
HAL Id: hal-03428682
https://hal.science/hal-03428682

Preprint submitted on 15 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Sensitive Detection of Site-wise Convergent Evolution in
Large Protein Alignments with ConDor

Marie Morel, Frédéric Lemoine, Olivier Gascuel

To cite this version:
Marie Morel, Frédéric Lemoine, Olivier Gascuel. Sensitive Detection of Site-wise Convergent Evolution
in Large Protein Alignments with ConDor. 2021. �hal-03428682�

https://hal.science/hal-03428682
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Sensitive Detection of Site-wise Convergent Evolution 
in Large Protein Alignments with ConDor 

 

Marie MOREL
1,2

, Frédéric LEMOINE
1,3

 and Olivier GASCUEL
1,4 

 
 

1- Unité de Bioinformatique Évolutive - Département Biologie computationnelle, Institut Pasteur,   
25-28 rue du Dr Roux, 75015 - Paris, France 
 

2- Université de Paris, 5 rue Thomas Mann, 75013 - Paris, France 
 
3- Hub de Bioinformatique et Biostatistique - Département Biologie computationnelle, Institut Pasteur,  

25-28 rue du Dr Roux, 75015 - Paris, France 
 

4- Institut de Systématique, Evolution, Biodiversité (ISYEB - UMR 7205, CNRS, Muséum National d'Histoire 
Naturelle, EPHE, SU, UA), 57 rue Cuvier, 75005 - Paris, France [Current address] 

 
Corresponding Authors: marie.morel@pasteur.fr, olivier.gascuel@mnhn.fr.  
 
 

Abstract  

Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, 
and the changes observed at these different levels tend to be strongly correlated. Here we propose a 
simulation-based method to detect positions under convergent evolution in large protein alignments, 
without prior knowledge on the phenotype and environmental constraints. A phylogeny is inferred 
from the data and used in simulations to estimate the expected number of amino-acid changes in 
stable evolutionary constraints (null model) for each position. Similarly, we count the number of 
mutations towards the same amino acid in the data and test if they are occurring more often than 
expected. 

We applied our method to two real datasets: HIV reverse transcriptase and fish rhodopsin, and to HIV-
like simulated data. On the latter, with known convergent events and substitution model, we detected 
on average two third of these events, with a low fraction of false positives. With HIV data, one knows 
that drug resistance mutations (DRMs) are convergent. Even without any knowledge of patient 
treatment status, we retrieved more than 70% of positions corresponding to known DRMs. On the 
rhodopsin dataset, four substitutions are supposed to be convergent, as they change the maximum 
wavelength absorption of the photoreceptor and occurred several times independently during 
evolution. We detected three of them. 

These results demonstrate the potential of the method to target specific mutations to be further 
studied experimentally or, for example, using a nonsynonymous/synonymous rate ratio approach. Our 
software named ConDor is available at http://condor.pasteur.cloud.  

Key Words: molecular evolution, phylogenetics, selection, adaptation, convergence, HIV, 
resistance to drugs, rhodopsin.  
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Introduction 

Convergent evolution can be defined as the independent acquisition of similar traits in distinct 

lineages over the course of evolution. The studied traits can be behavioral, morphological, molecular, 

etc. In each category, traits can be quantitative (size, length, etc.), binary (presence or absence of a 

given phenotype) or categorical (a trait is subdivided into several classes). Recently, several studies 

focused on the molecular level, following the hypothesis that convergent phenotypes generally result 

from the same genetic changes (Stern 2013; Rosenblum et al. 2014; Storz 2016). At the protein level, 

we commonly distinguish parallel mutations (a change towards the same amino acid is observed from 

the same ancestral amino acids), convergent mutations (change towards the same amino acid, from 

different ancestral amino acids) and reversions (mutations that restore an amino acid previously lost 

during evolution).  

Examples of evolutionary convergence at the molecular level have been highlighted in higher 

eukaryotes in relation to adaptation to certain environments (Muschick et al. 2012; Foll et al. 2014; 

Foote et al. 2015; Hill et al. 2019; Lu et al. 2020; Xu et al. 2020), diet (Zhang 2006; Zhen et al. 2012; 

Ujvari et al. 2015; Hu et al. 2017), metabolic or morphological changes and the acquisition of new 

abilities (Davies et al. 2012; Parker et al. 2013; Thomas and Hahn 2015; Parto and Lartillot 2018; 

Marcovitz et al. 2019; Chai et al. 2020; Lee et al. 2018 Jan 8). Similarly, when submitted to constraints 

such as experimental conditions or drug treatments, microorganisms and viruses adapt and are likely 

to exhibit similar escapes. This has been demonstrated in HIV after exposure to antiviral drug 

treatments in several patients (Crandall et al. 1999) and within a single treated patient (Holmes et al. 

1992). Similarly, several authors found adaptive convergence in experimental populations of RNA 

viruses (Cuevas et al. 2002) and in pathogenic bacteria (van Ditmarsch et al. 2013). In natural 

conditions, evolutionary convergence was found in viruses having experienced host shifts (Longdon et 

al. 2018) and changes of vector specificity (Tsetsarkin et al. 2007).  

Several methods have been developed to detect convergent evolution at the molecular level 

(Zhang and Kumar 1997; Zhang 2006; Tamuri et al. 2009; Thomas and Hahn 2015; Zou and Zhang 2015; 

Chabrol et al. 2018; Rey et al. 2018; etc). They are all based on the prior knowledge or observation of 

a convergent phenotype and aim to identify protein mutations that correlate with the presence of the 

converging trait. Two major types of approaches can be distinguished, depending on the scale at which 

evolutionary convergence is studied. Some approaches aim to identify which coding genes show 

mutations supporting a convergent phenotype, while others study which amino-acid changes can 

explain convergent changes at the scale of a single protein. Methods of the first category are 

commonly applied to eukaryotic and prokaryotic genomes and perform genome-wide analyses to 
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detect convergent genes by considering simultaneously all positions of the corresponding protein 

sequences; for example, the methods developed by Zou et al, Thomas et al and Chabrol et al were 

applied to the search of genes responsible for echolocation in mammals (Thomas and Hahn 2015; Zou 

and Zhang 2015; Chabrol et al. 2018). In the second configuration, the coding genes responsible for 

the convergent phenotype have already been identified and the methods focus on the detection of 

converging mutations at the site level; for example, Zhang et al identified convergent and parallel 

mutations in stomach lysozyme sequences of foregut fermenters (Zhang and Kumar 1997). Similarly, 

Zhang found parallel substitutions in colobine pancreatic ribonucleases (Zhang 2006), and Rey et al 

found positions with convergent substitutions in the PEPC protein occurring jointly with the transition 

toward C4 metabolism in sedges (Rey et al. 2018).  

As mentioned above, both types of approaches rely on the identification of mutations 

correlated with a convergent phenotype. More specifically, they rely on ancestral sequence 

reconstruction to detect independent changes that occurred at the same position towards the same 

amino acid within different lineages having the convergent phenotype of interest. Considering that a 

change towards the exact same amino acid could be too strict, since several amino acids can have 

similar physico-chemical properties, Rey et al looked for shifts in amino-acid profiles (Le, Gascuel, et 

al. 2008; Rey et al. 2018). Identifying those amino-acid changes or shifts is not sufficient as they could 

occur by chance. To statistically test the strength of convergent evolution at the site level, Chabrol et 

al defined a new "convergence index” and used simulations to estimate de distribution of this index 

in a null, non-convergent model (Chabrol et al. 2018). Rey et al selected convergent positions based 

on the log ratio of the posterior of the studied position assuming the convergent model (shift of the 

amino-acid profile) versus the one obtained with the null model (homogeneous amino-acid profile 

along all branches) (Rey et al. 2018). 

Testing the significance of convergent (or parallel or revertant) changes at the site level in 

proteins has many potential applications. In the case of complex eukaryotic or bacterial organisms, 

there are few examples of a single amino-acid change that could explain a convergent phenotype 

(Storz 2016). However, in the case of viruses with rapid evolution, and whose (small) genomes are 

strongly constrained, only a few amino-acid changes are generally possible at a given position (Pond 

et al. 2012) and site-wise convergent evolution is expected to be relatively frequent (Gutierrez et al. 

2019). Determining molecular changes that deviate from what is expected by chance can thus be 

indicative of adaptive phenomena. This is in fact what was observed with SARS-CoV-2, where one first 

identified mutations in the Spike protein, which were spreading within the viral population and 

appeared multiple times independently, before being demonstrated to be evolutionary advantageous 

for the virus (Korber et al. 2020; Martin et al. 2021; van Dorp et al. 2020). Indeed, in viruses it is often 
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easier to identify a mutation of interest than to observe the effects of that mutation given how difficult 

the phenotype of a virus and the environmental conditions in which it evolves are to access. 

In some ways, identifying those mutations of interest presents similarities with the detection 

of positions under positive selection (Goldman and Yang 1994). The idea is indeed to identify 

mutations that could be advantageous as they are found independently more often than expected 

under a neutral (or purifying) model of evolution. Positive selection can be inferred at a position if the 

rate of non-synonymous substitutions exceeds the rate of synonymous substitutions. These 

substitutions can be towards a specific amino acid or any change from the original amino acid. This is, 

for example, the case in immune avoidance where the trend to mutate towards any new amino acid 

at the antigenic positions is generally favorable and positively selected. Conversely, in the case of 

convergent evolution, we are interested in substitutions towards one or a few similar amino acids. We 

thus expect that positive selection is a necessary, but not sufficient condition for a position to be 

convergent. We shall see that our results confirm this intuition. 

Here we propose a method designed to detect site-wise convergent evolution in large amino-

acid alignments without prior knowledge of phenotype. This method performs detailed analysis at the 

gene/protein level, with typical application to viruses, but also to specific genes known to be involved 

in phenotypic convergence (Hill et al. 2019). We are interested in changes towards a target amino acid 

regardless of the ancestral amino acids that lead to the difference in the extant amino acid sequences. 

