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Martin Schäfera∗, Tino Ullricha, Béatrice Vedelb
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Abstract

In this paper we introduce new function spaces which we call anisotropic hyperbolic
Besov and Triebel-Lizorkin spaces. Their definition is based on a hyperbolic Littlewood-
Paley analysis involving an anisotropy vector only occurring in the smoothness weights.
Such spaces provide a general and natural setting in order to understand what kind of
anisotropic smoothness can be described using hyperbolic wavelets (in the literature also
sometimes called tensor-product wavelets), a wavelet class which hitherto has been mainly
used to characterize spaces of dominating mixed smoothness.

A centerpiece of our present work are characterizations of these new spaces based on
the hyperbolic wavelet transform. Hereby we treat both, the standard approach using
wavelet systems equipped with sufficient smoothness, decay, and vanishing moments, but
also the very simple and basic hyperbolic Haar system.

The second major question we pursue is the relationship between the novel hyperbolic
spaces and the classical anisotropic Besov-Lizorkin-Triebel scales. As our results show,
in general, both approaches to resolve an anisotropy do not coincide. However, in the
Sobolev range this is the case, providing a link to apply the newly obtained hyperbolic
wavelet characterizations to the classical setting. In particular, this allows for detecting
classical anisotropies via the coefficients of a universal hyperbolic wavelet basis, without
the need of adaption of the basis or a-priori knowledge on the anisotropy.

Keywords : Hyperbolic wavelet analysis, Hyperbolic Haar wavelet, Anisotropic Sobolev and
Besov-Lizorkin-Triebel spaces.
2010 Mathematics Subject Classification : 42C40, 46E35, 42B25, 41A25.

1 Introduction

With the development of wavelet analysis from the beginning of the 1980s until the present
time we nowadays have several powerful tools at hand to perform signal analysis with the aim
to extract important information out of a signal. The information is thereby usually coded
in objects easy to compute and handle – the wavelet coefficients.

Wavelet methods have been used with the known success for the purpose of compression,
denoising, inpainting, classification, etc., of data, to mention just a few. Roughly speaking, the
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common underlying idea is the fact that a few wavelet coefficients contain a rather complete
information of the signal to be analyzed. However, due to their construction principle (dyadic
dilations and integer translates of a few basic “mother” functions) classical wavelets are not
well-suited for the analysis of, say, anisotropic signals. In fact, a signal which is rather smooth
in x-direction but rough in y-direction (such as layers in the earth, stripes on a shirt, etc.)
can not be properly resolved by a classical multi-resolution analysis. The respective wavelet
coefficients do not contain the anisotropic smoothness information, they rather resolve a
certain minimal smoothness. That results in a bad decay of the sequence of wavelet coefficients
or, in other words, a bad compression rate.

Anisotropy is not a rare phenomenon since it arises whenever physics does not act the same
in different directions, e.g., geophysics, oceanography, hydrology, fluid mechanics, or medical
image processing (see [4, 42] among others) are some of the fields where it naturally appears.
For this reason wavelets have been adapted in many different ways in order to “detect” and
resolve anisotropy. There is a vast amount of literature dealing with this. For instance, there
are wave atoms [13] as well as curvelets [8, 9, 7], shearlets [32, 28, 34], anisets, and anisotropic
wavelets [50, 51, 30]. The latter concept represents a rather flexible construction since it can
be build (theoretically) for any present anisotropy. The theoretical basis of anisotropic wavelet
analysis is the equivalent characterization of corresponding anisotropic function spaces, like
Hölder, Besov, Sobolev and Triebel-Lizorkin spaces. The major shortcoming of the existing
theory is the fact that one has to know the anisotropy in advance, i.e., one has to adapt the
wavelet accordingly. In other words, if physics does not provide the anisotropy parameters
of the signal we are not able to resolve the signal accordingly without “trying out” several
anisotropic bases. Such a method is, of course, hardly implementable in practice.

In Abry et. al. [1] it has been shown that any anisotropic Besov space – defined with
respect to the cartesian axis – can “almost” be characterized with the help of the so-called
hyperbolic wavelet transform. The anisotropy of the signal can then be detected using a
uniform basis and is characterized by a special weight in the wavelet coefficients. This has
led to an efficient algorithm for image classification and anisotropy detection applied to both
synthetic and real textures (see [41, 2]).

In this paper we further develop this idea of describing anisotropy with the help of the hy-
perbolic wavelet transform. For this reason we introduce a new family of anisotropic function
spaces which are defined via a hyperbolic Littlewood-Paley analysis and for which we prove
exact characterization with hyperbolic wavelets. The motivation behind this is to provide a
general setting of anisotropic spaces characterized by one single basis of wavelets and thus to
understand how one such fixed basis can help to describe anisotropic smoothness.

Concretely, we start with a hyperbolic Littlewood-Paley analysis defined as the usual
tensor product

(1) ∆j̄(f) := F−1[θj1 ⊗ ...⊗ θjdFf ] , j̄ = (j1, . . . , jd) ∈ N
d
0 .

This hyperbolic decomposition of the frequency space has been widely used for the Fourier
analytic definition of the well-known spaces with dominating mixed smoothness, see [43, 57]
and the references therein. These spaces represent a suitable framework for multivariate
appoximation, see [15, 48] and the recent survey article [11]. The main ideas have been
developed over more than fifty years of intense research in the former Soviet Union such that
it is beyond the scope of this paper to name all the relevant references (cf. [11]).

Based on the decomposition (1), we then define spaces Ãs,ᾱ
p,q (Rd) with A ∈ {B,F} of Besov-

Lizorkin-Triebel type involving an anisotropy vector ᾱ = (α1, . . . , αd) > 0 with
∑d

i=1 αi = d.
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As a special case (A = F , 1 < p < ∞, q = 2), these include the Sobolev type spaces

W̃ s,ᾱ
p (Rd) := F̃ s,ᾱ

p,2 (R
d), where

‖f‖
F̃ s,ᾱ
p,q (Rd)

:=
∥∥∥
( ∑

j̄∈Nd
0

2qs‖j̄/ᾱ‖∞ |∆j̄(f)(·)|q
)1/q∥∥∥

p
, f ∈ S ′(Rd) .

It is important to note that the anisotropy hereby only enters in the weight 2s‖j̄/ᾱ‖∞ , where
we use the short-hand notation ‖j̄/ᾱ‖∞ := max{j1/α1, ..., jd/αd}, but not in the choice of
the Littlewood-Paley decomposition.

One of the main results of this paper is the coincidence (with respect to equivalent norms)

(2) W̃ s,ᾱ
p (Rd) =W s,ᾱ

p (Rd) , if 1 < p <∞ ,

where the space on the right-hand side represents the classical anisotropic Sobolev space
defined in (3) below. This relation has already been observed for isotropic (i.e. ᾱ = (1, ..., 1))
Hilbert-Sobolev spaces (p = 2) on the d-torus, see [27, 12], as well as on R

2 in [1]. Our result
extends this observation to all 1 < p < ∞. Surprisingly, such a coincidence in the spirit of
(2) is only possible in the Sobolev case. To be more precise, it holds

Ãs,ᾱ
p,q (R

d) = As,ᾱ
p,q (R

d) if and only if A = F , 1 < p <∞, and q = 2.

As an important consequence of this equality (2), we can further prove that it is possible to
characterize (e.g. detect and classify) classical anisotropies described by the spaces W s,ᾱ

p (Rd)
via the wavelet coefficients of a universal hyperbolic wavelet basis. Compared to the classical
approach using anisotropic wavelets, this approach has the advantage that one does not need
a-priori knowledge on the anisotropies, otherwise required for constructing the “right” basis.
In particular, our results entail that any sufficiently regular orthonormal basis (ψj̄,k̄)j̄,k̄ of
tensorized wavelets ψj̄,k̄ = ψj1,k1 ⊗ · · · ⊗ ψjd,kd constitutes an unconditional Schauder basis

for W s,ᾱ
p (Rd), whose coefficients, measured in an appropriate corresponding sequence space,

give rise to an equivalent norm on W s,ᾱ
p (Rd), i.e. for f ∈W s,ᾱ

p (Rd) with coefficients 〈f, ψj̄,k̄〉

‖f‖W s,ᾱ
p (Rd) ≍

∥∥∥
( ∑

j̄∈Nd
0

22s‖j̄/ᾱ‖∞
∣∣∣
∑

k̄∈Zd

〈f, ψj̄,k̄〉χj̄,k̄(·)
∣∣∣
2)1/2∥∥∥

p
.

This is stated in Theorem 6.2. A similar result, see Theorem 6.3, holds true for the
hyperbolic Haar system Hd = (hj̄,k̄)j̄,k̄, where hj̄,k̄ = hj1,k1 ⊗ · · · ⊗ hjd,kd, under the following

restriction on the parameter s of the space W s,ᾱ
p (Rd),

|s|/αmin < min
{1

p
, 1− 1

p

}
.

In this direction, we would also like to mention the new and related findings of Oswald in [37]
on the Schauder basis property of the hyperbolic Haar system in the classic isotropic Besov
spaces defined via first-order moduli of smoothness.

At the center of our respective proofs, we will rely on discrete characterizations provided
by hyperbolic wavelets for the spaces Ãs,ᾱ

p,q (Rd), A ∈ {B,F}. These characterizations are
fundamental and established in separate theorems, Theorem 4.2 and Theorem 5.4, whereby we
follow two paths. On the one hand, we use the usual methodology and consider orthonormal

3



wavelet bases for which we assume sufficient smoothness, decay, and vanishing moments.
As a byproduct, we thereby significantly extend the wavelet characterizations in [57, 55] for
Besov-Lizorkin-Triebel spaces with dominating mixed smoothness. On the other hand, we
use a hyperbolic Haar system, which does not fulfill smoothness conditions as before but
nevertheless allows for characterization in a certain restricted parameter range.

Let us remark that analysis with the Haar wavelet has a long tradition (see e.g. [25, 38,
39, 40, 3]), the Haar wavelet being the oldest and simplest orthonormal wavelet, conceived
as early as 1909 [29]. Besides its elegance and simplicity, notably its connection to the
Faber system [17] and other spline functions, such as e.g. the Chui-Wang wavelet [10], makes
it interesting from a numerical perspective. In particular in imaging science it plays an
important role in practical applications. Recently, it has attracted renewed attention with a
series of publications [44, 45, 21, 22, 23, 24, 14].

The paper has the following structure. After having recalled in Section 2 some helpful
Fourier analytic tools (in particular some classical maximal functions and associated inequal-
ities) as well as the definition of the classical (anisotropic) function spaces As,ᾱ

p,q (Rd), where
A ∈ {B,F}, we introduce in Section 3 the notion of hyperbolic Littlewood-Paley analysis
and the related Besov-Lizorkin-Triebel spaces Ãs,ᾱ

p,q (Rd). Wavelet characterizations of these
new hyperbolic spaces are the topic of Sections 4 and 5, whereby we first resort to standard
wavelets with sufficient smoothness, decay, and vanishing moments in Section 4, while in Sec-
tion 5 we utilize a hyperbolic Haar basis. The relationship of the new scale to the traditional
spaces is finally investigated in Sections 6 and 7. Specifically, in Section 6, we show the equal-
ity W̃ s,ᾱ

p (Rd) = W s,ᾱ
p (Rd), i.e. F̃ s,ᾱ

p,2 (R
d) = F s,ᾱ

p,2 (R
d), in the range 1 < p <∞, from which we

can then extract our main theorems concerning hyperbolic wavelet characterizations of the
classical W s,ᾱ

p (Rd).

Let us agree on the following general notation. As usual N shall denote the natural
numbers. We further put N0 := N ∪ {0}, and let Z denote the integers, R the real numbers,
and C the complex numbers. By T := R/2πZ we refer to the torus identified with the interval
[0, 2π] ⊂ R. We write 〈x, y〉 or x · y for the Euclidean inner product in R

d or Cd. The letter d
is hereby always reserved for the underlying dimension and by [d] we mean the set {1, ..., d}.
For 0 < p ≤ ∞ and x ∈ R

d we define ‖x‖p := (
∑d

i=1 |xi|p)1/p, with the usual modification
in the case p = ∞. If 1 ≤ p ≤ ∞ we set p′ such that 1/p + 1/p′ = 1. For 0 < p, q ≤ ∞
we further denote σp,q := max{1/p − 1, 1/q − 1, 0} and σp := max{1/p − 1, 0}. We also put
x+ := ((x1)+, ..., (xd)+), whereby a+ := max{a, 0} for a ∈ R. Analogously we define x−. By
(x1, . . . , xd) > 0 we shall mean that each coordinate is positive. Finally, as usual, a ∈ R is
decomposed into a = ⌊a⌋ + {a}, where 0 ≤ {a} < 1 and ⌊a⌋ ∈ Z. In case x ∈ R

d, {x} and
⌊x⌋ are then meant component-wise. Multivariate indices are typesetted with a bar, like e.g.
k̄, j̄, ℓ̄, or m̄, to indicate the multi-index. In all the paper, the multi-index ᾱ = (α1, ..., αd) > 0
thereby stands for an anisotropy and is such that α1 + ... + αd = d. In addition, we here
use the abbreviations αmin := min{α1, .., αd} and αmax := max{α1, .., αd}. The notation
ᾱ/j̄ shall always stand for (α1/j1, . . . , αd/jd). Given a positive real a > 0, we further write
aᾱ for the vector (aα1 , . . . , aαd) and let f(aᾱx) := f(aα1x1, . . . , a

αdxd) be the anisotropically
scaled version of the function f : Rd → C. For two (quasi-)normed spaces X and Y , the
(quasi-)norm of an element x ∈ X will be denoted by ‖x‖X . The symbol X →֒ Y indicates
that the identity operator is continuous. For two sequences an and bn we will write an . bn
if there exists a constant c > 0 such that an ≤ c bn for all n. We will write an ≍ bn if an . bn
and bn . an.

4



2 Classical spaces and tools from Fourier analysis

Let Lp = Lp(R
d), 0 < p ≤ ∞, be the Lebesgue space of all measurable functions f : Rd → C

such that

‖f‖p :=
(∫

Rd

|f(x)|pdx
)1/p

<∞ ,

with the usual modification if p = ∞. We will also need Lp-spaces on compact domains Ω ⊂ R
d

instead of Rd and shall write ‖f‖Lp(Ω) for the corresponding restricted Lp-(quasi-)norms.

For k ∈ N0, we denote by C
k
0 (R

d) the collection of all compactly supported functions ϕ on
R
d which have uniformly continuous derivatives Dγ̄ϕ on R

d whenever ‖γ̄‖1 ≤ k. Additionally,
we define the spaces of infinitely differentiable functions C∞(Rd) and infinitely differentiable
functions with compact support C∞

0 (Rd) as well as the Schwartz space S = S(Rd) of all
rapidly decaying infinitely differentiable functions on R

d, i.e.,

S(Rd) :=
{
ϕ ∈ C∞(Rd) : ‖ϕ‖k,ℓ <∞ for all k, ℓ ∈ N

}
,

and

‖ϕ‖k,ℓ :=
∥∥∥(1 + | · |)k

∑

‖γ̄‖1≤ℓ

|Dγ̄ϕ(·)|
∥∥∥
∞

, k, ℓ ∈ N .

The space S ′(Rd), the topological dual of S(Rd), is also referred to as the space of tempered
distributions on R

d. Indeed, a linear mapping f : S(Rd) → C belongs to S ′(Rd) if and only if
there exist numbers k, ℓ ∈ N and a constant c = cf such that

|f(ϕ)| ≤ cf‖ϕ‖k,ℓ

for all ϕ ∈ S(Rd). Any locally integrable function f on R
d belongs to S ′(Rd) in the sense that

f(ϕ) :=

∫

Rd

f(x)ϕ(x) dx , ϕ ∈ S(Rd) .

The space S ′(Rd) is equipped with the weak∗-topology.

For f ∈ L1(R
d) we define the Fourier transform

Ff(ξ) = (2π)−d/2

∫

Rd

f(y)e−iξ·ydy, ξ ∈ R
d,

and the corresponding inverse Fourier transform F−1f(ξ) = Ff(−ξ). As usual, the Fourier
transform can be extended to S ′(Rd) by (Ff)(ϕ) := f(Fϕ), where f ∈ S ′(Rd) and ϕ ∈ S(Rd).
The mapping F : S ′(Rd) → S ′(Rd) is a bijection.

The convolution ϕ ∗ ψ of two square-integrable functions ϕ,ψ is defined via the integral

(ϕ ∗ ψ)(x) =
∫

Rd

ϕ(x− y)ψ(y) dy .

If ϕ,ψ ∈ S(Rd) then ϕ ∗ ψ still belongs to S(Rd). In fact, we have ϕ ∗ ψ ∈ S(Rd) even
if ϕ ∈ S(Rd) and ψ ∈ L1(R

d). The convolution can be extended to S(Rd) × S ′(Rd) via
(ϕ ∗ ψ)(x) = ψ(ϕ(x − ·)), which makes sense pointwise and is a C∞-function on R

d.
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2.1 Classical (an)isotropic Littlewood-Paley analysis

Subsequently, ᾱ = (α1, ..., αd) > 0 will denote an anisotropy and be such that α1 + ...+αd =
d. Anisotropic Besov spaces may then be introduced using an anisotropic Littlewood-Paley
analysis depending on ᾱ. Classical isotropic spaces – as a particular case of anisotropic spaces
– will thereby be obtained for ᾱ = (1, 1, ..., 1).

Let ϕᾱ
0 ≥ 0 belong to the Schwartz class S(Rd) and be such that, for ξ = (ξ1, ..., ξd) ∈ R

d,

ϕᾱ
0 (ξ) = 1 if sup

i=1,2,...,d
|ξi| ≤ 1 ,

and ϕᾱ
0 (ξ) = 0 if sup

i=1,...,d
|2−αiξi| ≥ 1 .

