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In this paper we introduce new function spaces which we call anisotropic hyperbolic Besov and Triebel-Lizorkin spaces. Their definition is based on a hyperbolic Littlewood-Paley analysis involving an anisotropy vector only occurring in the smoothness weights. Such spaces provide a general and natural setting in order to understand what kind of anisotropic smoothness can be described using hyperbolic wavelets (in the literature also sometimes called tensor-product wavelets), a wavelet class which hitherto has been mainly used to characterize spaces of dominating mixed smoothness.

A centerpiece of our present work are characterizations of these new spaces based on the hyperbolic wavelet transform. Hereby we treat both, the standard approach using wavelet systems equipped with sufficient smoothness, decay, and vanishing moments, but also the very simple and basic hyperbolic Haar system.

The second major question we pursue is the relationship between the novel hyperbolic spaces and the classical anisotropic Besov-Lizorkin-Triebel scales. As our results show, in general, both approaches to resolve an anisotropy do not coincide. However, in the Sobolev range this is the case, providing a link to apply the newly obtained hyperbolic wavelet characterizations to the classical setting. In particular, this allows for detecting classical anisotropies via the coefficients of a universal hyperbolic wavelet basis, without the need of adaption of the basis or a-priori knowledge on the anisotropy.

Introduction

With the development of wavelet analysis from the beginning of the 1980s until the present time we nowadays have several powerful tools at hand to perform signal analysis with the aim to extract important information out of a signal. The information is thereby usually coded in objects easy to compute and handle -the wavelet coefficients.

Wavelet methods have been used with the known success for the purpose of compression, denoising, inpainting, classification, etc., of data, to mention just a few. Roughly speaking, the common underlying idea is the fact that a few wavelet coefficients contain a rather complete information of the signal to be analyzed. However, due to their construction principle (dyadic dilations and integer translates of a few basic "mother" functions) classical wavelets are not well-suited for the analysis of, say, anisotropic signals. In fact, a signal which is rather smooth in x-direction but rough in y-direction (such as layers in the earth, stripes on a shirt, etc.) can not be properly resolved by a classical multi-resolution analysis. The respective wavelet coefficients do not contain the anisotropic smoothness information, they rather resolve a certain minimal smoothness. That results in a bad decay of the sequence of wavelet coefficients or, in other words, a bad compression rate.

Anisotropy is not a rare phenomenon since it arises whenever physics does not act the same in different directions, e.g., geophysics, oceanography, hydrology, fluid mechanics, or medical image processing (see [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF][START_REF] Schertzer | Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades[END_REF] among others) are some of the fields where it naturally appears. For this reason wavelets have been adapted in many different ways in order to "detect" and resolve anisotropy. There is a vast amount of literature dealing with this. For instance, there are wave atoms [START_REF] Demanet | Wave atoms and sparsity of oscillatory patterns[END_REF] as well as curvelets [START_REF] Cands | Curvelets -a surprisingly effective nonadaptive representation for objects with edges[END_REF][START_REF] Cands | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF][START_REF] Cands | The curvelet representation of wave propagators is optimally sparse[END_REF], shearlets [START_REF] Kutyniok | Sparse multidimensional representation using shearlets[END_REF][START_REF] Guo | Sparse multidimensional representations using anisotropic dilation and shear operators[END_REF][START_REF] Lakhonchai | Shearlet transforms and directional regularities[END_REF], anisets, and anisotropic wavelets [START_REF] Triebel | Wavelet bases in anisotropic function spaces. Function Spaces, Differential Operators and Nonlinear Analysis, FSDONA-04[END_REF][START_REF] Triebel | Theory of Function Spaces III[END_REF][START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF]. The latter concept represents a rather flexible construction since it can be build (theoretically) for any present anisotropy. The theoretical basis of anisotropic wavelet analysis is the equivalent characterization of corresponding anisotropic function spaces, like Hölder, Besov, Sobolev and Triebel-Lizorkin spaces. The major shortcoming of the existing theory is the fact that one has to know the anisotropy in advance, i.e., one has to adapt the wavelet accordingly. In other words, if physics does not provide the anisotropy parameters of the signal we are not able to resolve the signal accordingly without "trying out" several anisotropic bases. Such a method is, of course, hardly implementable in practice.

In Abry et. al. [START_REF] Abry | The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic textures[END_REF] it has been shown that any anisotropic Besov space -defined with respect to the cartesian axis -can "almost" be characterized with the help of the so-called hyperbolic wavelet transform. The anisotropy of the signal can then be detected using a uniform basis and is characterized by a special weight in the wavelet coefficients. This has led to an efficient algorithm for image classification and anisotropy detection applied to both synthetic and real textures (see [START_REF] Roux | Self-similar anisotropic texture analysis: the hyperbolic wavelet transform contribution[END_REF][START_REF] Abry | Multiscale anisotropic texture analysis and classification of photographic prints[END_REF]).

In this paper we further develop this idea of describing anisotropy with the help of the hyperbolic wavelet transform. For this reason we introduce a new family of anisotropic function spaces which are defined via a hyperbolic Littlewood-Paley analysis and for which we prove exact characterization with hyperbolic wavelets. The motivation behind this is to provide a general setting of anisotropic spaces characterized by one single basis of wavelets and thus to understand how one such fixed basis can help to describe anisotropic smoothness.

Concretely, we start with a hyperbolic Littlewood-Paley analysis defined as the usual tensor product [START_REF] Abry | The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic textures[END_REF] ∆j(f ) := F -1 [θ j 1 ⊗ ... ⊗ θ j d Ff ] , j = (j 1 , . . . , j d ) ∈ N d 0 . This hyperbolic decomposition of the frequency space has been widely used for the Fourier analytic definition of the well-known spaces with dominating mixed smoothness, see [START_REF] Schmeisser | Topics in Fourier analysis and function spaces[END_REF][START_REF] Vybíral | Function spaces with dominating mixed smoothness[END_REF] and the references therein. These spaces represent a suitable framework for multivariate appoximation, see [START_REF] Devore | Hyperbolic wavelet approximation[END_REF][START_REF] Temlyakov | Approximation of periodic functions[END_REF] and the recent survey article [START_REF] Dũng | Hyperbolic Cross Approximation[END_REF]. The main ideas have been developed over more than fifty years of intense research in the former Soviet Union such that it is beyond the scope of this paper to name all the relevant references (cf. [START_REF] Dũng | Hyperbolic Cross Approximation[END_REF]).

Based on the decomposition (1), we then define spaces A s, As a special case (A = F , 1 < p < ∞, q = 2), these include the Sobolev type spaces W s, ᾱ p (R d ) := F s, ᾱ p,2 (R d ), where

f F s, ᾱ p,q (R d ) := j∈N d 0 2 qs j/ ᾱ ∞ |∆j(f )(•)| q 1/q p , f ∈ S ′ (R d ) .
It is important to note that the anisotropy hereby only enters in the weight 2 s j/ ᾱ ∞ , where we use the short-hand notation j/ᾱ ∞ := max{j 1 /α 1 , ..., j d /α d }, but not in the choice of the Littlewood-Paley decomposition.

One of the main results of this paper is the coincidence (with respect to equivalent norms)

(2)

W s, ᾱ p (R d ) = W s, ᾱ p (R d ) , if 1 < p < ∞ ,
where the space on the right-hand side represents the classical anisotropic Sobolev space defined in (3) below. This relation has already been observed for isotropic (i.e. ᾱ = (1, ..., 1)) Hilbert-Sobolev spaces (p = 2) on the d-torus, see [START_REF] Griebel | Optimized general sparse grid approximation spaces for operator equations[END_REF][START_REF] Dũng | N-widths and ε-dimensions for high-dimensional approximations[END_REF], as well as on R 2 in [START_REF] Abry | The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic textures[END_REF]. Our result extends this observation to all 1 < p < ∞. Surprisingly, such a coincidence in the spirit of ( 2) is only possible in the Sobolev case. To be more precise, it holds A s, ᾱ p,q (R d ) = A s, ᾱ p,q (R d ) if and only if A = F , 1 < p < ∞, and q = 2.

As an important consequence of this equality (2), we can further prove that it is possible to characterize (e.g. detect and classify) classical anisotropies described by the spaces W s, ᾱ p (R d ) via the wavelet coefficients of a universal hyperbolic wavelet basis. Compared to the classical approach using anisotropic wavelets, this approach has the advantage that one does not need a-priori knowledge on the anisotropies, otherwise required for constructing the "right" basis. In particular, our results entail that any sufficiently regular orthonormal basis (ψ j, k) j, k of tensorized wavelets ψ j, k = ψ j 1 ,k 1 ⊗ • • • ⊗ ψ j d ,k d constitutes an unconditional Schauder basis for W s, ᾱ p (R d ), whose coefficients, measured in an appropriate corresponding sequence space, give rise to an equivalent norm on W s, ᾱ p (R d ), i.e. for f ∈ W s, ᾱ p (R d ) with coefficients f, ψ j, k

f W s, ᾱ p (R d ) ≍ j∈N d 0 2 2s j/ ᾱ ∞ k∈Z d f, ψ j, k χ j, k(•) 2 1/2 p .
This is stated in Theorem 6.2. A similar result, see Theorem 6.3, holds true for the hyperbolic Haar system H d = (h j, k) j, k, where In this direction, we would also like to mention the new and related findings of Oswald in [START_REF] Oswald | The Haar system in Besov function spaces[END_REF] on the Schauder basis property of the hyperbolic Haar system in the classic isotropic Besov spaces defined via first-order moduli of smoothness. At the center of our respective proofs, we will rely on discrete characterizations provided by hyperbolic wavelets for the spaces A s, ᾱ p,q (R d ), A ∈ {B, F }. These characterizations are fundamental and established in separate theorems, Theorem 4.2 and Theorem 5.4, whereby we follow two paths. On the one hand, we use the usual methodology and consider orthonormal wavelet bases for which we assume sufficient smoothness, decay, and vanishing moments. As a byproduct, we thereby significantly extend the wavelet characterizations in [START_REF] Vybíral | Function spaces with dominating mixed smoothness[END_REF][START_REF] Ullrich | Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type[END_REF] for Besov-Lizorkin-Triebel spaces with dominating mixed smoothness. On the other hand, we use a hyperbolic Haar system, which does not fulfill smoothness conditions as before but nevertheless allows for characterization in a certain restricted parameter range.

h j, k = h j 1 ,k 1 ⊗ • • • ⊗ h j d ,k d ,
Let us remark that analysis with the Haar wavelet has a long tradition (see e.g. [START_REF] Golubov | Best approximations of functions in the L p metric by Haar and Walsh polynomials[END_REF][START_REF] Romanyuk | Constructive characteristic of Hölder classes and m-term approximations in the multiple Haar basis[END_REF][START_REF] Romanyuk | Multiple Haar basis and m-term approximations for functions from the Besov classes[END_REF][START_REF] Romanyuk | Multiple Haar basis and m-term approximations of functions from the Besov classes[END_REF][START_REF] Andrianov | Approximation of M H r q -class functions by Haar polynomials[END_REF]), the Haar wavelet being the oldest and simplest orthonormal wavelet, conceived as early as 1909 [START_REF] Haar | Zur Theorie der orthogonalen Funktionensysteme[END_REF]. Besides its elegance and simplicity, notably its connection to the Faber system [START_REF] Faber | Über die Orthogonalfunktionen des Herrn Haar[END_REF] and other spline functions, such as e.g. the Chui-Wang wavelet [START_REF] Chui | On compactly supported spline wavelets and a duality principle[END_REF], makes it interesting from a numerical perspective. In particular in imaging science it plays an important role in practical applications. Recently, it has attracted renewed attention with a series of publications [START_REF] Seeger | Haar projection numbers and failure of unconditional convergence in Sobolev spaces[END_REF][START_REF] Seeger | Lower bounds for Haar projections: deterministic examples[END_REF][START_REF] Garrigós | On uniform boundedness of dyadic averaging operators in spaces of Hardy-Sobolev type[END_REF][START_REF] Garrigós | Basis properties of the Haar system in limiting Besov spaces[END_REF][START_REF] Garrigós | Haar frames and Haar multipliers in the absence of unconditionality[END_REF][START_REF] Garrigós | The Haar system in Triebel-Lizorkin spaces: Endpoint results[END_REF][START_REF] Derevianko | A higher order Faber spline basis for sampling discretization of functions[END_REF].

The paper has the following structure. After having recalled in Section 2 some helpful Fourier analytic tools (in particular some classical maximal functions and associated inequalities) as well as the definition of the classical (anisotropic) function spaces A s, ᾱ p,q (R d ), where A ∈ {B, F }, we introduce in Section 3 the notion of hyperbolic Littlewood-Paley analysis and the related Besov-Lizorkin-Triebel spaces A s, ᾱ p,q (R d ). Wavelet characterizations of these new hyperbolic spaces are the topic of Sections 4 and 5, whereby we first resort to standard wavelets with sufficient smoothness, decay, and vanishing moments in Section 4, while in Section 5 we utilize a hyperbolic Haar basis. The relationship of the new scale to the traditional spaces is finally investigated in Sections 6 and 7. Specifically, in Section 6, we show the equality W s, Let us agree on the following general notation. As usual N shall denote the natural numbers. We further put N 0 := N ∪ {0}, and let Z denote the integers, R the real numbers, and C the complex numbers. By T := R/2πZ we refer to the torus identified with the interval [0, 2π] ⊂ R. We write x, y or x • y for the Euclidean inner product in R d or C d . The letter d is hereby always reserved for the underlying dimension and by [d] we mean the set {1, ..., d}. For 0 < p ≤ ∞ and x ∈ R d we define x p := ( d i=1 |x i | p ) 1/p , with the usual modification in the case p = ∞. If 1 ≤ p ≤ ∞ we set p ′ such that 1/p + 1/p ′ = 1. For 0 < p, q ≤ ∞ we further denote σ p,q := max{1/p -1, 1/q -1, 0} and σ p := max{1/p -1, 0}. We also put x + := ((x 1 ) + , ..., (x d ) + ), whereby a + := max{a, 0} for a ∈ R. Analogously we define x -. By (x 1 , . . . , x d ) > 0 we shall mean that each coordinate is positive. Finally, as usual, a ∈ R is decomposed into a = ⌊a⌋ + {a}, where 0 ≤ {a} < 1 and ⌊a⌋ ∈ Z. In case x ∈ R d , {x} and ⌊x⌋ are then meant component-wise. Multivariate indices are typesetted with a bar, like e.g. k, j, l, or m, to indicate the multi-index. In all the paper, the multi-index ᾱ = (α 1 , ..., α d ) > 0 thereby stands for an anisotropy and is such that α 1 + ... + α d = d. In addition, we here use the abbreviations α min := min{α 1 , .., α d } and α max := max{α 1 , .., α d }. The notation ᾱ/ j shall always stand for (α 1 /j 1 , . . . , α d /j d ). Given a positive real a > 0, we further write a ᾱ for the vector (a α 1 , . . . , a α d ) and let f (a ᾱx) := f (a α 1 x 1 , . . . , a α d x d ) be the anisotropically scaled version of the function f : R d → C. For two (quasi-)normed spaces X and Y , the (quasi-)norm of an element x ∈ X will be denoted by x X . The symbol X ֒→ Y indicates that the identity operator is continuous. For two sequences a n and b n we will write a n b n if there exists a constant c > 0 such that a n ≤ c b n for all n. We will write a n ≍ b n if a n b n and b n a n .

ᾱ p (R d ) = W s, ᾱ p (R d ), i.e. F s, ᾱ p,2 (R d ) = F s,

Classical spaces and tools from Fourier analysis

Let L p = L p (R d ), 0 < p ≤ ∞, be the Lebesgue space of all measurable functions f : R d → C such that

f p := R d |f (x)| p dx 1/p < ∞ ,
with the usual modification if p = ∞. We will also need L p -spaces on compact domains Ω ⊂ R d instead of R d and shall write f Lp(Ω) for the corresponding restricted L p -(quasi-)norms.