In other words, parallel, convergent and revertant mutations are considered indifferently and we 

consider different target amino acids as different events. The observed number of amino-acid changes 

is estimated using ancestral character reconstruction, and their expected number in a null model using 

computer simulations. In the following sections, we describe this approach that is implemented in a 

software and web service named ConDor (Convergence Detector; condor.pasteur.cloud). Its 

performance is assessed on HIV-like simulated datasets, on a real HIV reverse transcriptase dataset 

and on a fish rhodopsin dataset. We notably compare its performance in retrieving drug resistance 

mutations in HIV, with the results of a standard positive selection-based approach.  

New Approaches  

Simulation-based approach 
Our method identifies amino-acid mutations that emerged several times in independent 

lineages and occurred significantly more frequently than expected under a null model of evolution. 

The workflow of the method is presented in Figure 1. It is made up of four main steps: (1) estimate 

the parameters of the null model from the real data (phylogenetic tree, parameters of the substitution 

model, site-wise evolutionary rates, etc.); (2) infer ancestral amino acids and count the number of 
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observed emergence events of mutations (EEMs) for every position and amino acid of interest in the 

real data; (3) simulate new datasets under the inferred null model and count simulated EEMs; (4) 

compare the observed and the simulated numbers of EEMs, and then determine which mutations 

occurred significantly more often than expected by chance, assuming the null model. Such mutations 

are considered as convergent events. 

The null model is inferred from the input alignment. The selected substitution model, along 

with amino-acid frequencies, rates-across-sites distribution parameters, tree topology, branch lengths 

and site-wise evolutionary rates are assumed to represent the data without convergence. We make 

this assumption because using large alignments (>1000 sequences), we consider that mutations 

resulting from convergent evolution are rare enough to have a negligible influence on tree and 

parameter inference. The reconstructed phylogeny is then rooted using the provided outgroup. This 

is essential to infer the ancestral sequence at the root of the tree, run simulations starting from this 

sequence, and count simulated EEMs. Ancestral character reconstruction (ACR) is achieved using a 

maximum likelihood approach, implemented in PastML (Ishikawa et al. 2019). We use the “maximum 

a posteriori” (MAP) method in which the state with the highest marginal posterior is selected at each 

tree node. Once all ancestral sequences are reconstructed and associated to the nodes in the 

phylogeny, we identify where independent amino-acid changes occurred in the tree and count them 

as explained in the subsection “Counting emergence events”. This counting gives the observed 

number of EEMs for each alignment position and amino acid under study, that is, those that are 

observed at the given position enough time (≥12 sequences in our HIV experiments) and in more than 

2 independent clades. 

We then simulate the expected evolution without convergence of each position of the 

alignment many times (10,000 in our experiments). We do not use the root sequence reconstructed 

by ACR as a start, but draw amino acids based on their marginal posterior probabilities. Taking only 

the amino acid with the highest posterior tends to bias the simulations and yields poorer results (not 

shown), especially if the reconstruction is uncertain (e.g., two amino acids with posteriors of 0.55 and 

0.45). Simulations are carried out along the inferred tree, and then we count the simulated numbers 

of EEMs (10,000 values per position and per studied AA) using the algorithm presented below. For 

example, let us consider the mutation M41L from our real HIV dataset, where at position 41, a 

Methionine (M) is substituted by a Leucine (L) in 211 sequences. The observed number of EEMs 

towards L is 47, which is smaller than 211 as in some subtrees all tips have L, corresponding to only 1 

EEM. This number is compared to the distribution of the number of EEMs towards L, starting from an 

M at the tree root every time (no ambiguity in ACR), among 10,000 simulations in the null model; this  
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Figure 1: Flowchart of the method. The method takes as input an amino-acid alignment, which is used for inference of the 
null model (phylogenetic tree, substitution model and its parameters, site-wise evolutionary rates, etc.) and ancestral 
reconstruction. The reconstructed tree and (probabilistic) root sequence are used to simulate 10,000 alignments under the 
null model. The output is a list of amino-acid changes per position that seem to be convergent, as they emerge more often in 
the input alignment than in simulations. 

number of simulated EEMs ranges from 0 to 31 with an average of 12. From the observed number of 

EEMs and the distribution of simulated EEMs, we estimate a p-value for each observed mutation, 

which is equal to 0 in our M41L example. After correction for multiple testing, mutations with p-values 

lower than the rejection criterion are considered as resulting from convergent evolution. 

Counting independent emergence events of mutations (EEMs) 
The observed number of EEMs is inferred by ACR based on the input sequences, while the 

expected number of EEMs and its distribution are estimated from many simulations evolving the 

probabilistic root sequence along the inferred tree. In simulations, changes may appear which cannot 

be inferred by ACR, in particular when they are not transmitted to any tree leaf. In this case, the 

expected number of changes artificially deviates from the ACR-based “observed” number of EEMs. 

This effect is even more pronounced on positions with rapid evolution since more changes are 

expected. Thus, only the changes transmitted to at least one leaf are counted in our method, since 

they are the only ones that could be found by ACR. Note, moreover, that generally we are only 

interested by the amino acids present in the available, actual sequences, and rarely by those that are 

never observed.  
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Figure 2: Counting independent emergence-events. In this tree we count two (parallel) EEMs towards the yellow state, two 
reversions towards the blue state and only one EEM towards the red state since the blue-to-red mutation at the bottom of 
the tree is not transmitted to any leaf and thus not counted. 

In the tree illustrated in Figure 2, we have 6 changes along the branches, which are 

represented either by a cross or by a NO symbol. The NO symbol stands for a change of the blue state 

towards the red one, but the red state is then lost in the subtree. With ACR, this node would have 

been either blue or yellow, but never red, while this might occur in simulations. Thus, in our counting, 

we do not consider this EEM towards the red state, and only the one in the upper subtree is counted. 

The two yellow crosses mark changes transmitted to one leaf in the upper subtree and two tips in the 

bottom subtree; thus, both are counted. The two blue crosses mark a return to the ancestral state 

present at the tree root and are reversions. Even though we count EEMs without making the 

difference between convergent, parallel and revertant events, we retain the information during the 

counting process for interpretation afterwards.  

Creation of a synthetic HIV-like dataset 
To our knowledge, there is no convergent evolution model allowing simulating thousands of 

sequences without prior knowledge of the phenotype or environmental constraints. We therefore 

created our own convergent dataset inspired from a real case of convergence. Drug resistance 

mutations (DRMs) occur independently in patients receiving a drug treatment and thus are a perfect 

example of evolutionary convergence. In HIV, they are well characterized and studied since their 

emergence can lead to treatment failure and transmission of resistant viruses. They are mostly found 

in proteins targeted by the antiretroviral treatment: the protease, the reverse transcriptase and the 

integrase. The list of known DRMs affecting these proteins is publicly available at 

https://hivdb.stanford.edu/. DRMs are written as “XposY”, with X the ancestral amino acid, “pos” the 
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position of the substitution in the protein alignment, with numbering based on the reference 

sequence HXB2, and Y the mutated amino acid.  

We extracted positions and sequences with DRMs from a real HIV polymerase amino-acid 

dataset (described in Material and Methods) and replaced the corresponding residues with gaps in 

the multiple sequence alignment (MSA). DRMs were retrieved from the Stanford University Drug 

resistance database “Essential DRM Data” lists (https://hivdb.stanford.edu/pages/poc.html). We then 

reconstructed a tree, estimated the substitution model parameters, and inferred the rates of 

evolution per position (see Material and Methods for details). This tree represents the evolutionary 

relationships between the sequences in the real data and its structure is not affected by the DRMs. 

Such procedure is standard when inferring trees from HIV sequences, to avoid convergence 

perturbations of the inferred tree. We then simulated the evolution of HXB2 (GenBankTM accession 

number K03455) reference sequence (reverse transcriptase only) along this tree. We performed the 

simulations 5 times for robustness purposes, resulting in 5 MSAs without convergence. DRMs were 

then manually added in the sequences and positions where they were found in the real MSA. For 

example, mutation M41L was found in the real data in 211 sequences, so we replaced in the 

corresponding sequences of our simulated alignment, any amino acid found at position 41 (which 

turned out to all be methionine (M), the same as HXB2 at that position) by a leucine (L). Since we used 

the real data tree to create the synthetic dataset, we did not randomly place DRMs, which would make 

the detection task easy. Methionine and leucine are closely related, with a genetic barrier of 1 (M and 

L can exchange through a single nucleotide substitution), and the detection is much more difficult than 

between highly different amino acids (e.g., D and W with a genetic barrier of 3). As M41L is at the 

same position and in the same tip sequences in our synthetic dataset as in real data, detecting this 

convergence in the synthetic and real datasets should be of similar difficulty. This guarantees a certain 

realism of our simulated data. We implemented this insertion procedure for the 37 most common 

DRMs of our real dataset (i.e., present in ≥ 12 sequences and > 2 independent clades). The five-

resulting synthetic MSAs thus have no convergent events, except the “realistic” added DRMs.  

Results 

We applied our approach on three datasets for which we knew a priori mutations due to 

convergent evolution: (1) an HIV-like synthetic dataset with “realistic” added DRMs; (2) a real HIV 

dataset of reverse transcriptase with 20% sequences with DRMs; and (3) a real dataset of fish 

rhodopsin, a light-sensitive receptor protein that is highly conserved but known to vary at certain 

positions among species depending on their environment. On simulated data, we know exactly which 

mutations are true convergent events or not. With real data, even if we know certain convergent 
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events, some other mutations are likely convergent, but are unknown. In other words, we will be able 

to assess the rate of false positives with simulated data, but not with real data, where the method 

sensitivity in detecting the known convergence events will be the main criterion. 

Synthetic HIV-like alignment 

The dataset consists in 5 MSAs of 3,551 sequences and 250 amino acids each, mimicking HIV 

reverse transcriptase and simulated with HIVb model of evolution (Nickle et al. 2007). In total, 37 

DRMs were placed in each of the MSAs at 27 distinct positions (see above). These DRMs are found in 

at least 12 sequences. The most common one, M184V, is found in 273 (8%) sequences. However, 19 

DRMs are found in less than 1% of the sequences (i.e., in 12 to 33 sequences) so they are expected to 

be difficult to detect.  