For j ∈ N, further define

ϕᾱ
j (ξ) := ϕᾱ

0 (2
−jᾱξ)− ϕᾱ

0 (2
−(j−1)ᾱξ)

= ϕᾱ
0 (2

−jα1ξ1, . . . , 2
−jαdξd)− ϕᾱ

0 (2
−(j−1)α1ξ1, . . . , 2

−(j−1)αdξd) .

Then
∑∞

j=0 ϕ
ᾱ
j ≡ 1, and (ϕᾱ

j )j≥0 is called an anisotropic resolution of unity. It satisfies

supp(ϕᾱ
0 ) ⊂ Rᾱ

1 , supp(ϕᾱ
j ) ⊂ Rᾱ

j+1 \Rᾱ
j−1 ,

where Rᾱ
j =

{
ξ = (ξ1, . . . , ξd) ∈ R

d : |ξi| ≤ 2αij for i ∈ [d] = {1, . . . , d}
}
.

For f ∈ S ′(Rd), we then define

∆ᾱ
j f = F−1(ϕᾱ

j Ff) .

The sequence (∆ᾱ
j f)j≥0 is called an anisotropic Littlewood-Paley analysis of f . With this

tool, the anisotropic Besov spaces are now defined as follows (see [6, 5]).

Definition 2.1 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, the Besov space Bs,ᾱ
p,q (Rd) is defined by

Bs,ᾱ
p,q (R

d) =
{
f ∈ S ′(Rd) :

(∑

j≥0

2jsq‖∆ᾱ
j f‖qp

)1/q
<∞

}
,

with the usual modification for q = ∞.
This definition does not depend on chosen resolution of unity ϕᾱ

0 and the quantity

‖f‖Bs,ᾱ
p,q

=
(∑

j≥0

2jsq‖∆ᾱ
j f‖qp

)1/q

is a norm (resp. quasi-norm) on Bs,ᾱ
p,q (Rd) for 1 ≤ p, q ≤ ∞ (resp. 0 < min{p, q} < 1) and

with the usual modification if q = ∞.

As in the isotropic case, anisotropic Besov spaces encompass a large class of classical
anisotropic function spaces (see [51] for details). For example, when p = q = 2, the Besov
spaces coincide with the anisotropic Sobolev spaces and, when p = q = ∞, the spaces
Bs,ᾱ

∞,∞(Rd) are called anisotropic Hölder spaces and are denoted by Cs,ᾱ(Rd).
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Definition 2.2 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, the Triebel-Lizorkin space F s,ᾱ
p,q (Rd) is

defined by

F s,ᾱ
p,q (R

d) =
{
f ∈ S ′(Rd) :

∥∥∥
(∑

j≥0

2jsq|∆ᾱ
j f(·)|q

)1/q∥∥∥
p
<∞

}
,

with the usual modification for q = ∞.
This definition does not depend on the chosen resolution of unity ϕᾱ

0 and the quantity

‖f‖F s,ᾱ
p,q

=
∥∥∥
(∑

j≥0

2jsq|∆ᾱ
j f(·)|q

)1/q∥∥∥
p

is a norm (resp. quasi-norm) on F s,ᾱ
p,q (Rd) for 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ (resp. 0 <

min{p, q} < 1) and with the usual modification if q = ∞.

If q = 2 and 1 < p < ∞, the anisotropic Triebel-Lizorkin space coincides with the
anisotropic Sobolev space denoted by W s,ᾱ

p (Rd) :

(3) W s,ᾱ
p =

{
f ∈ S ′(Rd) :

∥∥∥F−1
[( d∑

i=1

(1 + ξ2i )
1/2αi

)s
Ff(ξ)

]∥∥∥
p
<∞

}
.

Remark 2.1 (i) As mentioned before, if ᾱ = (1, ..., 1), it is easy to check that the spaces
Bs,ᾱ

p,q (Rd) (resp. F s,ᾱ
p,q (Rd)) coincide with the classical spaces Bs

p,q(R
d) (resp. F s

p,q(R
d)). In

addition, we have F 0,ᾱ
p,2 (R

d) = Lp(R
d) in the range 1 < p <∞.

(ii) Our understanding of anisotropic spaces coincides with the one in Triebel [51] (see
also the references therein). There are different (but related) notions of anisotropy in the
Russian literature, see Nikolskij [36, Chapt. 4] or Temlyakov [48, II.3]. A consequence of our
Theorem 6.1 below is the fact that in case of W -spaces the mentioned approaches coincide
and lead to the same notion of anisotropy. However, in case of Hölder-Nikolskij spaces this
is in general not the case as for instance Theorem 7.1 shows.

2.2 Maximal inequalities

Let us provide here the maximal inequalities for the Hardy-Littlewood and Peetre maximal
functions, respectively. For further details we refer to [57, 1.2, 1.3] or [43, Chapt. 2] .

For a locally integrable function f : Rd → C we denote by Mf(x) the Hardy-Littlewood
maximal function defined by

(4) (Mf)(x) = sup
x∈Q

1

|Q|

∫

Q
|f(y)| dy , x ∈ R

d ,

where the supremum is taken over all cubes with sides parallel to the coordinate axes contain-
ing x. A vector valued generalization of the classical Hardy-Littlewood maximal inequality is
due to Fefferman and Stein [18].

Theorem 2.1 ([18]) For 1 < p <∞ and 1 < q ≤ ∞ there exists a constant c > 0, such that

∥∥∥
(∑

ℓ∈I

|Mfℓ|q
)1/q∥∥∥

p
≤ c

∥∥∥
(∑

ℓ∈I

|fℓ|q
)1/q∥∥∥

p

holds for all sequences {fℓ}ℓ∈I of locally Lebesgue-integrable functions on R
d.
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We require a direction-wise version of (4)

(Mif)(x) = sup
s>0

1

2s

∫ xi+s

xi−s
|f(x1, ..., xi−1, t, xi+1, ..., xd)| dt , x ∈ R

d.

We denote the composition of these operators by Me =
∏

i∈eMi, where e is a subset of
[d] = {1, . . . , d} and MℓMk has to be interpreted as Mℓ ◦Mk. The following version of the
Fefferman-Stein maximal inequality is due to Stöckert [47].

Theorem 2.2 ([47]) For 1 < p <∞ and 1 < q ≤ ∞ there exists a constant c > 0 such that
for any i ∈ [d] ∥∥∥

(∑

ℓ∈I

|Mifℓ|q
)1/q∥∥∥

p
≤ c

∥∥∥
(∑

ℓ∈I

|fℓ|q
)1/q∥∥∥

p

holds for all sequences {fℓ}ℓ∈I of locally Lebesgue-integrable functions on R
d.

Iteration of this theorem yields a similar boundedness property for the operator M[d].

The following construction of a maximal function is due to Peetre, Fefferman, and Stein. Let
b̄ = (b1, ..., bd) > 0, a > 0, and f ∈ L1(R

d) with Ff compactly supported. We define the
Peetre maximal function Pb̄,af by

(5) Pb̄,af(x) = sup
z∈Rd

|f(x− z)|
(1 + |b1z1|)a · ... · (1 + |bdzd|)a

.

Lemma 2.1 Let Ω ⊂ R
d be a compact set. Let further a > 0 and γ̄ = (γ1, ..., γd) ∈ N

d
0. Then

there exist two constants c1, c2 > 0 (independent of f) such that

P(1,...,1),a(D
γ̄f)(x) ≤ c1P(1,...,1),af(x)

≤ c2
(
Md

(
Md−1

(
...
(
M1|f |1/a

)
...
)))a

(x)
(6)

holds for all f ∈ L1(R
d) with supp (Ff) ⊂ Ω and all x ∈ R

d. The constants c1, c2 depend
on Ω.

We finally give a vector-valued version of the Peetre maximal inequality which is a direct
consequence of Lemma 2.1 together with Theorem 2.2.

Theorem 2.3 Let 0 < p < ∞, 0 < q ≤ ∞ and a > max{1/p, 1/q}. Let further b̄ℓ =
(bℓ1, ..., b

ℓ
d) > 0 for ℓ ∈ I and Ω = {Ωℓ}ℓ∈I , such that

Ωℓ ⊂ [−bℓ1, bℓ1]× · · · × [−bℓd, bℓd]

is compact for ℓ ∈ I. Then there is a constant C > 0 (independent of f and Ω) such that

∥∥∥
(∑

ℓ∈I

|Pb̄ℓ,afℓ|q
)1/q∥∥∥

p
≤ C

∥∥∥
(∑

ℓ∈I

|fℓ|q
)1/q∥∥∥

p

holds for all systems f = {fℓ}ℓ∈I with supp (Ffℓ) ⊂ Ωℓ, ℓ ∈ I .
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3 Hyperbolic Littlewood-Paley analysis

Let θ0 ∈ S(R) be supported on [−2, 2] with θ0 = 1 on [−1, 1]. For any j ∈ N, let us further
define

θj = θ0(2
−j ·)− θ0(2

−(j−1)·)

such that (θj)j is a univariate resolution of unity, i.e.,
∑

j≥0 θj(·) = 1. Observe that, for any

j ≥ 1, supp(θj) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}.

Remark 3.1 In the following, the function θ0 can be chosen with an arbitrary compact sup-
port. It does not change the main results even if technical details of proofs and lemmas have
to be adapted. This allows to choose θ0 as the Fourier transform of a Meyer scaling function.

Let us now come to the main concept of this paper, the hyperbolic Littlewood-Paley
analysis.

Definition 3.1 (i) For any j̄ = (j1, ..., jd) ∈ N
d
0 and any ξ = (ξ1, ..., ξd) ∈ R

d set

θj̄(ξ1, ..., ξd) := θj1(ξ1)θj2(ξ2)...θjd(ξd) .

The function θj̄ belongs to S(Rd) for all j̄ ∈ N
d
0 and is compactly supported on a dyadic

rectangle. Further
∑

j̄∈Nd
0
θj̄ ≡ 1 and (θj̄)j̄ is called a hyperbolic resolution of unity.

(ii) For f ∈ S ′(Rd) and j̄ ∈ N
d
0 set

∆j̄f := F−1(θj̄Ff) .

The sequence (∆j̄f)j̄∈Nd
0
is called a hyperbolic Littlewood-Paley analysis of f .

We are now in the position to introduce new functional spaces called anisotropic hyperbolic
Besov spaces and anisotropic hyperbolic Triebel-Lizorkin spaces defined via the hyperbolic
Littlewood-Paley analysis.

Definition 3.2 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that∑d
i=1 αi = d we define the anisotropic hyperbolic Besov space B̃s,ᾱ

p,q (Rd) via

B̃s,ᾱ
p,q (R

d) =
{
f ∈ S ′(Rd) :

( ∑

j̄∈Nd
0

2‖(j1/α1,...,jd/αd)‖∞sq‖∆j̄f‖qp
)1/q

<∞
}
,

with the usual modification in case q = ∞.

This definition does not depend on the chosen resolution of unity (θj̄)j̄ and the quantity

‖f‖B̃s,ᾱ
p,q

:=
( ∑

j̄∈Nd
0

2‖(j1/α1,...,jd/αd)‖∞sq‖∆j̄f‖qp
)1/q

is a norm (resp. quasi-norm) on B̃s,ᾱ
p,q (Rd) for 1 ≤ p, q ≤ ∞ (resp. 0 < min{p, q} < 1) and

with usual modification if q = ∞.

9



Definition 3.3 For 0 < p <∞, 0 < q ≤ ∞, s ∈ R, ᾱ = (α1, . . . , αd) > 0 such that
∑

i αi = d
we define the anisotropic hyperbolic Triebel-Lizorkin space via

F̃ s,ᾱ
p,q (R

d) =
{
f ∈ S ′(Rd) :

∥∥∥
( ∑

j̄∈Nd
0

2‖(j1/α1,...,jd/αd)‖∞sq|∆j̄f(·)|q
)1/q∥∥∥

p
<∞

}
,

with the usual modification in case q = ∞.
This definition does not depend on the chosen resolution of unity (θj̄)j̄ and the quantity

‖f‖
F̃ s,ᾱ
p,q

:=
∥∥∥
( ∑

j̄∈Nd
0

2‖(j1/α1,...,jd/αd)‖∞sq|∆j̄f(·)|q
)1/q∥∥∥

p

is a norm on F̃ s,ᾱ
p,q (Rd) for 1 ≤ p <∞, 1 ≤ q ≤ ∞ (resp. quasi-norm for 0 < min{p, q} < 1).

Remark 3.2 The above definitions of anisotropic hyperbolic Besov and Sobolev spaces include
four indices: s stands for the regularity, p is the integration parameter and q the so-called
fine-index. The parameter ᾱ = (α1, . . . , αd) encodes the present anisotropy: the more αmin =
min{α1, .., αd} is close to 0 and αmax = max{α1, ..., αd} is close to d, the more we need
directional smoothness in one axis compared to others. On the other hand, if ᾱ = (1, ..., 1)
the anisotropy becomes an “isotropy”.

Remark 3.3 By analogy with the classical spaces, if q = 2 and 1 < p < ∞, F̃ s,ᾱ
p,q (Rd) is

called anisotropic hyperbolic Sobolev space and is denoted by W̃ s,ᾱ
p (Rd). In case ᾱ = (1, ..., 1)

we write W̃ s
p (R

d).

Let us finally introduce classical spaces with dominating mixed smoothness in the spirit
of [43, 57].

Definition 3.4 Let r ∈ R, 0 < p, q ≤ ∞ (p <∞ in the F -case).
(i) The Besov space with dominating mixed smoothness Sr

p,qB(Rd) is the collection of all

distributions f ∈ S ′(Rd) such that the following (quasi-)norm

‖f‖Sr
p,qB(Rd) :=

( ∑

j̄∈Nd
0

2r‖j‖1q‖∆j̄(f)‖qp
)1/q

is finite.

(ii) The Triebel-Lizorkin space with dominating mixed smoothness Sr
p,qF (R

d) is the collection

of all distributions f ∈ S ′(Rd) such that the following (quasi-)norm

‖f‖Sr
p,qF (Rd) :=

∥∥∥
( ∑

j̄∈Nd
0

2r‖j‖1q|∆j̄(f)(x)|q
)1/q∥∥∥

p
is finite.

(iii) If 1 < p < ∞ and r ∈ R then the Sobolev space with dominating mixed smoothness
Sr
pW (Rd) is the collection of all f ∈ S ′(Rd) such that

‖f‖Sr
pW :=

∥∥∥F−1
[ d∏

i=1

(1 + |ξi|2)r/2Ff
]∥∥∥

p
is finite.
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Let us also state a useful Fourier multiplier theorem, see [57, Thm. 1.12] or [43, p. 77].

Lemma 3.1 ([57, 43]) Let 0 < p < ∞, 0 < q ≤ ∞, and r > 1
min(p,q) +

1
2 . Further, let

{Ωk̄}k̄∈Nd
0
be a sequence of compact subsets of Rd such that

Ωk̄ ⊂
{
x ∈ R

d : |xi| ≤ 2ki , i = 1, . . . , d
}
.

Then, there is a positive constant C > 0 such that

∥∥∥
( ∑

k̄∈Nd
0

∣∣∣F−1[ρk̄Ffk̄](·)
∣∣∣
q) 1

q
∥∥∥
p
≤ C

∥∥∥
( ∑

k̄∈Nd
0

|fk̄(·)|q
) 1

q
∥∥∥
p
× sup

ℓ̄∈Nd
0

‖ρℓ̄(2ℓ1 ·, . . . , 2ℓd ·)‖Sr
2W

holds for all systems {fk̄}k̄∈Nd
0
∈ Lp(ℓq) with supp (Ffk̄) ⊂ Ωk̄ and all systems {ρk̄}k̄∈Nd

0
⊂

Sr
2W (Rd).

4 Hyperbolic wavelet analysis

In this section we prove hyperbolic wavelet characterizations of the spaces B̃s,ᾱ
p,q (Rd) and

F̃ s,ᾱ
p,q (Rd) defined in Definitions 3.2 and 3.3, respectively. It should be noted that the proof

technique used for Theorem 4.2 below also represents a progress towards new optimal wavelet
characterizations of Besov-Lizorkin-Triebel spaces with dominating mixed smoothness, which
extends the results in [57, Sect. 2.4] significantly, see Remark 4.3 below.

Let us start with univariate wavelets given by a scaling function ψ0 and a corresponding
wavelet ψ. These functions are supposed to satisfy the following (minimal) conditions:

(K) It holds ψ0, ψ ∈ CK(R). For any M ∈ N there is a constant CM > 0 such that for all
0 ≤ α ≤ K it holds

|Dαψ0(x)|+ |Dαψ(x)| ≤ CM (1 + |x|)−M , x ∈ R .

(L) The wavelet ψ has vanishing moments up to order L− 1: For L > β ∈ N0 it holds

∫

R

ψ(x)xβ dx = 0 .

In case L = 0 the condition is void.

We shall denote

ψj,k :=
1√
2
ψ(2j−1 · −k) , j ∈ N, k ∈ Z ,

and ψ0,k := ψ0(· − k). We set ψj,k ≡ 0 if j < 0. To obtain the hyperbolic wavelet basis in
L2(R

d) we tensorize over all scales and obtain

ψj̄,k̄(x1, ..., xd) := ψj1,k1(x1) · ... · ψjd,kd(xd) , x = (x1, ..., xd) ∈ R
d, j̄ ∈ Z

d, k̄ ∈ Z
d .