For k ∈ N 0 , we denote by C k 0 (R d ) the collection of all compactly supported functions ϕ on R d which have uniformly continuous derivatives D γ ϕ on R d whenever γ 1 ≤ k. Additionally, we define the spaces of infinitely differentiable functions C ∞ (R d ) and infinitely differentiable functions with compact support C ∞ 0 (R d ) as well as the Schwartz space S = S(R d ) of all rapidly decaying infinitely differentiable functions on R d , i.e.,

S(R d ) := ϕ ∈ C ∞ (R d ) : ϕ k,ℓ < ∞ for all k, ℓ ∈ N , and ϕ k,ℓ := (1 + | • |) k γ 1 ≤ℓ |D γ ϕ(•)| ∞ , k, ℓ ∈ N .
The space S ′ (R d ), the topological dual of S(R d ), is also referred to as the space of tempered distributions on R d . Indeed, a linear mapping f : S(R d ) → C belongs to S ′ (R d ) if and only if there exist numbers k, ℓ ∈ N and a constant c = c f such that

|f (ϕ)| ≤ c f ϕ k,ℓ for all ϕ ∈ S(R d ). Any locally integrable function f on R d belongs to S ′ (R d ) in the sense that f (ϕ) := R d f (x)ϕ(x) dx , ϕ ∈ S(R d ) .
The space S ′ (R d ) is equipped with the weak * -topology.

For f ∈ L 1 (R d ) we define the Fourier transform

Ff (ξ) = (2π) -d/2 R d f (y)e -iξ•y dy, ξ ∈ R d ,
and the corresponding inverse Fourier transform F -1 f (ξ) = Ff (-ξ). As usual, the Fourier transform can be extended to

S ′ (R d ) by (Ff )(ϕ) := f (Fϕ), where f ∈ S ′ (R d ) and ϕ ∈ S(R d ). The mapping F : S ′ (R d ) → S ′ (R d ) is a bijection.
The convolution ϕ * ψ of two square-integrable functions ϕ, ψ is defined via the integral

(ϕ * ψ)(x) = R d ϕ(x -y)ψ(y) dy . If ϕ, ψ ∈ S(R d ) then ϕ * ψ still belongs to S(R d ). In fact, we have ϕ * ψ ∈ S(R d ) even if ϕ ∈ S(R d ) and ψ ∈ L 1 (R d ). The convolution can be extended to S(R d ) × S ′ (R d ) via (ϕ * ψ)(x) = ψ(ϕ(x -•))
, which makes sense pointwise and is a C ∞ -function on R d .

Classical (an)isotropic Littlewood-Paley analysis

Subsequently, ᾱ = (α 1 , ..., α d ) > 0 will denote an anisotropy and be such that α 1 + ... + α d = d. Anisotropic Besov spaces may then be introduced using an anisotropic Littlewood-Paley analysis depending on ᾱ. Classical isotropic spaces -as a particular case of anisotropic spaces -will thereby be obtained for ᾱ = (1, 1, ..., 1). Let ϕ ᾱ 0 ≥ 0 belong to the Schwartz class S(R d ) and be such that, for ξ = (ξ 1 , ..., ξ d ) ∈ R d ,

ϕ ᾱ 0 (ξ) = 1 if sup i=1,2,...,d |ξ i | ≤ 1 ,
and

ϕ ᾱ 0 (ξ) = 0 if sup i=1,...,d |2 -α i ξ i | ≥ 1 .
For j ∈ N, further define

ϕ ᾱ j (ξ) := ϕ ᾱ 0 (2 -j ᾱξ) -ϕ ᾱ 0 (2 -(j-1)ᾱ ξ) = ϕ ᾱ 0 (2 -jα 1 ξ 1 , . . . , 2 -jα d ξ d ) -ϕ ᾱ 0 (2 -(j-1)α 1 ξ 1 , . . . , 2 -(j-1)α d ξ d ) .
Then ∞ j=0 ϕ ᾱ j ≡ 1, and (ϕ ᾱ j ) j≥0 is called an anisotropic resolution of unity. It satisfies

supp(ϕ ᾱ 0 ) ⊂ R ᾱ 1 , supp(ϕ ᾱ j ) ⊂ R ᾱ j+1 \ R ᾱ j-1 ,
where

R ᾱ j = ξ = (ξ 1 , . . . , ξ d ) ∈ R d : |ξ i | ≤ 2 α i j for i ∈ [d] = {1, . . . , d} .
For f ∈ S ′ (R d ), we then define

∆ ᾱ j f = F -1 (ϕ ᾱ j Ff ) .
The sequence (∆ ᾱ j f ) j≥0 is called an anisotropic Littlewood-Paley analysis of f . With this tool, the anisotropic Besov spaces are now defined as follows (see [START_REF] Bownik | Atomic and molecular decomposition of anisotropic Triebel-Lizorkin spaces[END_REF][START_REF] Bownik | Atomic and molecular decomposition of anisotropic Besov spaces[END_REF]).

Definition 2.1 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, the Besov space B s, ᾱ p,q (R d ) is defined by B s, ᾱ p,q (R d ) = f ∈ S ′ (R d ) : j≥0 2 jsq ∆ ᾱ j f q p 1/q < ∞ ,
with the usual modification for q = ∞. This definition does not depend on chosen resolution of unity ϕ ᾱ 0 and the quantity

f B s, ᾱ p,q = j≥0 2 jsq ∆ ᾱ j f q p 1/q
is a norm (resp. quasi-norm) on B s, ᾱ p,q (R d ) for 1 ≤ p, q ≤ ∞ (resp. 0 < min{p, q} < 1) and with the usual modification if q = ∞.

As in the isotropic case, anisotropic Besov spaces encompass a large class of classical anisotropic function spaces (see [START_REF] Triebel | Theory of Function Spaces III[END_REF] for details). For example, when p = q = 2, the Besov spaces coincide with the anisotropic Sobolev spaces and, when p = q = ∞, the spaces B s, ᾱ ∞,∞ (R d ) are called anisotropic Hölder spaces and are denoted by

C s, ᾱ(R d ). Definition 2.2 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, the Triebel-Lizorkin space F s, ᾱ p,q (R d ) is defined by F s, ᾱ p,q (R d ) = f ∈ S ′ (R d ) : j≥0 2 jsq |∆ ᾱ j f (•)| q 1/q p < ∞ ,
with the usual modification for q = ∞. This definition does not depend on the chosen resolution of unity ϕ ᾱ 0 and the quantity

f F s, ᾱ p,q = j≥0 2 jsq |∆ ᾱ j f (•)| q 1/q
p is a norm (resp. quasi-norm) on F s, ᾱ p,q (R d ) for 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ (resp. 0 < min{p, q} < 1) and with the usual modification if q = ∞.

If q = 2 and 1 < p < ∞, the anisotropic Triebel-Lizorkin space coincides with the anisotropic Sobolev space denoted by W s, ), it is easy to check that the spaces B s,

ᾱ p (R d ) : (3) W s, ᾱ p = f ∈ S ′ (R d ) : F -1 d i=1 (1 + ξ 2 i ) 1/2α i s Ff (ξ) p < ∞ . Remark 2.1 (i) As mentioned before, if ᾱ = (1, ..., 1 
ᾱ p,q (R d ) (resp. F s, ᾱ p,q (R d )) coincide with the classical spaces B s p,q (R d ) (resp. F s p,q (R d )). In addition, we have F 0, ᾱ p,2 (R d ) = L p (R d ) in the range 1 < p < ∞.
(ii) Our understanding of anisotropic spaces coincides with the one in Triebel [START_REF] Triebel | Theory of Function Spaces III[END_REF] (see also the references therein). There are different (but related) notions of anisotropy in the Russian literature, see Nikolskij [START_REF] Nikol'skij | Approximation of functions of several variables and imbedding theorems[END_REF]Chapt. 4] or Temlyakov [48,II.3]. A consequence of our Theorem 6.1 below is the fact that in case of W -spaces the mentioned approaches coincide and lead to the same notion of anisotropy. However, in case of Hölder-Nikolskij spaces this is in general not the case as for instance Theorem 7.1 shows.

Maximal inequalities

Let us provide here the maximal inequalities for the Hardy-Littlewood and Peetre maximal functions, respectively. For further details we refer to [57, 1.2, 1.3] or [START_REF] Schmeisser | Topics in Fourier analysis and function spaces[END_REF]Chapt. 2] .

For a locally integrable function f : R d → C we denote by M f (x) the Hardy-Littlewood maximal function defined by

(4) (M f )(x) = sup x∈Q 1 |Q| Q |f (y)| dy , x ∈ R d ,
where the supremum is taken over all cubes with sides parallel to the coordinate axes containing x. A vector valued generalization of the classical Hardy-Littlewood maximal inequality is due to Fefferman and Stein [START_REF] Fefferman | Some maximal inequalities[END_REF].

Theorem 2.1 ( [START_REF] Fefferman | Some maximal inequalities[END_REF]) For 1 < p < ∞ and 1 < q ≤ ∞ there exists a constant c > 0, such that

ℓ∈I |M f ℓ | q 1/q p ≤ c ℓ∈I |f ℓ | q 1/q
p holds for all sequences {f ℓ } ℓ∈I of locally Lebesgue-integrable functions on R d .

We require a direction-wise version of (4)

(M i f )(x) = sup s>0 1 2s
x i +s

x i -s |f (x 1 , ..., x i-1 , t, x i+1 , ..., x d )| dt , x ∈ R d .
We denote the composition of these operators by M e = i∈e M i , where e is a subset of [d] = {1, . . . , d} and M ℓ M k has to be interpreted as M ℓ • M k . The following version of the Fefferman-Stein maximal inequality is due to Stöckert [START_REF] Stöckert | Ungleichungen vom Plancherel-Pólya-Nikol ′ skij-Typ in gewichteten L Ω p -Räumen mit gemischten Normen[END_REF].

Theorem 2.2 ([47]) For 1 < p < ∞ and 1 < q ≤ ∞ there exists a constant c > 0 such that for any i ∈

[d] ℓ∈I |M i f ℓ | q 1/q p ≤ c ℓ∈I |f ℓ | q 1/q
p holds for all sequences {f ℓ } ℓ∈I of locally Lebesgue-integrable functions on R d .

Iteration of this theorem yields a similar boundedness property for the operator

M [d] .
The following construction of a maximal function is due to Peetre, Fefferman, and Stein. Let b = (b 1 , ..., b d ) > 0, a > 0, and f ∈ L 1 (R d ) with Ff compactly supported. We define the Peetre maximal function Pb ,a f by

(5) Pb ,a f (x) = sup z∈R d |f (x -z)| (1 + |b 1 z 1 |) a • ... • (1 + |b d z d |) a .
Lemma 2.1 Let Ω ⊂ R d be a compact set. Let further a > 0 and γ = (γ 1 , ..., γ d ) ∈ N d 0 . Then there exist two constants c 1 , c 2 > 0 (independent of f ) such that

P (1,...,1),a (D γ f )(x) ≤ c 1 P (1,...,1),a f (x) ≤ c 2 M d M d-1 ... M 1 |f | 1/a ... a (x) (6) holds for all f ∈ L 1 (R d ) with supp (Ff ) ⊂ Ω and all x ∈ R d . The constants c 1 , c 2 depend on Ω.
We finally give a vector-valued version of the Peetre maximal inequality which is a direct consequence of Lemma 2.1 together with Theorem 2.2.

Theorem 2.3 Let 0 < p < ∞, 0 < q ≤ ∞ and a > max{1/p, 1/q}. Let further bℓ = (b ℓ 1 , ..., b ℓ d ) > 0 for ℓ ∈ I and Ω = {Ω ℓ } ℓ∈I , such that Ω ℓ ⊂ [-b ℓ 1 , b ℓ 1 ] × • • • × [-b ℓ d , b ℓ d ]
is compact for ℓ ∈ I. Then there is a constant C > 0 (independent of f and Ω) such that

ℓ∈I |Pbℓ ,a f ℓ | q 1/q p ≤ C ℓ∈I |f ℓ | q 1/q p holds for all systems f = {f ℓ } ℓ∈I with supp (Ff ℓ ) ⊂ Ω ℓ , ℓ ∈ I .

Hyperbolic Littlewood-Paley analysis

Let θ 0 ∈ S(R) be supported on [-2, 2] with θ 0 = 1 on [-1, 1]. For any j ∈ N, let us further define

θ j = θ 0 (2 -j •) -θ 0 (2 -(j-1) •)
such that (θ j ) j is a univariate resolution of unity, i.e., j≥0 θ j (•) = 1. Observe that, for any j ≥ 1, supp(θ j ) ⊂ {2 j-1 ≤ |ξ| ≤ 2 j+1 }.

Remark 3.1 In the following, the function θ 0 can be chosen with an arbitrary compact support. It does not change the main results even if technical details of proofs and lemmas have to be adapted. This allows to choose θ 0 as the Fourier transform of a Meyer scaling function.

Let us now come to the main concept of this paper, the hyperbolic Littlewood-Paley analysis.

Definition 3.1 (i) For any j = (j 1 , ..., j d ) ∈ N d 0 and any ξ = (ξ 1 , ..., ξ d ) ∈ R d set θj(ξ 1 , ..., ξ d ) := θ j 1 (ξ 1 )θ j 2 (ξ 2 )...θ j d (ξ d ) .
The function θj belongs to S(R d ) for all j ∈ N d 0 and is compactly supported on a dyadic rectangle. Further j∈N d 0 θj ≡ 1 and (θj)j is called a hyperbolic resolution of unity.

(ii) For f ∈ S ′ (R d ) and j ∈ N d 0 set ∆jf := F -1 (θjFf ) .
The sequence (∆jf ) j∈N d 0 is called a hyperbolic Littlewood-Paley analysis of f .

We are now in the position to introduce new functional spaces called anisotropic hyperbolic Besov spaces and anisotropic hyperbolic Triebel-Lizorkin spaces defined via the hyperbolic Littlewood-Paley analysis.

Definition 3.2 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d we define the anisotropic hyperbolic Besov space B s, ᾱ p,q (R d ) via B s, ᾱ p,q (R d ) = f ∈ S ′ (R d ) : j∈N d 0 2 (j 1 /α 1 ,...,j d /α d ) ∞ sq ∆jf q p 1/q < ∞ ,
with the usual modification in case q = ∞.

This definition does not depend on the chosen resolution of unity (θj)j and the quantity

f B s, ᾱ p,q := j∈N d 0 2 (j 1 /α 1 ,...,j d /α d ) ∞sq ∆jf q p 1/q is a norm (resp. quasi-norm) on B s, ᾱ p,q (R d ) for 1 ≤ p, q ≤ ∞ (resp. 0 < min{p, q} < 1) and with usual modification if q = ∞. Definition 3.3 For 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, ᾱ = (α 1 , . . . , α d ) > 0 such that i α i = d we define the anisotropic hyperbolic Triebel-Lizorkin space via F s, ᾱ p,q (R d ) = f ∈ S ′ (R d ) : j∈N d 0 2 (j 1 /α 1 ,...,j d /α d ) ∞ sq |∆jf (•)| q 1/q p < ∞ ,
with the usual modification in case q = ∞.

This definition does not depend on the chosen resolution of unity (θj)j and the quantity

f F s, ᾱ p,q := j∈N d 0 2 (j 1 /α 1 ,...,j d /α d ) ∞ sq |∆jf (•)| q 1/q p is a norm on F s, ᾱ p,q (R d ) for 1 ≤ p < ∞, 1 ≤ q ≤ ∞ (resp. quasi-norm for 0 < min{p, q} < 1). Remark 3.2
The above definitions of anisotropic hyperbolic Besov and Sobolev spaces include four indices: s stands for the regularity, p is the integration parameter and q the so-called fine-index. The parameter ᾱ = (α 1 , . . . , α d ) encodes the present anisotropy: the more α min = min{α 1 , .., α d } is close to 0 and α max = max{α 1 , ..., α d } is close to d, the more we need directional smoothness in one axis compared to others. On the other hand, if ᾱ = (1, ..., 1) the anisotropy becomes an "isotropy".

