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A Balance-Force Controller for a Legged Robot with Multiple
Flexible-Contacts

Marwan Hamze1, Mehdi Benallegue2, Rafael Cisneros2, Abdelaziz Benallegue1,2

Abstract— In this paper, we propose a controller for multi-
contact legged robots that takes into account the contact compli-
ance. This controller is able to achieve both balance stabilization
and force control in the same loop in task space thanks to
the use of an explicit contact flexibility model and simplified
centroidal dynamics that allow exploiting the redundancy of
the kinematic and force feedback. The control problem is
formulated as an LQR based on a linearized model of the
reduced non-linear model. The performance of the controller
with regard to robustness to modeling error and external
perturbations has been tested in simulation, and compared to
a stabilizer based on the zero-moment-point feedback within
a control that generates the desired contact forces with the
environment.

I. INTRODUCTION

Legged robots are considered under-actuated because they
lack direct actuation to generate translations and rotations
of their body in their environment. A robot’s unactuated dy-
namics and its balance in particular depend only on external
forces, mostly reduced to contact forces and gravity [1]. In
particular, the bipedal walking of humanoid robots requires
fine control of the contact forces to ensure stability despite
the small contact surface. In fact, it is common to exploit
additional contact positions allowing the robot to achieve
complex transportation motions with increased stability [2],
[3], [4], [5]. However, this usually makes dynamics more
complex when the contacts are non-coplanar and of different
nature (unilateral, bilateral, point contact, etc.) [6], making
it difficult to ensure that all reference contact forces are
respected, even when the robot is equipped with force
sensors. This is particularly true when dealing with uncertain
environments in terms of geometry and compliance.

Indeed, the inaccuracy in force tracking comes from
the fact that the contacts that the robot makes with the
environment aren’t fully rigid. That is not only because
the environment is never perfectly stiff, but also because
the robot itself has a certain level of compliance. HRP-2
which has flexible rubber bushes, placed at the ankles to
absorb foot impacts [7], is a good example of a compliance
by design. Likewise, it is common to see robots with a
high level of structural compliance, such as COMAN [8]
or Sarcos Primus [9]. The presence of such compliance has
two consequences. The first one is that forces modify the
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Fig. 1. Diagram showing the robot, its reduced model and the control
loop. The world, CoM and contact frames are highlighted for the reduced
model. The yellow block is our proposed controller.

shape of the environment, and displace the application point
of the contact forces, altering the robot’s dynamics. The
second consequence is that, contrarily to the rigid contact
model, the robot is not able to instantly generate the desired
force since it depends on its state, which needs then to be
modified accordingly. This second consequence is the reason
why the dynamics of the Zero Moment Point (ZMP) are often
modeled with a first order system [10] as an approximation,
but this model is also inaccurate since the simplest physics-
based model has at least a second order dynamics. Some
works explicitly take into account the flexibility model [11],
[12], [13], [14], but most of them consider only point
contacts. Furthermore, most of them lack any force feedback
in the control loop, or they just consider the compliance as
concentrated on one contact support [15], [16].

Classically, to overcome these issues, a second loop of
force control is often included, usually as admittance control
[9], [17], [18]. These controllers are usually set up in series
with the balance control. This means that the kinematic-
feedback-based stabilization sends force references to the
force-feedback-based admittance control loop. This is based
on the assumption that the dynamics of the force control are
fast enough to converge within the time required to maintain
balance. However, not only both dynamics remain always
coupled, but the admittance control becomes significantly
slower with more compliant and uncertain environments. For
this reason, there is a need for a controller able to take both
dynamics into account in a single loop.



Finally, some parameters in the robot’s model or in the
environment, such as the stiffness of the contacts, can be
very hard to measure correctly. Consequently, we usually
resort to simplified models such as a viscoelastic contact
pattern, which does not correspond to the physical reality
which is nonlinear and even time-varying. Some methods
intend to estimate these parameters online [11], [19], but this
estimation requires to gather dynamic data and may take a
lot of time to converge. Therefore we need a controller that
is robust to this kind of modeling errors.