The following lemma recalls a useful convolution relation. Let us clarify the notation first.
For a given univariate function Λ we will use the notation Λj(·) := 2j−1Λ(2j−1·), j ∈ N . We
will further put xj,m := 2−jm and Ij,m := [2−jm, 2−j(m + 1)) with associated characteristic
function χj,m := 1Ij,m.
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Lemma 4.1 Let Λ0,Λ ∈ S(R) with Λ having infinitely many vanishing moments, i.e.,

∫

R

Λ(x)xβ dx = 0

for all β ∈ N . Let further ψ0 and ψ satisfy (K) and (L) as above and R > 0 be a given
real number. Then it exists a constant CR > 0 such that for any j ∈ N0 and ℓ,m ∈ Z the
convolution relation

|(Λj ∗ ψj+ℓ,m)(x)| ≤ CR2
−Nsign(ℓ)|ℓ|(1 + 2min{j,j+ℓ}|x− xj+ℓ,m|)−R

holds true with sign(ℓ) ∈ {+,−, 0} and N0 := 0, N+ := L+ 1 and N− := K.

Proof. The above lemma is a special case of a more general convolution relation, see for
instance [26, p. 466] for the most general version. Originally, this relation is due to Frazier,
Jawerth [19, Lem. 3.3], [20, Lem. B.1, B.2]. �

Lemma 4.1 immediately implies the following multivariate version by exploiting the tensor
product structure. Similar as for the hyperbolic wavelet system, we use the notation

Λj̄(x) := Λj1(x1) · ... · Λjd(xd) , x ∈ R
d, j̄ ∈ Z

d .

In the sequel we will further need the notation

Qj̄,m̄ := Ij1,m1 × . . .× Ijd,md
and χj̄,m̄(x1, ..., xd) := χj1,m1(x1) · ... · χjd,md

(xd) ,(7)

with the notation Iji,mi
and χji,mi

, i ∈ [d] = {1, . . . , d}, introduced right before Lemma 4.1.

Lemma 4.2 Let Λ,Λ0, ψ0, ψ as in Lemma 4.1. For any R > 0 there exists a contant CR > 0
such that for any j̄ ∈ N

d
0 and ℓ̄, m̄ ∈ Z

d the convolution relation

(8) |(Λj̄ ∗ ψj̄+ℓ̄,m̄)(x)| ≤ CR

d∏

i=1

2−Nsign(ℓi)
|ℓi|(1 + 2min{ji,ji+ℓi}|xi − 2−(ji+ℓi)mi|)−R

holds true with sign(ℓi) ∈ {+,−, 0} and N0 := 0, N+ := L+ 1 and N− := K .

The next proposition is also crucial and represents the “hyperbolic version” of [31, Lem.
3,7]. An isotropic version is originally due to Kyriazis [33, Lem. 7.1]. For the convenience of
the reader we give a proof.

Proposition 4.1 Let 0 < r ≤ 1 and R > 1/r. For any sequence (λj̄)j̄∈Nd
0
of complex numbers

and any ℓ̄ ∈ Z
d, j̄ ∈ N

d
0 we have, using the notation ℓ̄+ = ((ℓ1)+, . . . , (ℓd)+),

∑

m̄∈Zd

|λj̄+ℓ̄,m̄|
d∏

i=1

(
1 + 2min{ji,ji+ℓi}|xi − 2−(ji+ℓi)mi|

)−R

. 2‖ℓ̄+‖1/r
[
M

∣∣∣
∑

m̄∈Zd

λj̄+ℓ̄,m̄χj̄+ℓ̄,m̄

∣∣∣
r]1/r

(x) , x ∈ R
d ,

where M stands for the Hardy-Littlewood maximal operator.
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Proof. We follow the proof from [31, Lem. 7]. Put δ = R− 1/r > 0 and define a decompo-
sition {Ωk̄(x)}k̄∈Nd

0
of Zd depending on x = (x1, . . . , xd) ∈ R

d as follows:

Ωk̄(x) := Ωk1(x1)× ...× Ωkd(xd) , k̄ = (k1, . . . , kd) ∈ N
d
0 ,

with

Ωki(xi) := {m ∈ Z : 2ki−1 < 2min{ji,ji+ℓi}|xi − 2−(ji+ℓi)m| ≤ 2ki} , ki ∈ N ,

Ω0(xi) := {m ∈ Z : 2min{ji,ji+ℓi}|xi − 2−(ji+ℓi)m| ≤ 1} .

We then estimate for fixed x = (x1, . . . , xd) ∈ R
d

∑

m̄∈Zd

|λj̄+ℓ̄,m̄|
d∏

i=1

(1 + 2min{ji,ji+ℓi}|xi − 2−(ji+ℓi)mi|)−R

=

∞∑

k̄∈Nd
0

∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|
d∏

i=1

(1 + 2min{ji,ji+ℓi}|xi − 2−(ji+ℓi)mi|)−R

.

∞∑

k̄∈Nd
0

∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|2−δ‖k̄‖1−‖k̄‖1/r . sup
k̄∈Nd

0

( ∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|
)
2−‖k̄‖1/r

.
(
sup
k̄∈Nd

0

2−‖k̄‖1
∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|r
)1/r

.

(9)

We further note that

(10) 2−‖k̄‖1
∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|r = 2−‖k‖1

∫

⋃
m̄∈Ω

k̄
(x)

Qj̄+ℓ̄,m̄

2‖j̄+ℓ̄‖1
∑

w̄∈Ωk̄(x)

|λj̄+ℓ̄,w̄|rχj̄+ℓ̄,w̄(y) dy

and observe that for Q(x) :=
⋃

m̄∈Ωk̄(x)

Qj̄+ℓ̄,m̄ we have x ∈ Q(x) and

|Q(x)| ≍ 2‖k̄‖1−‖min{j̄,j̄+ℓ̄}‖1 .

Recalling the definition of the Hardy-Littlewood maximal function in (4), we obtain

2−‖k̄‖1+‖min{j̄,j̄+ℓ̄}‖1

∫

Q(x)

∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|rχj̄+ℓ̄,m̄(y) dy

.
1

|Q(x)|

∫

Q(x)

∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|rχj̄+ℓ̄,m̄(y) dy ≤M
∣∣∣
∑

m̄∈Zd

λj̄+ℓ̄,m̄χj̄+ℓ̄,m̄

∣∣∣
r
(x) .

Putting this into (10), we arrive at

2−‖k̄‖1
∑

m̄∈Ωk̄(x)

|λj̄+ℓ̄,m̄|r . 2‖ℓ̄+‖1M
∣∣∣
∑

m̄∈Zd

λj̄+ℓ̄,m̄χj̄+ℓ̄,m̄

∣∣∣
r
(x) .

Finally, we plug this estimate into (9) and obtain the desired assertion. �

Before stating our main result we need a further definition.
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Definition 4.1 Let 0 < q ≤ ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
d∑

i=1
αi = d.

(i) If 0 < p < ∞ we define the sequence space f̃ s,ᾱp,q as the collection of all sequences
(λj̄,k̄)j̄∈Nd

0,k̄∈Z
d ⊂ C such that the (quasi-)norm (usual modification in case q = ∞)

‖(λj̄,k̄)j̄∈Nd
0,k̄∈Z

d‖f̃s,ᾱ
p,q

:=
∥∥∥
( ∑

j̄∈Nd
0

2‖(j1/α1,...,jd/αd)‖∞sq
∣∣∣
∑

k̄∈Zd

λj̄,k̄χj̄,k̄(·)
∣∣∣
q)1/q∥∥∥

p
is finite.

(ii) If 0 < p ≤ ∞ we define the sequence space b̃s,ᾱp,q as the collection of all sequences
(λj̄,k̄)j̄∈Nd

0,k̄∈Z
d ⊂ C such that the (quasi-)norm (usual modification in case q = ∞)

‖(λj̄,k̄)j̄∈Nd
0,k̄∈Z

d‖b̃s,ᾱp,q
:=

( ∑

j̄∈Nd
0

2‖(j1/α1,...,jd/αd)‖∞sq
∥∥∥
∑

k̄∈Zd

λj̄,k̄χj̄,k̄(·)
∥∥∥
q

p

)1/q
is finite.

Now we are ready to state the wavelet characterization of the space F̃ s,ᾱ
p,q (Rd) . Recall that

for 0 < p, q ≤ ∞ we put

σp,q := max{1/p − 1, 1/q − 1, 0} and σp := max{1/p − 1, 0} .

Remark 4.1 The theorem below states the result for the F -scale of spaces F̃ a,ᾱ
p,q (Rd). As for

the corresponding result for the Besov type spaces B̃s,ᾱ
p,q (Rd), we simply replace condition (11)

on K,L by

K,L > σp + |s|/αmin

and use the corresponding sequence spaces b̃s,ᾱp,q .

Theorem 4.2 Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, ᾱ = (α1, . . . , αd) > 0 with
∑d

i=1 αi = d.
Let further ψ0, ψ be wavelets satisfying (K) and (L) above with

(11) K,L > σp,q + |s|/αmin.

Then any f ∈ S ′(Rd) belongs to F̃ s,ᾱ
p,q (Rd) if and only if it can be represented as

(12) f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄ψj̄,k̄

with (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,q and the sum converging in S ′(Rd) with respect to some ordering. For each

f ∈ F̃ s,ᾱ
p,q (Rd) the convergence of the representation (12) is then even unconditional. Moreover,

if q <∞, the sum also converges in F̃ s,ᾱ
p,q (Rd) and (ψj̄,k̄)j̄,k̄ constitutes an unconditional basis

in F̃ s,ᾱ
p,q (Rd). The sequence of coefficients λ(f) := (λj̄,k̄)j̄,k̄ is uniquely determined via

(13) λj̄,k̄ = 2‖j̄‖1〈f, ψj̄,k̄〉

and we have the wavelet isomorphism (equivalent (quasi-)norm)

‖f‖
F̃ s,ᾱ
p,q (Rd)

≍ ‖λ(f)‖f̃s,ᾱ
p,q

, f ∈ F̃ s,ᾱ
p,q (R

d) .
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Remark 4.2 Following [35, Prop. 3.20], the dual pairing of f ∈ S ′(Rd) and ψj̄,k̄ ∈ CK(Rd)
in (13) has to be understood in the way

(14) 〈f, ψ〉 :=
∑

j̄∈Nd
0

〈Θj̄ ∗ f,Λj̄ ∗ ψ〉L2(Rd) .

Here we choose Θj̄ := F−1θj̄ and Λj̄ := F−1λj̄ such that
∞∑
j=0

θjλj ≡ 1 . Using elementary

estimates and the Nikolskij inequality in case p < 1, one can show

F̃ s,ᾱ
p,q (R

d) →֒ B̃s,ᾱ
p,∞(Rd) →֒ S

−|s|/αmin−σp

max{p,1},∞ B(Rd) .

Setting sᾱ,p := |s|/αmin + σp and p̃ := max{p, 1} we obtain

|〈f, ψ〉| ≤
∑

j̄∈Nd
0

‖Θj̄ ∗ f‖p̃‖Λj̄ ∗ ψ‖p̃′

≤ sup
j̄∈Nd

0

2−sᾱ,p‖j̄‖1‖Θj̄ ∗ f‖p̃ ·
∑

j̄∈Nd
0

2sᾱ,p‖j̄‖1‖Λj̄ ∗ ψ‖p̃′

. ‖f‖
S
−sᾱ,p
p̃,∞

B(Rd)
· ‖ψ‖

S
sᾱ,p

p̃′ ,1
B(Rd)

,

where the right-hand side is finite due to (11) and (8). In other words, f ∈ F̃ s,ᾱ
p,q (Rd) generates

a (conjugate) linear functional on the Banach space S
sᾱ,p

p̃′,1 B(Rd).

Remark 4.3 As we will see below, our arguments apply as well to classical spaces of dominat-
ing mixed smoothness Sr

p,qB(Rd) and Sr
p,qF (R

d), defined in Definition 3.4 above. Examining
the proof, we obtain for the relation

‖f‖Sr
p,qF (Rd) . ‖λ(f)‖srp,qf ,

where srp,qf is the sequence space associated to Sr
p,qF (for a definition see [57, Def. 2.1]), the

condition

(15) L > σp,q − r and K > r .

The converse relation holds under the condition

K > σp,q − r and L > r .

For the spaces Sr
p,qB(Rd) we replace σp,q by σp and srp,qf by srp,qb, which is the sequence space

associated to Sr
p,qB (for a definition see [57, Def. 2.1]).

Proof. [of Theorem 4.2] Step 1. We consider the sum

(16) f :=
∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄ψj̄,k̄

with λ := (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,q and show the relation

‖f‖
F̃ s,ᾱ
p,q (Rd)

. ‖λ‖f̃s,ᾱ
p,q

.
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For the issues on the convergence and uniqueness of (16) and (13) we refer to Step 3 and
4 below, where we show that under the assumption (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,q the element f is well

defined, with unconditional convergence of (16) at least in S ′(Rd), which is sufficient for the
subsequent considerations.

Let us consider ∆j̄(f) for some chosen hyperbolic Littlewood-Paley analysis. This gives

for fixed j̄ ∈ N
d
0

2‖j̄/ᾱ‖∞s|∆j̄(f)(x)| ≤
∑

ℓ̄∈Zd

2‖j̄/ᾱ‖∞s
∣∣∣Θj̄ ∗

( ∑

k̄∈Zd

λj̄+ℓ̄,k̄ψj̄+ℓ̄,k̄

)
(x)

∣∣∣ ,

where Θj̄ := F−1θj̄ and (θj̄)j̄ is the system from Definition 3.1. With u := min{p, q, 1}

‖f‖F̃ s,ᾱ
p,q (Rd) =

∥∥2‖j̄/ᾱ‖∞s∆j̄(f)(·)
∥∥
Lp(ℓq)

.
( ∑

ℓ̄∈Zd

∥∥∥2‖j̄/ᾱ‖∞sΘj̄ ∗
( ∑

k̄∈Zd

λj̄+ℓ̄,k̄ψj̄+ℓ̄,k̄

)
(·)

∥∥∥
u

Lp(ℓq [j̄])

)1/u
.

(17)

With the help of Lemma 4.2 we are aiming for pointwise estimates first.
∣∣∣Θj̄ ∗

( ∑

k̄∈Zd

λj̄+ℓ̄,k̄ψj̄+ℓ̄,k̄

)
(x)

∣∣∣ ≤
∑

k̄∈Zd

|λj̄+ℓ̄,k̄| · |(Θj̄ ∗ ψj̄+ℓ̄,k̄)(x)|

.
( d∏

i=1

2−Nsign(ℓi)
|ℓi|

) ∑

k̄∈Zd

|λj̄+ℓ̄,k̄|
d∏

i=1

(1 + 2min{ji,ji+ℓi}|xi − 2−(ji+ℓi)ki|)−R ,

where we choose R > 1/r with r < min{1, p, q} = u. Note that, due to condition (K) for the
wavelet and Lemma 4.2, we can choose R > 0 arbitrarily large. This allows for estimating
with the help of Proposition 4.1

∣∣∣Θj̄ ∗
( ∑

k̄∈Zd

λj̄+ℓ̄,k̄ψj̄+ℓ̄,k̄

)
(x)

∣∣∣ . 2−〈N̄sign(ℓ̄),|ℓ̄|〉2‖ℓ̄+‖1/r
[
M

∣∣∣
∑

k̄∈Zd

λj̄+ℓ̄,k̄χj̄+ℓ̄,k̄(·)
∣∣∣
r]1/r

(x) .

Hereby we use the short-hand notation ℓ̄+ := ((ℓ1)+, . . . , (ℓd)+) and

〈N̄sign(ℓ̄), |ℓ̄|〉 :=
d∑

i=1

Nsign(ℓi)|ℓi| .

Plugging this estimate into (17) gives

‖f‖F̃ s,ᾱ
p,q (Rd) .

( ∑

ℓ̄∈Zd

2−u〈N̄sign(ℓ̄),|ℓ̄|〉2u‖ℓ̄+‖1/r

∥∥∥2−‖(j̄+ℓ̄)/ᾱ‖∞s2‖j̄/ᾱ‖∞s
[
M

∣∣∣2‖(j̄+ℓ̄)/ᾱ‖∞s
∑

k̄∈Zd

λj̄+ℓ̄,k̄χj̄+ℓ̄,k̄

∣∣∣
r]1/r

(·)
∥∥∥
u

Lp(ℓq[j̄])

) 1
u

.

Clearly, if s ≥ 0 then ‖(j̄ + ℓ̄)/ᾱ‖∞s ≥ ‖j̄/ᾱ‖∞s− ‖ℓ̄/ᾱ‖∞s and hence

(18) 2−‖(j̄+ℓ̄)/ᾱ‖∞s2‖j̄/ᾱ‖∞s ≤ 2‖ℓ̄/ᾱ‖∞|s| .

In addition, if s < 0 we also obtain (18) via the usual ℓ∞-triangle inequality.
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Putting this into the previous estimate, using the vector-valued Hardy-Littlewood maxi-
mal inequality (Theorem 2.1) for the space Lp/r(ℓq/r[j̄]), we obtain

‖f‖F̃ s,ᾱ
p,q (Rd) .

( ∑

ℓ̄∈Zd

2−u〈N̄sign(ℓ̄),|ℓ̄|〉2u‖ℓ̄+‖1/r2u‖ℓ̄/ᾱ‖∞|s|

∥∥∥2‖(j̄+ℓ̄)/ᾱ‖∞s
∣∣∣
∑

k̄∈Zd

λj̄+ℓ̄,k̄χj̄+ℓ̄,k̄

∣∣∣
∥∥∥
u

Lp(ℓq [j̄])

)1/u

.‖λ‖f̃s,ᾱ
p,q

( ∑

ℓ̄∈Zd

2−u〈N̄sign(ℓ̄),|ℓ̄|〉2u‖ℓ̄+‖1/r2u‖ℓ̄/ᾱ‖1|s|
)1/u

.

The sum over ℓ̄ converges if L+ 1 = N+ > 1/r + |s|/αmin and K = N− > |s|/αmin .