Performance of the method on the detection of true convergence 

The model inferred from the datasets by ModelFinder (Kalyaanamoorthy et al. 2017) was 

HIVb, which is the model we used for generating them. Thus, the whole analysis (tree reconstruction, 

ACR and simulations) was first achieved with HIVb, which is the true model of evolution. In a second 

stage, we also used JTT (Jones et al. 1992), to study the impact of model misspecification. We tested 

on average 441 mutations per dataset, the ones present in at least 12 sequences and with more than 

2 EEMs.  

Using HIVb, on average 27.4 mutations are found to be convergent by our method, 26 of which 

are true DRMs (out of 37 added DRMs). The numbers of EEMs for the DRMs range from 9 (K101P) to 

225 (M184V). We detect DRMs with a higher number of EEMs better, and especially those with more 

than 30 EEMs that we detect 90% as convergent, as illustrated in Figure 3a. If there are several DRMs 

at one position, we often only detect the most frequent one(s). For example, at position 219 (Fig3a, 

bold characters) we detect mutations towards Q and E but not N. Similarly, at position 215, we do not 

detect mutations towards S and D. However, we detect mutation T215C although there are fewer 

EEMs towards C. This is explained by the low substitution rate between T and C (BLOSUM62 score = -

1), and thus few changes are expected from T to C; 2 EEMs between T and C at position 215 are 

observed on average over the 10,000 null-model simulations, while 17 are found in the synthetic, 

convergent MSAs. If we focus on detecting positions with convergence (e.g., position 219) rather than 

DRMs (e.g., K219Q, K219E, K219N, etc.) accuracy increases and we detect on average 22 of the 27 

convergent positions for all datasets, while the number of false positives remains equal to 1.4 on 

average (Tab. 1). 
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Table 1: Method accuracy with synthetic data. We display the number of mutations and positions (1) detected and (2) tested 
but not detected on the 5 synthetic HIV-like MSAs, analyzed with HIVb and JTT substitution models. We report the average 
for the 5 datasets and the standard deviation between parentheses. True positives are at the intersection between detected 
and DRMs, and false positives at the intersection between detected and non-DRMs (i.e., mutations resulting from the 
evolution of the root sequence under the null model). In these experiments, we tested all mutations (regardless of their DRM 
status) exhibiting more than 2 EEMs and found in at least 12 sequences. 
 

a) 

 
b) 

 

Figure 3: DRMs detection and convergent candidates with synthetic data. We display the detected DRMs (true positives, 
TP, in black), not detected DRMs (false negatives, FN, in white) and false positives (FP, in grey) on one of the synthetic HIV-
like MSA, analyzed with (a) HIVb substitution model or (b) JTT. Mutations are sorted by their number of EEMs on the x-axis. 
Mutations in bold characters are discussed in text. The evolutionary rate (normalized between 0 and 1) of each mutation 
position is reported on the y-axis. The dashed vertical line represents the limit of 30 EEMs, all events on the left have less than 
30 EEMS. 

In the MSA represented in Figure 3a, we find two false positives, one of which exhibits a very 

high evolutionary rate. The same results are observed in the other MSAs: as the evolutionary rate 

increases, more changes are observed at the given position and thus more variability and uncertainty 

in the simulations. Thus, very fast positions can bias convergence detection and lead to the detection 

of false positives. As expected, we observe very few false positives when analyzing our synthetic 

datasets with the true model of evolution. Since we never have the true model of evolution with real 

data, we tested the effect of model violation on the synthetic dataset. We run the whole analysis with 

JTT, for tree reconstruction, ACR and simulations, instead of letting the workflow infer and use the 

best model of evolution (here HIVb). 

  DRMs Non-DRMs Total 
 Model Mutation Position Mutation Position Mutation Position 
Detected HIVb 26 (±1.2) 22 (±1.2) 1.4 (±1.14) 1.4 (±1.1) 27.4 (±1.5) 23.4 (±1.3) 

JTT 25.2 (±0.8) 22.4 (±0.5) 17.2 (±3) 15.8 (±2.6) 42.4 (±2.5) 38.2 (±2.3) 
Not 
detected 

HIVb 11 (±1.2) 5 (±1.2) 402.8 (±6.8) 91.2 (±1.6) 413.8 (±7.15) 96.2 (±2.5) 
JTT 11.8 (±0.8) 4.6 (±0.5) 392.8 (±13.7) 70.2 (±4.3) 404.6 (±14) 74.8(±4.3) 

Total HIVb 37 27 404.2 (±6) 92.6 (±1.7) 441.2 (±5.6) 113.2 (±1.5) 
JTT 37 27 410 (±14.3) 86 (±3.4) 447 (±14.3) 113 (±3.4) 
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The strongest effect can be seen on the number of false positives, which increases from 1.4 to 

17.2 (Tab. 1). Compared to the number of negatives, this remains very low, with 4% of falsely detected 

random mutations (i.e., mutations resulting from the evolution under the null model) among more 

than 400. Moreover, as we see Figure 3b, the 6 events with highest evolutionary rate are false 

positives. The same trend can be observed in the other MSAs, where the mutations at positions with 

highest rates are always false positives. Since the substitution model does not correspond exactly to 

the synthetic datasets being analyzed, we tend to detect more mutations as convergent, but this does 

not impact the detection of DRMs. DRM detection remains sensitive and is robust to model violation, 

as we still detect more than 25 (among 37) DRMs, and more than 22 DRM positions (among 27), that 

is, nearly the same true positive fractions as with the true HIVb substitution model. However, based 

on these results, we expect false positives with real data, representing a substantial fraction of 

detections (~40% on average in Tab 1 with JTT model). True positives tend to be mutations with the 

most EEMs, low substitution rate between amino acids and at positions with medium evolutionary 

rate. On the opposite, fast evolving positions tend to be detected as convergent, even if they are not. 

Real HIV dataset  

This dataset consists in a MSA of truncated polymerase from HIV-1 subtype B. It was retrieved 

from the paper by Lemoine et al (2018). After removal of recombinant sequences, it contains 3,546 

sequences of 1,043 nucleotide positions that were translated into 347 amino acids. Among these 347 

amino acids, 250 are on the reverse transcriptase and are analyzed here. Slightly more than 20% of 

the sequences have at least one known DRM (https://hivdb.stanford.edu/pages/poc.html) and, on 

average, the DRMs are found in ~11 sequences. The most common one, M184V, is found in 273 

sequences. There are 37 DRMs present in at least 12 sequences, corresponding to those used to 

generate the synthetic datasets. They are distributed on 27 positions. We focused on these 37 DRMs 

to assess the performance of our approach, but, as already explained, we expect to detect other 

mutations, some being truly convergent but unknown, and some corresponding to false positives, 

likely located on fast positions, due to model misspecification. 

The evolutionary model selected by ModelFinder (Kalyaanamoorthy et al. 2017) on this 

dataset is HIVb, with ‘freerates’ rates-across-site model and 9 rate categories. We tested 255 

mutations in total: those present in at least 12 sequences and showing more than 2 EEMS. Among 

these, we detected 74 convergent events, after applying the Benjamini-Hochberg correction 

(Benjamini and Hochberg 1995) for multiple testing (non-corrected p-value threshold of 4e-4, 

corresponding to a corrected alpha level of 5%). Among these detections, 20 are DRMs, which 

represents 54% of true positives and is a higher proportion than what is expected by chance (Fisher’s 
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exact test p-value = 4.8e-4). The non-DRM detected events correspond to 11 mutations on fast 

evolving positions (Fig. 4a), which are likely false positives, plus other events for which we cannot 

conclude using simple arguments (but see below). Regarding false negatives, 17 DRMs are not 

detected, 7 of which having a (non-corrected) p-value lower than 0.005, but higher than the 

significance threshold (4e-4). Interestingly, 4 of them are between amino acids with a low substitution 

rate, as shown in Figure 4b. Based on the substitution rate and small p-values, it could be possible to 

identify some false negatives, in particular Y188L with amino acids that are unlikely to substitute 

(BLOSUM62 score = -1). Positive selection analysis supports this approach (see below).  

If we focus on positions instead of mutations, we detected 65 positions as convergent among 

which 19 (~70%) are positions with DRMs. To complement and comfort our findings, we analyzed the 

109 positions presenting mutations in at least 12 sequences and more than 2 EEMs, to check for a 

signal of positive selection. In total, 32 positions were found to be under episodic positive selection 

using the mixed effects model of evolution (MEME ; Murrell et al. 2012), among which 26 intersected 

with our detections as presented Table 2 (exhaustive list of detections of MEME is given in 

Supplementary Table S3). There is thus a strong correlation between the two approaches as almost 

all the positions under positive selection harbor mutations found as convergent with ConDor. Positive 

selection identified 11 positions with DRMs, 9 of which were also found with ConDor. 

a) 

 
b) 

 
 Figure 4: DRMs detection and convergent candidates with real HIV data. We display DRMs, detected (black) or not (white) 
and convergent candidates (grey), as obtained using our method on the real HIV-1 subtype B MSA. Mutations are sorted by 
their number of EEMs on the x-axis. We report on the y-axis of Figure (a) the normalized evolutionary rate of each mutation 
position; the plain horizontal line represents the threshold of the 5% fastest positions on the whole dataset. We report on the 
y-axis of Figure (b) the inverse of the HIVb substitution rate (the higher the bar, the less likely a substitution between the two 
amino acids is). The stars on top of bars represent undetected DRMs with an uncorrected p-value lower than 0.005 and the 
circles stand for positions under positive selection.  
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However, MEME did not detect positions with major DRMs (e.g., K103N, M184V, D67N and 

M41L, even after increasing the p-value threshold to 0.10) and seems to lack sensitivity for DRM 

detection. The other positions with positive selection that intersected with ConDor detections were 8 

fast positions and 9 other non-DRM related positions. Among non-fast positions, only a small fraction 

(9/36) of the non-DRM events detected with ConDor were thus found at positions with positive 

selection. However, while reviewing the proposed convergent mutations found by ConDor, we could 

identify 20 mutations on 18 (among 36) positions previously described in the literature as potential 

accessory mutations, correlated with virological failure (see Supplementary Table S2). Moreover, as 

we previously noticed with synthetic datasets, our method tends to detect events at fast positions. 