We propose in this paper a controller with explicit multi-
contact support allowing to perform both balance and force
control in a single loop. This paper will first introduce the
dynamics of the robot and the selected reduced model. Next,
it will proceed to describe the synthesis of the proposed
controller based on the corresponding linearized model.
Finally, it will present some simulations and results.

II. DYNAMICS OF THE ROBOT

In this section we present the Lagrangian dynamics of the
robot in contact with a compliant surface. Let us consider a
multi-body humanoid robot with n + 6 degrees of freedom
(dof), having a configuration described as Ψ = (pB , R, q),
where pB ∈ R3 and R ∈ SO(3) represent the position and
orientation matrix of the non-actuated floating base, and q ∈
Rn, the joint angles vector. We define α ∈ Rn+6 as the
robot’s configuration velocity vector given by

α =
(
ṗ⊤B ω⊤ q̇⊤

)⊤
, (1)

where ṗB and ω ∈ R3 are the linear and angular velocities of
the base. The angular velocities are such that the derivative
with respect to time of the rotation matrix is given by
Ṙ = S(ω)R, with S(ω) being the skew-symmetric matrix
operator allowing to perform cross-product. The robot’s
acceleration vector α̇ is the time derivative of α.

The Lagrangian dynamics of the robot are written as

H (Ψ) α̇+ C (Ψ, α)α+G (Ψ)− F = τ, (2)

where H (Ψ) ∈ R(n+6)×(n+6) is the robot’s inertia matrix,
C (Ψ, α) ∈ R(n+6)×(n+6) is a matrix accounting for the
Coriolis and centrifugal effects, G (Ψ) ∈ Rn+6 is the vector
of gravitational effects, τ ∈ Rn+6 is the input torque vector
corresponding to both the under-actuated and actuated dof,
and F ∈ Rn+6 is the vector of external forces acting through
the contacts with the environment, which is calculated using

F =
(
J⊤
c,1 . . . J⊤

c,nc

)


fc,l,1
tc,l,1

...
fc,l,nc

tc,l,nc

 , (3)

where Jc,i ∈ R6×(n+6) is the Jacobian matrix of the contact
i, and fc,l,i, tc,l,i are respectively the force and torque applied
at contact i (i = 1, 2, ..., nc; nc is the number of contacts),
expressed in the local frame of the contact body.

The classic use of this equation is to consider that the
environment is rigid. In this case, these forces depend mostly
on the torque τ in a way that any force that is feasible
(within unilaterality, friction, and torque limit constraints)
can be generated instantly. However, a perfectly rigid contact
cannot exist, thus, the previous assumption is wrong. The
contact forces at a given instant depend on many factors and
joint torque is virtually not one of them. In particular, if the
forces depend only on the local deformation caused by the
interaction with the contact body, we can write the forces as
a function of the robot state F (Ψ, α). In this case, we can
control the forces indirectly by modifying this deformation
through the state of the robot. This requires to explicitly
consider the coupled dynamics between the kinematics and
the contact forces to ensure the convergence to a given
reference.

III. DYNAMIC MODEL FOR THE CONTROLLER

To simply parameterize the contact wrenches and formu-
late how they affect the position of the Center of Mass (CoM)
of the robot, the dynamics are reduced to consider the robot
as a single rigid body with viscoelastic contacts. Hereinafter
is the description of this model.

A. Viscoelastic Contact Model

A common model for a compliant contact is the vis-
coelastic approximation allowing to emulate a linear passive
interaction. Contacts are defined as the surfaces of the robot’s
hands and legs applying forces on the environment, each
having their own contact frame with a yaw axis that is
perpendicular to the environment. Thus, we write

fc,l,i = Kf,p,i (pc,i − pc,i,r) +Kf,d,iṗc,i, (4)

tc,l,i = Kt,p,iΘ
(
Rc,i,rR

⊤
c,i

)
+Kt,d,iωc,i, (5)

where pc,i ∈ R3, ṗc,i ∈ R3 and ωc,i ∈ R3 are respec-
tively the position, linear and angular velocities of contact
i written in the contact frame and Rc,i ∈ SO(3) is the
orientation matrix of the contact i. The variables pc,i,r ∈ R3

and Rc,i,r ∈ SO(3) are respectively the rest position and
orientation of the contact i, i.e. when forces and torques are
zero. The matrices Kf,p,i and Kf,d,i are the linear stiffness
and damping at contact i, while Kt,p,i and Kt,d,i are the
angular stiffness and damping at contact i. The difference in
orientation represented by Rc,iR