Step 2. Let us prove the converse relation ‖λ(f)‖f̃s,ᾱ
p,q
. ‖f‖F̃ s,ᾱ

p,q (Rd) with λ(f) =

(2‖j‖1〈f, ψj̄,k̄〉)j̄,k̄ and start with f ∈ F̃ s,ᾱ
p,q (Rd). As already pointed out in Remark 4.2, the

dual pairing 〈f, ψj̄,k̄〉 makes sense due to condition (11). Our estimation begins as follows

|2‖j‖1〈f, ψj̄,k̄〉| ≤
∑

ℓ̄∈Zd

|2‖j̄‖1〈Θj̄+ℓ̄ ∗ f,Λj̄+ℓ̄ ∗ ψj̄,k̄〉|

=
∑

ℓ̄∈Zd

∑

m̄∈Zd

∣∣∣
∫

Qj̄+ℓ̄,m̄

(Θj̄+ℓ̄ ∗ f)(y)2‖j̄‖1(Λj̄+ℓ̄ ∗ ψj̄,k̄)(y) dy
∣∣∣

≤
∑

ℓ̄∈Zd

∑

m̄∈Zd

|θj̄+ℓ̄,m̄(f)|
∫

Qj̄+ℓ̄,m̄

2‖j̄‖1 |(Λj̄+ℓ̄ ∗ ψj̄,k̄)(y)| dy ,

(19)

where we put

(20) θj̄+ℓ̄,m̄(f) := sup
y∈Qj̄+ℓ̄,m̄

|(Θj̄+ℓ̄ ∗ f)(y)| .

We next estimate the integral, as in Step 1 with the help of Lemma 4.2. Here we have to be
particularly careful with the normalization factors. Note that, compared to (8), the signs of
the components of ℓ̄ in the convolution Λj̄+ℓ̄ ∗ ψj̄,k̄ change the role. This is why we put this
time M0 := 0, M− := L, M+ := K + 1 and M̄sign(ℓ̄) := (Msign(b1), . . . ,Msign(bd)). We then
obtain for z = (z1, . . . , zd) ∈ Qj̄,k̄ the estimate

∫

Qj̄+ℓ̄,m̄

2‖j‖1 |(Λj̄+ℓ̄ ∗ ψj̄,k̄)(y)| dy

. sup
y∈Qj̄+ℓ̄,m̄

2−〈M̄sign(ℓ̄),|ℓ̄|〉
d∏

i=1

(1 + 2min{ji,ji+ℓi}|yi − 2−jiki|)−R

. 2−〈M̄sign(ℓ̄),|ℓ̄|〉
d∏

i=1

(1 + 2min{ji,ji+ℓi}|2−(ji+ℓi)mi − 2−jiki|)−R

. 2−〈M̄sign(ℓ̄),|ℓ̄|〉
d∏

i=1

(1 + 2min{ji,ji+ℓi}|2−(ji+ℓi)mi − zi|)−R .
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This together with (19) and Proposition 4.1 yields for r < min{p, q, 1} = u and z ∈ R
d

∑

k̄∈Zd

|2‖j‖1〈f, ψj̄,k̄〉|χj̄,k̄(z)

.
∑

ℓ̄∈Zd

2−〈M̄sign(ℓ̄),|ℓ̄|〉
∑

m̄∈Zd

|θj̄+ℓ̄,m̄(f)|
d∏

i=1

(1 + 2min{ji,ji+ℓi}|2−(ji+ℓi)mi − zi|)−R

.
∑

ℓ̄∈Zd

2−〈M̄sign(ℓ̄),|ℓ̄|〉2‖ℓ+‖1/r
[
M

∣∣∣
∑

m̄∈Zd

θj̄+ℓ̄,m̄(f)χj̄+ℓ̄,m̄(·)
∣∣∣
r]1/r

(z) .

This leads to

2‖j̄/ᾱ‖∞s
∑

k̄∈Zd

|2‖j‖1〈f, ψj̄,k̄〉|χj̄,k̄

.
∑

ℓ̄∈Zd

2‖ℓ+‖1/r−〈M̄sign(ℓ̄),|ℓ̄|〉+‖j̄/ᾱ‖∞s−‖(j̄+ℓ̄)/ᾱ‖∞s
[
M

∣∣∣2‖(j̄+ℓ̄)/ᾱ‖∞
∑

m̄∈Zd

θj̄+ℓ̄,m̄(f)χj̄+ℓ̄,m̄(·)
∣∣∣
r] 1

r

.

Taking the Lp(ℓq[j̄])-(quasi-)norm on both sides and using (18) once more, we obtain

∥∥∥2‖j̄/ᾱ‖∞s
∑

k̄∈Zd

|2‖j‖1〈f, ψj̄,k̄〉|χj̄,k̄

∥∥∥
Lp(ℓq [j̄])

.
( ∑

ℓ̄∈Zd

2−u〈M̄sign(ℓ̄),|ℓ̄|〉2u‖ℓ+‖1/r2u‖ℓ̄/ᾱ‖∞|s|×

×
∥∥∥
[
M

∣∣∣2‖(j̄+ℓ̄)/ᾱ‖∞s
∑

m̄∈Zd

θj̄+ℓ̄,m̄(f)χj̄+ℓ̄,m̄(·)
∣∣∣
r]1/r∥∥∥

u

Lp(ℓq[j̄])

)1/u
.

(21)

Due to r < min{1, p, q} = u we can apply the Hardy-Littlewood maximal inequality (Theo-
rem 2.1) and obtain

∥∥∥
[
M

∣∣∣2‖(j̄+ℓ̄)/ᾱ‖∞s
∑

m̄∈Zd

θj̄+ℓ̄,m̄(f)χj̄+ℓ̄,m̄

∣∣∣
r]1/r∥∥∥

Lp(ℓq [j̄])
.

∥∥∥2‖j̄/ᾱ‖∞s
∑

m̄∈Zd

θj̄,m̄(f)χj̄,m̄

∥∥∥
Lp(ℓq)

.

From (20) we obtain for any z ∈ Qj̄,m̄ and any a > 0

|θj̄,m̄(f)| = sup
y∈Qj̄,m̄

|(Θj̄ ∗ f)(y)| . sup
y∈Rd

|(Θj̄ ∗ f)(y)|
d∏

i=1
(1 + 2ji |zi − yi|)a

= P2j̄ ,a(Θj̄ ∗ f)(z) ,

where we used the definition of the Peetre maximal function in (5). Choosing a > max{1
p ,

1
q}

with the corresponding maximal inequality in Theorem 2.3 then yields the relation

∥∥∥2‖j̄/ᾱ‖∞s
∑

m̄∈Zd

θj̄,m̄(f)χj̄,m̄

∥∥∥
Lp(ℓq)

. ‖P2j̄ ,a(2
‖j̄/ᾱ‖∞sΘj̄ ∗ f)‖Lp(ℓq)

. ‖2‖j̄/ᾱ‖∞sΘj̄ ∗ f‖Lp(ℓq) ≍ ‖f‖
F̃ s,ᾱ
p,q (Rd)

.
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Returning to (21), we have seen
∥∥∥2‖j̄/ᾱ‖∞s

∑

k̄∈Zd

|2‖j‖1〈f, ψj̄,k̄〉|χj̄,k̄

∥∥∥
Lp(ℓq [j̄])

. ‖f‖F̃ s,ᾱ
p,q (Rd)

( ∑

ℓ̄∈Zd

2−u〈M̄sign(ℓ̄),|ℓ̄|〉2u‖ℓ+‖1/r2u‖ℓ̄/ᾱ‖∞|s|
)1/u

.

It remains to discuss the sum over ℓ̄. It is easy to see that it converges if K + 1 = M+ >
1/r + |s|/αmin and L =M− > |s|/αmin. Recall that r is chosen such that r < min{1, p, q}.

Step 3. Let us now clarify the convergence issues in (12) in case q < ∞. The arguments
in Step 1 above show in particular for a finite partial summation of (12) that

∥∥∥
∑

j̄

∑

k̄

λj̄,k̄ψj̄,k̄

∥∥∥
F̃ s,ᾱ
p,q (Rd)

.
∥∥∥
(∑

j̄

2‖j̄/ᾱ‖∞sq
∣∣∣
∑

k̄

λj̄,k̄χj̄,k̄

∣∣∣
q)1/q∥∥∥

p
.

If q < ∞ (note that p < ∞ anyway) we use Lebesgue’s dominated convergence theorem to
conclude the unconditional convergence of (12) in F̃ s,ᾱ

p,q (Rd). The required majorant is thereby
given by

‖(λj̄,k̄)j̄∈Nd
0,k̄∈Z

d‖f̃s,ᾱ
p,q

<∞.

In case q = ∞ we use the observation in Remark 4.3. From a simple application of Hölder’s
inequality (with respect to the sum over j̄) we first obtain for any ε > 0 the relation

(22) ‖(λj̄,k̄)j̄∈Nd
0 ,k̄∈Z

d‖
s
r(s,ᾱ)−ε
p,1 f

. ‖(λj̄,k̄)j̄∈Nd
0,k̄∈Z

d‖f̃s,ᾱ
p,∞

with r(s, ᾱ) := −|s|/αmin .

Choosing ε > 0 small enough, we then obtain from (11) that condition (15) in Remark 4.3 is
satisfied. Hence, for a finite partial summation of (12) we have

∥∥∥
∑

j̄

∑

k̄

λj̄,k̄ψj̄,k̄

∥∥∥
S
r(s,α)−ε
p,1 F (Rd)

.
∥∥∥
∑

j̄

2(r(s,ᾱ)−ε)‖j̄‖1
∑

k̄

|λj̄,k̄|χj̄,k̄

∥∥∥
p
.

Again, by Lebesgue’s dominated convergence theorem (the majorant given by (22)) we see

the unconditional convergence of (12) in the space S
r(s,α)−ε
p,1 F (Rd). Taking the embedding

S
r(s,α)−ε
p,1 F (Rd) →֒ S ′(Rd) into account, we actually proved more than stated in the theorem.

Step 4. It remains to prove (12) for f ∈ F̃ s,ᾱ
p,q (Rd) and coefficients λj̄,k̄(f) chosen as in

(13). From Steps 1, 2, 3 above we have learned that {λj̄,k̄(f)}j̄,k̄ ∈ f̃ s,ᾱp,q , which implies that
the sum ∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄(f)ψj̄,k̄

converges (at least in) S ′(Rd) to an element g ∈ S ′(Rd). We now prove that f(ϕ) = g(ϕ) for
all ϕ ∈ S(Rd). Fix ϕ ∈ S(Rd), then clearly ϕ̄ ∈ L2(R

d) and we have

(23) ϕ̄ =
∑

j̄∈Nd
0

∑

k̄∈Zd

〈ϕ̄, ψj̄,k̄〉ψj̄,k̄

with convergence in L2(R
d). Since ϕ̄ ∈ S

sᾱ,p

p̃′,1 B(Rd) we have by Step 1, 2, 3 above that the

right-hand side of (23) converges in S
sᾱ,p

p̃′,1 B(Rd) to some η ∈ S
sᾱ,p

p̃′,1 B(Rd). Hence, we have
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ϕ̄ = η in S ′(Rd) which finally gives ϕ̄ = η almost everywhere and, in other words, (23) holds
true in S

sᾱ,p

p̃′,1 B(Rd). Then f(ϕ) can be rewritten as follows, using the continuity of 〈f, ·〉 (see
Remark 4.2),

f(ϕ) = 〈f, ϕ̄〉 =
〈
f,

∑

j̄∈Nd
0

∑

k̄∈Zd

〈ϕ̄, ψj̄,k̄〉ψj̄,k̄

〉

=
∑

j̄∈Nd
0

∑

k̄∈Zd

〈ϕ̄, ψj̄,k̄〉〈f, ψj̄,k̄〉 =
∑

j̄∈Nd
0

∑

k̄∈Zd

〈ϕ,ψj̄,k̄〉〈f, ψj̄,k̄〉 .

On the other hand,

g(ϕ) =
∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄(f)ψj̄,k̄(ϕ) =
∑

j̄∈Nd
0

∑

k̄∈Zd

〈ϕ,ψj̄ ,k̄〉〈f, ψj̄,k̄〉 = f(ϕ) ,

which finishes the proof. �

5 Hyperbolic Haar characterization

We next utilize a hyperbolic Haar basis for the characterization of the spaces B̃s,ᾱ
p,q (Rd) and

F̃ s,ᾱ
p,q (Rd) from Definitions 3.2 and 3.3, the main result being Theorem 5.4. It will show that

Haar characterizations are possible in a certain restricted range of parameters, although the
Haar wavelet does not fulfill smoothness requirements (K) as assumed for the derivation
of Theorem 4.2 in the previous section. Hence, for the proof of Theorem 5.4 a different
methodology is needed than in Section 4. We follow the technique used in [23], exploiting the
special structure of the Haar wavelet.

We begin by fixing a convenient inhomogeneous Haar system on the real line, namely

H1 :=
{
hj,k : k ∈ Z, j ∈ N0

}
,

where for j ∈ N, k ∈ Z, the functions hj,k are scaled Haar functions of the form

hj,k(x) :=
1√
2
h(2j−1x− k) , where h(x) := 1I+0,0

(x)− 1I−0,0
(x) .

The intervals I+j,k = [2−jk, 2−j(k+1/2)) and I−j,k = [2−j(k+1/2), 2−j(k+1)) thereby represent

the dyadic children of the standard dyadic intervals Ij,k = [2−jk, 2−j(k + 1)). At the lowest
scale j = 0 the ordinary Haar functions 1I+0,k

−1I−0,k are replaced by the characteristic functions

h0,k := 1I0,k . Further, we set hj,k ≡ 0 if j < 0. Defined like this, the structure of the system
H1 fits closely to the wavelet systems considered in Section 4. The inhomogeneous scale is at
j = 0 (and not the usual standard j = −1 for Haar systems).

For dimension d ∈ N we derive a corresponding hyperbolic d-variate Haar system by the
following tensorization procedure,

Hd :=
{
hj̄,k̄ := hj1,k1 ⊗ · · · ⊗ hjd,kd : k̄ = (k1, . . . , kd) ∈ Z

d, j̄ = (j1, . . . , jd) ∈ N
d
0

}
.(24)

Note that for j̄ ∈ N
d and k̄ ∈ Z

d the cube

Qj̄,k̄ := [2−j1k1, 2
−j1(k1 + 1)) × · · · × [2−jdkd, 2

−jd(kd + 1)),
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whose characteristic function will subsequently be denoted by χj̄,k̄ as already earlier in (7),
corresponds to the strict support of the Haar function hj̄,k̄. At each fixed “scale” j̄ these

cubes represent a partition of the d-dimensional domain R
d.

Proposition 5.1 Let 1 < p, q <∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d.
Under the condition

|s|/αmin < min
{
1− 1

p
, 1− 1

q

}

we have for f ∈ S′(Rd) (with the dual pairing 〈f, hj̄,k̄〉 defined as in (14) in Remark 4.2)

∥∥∥
( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∣∣∣
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(x)
∣∣∣
q)1/q∥∥∥

p
. ‖f‖

F̃ s,ᾱ
p,q

,(25)

whenever the left-hand side is defined. In case |s|/αmin < 1− 1
p we have

( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∥∥∥
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(·)
∥∥∥
q

p

)1/q
. ‖f‖B̃s,ᾱ

p,q
.(26)

Proof. For the proof, we first build a suitable decomposition of unity adapted to the hyper-
bolic tiling of the frequency domain. For a respective construction, we start with univariate
functions φ0, φ ∈ S(R) and λ0, λ ∈ S(R) such that

λ0φ0 +
∑

j∈N

λ(2−j ·)φ(2−j ·) =
∑

j∈N0

λjφj ≡ 1,

where φj := φ(2−j ·) and λj := λ(2−j ·) for j ∈ N. The functions φ0 and φ1 shall thereby, as
usual, be compactly supported with

supp (φ0) ⊂ {|x| ≤ 2ε} , supp (φ) ⊂ {ε/2 ≤ |x| ≤ 2ε}

for some ε > 0. As a consequence, their inverse Fourier transforms however, namely Φ0 :=
F−1φ0 and Φ := F−1φ, cannot have compact supports.

The functions λ0, λ, on the other hand are chosen such that the supports of Λ0 := F−1λ0
and Λ := F−1λ are compact. Further, they are assumed to fulfill the Tauberian conditions

|λ0(x)| > 0 on {|x| ≤ 2ε} , |λ(x)| > 0 on {ε/2 ≤ |x| ≤ 2ε}

with the same ε > 0 as above and furthermore Dγ̄λ(0) = 0 for multi-indices γ̄ ∈ N
d
0 with

‖γ̄‖1 ≤ 1. Such a construction is indeed possible, see [53, Lem. 3.6] for example.

For the subsequent proof, it is convenient to also define the functions Φj := F−1φj and
Λj := F−1λj for j ∈ N. They fulfill the scaling relations Φj = 2jΦ(2j ·) and Λj = 2jΛ(2j ·).

Next, we put Φj := 0 and Λj := 0 for j ∈ Z with j < 0 and build the tensor products

Φℓ̄ :=
⊗

i∈{1,...,d}

Φℓi and Λℓ̄ :=
⊗

i∈{1,...,d}

Λℓi for ℓ̄ ∈ Z
d.
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Then we have the decomposition, which in fact is a discrete version of Calderón’s repro-
ducing formula,

f =
∑

ℓ̄∈Zd

Φℓ̄ ∗ Λℓ̄ ∗ f for every f ∈ S′(Rd) ,

enabling a component-wise evaluation of the scalar product 〈f, hj̄,k̄〉. Each Haar coefficient
can in this way be understood in the following sense (see also Remark 4.2),

〈f, hj̄,k̄〉 =
∑

ℓ̄∈Zd

〈Φℓ̄ ∗ Λℓ̄ ∗ f, hj̄,k̄〉 =
∑

ℓ̄∈Zd

〈Φℓ̄ ∗ f,Λℓ̄(−·) ∗ hj̄,k̄〉 ,

whenever the right-hand sum converges.

