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ABSTRACT 22 

Widely applicable, accurate and fast inference methods in phylodynamics are needed to fully profit from the richness 23 

of genetic data in uncovering the dynamics of epidemics. Standard methods, including maximum-likelihood and 24 

Bayesian approaches, which are both model specific, often rely on complex mathematical formulae and 25 

approximations, and do not scale well with dataset size. We develop a likelihood-free, simulation-based approach, 26 

which combines deep learning with (1) a large set of summary statistics measured on phylogenies or (2) a complete 27 

and compact vectorial representation of trees, which avoids potential limitations of summary statistics and applies to 28 

any phylodynamic model. Our method enables both model selection and estimation of epidemiological parameters. 29 

We demonstrate its speed and accuracy on simulated data, where it performs better than the state-of-the-art methods. 30 

To illustrate its applicability, we assess the dynamics induced by superspreading individuals in an HIV dataset of men-31 

having-sex-with-men in Zurich. 32 

KEYWORDS 33 

deep learning, phylodynamics, molecular epidemiology, phylogenetic tree representation, summary statistics, HIV, 34 
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INTRODUCTION 36 

Pathogen phylodynamics is a field combining phylogenetics and epidemiology[1]. Viral or bacterial samples from 37 

patients are sequenced and used to infer a phylogeny, which describes the pathogen’s spread among patients. The tips 38 

of such phylogenies represent sampled pathogens, and the internal nodes transmission events. Moreover, transmission 39 

events can be dated and thereby provide hints on transmission patterns. Such information is extracted by phylodynamic 40 

methods to estimate epidemiological and population dynamic parameters[2-4], assess the impact of population 41 

structure[2,5], and reveal the origins of epidemics[6]. 42 

Birth-death models[7] incorporate easily interpretable parameters common to standard infectious-disease 43 

epidemiology, such as basic reproduction number R0, infectious period, etc. In contrast to the standard epidemiological 44 

models, the birth-death models can be applied to estimate parameters from phylogenetic trees[8]. In these models, 45 

births represent transmission events, while deaths represent removal events for example due to treatment or recovery. 46 

Upon a patient’s removal their pathogen can be sampled, producing tips in the tree.  47 

Here we focus on three specific, well-established birth-death models (Fig. 1): birth-death model (BD)[8,9], birth-death 48 

model with exposed and infectious classes (BDEI)[5,10,11], and birth-death model with superspreading (BDSS)[5,12]. 49 

These models were deployed using BEAST2[12,13] to study the phylodynamics of such diverse pathogens as Ebola 50 

virus[10], Influenza virus[12], Human Immunodeficiency Virus (HIV)[5], Zika[14] or Coronavirus[15]. Using these models, 51 

we will demonstrate the reliability of our deep learning-based approach. 52 

While a great effort has been invested in the development of new epidemiological models in phylodynamics, the field 53 

has been slowed down by the mathematical complexity inherent to these models. BD, the simplest model, has a closed 54 

form solution for the likelihood formula of a tree for a given set of parameters[8,10], but more complex models, e.g. 55 

BDEI and BDSS, rely on a set of ordinary differential equations (ODEs) that cannot be solved analytically. To estimate 56 

parameter values through maximum-likelihood and Bayesian approaches, these ODEs must be approximated 57 

numerically for each tree node[5,10-12]. These calculations become difficult as the tree size increases, resulting in 58 

numerical instability and inaccuracy[12], as we will see below.  59 

Inference issues with complex models are typically overcome by approximate Bayesian computation (ABC)[16,17]. 60 

ABC is a simulation-based technique relying on a rejection algorithm[18], where from a set of simulated phylogenies 61 
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within a given prior (values assumed for parameter values), those closest to the analyzed phylogeny are retained and 62 

give the posterior distribution of the parameters. This scheme relies on the definition of a set of summary statistics 63 

aimed at representing a phylogeny and on a distance measure between trees. This approach is thus sensitive to the 64 

choice of the summary statistics and distance metric, e.g. Euclidean distance. To address this issue Saulnier et al.[19] 65 

developed a large set of summary statistics. In addition, they used a regression step to select the most relevant statistics 66 

and to correct for the discrepancy between the simulations and the analyzed phylogenies (see also Blum et al.[20]). 67 

We propose a likelihood-free, rejection-free, simulation-based method relying on deep learning from millions of trees 68 

of varying size simulated within a broad range of parameter values. To describe these trees and use them as input for 69 

the deep learner, we develop two tree representations: (1) a large set of summary statistics mostly based on Saulnier 70 

et al.[19], and (2) a complete and compact vectorial representation of phylogenies, including both the tree topology and 71 

branch lengths. The summary statistics are derived from our understanding and knowledge of the epidemiological 72 

processes. However, they can be incomplete and thus miss some important aspects of the studied phylogenies, which 73 

can potentially result in low accuracy during inference. Moreover, it is expected that new phylodynamic models will 74 

require design of new summary statistics, as confirmed by our results with BDSS. In contrast, our vectorial 75 

representation is a raw data representation that preserves all information contained in the phylogeny and thus should 76 

be accurate and deployable on any new model, provided the model parameters are identifiable. Our vectorial 77 

representation naturally fits with deep learning methods, especially the convolutional architectures, which have 78 

already proven their ability to extract relevant features from raw representations, for example in image analysis[21,22] 79 

or weather prediction[23]. 80 

In the following, we introduce our vectorial tree representation and the new summary statistics designed for BDSS. 81 

We then present the deep learning architectures trained on these representations and evaluate their accuracy on 82 

simulated datasets in terms of both parameter estimation and model selection. The results are compared to those of 83 

the gold standard method, BEAST2[12,13]. Lastly, we showcase our methods on an HIV dataset[24,25] from men-having-84 

sex-with-men (MSM) community from Zurich. All technical details are provided in Methods. 85 
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RESULTS 86 

Neural networks are trained on numerical vectors from which they can learn regression and classification tasks. We 87 

trained such networks on phylogenetic trees to estimate epidemiological parameters (regression) and select 88 

phylodynamic models (classification). We undertook two strategies for representing phylogenetic trees as numerical 89 

vectors, which we describe first, before showing the results with simulated and real data. 90 

Summary statistics (SS) representation. We used a set of 83 SS developed by Saulnier et al.[19]: 26 measures of 91 

branch lengths, such as median of both internal and tip branch lengths; 8 measures of tree topology, such as tree 92 

imbalance; 9 measures on the number of lineages through time, such as time and height of its maximum; and 40 93 

coordinates representing the lineage-through-time plot. To capture more information on the phylogenies generated by 94 

the BDSS model, we further enriched these SS with 14 new statistics on transmission chains describing the distribution 95 

of the duration between consecutive transmissions (internal tree nodes). Our SS are diverse, complementary and 96 

somewhat redundant. We used feed-forward neural networks (FFNN) with several hidden layers (Fig. 2 b (i)) that 97 

select and combine relevant information from the input features. In addition to SS, we provide both the tree size, i.e. 98 

the number of tips, and the sampling probability used to generate the tree, as input to our FFNN (Fig. 2 a (vi)). We 99 

will refer to this method as FFNN-SS. 100 

Compact vectorial tree representation. While converting raw information in a form of a phylogenetic tree into a set 101 

of SS, information loss is unavoidable. This means not only that the tree cannot be fully reconstructed from its SS, but 102 

also that depending on how much useful and relevant information is contained in the SS, the neural network may fail 103 

to solve the problem at hand. As an alternative strategy to SS, and to prevent information loss in the tree representation, 104 

we developed a representation called ‘Compact Bijective Ladderized Vector’ (CBLV).  105 

Several vectorial representations of trees based either on polynomial[26,27], Laplacian spectrum[28] or F matrices[29] have 106 

been developed previously. However, they represent the tree shape but not the branch lengths[26,27], may lose 107 

information on trees[28]. In addition, some of these representations[27,29] require vectors or matrices of quadratic size 108 

with respect to the number of tips.  109 

Inspired by these approaches, we designed our concise, easily computable, compact, and bijective (i.e. 1-to-1) tree 110 

representation that applies to trees of variable size and is appropriate as machine learning input (see Methods for 111 
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details). To obtain this representation, we first ladderize the tree, that is, for each internal node, the descending subtree 112 

containing the most recently sampled tip is rotated to the left, Fig. 2 a (ii). This ladderization step does not change the 113 

tree but facilitates learning by standardizing the input data (Supplementary Fig. 5). Moreover, it is consistent with 114 

trees observed in real epidemiological datasets, for example Influenza, where ladder-like trees reflect selection and 115 

are observed for several pathogens[1]. Then, we perform an inorder traversal[30] of the ladderized tree, during which 116 

we collect in a vector for each visited internal node its distance to the root and for each tip its distance to the previously 117 

visited internal node. In particular, the first vector entry corresponds to the tree height. This transformation of a tree 118 

into a vector is bijective, as one can unambiguously reconstruct any given tree from its vectorial representation 119 

