Marwan Hamze

Mehdi Benallegue

Rafael Cisneros

Abdelaziz Benallegue

A Balance-Force Controller for a Legged Robot with Multiple Flexible-Contacts

In this paper, we propose a controller for multicontact legged robots that takes into account the contact compliance. This controller is able to achieve both balance stabilization and force control in the same loop in task space thanks to the use of an explicit contact flexibility model and simplified centroidal dynamics that allow exploiting the redundancy of the kinematic and force feedback. The control problem is formulated as an LQR based on a linearized model of the reduced non-linear model. The performance of the controller with regard to robustness to modeling error and external perturbations has been tested in simulation, and compared to a stabilizer based on the zero-moment-point feedback within a control that generates the desired contact forces with the environment.

I. INTRODUCTION

Legged robots are considered under-actuated because they lack direct actuation to generate translations and rotations of their body in their environment. A robot's unactuated dynamics and its balance in particular depend only on external forces, mostly reduced to contact forces and gravity [START_REF] Wieber | On the stability of walking systems[END_REF]. In particular, the bipedal walking of humanoid robots requires fine control of the contact forces to ensure stability despite the small contact surface. In fact, it is common to exploit additional contact positions allowing the robot to achieve complex transportation motions with increased stability [START_REF] Escande | Contact planning for acyclic motion with tasks constraints[END_REF], [START_REF] Saab | Dynamic Whole-Body Motion Generation Under Rigid Contacts and Other Unilateral Constraints[END_REF], [START_REF] Kudruss | Optimal control for whole-body motion generation using center-of-mass dynamics for predefined multi-contact configurations[END_REF], [START_REF] Vaillant | Multi-contact vertical ladder climbing with an HRP-2 humanoid[END_REF]. However, this usually makes dynamics more complex when the contacts are non-coplanar and of different nature (unilateral, bilateral, point contact, etc.) [START_REF] Perrin | Effective Generation of Dynamically Balanced Locomotion with Multiple Non-coplanar Contacts[END_REF], making it difficult to ensure that all reference contact forces are respected, even when the robot is equipped with force sensors. This is particularly true when dealing with uncertain environments in terms of geometry and compliance.

Indeed, the inaccuracy in force tracking comes from the fact that the contacts that the robot makes with the environment aren't fully rigid. That is not only because the environment is never perfectly stiff, but also because the robot itself has a certain level of compliance. HRP-2 which has flexible rubber bushes, placed at the ankles to absorb foot impacts [START_REF] Kanehira | Design and experiments of advanced leg module (HRP-2L) for humanoid robot (HRP-2) development[END_REF], is a good example of a compliance by design. Likewise, it is common to see robots with a high level of structural compliance, such as COMAN [START_REF] Li | Walking pattern generation for a humanoid robot with compliant joints[END_REF] or Sarcos Primus [START_REF] Stephens | Push Recovery by stepping for humanoid robots with force controlled joints[END_REF]. The presence of such compliance has two consequences. The first one is that forces modify the shape of the environment, and displace the application point of the contact forces, altering the robot's dynamics. The second consequence is that, contrarily to the rigid contact model, the robot is not able to instantly generate the desired force since it depends on its state, which needs then to be modified accordingly. This second consequence is the reason why the dynamics of the Zero Moment Point (ZMP) are often modeled with a first order system [START_REF] Kajita | Biped walking stabilization based on linear inverted pendulum tracking[END_REF] as an approximation, but this model is also inaccurate since the simplest physicsbased model has at least a second order dynamics. Some works explicitly take into account the flexibility model [START_REF] Fahmi | STANCE: Locomotion Adaptation over Soft Terrain[END_REF], [START_REF] Azad | Balance control strategy for legged robots with compliant contacts[END_REF], [START_REF] Vasilopoulos | Monopod hopping on compliant terrains[END_REF], [START_REF] Chang | Learning to jump in granular media: Unifying optimal control synthesis with Gaussian process-based regression[END_REF], but most of them consider only point contacts. Furthermore, most of them lack any force feedback in the control loop, or they just consider the compliance as concentrated on one contact support [START_REF] Benallegue | Humanoid flexibility deformation can be efficiently estimated using only inertial measurement units and contact information[END_REF], [START_REF] Mifsud | Stabilization of a compliant humanoid robot using only Inertial Measurement Units with a viscoelastic reaction mass pendulum model[END_REF].