If we further assume that Λℓ̄ is even, we arrive at the estimate

|2‖j̄‖1〈f, hj̄,k̄〉| .
∑

ℓ̄∈Zd

∣∣∣
∫

Rd

2‖j̄‖1(Φj̄+ℓ̄ ∗ f)(y)(Λj̄+ℓ̄ ∗ hj̄,k̄)(y) dy
∣∣∣.

Let us investigate the integral on the right-hand side, and for this let us define

Sj̄,k̄,ℓ̄ := supp
(
Λj̄+ℓ̄ ∗ hj̄,k̄

)
.

If mini∈[d]{ji + ℓi} < 0 we have Sj̄,k̄,ℓ̄ = ∅ and the integral vanishes. Otherwise, when

mini∈[d]{ji + ℓi} ≥ 0, we fix a > 0 and x ∈ R
d and obtain the estimate

∣∣∣
∫

Rd

2‖j̄‖1(Φj̄+ℓ̄ ∗ f)(y)(Λj̄+ℓ̄ ∗ hj̄,k̄)(y) dy
∣∣∣

≤ P2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(x) · sup
y∈Sj̄,k̄,ℓ̄

[ d∏

i=1

(1 + 2ji+ℓi |xi − yi|)a
]
·
∣∣∣
∫

Rd

2‖j̄‖1(Λj̄+ℓ̄ ∗ hj̄,k̄)(z) dz
∣∣∣ ,

where P2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f) denotes the Peetre maximal function (see (5))

P2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(x) = sup
y∈Rd

|(Φj̄+ℓ̄ ∗ f)(y)|
(1 + 2j1+ℓ1 |x1 − y1|)a · · · (1 + 2jd+ℓd |xd − yd|)a

.

The integral term splits into

∫

Rd

2‖j̄‖1(Λj̄+ℓ̄ ∗ hj̄,k̄)(z) dz = 2‖j̄‖1
∫

R

(Λj1+ℓ1 ∗ hj1,k1)(t) dt · · ·
∫

R

(Λjd+ℓd ∗ hjd,kd)(t) dt

according to the relation

Λj̄+ℓ̄ ∗ hj̄,k̄ = (Λj1+ℓ1 ∗ hj1,k1)⊗ · · · ⊗ (Λjd+ℓd ∗ hjd,kd).

For fixed i ∈ {1, . . . , d}, assuming ℓi < 0, we can then further estimate

∫

R

(Λji+ℓi ∗ hji,ki)(y) dy . 2−ji+ℓi(27)
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since |supp (Λji+ℓi ∗ hji,ki)| ≍ 2−(ji+ℓi) and ‖Λji+ℓi ∗ hji,ki‖∞ . 22ℓi . For the latter of these
two inequalities the first order vanishing moment of the Haar wavelet comes into play. Note
here that indeed ji > 0 due to mini∈[d]{ji + ℓi} ≥ 0, allowing for the estimate

‖Λji+ℓi ∗ hji,ki‖∞ = ‖(Λji+ℓi − Λji+ℓi(2
−jki)) ∗ hji,ki‖∞

≤ ‖Λji+ℓi − Λji+ℓi(2
−jki)‖∞‖hji,ki‖1 . 22ℓi .

In case ℓi ≥ 0 we obtain a different estimate than (27), namely

∫

R

(Λji+ℓi ∗ hji,ki)(y) dy . 2−(ji+ℓi).

Here we use the fact that the integrand is bounded by a constant together with the observation
that its support is contained in at most three intervals of length ≍ 2−(ji+ℓi). Indeed, as a
consequence of the L1- resp. L∞-normalization of Λji+ℓi and hji,ki, we have ‖Λji+ℓi∗hji,ki‖∞ ≤
‖Λji+ℓi‖1‖hji,ki‖∞ . 1. Furthermore, due to the vanishing moment properties of Λji+ℓi , the
support of the convolution merely stems from the either two or three discontinuities of the
function hji,ki .

Now, let us turn our attention to the factor

sup
y∈Sj̄,k̄,ℓ̄

[ d∏

i=1

(1 + 2ji+ℓi |xi − yi|)a
]
.

Here, we have with xi ∈ Qji,ki and yi ∈ supp (Λji+ℓi ∗ hji,ki) ⊂ supp (Λji+ℓi) + supp (hji,ki)
(and therefore |xi − yi| . 2−ji if ℓi ≥ 0 and |xi − yi| . 2−(ji+ℓi) if ℓi < 0)

(1 + 2ji+ℓi |xi − yi|)a . 1

if ℓi < 0. Otherwise, if ℓi ≥ 0, we estimate

(1 + 2ji+ℓi |xi − yi|)a . 2ℓia.

Putting all together, this yields for x ∈ Qj̄,k̄

∣∣∣
∫

Rd

2‖j̄‖1(Φj̄+ℓ̄ ∗ f)(y)(Λj̄+ℓ̄ ∗ hj̄,k̄)(y) dy
∣∣∣ . A(ℓ̄, a)P2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(x) ,

where

A(ℓ̄, a) :=
∏

i∈{1,...,d}

A(ℓi, a) with A(ℓi, a) :=

{
2ℓi , ℓi < 0

2(a−1)ℓi , ℓi ≥ 0
.

Hence, we obtain uniformly in x ∈ R
d and for fixed j̄ ∈ N

d
0

∑

k̄∈Zd

|2‖j̄‖1〈f, hj̄,k̄〉|χj̄,k̄(x) .
∑

ℓ̄∈Zd

A(ℓ̄, a)P2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(x).
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Finally, we can turn to the proof of (25). We estimate

∥∥∥
( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∣∣∣
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(x)
∣∣∣
q)1/q∥∥∥

p

.
∥∥∥
( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∣∣∣
∑

ℓ̄∈Zd

A(ℓ̄, a)P2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(x)
∣∣∣
q)1/q∥∥∥

p

=
∥∥∥
( ∑

j̄∈Nd
0

∣∣∣
∑

ℓ̄∈Zd

A(ℓ̄, a)2(‖j̄/ᾱ‖∞−‖(j̄+ℓ̄)/ᾱ‖∞)s2‖(j̄+ℓ̄)/ᾱ‖∞sP2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(x)
∣∣∣
q)1/q∥∥∥

p
.

According to (18) it holds 2(‖j̄/ᾱ‖∞−‖(j̄+ℓ̄)/ᾱ‖∞)s ≤ 2‖ℓ̄/ᾱ‖∞|s| for s ∈ R, and hence

∥∥∥
( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∣∣∣
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(x)
∣∣∣
q)1/q∥∥∥

p

.
∥∥∥
( ∑

j̄∈Nd
0

∣∣∣
∑

ℓ̄∈Zd

A(ℓ̄, a)2‖ℓ̄/ᾱ‖∞|s|2‖(j̄+ℓ̄)/ᾱ‖∞sP2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(x)
∣∣∣
q)1/q∥∥∥

p

≤
∑

ℓ̄∈Zd

A(ℓ̄, a)2‖ℓ̄/ᾱ‖∞|s| ·
∥∥∥
( ∑

j̄∈Nd
0

∣∣∣2‖j̄/ᾱ‖∞sP2j̄ ,a(Φj̄ ∗ f)(x)
∣∣∣
q)1/q∥∥∥

p
,

where Young’s convolution inequality was used in the last step.

For (26) we argue analogously, namely

( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∥∥∥
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(·)
∥∥∥
q

p

)1/q

.
( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∥∥∥
∑

ℓ̄∈Zd

A(ℓ̄, a)P2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(·)
∥∥∥
q

p

)1/q

≤
( ∑

j̄∈Nd
0

∥∥∥
∑

ℓ̄∈Zd

A(ℓ̄, a)2‖ℓ̄/ᾱ‖∞|s|2‖(j̄+ℓ̄)/ᾱ‖∞sP2j̄+ℓ̄,a(Φj̄+ℓ̄ ∗ f)(·)
∥∥∥
q

p

)1/q

≤
∑

ℓ̄∈Zd

A(ℓ̄, a)2‖ℓ̄/ᾱ‖∞|s| ·
( ∑

j̄∈Nd
0

∥∥∥2‖j̄/ᾱ‖∞sP2j̄ ,a(Φj̄ ∗ f)(·)
∥∥∥
q

p

)1/q
.

Choosing a > max{1/p, 1/q} in the F-case and a > 1/p in the B-case, to ensure the bound-
edness of the Peetre maximal operator (see Theorem 2.3, also compare e.g. [54, Thm. 2.6]),
as well as |s| < min

i∈{1,...,d}
{αi}(1− a) we get

∑

ℓ̄∈Zd

A(ℓ̄, a)2‖ℓ̄/ᾱ‖∞|s| <∞

and thus (25) and (26), respectively. �

Using a duality argument, we can deduce an immediate companion result.
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Proposition 5.2 Let 1 < p, q <∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d.
Under the condition

|s|/αmin < min
{1

p
,
1

q

}

we have for all f ∈ S′(Rd) (with the dual pairing 〈f, hj̄,k̄〉 defined as in (14) in Remark 4.2)

‖f‖F̃ s,ᾱ
p,q
.

∥∥∥
( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∣∣∣
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(x)
∣∣∣
q)1/q∥∥∥

p
,(28)

whenever the right-hand side is defined. In case |s|/αmin < 1/p we have

‖f‖B̃s,ᾱ
p,q
.

( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∥∥∥
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(·)
∥∥∥
q

p

)1/q
.(29)

Proof. We showed in Proposition 5.1 (i) that the linear operator

A : F̃ s,ᾱ
p,q → f̃ s,ᾱp,q , f 7→ (2‖j̄‖1〈f, hj̄,k̄〉)j̄,k̄ ,

is well-defined and bounded in the parameter range

|s| < min
i∈{1,...,d}

{αi}min
{
1− 1

p
, 1− 1

q

}
.

Consequently, in this range, the dual operator

A′ :
(
f̃ s,ᾱp,q

)′ →
(
F̃ s,ᾱ
p,q

)′

is also well-defined and bounded. Identifying
(
f̃ s,ᾱp,q

)′
with f̃−s,ᾱ

p′,q′ with respect to the non-
standard duality product

〈(λj̄,k̄), (µj̄,k̄)〉 :=
∑

j̄∈Nd
0

2−‖j̄‖1
∑

k̄∈Zd

λj̄,k̄µj̄,k̄ ,(30)

which is possible according to Theorem 5.5 (i) below, it can be represented in the form

A′ : (λj̄,k̄)j̄,k̄ 7→
∑

j̄,k̄

λj̄,k̄hj̄,k̄ ,

where the convergence is weak*ly in
(
F̃ s,ᾱ
p,q

)′
. This is a consequence of the relation

〈Af, g′〉Y×Y ′ =
∑

j̄∈Nd
0

2−‖j̄‖1
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉 · λj̄,k̄

=

∫

Rd

f(x) ·
( ∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄hj̄,k̄(x)
)
dx

= 〈f,A′g′〉X×X′ ,
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where we used the short-hand notation Y = f̃ s,ᾱp,q and X = F̃ s,ᾱ
p,q .

Invoking Theorem 5.5(i) another time, X ′ can be identified with F̃−s,ᾱ
p′,q′ (and X ′′ with

F̃ s,ᾱ
p,q ). Then for (λj̄,k̄)j̄,k̄ ∈ f̃−s,ᾱ

p′,q′ and some enumeration

(λj̄,k̄)j̄,k̄  (λn)n∈N

we have ‖(λn)n≥N‖f̃−s,ᾱ

p′,q′
→ 0 for N → ∞. We estimate

‖A′
(
(λn)n≥N

)
‖
F̃−s,ᾱ

p′,q′
= sup

‖f‖
F̃
s,ᾱ
p,q

=1
|〈A′

(
(λn)n≥N

)
, f〉| = sup

‖f‖
F̃
s,ᾱ
p,q

=1
|〈(λn)n≥N , Af〉|

≤ sup
‖f‖

F̃
s,ᾱ
p,q

=1
‖(λn)n≥N‖f̃−s,ᾱ

p′,q′
‖Af‖f̃s,ᾱ

p,q
. ‖(λn)n≥N‖f̃−s,ᾱ

p′,q′
→ 0 (N → ∞).

Hence, A′
(
(λn)n≤N

)
→ A′

(
(λn)n∈N

)
strongly and unconditionally in F̃−s,ᾱ

p′,q′ .

In other words, we have shown that if |s| < min
i∈{1,...,d}

{αi}min{1/p, 1/q} and (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,q

then
∑
j̄,k̄

λj̄,k̄hj̄,k̄ converges strongly and unconditionally in F̃ s,ᾱ
p,q and

∥∥∥
∑

j̄,k̄

λj̄,k̄hj̄,k̄

∥∥∥
F̃ s,ᾱ
p,q

. ‖(λj̄,k̄)j̄,k̄‖f̃s,ᾱ
p,q

.(31)

Hence, choosing λj̄,k̄ := 2‖j̄‖1〈f, hj̄,k̄〉 and assuming a finite sequence norm ‖(λj̄,k̄)j̄,k̄‖f̃s,ᾱ
p,q

,

then
∑

j̄,k̄ λj̄,k̄hj̄,k̄ =
∑

j̄,k̄ 2
‖j̄‖1〈f, hj̄,k̄〉hj̄,k̄ converges strongly to some limit f̃ ∈ F̃ s,ᾱ

p,q (Rd).

Since this sum also converges (weak*ly) in S′(R) to f we have f = f̃ =
∑

j̄,k̄ 2
‖j̄‖1〈f, hj̄,k̄〉hj̄,k̄

in F̃ s,ᾱ
p,q . Now (28) follows from (31).

The proof of (29) works the same, using Proposition 5.1 (ii) and Theorem 5.5 (ii). �

Combining both, Proposition 5.1 and Proposition 5.2, we arrive at the following proposi-
tion, whereby we now concentrate on the F-case.

Proposition 5.3 Let 1 < p, q <∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d.
Under the condition

|s|/αmin < min
{1

p
,
1

q
, 1− 1

p
, 1− 1

q

}
.

we have for all f ∈ S′(Rd) (with the dual pairing 〈f, hj̄,k̄〉 defined as in (14) in Remark 4.2)

∥∥∥
( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq
∣∣∣
∑

k̄∈Zd

2‖j̄‖1〈f, hj̄,k̄〉χj̄,k̄(x)
∣∣∣
q)1/q∥∥∥

p
≍ ‖f‖

F̃ s,ᾱ
p,q

,(32)

whenever the left-hand side is defined.

As a direct consequence of this result, we can finally formulate the main theorem of this
section which corresponds to Theorem 4.2.
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Theorem 5.4 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d.
Further, assume

|s|/αmin < min
{1

p
,
1

q
, 1− 1

p
, 1− 1

q

}
.(33)

Then the Haar system Hd = (hj̄ ,k̄)j̄,k̄ defined in (24) constitutes an unconditional basis of

F̃ s,ᾱ
p,q (Rd) with associated sequence space f̃ s,ᾱp,q . The unique sequence of basis coefficients for

f ∈ F̃ s,ᾱ
p,q (Rd) is determined by λ := λ(f) = (λj̄,k̄)j̄,k̄ with

(34) λj̄,k̄ := λj̄,k̄(f) = 2‖j̄‖1〈f, hj̄,k̄〉 .

Further, we have the wavelet isomorphism (equivalent norm)

‖f‖F̃ s,ᾱ
p,q (Rd) ≍ ‖λ(f)‖f̃s,ᾱ

p,q
, f ∈ F̃ s,ᾱ

p,q (R
d) .

In addition, we can use Hd to distinguish those elements of S ′(Rd) that belong to F̃ s,ᾱ
p,q (Rd).

Those are characterized by either of the following two criteria:

(i) f can be represented as a sum

(35) f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄hj̄,k̄ converging (weak*ly) in S ′(Rd)

with coefficients (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,q (with respect to some chosen ordering).

(ii) With λ(f) being defined as in (34), it holds

λ(f) = (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,q .

In both cases, the sequence (λj̄,k̄)j̄,k̄ is necessarily the sequence of basis coefficients and the

representation (35) converges unconditionally to f in F̃ s,ᾱ
p,q (Rd).

Proof. As a direct consequence of the equivalence (32) proved in Proposition 5.3 the analysis
operator

λ : f 7→
(
2‖j̄‖1〈f, hj̄,k̄〉

)
j̄,k̄

is well-defined and bounded from F̃ s,ᾱ
p,q to f̃ s,ᾱp,q . Moreover, it is injective and we have the

equivalence of norms ‖f‖F̃ s,ᾱ
p,q

≍ ‖λ(f)‖f̃s,ᾱ
p,q

. Further, for f ∈ S ′(Rd) we have f ∈ F̃ s,ᾱ
p,q if and

only if λ(f) ∈ f̃ s,ᾱp,q (whenever λ(f) is defined).
Now, let us have a look at the synthesis operator

S : (λj̄,k̄)j̄,k̄ 7→
∑

j̄,k̄

λj̄,k̄hj̄,k̄.(36)

Clearly, for every finite sequence the assignment S defines an element in F̃ s,ᾱ
p,q . By completion,

using (32) and the fact that the finite sequences lie dense in f̃ s,ᾱp,q , this synthesis further extends

to all sequences of f̃ s,ᾱp,q , with unconditional and strong convergence of (36) in F̃ s,ᾱ
p,q . Hence, S
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is a well-defined bounded linear operator from f̃ s,ᾱp,q to F̃ s,ᾱ
p,q , which, as another consequence of

(32), is also injective.
Next, turning to the composition λ ◦ S operating from f̃ s,ᾱp,q to f̃ s,ᾱp,q , we deduce for each

fixed j̄∗ ∈ N
d
0 and k̄∗ ∈ Z

d

〈∑

j̄,k̄

2‖j̄‖1λj̄,k̄hj̄,k̄, hj̄∗,k̄∗

〉
=

∑

j̄,k̄

2‖j̄‖1λj̄,k̄
〈
hj̄,k̄, hj̄∗,k̄∗

〉
= λj̄∗,k̄∗ ,

using the orthogonality of the system (hj̄,k̄)j̄,k̄ in L2(R
d). We obtain Idf̃s,ᾱ

p,q
= λ◦S and in turn

λ ◦ S ◦ λ = λ. Due to the injectivity of λ, the latter equality further implies IdF̃ s,ᾱ
p,q

= S ◦ λ.
In particular, λ and S are thus bijections and every f ∈ F̃ s,ᾱ

p,q allows for a representation (35).
To see that the representing coefficients (λj̄,k̄)j̄,k̄ are unique, under the assumption of

strong convergence of the sum, let λ∗ = (λ∗
j̄,k̄

)j̄,k̄ be some sequence which satisfies (35) in a

strong sense for some special ordering of the sum. Then again (32) together with a completion
argument yields λ∗ ∈ f̃ s,ᾱp,q , and thus λ∗ = λ(f) by the injectivity of S. Hence, the expansion
coefficients in (35) are unique and it follows that Hd is a basis. Its unconditionality is due to
the fact that the convergence of (35) for sequences λ∗ ∈ f̃ s,ᾱp,q is always unconditional.