The same holds with positive selection, thus leading us to consider the 5% of the fastest positions 

(calculated on the whole dataset) as false positives. This is comforted by several studies indicating that 

the main polymorphisms in HIV-1 are found on the fast positions (Bao et al. 2014; Mohanakrishnan et 

al. 2015; Cantão et al. 2018). In total, the number (46) of uncharacterized positions detected by 

ConDor is reduced by ~60% (10 fast + 18 found in the literature). 

 All DRMPos  Fast Others 
Convergence 65 19  10 36 
Positive selection 32 11  10 11  

Both 26 9 8 9 
Total in the dataset 109 27 13 69 

 
Table 2: Comparison of convergence detection and positive selection with real HIV data. We display the positions harboring 
events detected with our method and MEME on the real HIV-1 subtype B MSA of reverse transcriptase. DRMPos: detected 
positions with DRM(s). Fast: detected positions that belong to the 5% positions with highest evolutionary rate on the whole 
dataset. Others: other detected positions.  
 

Fish Rhodopsin 
Rhodopsin is a photosensitive protein pigment responsible for the eye's sensitivity to light. It 

is found in many vertebrates and has been shown to be under positive selection among species that 

evolve in different environments (Spady et al. 2005). Depending on the habitat and the amount of 

light available, different amino acids are observed at the same positions, which result in variations in 

rhodopsin structure and different maximum wavelength absorption. Certain substitutions 

corresponding to these amino-acid changes have been described as resulting from convergent 

evolution. In particular D83N, E122Q, F261Y and A292S (using similar substitution encoding as with 

HIV) occurred several times independently (Yokoyama 2008).  

The dataset we used comes from a study in which the authors characterized substitution 

F261Y as convergent in fish rhodopsin, as a possible result from a transition from marine to brackish 

or freshwater environments (Hill et al. 2019). It contains an alignment of 2,047 sequences with 308 

amino-acid positions. The sequences have been classified by the authors in two groups: species found 
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only in marine water and species that can evolve (exclusively or not) in brackish or fresh water. Species 

annotated within the habitats brackish or fresh water can therefore also be found in marine water. 

The neutral model inferred by ModelFinder on this dataset was ‘MtZoa’ and ‘freerates’ with 8 

rate categories. The reconstructed tree is well supported with three quarters of the bootstrap 

supports above 70%. We tested 355 substitutions (present in at least 12 sequences and showing more 

than 2 EEMs) with our method and 55 were retained as possibly convergent (15%). They are 

distributed over 49 positions out of the 136 tested positions, which means that 36% of the tested 

positions are detected as convergent (16% considering all alignment positions). We were able to 

recover substitutions F261Y, D83N and A292S, and reversion N83D was also found as convergent. 

Substitution E122Q was not found as convergent since glutamine (Q) independently emerged only 3 

times according to ACR, but emerged up to 7 times in simulations.  

From the ancestral reconstruction of position 261 presented Figure 5, Tyrosine (Y) emerged 

20 times independently from the phenylalanine (F), which confirms the observation made in (Hill et 

al, 2019). It is a reversion since Y is found as root amino acid at this position. After being acquired from 

amino acid F, amino acid Y shifts 3 times back to F without this change being detected as convergent. 

Hill et al  observed  a strong  correlation  between  amino acid  Y  at position 261 and the brackish  or  

Figure 5: Fish rhodopsin data, ancestral reconstruction of position 261. This visualization corresponds to a compressed 
representation of the ancestral scenario, after performing a vertical merge such as defined by PastML. Each disk corresponds 
to a cluster within which all nodes and tips have a common ancestor (a node, included in the cluster) and are predicted by 
ACR with the same state. Next to the inferred state (here Y or F), is written the number of tips in the cluster. If there is no 
number, the represented “cluster" is a tip. Arrows represent independent EEMs. The blue and green circles around each cluster 
represent the percentage of tips in the cluster annotated with marine and fresh/brackish water, respectively.  
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freshwater habitat (Hill et al. 2019). To alleviate phylogenetic confounding factors, we reanalyzed this 

correlation using BayesTraits ‘discrete dependent’ model (Pagel and Meade 2006) and found a strong 

dependence between these two traits (Bayes Factor = 58). Indeed, this substitution between F and Y 

is known to shift wavelength absorption of the rhodopsin (Yokoyama 2000) and could be 

advantageous in brackish or fresh water. We also found a significant correlation between habitat and 

the emergence of amino acid S at position 292, as well as a correlation between habitat and mutations 

D83N/N83D (see Supplementary Figures S1 and S2).  

Among the 55 detected convergent events, 12 are found at fast positions and should be 

treated carefully (Supplementary Table S4). Interestingly, 9 of the detected events are reversions 

towards the amino acid reconstructed at the root by ACR, none of which is at fast positions. These 9 

reversions most likely are true convergence events. We tested the correlation between the 55 

predicted convergent events and the habitat and found a significant dependence for 32 of them (9 on 

fast positions), meaning that, again, a substantial fraction of these detections most likely corresponds 

to true convergence. This was confirmed by a literature review (see Supplementary Table S4 for 

details) showing that ConDor detected several interesting mutations such as T166S responsible for 

blue-shifting absorption (Luk et al. 2016), S299A found mainly in bathypelagic species (Dungan and 

Chang 2017), or A124G causing a spectral shift towards red wavelengths (Van Nynatten et al. 2021).  

To confirm our results and compare our method, we also ran PCOC (Rey et al 2018) on this 

dataset, considering that the convergent clades were those annotated with the brackish or freshwater 

environment. PCOC identified 16 positions with a shift in profile compared to the ancestral one 

(“Profile Change” (PC) model was significant for 16 positions), but without any change within the 

convergent clades (“One Change” (OC) model not significant). This means that PCOC detected 

positions correlated with changes in constraints associated with the habitat but no strictly convergent 

positions, in the sense that the branches where the adaptation took place did not exhibit a substitution 

as required for the OC model. Several positions intersected with our detections: 123, 166, 198 and 

281. None of these positions was part of the 5 percent fastest positions. However, PCOC did not 

recover positions 83, 122, 261 and 292. As PCOC detects changes in the amino-acid profiles and our 

method identifies strict changes in the amino acids, we expect the results to be different between 

both methods. Extensive description of PCOC results can be found in the Supplementary Table S5.  

Implementation and availability 
Our method is implemented in a workflow, named ConDor, which is accessible through a web 

service: http://condor.pasteur.cloud. ConDor inputs consist of: (1) a protein alignment in fasta format; 

(2) a file containing outgroup sequence identifiers; and (3) a newick file with a tree (rooted or not) 
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whose tips are the same sequences. The workflow is executed on the Institut Pasteur cluster and takes 

~160 minutes for a dataset of ~2,050 sequences and ~300 positions. This time corresponds to ~140 

minutes for the model inference and ~20 minutes for the convergence detection, using 10,000 

simulations per position and target amino acid. The output consists of all the tested mutations with 

several statistics such as their p-value and if they passed or not the threshold to be considered as 

convergent mutations. We also provide the evolutionary rate of the corresponding position, the 

nature of the mutation (convergent, parallel, revertant), the number of EEMs, the genetic barrier, the 

BLOSUM62 score, etc. All these statistics can be used to analyze further and select the most relevant 

mutations. 

Discussion  

In this work, we have developed the ConDor approach, which makes it possible to detect 

evolutionary convergence at the resolution of a mutation, without prior knowledge of constraints and 

phenotype. We could retrieve more than 70% of the positions with DRMs on a real HIV dataset, and 

~55% of all DRMs present in the sequences. On synthetic datasets mimicking the evolution of HIV, we 

showed that the detection power depended on the number of emergence-events of mutations and 

the exchangeability between amino acids. Even though ConDor was primarily developed for the 

analysis of viral datasets, it could detect several convergent mutations involved in the change in 

absorption wavelength in a fish rhodopsin dataset. These results confirm that our method detects 

realistic convergent evolution signal and could be applied to a broad range of organisms.  

 We tested the robustness of ConDor to model violation by using JTT (Jones et al. 1992) instead 

of HIVb (Nickle et al. 2007) as a neutral model of evolution for the study of synthetic HIV-like datasets. 

In doing so, the sensitivity remained high, and we still detected ~70% of positions with DRMs. 

However, the number of false positives increased, and thus we expect false positives with real data. 

The number of false positives can be partly explained as ConDor tends to be biased towards mutations 

found at positions with very high evolutionary rates. Indeed, our method relies on how realistic 

simulations are as a null model. Our results show that for most positions and most mutations, we are 

close to what is observed in real data, and our simulations represent a satisfactory null model. 

However, at certain fast positions we observed that simulations tend to differ from the real data, 

which resulted in an increased rate of false positives. Thus, we advise that ConDor detections should 

be cross-validated with approaches such as positive selection to decrease the number of potential 

false positives. More advanced substitution models, for example based on mixtures or some ideas 

derived from the CAT model (Le, Gascuel et al. 2008) also used in (Rey et al. 2018) but in a different 

setting, or mixture of matrix models which accounts for structural features of the positions (Le, 
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Lartillot et al. 2008) or their evolutionary rate (Le et al. 2012), should likely enhance our approach, 

make the simulations more realistic and lower the number of potentially erroneous detections.  

ConDor was developed to detect convergent amino-acid changes and not convergent 

positions, which complicates the comparison with existing approaches based on convergent site 

detection (e.g. PCOC (Rey et al. 2018), and to some extent positive selection methods (Murrell et al. 

2012)). An adaptation of ConDor to work at the position level could be an interesting feature to add 

to the program. Our approach is made possible since we are working at the scale of a single protein 

with thousands of sequences, which provides sufficient signal and detection power. By working on 

thousands or even millions of positions (e.g., with bacterial genomes), ConDor would likely lack the 

statistical power to work at the scale of a single mutation due to multiple testing. An extension of 

ConDor to work at the gene level (similarly to (Chabrol et al. 2018)), or to detect convergence within 

a sliding window, would certainly be a useful development. 