⊤
c,i,r is considered so small

that the approximation sinθ ≈ θ is used, thus we define
the function Θ as the axis-sine of angle representation. The
values of stiffness and damping can be set independently
from a contact to another.

B. State and Control Vectors Definition

We define here a reduced state vector focusing on the
contacts with the environment. The state variables are the
positions, orientations, and velocities of these contacts, in
addition to those of the CoM. The contact positions and
orientations are going to be defined with respect to the CoM
frame, which is the frame centered at the CoM and having



the same orientation as the floating base. The state vector is
defined by

x ≜
(
xcom x1 · · · xn

)⊤
, (6)

where xcom = ( p⊤com ṗ⊤com Ω⊤ ω⊤)
⊤

and xi =

( p⊤c,i,com Ω⊤
c,i,b ṗ⊤c,i,com ω⊤

c,i,b)
⊤

. The vectors pcom ∈
R3 and ṗcom ∈ R3 are respectively the linear position and
velocity of the CoM, Ω and ω are respectively the orientation
and the angular velocity of the floating base, all written in
the world frame. Similarly, pc,i,com ∈ R3, ṗc,i,com ∈ R3,
ωc,i,com ∈ R3 and Ωc,i,com are respectively the linear
position, linear velocity, angular velocity and orientation of
contact i, all written in the CoM frame. It should be noted
that the orientations (Ω and Ωc,i,com) can be written by using
any representation of the orientation, such as the quaternion,
the axis-angle, etc. Each Ω has an associated rotation matrix
R ∈ SO(3).

As for the control vector, and as we are aiming to control
the contacts, the control vector is defined as

u ≜
(
p̈⊤c,1,com ω̇⊤

c,1,com · · · p̈⊤c,nc,com ω̇⊤
c,nc,com

)⊤
,

(7)

where p̈c,i,com ∈ R3 and ω̇c,i,com ∈ R3 are respectively the
linear and angular accelerations of contact i, written in the
CoM frame. Note that these are immediate time-derivatives
of state variables. The dynamics of this state is described
hereinafter.

C. Reduced Dynamics

The reduced model is a rigid body with massless legs,
which gives a constant inertia tensor I ∈ R3×3 in the base
frame, expressed as RIR⊤ in the world frame (R here is
the orientation matrix of the robot’s base). Thus, the angular
momentum of the robot is RIR⊤ω.

Using Euler’s second law, the relation between angular
momentum and the total external torque, is expressed by
nc∑
i=1

(S (Rpc,i,com) fc,i + tc,i) = S (ω)RIR⊤ω +RIR⊤ω̇,

(8)

where fc,i and tc,i are respectively the force and torque at
contact i written in the world frame, which can be obtained
from equations (4) and (5) using

fc,i = Rc,ifc,l,i, (9)
tc,i = Rc,itc,l,i. (10)

Using Newton’s second law, and equation (8), the linear
and angular accelerations of the CoM and the floating base
of the robot can be expressed as

p̈com =
1

m

nc∑
i=1

fc,i + g, (11)

ω̇ = RI−1R⊤
nc∑
i=1

(S (Rpc,i,com) fc,i + tc,i)

−RI−1R⊤S (ω)RIR⊤ω, (12)

where g =
[
0 0 −g0

]⊤
and g0 is the gravity constant.