(Supplementary Fig. 1). The vector is as compact as possible, and its size grows linearly with the number of tips. We 120 

complete this vector with zeros to reach the representation length of the largest tree contained in our simulation set, 121 

and we add the known sampling probability (Fig. 2 a (v), b (i)). 122 

Bijectivity combined with ladderization facilitates the training of neural networks, which do not need to learn that 123 

different representations correspond to the same tree. However, unlike our SS, this full representation does not have 124 

any high-level features. In CBLV identical subtrees will have the same representation in the vector whenever the roots 125 

of these subtrees have the same height, while the vector representation of the tips in such subtrees will be the same no 126 

matter the height of the subtree's root. Similar subtrees will thus result in repeated patterns along the representation 127 

vector. We opted for Convolutional Neural Networks (CNN), which are designed to extract information on patterns 128 

in raw data. Our CNN architecture (Fig. 2 b (ii)) includes several convolutional layers that perform feature extraction, 129 

and maximum and average pooling that select relevant features and keep reasonable dimensions of feature maps. The 130 

output of the CNN is then fed into an FFNN that combines the patterns found in the input to perform predictions. In 131 

the rest of the manuscript, we refer to this method as CNN-CBLV.  132 

Simulated datasets 133 

For each phylodynamic model (BD, BDEI, BDSS), we simulated 4 million trees, covering a large range of values for 134 

each parameter of epidemiological interest (R0, infectious period: 1/γ, incubation period: 1/ε, the fraction at 135 

equilibrium of superspreading individuals: fSS, and the superspreading transmission ratio: XSS). Of the 4 million trees, 136 

3.99 million were used as a training set, and 10,000 as a validation set for early stopping in the training phase[31]. 137 

Additionally, we simulated another 10,000 trees, which we used as a testing set, out of which 100 were also evaluated 138 
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with the gold standard methods, BEAST2 and TreePar, which are more time consuming. Another 1 million trees were 139 

used to define confidence intervals for estimated parameters. For BD and BDEI we considered two settings: one with 140 

small trees (50 to 199 tips, in Supplementary Fig. 2) and a second one with large trees (200 to 500 tips, Fig. 3). For 141 

BDSS, we considered only the setting with large trees, as the superspreading individuals are at low fraction and cannot 142 

be detected in small trees (results not shown). 143 

To increase the generality of our approach and avoid the arbitrary choice of the time scale (one unit can be a day, a 144 

week, or a year), we rescaled all trees and corresponding epidemiological parameters, such that the average branch 145 

length in a tree was equal to 1. After inference, we rescaled the estimated parameter values back to the original time 146 

scale. 147 

Neural networks yield more accurate parameter estimates than gold standard methods 148 

We compared accuracy of parameter estimates yielded by our deep learning methods and those yielded by two state-149 

of-the-art phylodynamics inference tools, BEAST2[12,13] and TreePar[5]. The comparison shows that our deep learning 150 

methods trained with SS and CBLV are either comparable (BD) or more accurate (BDEI and BDSS) than the state-151 

of-the-art inference methods (Fig. 3). The simple BD model has a closed form solution for the likelihood function, 152 

and thus BEAST2 results are optimal in theory[8,9]. Our results with BD are similar to those obtained with BEAST2, 153 

and thus nearly optimal as well. For BDEI and BDSS our results are more accurate than BEAST2, which is likely 154 

explained by numerical approximations of likelihood calculations in BEAST2[5,10,11] for these models. These 155 

approximations may lead to a lack of convergence (2% cases for BDEI and 15% cases for BDSS) or a convergence to 156 

local minima. We suspect BEAST2 of converging to local optima when it converged to values with high relative error 157 

(i.e. >1.0; 8% cases for BDEI and 11% cases for BDSS, Fig. 3 b-c). Furthermore, our deep learning approaches 158 

showed a lower bias in parameter estimation than BEAST2 (Supplementary Table 3). As expected, both approaches, 159 

FFNN-SS and CNN-CBLV, get more accurate with larger trees (Supplementary Fig. 7). 160 

We tried to perform maximum likelihood estimation (MLE) implemented in the TreePar package[5] on the same trees 161 

as well. While MLE under BD model on simulations yielded as accurate results as BEAST2, for more complex models 162 

it showed overflow and underflow issues (i.e. reaching infinite values of likelihood) and yielded inaccurate results, 163 

such as more complex models (BDEI, BDSS) having lower likelihood than a simpler, nested one (BD) for a part of 164 
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simulations (results not shown). These issues were more prominent for larger trees. TreePar developers confirmed 165 

these limitations and suggested using the last version of BEAST2 instead. 166 

CNN-CBLV has high potential for application to new models 167 

FFNN-SS and CNN-CBLV show similar accuracy across various settings (Fig. 3, Supplementary Fig. 2, 168 

Supplementary Table 2). The advantage of the CBLV is its generality, meaning there is no loss of information 169 

between the tree and its representation in CBLV regardless of which model the tree was generated under. This contrasts 170 

with the pre-designed SS, which might need additional specific SS depending on the model at hand. This was 171 

confirmed in our analyses of BDSS simulations. To estimate the parameters of this model, we added summary statistics 172 

on transmission chains on top of the SS taken from Saulnier et al.[19]. This improved the accuracy of superspreading 173 

fraction estimates of the FFNN-SS (Supplementary Fig. 6), so that it was comparable to the CNN-CBLV.  174 

Neural networks are fast inference methods 175 

We compared the CPU time required by each of our inference approaches. For deep learning methods, while they 176 

require longer computing times in the learning phase (e.g. in the order of a couple of BEAST2 inferences on large 177 

trees under BDEI that we performed), inference is almost instantaneous and most of the time is spent on tree encoding 178 

into SS or CBLV. Averaged over 10,000 trees generated by the three birth-death models, the parameter inference with 179 

deep learning takes 6*10-5 CPU hours or ~0.2 seconds per tree. 180 

For comparison, BEAST2 inference under the BD model with 5 million MCMC steps takes on average 0.18 CPU 181 

hours per tree, and 0.009 CPU hours if only the time to convergence is considered. Inference under BDEI and BDSS 182 

with 10 million MCMC steps takes 57 CPU hours (6 CPU hours to convergence) and 79 CPU hours (6 CPU hours to 183 

convergence), respectively.  184 

Neural networks are accurate methods for model selection 185 

We trained CNN-CBLV and FFNN-SS on simulated trees to predict the birth-death model under which they were 186 

simulated (BD or BDEI for small trees; BD, BDEI or BDSS for large trees). Note that for parameters shared between 187 

multiple models, we used identical parameter value ranges across all these models (Supplementary Table 1). Then, 188 

we assessed the accuracy of both of our approaches on 100 simulations obtained with each model and compared it 189 
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with the model selection under BEAST2 based on Akaike information criterion through Markov Chain Monte Carlo 190 

(AICM)[32,33]. The AICM, similar to deviance information criterion (DIC) by Gelman et al.[32], does not add 191 

computational load and is based on the average and variance of posterior log-likelihoods along the Markov Chain 192 

Monte Carlo (MCMC). 193 

FFNN-SS and CNN-CBLV have similar accuracy (Supplementary Fig. 3), namely 92% for large trees (BD vs BDEI 194 

vs BDSS), and accuracy of 91% and 90%, respectively, for small trees (BD vs BDEI). BEAST2 yielded an accuracy 195 

of 91% for large trees and 88% for small trees. The non-converging simulations were not considered for any of these 196 

methods, i.e. 5% simulations for small trees and 24% for large trees. 197 

The process of model selection with a neural network is as fast as the parameter inference, i.e. 6*10-5 CPU hours (~0.2 198 

seconds) per tree. This represents a practical, fast and accurate way to perform model selection in phylodynamics. 199 

Neural networks are well suited to learn complex models 200 

To assess the complexity of learned models, we explored other inference methods, namely: 1] linear regression as a 201 

baseline model trained on summary statistics (LR-SS); 2] FFNN trained directly on CBLV (FFNN-CBLV); 3] CNN 202 

trained on Compact Random Vector (CNN-CRV), for which the trees were randomly rotated, instead of being 203 

ladderized as in Fig. 2 (ii); and 4] two “null models”. 204 

LR-SS yielded inaccurate results even for the BD model (Supplementary Table 2), which seems to contrast with 205 

previous findings[19], where LR approach combined with ABC performed only slightly worse than BEAST2. This can 206 

be explained by the lack of rejection step in LR-SS, which enables to locally reduce the complexity of the relation 207 

between the representation and the inferred values to a linear one[18]. However, the rejection step requires a metric, 208 

e.g. the Euclidean distance, which may or may not be appropriate depending on the model and the summary statistics. 209 