Remark 3.3 By analogy with the classical spaces, if q = 2 and 1 < p < ∞, F s, ᾱ p,q (R d ) is called anisotropic hyperbolic Sobolev space and is denoted by W s, ᾱ p (R d ). In case ᾱ = (1, ..., 1) we write W s p (R d ).

Let us finally introduce classical spaces with dominating mixed smoothness in the spirit of [START_REF] Schmeisser | Topics in Fourier analysis and function spaces[END_REF][START_REF] Vybíral | Function spaces with dominating mixed smoothness[END_REF].

Definition 3.4 Let r ∈ R, 0 < p, q ≤ ∞ (p < ∞ in the F -case). (i) The Besov space with dominating mixed smoothness S r p,q B(R d ) is the collection of all distributions f ∈ S ′ (R d ) such that the following (quasi-)norm f S r p,q B(R d ) := j∈N d 0 2 r j 1 q ∆j(f ) q p 1/q
is finite.

(ii) The Triebel-Lizorkin space with dominating mixed smoothness S r p,q F (R d ) is the collection of all distributions f ∈ S ′ (R d ) such that the following (quasi-)norm

f S r p,q F (R d ) := j∈N d 0 2 r j 1 q |∆j(f )(x)| q 1/q p is finite. (iii) If 1 < p < ∞ and r ∈ R then the Sobolev space with dominating mixed smoothness S r p W (R d ) is the collection of all f ∈ S ′ (R d ) such that f S r p W := F -1 d i=1 (1 + |ξ i | 2 ) r/2 Ff p is finite.
Let us also state a useful Fourier multiplier theorem, see [START_REF] Vybíral | Function spaces with dominating mixed smoothness[END_REF]Thm. 1.12] or [43, p. 77].

Lemma 3.1 ([57, 43]) Let 0 < p < ∞, 0 < q ≤ ∞, and r > 1 min(p,q) + 1 2 . Further, let {Ωk} k∈N d 0 be a sequence of compact subsets of R d such that Ωk ⊂ x ∈ R d : |x i | ≤ 2 k i , i = 1, . . . , d .
Then, there is a positive constant C > 0 such that

k∈N d 0 F -1 [ρkFfk](•) q 1 q p ≤ C k∈N d 0 |fk(•)| q 1 q p × sup l∈N d 0 ρl(2 ℓ 1 •, . . . , 2 ℓ d •) S r 2 W
holds for all systems {fk} k∈N d 0 ∈ L p (ℓ q ) with supp (Ffk) ⊂ Ωk and all systems {ρk} k∈N d

0 ⊂ S r 2 W (R d ).

Hyperbolic wavelet analysis

In this section we prove hyperbolic wavelet characterizations of the spaces B s, ᾱ p,q (R d ) and F s, ᾱ p,q (R d ) defined in Definitions 3.2 and 3.3, respectively. It should be noted that the proof technique used for Theorem 4.2 below also represents a progress towards new optimal wavelet characterizations of Besov-Lizorkin-Triebel spaces with dominating mixed smoothness, which extends the results in [57, Sect. 2.4] significantly, see Remark 4.3 below.

Let us start with univariate wavelets given by a scaling function ψ 0 and a corresponding wavelet ψ. These functions are supposed to satisfy the following (minimal) conditions:

(K) It holds ψ 0 , ψ ∈ C K (R). For any M ∈ N there is a constant C M > 0 such that for all 0 ≤ α ≤ K it holds |D α ψ 0 (x)| + |D α ψ(x)| ≤ C M (1 + |x|) -M , x ∈ R . (L)
The wavelet ψ has vanishing moments up to order L -1:

For L > β ∈ N 0 it holds R ψ(x)x β dx = 0 .
In case L = 0 the condition is void.

We shall denote

ψ j,k := 1 √ 2 ψ(2 j-1 • -k) , j ∈ N, k ∈ Z ,
and ψ 0,k := ψ 0 (•k). We set ψ j,k ≡ 0 if j < 0. To obtain the hyperbolic wavelet basis in L 2 (R d ) we tensorize over all scales and obtain

ψ j, k(x 1 , ..., x d ) := ψ j 1 ,k 1 (x 1 ) • ... • ψ j d ,k d (x d ) , x = (x 1 , ..., x d ) ∈ R d , j ∈ Z d , k ∈ Z d .
The following lemma recalls a useful convolution relation. Let us clarify the notation first. For a given univariate function Λ we will use the notation Λ j (•) := 2 j-1 Λ(2 j-1 •), j ∈ N . We will further put x j,m := 2 -j m and I j,m := [2 -j m, 2 -j (m + 1)) with associated characteristic function χ j,m := ½ I j,m .

Lemma 4.1 Let Λ 0 , Λ ∈ S(R) with Λ having infinitely many vanishing moments, i.e., R Λ(x)x β dx = 0 for all β ∈ N . Let further ψ 0 and ψ satisfy (K) and (L) as above and R > 0 be a given real number. Then it exists a constant C R > 0 such that for any j ∈ N 0 and ℓ, m ∈ Z the convolution relation

|(Λ j * ψ j+ℓ,m )(x)| ≤ C R 2 -N sign(ℓ) |ℓ| (1 + 2 min{j,j+ℓ} |x -x j+ℓ,m |) -R
holds true with sign(ℓ) ∈ {+, -, 0} and N 0 := 0, N + := L + 1 and N -:= K.

Proof. 

(x) := Λ j 1 (x 1 ) • ... • Λ j d (x d ) , x ∈ R d , j ∈ Z d .
In the sequel we will further need the notation

Qj , m := I j 1 ,m 1 × . . . × I j d ,m d and χj , m(x 1 , ..., x d ) := χ j 1 ,m 1 (x 1 ) • ... • χ j d ,m d (x d ) , (7) 
with the notation I j i ,m i and χ j i ,m i , i ∈ [d] = {1, . . . , d}, introduced right before Lemma 4.1.

Lemma 4.2 Let Λ, Λ 0 , ψ 0 , ψ as in Lemma 4.1. For any R > 0 there exists a contant C R > 0 such that for any j ∈ N d 0 and l, m ∈ Z d the convolution relation

(8) |(Λj * ψ j+ l, m)(x)| ≤ C R d i=1 2 -N sign(ℓ i ) |ℓ i | (1 + 2 min{j i ,j i +ℓ i } |x i -2 -(j i +ℓ i ) m i |) -R
holds true with sign(ℓ i ) ∈ {+, -, 0} and N 0 := 0, N + := L + 1 and N -:= K .

The next proposition is also crucial and represents the "hyperbolic version" of [START_REF] Kempka | Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces[END_REF]Lem. 3,[START_REF] Cands | The curvelet representation of wave propagators is optimally sparse[END_REF]. An isotropic version is originally due to Kyriazis [START_REF] Kyriazis | Decomposition systems for function spaces[END_REF]Lem. 7.1]. For the convenience of the reader we give a proof. 

d i=1 1 + 2 min{j i ,j i +ℓ i } |x i -2 -(j i +ℓ i ) m i | -R 2 l+ 1 /r M m∈Z d λ j+ l, mχ j+ l, m r 1/r (x) , x ∈ R d ,
where M stands for the Hardy-Littlewood maximal operator.

Proof. We follow the proof from [START_REF] Kempka | Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces[END_REF]Lem. 7]. Put δ = R -1/r > 0 and define a decomposition {Ωk(x)} k∈N d 0 of Z d depending on x = (x 1 , . . . , x d ) ∈ R d as follows:

Ωk(x) := Ω k 1 (x 1 ) × ... × Ω k d (x d ) , k = (k 1 , . . . , k d ) ∈ N d 0 ,
with

Ω k i (x i ) := {m ∈ Z : 2 k i -1 < 2 min{j i ,j i +ℓ i } |x i -2 -(j i +ℓ i ) m| ≤ 2 k i } , k i ∈ N , Ω 0 (x i ) := {m ∈ Z : 2 min{j i ,j i +ℓ i } |x i -2 -(j i +ℓ i ) m| ≤ 1} .
We then estimate for fixed

x = (x 1 , . . . , x d ) ∈ R d m∈Z d |λ j+ l, m| d i=1 (1 + 2 min{j i ,j i +ℓ i } |x i -2 -(j i +ℓ i ) m i |) -R = ∞ k∈N d 0 m∈Ωk(x) |λ j+ l, m| d i=1 (1 + 2 min{j i ,j i +ℓ i } |x i -2 -(j i +ℓ i ) m i |) -R ∞ k∈N d 0 m∈Ωk(x) |λ j+ l, m|2 -δ k 1 -k 1 /r sup k∈N d 0 m∈Ωk(x) |λ j+ l, m| 2 -k 1 /r sup k∈N d 0 2 -k 1 m∈Ωk(x)
|λ j+ l, m| r 1/r .

We further note that

(10) 2 -k 1 m∈Ωk(x) |λ j+ l, m| r = 2 -k 1 m∈Ω k (x) Qj + l, m 2 j+ l 1 w∈Ωk(x)
|λ j+ l, w| r χ j+ l, w(y) dy and observe that for

Q(x) := m∈Ωk(x) Q j+ l, m we have x ∈ Q(x) and |Q(x)| ≍ 2 k 1 -min{ j, j+ l} 1 .
Recalling the definition of the Hardy-Littlewood maximal function in (4), we obtain

2 -k 1 + min{ j, j+ l} 1 Q(x) m∈Ωk(x)
|λ j+ l, m| r χ j+ l, m(y) dy

1 |Q(x)| Q(x) m∈Ωk(x) |λ j+ l, m| r χ j+ l, m(y) dy ≤ M m∈Z d λ j+ l, mχ j+ l, m r (x) .
Putting this into [START_REF] Chui | On compactly supported spline wavelets and a duality principle[END_REF], we arrive at

2 -k 1 m∈Ωk(x) |λ j+ l, m| r 2 l+ 1 M m∈Z d λ j+ l, mχ j+ l, m r (x) .
Finally, we plug this estimate into (9) and obtain the desired assertion.

Before stating our main result we need a further definition. (i) If 0 < p < ∞ we define the sequence space f s, ᾱ p,q as the collection of all sequences (λ j, k) j∈N d 0 , k∈Z d ⊂ C such that the (quasi-)norm (usual modification in case q = ∞)

(λ j, k) j∈N d 0 , k∈Z d f s, ᾱ p,q := j∈N d 0 2 (j 1 /α 1 ,...,j d /α d ) ∞ sq k∈Z d λ j, kχ j, k(•) q 1/q p is finite.
(ii) If 0 < p ≤ ∞ we define the sequence space bs,ᾱ p,q as the collection of all sequences (λ j, k) j∈N d 0 , k∈Z d ⊂ C such that the (quasi-)norm (usual modification in case q = ∞)

(λ j, k) j∈N d 0 , k∈Z d bs,ᾱ p,q := j∈N d 0 2 (j 1 /α 1 ,...,j d /α d ) ∞ sq k∈Z d λ j, kχ j, k(•) q p 1/q
is finite.

Now we are ready to state the wavelet characterization of the space F s, ᾱ p,q (R d ) . Recall that for 0 < p, q ≤ ∞ we put σ p,q := max{1/p -1, 1/q -1, 0} and σ p := max{1/p -1, 0} . Theorem 4.

2 Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, ᾱ = (α 1 , . . . , α d ) > 0 with d i=1 α i = d.
Let further ψ 0 , ψ be wavelets satisfying (K) and (L) above with [START_REF] Dũng | Hyperbolic Cross Approximation[END_REF] K, L > σ p,q + |s|/α min .

Then any f ∈ S ′ (R d ) belongs to F s, ᾱ p,q (R d ) if and only if it can be represented as

(12) f = j∈N d 0 k∈Z d λ j, kψ j, k with (λ j, k) j, k ∈ f s, ᾱ
p,q and the sum converging in S ′ (R d ) with respect to some ordering. For each f ∈ F s, ᾱ p,q (R d ) the convergence of the representation (12) is then even unconditional. Moreover, if q < ∞, the sum also converges in F s, ᾱ p,q (R d ) and (ψ j, k) j, k constitutes an unconditional basis in F s, ᾱ p,q (R d ). The sequence of coefficients λ(f ) := (λ j, k) j, k is uniquely determined via

(13) λ j, k = 2 j 1 f, ψ j, k
and we have the wavelet isomorphism (equivalent (quasi-)norm) [START_REF] Demanet | Wave atoms and sparsity of oscillatory patterns[END_REF] has to be understood in the way

f F s, ᾱ p,q (R d ) ≍ λ(f ) f s, ᾱ p,q , f ∈ F s, ᾱ p,q (R d ) . Remark 4.2 Following [35, Prop. 3.20], the dual pairing of f ∈ S ′ (R d ) and ψ j, k ∈ C K (R d ) in ( 
(14) f, ψ := j∈N d 0 Θj * f, Λj * ψ L 2 (R d ) .
Here we choose Θj := F -1 θj and Λj := F -1 λj such that ∞ j=0 θ j λ j ≡ 1 . Using elementary estimates and the Nikolskij inequality in case p < 1, one can show

F s, ᾱ p,q (R d ) ֒→ B s, ᾱ p,∞ (R d ) ֒→ S -|s|/α min -σp max{p,1},∞ B(R d ) .
Setting s ᾱ,p := |s|/α min + σ p and p := max{p, 1} we obtain

| f, ψ | ≤ j∈N d 0 Θj * f p Λj * ψ p′ ≤ sup j∈N d 0 2 -sᾱ,p j 1 Θj * f p • j∈N d 0 2 sᾱ,p j 1 Λj * ψ p′ f S -s ᾱ,p p,∞ B(R d ) • ψ S s ᾱ,p p′ ,1 B(R d ) ,
where the right-hand side is finite due to [START_REF] Dũng | Hyperbolic Cross Approximation[END_REF] and [START_REF] Cands | Curvelets -a surprisingly effective nonadaptive representation for objects with edges[END_REF]. In other words, f ∈ F s, ᾱ p,q (R d ) generates a (conjugate) linear functional on the Banach space S sᾱ,p p′ ,1 B(R d ).

Remark 4.3 As we will see below, our arguments apply as well to classical spaces of dominating mixed smoothness S r p,q B(R d ) and S r p,q F (R d ), defined in Definition 3.4 above. Examining the proof, we obtain for the relation

f S r p,q F (R d ) λ(f ) s r p,q f ,
where s r p,q f is the sequence space associated to S r p,q F (for a definition see [57, Def. 2.1]), the condition [START_REF] Devore | Hyperbolic wavelet approximation[END_REF] L > σ p,qr and K > r .

The converse relation holds under the condition K > σ p,qr and L > r .

For the spaces S r p,q B(R d ) we replace σ p,q by σ p and s r p,q f by s r p,q b, which is the sequence space associated to S r p,q B (for a definition see [57, Def. 2.1]).

Proof. [of Theorem 4.2]

Step 1. We consider the sum ( 16)

f := j∈N d 0 k∈Z d λ j, kψ j, k
with λ := (λ j, k) j, k ∈ f s, ᾱ p,q and show the relation

f F s, ᾱ p,q (R d ) λ f s, ᾱ p,q .
For the issues on the convergence and uniqueness of ( 16) and ( 13) we refer to Step 3 and 4 below, where we show that under the assumption (λ j, k) j, k ∈ f s, ᾱ p,q the element f is well defined, with unconditional convergence of ( 16) at least in S ′ (R d ), which is sufficient for the subsequent considerations.

Let us consider ∆j(f ) for some chosen hyperbolic Littlewood-Paley analysis. This gives for fixed j ∈ N d 0

2 j/ ᾱ ∞s |∆j(f )(x)| ≤ l∈Z d 2 j/ ᾱ ∞s Θj * k∈Z d λ j+ l, kψ j+ l, k (x) ,
where Θj := F -1 θj and (θj)j is the system from Definition 3.1. With u := min{p, q, 1}

f F s, ᾱ p,q (R d ) = 2 j/ ᾱ ∞s ∆j(f )(•) Lp(ℓq) l∈Z d 2 j/ ᾱ ∞s Θj * k∈Z d λ j+ l, kψ j+ l, k (•) u Lp(ℓq[ j]) 1/u . ( 17 
)
With the help of Lemma 4.2 we are aiming for pointwise estimates first.