We have designed this method for the study of specific genes, typically from viruses and 

microorganisms for which the phenotype is rarely available. Thus, we do not consider any prior 

knowledge of constraints and phenotype for our analyses. In the same way that methods consider 

that a position is convergent if it shows the same amino acid derived independently in species with a 

convergent phenotype (Foote et al. 2015; Zou and Zhang 2015), knowledge of the phenotype could 

be added to ConDor and only positions meeting the above criterion could be tested and selected. 

Materials and Methods  

Real HIV dataset 

The HIV reverse transcriptase dataset we analyzed is based on the nucleotide alignment 

provided in (Lemoine et al. 2018) which we downloaded from https://github.com/evolbioinfo-

/booster-workflows/tree/master/data/vih. This is an alignment of 9,147 HIV-1 group M polymerase 

sequences. The authors indicate that this alignment contains recombinant sequences, which we have 

removed based on the JPHMM output file provided in their supplementary data (https://github.com/ 

evolbioinfo/booster-workflows). We then extracted the B subtype sequences from this alignment 

using their annotation file "pol_nonrecombinant.txt". Finally, we added the reference sequence HXB2 

(GenBankTM accession number K03455) from which the position numbering and the ancestral amino 

acids in the DRMs notation are derived. The resulting alignment contains 3,557 B subtype sequences 

and 1,043 nucleotide positions.  

As outgroup, we downloaded the group M subtype reference alignment (user-defined range 

2258-3300) from the Los Alamos HIV database (https://www.hiv.lanl.gov/content/index). We 
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removed subtype B sequences from the outgroup and added the sequences to Lemoine et al MSA, 

resulting in an MSA of 3,592 nucleotide sequences which we translated into amino acids.  

After tree reconstruction and rooting (as explained in subsection “Tree reconstruction by 

maximum likelihood”) we visually checked the rooting of the tree with Itol (Letunic and Bork 2019). 

We removed from the MSA 11 sequences classified as B (but likely recombinant), which were placed 

among the outgroup and obtained a monophyletic group of 3,546 B subtype sequences and the 

corresponding rooted tree. 

Synthetic HIV-like alignment  

We used the sierrapy (https://github.com/hivdb/sierra-client/tree/master/python) fasta 

command to locate (positions and sequences) the DRMs present in the HIV-1 subtype B MSA of 3,557 

sequences. The list of mutations used by sierrapy can be found at “https://hivdb.stanford.edu/hiv-

db/by-mutations”. Then, we replaced positions with DRMs with unknowns in the corresponding 

sequences. The phylogeny, thus unaffected by DRMs, was reconstructed as explained in subsection 

“Tree reconstruction by maximum likelihood”. This phylogeny was therefore different from the one 

representing the real data because the aim here was not the same. In the first case, with the real data, 

we did not remove the DRMs because we wanted to be agnostic of any convergence before applying 

ConDor. In the second case, we wanted to control where the convergence was in order to quantify 

the percentage of true and false positives. To do this, we removed all traces of (known) convergence, 

thus removing the DRMs and reconstructing a phylogeny whose structure was affected as little as 

possible by convergence.  

We rooted the tree using the same outgroup as before and we deleted 6 sequences of subtype 

B that were placed among the outgroup sequences. As result, we obtained a true HIV phylogeny of 

3551 truncated polymerases of subtype B. We simulated the evolution of HXB2 (reverse transcriptase 

only) along this tree 5 times using a homemade simulator implemented in python.  

We did not replace exactly the DRMs found by sierrapy, but used the same list as the one used 

for the real data, for comparison purposes. This list corresponds to the “Essential DRM Data” data 

from the Stanford University Drug resistance database (https://hivdb.stanford.edu/pages/poc.html), 

from which we selected only mutations found in at least 12 sequences and showing more than 2 EEMs, 

i.e., found in at least 3 distinct subtrees. The list of 37 DRMs can be found in Supplementary Table S1.  

Rhodopsin dataset 

Protein data of rhodopsin and fish habitat were retrieved from https://github.com/ 

Clupeaharengus/rhodopsin/tree/master/phylogeny_habitat. We extracted the 2,056 sequences from 
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“spp_to_keep.txt” from the file “final_alignment.translated.fullrhodopsin.fasta” and removed 7 badly 

aligned sequences. We used the same sequences used for rooting than in (Hill et al. 2019) (Huso huso 

and Polyodon spathula). The habitat was provided in the file “rabo_allele_hab.tsv” from the repository 

provided in (Hill et al. 2019). 

Tree reconstruction by maximum likelihood 
All phylogenies were reconstructed from the corresponding protein MSAs, using the following 

procedure and options. We used model finder (Kalyaanamoorthy et al. 2017), corresponding to 

parameter –m MFP in IQtree version 1.6.8 (Nguyen et al. 2015), to select the model of sequence 

evolution (substitution matrix, gamma categories or freerates model, presence of invariant positions, 

etc.). Amino acid equilibrium frequencies were estimated by maximum likelihood using IQ-tree option 

+FO, and site-specific evolutionary rates were estimated using option -wsr.  

Ancestral character construction by maximum likelihood 

Ancestral character reconstruction was achieved using PastML version 1.9.29.9 (Ishikawa et 

al. 2019) with option --prediction_metho MAP. We provided one parameter file (option --

parameter) per position, in which are written (1) the amino acid frequencies for the whole 

alignment and (2) the scaling factor for the studied position, corresponding to the rate of evolution of 

the site as estimated by IQtree. The selected substitution matrix (HIVb, JTT, resp. MetaZoa) was given 

as input (--rate_matrix) using PastML option -m CUSTOM_RATE.  

Technical details 

The whole method is implemented in a Nextflow pipeline (Tommaso et al. 2017) taking as 

input an amino-acid alignment, a rooted/unrooted tree and a file containing outgroup sequences 

identifiers. The python libraries numpy (Harris et al. 2020), pandas (McKinney 2010) and scipy 

(Virtanen et al. 2020) were used for data frames and matrices manipulations and for the statistic tools 

they provide. We used biopython (Cock et al. 2009) for sequences and alignments manipulations. 

Tree traversals and analyses were achieved with ETE 3 (Huerta-Cepas et al. 2016). Graphics were 

obtained using matplotlib (Hunter 2007) and seaborn libraries. All MSA (translation to amino 

acids, subalignments, etc.) and trees manipulations (pruning, rooting, etc.) were achieved using 

goalign and gotree (Lemoine and Gascuel 2021). Simulations and counting of EEMs were 

computed using homemade python scripts. Convergent candidate events were selected based on 

their p-value after correcting for multiple testing with a “Benjamini – Hochberg” correction, with a risk 

alpha of 0.05.  
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MEME 
We used MEME (Murrell et al. 2012) to search for positions under episodic positive selection 

on the nucleotidic HIV-1 MSA. The threshold for significant positions was set at a p-value of 0.05, 

without correction for multiple testing, as their test tends to be conservative and “traditional setting 

of multiple testing (multiple tests on the same data) does not directly apply here” 

(https://github.com/veg/hyphy/issues/851 and https://github.com/veg/hyphy/issues/188). Thus, the 

proportion of false positives we expect is approximately equal to 0.05 multiplied by the number of 

positions that are under positive selection (here 0.05x32≈2).  

PCOC  
We used PCOC (Rey et al. 2018) to detect convergent positions based on the knowledge of the 

habitat (marine vs fresh/brackish water). We used the profile C10 (-CATX_est 10) with 4 gamma 

categories (--gamma) and fixed the posterior probability threshold of a position to be above 0.8 (-

f 0.8). For the convergent scenario (-m) corresponding to the different clades of nodes which exhibit 

the convergent transition, we considered that the convergent tips were those with the fresh/ brackish 

water environment. Then, we retrieved all internal nodes the tips of which were in the convergent 

environment and completed the scenario, as described in the user guide (https://github.com/ 

CarineRey/pcoc). 

BayesTraits 
In the rhodopsin dataset, correlations between fish habitat and mutations detected as 

convergent by ConDor were measured with BayesTraits ‘discrete dependent’ model (Pagel 1994; Pagel 

& Meade 2006). Prior to running the software, we transformed our data into discrete binary traits. 

This way, marine habitat was annotated as 1 and fresh/brackish water as 0. Similarly, for a given 

position, the convergent change had the value 1 and the other amino acids at that position the value 

0. We followed the procedure detailed in http://www.evolution.rdg.ac.uk/BayesTraitsV3/Files/-

BayesTraitsV3.Manual.pdf to assess whether the dependence between both traits was more likely 

than their independence. The dependence hypothesis was retained if the Bayes factor was greater 

than 10. Priors for the transition rates were estimated using the output provided by the maximum 

likelihood models as described in the user guide.   

Data availability 
Our MSAs, phylogenetic trees, scripts and results analysis are accessible from the Github 

repository https://github.com/mariemorel/condor-analysis.  
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Figure S1: Fish rhodopsin data, ancestral reconstruction of position 83 and corresponding contingency table.  

The visualisation corresponds to a compressed representation of the ancestral scenario, after 
performing a vertical merge such as defined by PastML (Ishikawa et al. 2019). Each disk corresponds 
to a cluster within which all nodes and tips have the same common ancestor (a node, included in the 
cluster) and are predicted by ACR with the same state. Next to the inferred state (here N, D or G), is 
written the number of tips in the cluster. If there is no number, the represented “cluster” is a tip. 
Arrows represent independent emergence-events of mutations (EEMs). The blue and green circles 
around each cluster represent the percentage of tips in the cluster annotated in marine and 
freshwater/brackish water, respectively.  

The ancestral amino acid at position 83 is an aspartate (D) which was lost independently 28 times 
towards asparagine (N) and twice towards glycine (G). The reversion from N towards D then occurred 
independently 31 times. In some clusters this switch between D and N occurred again leading to 32 
EEMs towards N and 32 EEMs towards D in total. Both mutations were found as convergent with 
ConDor.  