Using equations (7), (9), (10), (11) and (12), we can finally
write the non-linear model of the robot as

ẋ = f (x, u) . (13)

IV. PROPOSED BALANCE-FORCE CONTROLLER

A. Linearized Dynamics

The dynamics given by equation (13) can be used to derive
different types of control. In this paper we propose to balance
the robot around a fixed, stationary desired equilibrium state
x∗. But even in that case, the non-linear dynamics are
complex to tackle directly; therefore, to simplify the control
synthesis, the local dynamics are approximated by lineariza-
tion around this desired state. To simplify the notation, we
represent the state error x∆ between the actual state and the
desired one by using an operator noted ∆. For the positions
and velocities in the state vector, ∆ represents the Euclidean
difference. As for the orientations, it is the axis-sine of
angle representation of the relative orientation between the
orientation matrices. The linearization is achieved as detailed
in the Appendix.

It is important to note that this linearization is very
different from the one commonly performed with the inverted
pendulum. Indeed, no assumptions are made either on the
kinematics of the CoM, on the position nor on the orientation
of the contacts. So, this linearization is not less precise in the
case of multiple non-coplanar contacts with different stiffness
and damping (including point and edge contacts).

Having linearized the reduced model (13), we define the
matrices A and B (given in the Appendix) such that

ẋ∆ = Ax∆ +Bu∆. (14)

This model is well suited for a state feedback control law.
However, it would be purely based on kinematics and cannot
track reference forces except through the viscoelastic model.
To add more reliability to the knowledge of the contacts, the
forces measured by force sensors are going to be appended
to the positions as explained in the next section.

B. Balance-Force Control Law

One main contribution of the proposed controller is to
include force tracking in the same control loop as CoM
and kinematic tracking. However, it is not possible for the
controller to use all the available actuation for kinematics
and force control at the same time; thus there is a need
to establish a trade-off between the conflicting kinematics
and force control, which is common to have. Therefore, we
need to build a new state vector where the contact forces
and torques are combined with the positions and orientations
of the corresponding contact bodies. Hence, the vector z is
defined as

z ≜
(
01×12 z1 · · · zn

)⊤
, (15)

where zi =
(
f⊤
s,i t⊤s,i 01×3 01×3

)⊤
. The vectors fs,i

and ts,i ∈ R3 are respectively the force and torque at contact
i, scaled to the positions and orientations by dividing by



the stiffness of the contact, and written in the base frame
to make their appendage to the positions and orientations
possible. The actual forces and torques are measured with
force sensors at the contacts.

Now, we can combine both vectors x and z in what we
define as the new state error y∆

y∆ ≜ (I−W )x∆ +Wz∆. (16)

where I is an identity matrix, and W is a weight matrix,
used to set the trade-off between force tracking and position
tracking. One way of defining it is as

W ≜ diag (01×12, w1, · · · , wnc
) , (17)

where diag(.) is an operator that gives a square matrix,
having on its diagonal the values given in between the
parenthesis and zeros elsewhere, and

wi ≜
(
wfi wti 01×3 01×3

)
, (18)

where wfi ∈ R3 and wti ∈ R3 are vectors having values
between 0 and 1 that respectively multiply fs,i and ts,i in
the vector z.

Considering that the forces and torques in z can be written
as functions of the variables in x using (4) and (5), we can
write, after linearization, the vector z∆ as a matrix M (given
in the Appendix) multiplying the vector x∆

z∆ = Mx∆. (19)

Using equation (19) in (16), we can write y∆ as:

y∆ = Nx∆, (20)

with N = I−W +WM and W is chosen so that matrix N
is non singular.

We can now write the dynamics of y∆ as

ẏ∆ ≃ Ayy
∆ +Byu

∆, (21)

with Ay = NAN−1 and By = NB.
With these new dynamics, we use a linear quadratic

regulator (LQR) to minimize over the control space the
following quadratic cost L such that

L =

∫ ∞

t0

(
y∆⊤Qy∆ + u∆⊤Pu∆

)
dt, (22)

where Q and P are the weight matrices for the state and
control respectively. The problem then boils down to solving
a Riccati Equation, which provides us with the optimal gain
matrix K such that u∆ = −Ky∆ induces the minimum cost
L. The calibration of the weight matrices Q and P allows
to modify the behavior of the controller.