Θj * k∈Z d λ j+ l, kψ j+ l, k (x) ≤ k∈Z d |λ j+ l, k| • |(Θj * ψ j+ l, k)(x)| d i=1 2 -N sign(ℓ i ) |ℓ i | k∈Z d |λ j+ l, k| d i=1 (1 + 2 min{j i ,j i +ℓ i } |x i -2 -(j i +ℓ i ) k i |) -R ,
where we choose R > 1/r with r < min{1, p, q} = u. Note that, due to condition (K) for the wavelet and Lemma 4.2, we can choose R > 0 arbitrarily large. This allows for estimating with the help of Proposition 4.1

Θj * k∈Z d λ j+ l, kψ j+ l, k (x) 2 -Nsign( l) ,| l| 2 l+ 1 /r M k∈Z d λ j+ l, kχ j+ l, k(•) r 1/r (x) .
Hereby we use the short-hand notation l+ := ((ℓ 1 ) + , . . . , (ℓ d ) + ) and

Nsign( l) , | l| := d i=1 N sign(ℓ i ) |ℓ i | .
Plugging this estimate into (17) gives

f F s, ᾱ p,q (R d ) l∈Z d 2 -u Nsign( l) ,| l| 2 u l+ 1 /r 2 -( j+ l)/ ᾱ ∞s 2 j/ ᾱ ∞s M 2 ( j+ l)/ ᾱ ∞ s k∈Z d λ j+ l, kχ j+ l, k r 1/r (•) u Lp(ℓq[ j]) 1 u . Clearly, if s ≥ 0 then ( j + l)/ᾱ ∞ s ≥ j/ᾱ ∞ s -l/ᾱ ∞ s and hence (18) 2 -( j+ l)/ ᾱ ∞s 2 j/ ᾱ ∞s ≤ 2 l/ ᾱ ∞ |s| .
In addition, if s < 0 we also obtain [START_REF] Fefferman | Some maximal inequalities[END_REF] via the usual ℓ ∞ -triangle inequality.

Putting this into the previous estimate, using the vector-valued Hardy-Littlewood maximal inequality (Theorem 2.1) for the space L p/r (ℓ q/r [ j]), we obtain

f F s, ᾱ p,q (R d ) l∈Z d 2 -u Nsign( l) ,| l| 2 u l+ 1 /r 2 u l/ ᾱ ∞|s| 2 ( j+ l)/ ᾱ ∞s k∈Z d λ j+ l, kχ j+ l, k u Lp(ℓq[ j]) 1/u λ f s, ᾱ p,q l∈Z d 2 -u Nsign( l) ,| l| 2 u l+ 1 /r 2 u l/ ᾱ 1 |s| 1/u .
The sum over l converges if L + 1 = N + > 1/r + |s|/α min and K = N -> |s|/α min .

Step 2.

Let us prove the converse relation λ(f

) f s, ᾱ p,q f F s, ᾱ p,q (R d ) with λ(f ) = (2 j 1 f, ψ j, k ) j, k and start with f ∈ F s, ᾱ p,q (R d ).
As already pointed out in Remark 4.2, the dual pairing f, ψ j, k makes sense due to condition [START_REF] Dũng | Hyperbolic Cross Approximation[END_REF]. Our estimation begins as follows

|2 j 1 f, ψ j, k | ≤ l∈Z d |2 j 1 Θ j+ l * f, Λ j+ l * ψ j, k | = l∈Z d m∈Z d Qj + l, m (Θ j+ l * f )(y)2 j 1 (Λ j+ l * ψ j, k)(y) dy ≤ l∈Z d m∈Z d |θ j+ l, m(f )| Qj + l, m 2 j 1 |(Λ j+ l * ψ j, k)(y)| dy , (19) 
where we put

(20) θ j+ l, m(f ) := sup y∈Qj + l, m |(Θ j+ l * f )(y)| .
We next estimate the integral, as in Step 1 with the help of Lemma 4.2. Here we have to be particularly careful with the normalization factors. Note that, compared to (8), the signs of the components of l in the convolution Λ j+ l * ψ j, k change the role. This is why we put this time M 0 := 0, M -:= L, M + := K + 1 and Msign( l) := (M sign(b 1 ) , . . . , M sign(b d ) ). We then obtain for z = (z 1 , . . . , z d ) ∈ Q j, k the estimate

Qj + l, m 2 j 1 |(Λ j+ l * ψ j, k)(y)| dy sup y∈Qj + l, m 2 -Msign( l) ,| l| d i=1 (1 + 2 min{j i ,j i +ℓ i } |y i -2 -j i k i |) -R 2 -Msign( l) ,| l| d i=1 (1 + 2 min{j i ,j i +ℓ i } |2 -(j i +ℓ i ) m i -2 -j i k i |) -R 2 -Msign( l) ,| l| d i=1 (1 + 2 min{j i ,j i +ℓ i } |2 -(j i +ℓ i ) m i -z i |) -R .
This together with [START_REF] Frazier | Decomposition of Besov spaces[END_REF] and Proposition 4.1 yields for r < min{p, q, 1} = u and z ∈ R d

k∈Z d |2 j 1 f, ψ j, k |χ j, k(z) l∈Z d 2 -Msign( l) ,| l| m∈Z d |θ j+ l, m(f )| d i=1 (1 + 2 min{j i ,j i +ℓ i } |2 -(j i +ℓ i ) m i -z i |) -R l∈Z d 2 -Msign( l) ,| l| 2 ℓ + 1 /r M m∈Z d θ j+ l, m(f )χ j+ l, m(•) r 1/r (z) .
This leads to

2 j/ ᾱ ∞ s k∈Z d |2 j 1 f, ψ j, k |χ j, k l∈Z d 2 ℓ + 1 /r-Msign( l) ,| l| + j/ ᾱ ∞s-( j+ l)/ ᾱ ∞ s M 2 ( j+ l)/ ᾱ ∞ m∈Z d θ j+ l, m(f )χ j+ l, m(•) r 1 r .
Taking the L p (ℓ q [ j])-(quasi-)norm on both sides and using [START_REF] Fefferman | Some maximal inequalities[END_REF] once more, we obtain

2 j/ ᾱ ∞s k∈Z d |2 j 1 f, ψ j, k |χ j, k Lp(ℓq[ j]) l∈Z d 2 -u Msign( l) ,| l| 2 u ℓ + 1 /r 2 u l/ ᾱ ∞|s| × × M 2 ( j+ l)/ ᾱ ∞s m∈Z d θ j+ l, m(f )χ j+ l, m(•) r 1/r u Lp(ℓq[ j]) 1/u . ( 21 
)
Due to r < min{1, p, q} = u we can apply the Hardy-Littlewood maximal inequality (Theorem 2.1) and obtain

M 2 ( j+ l)/ ᾱ ∞ s m∈Z d θ j+ l, m(f )χ j+ l, m r 1/r Lp(ℓq[ j]) 2 j/ ᾱ ∞ s m∈Z d θj , m(f )χj , m Lp(ℓq)
.

From [START_REF] Frazier | A discrete transform and decompositions of distribution spaces[END_REF] we obtain for any z ∈ Qj , m and any a > 0

|θj , m(f )| = sup y∈Qj , m |(Θj * f )(y)| sup y∈R d |(Θj * f )(y)| d i=1 (1 + 2 j i |z i -y i |) a = P 2 j ,a (Θj * f )(z) ,
where we used the definition of the Peetre maximal function in [START_REF] Bownik | Atomic and molecular decomposition of anisotropic Besov spaces[END_REF]. Choosing a > max{ 1 p , 1 q } with the corresponding maximal inequality in Theorem 2.3 then yields the relation

2 j/ ᾱ ∞s m∈Z d θj , m(f )χj , m Lp(ℓq) P 2 j ,a (2 j/ ᾱ ∞s Θj * f ) Lp(ℓq) 2 j/ ᾱ ∞ s Θj * f Lp(ℓq) ≍ f F s, ᾱ p,q (R d ) .
Returning to [START_REF] Garrigós | On uniform boundedness of dyadic averaging operators in spaces of Hardy-Sobolev type[END_REF], we have seen

2 j/ ᾱ ∞s k∈Z d |2 j 1 f, ψ j, k |χ j, k Lp(ℓq[ j]) f F s, ᾱ p,q (R d ) l∈Z d 2 -u Msign( l) ,| l| 2 u ℓ + 1 /r 2 u l/ ᾱ ∞|s| 1/u .
It remains to discuss the sum over l. It is easy to see that it converges if K + 1 = M + > 1/r + |s|/α min and L = M -> |s|/α min . Recall that r is chosen such that r < min{1, p, q}.

Step 3. Let us now clarify the convergence issues in [START_REF] Dũng | N-widths and ε-dimensions for high-dimensional approximations[END_REF] in case q < ∞. The arguments in Step 1 above show in particular for a finite partial summation of (12) that j k λ j, kψ j, k

F s, ᾱ p,q (R d ) j 2 j/ ᾱ ∞ sq k λ j, kχ j, k q 1/q p .
If q < ∞ (note that p < ∞ anyway) we use Lebesgue's dominated convergence theorem to conclude the unconditional convergence of (12) in F s, ᾱ p,q (R d ). The required majorant is thereby given by (λ j, k) j∈N d 0 , k∈Z d f s, ᾱ p,q < ∞. In case q = ∞ we use the observation in Remark 4.3. From a simple application of Hölder's inequality (with respect to the sum over j) we first obtain for any ε > 0 the relation Choosing ε > 0 small enough, we then obtain from [START_REF] Dũng | Hyperbolic Cross Approximation[END_REF] that condition [START_REF] Devore | Hyperbolic wavelet approximation[END_REF] in Remark 4.3 is satisfied. Hence, for a finite partial summation of (12) we have

j k λ j, kψ j, k S r(s,α)-ε p,1 F (R d ) j 2 (r(s, ᾱ)-ε) j 1 k |λ j, k|χ j, k p .
Again, by Lebesgue's dominated convergence theorem (the majorant given by ( 22)) we see the unconditional convergence of (12) in the space S r(s,α)-ε p,1

F (R d ). Taking the embedding S r(s,α)-ε p,1 F (R d ) ֒→ S ′ (R d
) into account, we actually proved more than stated in the theorem.

Step 4. It remains to prove [START_REF] Dũng | N-widths and ε-dimensions for high-dimensional approximations[END_REF] for f ∈ F s, ᾱ p,q (R d ) and coefficients λ j, k(f ) chosen as in [START_REF] Demanet | Wave atoms and sparsity of oscillatory patterns[END_REF]. From Steps 1, 2, 3 above we have learned that {λ j, k(f )} j, k ∈ f s, ᾱ p,q , which implies that the sum 

j∈N d 0 k∈Z d λ j, k(f )ψ j, k converges (at least in) S ′ (R d ) to an element g ∈ S ′ (R d ). We now prove that f (ϕ) = g(ϕ) for all ϕ ∈ S(R d ). Fix ϕ ∈ S(R d ), then clearly φ ∈ L 2 (R d
f (ϕ) = f, φ = f, j∈N d 0 k∈Z d φ, ψ j, k ψ j, k = j∈N d 0 k∈Z d φ, ψ j, k f, ψ j, k = j∈N d 0 k∈Z d ϕ, ψ j, k f, ψ j, k .
On the other hand,

g(ϕ) = j∈N d 0 k∈Z d λ j, k(f )ψ j, k(ϕ) = j∈N d 0 k∈Z d ϕ, ψ j, k f, ψ j, k = f (ϕ) ,
which finishes the proof.

Hyperbolic Haar characterization

We next utilize a hyperbolic Haar basis for the characterization of the spaces B s, ᾱ p,q (R d ) and F s, ᾱ p,q (R d ) from Definitions 3.2 and 3.3, the main result being Theorem 5.4. It will show that Haar characterizations are possible in a certain restricted range of parameters, although the Haar wavelet does not fulfill smoothness requirements (K) as assumed for the derivation of Theorem 4.2 in the previous section. Hence, for the proof of Theorem 5.4 a different methodology is needed than in Section 4. We follow the technique used in [START_REF] Garrigós | Haar frames and Haar multipliers in the absence of unconditionality[END_REF], exploiting the special structure of the Haar wavelet.

We begin by fixing a convenient inhomogeneous Haar system on the real line, namely

H 1 := h j,k : k ∈ Z, j ∈ N 0 ,
where for j ∈ N, k ∈ Z, the functions h j,k are scaled Haar functions of the form

h j,k (x) := 1 √ 2 h(2 j-1 x -k) , where h(x) := ½ I + 0,0 (x) -½ I - 0,0 (x) 
.

The intervals

I + j,k = [2 -j k, 2 -j (k +1/2)) and I - j,k = [2 -j (k +1/2), 2 -j (k +1
)) thereby represent the dyadic children of the standard dyadic intervals I j,k = [2 -j k, 2 -j (k + 1)). At the lowest scale j = 0 the ordinary Haar functions ½ I + 0,k -½ I -0,k are replaced by the characteristic functions h 0,k := ½ I 0,k . Further, we set h j,k ≡ 0 if j < 0. Defined like this, the structure of the system H 1 fits closely to the wavelet systems considered in Section 4. The inhomogeneous scale is at j = 0 (and not the usual standard j = -1 for Haar systems).

For dimension d ∈ N we derive a corresponding hyperbolic d-variate Haar system by the following tensorization procedure,

H d := h j, k := h j 1 ,k 1 ⊗ • • • ⊗ h j d ,k d : k = (k 1 , . . . , k d ) ∈ Z d , j = (j 1 , . . . , j d ) ∈ N d 0 . (24) 
Note that for j ∈ N d and k ∈ Z d the cube

Q j, k := [2 -j 1 k 1 , 2 -j 1 (k 1 + 1)) × • • • × [2 -j d k d , 2 -j d (k d + 1)),
whose characteristic function will subsequently be denoted by χ j, k as already earlier in [START_REF] Cands | The curvelet representation of wave propagators is optimally sparse[END_REF], corresponds to the strict support of the Haar function h j, k. At each fixed "scale" j these cubes represent a partition of the d-dimensional domain R d . Proposition 5.1 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d. Under the condition

|s|/α min < min 1 - 1 p , 1 - 1 q
we have for f ∈ S ′ (R d ) (with the dual pairing f, h j, k defined as in [START_REF] Derevianko | A higher order Faber spline basis for sampling discretization of functions[END_REF] in Remark 4.2)

j∈N d 0 2 j/ ᾱ ∞sq k∈Z d 2 j 1 f, h j, k χ j, k(x) q 1/q p f F s, ᾱ p,q , (25) 
whenever the left-hand side is defined. In case |s|/α min < 1 -1 p we have

j∈N d 0 2 j/ ᾱ ∞sq k∈Z d 2 j 1 f, h j, k χ j, k(•) q p 1/q f B s, ᾱ p,q . (26) 
Proof. For the proof, we first build a suitable decomposition of unity adapted to the hyperbolic tiling of the frequency domain. For a respective construction, we start with univariate functions φ 0 , φ ∈ S(R) and λ 0 , λ ∈ S(R) such that

λ 0 φ 0 + j∈N λ(2 -j •)φ(2 -j •) = j∈N 0 λ j φ j ≡ 1,
where φ j := φ(2 -j •) and λ j := λ(2 -j •) for j ∈ N. The functions φ 0 and φ 1 shall thereby, as usual, be compactly supported with supp (φ 0 ) ⊂ {|x| ≤ 2ε} , supp (φ) ⊂ {ε/2 ≤ |x| ≤ 2ε} for some ε > 0. As a consequence, their inverse Fourier transforms however, namely Φ 0 := F -1 φ 0 and Φ := F -1 φ, cannot have compact supports.

