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ABSTRACT   

Synchrotron X-ray multi-spectral imaging is a novel imaging modality that may allow tracking cells at high resolution in 

small animal models. The data volume generated by such technique can be of hundreds of Gigabytes for one animal. 

Automatic, robust and rapid pipeline is therefore of paramount importance for large-scale studies. The goal of this article 

is to present a full image analysis pipeline ranging from the CT reconstruction up to the segmentation of nanoparticles-

labeled-cells. Experimentally, rats that had received an intracerebral transplantation of gold nanoparticles-labeled cells 

were imaged in vivo in phase contrast mode (propagation-based imaging technique) at two different energies strategically 

chosen around the k-edge of gold. We apply a dedicated phase retrieval technique on each projection (out of 2000 for 

complete 2π rotation) before CT reconstruction. Then, a rigid registration is performed between the images below and 

above k-edge for accurate subtraction of the two data sets, leading to gold concentration maps. Due to the large number of 

specimens, the registration is based on the automatic segmentation of the cranial skull. Finally, an automatic segmentation 

of gold-labeled cells within the brain is performed based on high spots of gold concentrations. An example of an in-vivo 

data set for stroke cell therapy is presented.   
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1. INTRODUCTION  

Because it is fast and cost-effective, conventional attenuation-based X-ray Computed Tomography may be used as a non-

invasive method for following up cellular therapies in small animal models [1]. Unfortunately, this technique faces some 

limitations in terms of resolution and contrast. Moreover, for separating the signal of contrast agents from similar 

endogenous signals, it often requires to image the animal before and after contrast agent injection, which may be a problem 

in terms of dose. Novel experimental CT techniques, namely Phase Contrast [2] and Spectral Imaging [3], that have been 

introduced in synchrotrons in the past years and recently translated to the clinics[4], [5], may help to overcome those 

limitations. While they were developed in parallel, the aim of our study is to combine the two approaches for an improved 

segmentation of labelled-cells with a focus on small animal follow-up with a model of focal cerebral injury mimicking 

stroke infarct.  

 

Stroke is the leading cause of long-term disability, resulting in an increasing need for a reliable and reproducible brain 

regeneration technique. Several types of regenerative therapies are currently being evaluated, the introduction of stem cells 

through intracerebral route proving to be associated with the best recovery to date compared to other administration routes. 

It is thus essential to develop imaging modalities that allow the monitoring of the administered cells in order to follow their 

fate in a non-invasive manner. Labelling the injected cells using gold nanoparticles (AuNPs) allows to monitor the cells 

with CT-based imaging techniques, in particular the novel approaches described above. 

 

The data volume generated by such technique can be of hundreds of Gigabytes for one animal. Automatic, robust and rapid 

pipeline is therefore of paramount importance for large-scale studies. In this work, we have developed a pipeline devoted 

to the rigid segmentation of labelled cells. After a brief introduction of the physical phenomena we introduce the image 



 

 
 

 

 

 

processing techniques used in this study for the signal reconstruction method, we then describe the main features of our 

registration and segmentation approach.  

2. SYNCHROTRON PHASE CONTRAST MULTI-SPECTRAL IMAGING 

2.1 Physical principles 

Material Decomposition, the task to separate X-ray images into two or more materials, is usually performed using the 

element specific energy-dependence of X-ray attenuation [6], materialized by the linear attenuation coefficient µ of the 

element. This technique is currently being adopted in the clinics using either dual energy CT or Spectral Photon Counting 

CT scanners [7]. Using a wave approach of light, X-ray Phase Contrast Imaging (PCI) is able not only to reconstruct the 

linear attenuation coefficient µ, but also the phase shift caused by the sample that can be quantified using the refractive 

index decrement  for a given element. Indeed, each element can be described by its refraction index 𝑛 = 1 − 𝛿 + 𝑖𝛽 

where  is the absorption index. Figure 1a shows in log scale the dependence in energy of the  and  indices for 3 

elements/tissues. As one can see, like the linear attenuation coefficient, the absorption index shows a discontinuity at the 

K-edge of the element (80.7keV for gold). One can note that the / ratio can be up to 2180 for water at 40keV resulting 

in an increased contrast with phase sensitive imaging [2]. In the recent years, PCI has demonstrated, at multiple occasions, 

to increase the contrast in the images when compared to conventional attenuation-based CT imaging in several domains 

such as lungs [8], breasts [9] or joints [10].  

 

 

 

Figure 1. Combined Phase contrast and K-edge Imaging technique (A: Indices of refraction and absorption dependence in 

energy for water, bone and gold. B: Phase contrast imaging set-up). 