D clusters seem to be more frequently associated with brackish/fresh water whereas species in N 
clusters seem to be found in marine water. This distribution can also be observed with the 
contingency table displaying the number of species having D or N at position 83 in function of their 
habitat. To alleviate phylogenetic confounding factors, we reanalysed this correlation using 
BayesTraits ‘discrete dependent’ model (Pagel and Meade 2006) and found a strong dependence 
between these two traits, with Bayes Factors equal to 104 (D83N) and 140 (N83D). The Bayes Factors 
are different because the data are not perfectly symmetrical between D83N and N83D, mainly due to 
the presence of other amino acids (G). Indeed, the input given to BayesTraits is binary with the 

  Brackish/fresh Marine 
D 905 258 
N 99 442 
G 7 0 
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convergent change taking the value 1 and any other amino acids at the corresponding position the 
value 0. The correlation found between the habitat and position 83 is confirmed by previous work 
which found that position 83 harboured key blue-shifting substitutions, with amino acid N found in 
deep-diving species and D in non-deep-diving species (Sugawara et al. 2005; Yokoyama et al. 2008).  
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Figure S2: Fish rhodopsin data, ancestral reconstruction of position 292 and corresponding contingency table.  

This visualisation corresponds to a compressed representation of the ancestral scenario, after 
performing a vertical merge such as defined by PastML (Ishikawa et al. 2019). Each disk corresponds 
to a cluster within which all nodes and tips have the same common ancestor (a node, included in the 
cluster) and are predicted by ACR with the same state. Next to the inferred state (here A, S, C, G or I), 
is written the number of tips in the cluster. If there is no number, the represented cluster is a tip. 
Arrows represent independent EEMs. The blue and green circles around each cluster represent the 
percentage of tips in the cluster annotated in marine and freshwater/brackish water, respectively.  

The two most common amino acids at position 292 are alanine (A) which is the root amino acid and 
serine (S). We count 44 EEMs towards S (all from A) and 13 EEMs towards A. Mutation A292S was 
found convergent with ConDor. This mutation could be associated with marine water as most of the 
species in the S clusters are also found in marine water. This distribution can also be observed with the 
contingency table displaying the number of species having A or S at position 292 in function of their 
habitat. To alleviate phylogenetic confounding factors, we reanalysed this correlation using 
BayesTraits ‘discrete dependent’ model (Pagel and Meade 2006) and found a strong dependence 
between these two traits with Bayes Factors equal to 70. This is consistent with previous works which 
found that amino acid S at position 292 could be an adaptation to the bathypelagic environment 
(Sugawara et al. 2005; Varela and Ritchie 2014).  

 Brackish/fresh Marine 

A 1085 717 

S 27 108 

C 1 1 

G 1 0 

I 0 3 
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Mutation Number of sequences Number of EEMs Detected 
M184V 273 124 Yes 
K103N 221 143 Yes 
M41L 211 45 Yes 
T215Y 187 30 Yes 
D67N 164 50 Yes 
L210W 130 17 Yes 
K70R 123 54 Yes 
K219Q 78 29 Yes 
G190A 64 50 Yes 
T215F 60 22 Yes 
V179D 58 47 No 
Y181C 55 41 Yes 
E138A 49 45 Yes 
V108I 47 41 Yes 
T69D 47 23 No 
P225H 39 25 Yes 
L74V 37 32 No 
K219E 37 22 No 
A62V 30 23 Yes 
A98G 27 19 Yes 
T215D 25 18 No 
Q151M 22 9 Yes 
L100I 22 17 No 
K238T 22 11 Yes 
T215C 21 16 No 
T215S 21 18 No 
F116Y 20 11 No 
L74I 20 20 No 
V75I 18 9 No 
K101E 18 18 No 
Y188L 18 17 No 
H221Y 18 17 No 
V179E 18 16 No 
F77L 15 7 No 
K219N 15 13 No 
V75M 14 9 Yes 
K101P 12 8 Yes 

 

Table S1: List of the 37 DRMs and their detection status on the real HIV-1 subtype B MSA.  

This table presents the 37 DRMs that we used as true convergent events for the real HIV-1 subtype B 
MSA. The chosen DRMs correspond to the “Essential DRM Data” data from the Stanford University 
Drug resistance database (https://hivdb.stanford.edu/pages/poc.html) from which we selected only 
mutations found in at least 12 sequences and more than 2 EEMs, i.e., found in two distinct clades in 
the real HIV-1 tree. Number of sequences: number of sequences in which the corresponding DRM was 
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found in the real data. Number of EEMs: number of independent emergence-events of mutation that 
was inferred for the DRM by ancestral reconstruction and counting. Detected: If they were detected 
or not as convergent by ConDor and thus found as true positives.  
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Mutation P-value Fast Role of the mutation Reference 

P4S 0.0002 No X  
E6D 0.0 No Associated with AIDS related deaths (Liu et al. 2017) 
K20R 0.0 No Reduced susceptibility  (Saracino et al. 2006) 
K22R 0.0 No X  
T27S 0.0 No X  
K32N 0.0 No X  
T35M 0.0 Yes X  
T39A 0.0 No Accessory mutation (Gonzales et al. 2003; 

Svicher et al. 2006) 
M41L 0.0 No DRM HIV database1 
S48T 0.0 No X  
K49R 0.0 No X  
I50V 0.0 No X  
V60I 0.0 No Compensatory mutation (Precious et al. 2000) 
A62V 0.0 No DRM HIV database1 
K64R 0.0 No X  
D67N 0.0 No DRM HIV database1 
S68G 0.0 No Compensatory mutation (Svarovskaia et al. 

2008) 
T69N 0.0 No NRTI-selected mutation (Winters and Merigan 

2001) 
K70R 0.0 No DRM HIV database1 
V75M 0.0001 No DRM HIV database1 
A98G 0.0 No DRM HIV database1 
A98S 0.0 No Increased virological success (Alteri et al. 2016) 
K101Q 0.0 No Accessory mutation (Melikian et al. 2014) 
K101P 0.0004 No DRM HIV database1 
K102Q 0.0 No X  
K103N 0.0 No DRM HIV database1 
K104R 0.0 No X  
K104N 0.0 No X  
T107S 0.0 No X  
V108I 0.0 No DRM HIV database1 
D121H 0.0 No X  
D121Y 0.0 No X  
K122P 0.0001 Yes X  
D123N 0.0004 Yes X  
I135T 0.0 Yes Associated with NNRTI failure (Ceccherini-Silberstein, 

Svicher, et al. 2007) 
E138A 0.0001 No DRM HIV database1 
I142T 0.0 No X  
I142V 0.0001 No Accessory mutation (Kawamoto et al. 2008) 
Q151M 0.0 No DRM HIV database1 
A158S 0.0 No X  
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I159V 0.0004 No X  
S162C 0.0 Yes X  
T165I 0.0 No Associated with Q151M (Scherrer et al. 2012) 
K166R 0.0 No X  
E169D 0.0 No Viral escape (Zimbwa et al. 2007) 
F171Y 0.0 No X  
R172K 0.0002 No Suppresses resistance (NRTIs & NNRTIs) (Hachiya et al. 2012) 
K173Q 0.0 No X  
Q174H 0.0002 No X  
N175H 0.0 No X  
N175Y 0.0003 No X  
D177E 0.0 Yes X  
I178M 0.0 Yes X  
I178L 0.0 Yes Associated with M184V in subtype C (Doualla-Bell et al. 

2004) 
Y181C 0.0 No DRM HIV database1 
M184V 0.0001 No DRM HIV database1 
G190A 0.0 No DRM HIV database1 
I195L 0.0 No X  
T200A 0.0 Yes X  
I202V 0.0 No Associated with Q151M (Scherrer et al. 2012) 
Y208H 0.0003 No Reversion from accessory (Nebbia et al. 2007) 
L210F 0.0 No X  
L210W 0.0 No DRM HIV database1 
K211G 0.0 Yes X  
F214L 0.0 No Favourable virological response? (Ceccherini-Silberstein, 

Cozzi-Lepri, et al. 2007) 
T215F 0.0 No DRM HIV database1 
T215Y 0.0001 No DRM HIV database1 
K219Q 0.0 No DRM HIV database1 
P225H 0.0 No DRM HIV database1 
L228H 0.0 No Reduced virological response (Marcelin et al. 2006) 
K238T 0.0001 No DRM HIV database1 
I244V 0.0002 No X  
K245M 0.0 Yes X  
K249Q 0.0 No X  

Note 1: https://hivdb.stanford.edu/pages/poc.html 
 
Table S2: Results of ConDor detection on real HIV-1 subtype B MSA, sorted by position.   
 
Mutations: Mutations detected as convergent with ConDor on the real HIV-1 subtype B MSA of 
reverse transcriptase. The p-values are not corrected and below or equal to the acceptance threshold 
of 0.0004 after “Benjamini-Hochberg” correction. Fast: detected mutation is on a position that 
belong to the 5% positions with highest evolutionary rate on the whole dataset. Role of the 
mutation: possible role of the mutation found in the literature. Mutations that have “DRM” noted for 
the role of the mutation corresponds to the 37 DRMs that we used as true convergent mutations, 
and which can be found in Supplementary Table S1.    
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Positions MEME p-values  ConDor detects DRM Fast position 
35 0.0000 Yes No Yes  
39 0.0002 Yes No No 
40 0.0000 No No No 
48 0.0000 Yes No No 
64 0.0002 Yes No No 
69 0.0000 Yes Yes No 
75 0.0000 Yes Yes No 
98 0.0005 Yes Yes No 

101 0.0116 Yes Yes No 
102 0.0000 Yes No No 
111 0.0000 No  No No 
121 0.0037 Yes No No 
122 0.0001 Yes No Yes 
135 0.0000 Yes No Yes 
138 0.0010 Yes Yes No 
151 0.0000 Yes Yes No 
162 0.0000 Yes No Yes 
165 0.0003 Yes No No 
176 0.0042 No No No 
178 0.0000 Yes No Yes  
181 0.0397 Yes Yes No 
188 0.0000 No Yes No 
190 0.0023 Yes Yes No 
200 0.0000 Yes No Yes 
202 0.0161 Yes No No 
207 0.0000 No No Yes 
211 0.0000 Yes No Yes 
215 0.0000 Yes Yes  No 
228 0.0000 Yes No No 
238 0.0267 Yes Yes No 
245 0.0000 Yes No Yes 
248 0.0000 No No Yes 

total  26 11 10 
 
Table S3: Results of MEME detection on the 109 positions tested with ConDor on real HIV-1 subtype B MSA, 
sorted by position.   
 