The functions λ 0 , λ, on the other hand are chosen such that the supports of Λ 0 := F -1 λ 0 and Λ := F -1 λ are compact. Further, they are assumed to fulfill the Tauberian conditions

|λ 0 (x)| > 0 on {|x| ≤ 2ε} , |λ(x)| > 0 on {ε/2 ≤ |x| ≤ 2ε}
with the same ε > 0 as above and furthermore D γ λ(0) = 0 for multi-indices γ ∈ N d 0 with γ 1 ≤ 1. Such a construction is indeed possible, see [START_REF] Ullrich | The role of Frolov's cubature formula for functions with bounded mixed derivative[END_REF]Lem. 3.6] for example.

For the subsequent proof, it is convenient to also define the functions Φ j := F -1 φ j and Λ j := F -1 λ j for j ∈ N. They fulfill the scaling relations Φ j = 2 j Φ(2 j •) and Λ j = 2 j Λ(2 j •).

Next, we put Φ j := 0 and Λ j := 0 for j ∈ Z with j < 0 and build the tensor products Φl := i∈{1,...,d} Φ ℓ i and Λl := i∈{1,...,d}

Λ ℓ i for l ∈ Z d .
Then we have the decomposition, which in fact is a discrete version of Calderón's reproducing formula,

f = l∈Z d Φl * Λl * f for every f ∈ S ′ (R d ) ,
enabling a component-wise evaluation of the scalar product f, h j, k . Each Haar coefficient can in this way be understood in the following sense (see also Remark 4.2),

f, h j, k = l∈Z d Φl * Λl * f, h j, k = l∈Z d Φl * f, Λl(-•) * h j, k ,
whenever the right-hand sum converges.

If we further assume that Λl is even, we arrive at the estimate

|2 j 1 f, h j, k | l∈Z d R d 2 j 1 (Φ j+ l * f )(y)(Λ j+ l * h j, k)(y) dy .
Let us investigate the integral on the right-hand side, and for this let us define S j, k, l := supp Λ j+ l * h j, k .

If min i∈[d] {j i + ℓ i } < 0 we have S j, k, l = ∅ and the integral vanishes. Otherwise, when min i∈[d] {j i + ℓ i } ≥ 0, we fix a > 0 and x ∈ R d and obtain the estimate

R d 2 j 1 (Φ j+ l * f )(y)(Λ j+ l * h j, k)(y) dy ≤ P 2 j+ l,a (Φ j+ l * f )(x) • sup y∈Sj , k, l d i=1 (1 + 2 j i +ℓ i |x i -y i |) a • R d 2 j 1 (Λ j+ l * h j, k)(z) dz ,
where P 2 j+ l,a (Φ j+ l * f ) denotes the Peetre maximal function (see ( 5))

P 2 j+ l,a (Φ j+ l * f )(x) = sup y∈R d |(Φ j+ l * f )(y)| (1 + 2 j 1 +ℓ 1 |x 1 -y 1 |) a • • • (1 + 2 j d +ℓ d |x d -y d |) a .
The integral term splits into

R d 2 j 1 (Λ j+ l * h j, k)(z) dz = 2 j 1 R (Λ j 1 +ℓ 1 * h j 1 ,k 1 )(t) dt • • • R (Λ j d +ℓ d * h j d ,k d )(t) dt
according to the relation

Λ j+ l * h j, k = (Λ j 1 +ℓ 1 * h j 1 ,k 1 ) ⊗ • • • ⊗ (Λ j d +ℓ d * h j d ,k d ).
For fixed i ∈ {1, . . . , d}, assuming ℓ i < 0, we can then further estimate

R (Λ j i +ℓ i * h j i ,k i )(y) dy 2 -j i +ℓ i (27) since |supp (Λ j i +ℓ i * h j i ,k i )| ≍ 2 -(j i +ℓ i ) and Λ j i +ℓ i * h j i ,k i ∞ 2 2ℓ i .
For the latter of these two inequalities the first order vanishing moment of the Haar wavelet comes into play. Note here that indeed j i > 0 due to min i∈[d] {j i + ℓ i } ≥ 0, allowing for the estimate

Λ j i +ℓ i * h j i ,k i ∞ = (Λ j i +ℓ i -Λ j i +ℓ i (2 -j k i )) * h j i ,k i ∞ ≤ Λ j i +ℓ i -Λ j i +ℓ i (2 -j k i ) ∞ h j i ,k i 1 2 2ℓ i .
In case ℓ i ≥ 0 we obtain a different estimate than [START_REF] Griebel | Optimized general sparse grid approximation spaces for operator equations[END_REF], namely

R (Λ j i +ℓ i * h j i ,k i )(y) dy 2 -(j i +ℓ i ) .
Here we use the fact that the integrand is bounded by a constant together with the observation that its support is contained in at most three intervals of length ≍ 2 -(j i +ℓ i ) . Indeed, as a consequence of the L 1 -resp. L ∞ -normalization of Λ j i +ℓ i and h j i ,k i , we have

Λ j i +ℓ i * h j i ,k i ∞ ≤ Λ j i +ℓ i 1 h j i ,k i ∞ 1.
Furthermore, due to the vanishing moment properties of Λ j i +ℓ i , the support of the convolution merely stems from the either two or three discontinuities of the function h j i ,k i . Now, let us turn our attention to the factor sup

y∈Sj , k, l d i=1 (1 + 2 j i +ℓ i |x i -y i |) a .
Here, we have with

x i ∈ Q j i ,k i and y i ∈ supp (Λ j i +ℓ i * h j i ,k i ) ⊂ supp (Λ j i +ℓ i ) + supp (h j i ,k i ) (and therefore |x i -y i | 2 -j i if ℓ i ≥ 0 and |x i -y i | 2 -(j i +ℓ i ) if ℓ i < 0) (1 + 2 j i +ℓ i |x i -y i |) a 1 if ℓ i < 0. Otherwise, if ℓ i ≥ 0, we estimate (1 + 2 j i +ℓ i |x i -y i |) a 2 ℓ i a .
Putting all together, this yields for

x ∈ Q j, k R d 2 j 1 (Φ j+ l * f )(y)(Λ j+ l * h j, k)(y) dy A( l, a)P 2 j+ l,a (Φ j+ l * f )(x) ,
where

A( l, a) := i∈{1,...,d} A(ℓ i , a) with A(ℓ i , a) := 2 ℓ i , ℓ i < 0 2 (a-1)ℓ i , ℓ i ≥ 0 .
Hence, we obtain uniformly in x ∈ R d and for fixed j

∈ N d 0 k∈Z d |2 j 1 f, h j, k |χ j, k(x) l∈Z d A( l, a)P 2 j+ l,a (Φ j+ l * f )(x).
Finally, we can turn to the proof of [START_REF] Golubov | Best approximations of functions in the L p metric by Haar and Walsh polynomials[END_REF]. We estimate

j∈N d 0 2 j/ ᾱ ∞sq k∈Z d 2 j 1 f, h j, k χ j, k(x) q 1/q p j∈N d 0 2 j/ ᾱ ∞sq l∈Z d A( l, a)P 2 j+ l,a (Φ j+ l * f )(x) q 1/q p = j∈N d 0 l∈Z d A( l, a)2 ( j/ ᾱ ∞ -( j+ l)/ ᾱ ∞ )s 2 ( j+ l)/ ᾱ ∞ s P 2 j+ l,a (Φ j+ l * f )(x) q 1/q p .
According to (18) it holds 2 ( j/ ᾱ ∞-( j+ l)/ ᾱ ∞)s ≤ 2 l/ ᾱ ∞|s| for s ∈ R, and hence

j∈N d 0 2 j/ ᾱ ∞ sq k∈Z d 2 j 1 f, h j, k χ j, k(x) q 1/q p j∈N d 0 l∈Z d A( l, a)2 l/ ᾱ ∞|s| 2 ( j+ l)/ ᾱ ∞ s P 2 j+ l,a (Φ j+ l * f )(x) q 1/q p ≤ l∈Z d A( l, a)2 l/ ᾱ ∞|s| • j∈N d 0 2 j/ ᾱ ∞s P 2 j ,a (Φj * f )(x) q 1/q p ,
where Young's convolution inequality was used in the last step.

For [START_REF] Grafakos | Classical Fourier analysis[END_REF] we argue analogously, namely

j∈N d 0 2 j/ ᾱ ∞sq k∈Z d 2 j 1 f, h j, k χ j, k(•) q p 1/q j∈N d 0 2 j/ ᾱ ∞sq l∈Z d A( l, a)P 2 j+ l,a (Φ j+ l * f )(•) q p 1/q ≤ j∈N d 0 l∈Z d A( l, a)2 l/ ᾱ ∞|s| 2 ( j+ l)/ ᾱ ∞s P 2 j+ l,a (Φ j+ l * f )(•) q p 1/q ≤ l∈Z d A( l, a)2 l/ ᾱ ∞|s| • j∈N d 0 2 j/ ᾱ ∞ s P 2 j ,a (Φj * f )(•) q p 1/q .
Choosing a > max{1/p, 1/q} in the F-case and a > 1/p in the B-case, to ensure the boundedness of the Peetre maximal operator (see Theorem 2.3, also compare e.g. [54, Thm. 2.6]), as well as |s| < min i∈{1,...,d}

{α i }(1 -a) we get l∈Z d A( l, a)2 l/ ᾱ ∞|s| < ∞
and thus [START_REF] Golubov | Best approximations of functions in the L p metric by Haar and Walsh polynomials[END_REF] and [START_REF] Grafakos | Classical Fourier analysis[END_REF], respectively.

Using a duality argument, we can deduce an immediate companion result. we have for all f ∈ S ′ (R d ) (with the dual pairing f, h j, k defined as in [START_REF] Derevianko | A higher order Faber spline basis for sampling discretization of functions[END_REF] in Remark 4.2)

f F s, ᾱ p,q j∈N d 0 2 j/ ᾱ ∞ sq k∈Z d 2 j 1 f, h j, k χ j, k(x) q 1/q p , ( 28 
)
whenever the right-hand side is defined. In case |s|/α min < 1/p we have

f B s, ᾱ p,q j∈N d 0 2 j/ ᾱ ∞ sq k∈Z d 2 j 1 f, h j, k χ j, k(•) q p 1/q . ( 29 
)
Proof. We showed in Proposition 5.1 (i) that the linear operator

A : F s, ᾱ p,q → f s, ᾱ p,q , f → (2 j 1 f, h j, k ) j, k ,
is well-defined and bounded in the parameter range |s| < min i∈{1,...,d}

{α i } min 1 - 1 p , 1 - 1 q .
Consequently, in this range, the dual operator

A ′ : f s, ᾱ p,q ′ → F s, ᾱ p,q ′
is also well-defined and bounded. Identifying f s, ᾱ p,q ′ with f -s, ᾱ p ′ ,q ′ with respect to the nonstandard duality product (λ j, k), (µ j, k) :=

j∈N d 0 2 -j 1 k∈Z d λ j, kµ j, k , (30) 
which is possible according to Theorem 5.5 (i) below, it can be represented in the form

A ′ : (λ j, k) j, k → j, k λ j, kh j, k ,
where the convergence is weak*ly in F s, ᾱ p,q ′ . This is a consequence of the relation

Af, g ′ Y ×Y ′ = j∈N d 0 2 -j 1 k∈Z d 2 j 1 f, h j, k • λ j, k = R d f (x) • j∈N d 0 k∈Z d λ j, kh j, k(x) dx = f, A ′ g ′ X×X ′ ,
where we used the short-hand notation Y = f s, ᾱ p,q and X = F s, ᾱ p,q . Invoking Theorem 5.5(i) another time, X ′ can be identified with F -s, ᾱ p ′ ,q ′ (and X ′′ with F s, ᾱ p,q ). Then for (λ j, k) j, k ∈ f -s, ᾱ p ′ ,q ′ and some enumeration

(λ j, k) j, k (λ n ) n∈N we have (λ n ) n≥N f -s, ᾱ p ′ ,q ′ → 0 for N → ∞. We estimate A ′ (λ n ) n≥N F -s, ᾱ p ′ ,q ′ = sup f F s, ᾱ p,q =1 | A ′ (λ n ) n≥N , f | = sup f F s, ᾱ p,q =1 | (λ n ) n≥N , Af | ≤ sup f F s, ᾱ p,q =1 (λ n ) n≥N f -s, ᾱ p ′ ,q ′ Af f s, ᾱ p,q (λ n ) n≥N f -s, ᾱ p ′ ,q ′ → 0 (N → ∞).
Hence, A ′ (λ n ) n≤N → A ′ (λ n ) n∈N strongly and unconditionally in F -s, ᾱ p ′ ,q ′ . In other words, we have shown that if |s| < min i∈{1,...,d} {α i } min{1/p, 1/q} and (λ j, k) j, k ∈ f s, ᾱ p,q then j, k λ j, kh j, k converges strongly and unconditionally in F s, ᾱ p,q and j, k λ j, kh j, k

F s, ᾱ p,q (λ j, k) j, k f s, ᾱ p,q . (31) 
Hence, choosing λ j, k := 2 j 1 f, h j, k and assuming a finite sequence norm (λ j, k) j, k f s, ᾱ p,q , then j, k λ j, kh j, k = j, k 2 j 1 f, h j, k h j, k converges strongly to some limit f ∈ F s, ᾱ p,q (R d ). Since this sum also converges (weak*ly) in S ′ (R) to f we have f = f = j, k 2 j 1 f, h j, k h j, k in F s, ᾱ p,q . Now (28) follows from [START_REF] Kempka | Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces[END_REF]. The proof of (29) works the same, using Proposition 5.1 (ii) and Theorem 5.5 (ii).

Combining both, Proposition 5.1 and Proposition 5.2, we arrive at the following proposition, whereby we now concentrate on the F-case.

Proposition 5.3 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d. Under the condition |s|/α min < min 1 p , 1 q , 1 - 1 p , 1 - 1 q .
we have for all f ∈ S ′ (R d ) (with the dual pairing f, h j, k defined as in [START_REF] Derevianko | A higher order Faber spline basis for sampling discretization of functions[END_REF] in Remark 4.2)

j∈N d 0 2 j/ ᾱ ∞sq k∈Z d 2 j 1 f, h j, k χ j, k(x) q 1/q p ≍ f F s, ᾱ p,q , (32) 
whenever the left-hand side is defined.

As a direct consequence of this result, we can finally formulate the main theorem of this section which corresponds to Theorem 4.2.

Theorem 5.4 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d. Further, assume

|s|/α min < min 1 p , 1 q , 1 - 1 p , 1 - 1 q . ( 33 
)
Then the Haar system H d = (h j, k) j, k defined in [START_REF] Garrigós | The Haar system in Triebel-Lizorkin spaces: Endpoint results[END_REF] constitutes an unconditional basis of F s, ᾱ p,q (R d ) with associated sequence space f s, ᾱ p,q . The unique sequence of basis coefficients for

f ∈ F s, ᾱ p,q (R d ) is determined by λ := λ(f ) = (λ j, k) j, k with (34) λ j, k := λ j, k(f ) = 2 j 1 f, h j, k .
Further, we have the wavelet isomorphism (equivalent norm)

f F s, ᾱ p,q (R d ) ≍ λ(f ) f s, ᾱ p,q , f ∈ F s, ᾱ p,q (R d ) .
In addition, we can use H d to distinguish those elements of S ′ (R d ) that belong to F s, ᾱ p,q (R d ). Those are characterized by either of the following two criteria: (i) f can be represented as a sum

(35) f = j∈N d 0 k∈Z d λ j, kh j, k converging (weak*ly) in S ′ (R d )
with coefficients (λ j, k) j, k ∈ f s, ᾱ p,q (with respect to some chosen ordering).

(ii) With λ(f ) being defined as in [START_REF] Lakhonchai | Shearlet transforms and directional regularities[END_REF], it holds

λ(f ) = (λ j, k) j, k ∈ f s, ᾱ p,q .
In both cases, the sequence (λ j, k) j, k is necessarily the sequence of basis coefficients and the representation (35) converges unconditionally to f in F s, ᾱ p,q (R d ).