Among all PCI experimental set-ups, here, we chose to use the Propagation Based Imaging [11] technique which has the 

great advantage, over other PCI setups, of being simple and fast for in vivo applications. The experimental set-up is shown 

in figure 1b. The only difference with a conventional X-ray imaging set-up is the additional distance (z=11m) between the 

sample and the detector. PBI explores the phase shifts caused by variations in the refractive index and density of materials 

by capturing alterations in the measured intensities which can be observed through edge enhancement. From the raw signal 

that contains both absorption and refraction one can use phase retrieval algorithms. To limit the computation time, we used 

a GPU version of the so-called Paganin algorithm [12]. This algorithm allows the retrieval of the linear attenuation 

coefficient (µ) assuming a unique / ratio over the sample. Although this assumption is completely wrong in the case of 

radiography of biological samples mixing low and high absorbing tissue, it surprisingly works well in CT mode due to the 

fact that locally this unique / ratio is true, as demonstrated in several studies [10], [13]. 

 

The second imaging technique, also referred to K-edge imaging, uses the discontinuity of the  index around the K-edge 

of a specific element. In our study the cells were labelled with gold nanoparticles and CT images were acquired at two 

energies around the gold’s K-edge. From these two acquisitions, after phase retrieval, we obtain 2 sets of data with linear 

coefficient µabove and µbelow that we can estimate as:  

  

{
 µ𝑎𝑏𝑜𝑣𝑒 =  µ𝑀1,𝐸𝑎𝑏𝑜𝑣𝑒 

. 𝑓𝑀1
+  µ𝑀2,𝐸𝑎𝑏𝑜𝑣𝑒 

 . 𝑓𝑀2

 µ𝑏𝑒𝑙𝑜𝑤 =  µ𝑀1,𝐸𝑏𝑒𝑙𝑜𝑤 
. 𝑓𝑀1

+  µ𝑀2,𝐸𝑏𝑒𝑙𝑜𝑤 
 . 𝑓𝑀2

 (1) 



 

 
 

 

 

 

 
Where  𝑓𝑀1

 and  𝑓𝑀2
 are respectively the volume fraction of the material 𝑀1 and 𝑀2 of interest. µ𝑀1,𝐸𝑎𝑏𝑜𝑣𝑒 

is the linear 

coefficient for a given material at a given energy. So in our case, the concentration of gold can be retrieved by solving 

the linear system using the following formula:  

 

  𝑓𝐴𝑢 =  
µ𝑎𝑏𝑜𝑣𝑒.µ𝑊𝑎𝑡𝑒𝑟,𝐸𝑏𝑒𝑙𝑜𝑤

−µ𝑏𝑒𝑙𝑜𝑤.µ𝑊𝑎𝑡𝑒𝑟,𝐸𝑎𝑏𝑜𝑣𝑒 
 

µ𝐻2𝑂,𝐸𝑏𝑒𝑙𝑜𝑤
.µ𝐴𝑢,𝐸𝑎𝑏𝑜𝑣𝑒

− µ𝐴𝑢,𝐸𝑏𝑒𝑙𝑜𝑤
.µ𝐻2𝑂,𝐸𝑎𝑏𝑜𝑣𝑒

 (2) 

2.2 Material 

We used the high intensity flux produced by the ESRF medical beamline (ID17) wiggler source which provides two quasi-

collimated monochromatic X-ray beams just below (79.7 keV) and above (81.7 keV) the K-edge of Gold (80.7 keV). A 

total of eleven rats with a model of focal cerebral injury were studied. They were administered with 500k AuNP-labelled 

cells and imaged at the synchrotron ten days post-transplantation. Once anesthetized, the animals were mounted on a 

scanning sample stage located at approximately 11 m from the detector. Sets of 2000 projections were collected for each 

360-degree rotation. An optical system consisting of a scientific CMOS technology-based camera coupled to a Gd2O2S 

scintillator and an objective was used to record the X-ray images. The effective isotropic pixel size of the system was 21.3 

µm. Due to the small height of the beam (4 mm), multiple CT acquisitions were necessary to image the complete region 

of interests (maximum 17 mm in height). A total time of 12 minutes was necessary to collect the whole tomographic data 

set for one rat for the 2 data volumes. After phase retrieval a standard filtered back projection was used for the CT 

reconstructions, as described in [14].  