Classically, to overcome these issues, a second loop of force control is often included, usually as admittance control [START_REF] Stephens | Push Recovery by stepping for humanoid robots with force controlled joints[END_REF], [START_REF] Caron | Biped Stabilization by Linear Feedback of the Variable-Height Inverted Pendulum Model[END_REF], [START_REF] Caron | Stair Climbing Stabilization of the HRP-4 Humanoid Robot using Wholebody Admittance Control[END_REF]. These controllers are usually set up in series with the balance control. This means that the kinematicfeedback-based stabilization sends force references to the force-feedback-based admittance control loop. This is based on the assumption that the dynamics of the force control are fast enough to converge within the time required to maintain balance. However, not only both dynamics remain always coupled, but the admittance control becomes significantly slower with more compliant and uncertain environments. For this reason, there is a need for a controller able to take both dynamics into account in a single loop.

Finally, some parameters in the robot's model or in the environment, such as the stiffness of the contacts, can be very hard to measure correctly. Consequently, we usually resort to simplified models such as a viscoelastic contact pattern, which does not correspond to the physical reality which is nonlinear and even time-varying. Some methods intend to estimate these parameters online [START_REF] Fahmi | STANCE: Locomotion Adaptation over Soft Terrain[END_REF], [START_REF] Alves | A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids[END_REF], but this estimation requires to gather dynamic data and may take a lot of time to converge. Therefore we need a controller that is robust to this kind of modeling errors.

We propose in this paper a controller with explicit multicontact support allowing to perform both balance and force control in a single loop. This paper will first introduce the dynamics of the robot and the selected reduced model. Next, it will proceed to describe the synthesis of the proposed controller based on the corresponding linearized model. Finally, it will present some simulations and results.

II. DYNAMICS OF THE ROBOT

In this section we present the Lagrangian dynamics of the robot in contact with a compliant surface. Let us consider a multi-body humanoid robot with n + 6 degrees of freedom (dof), having a configuration described as Ψ = (p B , R, q), where p B ∈ R 3 and R ∈ SO(3) represent the position and orientation matrix of the non-actuated floating base, and q ∈ R n , the joint angles vector. We define α ∈ R n+6 as the robot's configuration velocity vector given by

α = ṗ⊤ B ω ⊤ q⊤ ⊤ , (1)
where ṗB and ω ∈ R 3 are the linear and angular velocities of the base. The angular velocities are such that the derivative with respect to time of the rotation matrix is given by Ṙ = S(ω)R, with S(ω) being the skew-symmetric matrix operator allowing to perform cross-product. The robot's acceleration vector α is the time derivative of α.

The Lagrangian dynamics of the robot are written as

H (Ψ) α + C (Ψ, α) α + G (Ψ) -F = τ, (2)
where n+6) is a matrix accounting for the Coriolis and centrifugal effects, G (Ψ) ∈ R n+6 is the vector of gravitational effects, τ ∈ R n+6 is the input torque vector corresponding to both the under-actuated and actuated dof, and F ∈ R n+6 is the vector of external forces acting through the contacts with the environment, which is calculated using

H (Ψ) ∈ R (n+6)×(n+6) is the robot's inertia matrix, C (Ψ, α) ∈ R (n+6)×(
F = J ⊤ c,1 . . . J ⊤ c,nc        f c,l,1 t c,l,1 . . . f c,l,nc t c,l,nc        , (3)
where J c,i ∈ R 6×(n+6) is the Jacobian matrix of the contact i, and f c,l,i , t c,l,i are respectively the force and torque applied at contact i (i = 1, 2, ..., n c ; n c is the number of contacts), expressed in the local frame of the contact body.