C. Integration Within a Multi-Objective Motion Generator

The proposed control is using 6×nc variables of control.
Many robots, especially humanoid ones, are equipped with
more dof. and are able to perform other concurrent tasks.
To deal with the redundancy and with additional objectives,
we propose to use a whole-body motion solver based on
a quadratic program (QP). This optimization problem mini-
mizes the tracking error of different weighted objectives. It is

convenient to have the acceleration α̇ as a decision variable
to take into account dynamical constraints. The QP calculates
the optimal reference acceleration α̇r, by solving

α̇r = argmin
ξ

∥Wtask (Aobξ − bob)∥2 ,

s.t. Aeqξ = beq, Aξ ≤ b, lb ≤ ξ ≤ ub, (23)

where Wtask is a positive diagonal matrix made up of
diagonal weighting matrices for each objective. The matrices
Aob, Aeq , and A and the vectors bob, beq,b, lb, and ub

contain the corresponding objectives and constraints. Note
that our controller naturally fits into this motion solver since
it directly provides the desired Cartesian accelerations of the
contact bodies and needs only simple Jacobians. For details
about how the tasks and constraints for the QP are formulated
see [20] and [21]. The difference is that in our case, our
proposed controller will generate the acceleration for the
contacts, which are stored in bob, and the QP generates the
reference joint accelerations only.

Figure 1 gives an overall view of the robot and the
control structure. The robot’s model is reduced and used by
the controller to generate the accelerations for the contacts,
whose objectives, alongside the posture objective and con-
straints, are minimized using the QP. The latter generates the
reference accelerations for the torque controller to produce
joint torques using (2). A passivity based term δτ is added
to the joint torques. δτ is calculated using

δτ = (C + λH) (αr − α) , (24)

where αr is the reference velocity vector, obtained by
integrating α̇r, λ is a constant, H is the Inertia matrix, and C
is the Coriolis matrix. For more details about the passivity-
term, see [21].

V. SIMULATIONS AND RESULTS

The control is tested in simulation on the biped robot de-
scribed in [20], designed using Matlab Simscape Multibody.
The robot has 26 dof in total: 6 dof for each leg and 7
for each arm, and a total mass of 77 Kg. The Simscape
Multibody Contact Forces Library was used to generate the
non-rigid contact models. Each corner of the base of a foot
or hand has a virtual sphere attached to it, generating linear
and angular stiffness, plus damping. The simulations were
run while allowing the simulator to automatically choose the
max and min time step size using a variable step solver.
This setting provides a simulation with high precision that
is able to break down highly dynamical effects and is
computationally very costly [22].

The control is compared to the stabilizer of [23], where the
effect of the compliance in the environment is modeled as a
first order lag system on the ZMP. This stabilizer replaces our
controller in Figure 1, generating feet damping control. Also,
the QP in this case generates the contact forces alongside the
reference accelerations, just like in [21]. We’re going to refer
to this stabilizer as the feet damping controller.

The tests were done on scenarios with different starting
postures, as illustrated in Figure 2. We start the simulation



with the robot in contact with the environment, slightly
above the equilibrium state, to avoid introducing too much
initial energy. Then, the robot is perturbed to assess control
robustness. The robot is expected to maintain its balance and
to keep the contacts with the environment, which is why we
focus on the CoM position of the robot, and on the CoP of
each contact (in the contact frame) while respecting the fric-
tion constraint. Therefore, we set the weight matrix W such
that wfi =

[
0 0 0.5

]
and wti =

[
0.5 0.5 0

]
in

all scenarios. Furthermore, to challenge the controller, white
noise is added to the measured forces, and modeling error
is introduced by providing reduced stiffness and damping
values to the controller compared to the actual values that
we set for the environment. The stiffness is reduced by 20%
and the damping by 10%.