Proof. As a direct consequence of the equivalence (32) proved in Proposition 5.3 the analysis operator

λ : f → 2 j 1 f, h j, k j, k
is well-defined and bounded from F s, ᾱ p,q to f s, ᾱ p,q . Moreover, it is injective and we have the equivalence of norms f F s, ᾱ p,q ≍ λ(f ) f s, ᾱ p,q . Further, for f ∈ S ′ (R d ) we have f ∈ F s, ᾱ p,q if and only if λ(f ) ∈ f s, ᾱ p,q (whenever λ(f ) is defined). Now, let us have a look at the synthesis operator

S : (λ j, k) j, k → j, k λ j, kh j, k. (36) 
Clearly, for every finite sequence the assignment S defines an element in F s, ᾱ p,q . By completion, using [START_REF] Kutyniok | Sparse multidimensional representation using shearlets[END_REF] and the fact that the finite sequences lie dense in f s, ᾱ p,q , this synthesis further extends to all sequences of f s, ᾱ p,q , with unconditional and strong convergence of (36) in F s, ᾱ p,q . Hence, S is a well-defined bounded linear operator from f s, ᾱ p,q to F s, ᾱ p,q , which, as another consequence of [START_REF] Kutyniok | Sparse multidimensional representation using shearlets[END_REF], is also injective.

Next, turning to the composition λ • S operating from f s, ᾱ p,q to f s, ᾱ p,q , we deduce for each fixed j * ∈ N d 0 and k * ∈ Z d j, k 2

j 1 λ j, kh j, k, h j * , k * = j, k 2 j 1 λ j, k h j, k, h j * , k * = λ j * , k * ,
using the orthogonality of the system (h j, k) j, k in L 2 (R d ). We obtain Id f s, ᾱ p,q = λ•S and in turn λ • S • λ = λ. Due to the injectivity of λ, the latter equality further implies Id F s, ᾱ p,q = S • λ. In particular, λ and S are thus bijections and every f ∈ F s, ᾱ p,q allows for a representation [START_REF] Liang | A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces[END_REF]. To see that the representing coefficients (λ j, k) j, k are unique, under the assumption of strong convergence of the sum, let λ * = (λ * j, k) j, k be some sequence which satisfies [START_REF] Liang | A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces[END_REF] in a strong sense for some special ordering of the sum. Then again [START_REF] Kutyniok | Sparse multidimensional representation using shearlets[END_REF] together with a completion argument yields λ * ∈ f s, ᾱ p,q , and thus λ * = λ(f ) by the injectivity of S. Hence, the expansion coefficients in [START_REF] Liang | A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces[END_REF] are unique and it follows that H d is a basis. Its unconditionality is due to the fact that the convergence of [START_REF] Liang | A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces[END_REF] for sequences λ * ∈ f s, ᾱ p,q is always unconditional. For the proof of criterion (i) we just remark that for sequences (λ j, k) j, k in f s, ᾱ p,q with weak*convergence of [START_REF] Liang | A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces[END_REF] in S ′ (R d ) the convergence is automatically in the stronger sense of F s, ᾱ p,q . Remark 5.1 For brevity, the above theorem was only stated for the F-case. There also exists a B-version, which reads precisely the same apart from condition [START_REF] Kyriazis | Decomposition systems for function spaces[END_REF] which is replaced by

|s|/α min < min 1 p , 1 - 1 p .
In the proof of Proposition 5.2 we utilized isomorphisms F s, ᾱ p,q

′ ∼ = F -s, ᾱ p ′ ,q ′ and f s, ᾱ p,q ′ ∼ = f -s, ᾱ p ′ ,q ′ as well as B s, ᾱ p,q ′ ∼ = B -s, ᾱ p ′ ,q ′ and bs,ᾱ p,q ′ ∼ = b-s,ᾱ p ′ ,q ′ .
Hence, for the completeness of our exposition, it remains to establish those.

Theorem 5.5 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 with d i=1 α i = d. Then F s, ᾱ p,q (R d ) ′ ∼ = F -s, ᾱ p ′ ,q ′ (R d ) and f s, ᾱ p,q ′ ∼ = f -s, ᾱ p ′ ,q ′ ,
whereby the second of these isomorphies has to be understood with respect to the non-standard pairing [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF]. In the Besov case, we have the analogous relations

B s, ᾱ p,q (R d ) ′ ∼ = B -s, ᾱ p ′ ,q ′ (R d ) and bs,ᾱ p,q ′ ∼ = b-s,ᾱ p ′ ,q ′ .
The proof of this theorem is based on two auxiliary propositions. The first one of these is stated without proof, since it is a straightforward generalization of the classic identifications

L p (R d ) ′ ∼ = L p ′ (R d
) and ℓ p (I) ′ ∼ = ℓ p ′ (I) when 1 < p < ∞ (see e.g. [START_REF] Edwards | Functional analysis: Theory and applications[END_REF]).

Proposition 5.6 Let I be an arbitrary countable index set. Then

ℓ q I, L p (R d ) ′ ∼ = ℓ q ′ I, L p ′ (R d ) and L p R d , ℓ q (I) ′ ∼ = L p ′ R d , ℓ q ′ (I)
in the sense that there exist isomorphisms f

→ (f i ) i∈I such that f, g Y ′ ×Y = i∈I R d f i (x)g i (x) dx
for the respective cases Y = ℓ q I, L p (R d ) and Y = L p R d , ℓ q (I) .

The second proposition provides an alternative way to characterize functions in F s, ᾱ p,q (R d ) and B s,

ᾱ p,q (R d ). Its counterpart in the classical setting of Triebel-Lizorkin spaces is Proposi- tion 1 in [52, Sec. 2.3.4]. Proposition 5.7 Assume 1 < p, q < ∞, s ∈ R, ᾱ = (α 1 , . . . , α d ) > 0, and d i=1 α i = d. (i) Then f ∈ S ′ (R d ) belongs to F s, ᾱ p,q (R d ) if and only if there exists a family {fj} j∈N d 0 ⊂ L p (R d ) such that f = j ∆jfj in S ′ (R d ) and 2 j/ ᾱ ∞ s fj Lp(R d ,ℓq) < ∞ . (ii) Then f ∈ S ′ (R d ) belongs to B s, ᾱ p,q (R d ) if and only if there exists a family {fj} j∈N d 0 ⊂ L p (R d ) such that f = j ∆jfj in S ′ (R d ) and 2 j/ ᾱ ∞s fj ℓq(Lp(R d )) < ∞ . (37) 
Proof. (i) Adaption of proof of Proposition 1 in [START_REF] Triebel | Theory of Function Spaces[END_REF]Sec. 2.3.4].

(ii) Let (φj )j be a hyperbolic resolution of unity as introduced in Definition 3.1 with associated hyperbolic Littlewood-Paley analysis (∆j)j. Further, take f ∈ B s, ᾱ p,q and put fj := r∈{-1,0,1} d F -1 φj +r Ff for j ∈ N d 0 , whereby we let φ -1 := 0. Then {fj}j ⊂ L p and

j∈N d 0 F -1 φjFfj = j∈N d 0 F -1 φj r∈{-1,0,1} d φj +r Ff = j∈N d 0 F -1 φjFf = j∈N d 0 ∆jf = f
as well as

2 j/ ᾱ ∞s fj ℓq(Lp) = 2 j/ ᾱ ∞ s r∈{-1,0,1} d F -1 φj +r Ff ℓq(Lp) r∈{-1,0,1} d 2 j/ ᾱ ∞s F -1 φj +r Ff ℓq(Lp) ≍ f B s, ᾱ p,q < ∞ .
This settles one direction of the assertion. For the other direction, let f ∈ S ′ (R d ) satisfy [START_REF] Oswald | The Haar system in Besov function spaces[END_REF] with associated {fj}j ⊂ L p . In view of f = j ∆jfj, we can estimate 2 j/ ᾱ ∞s ∆jf ℓq(Lp) = 2 j/ ᾱ ∞s ∆j r∈{-1,0,1} d ∆j +r fj +r ℓq(Lp) ≤ r∈{-1,0,1} d 2 j/ ᾱ ∞s ∆j∆j +r fj +r ℓq(Lp) r∈{-1,0,1} d 2 j/ ᾱ ∞s ∆j +r fj +r ℓq(Lp)

≍ 2 j/ ᾱ ∞ s ∆jfj ℓq(Lp) 2 j/ ᾱ ∞s fj ℓq(Lp) < ∞ ,
where the last two lines are due to the Hörmander-Mikhlin multiplier theorem, which is applied twice. This estimate shows f ∈ B s, ᾱ p,q , finishing the proof. Now we are ready to give a thorough proof of the duality relations stated in Theorem 5.5.

Proof. [of Theorem 5.5] We restrict to the F-case and begin with the more involved relation F s, ᾱ p,q ′ ∼ = F -s, ᾱ p ′ ,q ′ . The subsequent proof is thereby an adaption of the proof of the classical theorem in [START_REF] Triebel | Theory of Function Spaces[END_REF]Sec. 2.11.2] to the setting of hyperbolic spaces.

It is essential to note that, since S(R d ) lies dense in F s, ᾱ p,q , there is a natural embedding

κ : F s, ᾱ p,q ′ ֒→ S ′ (R d ) . (38) 
Hence, both F s, ᾱ p,q ′ and F -s, ᾱ p ′ ,q ′ can be interpreted as subspaces of S ′ (R d ), simplifying the following considerations.

Let us first assume that f ∈ S ′ (R d ) is an element of F -s, ᾱ p ′ ,q ′ and take Φl and Λl as in the proof of Proposition 5.1, for instance. Then f defines an element of F s,

ᾱ p,q ′ via f, g * := l∈Z d Φl * f, Λl * g , where g ∈ F s, ᾱ p,q , (39) 
as can be seen by the following estimate,

| f, g * | = l∈Z d Φl * f, Λl * g = l∈Z d R d (Φl * f )(y) • (Λl * g)(y) dy = R d j∈N d 0 (Φj * f )(y) • (Λj * g)(y) dy ≤ R d j∈N d 0 2 -j/ ᾱ ∞sq ′ |Φj * f (y)| q ′ 1/q ′ j∈N d 0 2 j/ ᾱ ∞ sq |Λj * g(y)| q 1/q dy ≤ R d j∈N d 0 2 -j/ ᾱ ∞sq ′ |Φj * f (y)| q ′ p ′ /q ′ dy 1/p ′ × R d j∈N d 0 2 j/ ᾱ ∞sq |Λj * g(y)| q p/q dy 1/p f F -s, ᾱ p ′ ,q ′ • g F s, ᾱ p,q .
Hereby, we applied Hölder's inequality and used Φl = Λl = 0 if l / ∈ N d 0 . The duality product •, • * thus yields an embedding ι : F -s, ᾱ p ′ ,q ′ → F s, ᾱ p,q ′ . Further, we have natural embeddings ν : F -s, ᾱ p ′ ,q ′ ֒→ S ′ (R d ) and κ : F s, ᾱ p,q ′ ֒→ S ′ (R d ) (see [START_REF] Romanyuk | Constructive characteristic of Hölder classes and m-term approximations in the multiple Haar basis[END_REF]). To establish a bridge between κ, ι, and ν, we now consider the special case of a Schwartz function g = φ ∈ S(R d ) in [START_REF] Romanyuk | Multiple Haar basis and m-term approximations for functions from the Besov classes[END_REF]. We obtain

f, φ * = l∈Z d Φl * f, Λl * φ S ′ ×S = l∈Z d Φl * Λl * f, φ S ′ ×S = f, φ S ′ ×S .
Hence, the above (somewhat artificially) defined operation of f on F s, ᾱ p,q via •, • * is compatible with the operation of f as an element of S ′ (R d ) on S(R d ). This proves ν = κ • ι and thus

F -s, ᾱ p ′ ,q ′ ⊂ F s, ᾱ p,q ′ , considered as subsets of S ′ (R d ).
It remains to prove the converse inclusion F s, ᾱ p,q ′ ⊂ F -s, ᾱ p ′ ,q ′ . For this, let f ∈ S ′ (R d ) be an element of F s, ᾱ p,q ′ . We will show that this implies f ∈ F -s, ᾱ p ′ ,q ′ and to this end start with a construction of an isometric embedding

µ : F s, ᾱ p,q ′ → L p ′ R d , ℓ q ′ , f → (fj)j. ( 40 
)
Thereby, we build upon the observation that the assignment g → (2 | j/ ᾱ|∞s ∆jg)j maps F s, ᾱ p,q isometrically to a closed subspace of L p R d , ℓ q . Via this assignment and the Hahn-Banach extension theorem, it is therefore possible to identify each functional f ∈ F s, ᾱ p,q ′ with a functional on L p R d , ℓ q having the same norm. Invoking Proposition 5.6 (i), this then yields an associated family (fj)j ∈ L p ′ R d , ℓ q ′ with (fj)j L p ′ (R d ,ℓ q ′ ) = f ( F s, ᾱ p,q ) ′ and f, g = j fj, 2 | j/ ᾱ|∞s ∆jg , establishing [START_REF] Romanyuk | Multiple Haar basis and m-term approximations of functions from the Besov classes[END_REF].

In particular, for every φ ∈ S(R d )

f, φ = j fj, 2 j/ ᾱ ∞s ∆jφ = j ∆j fj, φ , with fj := 2 j/ ᾱ ∞ s fj. Hence, we have f = j 2 j/ ᾱ ∞s ∆jfj = j ∆j fj weak*ly in S ′ (R d ).

Further, it holds (2 -j/ ᾱ ∞s fj)j ∈N d 0 ℓ q ′ (L p ′ ) = (fj) j∈N d 0 ℓ q ′ (L p ′ ) = f ( F s, ᾱ p,q ) ′ . In view of Proposition 5.7 (i), this shows f ∈ F -s, ᾱ p ′ ,q ′ and finishes the proof of F s, ᾱ p,q ′ ∼ = F -s, ᾱ p ′ ,q ′ . We next establish f s, ᾱ p,q ′ ∼ = f -s, ᾱ p ′ ,q ′ , which can be elegantly done using the previous result together with the wavelet isomorphism λ : F s, ᾱ p,q → f s, ᾱ p,q established in Theorem 4.2. For this, we first verify that λ preserves the duality structure of F -s, ᾱ p ′ ,q ′ × F s, ᾱ p,q . Indeed, for f ∈ F -s,

ᾱ p ′ ,q ′ and g ∈ F s, ᾱ p,q we have f, g F -s, ᾱ p ′ ,q ′ × F s, ᾱ p,q = j, k 2 j 1 f, ψ j, k ψ j, k, g F -s, ᾱ p ′ ,q ′ × F s, ᾱ p,q = j, k 2 j 1 f, ψ j, k ψ j, k, g F -s, ᾱ p ′ ,q ′ × F s, ᾱ p,q = j, k 2 -j 1 2 j 1 f, ψ j, k 2 j 1 g, ψ j, k = λ(f ), λ(g) f -s, ᾱ p ′ ,q ′ × f s, ᾱ p,q .
Note that hereby we relied on the strong convergence of the wavelet expansion in the space F -s, ᾱ p ′ ,q ′ . Next we recall the isomorphism ι : F -s, ᾱ p ′ ,q ′ → F s, ᾱ p,q ′ established above and let λ ′ :

f s, ᾱ p,q ′ → F s, ᾱ p,q
′ denote the dual map of λ, which is also an isomorphism. Then we can read f s,

ᾱ p,q ′ ∼ = f -s, ᾱ p ′ ,q ′ directly from the following chain of isomorphisms f s, ᾱ p,q ′ × f s, ᾱ p,q λ ′ ×λ -1 -----→ F s, ᾱ p,q ′ × F s, ᾱ p,q ι -1 ×Id ----→ F -s, ᾱ p ′ ,q ′ × F s, ᾱ p,q λ×λ ---→ f -s, ᾱ p ′ ,q ′ × f s, ᾱ p,q .
6 Hyperbolic and classical (anisotropic) Sobolev spaces

In the remaining two sections we will analyze the relationship between the newly introduced hyperbolic scale of spaces A s, ᾱ p,q (R d ) from Section 3, where A ∈ {B, F }, and the classical scale of anisotropic spaces A s, ᾱ p,q (R d ), which was recalled in Section 2. Our first result shows that, surprisingly, for Sobolev spaces (i.e. the case A = F , 1 < p < ∞, q = 2) both scales coincide. Theorem 6.1 Let 1 < p < ∞, s ∈ R, and ᾱ > 0 be an anisotropy vector as above. Then

W s, ᾱ p (R d ) = W s, ᾱ p (R d )
(in the sense of equivalent norms).