For the proof of criterion (i) we just remark that for sequences (λj̄,k̄)j̄,k̄ in f̃ s,ᾱp,q with weak*-

convergence of (35) in S ′(Rd) the convergence is automatically in the stronger sense of F̃ s,ᾱ
p,q .
�

Remark 5.1 For brevity, the above theorem was only stated for the F-case. There also exists
a B-version, which reads precisely the same apart from condition (33) which is replaced by

|s|/αmin < min
{1

p
, 1− 1

p

}
.

In the proof of Proposition 5.2 we utilized isomorphisms
(
F̃ s,ᾱ
p,q

)′ ∼= F̃−s,ᾱ
p′,q′ and

(
f̃ s,ᾱp,q

)′ ∼=
f̃−s,ᾱ
p′,q′ as well as

(
B̃s,ᾱ

p,q

)′ ∼= B̃−s,ᾱ
p′,q′ and

(
b̃s,ᾱp,q

)′ ∼= b̃−s,ᾱ
p′,q′ . Hence, for the completeness of our

exposition, it remains to establish those.

Theorem 5.5 Let 1 < p, q <∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 with
∑d

i=1 αi = d. Then

(
F̃ s,ᾱ
p,q (R

d)
)′ ∼= F̃−s,ᾱ

p′,q′ (R
d) and

(
f̃ s,ᾱp,q

)′ ∼= f̃−s,ᾱ
p′,q′ ,

whereby the second of these isomorphies has to be understood with respect to the non-standard
pairing (30). In the Besov case, we have the analogous relations

(
B̃s,ᾱ

p,q (R
d)
)′ ∼= B̃−s,ᾱ

p′,q′ (R
d) and

(
b̃s,ᾱp,q

)′ ∼= b̃−s,ᾱ
p′,q′ .

The proof of this theorem is based on two auxiliary propositions. The first one of these is
stated without proof, since it is a straightforward generalization of the classic identifications(
Lp(R

d)
)′ ∼= Lp′(R

d) and
(
ℓp(I)

)′ ∼= ℓp′(I) when 1 < p <∞ (see e.g. [16]).

Proposition 5.6 Let I be an arbitrary countable index set. Then

(
ℓq
(
I, Lp(R

d)
))′ ∼= ℓq′

(
I, Lp′(R

d)
)

and
(
Lp

(
R
d, ℓq(I)

))′ ∼= Lp′
(
R
d, ℓq′(I)

)
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in the sense that there exist isomorphisms f 7→ (fi)i∈I such that

〈f, g〉Y ′×Y =
∑

i∈I

∫

Rd

fi(x)gi(x) dx

for the respective cases Y = ℓq
(
I, Lp(R

d)
)
and Y = Lp

(
R
d, ℓq(I)

)
.

The second proposition provides an alternative way to characterize functions in F̃ s,ᾱ
p,q (Rd)

and B̃s,ᾱ
p,q (Rd). Its counterpart in the classical setting of Triebel-Lizorkin spaces is Proposi-

tion 1 in [52, Sec. 2.3.4].

Proposition 5.7 Assume 1 < p, q <∞, s ∈ R, ᾱ = (α1, . . . , αd) > 0, and
∑d

i=1 αi = d.

(i) Then f ∈ S′(Rd) belongs to F̃ s,ᾱ
p,q (Rd) if and only if there exists a family {fj̄}j̄∈Nd

0
⊂

Lp(R
d) such that

f =
∑

j̄

∆j̄fj̄ in S′(Rd) and
∥∥2‖j̄/ᾱ‖∞sfj̄

∥∥
Lp(Rd,ℓq)

<∞ .

(ii) Then f ∈ S′(Rd) belongs to B̃s,ᾱ
p,q (Rd) if and only if there exists a family {fj̄}j̄∈Nd

0
⊂

Lp(R
d) such that

f =
∑

j̄

∆j̄fj̄ in S′(Rd) and
∥∥2‖j̄/ᾱ‖∞sfj̄

∥∥
ℓq(Lp(Rd))

<∞ .(37)

Proof. (i) Adaption of proof of Proposition 1 in [52, Sec. 2.3.4].
(ii) Let (φj̄)j̄ be a hyperbolic resolution of unity as introduced in Definition 3.1 with

associated hyperbolic Littlewood-Paley analysis (∆j̄)j̄ . Further, take f ∈ B̃s,ᾱ
p,q and put fj̄ :=∑

r̄∈{−1,0,1}d
F−1φj̄+r̄Ff for j̄ ∈ N

d
0, whereby we let φ−1 := 0. Then {fj̄}j̄ ⊂ Lp and

∑

j̄∈Nd
0

F−1φj̄Ffj̄ =
∑

j̄∈Nd
0

F−1φj̄

( ∑

r̄∈{−1,0,1}d

φj̄+r̄

)
Ff =

∑

j̄∈Nd
0

F−1φj̄Ff =
∑

j̄∈Nd
0

∆j̄f = f

as well as
∥∥2‖j̄/ᾱ‖∞sfj̄

∥∥
ℓq(Lp)

=
∥∥∥2‖j̄/ᾱ‖∞s

∑

r̄∈{−1,0,1}d

F−1φj̄+r̄Ff
∥∥∥
ℓq(Lp)

.
∑

r̄∈{−1,0,1}d

∥∥∥2‖j̄/ᾱ‖∞sF−1φj̄+r̄Ff
∥∥∥
ℓq(Lp)

≍ ‖f‖B̃s,ᾱ
p,q

<∞ .

This settles one direction of the assertion. For the other direction, let f ∈ S′(Rd) satisfy
(37) with associated {fj̄}j̄ ⊂ Lp. In view of f =

∑
j̄ ∆j̄fj̄, we can estimate

∥∥2‖j̄/ᾱ‖∞s∆j̄f
∥∥
ℓq(Lp)

=
∥∥∥2‖j̄/ᾱ‖∞s∆j̄

∑

r̄∈{−1,0,1}d

∆j̄+r̄fj̄+r̄

∥∥∥
ℓq(Lp)

≤
∑

r̄∈{−1,0,1}d

∥∥2‖j̄/ᾱ‖∞s∆j̄∆j̄+r̄fj̄+r̄

∥∥
ℓq(Lp)

.
∑

r̄∈{−1,0,1}d

∥∥2‖j̄/ᾱ‖∞s∆j̄+r̄fj̄+r̄

∥∥
ℓq(Lp)

≍
∥∥2‖j̄/ᾱ‖∞s∆j̄fj̄

∥∥
ℓq(Lp)

.
∥∥2‖j̄/ᾱ‖∞sfj̄

∥∥
ℓq(Lp)

<∞ ,
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where the last two lines are due to the Hörmander-Mikhlin multiplier theorem, which is
applied twice. This estimate shows f ∈ B̃s,ᾱ

p,q , finishing the proof. �

Now we are ready to give a thorough proof of the duality relations stated in Theorem 5.5.

Proof. [of Theorem 5.5] We restrict to the F-case and begin with the more involved relation(
F̃ s,ᾱ
p,q

)′ ∼= F̃−s,ᾱ
p′,q′ . The subsequent proof is thereby an adaption of the proof of the classical

theorem in [52, Sec. 2.11.2] to the setting of hyperbolic spaces.
It is essential to note that, since S(Rd) lies dense in F̃ s,ᾱ

p,q , there is a natural embedding

κ :
(
F̃ s,ᾱ
p,q

)′
→֒ S′(Rd) .(38)

Hence, both
(
F̃ s,ᾱ
p,q

)′
and F̃−s,ᾱ

p′,q′ can be interpreted as subspaces of S′(Rd), simplifying the
following considerations.

Let us first assume that f ∈ S′(Rd) is an element of F̃−s,ᾱ
p′,q′ and take Φℓ̄ and Λℓ̄ as in the

proof of Proposition 5.1, for instance. Then f defines an element of
(
F̃ s,ᾱ
p,q

)′
via

〈f, g〉∗ :=
∑

ℓ̄∈Zd

〈Φℓ̄ ∗ f,Λℓ̄ ∗ g〉 , where g ∈ F̃ s,ᾱ
p,q ,(39)

as can be seen by the following estimate,

|〈f, g〉∗| =
∣∣∣
∑

ℓ̄∈Zd

〈Φℓ̄ ∗ f,Λℓ̄ ∗ g〉
∣∣∣ =

∣∣∣
∑

ℓ̄∈Zd

∫

Rd

(Φℓ̄ ∗ f)(y) · (Λℓ̄ ∗ g)(y) dy
∣∣∣

=
∣∣∣
∫

Rd

∑

j̄∈Nd
0

(Φj̄ ∗ f)(y) · (Λj̄ ∗ g)(y) dy
∣∣∣

≤
∫

Rd

( ∑

j̄∈Nd
0

2−‖j̄/ᾱ‖∞sq′ |Φj̄ ∗ f(y)|q
′
)1/q′( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq|Λj̄ ∗ g(y)|q
)1/q

dy

≤
( ∫

Rd

( ∑

j̄∈Nd
0

2−‖j̄/ᾱ‖∞sq′ |Φj̄ ∗ f(y)|q
′
)p′/q′

dy
)1/p′

×
(∫

Rd

( ∑

j̄∈Nd
0

2‖j̄/ᾱ‖∞sq|Λj̄ ∗ g(y)|q
)p/q

dy
)1/p

. ‖f‖
F̃−s,ᾱ

p′,q′
· ‖g‖

F̃ s,ᾱ
p,q

.

Hereby, we applied Hölder’s inequality and used Φℓ̄ = Λℓ̄ = 0 if ℓ̄ /∈ N
d
0.

The duality product 〈·, ·〉∗ thus yields an embedding ι : F̃−s,ᾱ
p′,q′ →

(
F̃ s,ᾱ
p,q

)′
. Further, we

have natural embeddings ν : F̃−s,ᾱ
p′,q′ →֒ S′(Rd) and κ :

(
F̃ s,ᾱ
p,q

)′ →֒ S′(Rd) (see (38)). To
establish a bridge between κ, ι, and ν, we now consider the special case of a Schwartz function
g = φ ∈ S(Rd) in (39). We obtain

〈f, φ〉∗ =
∑

ℓ̄∈Zd

〈Φℓ̄ ∗ f,Λℓ̄ ∗ φ〉S′×S =
∑

ℓ̄∈Zd

〈Φℓ̄ ∗ Λℓ̄ ∗ f, φ〉S′×S = 〈f, φ〉S′×S .

Hence, the above (somewhat artificially) defined operation of f on F̃ s,ᾱ
p,q via 〈·, ·〉∗ is compatible

with the operation of f as an element of S′(Rd) on S(Rd). This proves ν = κ ◦ ι and thus
F̃−s,ᾱ
p′,q′ ⊂

(
F̃ s,ᾱ
p,q

)′
, considered as subsets of S′(Rd).
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It remains to prove the converse inclusion
(
F̃ s,ᾱ
p,q

)′ ⊂ F̃−s,ᾱ
p′,q′ . For this, let f ∈ S′(Rd) be

an element of
(
F̃ s,ᾱ
p,q

)′
. We will show that this implies f ∈ F̃−s,ᾱ

p′,q′ and to this end start with a
construction of an isometric embedding

µ :
(
F̃ s,ᾱ
p,q

)′
→ Lp′

(
R
d, ℓq′

)
, f 7→ (fj̄)j̄ .(40)

Thereby, we build upon the observation that the assignment g 7→ (2|j̄/ᾱ|∞s∆j̄g)j̄ maps F̃ s,ᾱ
p,q

isometrically to a closed subspace of Lp

(
R
d, ℓq

)
. Via this assignment and the Hahn-Banach

extension theorem, it is therefore possible to identify each functional f ∈
(
F̃ s,ᾱ
p,q

)′
with a

functional on Lp

(
R
d, ℓq

)
having the same norm. Invoking Proposition 5.6 (i), this then yields

an associated family (fj̄)j̄ ∈ Lp′
(
R
d, ℓq′

)
with ‖(fj̄)j̄‖Lp′ (R

d,ℓq′ )
= ‖f‖

(F̃ s,ᾱ
p,q )′

and 〈f, g〉 =
∑

j̄〈fj̄ , 2|j̄/ᾱ|∞s∆j̄g〉, establishing (40).

In particular, for every φ ∈ S(Rd)

〈f, φ〉 =
∑

j̄

〈fj̄, 2‖j̄/ᾱ‖∞s∆j̄φ〉 =
∑

j̄

〈∆j̄ f̃j̄, φ〉 ,

with f̃j̄ := 2‖j̄/ᾱ‖∞sfj̄. Hence, we have

f =
∑

j̄

2‖j̄/ᾱ‖∞s∆j̄fj̄ =
∑

j̄

∆j̄ f̃j̄ weak*ly in S′(Rd).

Further, it holds ‖(2−‖j̄/ᾱ‖∞sf̃j̄)j̄∈Nd
0
‖ℓq′ (Lp′ )

= ‖(fj̄)j̄∈Nd
0
‖ℓq′ (Lp′ )

= ‖f‖(F̃ s,ᾱ
p,q )′ . In view of

Proposition 5.7 (i), this shows f ∈ F̃−s,ᾱ
p′,q′ and finishes the proof of

(
F̃ s,ᾱ
p,q

)′ ∼= F̃−s,ᾱ
p′,q′ .

We next establish
(
f̃ s,ᾱp,q

)′ ∼= f̃−s,ᾱ
p′,q′ , which can be elegantly done using the previous result

together with the wavelet isomorphism λ : F̃ s,ᾱ
p,q → f̃ s,ᾱp,q established in Theorem 4.2. For this,

we first verify that λ preserves the duality structure of F̃−s,ᾱ
p′,q′ × F̃ s,ᾱ

p,q . Indeed, for f ∈ F̃−s,ᾱ
p′,q′

and g ∈ F̃ s,ᾱ
p,q we have

〈f, g〉F̃−s,ᾱ

p′,q′
×F̃ s,ᾱ

p,q
=

〈∑

j̄,k̄

2‖j̄‖1〈f, ψj̄,k̄〉ψj̄,k̄, g
〉
F̃−s,ᾱ

p′,q′
×F̃ s,ᾱ

p,q

=
∑

j̄,k̄

2‖j̄‖1〈f, ψj̄,k̄〉〈ψj̄,k̄, g〉F̃−s,ᾱ

p′ ,q′
×F̃ s,ᾱ

p,q

=
∑

j̄,k̄

2−‖j̄‖1
(
2‖j̄‖1〈f, ψj̄,k̄〉

)(
2‖j̄‖1〈g, ψj̄ ,k̄〉

)
= 〈λ(f), λ(g)〉f̃−s,ᾱ

p′ ,q′
×f̃s,ᾱ

p,q
.

Note that hereby we relied on the strong convergence of the wavelet expansion in the space
F̃−s,ᾱ
p′,q′ . Next we recall the isomorphism ι : F̃−s,ᾱ

p′,q′ →
(
F̃ s,ᾱ
p,q

)′
established above and let λ′ :(

f̃ s,ᾱp,q

)′ →
(
F̃ s,ᾱ
p,q

)′
denote the dual map of λ, which is also an isomorphism. Then we can read(

f̃ s,ᾱp,q

)′ ∼= f̃−s,ᾱ
p′,q′ directly from the following chain of isomorphisms

(
f̃ s,ᾱp,q

)′ × f̃ s,ᾱp,q
λ′×λ−1

−−−−−→
(
F̃ s,ᾱ
p,q

)′ × F̃ s,ᾱ
p,q

ι−1×Id−−−−→ F̃−s,ᾱ
p′,q′ × F̃ s,ᾱ

p,q
λ×λ−−−→ f̃−s,ᾱ

p′,q′ × f̃ s,ᾱp,q .

�

31



6 Hyperbolic and classical (anisotropic) Sobolev spaces

In the remaining two sections we will analyze the relationship between the newly introduced
hyperbolic scale of spaces Ãs,ᾱ

p,q (Rd) from Section 3, where A ∈ {B,F}, and the classical scale
of anisotropic spaces As,ᾱ

p,q (Rd), which was recalled in Section 2. Our first result shows that,
surprisingly, for Sobolev spaces (i.e. the case A = F , 1 < p <∞, q = 2) both scales coincide.

Theorem 6.1 Let 1 < p <∞, s ∈ R, and ᾱ > 0 be an anisotropy vector as above. Then

W̃ s,ᾱ
p (Rd) =W s,ᾱ

p (Rd) (in the sense of equivalent norms).