Moreover, rejection has a computational cost with large simulation sets. 210 

Neural networks circumvent these problems with rejection and allow for more complex than linear relation between 211 

the tree representation and the inferred values to be captured. This also reflected in our results with FFNN-CBLV and 212 

CNN-CRV, which both proved to be generally more accurate than LR-SS. However, FFNN-CBLV was substantially 213 

less accurate than CNN-CBLV (Supplementary Table 2, Supplementary Fig. 5). This indicates the presence of 214 

repeated patterns that may appear all along the vectorial representation of trees, such as subtrees of any size, which 215 
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are better extracted by CNN than by FFNN. In its turn, CNN-CRV required larger training sets to reach an accuracy 216 

comparable to CNN-CBLV (Supplementary Fig. 5), showing that the ladderization and bijectivity of the CBLV 217 

helped the training. 218 

To assess how much information is actually learned, we also measured the accuracy of two “null models”: FFNN 219 

trained to predict randomly permuted target values; and a random predictor, where parameter values were sampled 220 

from prior distributions. Results show that the neural networks extract a considerable amount of information for most 221 

of the estimated parameters (Supplementary Table 2). The most difficult parameter to estimate was the fraction of 222 

superspreading individuals in BDSS model, with accuracy close to random predictions with small trees, but better 223 

performance as the tree size increases (Supplementary Fig. 7). 224 

Showcase study of HIV in MSM subpopulation in Zurich 225 

The Swiss HIV Cohort is densely sampled, including more than 16,000 infected individuals[24]. Datasets extracted 226 

from this cohort have often been studied in phylodynamics[8,25]. We studied a dataset of MSM subpopulation from 227 

Zurich, which corresponds to a cluster of 200 sequences studied previously by Rasmussen et al.[25], who focused on 228 

the degree of connectivity and its impact on transmission between infected individuals. Using coalescent approaches, 229 

they detected the presence of highly connected individuals at the beginning of the epidemic and estimated R0 to be 230 

between 1.0 and 2.5. We used their tree as input for neural networks and BEAST2. 231 

To perform analyses, one needs an estimate of the sampling probability. We considered that: 1] the cohort is expected 232 

to include around 45% of Swiss individuals infected with HIV[24]; and 2] the sequences were collected from around 233 

56% of individuals enrolled in this cohort[34]. We used these percentages to obtain an approximation of sampling 234 

probability of 0.45*0.56 ~ 0.25 and used this value to analyze the MSM cluster. To check the robustness of our 235 

estimates, we also used sampling probabilities of 0.2 and 0.3 in our estimation procedures. 236 

First, we performed a quick sanity check considering the resemblance of HIV phylogeny with simulations obtained 237 

with each model. All three considered birth-death models passed this check (Supplementary Fig. 8). Then, we 238 

performed model selection (BD vs BDEI vs BDSS) and parameter estimation using our two methods and BEAST2 239 

(Fig. 4 a-b). Finally, we checked the model adequacy with a second, more specific, sanity check, derived from the 240 

inferred values (Fig. 4 c). 241 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.11.435006doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.435006


11 

 

Model selection with CNN-CBLV and FFNN-SS resulted in the acceptance of BDSS (probability of 1.00 versus 0.00 242 

for BD and BDEI), and the same result was obtained with BEAST2 and AICM. These results are consistent with what 243 

is known about HIV epidemiology, namely, the presence of superspreading individuals in the infected 244 

subpopulation[35] and the absence of incubation period without infectiousness such as is emulated in BDEI[36]. 245 

We then inferred parameter values under the selected BDSS model (Fig. 4 a-b). The values obtained with FFNN-SS 246 

and CNN-CBLV are close to each other and the 95% CI are nearly identical. We inferred an R0 of 1.6 and 1.7, and an 247 

infectious period of 10.2 and 9.8 years, with FFNN-SS and CNN-CBLV, respectively. Transmission by 248 

superspreading individuals was estimated to be around 9 times higher than by normal spreaders and superspreading 249 

individuals were estimated to account for around 7-8% of the population. Our R0 estimates are consistent with the 250 

results of a previous study[8] performed on data from the Swiss cohort, and the results of Rasmussen et al.[25] with this 251 

MSM dataset[25]. The infectious period we inferred is a bit longer than that reported by Stadler et al., who estimated 252 

it to be 7.74 [95% CI 4.39-10.99] years[8]. The infectious period is a multifactorial parameter depending on treatment 253 

efficacy and adherence, the times from infection to detection and to the start of treatment, etc. In contrast to the study 254 

by Stadler et al., whose data were sampled in the period between 1998 and 2008, our dataset covers also the period 255 

between 2008 and 2014, during which life expectancy of patients with HIV was further extended[37]. This may explain 256 

why we find a longer infectious period (with compatible CIs). Lastly, our findings regarding superspreading are in 257 

accordance with those of Rassmussen et al.[25], and with a similar study in Latvia[5] based on 40 MSM sequences 258 

analyzed using a likelihood approach. Although the results of the latter study may not be very accurate due to the 259 

small dataset size, they still agree with ours, giving an estimate of a superspreading transmission ratio of 9, and 5.6% 260 

of superspreading individuals. Our estimates were quite robust to the choice of sampling probability, e.g. R0 = 1.54, 261 

1.60 and 1.66, with a sampling probability of 0.20, 0.25 and 0.30, respectively (Fig. 4b). 262 

Compared to BEAST2, the estimates of the infectious period and R0 were similar for both approaches, but BEAST2 263 

estimates were higher for the transmission ratio (14.5) and the superspreading fraction (10.6%). These values are in 264 

accordance with the bias of BEAST2 estimates that we observed in our simulation study, that is, positive bias for both 265 

the superspreading fraction and the transmission ratio, while our estimates were nearly unbiased (Supplementary 266 

Table 3). 267 
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Finally, we checked the adequacy of BDSS model by resemblance of HIV phylogeny to simulations. Using inferred 268 

95% CI, we simulated 10,000 trees and performed Principal Component Analysis on SS, to which we projected the 269 

SS of our HIV phylogeny. This was close to simulations, specifically close to the densest swarm of simulations, 270 

confirming adequacy of both the inferred values and the selected model (Fig. 4 c). 271 

PhyloDeep: Python package for parameter inference and model selection 272 

FFNN-SS and CNN-CBLV parameter inference, model selection, 95% CI computation and a priori check are 273 

available via Python package PhyloDeep at https://pypi.org. They cover the parameter subspace as described in 274 

Supplementary Table 1. Version 0.2.5 is used for all results in this article. The input is a dated phylogenetic tree with 275 

50-500 tips and presumed sampling probability. The output is a PCA plot for a priori check, and a csv file with 276 

probabilities for each model (for model selection) and point estimates and 95% CI values (for parameter inference). 277 
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PERSPECTIVES 278 

In this manuscript, we presented new methods for parameter inference and model selection in phylodynamics based 279 

on deep learning from phylogenies. Using extensive simulations, we established that these methods are at least as 280 

accurate as the state-of-the-art methods. The main advantage of our approaches is the ease of deployment on new 281 

models and computational speed once the networks are trained. We also applied our deep learning methods to the 282 

Swiss HIV dataset from MSM and obtained results consistent with current knowledge of HIV epidemiology. 283 

Using BEAST2, we obtained inaccurate results for some of the BDEI and BDSS simulations. While BEAST2 has 284 

been successfully deployed on many models and tasks, it clearly suffers from approximations in likelihood 285 

computation with these two models. However, these will likely improve in near future. In fact, we already witnessed 286 

substantial improvements done by BEAST2 developers to the BDSS model, while carrying out this research. 287 

Both of our neural network approaches circumvent likelihood computation and thereby represent a new way of using 288 

molecular data in epidemiology, without the need to solve large systems of differential equations. This opens the door 289 

to novel phylodynamics models, which would make it possible to answer questions previously too complex to ask. 290 

This is especially true for CBLV representation, which does not require the design of new summary statistics, when 291 

applied to trees generated by a new mathematical model. 292 

A direction of further research is to extend our approach to the family of phylodynamic models based on structured 293 

coalescent[38,39], rather than birth-death models. Our methods could also be extended to the macroevolutionary birth-294 

death models, which are used to study the diversification dynamics of species, and are closely related to 295 

epidemiological models[40]. Other fields related to phylodynamics, such as population genetics, have been developing 296 

likelihood-free methods[41], for which our approach might serve as a source of inspiration, too. 297 