Proof. The proof is divided into two steps. For convenience, we will thereby abbreviate by m ᾱ,s :=

d i=1 (1 + ξ 2 i ) 1/(2α i ) s
the function which appears in the definition (3) of W s, ᾱ p .

Step 1. In the first step we prove f W s, ᾱ p f W s, ᾱ p . For j = (j 1 , ..., j d ) ∈ N d 0 , let (ϕj)j denote a fixed hyperbolic resolution of unity as introduced in Definition 3.1, with corresponding univariate family (ϕ j ) j where supp (ϕ 0 ) ⊂ [-2, 2]. In addition, let us also construct a second hyperbolic resolution of unity (ψj)j such that ψjϕj = ϕj for every j ∈ N d 0 . Hereby, it is not possible for (ψj )j to obey the same strict building law as formulated in Definition 3.1. We define functions

ψ * 0 := ϕ 0 + ϕ 1 , ψ * 1 := ϕ 0 + ϕ 1 + ϕ 2 , ψ * 2 := ϕ 0 + ϕ 1 + ϕ 2 + ϕ 3 , ψ * j := 1 r=-1 ϕ j+r (j ≥ 3)
and then put ψ j := ψ * j /3 for j ∈ N 0 . Then clearly j ψ j = 1 and ψ j ϕ j = ϕ j . Finally, we set

ψj := ψ j 1 ⊗ • • • ⊗ ψ j d to obtain (ψj)j .
By construction, ψ 0 = ϕ 0 (2 -1 •)/3, ψ j+1 = ψ j (2 -1 •) for j ∈ N 0 \{2}, and

ψ 3 = ψ 0 (2 -3 •) -ψ 0 .
As a consequence, we can record supp ψ j (2 j •) ⊂ [-4, 4] for all j ∈ N 0 . Utilizing (ψj)j, we then first rewrite the W s, ᾱ p -norm as follows,

f W s, ᾱ p ≍ F -1 m ᾱ,s Ff p ≍ j∈N d 0 F -1 ϕjm ᾱ,s Ff 2 1 2 p = j∈N d 0 2 s j/ ᾱ ∞ F -1 2 -s j/ ᾱ ∞ ψjm ᾱ,s ϕjFf 2 1 2 p .
After this, we denote M ᾱ,s, j := 2 -s j/ ᾱ ∞ ψjm ᾱ,s and apply the Fourier multiplier lemma 3.1 with ρj := M ᾱ,s, j and fj := 2 s j/ ᾱ ∞ F -1 ϕjFf . Due to p > 1 and q = 2 we can thereby choose r := 2. This leads to

j∈N d 0 2 2s j/ ᾱ ∞ |F -1 M ᾱ,s, jϕj Ff | 2 1 2 p sup j∈N d 0 M ᾱ,s, j (2 j 1 •, . . . , 2 j d •) S 2 2 W f W s p .
To finish Step 1, it now merely remains to check whether sup j∈N d 0 M ᾱ,s, j (2 j 1 •, . . . ,

2 j d •) S 2 2 W
is finite. But, defining ψ0 := ψ 0 and ψ1 := ψ 3 (2 3 •) and letting ψr := ψr 1 ⊗ • • • ⊗ ψr d for r ∈ {0, 1} d , we have

M ᾱ,s, j(2 j 1 ξ 1 , . . . , 2 j d ξ d ) = 2 -s j/ ᾱ ∞ ψs( j) (ξ 1 , . . . , ξ d )m ᾱ,s (2 j 1 ξ 1 , . . . , 2 j d ξ d ) ,
where s( j) := (sgn(j 1 -2), . . . , sgn(j d -2)) + . And for each j ∈ N d 0 , the function ψs( j) belongs to S(R d ) and is supported on [-4, 4] d . Hence, it is sufficient to verify that the second derivatives (up to order 2) in every component of

F ᾱ,s, j : (ξ 1 , . . . , ξ d ) → 2 -s j/ ᾱ ∞ m ᾱ,s (2 j 1 ξ 1 , . . . , 2 j d ξ d ) = d i=1 2 -j/ ᾱ ∞ (1 + 2 2j i ξ 2 i ) 1/(2α i ) s
are uniformly bounded over j ∈ N d 0 and ξ ∈ [-4, 4] d . For this, we first observe that

F ᾱ,s, j(ξ) = d i=1 2 -j/ ᾱ ∞ (1 + 2 2j i ξ 2 i ) 1/(2α i ) s = d i=1 2 -2α i j/ ᾱ ∞ + 2 -2α i ( j/ ᾱ ∞ -j i /α i ) ξ 2 i 1/(2α i ) s
, with quantities 2 -2α i j/ ᾱ ∞ and 2 -2α i ( j/ ᾱ ∞-ji/αi) all positive and never larger than one. This immediately implies sup

j∈N d 0 ξ∈[-4,4] d |F ᾱ,s, j(ξ)| 1. (41)
Next, we determine the partial derivatives of m ᾱ,s . They are given by

∂ ℓ m ᾱ,s (ξ) = s α ℓ m ᾱ,s-1 (ξ)ξ ℓ ξ ℓ 1 α ℓ -2 , ∂ 2 ℓ m ᾱ,s (ξ) = s(s -1) α 2 ℓ m ᾱ,s-2 (ξ)ξ 2 ℓ ξ ℓ 2 α ℓ -4 + s(s -1) α ℓ m ᾱ,s-1 (ξ) ξ ℓ 1 α ℓ -4 ( 1 α ℓ -1)ξ 2 ℓ + 1 ,
where we use the abbreviation ξ ℓ for (1 + ξ 2 ℓ ) 1/2 . We deduce the estimates

|∂ ℓ m ᾱ,s (ξ)| |m ᾱ,s-1 (ξ)| ξ ℓ 1 α ℓ -1 , |∂ 2 ℓ m ᾱ,s (ξ)| |m ᾱ,s-2 (ξ)| ξ ℓ 2 α ℓ -2 + |m ᾱ,s-1 (ξ)| ξ ℓ 1 α ℓ -2 ,
and thus obtain, using 2 j ℓ ξ ℓ ≤ 2 j ℓ ξ ℓ ,

|∂ ℓ F ᾱ,s, j(ξ)| 2 -s j/ ᾱ ∞ 2 j ℓ |m ᾱ,s-1 (2 j ξ)| 2 j ℓ ξ ℓ 1 α ℓ -1 2 -j/ ᾱ ∞ 2 j ℓ /α ℓ |F ᾱ,s-1, j (ξ)| ξ ℓ 1 α ℓ -1 , |∂ 2 ℓ F ᾱ,s, j(ξ)| 2 -s j/ ᾱ ∞ 2 2j ℓ |m ᾱ,s-2 (2 j ξ)| 2 j ℓ ξ ℓ 2 α ℓ -2 + |m ᾱ,s-1 (2 j ξ)| 2 j ℓ ξ ℓ 1 α ℓ -2 2 -2 j/ ᾱ ∞ 2 2j ℓ /α ℓ |F ᾱ,s-2, j(ξ)| ξ ℓ 2 α ℓ -2 + 2 -j/ ᾱ ∞ 2 j ℓ /α ℓ |F ᾱ,s-1, j (ξ)| ξ ℓ 1 α ℓ -2 .
Taking (41) into account, we realize that the term |F ᾱ,s-2, j (ξ)| ξ ℓ 2 α ℓ -2 and the term

|F ᾱ,s-1, j (ξ)| ξ ℓ 1 α ℓ
-2 are uniformly bounded in the range ξ ∈ [-4, 4] d with respect to j ∈ N d 0 . Since further 2 -2 j/ ᾱ ∞ 2 2j ℓ /α ℓ ≤ 1 and 2 -j/ ᾱ ∞ 2 j ℓ /α ℓ ≤ 1, Step 1 is finished.

Step 2. For the proof of the converse inequality f W s, ᾱ p f W s, ᾱ p we argue analogously to Step 1 and use this time the multiplier

M ᾱ,s, j(ξ) := ψj(ξ)2 s j/ ᾱ ∞ m ᾱ,s (ξ) .
It is well-defined since m ᾱ,s > 0, and we have, using the same notation as in Step 1,

M ᾱ,s, j (2 j 1 ξ 1 , . . . , 2 j d ξ d ) = ψs( j) (ξ 1 , . . . , ξ d ) 2 -s j/ ᾱ ∞ m ᾱ,s (2 j 1 ξ 1 , . . . , 2 j d ξ d ) .
Again, it is not difficult to check that for every component the second derivatives are bounded on [-4, 4] d independently of j. By Lemma 3.1, applied with ρj := M ᾱ,s, j, fj := F -1 m ᾱ,s ϕjFf , and r := 2, we get

f W s, ᾱ p ≍ j∈N d 0 2 2s j/ ᾱ ∞ F -1 ϕjFf 2 1 2 p = j∈N d 0 2 2s j/ ᾱ ∞ F -1 ψjm -1 ᾱ,s m ᾱ,s ϕjFf 2 1 2 p = j∈N d 0 F -1 M ᾱ,s, jm ᾱ,s ϕjFf 2 1 2 p sup j∈N d 0 M ᾱ,s, j(2 j 1 •, . . . , 2 j d •) S 2 2 W • j∈N d 0 (F -1 [ϕj m ᾱ,s Ff ]) 2 1 2 p F -1 m ᾱ,s Ff p ≍ f W s, ᾱ p .
Remark 6.1 We mention that, in contrast to this result, in case A = B we only have coincidence when p = q = 2. A proof can be found in [START_REF] Abry | The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic textures[END_REF].

As a direct consequence of Theorem 6.1 and Theorem 4.2, we obtain new characterizations of classical Sobolev spaces via hyperbolic wavelets. 

λ := λ(f ) = (λ j, k) j, k is uniquely determined via λ j, k := λ j, k(f ) = 2 j 1 f, ψ j, k
and we have the wavelet isomorphism (equivalent norm)

f W s, ᾱ p (R d ) ≍ λ(f ) f s, ᾱ p,2 , f ∈ W s, ᾱ p (R d ) .
Analogously, combining Theorem 6.1 with Theorem 5.4, we also derive new characterizations of Sobolev spaces with the hyperbolic Haar system H d from (24). 

f ∈ W s, ᾱ p (R d ) is determined by λ := λ(f ) = (λ j, k) j, k with (43) λ j, k := λ j, k(f ) = 2 j 1 f, h j, k .
Further, we have the wavelet isomorphism (equivalent norm)

f W s, ᾱ p (R d ) ≍ λ(f ) f s, ᾱ p,2 , f ∈ W s, ᾱ p (R d ) .
In addition, those elements of S ′ (R d ) belonging to W s, ᾱ p (R d ) are characterized by either of the following two criteria: (i) f can be represented as a sum

(44) f = j∈N d 0 k∈Z d λ j, kh j, k converging (weak*ly) in S ′ (R d )
with coefficients (λ j, k) j, k ∈ f s, ᾱ p,2 (with respect to some chosen ordering).

(ii) With λ(f ) being defined as in [START_REF] Schmeisser | Topics in Fourier analysis and function spaces[END_REF], it holds

λ(f ) = (λ j, k) j, k ∈ f s, ᾱ p,2 .
In both cases, the sequence (λ j, k) j, k is necessarily the sequence of basis coefficients and the representation (44) converges unconditionally to f in W s, ᾱ p (R d ).

Hyperbolic and classical (anisotropic) BLT spaces

The next and final theorem of this paper complements the statement of Theorem 6.1, showing that in general the spaces A s, ᾱ p,q (R d ) and A s, ᾱ p,q (R d ), with A ∈ {B, F }, do not coincide.

Theorem 7.1 Let 0 < p, q ≤ ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 with d i=1 α i = d.

(i) If B s, ᾱ p,q (R d ) = B s, ᾱ p,q (R d ) then p = q = 2. (ii) In the range 0 < p < ∞: If F s, ᾱ p,q (R d ) = F s, ᾱ p,q (R d ) then q = 2 and 1 < p < ∞.
Remark 7.1 The Besov result (i) follows directly from the very general investigations on embeddings between decomposition spaces conducted in [START_REF] Voigtlaender | Embeddings of decomposition spaces[END_REF]. Even more, the findings there allow to strengthen the statement to more general independent parameters, namely

B s 1 , ᾱ1 p 1 ,q 1 (R d ) = B s 2 , ᾱ2 p 2 ,q 2 (R d ) ⇔ p 1 = p 2 = q 1 = q 2 = 2 and ᾱ1 = ᾱ2 and s 1 = s 2 .
The results of [START_REF] Voigtlaender | Embeddings of decomposition spaces[END_REF], however, are not applicable in the proof of (ii) since Triebel-Lizorkin spaces do not fit into the decomposition space framework. In the sequel, we will therefore give a proof for the F -case (ii) which by slight modifications would also provide a direct way to establish the B-case (i).

Before we start, let us remind ourselves that the converse statement of (ii), the coincidence of F s, ᾱ p,q and F s, ᾱ p,q when 1 < p < ∞ and q = 2, is given by Theorem 6.1. The coincidence of B s, ᾱ p,q and B s, ᾱ p,q when p = q = 2, the converse of (i), is further observed in Remark 6.1.

Proof. [of Theorem 7.1 (ii)]

Step 1: Preparation. Fix an anisotropy vector ᾱ = (α 1 , . . . , α d ) and consider a univariate resolution of unity (θ j ) j∈N 0 of the following form:

The generator θ 0 ∈ S(R) shall satisfy supp θ 0 ⊂ [-2 α min /3 , 2 α min /3 ] and

θ 0 = 1 on [-1, 1] ,
and the functions θ j for j ∈ N shall be obtained via θ j (•) := θ 0 (2 -j •)θ 0 (2 -(j-1) •).

Using (θ j ) j∈N 0 , we can then construct two multivariate resolutions of unity on R d . First, via simple tensorization, we get the hyperbolic resolution (θj

) j∈N d 0 with θj := θ j 1 ⊗ . . . ⊗ θ j d , j = (j 1 , . . . , j d ) ∈ N d 0 .
It clearly fulfills all the specifications formulated at the beginning of Section 3. Second, putting ϕ ᾱ 0 := θ 0 ⊗ . . . ⊗ θ 0 and

ϕ ᾱ j := ϕ ᾱ 0 (2 -j ᾱ•) -ϕ ᾱ 0 (2 -(j-1)ᾱ •) for j ∈ N ,
we obtain (ϕ ᾱ j ) j∈N 0 , which is a classical anisotropic resolution of unity in compliance with the definition from Subsection 2.1.