Proof. The proof is divided into two steps. For convenience, we will thereby abbreviate by

mᾱ,s :=
(∑d

i=1(1 + ξ2i )
1/(2αi)

)s
the function which appears in the definition (3) of W̃ s,ᾱ

p .

Step 1. In the first step we prove ‖f‖W s,ᾱ
p
. ‖f‖

W̃ s,ᾱ
p

. For j̄ = (j1, ..., jd) ∈ N
d
0, let (ϕj̄)j̄

denote a fixed hyperbolic resolution of unity as introduced in Definition 3.1, with correspond-
ing univariate family (ϕj)j where supp (ϕ0) ⊂ [−2, 2]. In addition, let us also construct a
second hyperbolic resolution of unity (ψj̄)j̄ such that ψj̄ϕj̄ = ϕj̄ for every j̄ ∈ N

d
0. Hereby, it

is not possible for (ψj̄)j̄ to obey the same strict building law as formulated in Definition 3.1.
We define functions

ψ∗
0 := ϕ0 + ϕ1 , ψ

∗
1 := ϕ0 + ϕ1 + ϕ2 , ψ

∗
2 := ϕ0 + ϕ1 + ϕ2 + ϕ3 , ψ

∗
j :=

1∑

r=−1

ϕj+r (j ≥ 3)

and then put ψj := ψ∗
j /3 for j ∈ N0. Then clearly

∑
j ψj = 1 and ψjϕj = ϕj . Finally, we set

ψj̄ := ψj1 ⊗ · · · ⊗ ψjd to obtain (ψj̄)j̄ .

By construction, ψ0 = ϕ0(2
−1·)/3, ψj+1 = ψj(2

−1·) for j ∈ N0\{2}, and ψ3 = ψ0(2
−3·) − ψ0.

As a consequence, we can record suppψj(2
j ·) ⊂ [−4, 4] for all j ∈ N0.

Utilizing (ψj̄)j̄ , we then first rewrite the W s,ᾱ
p -norm as follows,

‖f‖W s,ᾱ
p

≍
∥∥∥F−1

[
mᾱ,sFf

]∥∥∥
p

≍
∥∥∥
( ∑

j̄∈Nd
0

∣∣F−1ϕj̄mᾱ,sFf
∣∣2
) 1

2
∥∥∥
p

=
∥∥∥
( ∑

j̄∈Nd
0

∣∣2s‖j̄/ᾱ‖∞F−1
(
2−s‖j̄/ᾱ‖∞ψj̄mᾱ,s

)
ϕj̄Ff

∣∣2
) 1

2
∥∥∥
p
.

After this, we denote Mᾱ,s,j̄ := 2−s‖j̄/ᾱ‖∞ψj̄mᾱ,s and apply the Fourier multiplier lemma 3.1

with ρj̄ := Mᾱ,s,j̄ and fj̄ := 2s‖j̄/ᾱ‖∞F−1ϕj̄Ff . Due to p > 1 and q = 2 we can thereby
choose r := 2. This leads to

∥∥∥
( ∑

j̄∈Nd
0

22s‖j̄/ᾱ‖∞ |F−1Mᾱ,s,j̄ϕj̄Ff |2
) 1

2
∥∥∥
p
. sup

j̄∈Nd
0

‖Mᾱ,s,j̄(2
j1 ·, . . . , 2jd ·)‖S2

2W
‖f‖

W̃ s
p
.
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To finish Step 1, it now merely remains to check whether supj̄∈Nd
0
‖Mᾱ,s,j̄(2

j1 ·, . . . , 2jd ·)‖S2
2W

is finite. But, defining ψ̃0 := ψ0 and ψ̃1 := ψ3(2
3·) and letting ψ̃r̄ := ψ̃r1 ⊗ · · · ⊗ ψ̃rd for

r̄ ∈ {0, 1}d, we have

Mᾱ,s,j̄(2
j1ξ1, . . . , 2

jdξd) = 2−s‖j̄/ᾱ‖∞ψ̃s(j̄)(ξ1, . . . , ξd)mᾱ,s(2
j1ξ1, . . . , 2

jdξd) ,

where s(j̄) := (sgn(j1−2), . . . , sgn(jd−2))+. And for each j̄ ∈ N
d
0, the function ψ̃s(j̄) belongs to

S(Rd) and is supported on [−4, 4]d. Hence, it is sufficient to verify that the second derivatives
(up to order 2) in every component of

Fᾱ,s,j̄ : (ξ1, . . . , ξd) 7→ 2−s‖j̄/ᾱ‖∞mᾱ,s(2
j1ξ1, . . . , 2

jdξd) =
( d∑

i=1

2−‖j̄/ᾱ‖∞(1 + 22jiξ2i )
1/(2αi)

)s

are uniformly bounded over j̄ ∈ N
d
0 and ξ ∈ [−4, 4]d. For this, we first observe that

Fᾱ,s,j̄(ξ) =
( d∑

i=1

2−‖j̄/ᾱ‖∞(1 + 22jiξ2i )
1/(2αi)

)s

=
( d∑

i=1

(
2−2αi‖j̄/ᾱ‖∞ + 2−2αi(‖j̄/ᾱ‖∞−ji/αi)ξ2i

)1/(2αi))s
,

with quantities 2−2αi‖j̄/ᾱ‖∞ and 2−2αi(‖j̄/ᾱ‖∞−ji/αi) all positive and never larger than one.
This immediately implies

sup
j̄∈Nd

0

ξ∈[−4,4]d

|Fᾱ,s,j̄(ξ)| . 1.(41)

Next, we determine the partial derivatives of mᾱ,s. They are given by

∂ℓmᾱ,s(ξ) =
s

αℓ
mᾱ,s−1(ξ)ξℓ〈ξℓ〉

1
αℓ

−2
,

∂2ℓmᾱ,s(ξ) =
s(s− 1)

α2
ℓ

mᾱ,s−2(ξ)ξ
2
ℓ 〈ξℓ〉

2
αℓ

−4
+
s(s− 1)

αℓ
mᾱ,s−1(ξ)〈ξℓ〉

1
αℓ

−4
(
(
1

αℓ
− 1)ξ2ℓ + 1

)
,

where we use the abbreviation 〈ξℓ〉 for (1 + ξ2ℓ )
1/2. We deduce the estimates

|∂ℓmᾱ,s(ξ)| . |mᾱ,s−1(ξ)|〈ξℓ〉
1
αℓ

−1
,

|∂2ℓmᾱ,s(ξ)| . |mᾱ,s−2(ξ)|〈ξℓ〉
2
αℓ

−2
+ |mᾱ,s−1(ξ)|〈ξℓ〉

1
αℓ

−2
,

and thus obtain, using 〈2jℓξℓ〉 ≤ 2jℓ〈ξℓ〉,

|∂ℓFᾱ,s,j̄(ξ)| . 2−s‖j̄/ᾱ‖∞2jℓ |mᾱ,s−1(2
j̄ξ)|〈2jℓξℓ〉

1
αℓ

−1
. 2−‖j̄/ᾱ‖∞2jℓ/αℓ |Fᾱ,s−1,j̄(ξ)|〈ξℓ〉

1
αℓ

−1
,

|∂2ℓFᾱ,s,j̄(ξ)| . 2−s‖j̄/ᾱ‖∞22jℓ
(
|mᾱ,s−2(2

j̄ξ)|〈2jℓξℓ〉
2
αℓ

−2
+ |mᾱ,s−1(2

j̄ξ)|〈2jℓξℓ〉
1
αℓ

−2
)

. 2−2‖j̄/ᾱ‖∞22jℓ/αℓ |Fᾱ,s−2,j̄(ξ)|〈ξℓ〉
2
αℓ

−2
+ 2−‖j̄/ᾱ‖∞2jℓ/αℓ |Fᾱ,s−1,j̄(ξ)|〈ξℓ〉

1
αℓ

−2
.
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Taking (41) into account, we realize that the term |Fᾱ,s−2,j̄(ξ)|〈ξℓ〉
2
αℓ

−2
and the term

|Fᾱ,s−1,j̄(ξ)|〈ξℓ〉
1
αℓ

−2
are uniformly bounded in the range ξ ∈ [−4, 4]d with respect to j̄ ∈ N

d
0.

Since further 2−2‖j̄/ᾱ‖∞22jℓ/αℓ ≤ 1 and 2−‖j̄/ᾱ‖∞2jℓ/αℓ ≤ 1, Step 1 is finished.
Step 2. For the proof of the converse inequality ‖f‖

W̃ s,ᾱ
p
. ‖f‖W s,ᾱ

p
we argue analogously

to Step 1 and use this time the multiplier

M̃ᾱ,s,j̄(ξ) :=
ψj̄(ξ)2

s‖j̄/ᾱ‖∞

mᾱ,s(ξ)
.

It is well-defined since mᾱ,s > 0, and we have, using the same notation as in Step 1,

M̃ᾱ,s,j̄(2
j1ξ1, . . . , 2

jdξd) =
ψ̃s(j̄)(ξ1, . . . , ξd)

2−s‖j̄/ᾱ‖∞mᾱ,s(2j1ξ1, . . . , 2jdξd)
.

Again, it is not difficult to check that for every component the second derivatives are bounded
on [−4, 4]d independently of j̄.

By Lemma 3.1, applied with ρj̄ := M̃ᾱ,s,j̄, fj̄ := F−1mᾱ,sϕj̄Ff , and r := 2, we get

‖f‖
W̃ s,ᾱ

p
≍

∥∥∥
( ∑

j̄∈Nd
0

22s‖j̄/ᾱ‖∞
∣∣F−1ϕj̄Ff

∣∣2
) 1

2
∥∥∥
p

=
∥∥∥
( ∑

j̄∈Nd
0

22s‖j̄/ᾱ‖∞
∣∣F−1ψj̄m

−1
ᾱ,smᾱ,sϕj̄Ff

∣∣2
) 1

2
∥∥∥
p

=
∥∥∥
( ∑

j̄∈Nd
0

∣∣F−1M̃ᾱ,s,j̄mᾱ,sϕj̄Ff
∣∣2
) 1

2
∥∥∥
p

.
(
sup
j̄∈Nd

0

∥∥M̃ᾱ,s,j̄(2
j1 ·, . . . , 2jd ·)

∥∥
S2
2W

)
·
∥∥∥
( ∑

j̄∈Nd
0

∣∣(F−1[ϕj̄mᾱ,sFf ])
∣∣2
) 1

2
∥∥∥
p

.
∥∥∥F−1

[
mᾱ,sFf

]∥∥∥
p
≍ ‖f‖W s,ᾱ

p
.

�

Remark 6.1 We mention that, in contrast to this result, in case A = B we only have
coincidence when p = q = 2. A proof can be found in [1].

As a direct consequence of Theorem 6.1 and Theorem 4.2, we obtain new characterizations
of classical Sobolev spaces via hyperbolic wavelets.

Theorem 6.2 Let 1 < p < ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d. Let
further ψ0, ψ be wavelets satisfying (K) and (L) with

K,L > σp,2 + |s|/αmin.

Then any f ∈ S ′(Rd) belongs to W s,ᾱ
p (Rd) if and only if it can be represented as

(42) f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄ψj̄,k̄
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with (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,2 . The representation (42) converges unconditionally in S ′(Rd) and in

W s,ᾱ
p (Rd). In addition, (ψj̄,k̄)j̄,k̄ is an unconditional basis in W s,ᾱ

p (Rd). The sequence of
coefficients λ := λ(f) = (λj̄,k̄)j̄,k̄ is uniquely determined via

λj̄,k̄ := λj̄,k̄(f) = 2‖j‖1〈f, ψj̄,k̄〉

and we have the wavelet isomorphism (equivalent norm)

‖f‖W s,ᾱ
p (Rd) ≍ ‖λ(f)‖f̃s,ᾱ

p,2
, f ∈W s,ᾱ

p (Rd) .

Analogously, combining Theorem 6.1 with Theorem 5.4, we also derive new characteriza-
tions of Sobolev spaces with the hyperbolic Haar system Hd from (24).

Theorem 6.3 Let 1 < p < ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d.
Further, assume

|s|/αmin < min
{1

p
, 1− 1

p

}
.

Then the Haar system Hd = (hj̄,k̄)j̄,k̄ from (24) constitutes an unconditional basis ofW s,ᾱ
p (Rd)

with associated sequence space f̃ s,ᾱp,2 . The unique sequence of basis coefficients for f ∈W s,ᾱ
p (Rd)

is determined by λ := λ(f) = (λj̄,k̄)j̄,k̄ with

(43) λj̄,k̄ := λj̄,k̄(f) = 2‖j̄‖1〈f, hj̄,k̄〉 .

Further, we have the wavelet isomorphism (equivalent norm)

‖f‖W s,ᾱ
p (Rd) ≍ ‖λ(f)‖f̃s,ᾱ

p,2
, f ∈W s,ᾱ

p (Rd) .

In addition, those elements of S ′(Rd) belonging to W s,ᾱ
p (Rd) are characterized by either

of the following two criteria:

(i) f can be represented as a sum

(44) f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λj̄,k̄hj̄,k̄ converging (weak*ly) in S ′(Rd)

with coefficients (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,2 (with respect to some chosen ordering).

(ii) With λ(f) being defined as in (43), it holds

λ(f) = (λj̄,k̄)j̄,k̄ ∈ f̃ s,ᾱp,2 .

In both cases, the sequence (λj̄,k̄)j̄,k̄ is necessarily the sequence of basis coefficients and the

representation (44) converges unconditionally to f in W s,ᾱ
p (Rd).
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7 Hyperbolic and classical (anisotropic) BLT spaces

The next and final theorem of this paper complements the statement of Theorem 6.1, showing
that in general the spaces Ãs,ᾱ

p,q (Rd) and As,ᾱ
p,q (Rd), with A ∈ {B,F}, do not coincide.

Theorem 7.1 Let 0 < p, q ≤ ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 with
∑d

i=1 αi = d.

(i) If Bs,ᾱ
p,q (Rd) = B̃s,ᾱ

p,q (Rd) then p = q = 2.

(ii) In the range 0 < p <∞: If F s,ᾱ
p,q (Rd) = F̃ s,ᾱ

p,q (Rd) then q = 2 and 1 < p <∞.

Remark 7.1 The Besov result (i) follows directly from the very general investigations on
embeddings between decomposition spaces conducted in [56]. Even more, the findings there
allow to strengthen the statement to more general independent parameters, namely

Bs1,ᾱ1
p1,q1 (R

d) = B̃s2,ᾱ2
p2,q2 (R

d) ⇔ p1 = p2 = q1 = q2 = 2 and ᾱ1 = ᾱ2 and s1 = s2 .

The results of [56], however, are not applicable in the proof of (ii) since Triebel-Lizorkin spaces
do not fit into the decomposition space framework. In the sequel, we will therefore give a proof
for the F -case (ii) which by slight modifications would also provide a direct way to establish
the B-case (i).

Before we start, let us remind ourselves that the converse statement of (ii), the coincidence
of F s,ᾱ

p,q and F̃ s,ᾱ
p,q when 1 < p < ∞ and q = 2, is given by Theorem 6.1. The coincidence of

Bs,ᾱ
p,q and B̃s,ᾱ

p,q when p = q = 2, the converse of (i), is further observed in Remark 6.1.

Proof. [of Theorem 7.1 (ii)] Step 1: Preparation. Fix an anisotropy vector ᾱ = (α1, . . . , αd)
and consider a univariate resolution of unity (θj)j∈N0 of the following form:

The generator θ0 ∈ S(R) shall satisfy

supp θ0 ⊂ [−2αmin/3, 2αmin/3] and θ0 = 1 on [−1, 1] ,

and the functions θj for j ∈ N shall be obtained via θj(·) := θ0(2
−j ·)− θ0(2

−(j−1)·).
Using (θj)j∈N0 , we can then construct two multivariate resolutions of unity on R

d. First,
via simple tensorization, we get the hyperbolic resolution (θj̄)j̄∈Nd

0
with

θj̄ := θj1 ⊗ . . .⊗ θjd , j̄ = (j1, . . . , jd) ∈ N
d
0 .

It clearly fulfills all the specifications formulated at the beginning of Section 3.
Second, putting ϕᾱ

0 := θ0 ⊗ . . . ⊗ θ0 and

ϕᾱ
j := ϕᾱ

0 (2
−jᾱ·)− ϕᾱ

0 (2
−(j−1)ᾱ·) for j ∈ N ,

we obtain (ϕᾱ
j )j∈N0 , which is a classical anisotropic resolution of unity in compliance with the

definition from Subsection 2.1.
For parameters α > 0 and ℓ ∈ N, let us next introduce the intervals

Iαℓ := 2(ℓ−1)α · [2αmin/3, 2α] and Jα
ℓ := [−2ℓα, 2ℓα] .

Then θ0(2
−ℓα·) = 1 on Jα

ℓ and θ0(2
−ℓα·) − θ0(2

−(ℓ−1)α·) = 1 on Iαℓ . In particular, θj = 1 on
I1j for every j ∈ N and thus θj̄ = 1 on I1j1 × . . . × I1jd. Further, we have ϕᾱ

0 (2
−jᾱ·) = 1 on
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Jα1
j × . . .× Jαd

j and as a consequence ϕᾱ
j = 1 on (Jα1

j × . . .× Jαd

j )\(Jα1
j−1 × . . .× Jαd

j−1). This,

in turn, implies ϕᾱ
j = 1 on the subset Iα1

j × · · · × I
αd−1

j × Jαd

j .