The classic use of this equation is to consider that the environment is rigid. In this case, these forces depend mostly on the torque τ in a way that any force that is feasible (within unilaterality, friction, and torque limit constraints) can be generated instantly. However, a perfectly rigid contact cannot exist, thus, the previous assumption is wrong. The contact forces at a given instant depend on many factors and joint torque is virtually not one of them. In particular, if the forces depend only on the local deformation caused by the interaction with the contact body, we can write the forces as a function of the robot state F (Ψ, α). In this case, we can control the forces indirectly by modifying this deformation through the state of the robot. This requires to explicitly consider the coupled dynamics between the kinematics and the contact forces to ensure the convergence to a given reference.

III. DYNAMIC MODEL FOR THE CONTROLLER

To simply parameterize the contact wrenches and formulate how they affect the position of the Center of Mass (CoM) of the robot, the dynamics are reduced to consider the robot as a single rigid body with viscoelastic contacts. Hereinafter is the description of this model.

A. Viscoelastic Contact Model

A common model for a compliant contact is the viscoelastic approximation allowing to emulate a linear passive interaction. Contacts are defined as the surfaces of the robot's hands and legs applying forces on the environment, each having their own contact frame with a yaw axis that is perpendicular to the environment. Thus, we write

f c,l,i = K f,p,i (p c,i -p c,i,r) + K f,d,i ṗc,i , (4)
t c,l,i = K t,p,i Θ R c,i,r R ⊤ c,i + K t,d,i ω c,i , (5)
where p c,i ∈ R 3 , ṗc,i ∈ R 3 and ω c,i ∈ R 3 are respectively the position, linear and angular velocities of contact i written in the contact frame and R c,i ∈ SO(3) is the orientation matrix of the contact i. The variables p c,i,r ∈ R 3 and R c,i,r ∈ SO(3) are respectively the rest position and orientation of the contact i, i.e. when forces and torques are zero. The matrices K f,p,i and K f,d,i are the linear stiffness and damping at contact i, while K t,p,i and K t,d,i are the angular stiffness and damping at contact i. The difference in orientation represented by R c,i R ⊤ c,i,r is considered so small that the approximation sinθ ≈ θ is used, thus we define the function Θ as the axis-sine of angle representation. The values of stiffness and damping can be set independently from a contact to another.

B. State and Control Vectors Definition

We define here a reduced state vector focusing on the contacts with the environment. The state variables are the positions, orientations, and velocities of these contacts, in addition to those of the CoM. The contact positions and orientations are going to be defined with respect to the CoM frame, which is the frame centered at the CoM and having the same orientation as the floating base. The state vector is defined by

x ≜ x com x 1 • • • x n ⊤ , (6)
where

x com = (p ⊤ com ṗ⊤ com Ω ⊤ ω ⊤) ⊤ and x i = (p ⊤ c,i,com Ω ⊤ c,i,b ṗ⊤ c,i,com ω ⊤ c,i,b) ⊤ .
The vectors p com ∈ R 3 and ṗcom ∈ R 3 are respectively the linear position and velocity of the CoM, Ω and ω are respectively the orientation and the angular velocity of the floating base, all written in the world frame. Similarly,

p c,i,com ∈ R 3 , ṗc,i,com ∈ R 3 , ω c,i,com ∈ R 3
and Ω c,i,com are respectively the linear position, linear velocity, angular velocity and orientation of contact i, all written in the CoM frame. It should be noted that the orientations (Ω and Ω c,i,com) can be written by using any representation of the orientation, such as the quaternion, the axis-angle, etc. Each Ω has an associated rotation matrix R ∈ SO(3).