Positions significantly detected with MEME to be under episodic positive selection (Murrell et al. 
2012) on the real HIV-1 subtype B MSA of reverse transcriptase. The p-values are those provided by 
MEME and unmodified with an acceptance threshold at 0.05. ConDor detects: positions on which we 
also detected events with ConDor. DRM: position on which there is at least one DRM belonging to 
the list of 37 DRMs (see Supplementary Table S1). Fast: detected positions that belong to the 5% 
positions with highest evolutionary rate on the whole dataset.  
Over the 32 positions found to be under positive selection, 26 intersect with events found by 
ConDor. Among all (32) MEME detections, 11 are at positions with DRMs and 10 are at fast positions.  
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Mutation ConDor 
p-values 

Fast  Bayes 
factor 

Role of the mutation 

V32A 0.0005 No 2,52 X 
A33P 0.0 Yes 2,49 X 
E64Q 0.0 No 2,57 X 
D83N 0.0004 No 104 Shift lambda (Sugawara et al. 2005; Yokoyama 

2008) 
N83D 0.0007 No 139,63 Shift lambda (Yokoyama 2008) 
L99M 0.0001 No 54,59 Parallel in bats, Role in vision? (Shen et al. 2010) 
F115Y 0.0001 No -3,31 X 
L119H 0.0 No 9,43 X 
I123M 0.0 No 53,43 X  
A124G 0.0 No 43,98 Red-shifting mutation (Hunt et al. 2001; Van 

Nynatten et al. 2021) 
S127C 0.0004 No 15,47 X 
V137M 0.0 No -2,45 Altered transducin activation (Athanasiou et al. 

2018) 
A158G 0.0 Yes 43,71 X 
T160S 0.0007 No -2,44 X 
A163G 0.0 No -3,73 X 
S165C 0.0 Yes 64 X 
C165S 0.0001 Yes 75,31 X 
S166T 0.0007 No 16 Reversion from blue-shifting (Malinsky et al. 

2015; O’Reilly et al. 2016) 
A166S 0.0 No 66,47 Blue-shifting mutation (Malinsky et al. 2015; 

O’Reilly et al. 2016) 
A168S 0.0 No 17,83 X 
V169A 0.0 No -2,45 X 
E196P 0.0001 No 35,58 X 
F198Y 0.0001 No 10,52 Shift lambda with K248R in RH2 (Matsumoto et 

al. 2020) 
S202T 0.0 No 3,20 X 
F203Y 0.0001 No 2,13 x 
I205V 0.0 No 66 X 
I209T 0.0 Yes 14 X 
V210C 0.0005 No 57,71 X 
L213M 0.0 Yes -6 X 
I214T 0.0 No -2,76 Shift lambda with 83N (Yokoyama et al. 2008) 
L216M 0.0 No 0,39 

 

I217T 0.0004 Yes 28 X 
V218I 0.0 No -5,2 X 
V219I 0.0007 No 22,49 X 
R248K 0.0 No 1,91 X 
T251S 0.0 No 10 X 
V254C 0.0006 No -4,58 X 
V255I 0.0 No 46 X 
I256M 0.0 No -4 X 
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I256L 0.0001 No 18,53 X 
A260G 0.0 No -8,02 X 
F261Y 0.0 No 58 Shift lambda (Yokoyama 2008) 
V263I 0.0003 No 22 X 
L266C 0.0 Yes 74,08 X 
S270G 0.0 Yes 12 Shift lambda in bovine and human (Shen et al. 

2010; Morrow et al. 2017) 
V271T 0.0 No 12,75 X 
Y274W 0.0002 Yes 25,49 Sensitivity under low light? (Wu et al. 2021) 
W274Y 0.0 Yes 58 Reversion  
T277C 0.0 No 6,65 X 
H278N 0.0 Yes 4 X 
Q279K 0.0 No 15,1 X 
K279Q 0.0004 No 22 X 
S281T 0.0 No 8,99 X 
A292S 0.0 No 70 Shift lambda (Yokoyama 2008) 
S299A 0.0 No 58 Shift lambda (Yokoyama 2008; Dungan and 

Chang 2017) 
 
Table S4: Results of ConDor detection on fish rhodopsin dataset, sorted by position.    
 
Mutation: Mutations detected as convergent with ConDor on the fish rhodopsin dataset. The p-
values are those given as output by ConDor and are not corrected. The list of mutations corresponds 
to those whose p-value is less than or equal to the acceptance threshold of 0.0007 after "Benjamini-
Hochberg" correction with an alpha risk of 0.05. Fast: detected mutation on a position that belong to 
the 5% positions with highest evolutionary rate on the whole dataset. Bayes Factor: Bayes factor 
calculated by BayesTraits ‘discrete dependent’ model (Pagel 1994; Pagel and Meade 2006). If the 
Bayes factor is greater than 10 (highlighted in bold), the mutation is significantly correlated with the 
habitat (marine or fresh/brackish water). Role of the mutation: possible role of the mutation found in 
the literature, with the reference.  

We detected 55 events with ConDor, 12 of which are found at fast positions, 32 are correlated with 
marine or fresh/brackish water environments, 15 were already discussed in the literature. 
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Positions PCOC PC OC ConDor detects 
112 0.0 0.999241853902 0.0 No 
122 0.0 0.999982215936 0.0 No 
123 0.0 0.936513873132 0.0 Yes 
130 0.0 0.999846947621 0.0 No 
157 0.0 0.885208130113 0.0 No 
166 0.0 0.950774252529 0.0 Yes 
198 0.0 0.999964399102 0.0 Yes 
212 0.0 0.838911340706 0.0 No 
220 0.0 0.916154973344 0.0 No 
250 0.0 0.872817517838 0.0 No 
275 0.0 0.925024916922 0.0 No 
281 0.0 0.99999982137 0.0 No 
283 0.0 0.969703702425 0.0 No 
288 0.0 0.918405596855 0.0 No 
289 0.0 0.913253682925 0.0 Yes 
293 0.0 0.939855892307 0.0 No 

 

Table S5: Results of PCOC detection on fish rhodopsin dataset, sorted by position. 

Positions detected by PCOC considering that the convergent clades were those annotated with 
fresh/brackish water. PCOC: combination of posterior probabilities of PC (Profile change) and OC 
(One change) model. PC: posterior probabilities of the PC model. The threshold for significance was 
set to 0.8; OC: posterior probabilities of OC model. The threshold for significance was set to 0.8; 
ConDor detects: If we detect a convergent mutation with ConDor at the given position.  

All the detections are due to the changes in amino acid profiles (PC model) which means that species 
with the convergent phenotype shifted to a different vector of amino acid probabilities compared to 
their ancestors. These shifts occurred at 16 different positions, 4 of which intersect with ConDor 
detections. However, the OC model is not significant as the model shift did not occur at the 
beginning of the branch supporting the clade of convergent species. Since the OC model is not 
verified, there are no strictly convergent positions detected for the given phenotype (fresh/brackish 
water).  

 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450558
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Supplementary References 
Alteri C, Surdo M, Di Maio VC, Santo F, Costa G, Parrotta L, Romeo I, Gori C, Santoro M, Fedele V, et 
al. 2016. The HIV-1 reverse transcriptase polymorphism A98S improves the response to tenofovir 
disoproxil fumarate+emtricitabine-containing HAART both in vivo and in vitro. Journal of Global 
Antimicrobial Resistance. 7. doi:10.1016/j.jgar.2016.06.005. 

Athanasiou D, Aquila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. 2018. The 
molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for 
therapy. Prog Retin Eye Res. 62:1–23. doi:10.1016/j.preteyeres.2017.10.002. 

Ceccherini-Silberstein F, Cozzi-Lepri A, Ruiz L, Mocroft A, Phillips A, Olsen C, Gatell J, Günthard H, 
Reiss P, Perno C, et al. 2007. Impact of HIV-1 Reverse Transcriptase Polymorphism F214L on 
Virological Response to Thymidine Analogue—Based Regimens in Antiretroviral Therapy (ART)—
Naive and ART-Experienced Patients. The Journal of infectious diseases. 196:1180–90. 
doi:10.1086/521678. 

Ceccherini-Silberstein F, Svicher V, Sing T, Artese A, Santoro MM, Forbici F, Bertoli A, Alcaro S, 
Palamara G, d’Arminio Monforte A, et al. 2007. Characterization and Structural Analysis of Novel 
Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Involved in the 
Regulation of Resistance to Nonnucleoside Inhibitors. J Virol. 81(20):11507–11519. 
doi:10.1128/JVI.00303-07. 

Doualla-Bell F, Gaseitsiwe S, Ndung’u T, Modukanele M, Peter T, Novitsky V, Ndwapi N, Tendani G, 
Avalos A, Wester W, et al. 2004. Mutations and Polymorphisms Associated with Antiretroviral Drugs 
in HIV-1C-Infected African Patients. Antivir Chem Chemother. 15(4):189–200. 
doi:10.1177/095632020401500402. 

Dungan SZ, Chang BSW. 2017. Epistatic interactions influence terrestrial–marine functional shifts in 
cetacean rhodopsin. Proceedings of the Royal Society B: Biological Sciences. 284(1850):20162743. 
doi:10.1098/rspb.2016.2743. 

Gonzales MJ, Wu TD, Taylor J, Belitskaya I, Kantor R, Israelski D, Chou S, Zolopa AR, Fessel WJ, Shafer 
RW. 2003. Extended spectrum of HIV-1 reverse transcriptase mutations in patients receiving multiple 
nucleoside analog inhibitors: AIDS. 17(6):791–799. doi:10.1097/00002030-200304110-00003. 