A. Two Contacts Case

The robot, in this case, is in a half-sitting con-
figuration while making contacts with its feet on the
ground, as shown in Figure 2 (a). The stiffness and
damping constant parameters at the contacts are given
in Table I for the Right Foot (RF) and Left Foot
(LF) under Scenario (a). We choose the LQR con-
trol matrices such that Q = diag( Qcom Qc Qc ),
with Qcom = ( 1e4I3 I3 3e4I3 I3 ), Qc =
( 3e4I3 I3 3e4I3 I3 ) and P = diag(I6). The robot
is hit at its base with a perturbation of 250N at t = 0.5s for
0.1s along the x-axis.

Scenario (a) Scenarios (b) and (c)
Contact RF LF RF LF RH LH

Kf,p (N/m) 3e4 3e4 3e4 25e3 2e4 1e4
Kf,d (N.s/m) 1e3 1e3 4e3 3e3 4e3 4e3
Kt,p (N/rad) 400 400 400 350 180 90
Kt,d (N.s/rad) 15 15 60 60 30 30

TABLE I
CONTACTS STIFFNESS AND DAMPING FOR THE 3 SCENARIOS

Our proposed controller manages to keep the robot’s
balance, while the feet damping controller struggles until
the robot falls down. This is clear when looking at the CoM
position in Figure 3 and the CoP of the right foot in Figure 4.
The feet damping controller struggles to generate the proper
forces in the non-rigid environment, which explains the large
fluctuations in the foot CoP and the inability of the controller
to maintain the robot’s balance after the perturbation. On the
other hand, our proposed controller manages to minimize the
error of the CoM and to keep the CoP of each foot within its
support zone (each foot has a dimension of x : 0.23m× y :
0.13m). The maximum value of the friction ratio at the feet
does not exceed 0.176, and no slippage occurs.

To gauge the robustness to modeling errors of our con-
troller, the same scenario is repeated with the same tuning
while reducing the linear and angular stiffness of the contacts
by 50% and by 70% in the controller. Despite stronger
oscillations of the CoM and a bigger steady-state error as
seen in Figure 5, the controller is still able to maintain the

robot’s balance. Reducing the stiffness in the controller by
more than 70% might cause the robot to fall due to a CoM
error that places the CoM outside of the support region. A
finer tuning is perhaps needed to make the controller handle
such modeling errors.

B. Four Contacts Case

Here, we show two different scenarios while the robot
is making four contacts with the environment, as illustrated
in Figure 2: the robot is putting its hands on a table-like
surface (scenario (b)), and the robot is making non-coplanar
contacts with its hands (scenario (c)). The stiffness and
damping constants at the contacts for the Right Foot (RF),
Left Foot (LF), Right Hand (RH) and Left Hand (LH) are
given in Table I under scenarios (b) and (c). In these multi-
contact scenarios, we are not going to present the data from
the feet damping controller. This is because the robot was
already struggling to generate the contact forces through the
QP even before any perturbation due to the non-rigidity of
the contacts, and also because the fluctuation in the CoP of
each contact was very strong. Therefore, the contacts broke
quickly and the robot fell.

Fig. 2. Starting postures of scenario (a) (left), (b) (middle) and (c) (right)

With our proposed approach, the robot is hit with a
perturbation of 200N at t = 0.5s and then again with 250N
at t = 2.5s for 0.1s. In the case of scenario (b), a bias of
5◦ to the orientation of the base is added to the robot at the
start of the simulation to test the robustness of the control
due to estimation errors. In this case, we set the control ma-
trices such that Q = diag( Qcom Qc Qc Qc Qc ),
with Qcom = ( 1e4I3 100I3 3e4I3 100I3 ) , Qc =
( 3e4I3 100I3 3e4I3 100I3 ) and P = diag(I6). By
setting the angular positions and velocities gains at 100, we
were able to minimize the CoM error while regaining the
default orientation of the base. We noticed that giving too
much weight to the orientations results in a worse behavior.
In scenario (c), we set Qcom = ( 1e5I3 I3 1e4I3 I3 ),
Qc = ( 1e4I3 I3 1000I3 I3 ) and P = diag(I6).