Other advantages of the deep learning approaches are that they yield close to immediate estimates and apply to trees 298 

of varying size. Collection of pathogen genetic data became standard in many countries, resulting in densely sampled 299 

infected populations. Examples of such datasets include HIV in Switzerland and UK[24,42], 2013 Ebola epidemics[6], 300 

several Influenza epidemics and the 2019 SARS-Cov-2 pandemic (www.gisaid.org)[43]. For many such pathogens, 301 

trees can be efficiently and accurately inferred[44-46] and dated[47-49] using standard approaches. When applied to such 302 

dated trees, our methods can perform model selection and provide accurate phylodynamic parameter estimates within 303 
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a fraction of a second. Such properties are desirable for phylogeny-based real-time outbreak surveillance methods, 304 

which must be able to cope with the daily influx of new samples, and thus increasing size of phylogenies, as the 305 

epidemic unfolds, in order to study local outbreaks and clusters, and assess and compare the efficiency of healthcare 306 

policies deployed in parallel.  307 
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FIGURE LEGENDS 424 

Fig. 1: Birth-death models 425 

 426 

a, Birth-death model (BD)[8,9], b, birth-death model with Exposed-Infectious individuals (BDEI)[5,10,11] and c, birth-427 
death model with SuperSpreading (BDSS)[5,12]. BD is the simplest generative model, used to estimate R0 and the 428 
infectious period (1/γ)[8,9]. BDEI and BDSS are extended version of BD. BDEI enables to estimate latency period (1/ε) 429 
during which individuals of exposed class E are infected, but not infectious[5,10,11]. BDSS includes two populations 430 
with heterogeneous infectiousness: the so-called superspreading individuals (S) and normal spreaders (N). 431 
Superspreading individuals are present only at a low fraction in the population (fss) and may transmit the disease at a 432 
rate that is multiple times higher than that of normal spreaders (rate ratio = Xss)[5,12]. Superspreading can have various 433 
complex causes, such as the heterogeneity of immune response, disease progression, co-infection with other diseases, 434 
social contact patterns or risk behavior, etc. Infectious individuals I (superspreading infectious individuals IS and 435 
normal spreaders IN for BDSS), transmit the disease at rate β (βX,Y for an individual of type X transmitting to an 436 
individual of type Y for BDSS), giving rise to a newly infected individual. The newly infected individual is either 437 
infectious right away in BD and BDSS or goes through an exposed state before becoming infectious at rate ε in BDEI. 438 
Infectious individuals are removed at rate γ. Upon removal, they can be sampled with probability s, becoming of 439 
removed sampled class R. If not sampled upon removal, they move to non-infectious unsampled class U. 440 
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Fig. 2: Pipeline for training neural networks on phylogenies 441 

 442 

a, Tree representations. a (i), simulated binary trees. Under each model from Fig. 1, we simulate many trees of 443 
variable size (50 to 200 tips for ‘small trees’ and 200 to 500 tips for ‘large trees’). For illustration, we have here a tree 444 
with 5 tips. We encode the simulations into two representations, either a (ii-v), in a complete and compact tree 445 
representation called ‘Compact Bijective Ladderized Vector’ abbreviated as CBLV or a (vi) with summary statistics 446 
(SS). CBLV is obtained through a (ii) ladderization or sorting of internal nodes so that the branch supporting the most 447 
recent leaf is always on the left and a (iii) an inorder tree traversal, during which we append to a real-valued vector 448 
for each visited internal node its distance to the root and for each visited tip its distance to the previously visited 449 
internal node. We reshape this representation into a (iv), an input matrix in which the information on internal nodes 450 
and leaves is separated into two rows. Finally, a (v), we complete this matrix with zeros so that the matrices for all 451 
simulations have the size of largest simulation matrices. For illustration purpose, we here consider that the maximal 452 
tree size covered by simulations is 10, and the representation is thus completed with 0s accordingly. SS consists of a 453 
(vi), a set of 98 statistics: 83 published in Saulnier et al.[19], 14 on transmission chains and 1 on tree size. The 454 
information on sampling probability is added to both representations. b, Neural networks are trained on these 455 
representations to estimate parameter values or to select the underlying model. For SS, we use, b (i), a deep feed-456 
forward neural network (FFNN) of funnel shape (we show the number of neurons above each layer). For the CBLV 457 
representation we train, b (ii), Convolutional Neural Networks (CNN). The CNN is added on top of the FFNN. The 458 
CNN combines convolutional, maximum pooling and global average pooling layers, as described in detail in Methods. 459 
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Fig. 3: Assessment of deep learning accuracy 460 

 461 

Comparison of inference accuracy by BEAST2 (in blue), deep neural network trained on SS (in orange) and 462 
convolutional neural network trained on the CBLV representation (in green) on 100 test trees. The size of training and 463 
testing trees was uniformly sampled between 200 and 500 tips. We show the relative error for each test tree. The error 464 
is measured as the normalized distance between the median a posteriori estimate by BEAST2 or point estimates by 465 
neural networks and the target value for each parameter. We highlight simulations for which BEAST2 did not 466 
converge and whose values were thus set to median of the parameter subspace used for simulations by depicting them 467 
as red squares. We further highlight the analyses with a high relative error (>1.00) for one of the estimates as black 468 
diamonds. We compare the relative errors for a, BD-simulated, b, BDEI-simulated and c, BDSS-simulated trees. 469 
Average relative error is displayed for each parameter and method in corresponding color below each figure. The 470 
average error of a FFNN trained on summary statistics but with randomly permuted target is displayed as black dashed 471 
line and its value is shown in bold black below the x-axis. The accuracy of each method is compared by paired z-test; 472 
P < 0.05 is shown as thick full line; non-significant is not shown. 473 
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Fig. 4: Parameter inference on HIV data sampled from MSM Zurich 474 

 475 

Inference on Zurich HIV MSM dataset. Using BDSS model with BEAST2 (in blue), FFNN-SS (in orange), and 476 
CNN-CBLV (in green) we infer, a (i), basic reproduction number, a (ii), infectious period (in years), a (iii), 477 
superspreading transmission ratio and, a (iv), superspreading fraction. For FFNN-SS and CNN-CBLV, we show the 478 
distributions and the 95% CIs obtained with a fast approximation of the parametric bootstrap (Methods). For 479 
BEAST2, the distributions and 95% CI were obtained considering all reported steps (9,000 in total) excluding the 10% 480 
burn-in. Arrows show the position of the original point estimates obtained with FFNN-SS and CNN-CBLV and the 481 
median a posteriori estimate obtained with BEAST2. Circles show lower and upper boundaries of 95% CI. b, these 482 
values are reported in a table, together with point estimates obtained while considering lower and higher sampling 483 
probability (0.20 and 0.30). c, 95% CI boundaries obtained with FFNN-SS are used to perform an a posteriori model 484 
adequacy check. We simulated 10,000 trees with BDSS while resampling each parameter from a uniform distribution, 485 
whose upper and lower bounds were defined by the 95% CI. We then encoded these trees into SS, performed PCA 486 
and projected SS obtained from the HIV MSM phylogeny (red stars) on these PCA plots. We show here the projection 487 
into c (i), first two components of PCA, c (ii), the 3rd and 4th components, together with the associated percentage of 488 
variance displayed in parentheses. Warm colors correspond to high density of simulations. 489 
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TREE REPRESENTATION USING SUMMARY STATISTICS (SS) 534 

We use a set of 98 summary statistics (SS), to which we add the sampling probability, summing to a vector of 99 535 

values. 536 

Saulnier et al. summary statistics 537 

We use the 83 SS proposed by Saulnier et al.[19]: 538 

 8 SS on tree topology 539 

 26 SS on branch lengths 540 

 9 SS on Lineage-Through-Time (LTT) plot 541 

 40 SS providing the coordinates of the LTT plot 542 

The computing time of these statistics grows linearly with tree size. For details, see the original paper. 543 

Additional summary statistics 544 

In addition to Saulnier et al.[19] statistics, we designed 14 SS on transmission chains. Moreover, we provide the number 545 

of tips in the tree as input resulting in 83+14+1 = 98 SS in total. 546 

The statistics on transmission chains are designed to capture information on the superspreading population. A 547 

superspreading individual transmits to more individuals within a given time period than a normal spreader. We thus 548 

expect that with superspreading individuals we would have shorter transmission chains. To have a proxy for the 549 

transmission chain length, we look at the sum of 4 subsequent shortest times of transmission for each internal node. 550 