As for the control vector, and as we are aiming to control the contacts, the control vector is defined as

u ≜ p⊤ c,1,com ω⊤ c,1,com • • • p⊤ c,nc,com ω⊤ c,nc,com ⊤ , (7)
where pc,i,com ∈ R 3 and ωc,i,com ∈ R 3 are respectively the linear and angular accelerations of contact i, written in the CoM frame. Note that these are immediate time-derivatives of state variables. The dynamics of this state is described hereinafter.

C. Reduced Dynamics

The reduced model is a rigid body with massless legs, which gives a constant inertia tensor I ∈ R 3×3 in the base frame, expressed as RIR ⊤ in the world frame (R here is the orientation matrix of the robot's base). Thus, the angular momentum of the robot is RIR ⊤ ω.

Using Euler's second law, the relation between angular momentum and the total external torque, is expressed by

nc i=1 (S (Rp c,i,com) f c,i + t c,i) = S (ω) RIR ⊤ ω + RIR ⊤ ω, (8)
where f c,i and t c,i are respectively the force and torque at contact i written in the world frame, which can be obtained from equations (4) and (5) using

f c,i = R c,i f c,l,i , (9)
t c,i = R c,i t c,l,i . (10)
Using Newton's second law, and equation (8), the linear and angular accelerations of the CoM and the floating base of the robot can be expressed as

pcom = 1 m nc i=1 f c,i + g, (11
)

ω = RI -1 R ⊤ nc i=1 (S (Rp c,i,com) f c,i + t c,i) -RI -1 R ⊤ S (ω) RIR ⊤ ω, (12)
where g = 0 0 -g 0 ⊤ and g 0 is the gravity constant.

Using equations (7), (9), (10), (11) and (12), we can finally write the non-linear model of the robot as

ẋ = f (x, u) . (13)

IV. PROPOSED BALANCE-FORCE CONTROLLER

A. Linearized Dynamics

The dynamics given by equation (13) can be used to derive different types of control. In this paper we propose to balance the robot around a fixed, stationary desired equilibrium state x * . But even in that case, the non-linear dynamics are complex to tackle directly; therefore, to simplify the control synthesis, the local dynamics are approximated by linearization around this desired state. To simplify the notation, we represent the state error x ∆ between the actual state and the desired one by using an operator noted ∆. For the positions and velocities in the state vector, ∆ represents the Euclidean difference. As for the orientations, it is the axis-sine of angle representation of the relative orientation between the orientation matrices. The linearization is achieved as detailed in the Appendix.

It is important to note that this linearization is very different from the one commonly performed with the inverted pendulum. Indeed, no assumptions are made either on the kinematics of the CoM, on the position nor on the orientation of the contacts. So, this linearization is not less precise in the case of multiple non-coplanar contacts with different stiffness and damping (including point and edge contacts).

Having linearized the reduced model (13), we define the matrices A and B (given in the Appendix) such that

ẋ∆ = Ax ∆ + Bu ∆ . (14
)
This model is well suited for a state feedback control law. However, it would be purely based on kinematics and cannot track reference forces except through the viscoelastic model. To add more reliability to the knowledge of the contacts, the forces measured by force sensors are going to be appended to the positions as explained in the next section.

B. Balance-Force Control Law

One main contribution of the proposed controller is to include force tracking in the same control loop as CoM and kinematic tracking. However, it is not possible for the controller to use all the available actuation for kinematics and force control at the same time; thus there is a need to establish a trade-off between the conflicting kinematics and force control, which is common to have. Therefore, we need to build a new state vector where the contact forces and torques are combined with the positions and orientations of the corresponding contact bodies. Hence, the vector z is defined as

z ≜ 0 1×12 z 1 • • • z n ⊤ , (15)
where

z i = f ⊤ s,i t ⊤ s,i 0 1×3 0 1×3 ⊤ . The vectors f s,i
and t s,i ∈ R 3 are respectively the force and torque at contact i, scaled to the positions and orientations by dividing by the stiffness of the contact, and written in the base frame to make their appendage to the positions and orientations possible. The actual forces and torques are measured with force sensors at the contacts. Now, we can combine both vectors x and z in what we define as the new state error y ∆

y ∆ ≜ (I -W) x ∆ + W z ∆ . (16
)
where I is an identity matrix, and W is a weight matrix, used to set the trade-off between force tracking and position tracking. One way of defining it is as