Observe now that for every ℓ ∈ N and every i ∈ {1, . . . , d} either Iαi

ℓ ∩I1⌊ℓαi⌋
or Iαi

ℓ ∩I1⌊ℓαi⌋+1
is a nonempty interval of nonzero length. This is due to the fact that always

2γ · L(Iαi

ℓ ) ≤ R(I1⌊ℓαi⌋
) ≤ R(Iαi

ℓ ) or 2γ · L(I1⌊ℓαi⌋+1) ≤ R(Iαi

ℓ ) ≤ R(I1⌊ℓαi⌋+1) ,(45)

where L(I) and R(I) denote the left resp. right endpoint of a given interval I = [a, b] and
γ = α2

min/8. The verification of this fact is postponed to Step 3 at the end of this proof.
As a consequence, for each i ∈ {1, . . . , d} and each ℓ ∈ N, we may pick one of those

intersections with nonvanishing interior and denote it by Ĩ
(i)
ℓ . Depending on our choice, we

then either have

Ĩ
(i)
ℓ = Iαi

ℓ ∩ I1⌊ℓαi⌋
or Ĩ

(i)
ℓ = Iαi

ℓ ∩ I1⌊ℓαi⌋+1.(46)

Due to the nonvanishing interior of Ĩ
(i)
ℓ we can further fix nontrivial functions

h
[i]
ℓ ∈ S(R) with supph

[i]
ℓ ⊂ Ĩ

(i))
ℓ , i ∈ {1, . . . , d− 1} .

With this preparation we are finally ready for the main argumentation.
Step 2: Main Proof. For ℓ ∈ N let us consider gℓ : R → C with the property

supp (Fgℓ) ⊂ Jαd

ℓ = [−2ℓαd , 2ℓαd ](47)

and associate a multivariate function fℓ : R
d → C defined by its Fourier transform

Ffℓ(ξ1, . . . , ξd) := h
[1]
ℓ (ξ1)h

[2]
ℓ (ξ2) · · · h[d−1]

ℓ (ξd−1)Fgℓ(ξd) ,

where h
[i]
ℓ are the functions introduced at the end of Step 1.

Since Ffℓ is supported inside Iα1
ℓ × . . . × I

αd−1

ℓ × Jαd

ℓ , on which ϕᾱ
ℓ = 1 according

to our considerations in Step 1, we can easily compute the classical anisotropic Triebel-
Lizorkin (quasi-)norm of fℓ. Denoting by (∆ϕ

j )j∈N0 the Littlewood-Paley analysis associated
to (ϕᾱ

j )j∈N0 , we have

‖fℓ‖F s,ᾱ
p,q (Rd) =

∥∥∥
(∑

j≥0

2jsq|∆ϕ
j fℓ|q

) 1
q
∥∥∥
p
= 2ℓs‖∆ϕ

ℓ fℓ‖p = 2ℓs‖fℓ‖p .

Moreover, as fℓ is a tensor product, we can compute

‖fℓ‖p = ‖F−1(h
[1]
ℓ )‖p · ... · ‖F−1(h

[d−1]
ℓ )‖p‖gℓ‖p = Cℓ‖gℓ‖p

with Cℓ := C
(1)
ℓ · ... · C(d−1)

ℓ and C
(i)
ℓ := ‖F−1(h

[i]
ℓ )‖p for i ∈ {1, . . . , d − 1}. Altogether, we

end up with
‖fℓ‖F s,ᾱ

p,q
≍ 2ℓsCℓ‖gℓ‖p .

We proceed with the computation of the hyperbolic Triebel-Lizorkin (quasi-)norm of fℓ.

It follows right from the definition of the intervals Ĩ
(i)
ℓ from (46) that there exist numbers

ki(ℓ) ∈ N, either taking the value ⌊ℓαi⌋ or the value ⌊ℓαi⌋ + 1, such that Ĩ
(i)
ℓ ⊂ I1ki(ℓ).
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Hence, due to suppFfℓ ⊂ Ĩ
(1)
ℓ × · · · × Ĩ

(d−1)
ℓ × Jαd

ℓ the function Ffℓ is supported inside
I1k1(ℓ) × · · · × I1kd−1(ℓ)

× Jαd

ℓ .

Let now (∆θ
j̄
)j̄∈Nd

0
denote the Littlewood-Paley analysis corresponding to (θj̄)j̄∈Nd

0
and let

us abbreviate ki(ℓ) by ki and the vector (k1, . . . , kd−1, jd) by ℓjd . Then, since

⌊ℓαd⌋+1∑

jd=0

θℓjd
= 1 on I1k1 × · · · × I1kd−1

× Jαd

ℓ ,

we calculate for the hyperbolic Triebel-Lizorkin (quasi-)norm of fℓ

‖fℓ‖F̃ s,ᾱ
p,q

=
∥∥∥
( ∑

j∈Nd
0

2max{j1/α1,...,jd/αd}sq|∆θ
j
fℓ(·)|q

)1/q∥∥∥
p

=
∥∥∥
( ⌊ℓαd⌋+1∑

jd=0

2max{k1/α1,...,kd−1/αd−1,jd/αd}sq|∆θ
ℓjd
fℓ(·)|q

)1/q∥∥∥
p

≍ 2ℓs
∥∥∥
( ⌊ℓαd⌋+1∑

jd=0

|∆θ
ℓjd
fℓ(·)|q

)1/q∥∥∥
p
= 2ℓsCℓ‖gℓ‖F 0

p,q

with the same constant Cℓ as obtained before in the computation of ‖fℓ‖F s,ᾱ
p,q

.

Now we come to the core argument. Assuming that the spaces F s,ᾱ
p,q (Rd) and F̃ s,ᾱ

p,q (Rd)
coincide, the associated (quasi-)norms would be equivalent. By our calculations, this would
imply that ‖gℓ‖F 0

p,q(R)
is equivalent to ‖gℓ‖Lp(R) for any band-limited function gℓ with fre-

quency support as in (47). Moreover, since the proof holds true for all ℓ ∈ N this equivalence
remains valid for any band-limited function g on R.

But, as a consequence of Lemma 7.1(iii), since the sequence (f
(3)
N )N constructed in its proof

consists of band-limited functions, this is only possible in the range 1 < p <∞. Furthermore,
if 1 < p < ∞ the band-limited functions are dense in Lp(R) as well as F 0

p,q(R). Hence, by
Lemma 7.1(i) also q = 2 is a necessary condition. It now only remains to verify (45).

Step 3: Proof of (45). We distinguish two cases depending on the size of the quantity
δ := ℓαi − ⌊ℓαi⌋ ∈ [0, 1). Let us subsequently abbreviate ρ := αmin

4+αmin
and σ := 8αmin

3αmin+12 =
2
3(1 − ρ)αmin. Recalling that αmin = mini∈{1,...,d}{αi} ∈ (0, 1], we note that ρ ∈ (0, 15 ] and

σ ∈ (0, 23 ].

In case δ ∈ [0, σ) we have δ ≤ (1− ρ)(αi − αmin/3) and thus

log2 R
(
I1⌊ℓαi⌋

)
= ⌊ℓαi⌋ = ℓαi − δ ≥ ℓαi − (1− ρ)(αi − αmin/3)

= (ℓ− 1)αi + αmin/3 + ρ(αi − αmin/3) ≥ log2L
(
Iαi

ℓ

)
+

2

3
ραmin ,

where we used L
(
Iαi

ℓ

)
= 2(ℓ−1)αi+αmin/3 and R

(
I1⌊ℓαi⌋

)
= 2⌊ℓαi⌋. In view of γ = α2

min/8 <
2
3ραmin and since we always have ⌊ℓαi⌋ ≤ ℓαi ≤ ⌊ℓαi⌋+ 1, i.e.

log2 R
(
I1⌊ℓαi⌋

)
≤ log2 R

(
Iαi

ℓ

)
≤ log2R

(
I1⌊ℓαi⌋+1

)
,(48)

the left inequality in (45) is hence valid in the respective range of δ.
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In case δ ∈ [σ, 1) we first estimate

δ >
7αmin

3αmin + 1
= (1− ρ) + ραmin/3 ≥ (1− ρ)αmin + ραmin/3 ,

from which we deduce, using ℓαi = ⌊ℓαi⌋+ δ and L
(
I1⌊ℓαi⌋+1

)
= 2⌊ℓαi⌋+αmin/3,

log2 R
(
Iαi

ℓ

)
= ℓαi > ⌊ℓαi⌋+ (1− ρ)αmin + ραmin/3 = log2L

(
I1⌊ℓαi⌋+1

)
+

2

3
(1− ρ)αmin .

This time, again taking into account (48) and γ = α2
min/8 <

2
3(1−ρ)αmin, the right inequality

in (45) holds true. Altogether, the proof of (45) is thus finished. �

The behavior of the Lp-(quasi-)norms in relation to the A0
p,q-(quasi-)norms is crucial for

the proof of Theorem 7.1. Concretely, we have shown for A ∈ {B,F}

As,ᾱ
p,q (R

d) = Ãs,ᾱ
p,q (R

d) ⇐⇒ ‖f‖A0
p,q(R)

≍ ‖f‖Lp(R) for band-limited functions f.(49)

On the right-hand side, the (quasi-)norms are thereby all classical and only the univariate
case matters. Using known embedding theorems, the exact parameters for equality could
therefore be determined (see [49] Section 2.3.2 or [46] Theorem 3.1.1., for example).

Prefering a direct and shorter route, the following lemma provides a simple and quantita-
tive argument for what we need. It investigates the behavior of the respective (quasi-)norms
for certain sequences of test functions. As a consequence of statement (i), we extract the
necessity p = q = 2 for equality in (49). From (ii) we further obtain p = q in the B-case.
Statement (iii) yields 1 < p < ∞ in the F-case. Altogether, this shows that the Sobolev
spaces in Theorem 6.1 are precisely those, where equality holds true.

Lemma 7.1 Assume 0 < p < ∞, 0 < q ≤ ∞, A ∈ {B,F}. There are sequences (f
(i)
N )N∈N,

i ∈ {1, 2, 3}, of functions on R such that

(i) ‖f (1)N ‖p ≍ N1/2 and ‖f (1)N ‖A0
p,q(R)

≍ N1/q,

(ii) ‖f (2)N ‖p ≍ N1/p and ‖f (2)N ‖B0
p,q(R)

≍ N1/q,

(iii) ‖f (3)N ‖p ≍ 2N(1−1/p) and ‖f (3)N ‖F 0
p,q(R)

&

{
1 , p < 1,

N1/p , p ≥ 1.

Remark 7.2 In case q = ∞ we need to interpret N1/q ≍ 1. Further, the case A = B with
p = ∞ is not considered in Lemma 7.1. By an analogous argument, one can show however
that (ii) holds true also for p = ∞. So, for B0

∞,q(R) we have the necessary condition q = ∞
to be equivalent to L∞(R). It is further not difficult to show that the sequence (f

(1)
N )N∈N0 from

(i) fulfills ‖f (1)N ‖∞ ր ∞ whereas ‖f (1)N ‖B0
∞,∞(R) ≍ 1. Hence, B0

∞,∞(R) 6= L∞(R).

Proof. ad (i): We provide the proof for q <∞. Let ε̄ = (ε0, ε1, . . .) ∈ {−1, 1}N0 and define

fN,ε̄ :=
N∑

j=0

εj

2j∑

k=0

ψj,k ,
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where (ψj,k)j,k shall be a compactly supported, orthogonal, and L∞-normalized wavelet sys-
tem with sufficient vanishing moments and smoothness to characterize the space A0

p,q(R). Fur-
ther, for each j ∈ N0 and k ∈ {0, . . . , 2j}, we assume the support condition supp (ψj,k) ⊂ [0, 1].

Now we note that in a univariate setting, as considered here, we have the coincidence
Ã0

p,q(R) = A0
p,q(R). Hence, using the wavelet isomorphism established by Theorem 4.2 for the

F-scale and taking into account Remark 4.1 for the B-scale, we immediately obtain

‖fN,ε̄‖B0
p,q(R)

≍
( N∑

j=0

∥∥∥
2j∑

k=0

χj,k

∥∥∥
q

p

)1/q
≍ N1/q ,

‖fN,ε̄‖F 0
p,q(R)

≍
∥∥∥
( N∑

j=0

∣∣∣
2j∑

k=0

χj,k

∣∣∣
q)1/q∥∥∥

p
≍ N1/q ,

whereby the (quasi-)norms on the left-hand side do not depend on the choice of ε̄.

From here we proceed with a probabilistic argument and interpret ε̄ as a Rademacher
random variable. Then, for the expectation of the Lp-(quasi-)norms over ε̄,

Eε̄(‖fN,ε̄‖pp) =
∫ 1

0

∫

R

∣∣∣
N∑

j=0

rj(t)

2j∑

k=0

ψj,k(x)
∣∣∣
p
dx dt ,

where rj(t) := sgn(sin 2jπt) is the j-th Rademacher function. Applying Khintchine’s inequal-
ity, we obtain from this

Eε̄(‖fN,ε̄‖pp) =
∫ 1

0

∫ 1

0

∣∣∣
N∑

j=0

rj(t)

2j∑

k=0

ψj,k(x)
∣∣∣
p
dt dx

≍
∫ 1

0

( N∑

j=0

∣∣∣
2j∑

k=0

ψj,k(x)
∣∣∣
2)p/2

dx .

Next, we define for j ∈ N0 the auxiliary functions

Fj :=
1

M

∣∣∣
2j∑

k=0

ψj,k(x)
∣∣∣
2

with M > 0 such that ‖Fj‖∞ ≤ 1.

Observe that 0 ≤ Fj ≤ 1. Then, in case 0 < p ≤ 2,

N−p/2 · Eε̄(‖fN,ε̄‖pp) ≍
∫ 1

0

( 1

N

N∑

j=0

Fj(x)
)p/2

dx ≥ 1

N

∫ 1

0

N∑

j=0

Fj(x) dx ,

and
∫ 1
0 Fj(x) dx ≍ 1. Hence Eε̄(‖fN,ε̄‖pp) & Np/2. Also, since 2/p ≥ 1, with Hölder

Eε̄(‖fN,ε̄‖pp) ≍
∫ 1

0

( N∑

j=0

Fj(x)
)p/2

dx .
(∫ 1

0

N∑

j=0

Fj(x) dx
)p/2

≍ Np/2 .
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In case 2 < p <∞, we again argue with Hölder

Eε̄(‖fN,ε̄‖pp) ≍
∫ 1

0

( N∑

j=0

Fj(x)
)p/2

dx &
(∫ 1

0

N∑

j=0

Fj(x) dx
)p/2

≍ Np/2 .

Further, since 2/p < 1,

N−p/2 · Eε̄(‖fN,ε̄‖pp) ≍
∫ 1

0

( 1

N

N∑

j=0

Fj(x)
)p/2

dx .
1

N

∫ 1

0

N∑

j=0

Fj(x) dx ≍ 1 .

Altogether, these estimates show Eε̄(‖fN,ε̄‖pp) ≍ Np/2. As a consequence, we can choose
fN := fN,ε̄(N) such that ‖fN‖pp ≍ Np/2, or equivalently ‖fN‖p ≍

√
N .

ad (ii): With the same wavelet system (ψj,k)j,k as before, L∞-normalized, define

fN :=
N∑

j=0

2j/pψj,k(j) ,

where k(j) is chosen such that the (spatial) support of the wavelets is mutually disjoint. Then,
using again the wavelet isomorphism from Theorem 4.2 and Remark 4.1, we deduce

‖fN‖B0
p,q(R)

= ‖fN‖B̃0
p,q(R)

≍
( N∑

j=0

∥∥∥2j/pχj,k(j)

∥∥∥
q

p

)1/q
=

( N∑

j=0

(
2j/p2−j/p

)q)1/q
≍ N1/q .

For the Lp-(quasi-)norm we obtain, due to the disjoint support,

‖fN‖Lp(R) =
∥∥∥

N∑

j=0

2j/pψj,k(j)

∥∥∥
p
=

( N∑

j=0

2j‖ψj,k(j)‖pp
)1/p

≍ N1/p .

ad (iii): Finally, let (ϕj)j be a (standard) dyadic resolution of unity, with ϕ0 = 1 in a
neighborhood of 0 and ϕ1 = ϕ0(·/2) − ϕ0, and put

fN := F−1ϕ0(2
−N ·) .

Then fN = 2NF1(2
N ·). For the Lp-(quasi-)norm we thus compute

‖fN‖Lp(R) = 2N‖F1(2
N ·)‖p ≍ 2N(1−1/p) .

Turning to the F 0
p,q(R)-(quasi-)norm, for N ≥ 2, we calculate, writing Φ0 := F−1ϕ0 and

Φ1 := F−1ϕ1,

‖fN‖F 0
p,q(R)

=
∥∥∥
( ∞∑

j=0

∣∣∣
(
F−1(ϕj · ϕ0(2

−N ·))
)
(·)

∣∣∣
q)1/q∥∥∥

p

≥
∥∥∥
(N−1∑

j=0

∣∣∣
(
F−1ϕj

)
(·)

∣∣∣
q)1/q∥∥∥

p

=
∥∥∥
(
|Φ0|q +

N−1∑

j=1

∣∣∣2j−1Φ1(2
j−1·)

∣∣∣
q)1/q∥∥∥

p

=
∥∥∥
(
|Φ0|q +

N−2∑

j=0

∣∣∣2jΦ1(2
j ·)

∣∣∣
q)1/q∥∥∥

p
.
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Note that Φ1 has (infinitely many) vanishing moments and is thus oscillatory. Assuming
w.l.o.g. |Φ1| > δ on a set I ⊂ [1, 2), with δ > 0 being some fixed constant, we can proceed

‖fN‖F 0
p,q(R)

&
∥∥∥
(N−2∑

j=0

∣∣∣2jχI(2
j ·)

∣∣∣
q)1/q∥∥∥

p

=
∥∥∥
N−2∑

j=0

2jχI(2
j ·)

∥∥∥
p
=

(N−2∑

j=0

2jp
∫

R

χI(2
jx) dx

)1/p

≍
(N−2∑

j=0

2j(p−1)
)1/p

&

{
1 , p < 1 ,

N1/p , p ≥ 1 .

�
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