For parameters α > 0 and ℓ ∈ N, let us next introduce the intervals

I α ℓ := 2 (ℓ-1)α • [2 α min /3 , 2 α ] and J α ℓ := [-2 ℓα , 2 ℓα ] . Then θ 0 (2 -ℓα •) = 1 on J α ℓ and θ 0 (2 -ℓα •) -θ 0 (2 -(ℓ-1)α •) = 1 on I α ℓ .
In particular, θ j = 1 on I 1 j for every j ∈ N and thus θj = 1 on I 1 j 1 × . . . × I 1 j d . Further, we have ϕ ᾱ 0 (2 -j ᾱ•) = 1 on J α 1 j × . . . × J α d j and as a consequence ϕ ᾱ j = 1 on (J α 1 j × . . . × J α d j )\(J α 1 j-1 × . . . × J α d j-1 ). This, in turn, implies ϕ ᾱ j = 1 on the subset

I α 1 j × • • • × I α d-1 j
× J α d j . Observe now that for every ℓ ∈ N and every i ∈ {1, . . . , d} either I α i ℓ ∩I 1 ⌊ℓα i ⌋ or I α i ℓ ∩I 1

⌊ℓα i ⌋+1
is a nonempty interval of nonzero length. This is due to the fact that always 2 γ • L(I α i ℓ ) ≤ R(I 1 ⌊ℓα i ⌋ ) ≤ R(I α i ℓ ) or 2 γ • L(I 1 ⌊ℓα i ⌋+1 ) ≤ R(I α i ℓ ) ≤ R(I 1 ⌊ℓα i ⌋+1 ) , [START_REF] Seeger | Lower bounds for Haar projections: deterministic examples[END_REF] where L(I) and R(I) denote the left resp. right endpoint of a given interval I = [a, b] and γ = α 2 min /8. The verification of this fact is postponed to Step 3 at the end of this proof. As a consequence, for each i ∈ {1, . . . , d} and each ℓ ∈ N, we may pick one of those intersections with nonvanishing interior and denote it by Ĩ(i) ℓ . Depending on our choice, we then either have

Ĩ(i) ℓ = I α i ℓ ∩ I 1 ⌊ℓα i ⌋ or Ĩ(i) ℓ = I α i ℓ ∩ I 1 ⌊ℓα i ⌋+1 . ( 46 
)
Due to the nonvanishing interior of Ĩ(i) ℓ we can further fix nontrivial functions

h [i]
ℓ ∈ S(R) with supp h With this preparation we are finally ready for the main argumentation.

Step 2: Main Proof. × J α d ℓ , on which ϕ ᾱ ℓ = 1 according to our considerations in Step 1, we can easily compute the classical anisotropic Triebel-Lizorkin (quasi-)norm of f ℓ . Denoting by (∆ ϕ j ) j∈N 0 the Littlewood-Paley analysis associated to (ϕ ᾱ j ) j∈N 0 , we have

f ℓ F s, ᾱ p,q (R d ) = j≥0 2 jsq |∆ ϕ j f ℓ | q 1 q p = 2 ℓs ∆ ϕ ℓ f ℓ p = 2 ℓs f ℓ p .
Moreover, as f ℓ is a tensor product, we can compute f ℓ p = F -1 (h (i)

ℓ := F -1 (h [i]
ℓ ) p for i ∈ {1, . . . , d -1}. Altogether, we end up with f ℓ F s, ᾱ p,q ≍ 2 ℓs C ℓ g ℓ p . We proceed with the computation of the hyperbolic Triebel-Lizorkin (quasi-)norm of f ℓ . It follows right from the definition of the intervals Ĩ(i) ℓ from ( 46) that there exist numbers k i (ℓ) ∈ N, either taking the value ⌊ℓα i ⌋ or the value ⌊ℓα i ⌋ + 1, such that Ĩ(i) 

ℓ ⊂ I 1 k i (ℓ) .
θ ℓ j d = 1 on I 1 k 1 × • • • × I 1 k d-1 × J α d ℓ ,
we calculate for the hyperbolic Triebel-Lizorkin (quasi-)norm of f ℓ f ℓ F s, ᾱ p,q = j∈N d 0 2 max{j 1 /α 1 ,...,j d /α d }sq |∆ θ j f ℓ (•)| q 1/q p = ⌊ℓα d ⌋+1

j d =0
2 max{k 1 /α 1 ,...,k d-1 /α d-1 ,j d /α d }sq |∆ θ ℓ j d

f ℓ (•)| q 1/q p ≍ 2 ℓs ⌊ℓα d ⌋+1 j d =0 |∆ θ ℓ j d f ℓ (•)| q 1/q p = 2 ℓs C ℓ g ℓ F 0 p,q
with the same constant C ℓ as obtained before in the computation of f ℓ F s, ᾱ p,q . Now we come to the core argument. Assuming that the spaces F s, ᾱ p,q (R d ) and F s, ᾱ p,q (R d ) coincide, the associated (quasi-)norms would be equivalent. By our calculations, this would imply that g ℓ F 0 p,q (R) is equivalent to g ℓ Lp(R) for any band-limited function g ℓ with frequency support as in [START_REF] Stöckert | Ungleichungen vom Plancherel-Pólya-Nikol ′ skij-Typ in gewichteten L Ω p -Räumen mit gemischten Normen[END_REF]. Moreover, since the proof holds true for all ℓ ∈ N this equivalence remains valid for any band-limited function g on R.

But, as a consequence of Lemma 7.1(iii), since the sequence (f

N ) N constructed in its proof consists of band-limited functions, this is only possible in the range 1 < p < ∞. Furthermore, if 1 < p < ∞ the band-limited functions are dense in L p (R) as well as F 0 p,q (R). Hence, by Lemma 7.1(i) also q = 2 is a necessary condition. It now only remains to verify [START_REF] Seeger | Lower bounds for Haar projections: deterministic examples[END_REF].

Step 3: Proof of (45). We distinguish two cases depending on the size of the quantity δ := ℓα i -⌊ℓα i ⌋ ∈ [0, 1). Let us subsequently abbreviate ρ := α min 4+α min and σ := 8α min 3α min +12 = 2 3 (1ρ)α min . Recalling that α min = min i∈{1,...,d} {α i } ∈ (0, 1], we note that ρ ∈ (0, 1 5 ] and σ ∈ (0, 2 3 ]. In case δ ∈ [0, σ) we have δ ≤ (1ρ)(α iα min /3) and thus where (ψ j,k ) j,k shall be a compactly supported, orthogonal, and L ∞ -normalized wavelet system with sufficient vanishing moments and smoothness to characterize the space A 0 p,q (R). Further, for each j ∈ N 0 and k ∈ {0, . . . , 2 j }, we assume the support condition supp (ψ j,k ) ⊂ [0, 1]. Now we note that in a univariate setting, as considered here, we have the coincidence Ã0 p,q (R) = A 0 p,q (R). Hence, using the wavelet isomorphism established by Theorem 4.2 for the F-scale and taking into account Remark 4.1 for the B-scale, we immediately obtain f N,ε B 0 p,q (R) ≍ N j=0 2 j k=0 χ j,k q p 1/q ≍ N 1/q , f N,ε F 0 p,q (R) ≍ N j=0 2 j k=0 χ j,k q 1/q p ≍ N 1/q , whereby the (quasi-)norms on the left-hand side do not depend on the choice of ε.

From here we proceed with a probabilistic argument and interpret ε as a Rademacher random variable. Then, for the expectation of the L p -(quasi-)norms over ε, Next, we define for j ∈ N 0 the auxiliary functions

E ε( f N,ε p p ) = 1 0 R N j=0 r j (t)
F j := 1 M 2 j k=0 ψ j,k (x) 2 with M > 0 such that F j ∞ ≤ 1.
Observe that 0 ≤ F j ≤ 1. Then, in case 0 < p ≤ 2, 

N -p/2 • E ε( f N,ε p p ) ≍

  under the following restriction on the parameter s of the space W s,

ᾱ p, 2 (

 2 R d ), in the range 1 < p < ∞, from which we can then extract our main theorems concerning hyperbolic wavelet characterizations of the classical W s, ᾱ p (R d ).

Proposition 4 . 1

 41 Let 0 < r ≤ 1 and R > 1/r. For any sequence (λj) j∈N d 0 of complex numbers and any l ∈ Z d , j ∈ N d 0 we have, using the notation l+ = ((ℓ 1 ) + , . . . , (ℓ d ) + ), m∈Z d |λ j+ l, m|

Definition 4 . 1

 41 Let 0 < q ≤ ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d.

Remark 4 . 1

 41 The theorem below states the result for the F -scale of spaces F a, ᾱ p,q (R d ). As for the corresponding result for the Besov type spaces B s, ᾱ p,q (R d ), we simply replace condition[START_REF] Dũng | Hyperbolic Cross Approximation[END_REF] on K, L by K, L > σ p + |s|/α min and use the corresponding sequence spaces bs,ᾱ p,q .

f

  (λ j, k) j∈N d 0 , k∈Z d f s, ᾱ p,∞ with r(s, ᾱ) := -|s|/α min .

  ) and we have[START_REF] Garrigós | Haar frames and Haar multipliers in the absence of unconditionality[END_REF] φ =j∈N d 0 k∈Z d φ, ψ j, k ψ j, k with convergence in L 2 (R d ). Since φ ∈ Ssᾱ,p p′ ,1 B(R d ) we have by Step 1, 2, 3 above that the right-hand side of (23) converges in S sᾱ,p p′ ,1 B(R d ) to some η ∈ S sᾱ,p p′ ,1 B(R d ). Hence, we have φ = η in S ′ (R d ) which finally gives φ = η almost everywhere and, in other words, (23) holds true in S sᾱ,p p′ ,1 B(R d ). Then f (ϕ) can be rewritten as follows, using the continuity of f, • (see Remark 4.2),

Proposition 5 . 2

 52 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d. Under the condition |s|/α min < min 1 p , 1 q

Theorem 6 . 2 p, 2 .

 622 Let 1 < p < ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d. Let further ψ 0 , ψ be wavelets satisfying (K) and (L) with K, L > σ p,2 + |s|/α min . Then any f ∈ S ′ (R d ) belongs to W s, ᾱ p (R d ) if and only if it can be represented as (42) f = j∈N d 0 k∈Z d λ j, kψ j, k with (λ j, k) j, k ∈ f s, ᾱ The representation (42) converges unconditionally in S ′ (R d ) and in W s, ᾱ p (R d ). In addition, (ψ j, k) j, k is an unconditional basis in W s, ᾱ p (R d ). The sequence of coefficients

Theorem 6 . 3

 63 Let 1 < p < ∞, s ∈ R, and ᾱ = (α 1 , . . . , α d ) > 0 such that d i=1 α i = d. Further, assume |s|/α min < min 1 Then the Haar system H d = (h j, k) j, k from (24) constitutes an unconditional basis of W s, ᾱ p (R d ) with associated sequence space f s, ᾱ p,2 . The unique sequence of basis coefficients for

  {1, . . . , d -1} .

  For ℓ ∈ N let us consider g ℓ : R → C with the property supp (Fg ℓ ) ⊂ J α d ℓ = [-2 ℓα d , 2 ℓα d ] (47) and associate a multivariate function f ℓ : R d → C defined by its Fourier transform Ff ℓ (ξ 1 , . . . , ξ d ) := h [1]ℓ (ξ 1 )h [2] ℓ (ξ 2 ) • • • h [d-1] ℓ (ξ d-1 )Fg ℓ (ξ d ) ,where h [i] ℓ are the functions introduced at the end of Step 1. Since Ff ℓ is supported inside I α 1 ℓ × . . . × I α d-1 ℓ

[ 1 ]

 1 ℓ ) p • ... • F -1 (h [d-1] ℓ ) p g ℓ p = C ℓ g ℓ p with C ℓ := C

Hence, due to supp Ff ℓ ⊂ Ĩ

 ⊂ Ff ℓ is supported insideI 1 k 1 (ℓ) × • • • × I 1 k d-1 (ℓ) × J α d ℓ . Let now (∆ θ j )j∈N d 0 denote the Littlewood-Paley analysis corresponding to (θj) j∈N d 0 and let us abbreviate k i (ℓ) by k i and the vector (k 1 , . . . , k d-1 , j d ) by ℓ j d . Then, since ⌊ℓα d ⌋+1 j d =0

log 2 R 2 3 2 3

 222 I 1 ⌊ℓα i ⌋ = ⌊ℓα i ⌋ = ℓα iδ ≥ ℓα i -(1ρ)(α iα min /3) = (ℓ -1)α i + α min /3 + ρ(α iα min /3) ≥ log 2 L I α i ℓ + ρα min ,where we used L I α i ℓ = 2 (ℓ-1)α i +α min /3 and R I 1 ⌊ℓα i ⌋ = 2 ⌊ℓα i ⌋ . In view of γ = α 2 min /8 < ρα min and since we always have⌊ℓα i ⌋ ≤ ℓα i ≤ ⌊ℓα i ⌋ + 1, i.e. log 2 R I 1 ⌊ℓα i ⌋ ≤ log 2 R I α i ℓ ≤ log 2 R I 1 ⌊ℓα i ⌋+1 ,(48)the left inequality in (45) is hence valid in the respective range of δ.

  where r j (t) := sgn(sin 2 j πt) is the j-th Rademacher function. Applying Khintchine's inequality, we obtain from thisE ε( f N,

1 0F 2 ≍

 12 F j (x) dx ≍ 1. Hence E ε( f N,ε p p ) N p/2 . Also, since 2/p ≥ 1, with Hölder E ε( f N,j (x) dx p/N p/2 .
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In case δ ∈ [σ, 1) we first estimate δ > 7α min 3α min + 1 = (1ρ) + ρα min /3 ≥ (1ρ)α min + ρα min /3 , from which we deduce, using ℓα i = ⌊ℓα i ⌋ + δ and L I 1 ⌊ℓα i ⌋+1 = 2 ⌊ℓα i ⌋+α min /3 ,

This time, again taking into account [START_REF] Temlyakov | Approximation of periodic functions[END_REF] and γ = α 2 min /8 < 2 3 (1ρ)α min , the right inequality in [START_REF] Seeger | Lower bounds for Haar projections: deterministic examples[END_REF] holds true. Altogether, the proof of ( 45) is thus finished.

The behavior of the L p -(quasi-)norms in relation to the A 0 p,q -(quasi-)norms is crucial for the proof of Theorem 7.1. Concretely, we have shown for

On the right-hand side, the (quasi-)norms are thereby all classical and only the univariate case matters. Using known embedding theorems, the exact parameters for equality could therefore be determined (see [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] Section 2.3.2 or [START_REF] Sickel | Hölder inequalities and sharp embeddings in function spaces of B s p,q and F s p,q type[END_REF] Theorem 3.1.1., for example).

Prefering a direct and shorter route, the following lemma provides a simple and quantitative argument for what we need. It investigates the behavior of the respective (quasi-)norms for certain sequences of test functions. As a consequence of statement (i), we extract the necessity p = q = 2 for equality in [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]. From (ii) we further obtain p = q in the B-case. Statement (iii) yields 1 < p < ∞ in the F-case. Altogether, this shows that the Sobolev spaces in Theorem 6.1 are precisely those, where equality holds true. Lemma 7.1 Assume 0 < p < ∞, 0 < q ≤ ∞, A ∈ {B, F }. There are sequences (f

Remark 7.2 In case q = ∞ we need to interpret N 1/q ≍ 1. Further, the case A = B with p = ∞ is not considered in Lemma 7.1. By an analogous argument, one can show however that (ii) holds true also for p = ∞. So, for B 0 ∞,q (R) we have the necessary condition q = ∞ to be equivalent to L ∞ (R). It is further not difficult to show that the sequence (f

Proof. ad (i): We provide the proof for q < ∞. Let ε = (ε 0 , ε 1 , . . .) ∈ {-1, 1} N 0 and define

In case 2 < p < ∞, we again argue with Hölder

Further, since 2/p < 1,

Altogether, these estimates show

As a consequence, we can choose

With the same wavelet system (ψ j,k ) j,k as before, L ∞ -normalized, define

where k(j) is chosen such that the (spatial) support of the wavelets is mutually disjoint. Then, using again the wavelet isomorphism from Theorem 4.2 and Remark 4.1, we deduce

= N j=0 2 j/p 2 -j/p q 1/q ≍ N 1/q .

For the L p -(quasi-)norm we obtain, due to the disjoint support,

ad (iii): Finally, let (ϕ j ) j be a (standard) dyadic resolution of unity, with ϕ 0 = 1 in a neighborhood of 0 and ϕ 1 = ϕ 0 (•/2)ϕ 0 , and put

Turning to the F 0 p,q (R)-(quasi-)norm, for N ≥ 2, we calculate, writing Φ 0 := F -1 ϕ 0 and Φ

Note that Φ 1 has (infinitely many) vanishing moments and is thus oscillatory. Assuming w.l.o.g. |Φ 1 | > δ on a set I ⊂ [1, 2), with δ > 0 being some fixed constant, we can proceed