3. IMAGE ANALYSIS PIPELINE 

As the images were acquired in vivo sequentially, the rat movements had to be considered. Figure 2 presents the entire 

pipeline developed for the segmentation of AuNP-labelled cells. We chose to register the images based on the skull of the 

rats. This allowed us to select portions of the 3D data sets that are of interest, thereby reducing the size of the volumes to 

study and accelerate the speed of the registration algorithm. Finally, once the volumes have been registered and subtracted, 

the gold concentrations could be measured, corresponding to the AuNP-labelled cells injected into the brain. The details 

of each process of the pipeline is described in the following sub-sections. 

 

 

 
 

Figure 2. The 4 steps of the cells tracking pipeline resulting in a map of gold concentrations obtained from the two volumes 

acquired above and below the gold K-edge. 

3.1 Skull segmentation 

The phase contrast method allows us to easily identify the intensity values corresponding to the structures of interest in 

our images, in this context: the skull of the rat. In fact, as seen on Figure 3, an analysis of the volume histogram allows the 

distinction between three main intensity groups: the first one corresponding to the air, the second one to the soft tissues 

and the plastic supporting the rat, the last one to the bones and the gold in the injected cells.  

 

An initial step consists in performing a threshold operation so that only the bone remains in the image. By performing a 

simple gradient analysis on the histogram, we can easily identify the peaks specific to the 3 parts described and thus 

calculate the optimal bone threshold value.  

 

Once the bones have been segmented, we need to extract only the cranial skull and get rid of the other segmented structures 

such as jaws, labelled cells and teeth. To do so we labelled the different structures by a connected component analysis. For 
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this purpose, we use the IPSDK library (Reactiv’IP, Grenoble France), which, as opposed to traditional libraries, has the 

great advantage of being adapted to large volumes, thus allowing us to gain a significant amount of time using three 

dimensional operations. We thereby end up with a list of labeled regions with characteristics associated to each of them, 

the size of which turns out to be an ideal discriminating factor for the identification of the cranial skull. Indeed, its size is 

at least ten times larger than the smaller structures (particularly the jaws). This method has proven to be robust for all the 

volumes studied at the different energies. 

 

 
Figure 3. Intensity-based skull segmentation (A: Slice of the acquired volume, B: Histogram and its 3 intensity groups, C: 

Corresponding intensity regions (yellow: skull, red: jaws, green: gold)). 

3.2 Registration 

As explained previously, our intention consists in comparing two volumes 𝑉𝐵𝑒𝑙𝑜𝑤 and 𝑉𝐴𝑏𝑜𝑣𝑒  of the same sample acquired 

at two different energy levels (EBelow=79.7 keV and EAbove=81.7 keV). As can be seen on Figure 4, the variation in the 

position of the rat on the two volumes is too great to be neglected. The subfigure 4c shows indeed the subtraction of the 2 

raw images (4a and 4b). It is therefore necessary to match the voxels representing the same point in space from one volume 

to the other and do the so-called registration of the two volumes. 

 

Registration is a complex task with several parameters including the optimizer, the transformation, the interpolator and 

finally the similarity metric. If the transformation is trivially rigid in our case, finding the other parameters is not 

straightforward. We assume that, in our case, the volumes were acquired using the same modality and only differ by a 

basic geometric translation and rotation. We empirically chose to split this registration into two steps: a first transformation  

𝑇1 consisting of a simple and fast 3D translation closing most of the gap between the two volumes, followed by a second 

transformation 𝑇2 applying a rotation and translation to the space given 3 Euler angles and a 3D translation.  

 

 
Figure 4. An example of the importance of registration for K-edge subtraction (A: Slice of 𝑉𝐴𝑏𝑜𝑣𝑒, B: Slice of 𝑉𝐵𝑒𝑙𝑜𝑤, C: Slice 

of the resulting K-edge subtraction without registration, D: Slice of the resulting K-edge subtraction with registration). The 

negative concentrations are caused by non-superimposed elements (hair in C and D, bones, gold in C). 
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We chose to compare two typical intensity-based metrics such as the mean squared intensity difference (MSQ) and cross-

correlation (CC) in terms of rapidity to converge and final registration quality. While CC gave the best results for the 

optimization of 𝑇1, the task for 𝑇2 revealed to be more challenging. Therefore, in addition to these two metrics, we also 

evaluated the Mutual Information (MI) metric and the ANTs cross-correlation (ANTs CC). After some tests, we chose to 

use the gradient descent as an optimizer. Table 1 shows the results of this comparison on two animals.   

 

Table 1. Comparison of 4 similarity metrics in terms of speed and quality. Mean Square Difference produces close to best results in 

the shortest period of time compared to other metrics. 