This gives us a distribution of time-durations of 4-transmission chains. We assume that information on the 551 

transmission dynamics of superspreading individuals is retained in the lower, i.e. left, tail of 4-transmission-chain 552 

lengths distribution which contains relatively many transmissions with short time to next transmission), while the 553 

information on normal spreaders should be present in the rest of the distribution. 554 

The implementation of this 4-transmission-chain SS is the following. For each internal node, we sum the distances 555 

from the internal node to its closest descendant nodes, descending exactly four times, that is, we take first the distance 556 

from the given internal node to its closest child node (of level 1), then from the (level 1) child node, we take its distance 557 

to its own closest child node (of level 2), etc. If one of the closest descendant nodes is a tip (except for the last one in 558 
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the chain), we do not retain any value for the given internal node. Other options, like the shortest 4-edge pathway, 559 

could have been used as well and would likely give comparable results. 560 

On the obtained distribution of 4-transmission-chain lengths, we compute 14 statistics: 561 

 number of 4-transmission chains in the tree 562 

 9 deciles of 4-transmission-chain lengths distribution 563 

 minimum and maximum values of 4-transmission-chain lengths distribution 564 

 mean value of 4-transmission-chain lengths 565 

 variance of 4-transmission-chain lengths 566 

Adding the same summary statistics but on chains comprising 2, 3 and 5 consecutive transmissions had a negligible 567 

impact on parameter inference accuracy (data not shown). 568 

COMPLETE AND COMPACT TREE REPRESENTATION (CBLV) 569 

Simulated dated trees are encoded in the form of real-valued vectors, which are then used as input for the neural 570 

networks. The representation of a tree with n tips is a vector of length 2n-1, where one single real-valued scalar 571 

corresponds to one internal node or tip. This representation thus scales linearly with the tree size. The encoding is 572 

achieved in two steps: tree ladderization and tree traversal. 573 

Tree ladderization 574 

The tree ladderization consists of ordering each node's children. Child nodes are sorted based on the sampling time of 575 

the most recently sampled tip in their subtrees: for each node, the branch supporting the most recently sampled subtree 576 

is rotated to the left, as in Fig. 2 a (i-ii). 577 

We considered several alternatives with different criteria for child (subtree) sorting instead of ladderization: sampling 578 

time of the most anciently sampled tip, subtree length (i.e. sum of all branch lengths including the rooting branch), 579 

diversification (i.e. number of tips), normalized branch lengths (i.e. subtree length divided by the number of tips), etc. 580 

These did not yield better results than CBLV. We show in Supplementary Fig. 5 the comparison of CBLV with 581 

Compact Random Vector (CRV), for which internal nodes were sorted randomly before the tree traversal, showing 582 

that CRV yields poorer results than CBLV, as expected. 583 
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Tree traversal and encoding 584 

Once the tree is sorted, we perform an inorder tree traversal, using a standard recursive algorithm from the depth first 585 

family[30]. When visiting a tip, we add its distance to the previously visited internal node or its distance to the root, for 586 

the tip that is visited first (i.e. the tree height due to ladderization). When visiting an internal node, we add its distance 587 

to the root. Examples of encoding are shown in Fig. 2 a (ii-iii). This gives us the Compact Bijective Ladderized Vector 588 

(CBLV). We then separate information relative to tips and to internal nodes into two rows (Fig. 2 a (iv)) and complete 589 

the representation with zeros until reaching the size of the largest simulated tree for the given simulation set (Fig. 2 a 590 

(v)). 591 

Properties of CBLV 592 

CBLV has favorable features for deep learning. Ladderization does not actually change the input tree (phylogenies 593 

are unordered trees), but by ordering the subtrees it standardizes the input data and facilitates the learning phase, as 594 

observed with CRV (Supplementary Fig. 5). Then, the inorder tree traversal procedure is a bijective transformation, 595 

as it transforms a tree into a vector, from which the (ordered) tree can be reconstructed unambiguously, using a simple 596 

path-agglomeration algorithm shown in Supplementary Fig. 1. CBLV is “as concise as possible” being composed of 597 

2n-1 real values Fig. 2 a (iii), where n is the number of tips. A rooted tree has 2n-2 branches, and thus 2n-2 entries are 598 

needed to represent the branch lengths. In our 2n-1 vectorial encoding of trees, we not only represent the branch 599 

lengths, but also the tree topology using only 1 additional entry. 600 

The compactness and bijectivity of tree representation reduce the number of simulations required for training the 601 

neural network (Supplementary Fig. 5). This is because the number of parameters to be trained remains reasonable 602 

with compact representation. Moreover, the networks do not need to learn that several different inputs correspond to 603 

the same tree.  604 

Our neural networks are intended to apply to trees of variable sizes, e.g. trees of 200 to 500 tips in our experiments 605 

with large trees. Thus, they are trained on representations of different lengths (e.g. a vector of length 399 for a tree of 606 

200 tips), that we complete with zeroes to reach the length of the largest trees (i.e. 999 for 500 tips). We add an 607 

additional zero to obtain a two-row matrix (500*2 for 500 tips).  608 
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Alternative tree representations 609 

Our CBLV tree representation could likely be improved to ease the learning phase and obtain even better parameter 610 

estimates. We tested several alternative representations, some inspired by the polynomial representation of small 611 

subtrees[26,27], the Laplacian spectrum[28] and additive distance matrices that are equivalent to trees[50]. None was by 612 

far as convincing as CBLV, which is likely due to their large size (n2 for distance matrices and polynomials) or 613 

numerical instabilities and potential loss of information (for Laplacian spectrum).  614 

Moreover, the margin for improvement of the accuracy of CNN-CBLV for the BD model, and likely for other models, 615 

is low. This is due to the observation that the accuracy of CNN-CBLV is the similar to that of likelihood-based 616 

approaches for the BD model, and the fact that we have an analytical likelihood formula for the BD model, making 617 

the likelihood-based approach itself optimal[8,9].  618 

TREE RESCALING 619 

Before encoding, the trees are rescaled so that the average branch length is 1, that is, each branch length is divided by 620 

the average branch length of the given tree, called rescale factor. The values of the corresponding time-dependent 621 

parameters, i.e. infectious period and incubation period, are divided by the rescale factor too. The NN is then trained 622 

to predict these rescaled values. After parameter prediction, the predicted parameter values are multiplied by the 623 

rescale factor and thus rescaled back to the original time scale. 624 

This step enables us to overcome problems of arbitrary time scales of input trees and makes a pre-trained NN more 625 

generally applicable. More specifically, an input tree with a time scale in days will be associated naturally with the 626 

same output as the same tree with a time scale in years, since both these trees will be rescaled to the same intermediate 627 

tree of average branch length of 1. Rescaling thus makes it possible to apply the same pre-trained NN to phylogenies 628 

reconstructed from sequences of a pathogen associated with an infectious period on the scale of days (e.g. EboV) or 629 

years (e.g. HIV), without the need to simulate new phylogenies and train a new NN.  630 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.11.435006doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.435006


30 

 

REDUCTION AND CENTERING OF SUMMARY STATISTICS REPRESENTATION 631 

Before training our NN and after having rescaled the trees to unit average branch length (see the sub-section above), 632 

we reduce and center every summary statistic by subtracting the mean and scaling to unit variance. To achieve this, 633 

we use the standard scaler from the scikit-learn package[51], which is fitted to the training set. 634 

PARAMETER AND MODEL INFERENCE USING NEURAL NETWORKS 635 

We implemented deep learning methods in Python 3.6 using Tensorflow 1.5.0[52], Keras 2.2.4[53] and scikit-learn 636 

0.19.1[51] libraries. For each network, several variants in terms of number of layers and neurons, activation functions, 637 

regularization, loss functions and optimizer, were tested. In the end, we decided for two specific architectures that best 638 

fit our purpose: one deep FFNN trained on SS and one CNN trained on CBLV tree representation. 639 