Hachiya A, Marchand B, Kirby KA, Michailidis E, Tu X, Palczewski K, Ong YT, Li Z, Griffin DT, 
Schuckmann MM, et al. 2012. HIV-1 Reverse Transcriptase (RT) Polymorphism 172K Suppresses the 
Effect of Clinically Relevant Drug Resistance Mutations to Both Nucleoside and Non-nucleoside RT 
Inhibitors. J Biol Chem. 287(35):29988–29999. doi:10.1074/jbc.M112.351551. 

Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK. 2001. The molecular basis for spectral 
tuning of rod visual pigments in deep-sea fish. Journal of Experimental Biology. 204(19):3333–3344. 
doi:10.1242/jeb.204.19.3333. 

Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O. A Fast Likelihood Method to Reconstruct and Visualize 
Ancestral Scenarios. Mol Biol Evol. doi:10.1093/molbev/msz131. [accessed 2019 Jun 7]. 
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msz131/5498561. 

Kawamoto A, Kodama E, Sarafianos SG, Sakagami Y, Kohgo S, Kitano K, Ashida N, Iwai Y, Hayakawa H, 
Nakata H, et al. 2008. 2’-deoxy-4’-C-ethynyl-2-halo-adenosines active against drug-resistant human 
immunodeficiency virus type 1 variants. Int J Biochem Cell Biol. 40(11):2410–2420. 
doi:10.1016/j.biocel.2008.04.007. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450558
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Liu P, Feng Y, Wu J, Tian S, Su B, Wang Z, Liao L, Xing H, You Y, Shao Y, et al. 2017. Polymorphisms and 
Mutational Covariation Associated with Death in a Prospective Cohort of HIV/AIDS Patients Receiving 
Long-Term ART in China. PLOS ONE. 12(1):e0170139. doi:10.1371/journal.pone.0170139. 

Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Miska EA, Durbin R, Genner MJ, 
Turner GF. 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater 
lake. Science. 350(6267):1493–1498. doi:10.1126/science.aac9927. 

Marcelin A-G, Flandre P, Furco A, Wirden M, Molina J-M, Calvez V, AI454-176 Jaguar Study Team. 
2006. Impact of HIV-1 reverse transcriptase polymorphism at codons 211 and 228 on virological 
response to didanosine. Antivir Ther. 11(6):693–699. 

Matsumoto Y, Oda S, Mitani H, Kawamura S. 2020. Orthologous Divergence and Paralogous 
Anticonvergence in Molecular Evolution of Triplicated Green Opsin Genes in Medaka Fish, Genus 
Oryzias. Genome Biol Evol. 12(6):911–923. doi:10.1093/gbe/evaa111. 

Melikian GL, Rhee S-Y, Varghese V, Porter D, White K, Taylor J, Towner W, Troia P, Burack J, DeJesus 
E, et al. 2014. Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications 
for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J Antimicrob 
Chemother. 69(1):12–20. doi:10.1093/jac/dkt316. 

Morrow JM, Castiglione GM, Dungan SZ, Tang PL, Bhattacharyya N, Hauser FE, Chang BSW. 2017. An 
experimental comparison of human and bovine rhodopsin provides insight into the molecular basis 
of retinal disease. FEBS Letters. 591(12):1720–1731. doi:10.1002/1873-3468.12637. 

Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK. 2012. Detecting Individual Sites 
Subject to Episodic Diversifying Selection. PLOS Genetics. 8(7):e1002764. 
doi:10.1371/journal.pgen.1002764. 

Nebbia G, Sabin CA, Dunn DT, Geretti AM, UK Collaborative Group on HIV Drug Resistance, UK 
Collaborative HIV Cohort (CHIC) Study Group. 2007. Emergence of the H208Y mutation in the reverse 
transcriptase (RT) of HIV-1 in association with nucleoside RT inhibitor therapy. J Antimicrob 
Chemother. 59(5):1013–1016. doi:10.1093/jac/dkm067. 

O’Reilly JE, Puttick MN, Parry L, Tanner AR, Tarver JE, Fleming J, Pisani D, Donoghue PCJ. 2016. 
Bayesian methods outperform parsimony but at the expense of precision in the estimation of 
phylogeny from discrete morphological data. Biology Letters. 12(4):20160081. 
doi:10.1098/rsbl.2016.0081. 

Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative 
analysis of discrete characters. Proceedings of the Royal Society of London Series B: Biological 
Sciences. 255(1342):37–45. doi:10.1098/rspb.1994.0006. 

Pagel M, Meade A. 2006. Bayesian Analysis of Correlated Evolution of Discrete Characters by 
Reversible‐Jump Markov Chain Monte Carlo. The American Naturalist. 167(6):808–825. 
doi:10.1086/503444. 

Precious HM, Günthard HF, Wong JK, D’Aquila RT, Johnson VA, Kuritzkes DR, Richman DD, Brown AJL. 
2000. Multiple sites in HIV-1 reverse transcriptase associated with virological response to 
combination therapy. AIDS. 14(1):31–36. 

Saracino A, Monno L, Scudeller L, Cibelli DC, Tartaglia A, Punzi G, Torti C, Caputo SL, Mazzotta F, 
Scotto G, et al. 2006. Impact of unreported HIV‐1 reverse transcriptase mutations on phenotypic 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450558
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

resistance to nucleoside and non‐nucleoside inhibitors. Journal of Medical Virology. 78(1). 
doi:10.1002/jmv.20500. [accessed 2021 May 12]. 
https://www.readcube.com/articles/10.1002%2Fjmv.20500. 

Scherrer AU, von Wyl V, Götte M, Klimkait T, Cellerai C, Yerly S, Böni J, Held L, Ledergerber B, 
Günthard HF, et al. 2012. Polymorphic mutations associated with the emergence of the 
multinucleoside/tide resistance mutations 69 insertion and Q151M. J Acquir Immune Defic Syndr. 
59(2):105–112. doi:10.1097/QAI.0b013e31823c8b69. 

Shen Y-Y, Liu J, Irwin DM, Zhang Y-P. 2010. Parallel and convergent evolution of the dim-light vision 
gene RH1 in bats (Order: Chiroptera). PLoS One. 5(1):e8838. doi:10.1371/journal.pone.0008838. 

Sugawara T, Terai Y, Imai H, Turner GF, Koblmüller S, Sturmbauer C, Shichida Y, Okada N. 2005. 
Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids 
from Lakes Tanganyika and Malawi. PNAS. 102(15):5448–5453. doi:10.1073/pnas.0405302102. 

Svarovskaia ES, Feng JY, Margot NA, Myrick F, Goodman D, Ly JK, White KL, Kutty N, Wang R, Borroto-
Esoda K, et al. 2008. The A62V and S68G mutations in HIV-1 reverse transcriptase partially restore 
the replication defect associated with the K65R mutation. J Acquir Immune Defic Syndr. 48(4):428–
436. doi:10.1097/QAI.0b013e31817bbe93. 

Svicher V, Sing T, Santoro MM, Forbici F, Rodríguez-Barrios F, Bertoli A, Beerenwinkel N, Bellocchi 
MC, Gago F, d’Arminio Monforte A, et al. 2006. Involvement of Novel Human Immunodeficiency 
Virus Type 1 Reverse Transcriptase Mutations in the Regulation of Resistance to Nucleoside 
Inhibitors. J Virol. 80(14):7186–7198. doi:10.1128/JVI.02084-05. 

Van Nynatten A, Castiglione GM, de A. Gutierrez E, Lovejoy NR, Chang BSW. 2021. Recreated 
Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral 
Adaptation. Molecular Biology and Evolution. 38(5):2076–2087. doi:10.1093/molbev/msab008. 

Varela A, Ritchie P. 2014. Critical amino acid replacements in the rhodopsin gene of 19 teleost 
species occupying different light environments from shallow-waters to the deep-sea. Environmental 
Biology of Fishes. 98:193–200. doi:10.1007/s10641-014-0249-4. 

Winters MA, Merigan TC. 2001. Variants Other than Aspartic Acid at Codon 69 of the Human 
Immunodeficiency Virus Type 1 Reverse Transcriptase Gene Affect Susceptibility to Nucleoside 
Analogs. Antimicrob Agents Chemother. 45(8):2276–2279. doi:10.1128/AAC.45.8.2276-2279.2001. 

Wu B, Feng C, Zhu C, Xu W, Yuan Y, Hu M, Yuan K, Li Y, Ren Y, Zhou Y, et al. 2021. The Genomes of 
Two Billfishes Provide Insights into the Evolution of Endothermy in Teleosts. Molecular Biology and 
Evolution.(msab035). doi:10.1093/molbev/msab035. [accessed 2021 May 14]. 
https://doi.org/10.1093/molbev/msab035. 

Yokoyama S. 2008. Evolution of Dim-Light and Color Vision Pigments. Annu Rev Genom Hum Genet. 
9(1):259–282. doi:10.1146/annurev.genom.9.081307.164228. 

Yokoyama S, Tada T, Zhang H, Britt L. 2008. Elucidation of phenotypic adaptations: Molecular 
analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci U S A. 105(36):13480–13485. 
doi:10.1073/pnas.0802426105. 

Zimbwa P, Milicic A, Frater J, Scriba TJ, Willis A, Goulder PJR, Pillay T, Gunthard H, Weber JN, Zhang H-
T, et al. 2007. Precise identification of a human immunodeficiency virus type 1 antigen processing 
mutant. J Virol. 81(4):2031–2038. doi:10.1128/JVI.00968-06. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450558
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Manuscript_MorelLemoineGascuel_Convergence2021.pdf
	Abstract
	Introduction
	New Approaches
	Simulation-based approach
	Counting independent emergence events of mutations (EEMs)
	Creation of a synthetic HIV-like dataset

	Results
	Synthetic HIV-like alignment
	Performance of the method on the detection of true convergence

	Fish Rhodopsin
	Implementation and availability

	Discussion
	Materials and Methods
	Real HIV dataset
	Synthetic HIV-like alignment
	Rhodopsin dataset
	Tree reconstruction by maximum likelihood
	Ancestral character construction by maximum likelihood
	Technical details
	MEME
	PCOC
	BayesTraits
	Data availability

	Acknowledgments
	References

	SuppMat_MorelLemoineGascuel_Convergence2021.pdf
	Supplementary Material
	Supplementary References