  CC MSQ ANTs CC (r=2) MI 

Rat 1 
Time (s) 114 71  442 143 

Final 
Error 1.331% 1.316% 1.401% 1.328% 

Rat 2 
Time (s) 365 258 867 428 

Final 
Error 0.7214% 0.7201% 0.7401% 0.7196% 

 

The final error is calculated on the resulting subtraction of the superimposed volumes, using only the voxels contained in 

the cranial skull mask. We define it as follows:  

 𝐸𝑟𝑟𝑜𝑟 =  
𝑁𝑒𝑟𝑟𝑜𝑟

𝑁𝑡𝑜𝑡
 (3) 

Where 𝑁𝑒𝑟𝑟𝑜𝑟  is the number of voxels composing the mask with an absolute intensity above a threshold  𝜀 =  3σ, σ being 

the intensity standard deviation among these voxels. 𝑁𝑡𝑜𝑡 is the total number of voxels composing the mask.  

As the table 1 shows, while the 4 methods produce comparable results in terms of quality, they differ when considering 

convergence speed. MSQ being less expensive to compute than both CC and MI, it is faster to converge. Given the fact 

there is no significant improvement using ANTs metric in this context, we opted for the MSQ metric defined as below:  

 𝑀𝑆𝑄(𝑓, 𝑚) =
∑ ( 𝑓 − 𝑚 )²𝑥𝑦𝑧

𝑛
 (4) 

Where 𝑓 and 𝑚 represent the vectors of the fixed and moving image intensities and n the total number of voxels.  

 

 
3.3 K-edge subtraction and gold extraction 

 

Once the volumes have been subtracted as defined in equation (2), we need to distinguish noise and artefacts from the 

AuNP-labelled cells. In order to do so, we begin with only keeping the parts corresponding to the brain by calculating the 

convex hull of the segmented cranial skull. We then subtract the dilated skull’s mask leaving us with a limited number of 

structures, the biggest one corresponding to the brain. The next step consists in differentiating the gold NPs from the noise. 

We therefore apply a threshold defined as follows: 

 

 𝜀𝐺𝑜𝑙𝑑 = 3𝜎𝐵𝑟𝑎𝑖𝑛  (5) 

 
𝜎𝐵𝑟𝑎𝑖𝑛  being the standard deviation in the segmented brain. This operation is followed by a binary 3D opening with a 2 

voxels radius sphere to remove the small structures that can be considered as noise. An example of result on rat 2 can be 

seen in Figure 5c. 

 



 

 
 

 

 

 

 
Figure 5. Results of gold extraction (A: Slice of 𝑉𝐴𝑏𝑜𝑣𝑒, B: Slice of 𝑉𝐵𝑒𝑙𝑜𝑤, C: Slice of the segmented gold in the resulting 

K-edge subtraction, D: 3D rendering of the segmented skull (white) and segmented gold (yellow)) 

 

 
3.4 Time process 

Table 2 shows the computation time for the entire pipeline for the two rats presented above. The developed pipeline allows 

to have a total computation time in the same order as the acquisition time. The difference between the 2 rats is explained 

by the fact that rat 2 has moved less, only by a translation, and the algorithm tries nevertheless to improve the results by a 

rotation that is difficult to find and uses the maximum number of steps allowed in our implementation. Another explanation 

is the size of rat 2 cranial skull is bigger. 
 
Table 2 : Time process (seconds) of each step of the developed pipeline, measured on 2 rats. 

 Skull 

Extraction 
Registration Subtraction 

Gold 

Extraction 
Total 

Rat 1 39.0s 208s 3.23s 80.1s 331s 

Rat 2 59.6s 419s 3.97s 92.9s 576s 

 

CONCLUSION 

In this work we have presented a whole image analysis pipeline for the automatic segmentation of spectral phase contrast 

imaging. The developed method uses the specificities of the synchrotron phase contrast signal to improve the contrast in 

our images. After some tests using different metrics, the registration method uses a gradient descent as optimizer, trilinear 

interpolation and cross correlation and mean squared difference as metrics. Once the spectral images are registered, we 

compute the maps of gold concentration in order to track the gold nanoparticles-labelled cells. We presented results on 

two rats but we tested our method on a whole dataset of in vivo rats with a focal cerebral injury mimicking stroke. The 

algorithm proved to be robust and fast on big datasets (several gigabytes per rat). The main limitation of this study is the 

fact that we only tested our pipeline on a cerebral application but we will use and test this pipeline on another medical 

disease (osteoarthritis) in the near future.  
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