Deep feedforward neural network architecture for SS 640 

The network consists of one input layer (of 99 input nodes both for trees with 50-199 and 200-500 tips), 4 sequential 641 

hidden layers organized in a funnel shape with 64-32-16-8 neurons and 1 output layer of size 2-4 depending on the 642 

number of parameters to be estimated. The neurons of the last hidden layer have linear activation, while others have 643 

exponential linear activation[54]. 644 

 645 

Architecture: Feedforward neural network architecture. Example of FFNN trained on large trees to estimate the parameters 646 

of the BD model (R0 and infectious period 1/γ). ‘Dense’ layer means that for each neuron, all the inputs are multiplied by 647 

learned weights, summed together with the bias term. The activation function is then applied to the weighted sum before being 648 

output to the next layer. Dense_1 to dense_4 are layers with neurons of exponential linear activation, while dense_5 is composed 649 

either of softmax (in case of model selection) or linear neurons (in case of parameter estimation). The number of trainable 650 
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parameters in each layer is displayed (Param #): for example in the first layer, we have 99 input values and 1 bias for each of 651 

the 64 neurons, giving us in total (99+1)*64=6,400 trainable parameters. Output by Keras[53], the ‘None’ in the ‘Output Shape’ 652 

means the network can input more than one training example at the time and that there is no constraint on the batch size (hence 653 

‘None’). 654 

Deep convolutional neural network for CBLV 655 

The CNN consists of one input layer (of 400 and 1002 input nodes for trees with 50-199 and 200-500 tips, 656 

respectively). This input is then reshaped into a matrix of size of 201*2 and 501*2, for small and large trees, 657 

respectively, with entries corresponding to tips and internal nodes separated into separate rows (and one extra column 658 

with one entry in each row corresponding to the sampling probability). Then, there are two 1D convolutional layers 659 

of 50 kernels each, of size 3 and 10, respectively, followed by max pooling of size 10 and another 1D convolutional 660 

layer of 80 kernels of size 10. After the last convolutional layer, there is a GlobalPoolingAverage1D layer and a FFNN 661 

of funnel shape (64-32-16-8 neurons) with the same architecture and setting as the NN used with SS. 662 

Neural network setting and training 663 

For both NNs, we use the Adam optimisation algorithm[55] as optimizer and the Mean Absolute Percentage Error 664 

(MAPE) as loss function. The batch size is set to 8,000. To train the network, we split the simulated dataset into 2 665 

groups: [1] proper training set (3,990,000 examples); [2] validation set (10,000).  666 

Preventing overfitting: Early stopping and Dropout 667 

To prevent overfitting during training, we use: [1] the early stopping algorithm evaluating MAPE on a validation set; 668 

and [2] dropout that we set to 0.5 in the feed-forward part of both NNs[56] (0.4, 0.45, 0.55 and 0.6 values were tried 669 

for basic BD model without improving the accuracy). 670 

Neural networks for model selection 671 

For model selection, we use the same architecture for FFNN-SS and CNN-CBLV as those for parameter inference 672 

described above. The only differences are: [1] the cost function: categorical cross entropy and [2] the activation 673 

function used for the output layer, that is, softmax function (of size 2 for small trees, selecting between BD and BDEI 674 

model, and of size 3 for large trees, selecting between BD, BDEI and BDSS). As we use the softmax function, the 675 

outputs of prediction are the estimated probabilities of each model, summing to 1.  676 
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The FFNN-SS and CNN-CBLV are trained on 8*106 trees in the small tree setting (4*106 trees per model, BD and 677 

BDEI). In the large tree setting, the FFNN-SS is trained on 12*106 trees (4*106 trees per model, BD, BDEI and BDSS) 678 

and the CNN-CBLV is trained on 9*106 trees (3*106 trees per model, BD, BDEI and BDSS), instead of 12*106 for 679 

GPU limitation purposes. 680 

CONFIDENCE INTERVALS (95% CI) 681 

Computation of 95% CI 682 

We compute 95% CI using parametric bootstrap. To facilitate the deployment and speed-up the computation, we 683 

perform an approximation using a separate set of 1,000,000 simulations for calculation of CI. For each simulation in 684 

the CI set, we store the true parameter values (i.e. values with which we simulated the tree) and the parameter values 685 

predicted with both of our methods. This large dataset of true/predicted values is used to avoid new simulations, as 686 

required with the standard parametric bootstrap. 687 

For a given simulated or empirical tree T, we obtain a set of predicted parameter values, {p}. The CI computation 688 

procedure searches among stored data those that are closest to T in terms of tree size, sampling probability and 689 

predicted values. We first subset: 690 

  10% of simulations within the CI set, which are closest to T in terms of size (number of tips), thus obtaining 691 

100,000 CI sets of true/predicted parameter values. 692 

 Amongst these, 10% of simulations that are closest to T in terms of sampling probability. 693 

We thus obtain 10,000 CI sets of real/predicted parameter values, similar in size and sampling probability to T. For 694 

each parameter value p predicted from T, we identify the 1,000 nearest neighboring values amongst the 10,000 true 695 

values of the same parameter available in the CI sets, 𝑅𝐶𝐼 =  {𝑟𝑖=1,1000}, and keep the corresponding predicted values, 696 

𝑃𝐶𝐼 =  {𝑝𝑖=1,1000}. We then measure the errors for these nearest neighbors as 𝐸𝐶𝐼 =  {𝑒𝑖 = 𝑝𝑖 − 𝑟𝑖}. We center these 697 

errors around p, using the median of errors, 𝑚𝑒𝑑𝑖𝑎𝑛(𝐸𝐶𝐼), which yields the distribution of errors for given prediction 698 

𝑝: 𝐷 =  {𝑝 +  𝑒𝑖  −  𝑚𝑒𝑑𝑖𝑎𝑛(𝐸𝐶𝐼)}, from which we extract the 95% CI around p. Individual points in the obtained 699 

distribution that are outside of the parameter ranges covered through simulations are set to the closest boundary value 700 

of the parameter range. For example, for fSS, if for a point in the distribution we obtain a value lower than 0.05, we set 701 

the value of that point to 0.05; and if we obtain a value larger than 0.20, we set it to 0.20. We undertake this procedure 702 
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for all parameters except for the time related ones, that is, infectious and incubation period as these depend on the time 703 

scaling. The width of our 95% CIs is defined as the distance between the 2.5% and 97.5% percentile. 704 

Assessment of 95% CI coverage and width 705 

To assess this fast implementation of the parametric bootstrap, we used the test set of 10,000 simulations (and 100 706 

simulations for comparison with BEAST2 95% CI). We measured the coverage being defined as the fraction of 707 

simulations where the true/target parameter values are inside the obtained 95% CI: 708 

95% CI accuracy =  
# true values inside 95% CI

# simulations
 709 

We applied the same criteria for BEAST2. For comparison of all methods, we excluded BDEI and BDSS simulations 710 

for which BEAST2 did not converge after 10 million steps. To draw BEAST2 CIs, we discarded the burn-in, i.e. the 711 

first 10% of the MCMC, and calculated the CI on the remaining part of the chain. The CI width and coverage within 712 

the CIs obtained either by NNs or BEAST2 are reported in Supplementary Table 4. 713 

There exists a plethora of approaches for assessment of uncertainty and CI estimation. For example, [1] in a similar 714 

ABC context, the use of neighboring trees (based on the Euclidean distance, not applicable to CBLV and questionable 715 

with SS) combined with a regression-based correction similar to that explained above[19,20]; [2] a (non-approximated) 716 

parametric bootstrap[56]; [3] predicting values from a distribution of trees reconstructed with Bayesian methods[10]; etc. 717 

We chose an approximation of parametric bootstrap for its easy deployability, speed, coverage and width of produced 718 

CIs. The easy deployability comes from the fact that CIs are based on pre-calculated data stored in our CI set. The 719 

speed of the method comes from it not requiring simulations of new trees, and thus producing CIs within 2-4 seconds. 720 

The coverage and width are comparable to those of BEAST2 (Sup. Table 4), a Bayesian method, intended to estimate 721 

the distribution of parameters and the uncertainty of inferences, with high computational cost. 722 

MODEL ADEQUACY 723 

A priori check 724 

We performed a sanity check using the SS of the test set simulations and the SS measured on the empirical HIV 725 

phylogeny. We reduced and centered the SS and performed a Principal Component Analysis (PCA) using the PCA 726 

function from the scikit-learn[51] package. 727 
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We highlighted the datapoint corresponding to the Zürich HIV MSM phylogeny in Supplementary Fig. 8, for each 728 

model (BD, BDEI and BDSS). Dissemblance between the simulations and the HIV phylogeny would manifest by this 729 

datapoint being outside the distribution corresponding to the simulations. 730 

A posteriori check 731 

We performed a test analogous to the a priori model adequacy check. This time, instead of using the test set as 732 

representative of simulations, we simulated 10,000 additional simulations under the selected BDSS model. Parameter 733 

values were resampled from uniform distribution with boundaries given by the 95% CIs, and sampling probability 734 

fixed to presumed value of 0.25 (Fig. 4). 735 

MODELS 736 

The models we used for tree simulations are represented in the form of flow diagrams in Fig. 1. We simulated dated 737 

binary trees for [1] the training of NNs and [2] accuracy assessment of parameter estimation and model selection. We 738 

used the following three individual-based phylodynamic models: 739 

Constant rate birth-death model with incomplete sampling  740 

This model (BD[8,9], Fig. 1 a) contains three parameters and three compartments: infectious (I), removed with sampling 741 