W ≜ diag (0 1×12 , w 1 , • • • , w nc) , (17)
where diag(.) is an operator that gives a square matrix, having on its diagonal the values given in between the parenthesis and zeros elsewhere, and

w i ≜ w f i w ti 0 1×3 0 1×3 , (18)
where w f i ∈ R 3 and w ti ∈ R 3 are vectors having values between 0 and 1 that respectively multiply f s,i and t s,i in the vector z.

Considering that the forces and torques in z can be written as functions of the variables in x using (4) and (5), we can write, after linearization, the vector z ∆ as a matrix M (given in the Appendix) multiplying the vector

x ∆ z ∆ = M x ∆ . (19)
Using equation (19) in (16), we can write y ∆ as:

y ∆ = N x ∆ , (20)
with N = I -W + W M and W is chosen so that matrix N is non singular.

We can now write the dynamics of y ∆ as

ẏ∆ ≃ A y y ∆ + B y u ∆ , (21)
with A y = N AN -1 and B y = N B.

With these new dynamics, we use a linear quadratic regulator (LQR) to minimize over the control space the following quadratic cost L such that

L = ∞ t0 y ∆⊤ Qy ∆ + u ∆⊤ P u ∆ dt, (22)
where Q and P are the weight matrices for the state and control respectively. The problem then boils down to solving a Riccati Equation, which provides us with the optimal gain matrix K such that u ∆ = -Ky ∆ induces the minimum cost L. The calibration of the weight matrices Q and P allows to modify the behavior of the controller.

C. Integration Within a Multi-Objective Motion Generator

The proposed control is using 6 × n c variables of control. Many robots, especially humanoid ones, are equipped with more dof. and are able to perform other concurrent tasks. To deal with the redundancy and with additional objectives, we propose to use a whole-body motion solver based on a quadratic program (QP). This optimization problem minimizes the tracking error of different weighted objectives. It is convenient to have the acceleration α as a decision variable to take into account dynamical constraints. The QP calculates the optimal reference acceleration αr , by solving

αr = argmin ξ ∥W task (A ob ξ -b ob)∥ 2 , s.t. A eq ξ = b eq , Aξ ≤ b, l b ≤ ξ ≤ u b , (23)
where W task is a positive diagonal matrix made up of diagonal weighting matrices for each objective. The matrices A ob , A eq , and A and the vectors b ob , b eq ,b, l b , and u b contain the corresponding objectives and constraints. Note that our controller naturally fits into this motion solver since it directly provides the desired Cartesian accelerations of the contact bodies and needs only simple Jacobians. For details about how the tasks and constraints for the QP are formulated see [START_REF] Cisneros | Partial Yaw Moment Compensation Using an Optimization-Based Multi-Objective Motion Solver[END_REF] and [START_REF] Cisneros | Robust Humanoid Control Using a QP Solver with Integral Gains[END_REF]. The difference is that in our case, our proposed controller will generate the acceleration for the contacts, which are stored in b ob , and the QP generates the reference joint accelerations only. Figure 1 gives an overall view of the robot and the control structure. The robot's model is reduced and used by the controller to generate the accelerations for the contacts, whose objectives, alongside the posture objective and constraints, are minimized using the QP. The latter generates the reference accelerations for the torque controller to produce joint torques using [START_REF] Escande | Contact planning for acyclic motion with tasks constraints[END_REF]. A passivity based term δτ is added to the joint torques. δτ is calculated using

δτ = (C + λH) (α r -α) , (24)
where α r is the reference velocity vector, obtained by integrating αr , λ is a constant, H is the Inertia matrix, and C is the Coriolis matrix. For more details about the passivityterm, see [START_REF] Cisneros | Robust Humanoid Control Using a QP Solver with Integral Gains[END_REF].

