-1

1 0 (1 + tu) -p √ 2 + tu dt √ t , u ≥ -1.
Similarly, we can see that ζ ′ p (1 + x) = √ x w p (x) holds for all x > 0. Because ψ p is odd, we conclude that the solution ψ p ∈ C 1 (R, R) to the equation ( 30) is more simply expressed by [START_REF] Radke | On the thin-shell conjecture for the Schatten classes[END_REF] ψ p (x) = -x 1 + |x| 2w p (|x| -1) , x ∈ R.

We denote by ⌈p⌉ the smallest integer greater than or equal to p. In particular, it is of class C 3 when p > 3.

Proof. Since ψ p is odd, it suffices to check the regularity on [0, ∞). It is plain that the function w p in [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF] does not vanish on (-1, ∞) and, by differentiation under the integral sign, that it is of class C ∞ there. Given [START_REF] Radke | On the thin-shell conjecture for the Schatten classes[END_REF], it is then clear that ψ p is of class C ∞ on (0, ∞). It remains to check that ψ p has C ⌈p⌉-1 -regularity at 0 + .

Because of the expression (31) and of x → √ 1x 2 being smooth at 0, the regularity of ψ p at 0 is equivalent to that of ψp (x) . . = x/f p (x). For 0 < x < y < 1, the Taylor series

(1 -v 2 ) -1 2 = ∞ k=0 2n n 4 n v 2n
is uniformly convergent on [x, y], and expanding in [START_REF] Mehta | Random matrices. Third[END_REF] gives 

f p (x) = px p-1 π lim↑ y↑1 y x v -p √ 1 -v 2 dv = p π ∞ n=0 2n 

1 p for 1

 11 ≤ p < ∞, and z ∞ . . = max 1≤i≤n |z i |.

  In all cases, b = β = dim R (F). In the self-adjoint cases, a = 1 and c = 0. In the cases where E = M n (F), the computations depend on the singular values, a = 2 and c = β -1. See [2, Chapter 4] for details.

.

  Using that for any x, y ∈ R one has |x -y| ≤ |x| + |y| ≤ (1 + |x|)(1 + |y|), and letting D 2 . . = max t∈R e -abγpt p (1 + |t| a ) b , we have

Corollary 3 . 2 ( 2 < 1 .

 3221 Truncation argument). Choose X 1 ≥ 1 from Theorem 3.1. Let B ≥ X 1 and let φ : R → [0, 1] be a smooth, compactly supported function such that φ ≡ 1 on [-B, B]. Then for all continuous, polynomially bounded functions f, g : R → R, one has E g L n,p , fg L n,p , f φ = O(α n ), where α . . = e -c ′ B p

1 . 3 ]

 13 with the weight function w : x → exp(-γ p |x| p ) on R. Properties (i)-(iii) are provided by [36, Theorem IV.5.1]. We have rewritten the density with the change of variable v ← |x|/u.

Proposition 4 . 3 (

 43 Fluctuations of the linear statistics). Let p ∈ (3, ∞) and let

Lemma 4 . 6 (

 46 Convergence towards the equilibrium measure).

  is the Lebesgue density of µ p which we have already seen in Lemma 4.1.(ii), and ζ ′ p is the odd function given for x > 1 by ζ ′ p (x) . . = d dx log |x -y| µ p (dy)

Lemma 5 . 3 (

 53 Regularity of ψ p ). For every p ∈ (1, ∞), the function ψ p is of class C ⌈p⌉-1 .

n 4 n x p-1 1 xvn≥0 2n+1 =p 2n n 4 n

 14 2n-p dv, by the monotone convergence theorem. The latter integral equals -log x if p = 2n + 1, and (x 2n+1-p -1)/(p -2n -1) otherwise. In any case, there exist constants A, B ∈ R (possibly zero) such that g(x) . . = f p (x) + Ax p-1 log x + Bx p-1 = p π (p -2n -1)x 2n

Table 1 .

 1 being the dimension of the subspace E over R. The constant c n is explicit and related to the volume of the unitary group U n (F); it depends only on a, b and n, and its exact and asymptotic values are known and given in Lemma 4.7: Possible choices for E, and corresponding parameters.

	defines a positively homogeneous function of degree d n -n, with (6) d n . . = dim R E = ab n(n -1) 2 + (c + 1)n

  . . = y. Lemma 4.6.(ii) tells us that Z

	gives	-1/dn n,p	∼ 2 e	3 2p , while Lemma 4.6.(i)
	lim n→∞			

is decomposed as a power series with radius 1, so g defines a function of class C ∞ at 0. Because, for p > 1, Ax p-1 log x + Bx p-1 has C ⌈p⌉-2 -regularity at 0 + , f p is therefore of class C ⌈p⌉-2 at 0 + . Then so is 1/f p since f p (0) = g(0) = pπ/(p-1) = 0, and we conclude by Leibniz formula that ψp (and thus ψ p ) is of class C ⌈p⌉-1 at 0 + .