(R) and removed unsampled (U) individuals. Infection takes place at rate β. Infectious individuals are removed with 742 

rate γ. Upon removal, an individual is sampled with probability s. 743 

For simulations, we re-parameterized the model in terms of: basic reproduction number, R0; infectious period, 1/γ; 744 

sampling probability, s; and tree size, t. We then sampled the values for each simulation uniformly at random in the 745 

ranges given in Supplementary Table 1. 746 

Birth-death model with exposed-infectious classes 747 

This model (BDEI[10-12], Fig. 1 b) is a BD model extended through the presence of an exposed class. More specifically, 748 

this means that each infected individual starts as non-infectious (E) and becomes infectious (I) at incubation rate ε. 749 

BDEI model thus has four parameters (β, γ, ε and s) and four compartments (E, I, R and U).  750 
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For simulations, we re-parameterized the model similarly as described for BD, set the ε value via 1/γ and incubation 751 

ratio (=ε/γ). We sampled all parameters, including ε/γ, from a uniform distribution, just as with BD.  752 

Birth-death model with superspreading 753 

This model (BDSS[5,10,11], Fig. 1 c) accounts for heterogeneous infectious classes. Infected individuals belong to one 754 

of two infectious classes (IS for superspreading and IN for normal spreading) and can transmit the disease by giving 755 

birth to individuals of either class, with rates βS,S and βS,N for IS transmitting to IS and to IN, respectively, and βN,S and 756 

βN,N for IN transmitting to IS and IN, respectively. However, there is a restriction on parameter values: βS,S  ∗  βN,N  =757 

 βS,N ∗ βN,S. There are thus superspreading transmission rates βS,_ and normal transmission rates βN,_ that are XSS (= 758 

βS,S

βN,S
=

βS,N

βN,N
) times higher for superspreading. At transmission, the probability of the recipient to be superspreading is 759 

fss (=
βS,S

βS,S+βS,N
), the fraction of superspreading individuals at equilibrium. We consider that both IS and IN populations 760 

are otherwise indistinguishable, that is, both populations share the same infectious period (1/γ)[5,10,11]. The model thus 761 

has six parameters, but only five need to be estimated to fully define the model[5,10].  762 

For simulations, we chose parameters of epidemiological interest for re-parameterization: basic reproduction number 763 

𝑅0 (=  
βS,S+βN,N

γ
), infectious period 1/γ, fSS, Xss and sampling probability s. In our simulations, we used uniform 764 

distributions for these 5 parameters, just as with BD and BDEI (Supplementary Table 1). 765 

SIMULATIONS 766 

For the parameters R0, 1/γ, and s, that are common to all three birth-death models, the same value boundaries were 767 

used across all models (Supplementary Table 1). We considered two spans of tree size: ‘small trees’ with 50 to 199 768 

tips, and ‘large trees’ with 200 to 500 tips. We then sampled parameter values uniformly at random within these 769 

parameter boundaries with standard Latin-hypercube sampling[57] using PyDOE package. We created 3,990,000 770 

parameter sets for training, 10,000 for validation and early stopping, another 10,000 for testing parameter inference 771 

and model selection (comparison with BEAST2 used a subset of 100, for computing time reasons), and 1,000,000 772 

parameter sets for fast computation of CIs. 773 

With these parameter sets, we simulated trees under each birth-death model using our implementation in Python of 774 

Gillespie algorithm[58], based on a standard forward simulator. Comparable accuracies (as in Fig. 3 and 775 
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Supplementary Fig. 2, both for BEAST2 and our methods) were reached on test simulations obtained with a well-776 

established, but slower, simulator TreeSim[4,5,7] (data not shown).  777 

Each simulation started with one infectious individual (the class was chosen randomly under the BDSS model) and 778 

stopped when we obtained a tree with the given number of sampled individuals (tips). If the epidemic died away 779 

stochastically, that is, there was no more infectious tips left due to stochastic death before reaching the given tree size, 780 

we re-initialized the simulation up to 100 times. Only around 11% of simulations reached more than 2 iterations (20% 781 

for BDSS), and less than 0.5% reached more than 50 iterations for all models. If still no tree of given size was obtained 782 

after 100 iterations, we discarded the parameter set (less than 0.3% of all sets) and generated a new one to keep the 783 

desired number of simulations. This enabled us to maintain a nearly uniform coverage of parameter space, within 784 

selected parameter boundaries. 785 

METHOD COMPARISON 786 

Parameter inference with BEAST2 787 

To assess the accuracy of our methods, we compared it with a well-established Bayesian method, as implemented in 788 

BEAST2 (version 2.6.2). We used the BDSKY package[4] (version 1.4.5) to estimate the parameter values of BD 789 

simulations and the package bdmm[12,13] (version 1.0) to infer the parameter values of BDEI and BDSS. Furthermore, 790 

for the inference on BDSS simulations, instead of BEAST 2.6.2 we used the BEAST2 code up to the commit 791 

nr2311ba7, which includes important fixes to operators critical for our analyses. We set the Markov Chain Monte 792 

Carlo (MCMC) length to 5 million steps for the BD model, and to 10 million steps for the BDEI and BDSS models. 793 

The xml files and command lines are available at: 794 

https://github.com/evolbioinfo/phylodeep/tree/main/data_publication. 795 

The sampling probability was fixed during the estimation. Since the BD, BDEI and BDSS models implemented in 796 

BEAST2 do not use the same parametrizations as our methods, we needed to apply parameter conversions for setting 797 

the priors for BEAST2 inference, and for translating the BEAST2 results back to parameterizations used in our 798 

methods, in order to enable proper comparison of the results (Table 1). More specifically, the BEAST2 parameters 799 

can be converted to those used in our methods, that is, instead of infectious period and incubation period, BEAST2 800 

uses the inverse of these, namely the infectious rate and incubation rate, respectively; instead of superspreading 801 
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transmission ratio and superspreading fraction at equilibrium, it uses individual sub-component parameters R0,SS, 802 

R0,SN, R0,NS and R0,NN, which we will collectively refer to as “partial R0”. For BDSS, the BEAST2 prior was thus not 803 

the same as that of our simulations for BDSS (Table 1 and Supplementary Table 1), since BEAST2 does not infer 804 

the same parameters. We used the range of all parameter values used in our simulations to set the boundaries of 805 

uniform prior distributions of parameters inferred by BEAST2. The initial values in the MCMC were set to the medians 806 

observed in the training set. During the inference, the parameter values were constrained in the same way as in the 807 

simulations, namely, we used the following constraint 𝑅0,𝑁𝑁 ∗ 𝑅0,𝑆𝑆 =  𝑅0,𝑆𝑁 ∗ 𝑅0,𝑁𝑆 (equivalent to β𝑁,𝑁 ∗ β𝑆,𝑆 =808 

β𝑆,𝑁 ∗ β𝑁,𝑆) in the BDSS model inference. Furthermore, the effective frequency of superspreading individuals 809 

(parameter called “geo-frequencies” in bdmm) was constrained to be between 5% and 20%. Due to the parameter 810 

conversions, and despite these constraints the inferred fss and Xss can reach values outside the boundaries used for 811 

simulations, in which case we set them to the closest boundary for fair comparison with deep learning methods in Fig. 812 

3 (e.g. if the median a posteriori fss was estimated to be larger than 0.20, it was set to 0.20 and if inferred fss was less 813 

than 0.05, it was set to 0.05). The goal of this correction was to avoid penalizing BEAST2 when it converged to local 814 

minima outside of the parameter boundaries used for simulations, which are implicitly known to NNs since they were 815 

trained on simulations with parameters within these boundaries. 816 

After we obtained the parameters of interest from the original parameters estimated by BEAST2, we evaluated the 817 

Effective Sample Size (ESS) on all parameters. We reported the absolute percentage error of the median of a posteriori 818 

values, corresponding to all reported steps (reported steps being spaced by 1,000 actual MCMC steps) past the 10% 819 

burn-in. For simulations for which BEAST2 did not converge, we considered the median of the parameter distribution 820 

used for simulations (Fig. 3, Sup. Fig. 2, Sup. Tab. 2-3) or excluded them from the comparison (Sup. Tab. 2-3, 821 

values reported in brackets, Sup. Tab. 4). 822 

For the HIV application, the prior of infectious period was set to [0.1, 30] years (uniform). All the other parameters 823 

had the same prior distributions as used in simulations and shown in Table 1.  824 
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Table 1: BEAST2 priors and their relation to the parameters of interest. 825 