V. SIMULATIONS AND RESULTS

The control is tested in simulation on the biped robot described in [START_REF] Cisneros | Partial Yaw Moment Compensation Using an Optimization-Based Multi-Objective Motion Solver[END_REF], designed using Matlab Simscape Multibody. The robot has 26 dof in total: 6 dof for each leg and 7 for each arm, and a total mass of 77 Kg. The Simscape Multibody Contact Forces Library was used to generate the non-rigid contact models. Each corner of the base of a foot or hand has a virtual sphere attached to it, generating linear and angular stiffness, plus damping. The simulations were run while allowing the simulator to automatically choose the max and min time step size using a variable step solver. This setting provides a simulation with high precision that is able to break down highly dynamical effects and is computationally very costly [START_REF] Li | Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots[END_REF].

The control is compared to the stabilizer of [START_REF] Murooka | Humanoid Loco-Manipulations Pattern Generation and Stabilization Control[END_REF], where the effect of the compliance in the environment is modeled as a first order lag system on the ZMP. This stabilizer replaces our controller in Figure 1, generating feet damping control. Also, the QP in this case generates the contact forces alongside the reference accelerations, just like in [START_REF] Cisneros | Robust Humanoid Control Using a QP Solver with Integral Gains[END_REF]. We're going to refer to this stabilizer as the feet damping controller.

The tests were done on scenarios with different starting postures, as illustrated in Figure 2. We start the simulation with the robot in contact with the environment, slightly above the equilibrium state, to avoid introducing too much initial energy. Then, the robot is perturbed to assess control robustness. The robot is expected to maintain its balance and to keep the contacts with the environment, which is why we focus on the CoM position of the robot, and on the CoP of each contact (in the contact frame) while respecting the friction constraint. Therefore, we set the weight matrix W such that w f i = 0 0 0.5 and w ti = 0.5 0.5 0 in all scenarios. Furthermore, to challenge the controller, white noise is added to the measured forces, and modeling error is introduced by providing reduced stiffness and damping values to the controller compared to the actual values that we set for the environment. The stiffness is reduced by 20% and the damping by 10%.

A. Two Contacts Case

The robot, in this case, is in a half-sitting configuration while making contacts with its feet on the ground, as shown in Figure 2 (a). The stiffness and damping constant parameters at the contacts are given in Table I for the Right Foot (RF) and Left Foot (LF) under Scenario (a). We choose the LQR control matrices such that

Q = diag(Q com Q c Q c), with Q com = (1e4I 3 I 3 3e4I 3 I 3), Q c = (3e4I 3 I 3 3e4I 3 I 3) and P = diag(I 6
). The robot is hit at its base with a perturbation of 250N at t = 0.5s for 0.1s along the x-axis.

TABLE I CONTACTS STIFFNESS AND DAMPING FOR THE 3 SCENARIOS

Our proposed controller manages to keep the robot's balance, while the feet damping controller struggles until the robot falls down. This is clear when looking at the CoM position in Figure 3 and the CoP of the right foot in Figure 4. The feet damping controller struggles to generate the proper forces in the non-rigid environment, which explains the large fluctuations in the foot CoP and the inability of the controller to maintain the robot's balance after the perturbation. On the other hand, our proposed controller manages to minimize the error of the CoM and to keep the CoP of each foot within its support zone (each foot has a dimension of x : 0.23m × y : 0.13m). The maximum value of the friction ratio at the feet does not exceed 0.176, and no slippage occurs.

To gauge the robustness to modeling errors of our controller, the same scenario is repeated with the same tuning while reducing the linear and angular stiffness of the contacts by 50% and by 70% in the controller. Despite stronger oscillations of the CoM and a bigger steady-state error as seen in Figure 5, the controller is still able to maintain the robot's balance. Reducing the stiffness in the controller by more than 70% might cause the robot to fall due to a CoM error that places the CoM outside of the support region. A finer tuning is perhaps needed to make the controller handle such modeling errors.