We see in Figures 6, 7 and 8 that the proposed controller
is able to maintain the balance of the robot, minimizing the
CoM error and maintaining the CoP in its support zone (each
hand has a dimension of x : 0.105m × y : 0.135m). No
slippage of contacts occurred, and the maximum value of
the friction ratio at each contact in each scenario is given in
Table II.



Contact RF LF RH LH
Scenario b 0.31 0.354 0.372 0.355
Scenario c 0.278 0.193 0.361 0.359

TABLE II
MAX ABSOLUTE VALUE OF THE FRICTION RATIO AT EACH CONTACT

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a controller to manage bal-
ance and force control in the same loop in task space for
multiple flexible-contacts configurations. Using a flexibility
model of the contacts with centroidal dynamics, a trade-off
between force feedback and the kinematics of the system
is established to create an LQR control that generates the
required accelerations of the contacts for the QP solver.
The performance and robustness of the controller has been
demonstrated in simulations.

The main focus of this paper is the definition of the model,
the control variables and an outline of the architecture of
this control framework. Thus, one limitation of the presented
control policy is that it deals only with static references.
While adding or removing a contact in a statically stable
trajectory is possible using this method, more dynamic cases
require an adaptation through a linearization around a time-
dependent reference trajectory, using the same architecture.
Another limitation to mention is that the controller doesn’t
generate forces that are bound to respect unilaterality con-
straints nor to stay in friction cones. However, this issue can
be solved by adding an explicit constraint to guarantee the
feasibility of the control trajectories using a QP, similar to
[24].

The next step would be to implement this control on a
real legged robot, where modeling errors of the stiffness of
the environment, estimation errors and noisy force signals
could pose a challenge. To overcome these challenges, the
trade-off weighting of positions and forces will be crucial,
requiring to give higher weight to the most reliable signals.
Further extension of this work will include an integration of
the controller within a motion planner to achieve dynamic
locomotion in the context of compliant multi-contacts.
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Fig. 3. CoM position error (x component) in scenario (a)
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Fig. 5. CoM position error (x component) for different modeling errors

APPENDIX

The operator ∆ represents the Euclidean difference for
positions and velocities in the state vector for instance
v∆ = v − v∗. As for the orientations, it is the axis-sine
of angle representation of the relative orientation between
the orientation matrices, for instance Ω∆ = Θ(RR∗⊤).

The formula used in the linearization process is:

(XY + Z + S(w))
∆ ≃ X∆Y ∗ +X∗Y ∆ + Z∆ + S(w∆)

(25)
where X , Y and Z all ∈ R3×3, and w ∈ R3. (.)∆ is the error
of (.), (.)∗ is its reference value. S(w) is the skew-symmetric
operator of vector w. As we can notice, the operator ∆
functions similarly to the derivative operator. As for the term
Θ
(
Rc,i,rR

⊤
c,i

)
= Ω

(
Rc,i,rR

⊤
c,i,bR

⊤
)

, the linearization was
done in the limits where the estimation sinθ ≈ θ can be
used, as the following:

Ω (RM )
∆ ≃ 1

2
V ec

(
RM −R⊤

M

)∆
= Cb

(
Ω∆ +R∗Ω∆

c,i,b

)
, (26)

where
Cb = 1

2

∑3
i=1 S (ei)R

∗
MS (ei), RM = Rc,i,rR

⊤
c,i,bR

⊤,
V ec (S (ω)) = ω, e1 =

[
1 0 0

]
, e2 =

[
0 1 0

]
,

and e3 =
[
0 0 1

]
.

At the end of the linearization process, we get equation
(14), with matrices A and B given by
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A =


F0 F1 F2 . . . Fn

0 D1 0 . . . 0
0 0 D2 0 0
...

...
...

. . .
...

0 0 0 0 Dn

,

B =


0 0 · · · 0
G1 0 0 0
0 G2 0 0
...

...
. . .