 826 

This table shows parameters and their prior distributions used during inference with BEAST2. We display the 827 
parameters, their definitions and priors in BEAST2, that are common to all models (in yellow), common to BD 828 
and BDEI (in red), BDEI-specific (in purple) and BDSS-specific (in green). From these parameters, we deduce 829 
the values and distributions of parameters of interest as shown in the table. Note that the parameters of 830 
epidemiological interest are basic reproduction number and infectious period for BD, BDEI and BDSS, incubation 831 
period for BDEI, and superspreading infectious ratio and fraction of superspreading individuals for BDSS. We 832 
check convergence (ESS) on all parameters and extract median a posteriori and CI value exclusively for the 833 
parameters of epidemiological interest. 834 

 835 

Model selection with BEAST2 836 

We performed model selection under BEAST2 using Akaike’s information criterion through MCMC (AICM) [32,33]. 837 

The AICM is based on the following formula:  838 

𝐴𝐼𝐶𝑀 = 2𝑠𝑙
2 − 2𝑙 839 

where l and 𝑠𝑙
2 are the sample mean and variance of the posterior log-likelihoods. The AICM is an equivalent of AIC 840 

and the model with lowest AICM value is selected. 841 
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For 100 simulations obtained with each model (BD, BDEI and BDSS for large trees, BD and BDEI for small trees), 842 

we performed parameter estimation with BEAST2 under each model, computed AICM considering the whole MCMC, 843 

but excluding 10% burn-in (i.e. 9,000 log-likelihood values for BDEI and BDSS considered in total, 4,500 for BD). 844 

The results of model selection are shown in Supplementary Fig. 3. The BDEI and BDSS simulations for which 845 

BEAST2 did not reach an ESS of 200 for all parameters were excluded from the computation of model selection 846 

accuracy for all methods. 847 

Linear regression 848 

For each model, linear regression was trained using reduced and centered summary statistics (using scikit-learn 849 

package, as with FFNN). Its bias and accuracy were assessed using the same criteria as for the NN approaches 850 

(Supplementary Tables 2-3, Supplementary Fig. 4). 851 

FFNN-CBLV 852 

We trained an FFNN on CBLV representation. The FFNN architecture was close to the one described in Architecture 853 

with one extra hidden layer, so 5 layers in total, organized in a funnel shape with 128-64-32-16-8 neurons and 1 output 854 

layer of size 2-4 depending on the number of parameters to be estimated. The setting during the training and the sizes 855 

of training, validation and testing sets were the same as for the CNN-CBLV. Its bias and accuracy were assessed using 856 

the same criteria as for other NN approaches (Supplementary Tables 2-3, Supplementary Fig. 5). 857 

TreePar 858 

We used TreePar[5] for MLE. With BD, we obtained results close to estimates under BEAST2, which is consistent 859 

with former studies[58]. TreePar[5] uses an exact analytical formula of likelihood for BD and thus these (and BEAST2) 860 

results are theoretically optimal.  861 

We also performed several trials to do parameter inference for the more complex models, i.e. BDEI and BDSS, but in 862 

a large number of cases we encountered numerical problems, e.g. underflow or overflow issues, which resulted in 863 

infinite negative log-likelihood values, and eventually failed runs. When the calculations did not fail, we found that 864 

many estimations under BDSS and BDEI had lower likelihood than estimations performed with (nested) BD on the 865 
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same input data. These numerical issues, without available solutions at the moment, were confirmed by the authors of 866 

the TreePar package. 867 

Null models 868 

To assess how much information was learned on given problem, we compared FFNN-SS and CNN-CBLV to two null 869 

models. 870 

The first null model was the FFNN trained for each model on 4,000,000 simulations using SS, but with randomly 871 

permuted target values (i.e. the initial correspondence between the SS and underlying parameter values was lost, while 872 

the range of values was conserved). We then predicted parameters for 10,000 test simulations (100 for comparison 873 

with BEAST2) and measured the mean absolute relative error (MRE, equivalent to MAPE; Supplementary Table 874 

2). In such a case, the FFNN always predicted values close to the value with the lowest value of the cost function, e.g. 875 

2.2 for parameter values uniformly sampled between 1 and 5 (and not random values inside the range). The MRE of 876 

this approach represents then the lowest MRE that machine learning approaches can have in the absence of 877 

information, but the knowledge of the parameter distribution. This can be used to get an idea of how well the trained 878 

approaches perform and how much information regarding each parameter they can extract from the data. 879 

The second null model was a set of random values sampled from the parameter ranges that were used for simulations 880 

(Supplementary Table 2). In this model, as opposed to the previous null model, there is no training phase and we do 881 

not learn the best compromise in the absence of information.  882 

PERFORMANCE ASSESSMENT 883 

Mean relative error MRE 884 

To compare the accuracy of parameter estimation, we used 100 simulated trees per model. We computed the mean 885 

absolute relative error (MRE, Fig. 3, Supplementary Table 2, Supplementary Fig. 2) between [1] the true (or target) 886 

parameter values and the predicted values for machine learning approaches; and [2] the true (or target) parameter 887 

values and the median a posteriori values obtained with BEAST2, which are more stable and accurate than maximum 888 

a posteriori values:  889 

𝑀𝑅𝐸 =
1

100
∑

𝑎𝑏𝑠(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑡𝑎𝑟𝑔𝑒𝑡𝑖)

𝑡𝑎𝑟𝑔𝑒𝑡𝑖

100
𝑖=1  . 890 
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We plotted individual absolute relative errors (RE) of predictions (Fig. 3, Supplementary Fig. 2) for each simulation 891 

i, calculated as: 892 

𝑅𝐸𝑖 =
𝑎𝑏𝑠(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑖)

𝑡𝑎𝑟𝑔𝑒𝑡𝑖

  893 

Not being limited by the computational cost for machine learning approaches, we computed the same metric but on 894 

10,000 simulations (Supplementary Figs. 4-6; results from 1,000 simulations plotted in Supplementary Fig. 7). 895 

We assessed the statistical significance of MRE differences using paired z-test. The two NN approaches were also 896 

compared using the same test, but no significant differences were found. 897 

Mean relative bias MRB 898 

To compare the bias in parameter estimation, we used 100 simulated trees per model. We computed the mean relative 899 

bias (MRB) between [1] the true (or target) parameter values and the predicted values for machine learning 900 

approaches; and [2] the true (or target) parameter values and the median a posteriori values obtained with BEAST2 901 

(Supplementary Table 3):  902 

𝑀𝑅𝐵 =
1

100
∑

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑡𝑎𝑟𝑔𝑒𝑡𝑖)

𝑡𝑎𝑟𝑔𝑒𝑡𝑖

100
𝑖=1  903 

Model selection accuracy 904 

We performed model selection with CNN-CBLV, FFNN-SS and BEAST2 on 100 simulations obtained with each 905 

model (10,000 for a sub-comparison of CNN-CBLV and FFNN-SS). Results are shown in Supplementary Fig. 3 in 906 

the form of confusion matrices, where the columns represent the true/target classes, and the rows are the predicted 907 

classes. 908 

We then computed the accuracy of each method: 909 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
# 𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 910 
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For BEAST2 model selection and large trees, the chain did not converge (displayed as “ESS<200” in Supplementary 911 

Fig. 3) for 24.3% simulations of large trees and 4.5% simulations of small trees. We did not consider these in accuracy 912 

measurements, for all the methods. 913 

Comparison of time efficiency 914 

For FFNN-SS and CNN-CBLV, we reported the average CPU time of encoding a tree (average over 10,000 trees), as 915 

reported by NextFlow workflow manager[60], a pipeline software that we used. The inference time itself was negligible. 916 

For BEAST2, we reported the CPU time averaged over 100 analyses with BEAST2 as reported by NextFlow. For the 917 

analyses with BDEI and BDSS models, we report the CPU time to process 10 million MCMC steps, and for the 918 

analyses with BD, we report the CPU time to process 5 million MCMC steps. To account for convergence, we re-919 

calculated the average CPU time considering only those analyses, for which the chain converged and the ESS of 200 920 

was reached across all inferred parameters.  921 

HIV DATASET 922 

We used the original phylogenetic tree reconstructed by Rasmussen et al.[25] from 200 sequences corresponding to the 923 

largest cluster of HIV-infected men-having-sex-with-men (MSM) subpopulation in Zurich, collected as a part of the 924 

Swiss Cohort Study[24]. For details on tree reconstruction, please refer to their article. 925 
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