B. Four Contacts Case

Here, we show two different scenarios while the robot is making four contacts with the environment, as illustrated in Figure 2: the robot is putting its hands on a table-like surface (scenario (b)), and the robot is making non-coplanar contacts with its hands (scenario (c)). The stiffness and damping constants at the contacts for the Right Foot (RF), Left Foot (LF), Right Hand (RH) and Left Hand (LH) are given in Table I under scenarios (b) and (c). In these multicontact scenarios, we are not going to present the data from the feet damping controller. This is because the robot was already struggling to generate the contact forces through the QP even before any perturbation due to the non-rigidity of the contacts, and also because the fluctuation in the CoP of each contact was very strong. Therefore, the contacts broke quickly and the robot fell. With our proposed approach, the robot is hit with a perturbation of 200N at t = 0.5s and then again with 250N at t = 2.5s for 0.1s. In the case of scenario (b), a bias of 5 • to the orientation of the base is added to the robot at the start of the simulation to test the robustness of the control due to estimation errors. In this case, we set the control matrices such that

Q = diag(Q com Q c Q c Q c Q c), with Q com = (1e4I 3 100I 3 3e4I 3 100I 3) , Q c = (3e4I 3 100I 3 3e4I 3 100I
3) and P = diag(I 6). By setting the angular positions and velocities gains at 100, we were able to minimize the CoM error while regaining the default orientation of the base. We noticed that giving too much weight to the orientations results in a worse behavior. In scenario (c), we set Q com = (1e5I 3 I 3 1e4I 3 I 3), Q c = (1e4I 3 I 3 1000I 3 I 3) and P = diag(I 6).

We see in Figures 6, 7 and 8 that the proposed controller is able to maintain the balance of the robot, minimizing the CoM error and maintaining the CoP in its support zone (each hand has a dimension of x : 0.105m × y : 0.135m). No slippage of contacts occurred, and the maximum value of the friction ratio at each contact in each scenario is given in Table II.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a controller to manage balance and force control in the same loop in task space for multiple flexible-contacts configurations. Using a flexibility model of the contacts with centroidal dynamics, a trade-off between force feedback and the kinematics of the system is established to create an LQR control that generates the required accelerations of the contacts for the QP solver. The performance and robustness of the controller has been demonstrated in simulations.

The main focus of this paper is the definition of the model, the control variables and an outline of the architecture of this control framework. Thus, one limitation of the presented control policy is that it deals only with static references. While adding or removing a contact in a statically stable trajectory is possible using this method, more dynamic cases require an adaptation through a linearization around a timedependent reference trajectory, using the same architecture. Another limitation to mention is that the controller doesn't generate forces that are bound to respect unilaterality constraints nor to stay in friction cones. However, this issue can be solved by adding an explicit constraint to guarantee the feasibility of the control trajectories using a QP, similar to [START_REF] Wieber | Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations[END_REF].

The next step would be to implement this control on a real legged robot, where modeling errors of the stiffness of the environment, estimation errors and noisy force signals could pose a challenge. To overcome these challenges, the trade-off weighting of positions and forces will be crucial, requiring to give higher weight to the most reliable signals. Further extension of this work will include an integration of the controller within a motion planner to achieve dynamic locomotion in the context of compliant multi-contacts.

APPENDIX

The operator ∆ represents the Euclidean difference for positions and velocities in the state vector for instance v ∆ = v -v * . As for the orientations, it is the axis-sine of angle representation of the relative orientation between the orientation matrices, for instance Ω ∆ = Θ(RR * ⊤).