...
0 0 0 Gn

, with
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Fig. 8. Right foot and right hand CoP (x component) in scenario (c)

F0 =


0 0 I 0
0 0 0 I

A31 A32 A33 A34

A41 A42 A43 A44

, and

A31 = − 1

m

n∑
i=1

Kf,p,i,

A32 =
1

m

n∑
i=1

(A321 +A322) ,

A33 = − 1

m

n∑
i=1

Kf,d,i,

A34 =
1

m

n∑
i=1

(
Kf,d,iS

(
R∗p∗

c,i,b

))
,

A321 = Kf,p,iS
(
R∗p∗

c,i,b

)
,

A322 = Kf,d,i

(
S
(
R∗ṗ∗

c,i,b

)
+ S (ω∗)S

(
R∗p∗

c,i,b

))
,

A41 = −RI

n∑
i=1

S
(
R∗p∗

c,i,b

)
Kf,p,i,

A42 = RIS (ω∗)R−1
I S (ω∗)

+RI

n∑
i=1

(A421 +A422 +A423) ,

A43 = −RI

n∑
i=1

S
(
R∗p∗

c,i,b

)
Kf,d,i,

A44 = RI

(
S
(
R−1

I ω∗)− S (ω∗)R−1
I −

n∑
i=1

A441

)
,

RI = R∗I−1R∗⊤,

A421 = S
(
f∗c,i
)
S
(
R∗p∗

c,i,b

)
,

A422 = S
(
R∗p∗

c,i,b

)
Kf,p,iS

(
R∗p∗

c,i,b

)
+S

(
R∗p∗

c,i,b

)
Kf,d,i

(
S
(
R∗ṗ∗

c,i,b

)
+ S (ω∗)S

(
R∗p∗

c,i,b

))
A423 = Kt,p,iCb,i +Kt,d,iS

(
R∗ω∗

c,i,b

)
,

A441 = Kt,d,i + S
(
R∗p∗

c,i,b

)
Kf,d,iS

(
R∗p∗

c,i,b

)
.

The matrices Fi, Di and Gi (i ̸= 0) are given by

Fi =


0 0 0 0
0 0 0 0

Fi31 0 − 1
mKf,d,iR

∗ 0
Fi41 Fi42 Fi43 Fi44

 ,

Di =


0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0

 , Gi =


0 0
0 0
I 0
0 I

 ,

with

Fi31 = − 1

m
(Kf,p,i +Kf,d,iS (ω∗))R∗,

Fi41 = RI

(
−S

(
f∗c,i
)
− S

(
R∗p∗

c,i,b

)
Kdp

)
R∗,

Kdp = Kf,d,iS (ω∗) +Kf,p,i,

Fi42 = RIKt,p,iCb,iR,

Fi43 = −RIS
(
R∗p∗

c,i,b

)
Kf,d,iR

∗,

Fi44 = −RIKt,d,iR
∗.



The matrix M in (19) is written as:

M =


0 0 . . . . . . 0
T1 V1 0 . . . 0

T2 0 V2
. . .

...
...

...
. . . . . . 0

Tn 0 . . . 0 Vn

 , (27)

with

Ti =


R∗⊤ Ti12 Ti13 −Ti12S

(
R∗p∗

c,i

)
0 Ti22 0 R∗⊤K−1

t,p,iKt,d,i

0 0 0 0
0 0 0 0

 ,

Vi =


Vi11 0 Vi13 0
0 −R∗⊤Cb,iR 0 Vi24

0 0 0 0
0 0 0 0

 ,

Ti12 = −R∗⊤S
(
R∗p∗

c,i

)
− Ti13

(
S(R∗ṗ∗

c,i) + S (ω∗)S
(
R∗p∗

c,i

))
,

Ti13 = R∗⊤K−1
f,p,iKf,d,i,

Ti22 = −R∗⊤ (Cb,i +K−1
t,p,iKt,d,iS

(
R∗ω∗

c,i

))
,

Vi11 = R∗⊤
(
I+K−1

f,p,iKf,d,iS (ω∗)
)
R∗,

Vi13 = R∗⊤K−1
f,p,iKf,d,iR

∗,

Vi24 = R∗⊤K−1
t,p,iKt,d,iR

∗.
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