The formula used in the linearization process is:

(XY + Z + S(w)) ∆ ≃ X ∆ Y * + X * Y ∆ + Z ∆ + S(w ∆) (25)
where X, Y and Z all ∈ R 3×3 , and w ∈ R 3 . (.) ∆ is the error of (.), (.) * is its reference value. S(w) is the skew-symmetric operator of vector w. As we can notice, the operator ∆ functions similarly to the derivative operator. As for the term

Θ R c,i,r R ⊤ c,i = Ω R c,i,r R ⊤ c,i,b R ⊤ ,
the linearization was done in the limits where the estimation sinθ ≈ θ can be used, as the following:

Ω (R M) ∆ ≃ 1 2 V ec R M -R ⊤ M ∆ = C b Ω ∆ + R * Ω ∆ c,i,b , (26)
where

C b = 1 2 3 i=1 S (e i) R * M S (e i), R M = R c,i,r R ⊤ c,i,b R ⊤ , V ec (S (ω)) = ω, e 1 = 1
0 0 , e 2 = 0 1 0 , and e 3 = 0 0 1 .

At the end of the linearization process, we get equation (14), with matrices A and B given by

A =        F 0 F 1 F 2 . . . F n 0 D 1 0 . . . 0 0 0 D 2 0 0 0 0 0 0 D n        , B =        0 0 • • • 0 G 1 0 0 0 0 G 2 0 0
F i =     0 0 0 0 0 0 0 0 F i31 0 -1 m K f,d,i R * 0 F i41 F i42 F i43 F i44     , D i =     0
with

T i =     R * ⊤ T i12 T i13 -T i12 S R * p * c,i 0 T i22 0 R * ⊤ K -1 t,p,i K t,d,i 0 0 0 0 0 0 0 0     , V i =     V i11 0 V i13 0 0 -R * ⊤ C b,i R 0 V i24 0 0 0 0 0 0 0 0     , T i12 = -R * ⊤ S R * p * c,i -T i13 S(R * ṗ * c,i) + S (ω *) S R * p * c,i , T i13 = R * ⊤ K -1 f,p,i K f,d,i , T i22 = -R * ⊤ C b,i + K -1 t,p,i K t,d,i S R * ω * c,i , V i11 = R * ⊤ I + K -1 f,p,i K f,d,i S (ω *) R * , V i13 = R * ⊤ K -1 f,p,i K f,d,i R * , V i24 = R * ⊤ K -1
t,p,i K t,d,i R * .

Fig. 1 .

 1 Fig. 1. Diagram showing the robot, its reduced model and the control loop. The world, CoM and contact frames are highlighted for the reduced model. The yellow block is our proposed controller.

Fig. 2 .

 2 Fig. 2. Starting postures of scenario (a) (left), (b) (middle) and (c) (right)

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. CoM position error (x component) in scenario (a)

Fig. 6 .Fig. 7 .

 67 Fig. 6. CoM position error (x component) in scenarios (b) and (c)

Fig. 8 .KR

 8 Fig. 8. Right foot and right hand CoP (x component) in scenario (c)

 ,p,i + K f,d,i S (ω *)) R * , F i41 = R I -S f * c,i -S R * p * c,i,b K dp R * , K dp = K f,d,i S (ω *) + K f,p,i , F i42 = R I K t,p,i C b,i R, F i43 = -R I S R * p * c,i,b K f,d,i R * , F i44 = -R I K t,d,i R * .The matrix M in (19) is written as:

M. Hamze and A. Benallegue are with Université Paris-Saclay, UVSQ, Laboratoire d'Ingénierie des Systèmes de Versailles, France. E-mails: marwan.hamze@uvsq.fr, abdelaziz.benallegue@uvsq.fr

[START_REF] Escande | Contact planning for acyclic motion with tasks constraints[END_REF] M. Benallegue, R. Cisneros and A. Benallegue are with CNRS-AIST JRL (Joint Robotics Laboratory), IRL, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan. Emails: mehdi.benallegue@aist.go.jp, rafael.cisneros@aist.go.jp.