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Abstract: Single-pixel imaging acquires an image by measuring its coefficients in a transform
domain, thanks to a spatial light modulator. However, as measurements are sequential, only a few
coefficients can be measured in the real-time applications. Therefore, single-pixel reconstruction
is usually an underdetermined inverse problem that requires regularization to obtain an appropriate
solution. Combined with a spectral detector, the concept of single-pixel imaging allows for
hyperspectral imaging. While each channel can be reconstructed independently, we propose
to exploit the spectral redundancy between channels to regularize the reconstruction problem.
In particular, we introduce a denoised completion network that includes 3D convolution filters.
Contrary to black-box approaches, our network combines the classical Tikhonov theory with the
deep learning methodology, leading to an explainable network. Considering both simulated and
experimental data, we demonstrate that the proposed approach yields hyperspectral images with
higher quantitative metrics than the approaches developed for grayscale images.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Single-pixel imaging is a computational technique that can reconstruct an image from a single
point detector [1]. It has found applications in fluorescence microscopy [2], image-guided
surgery [3], diffuse optical tomography [4], short-wave infrared imaging [5], imaging through
scattering media [6], 3D imaging [7]. Considering a spectral detector, the concept of single-pixel
imaging extends to generic imaging. Multispectral imaging was demonstrated with a dispersive
unit followed by photomultiplier tubes [8,9]. Hyperspectral single-pixel imaging has been
demonstrated with a compact fiber spectrometer [10,11] or exploiting a Michelson interferometer
[12]. These works focus on improvement of hyperspectral images (HSI) acquisition strategies
and leave the solution of image reconstruction to classical optimization schemes.

Single-pixel measurements can be modelled as dot products between an underlying image and
some two-dimensional patterns that are implemented through a spatial light modulator (SLM)
[13]. To limit the acquisition times, it is highly desirable to reduce the number of the light
patterns, which leads to an under-determined ill-posed inverse problem. Classical approaches
to solve such problems are based on compressive sensing [14]; however, deep learning (DL)
has also proven efficient in many optical problems, including image deblurring [15], image
reconstruction [16], image denoising [17], and spectral and lifetime unmixing [18,19]. Not
surprisingly, single-pixel imaging has also benefited from DL. In [20], a neural network was
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applied to reconstruct and improve the solution obtained with computational ghost imaging
(CGI), a method closely related to single-pixel imaging [21]. In [22], Rizvi et al. proposed to
couple the real-time Fourier single-pixel imaging scheme with deep convolutional autoencoder
network to improve the image quality and the reconstruction speed. In [23], a deep convolutional
autoencoder network was shown to outperform compressed sensing in image reconstruction task.
Hoshi et al. [24] proposed to exploit the correlation between measured single-pixel data and
to use a recurrent neural network for image recovery. In [25], a compressed sensing generative
adversarial network was proposed for reconstruction of heavily downsampled images. Contrary
to the empirical design of the network in [23], [26] introduced an architecture where the first layer
was shown to estimate the conditional expectation of the image given noiseless measurements.
In [27], the network was generalized to the case of noisy data and to various noise levels.

A deep learning based solution for recovery of single-pixel HSI was proposed by Arias et
al. in [28]. The approach is two-step: during the first stage, HSIs are reconstructed from
compressive samples in a band-wise manner via ISTA-Net, while the second stage incorporates a
merge-and-run deep neural network for image refinement. Recently, DL-based methods also
showed to be an effective instrument in tasks of hyperspectral image denoising. Given the
high dimensionality of the hyperspectral data, many researchers naturally resorted to 3D neural
networks to solve the HSI restoration problem [29–31]. However, while the other computational
hyperspectral approaches (e.g., CASSI [32] or CS MUSI [33]) exploit full 3D convolutional
networks to engage the hyperspectral dimension, the existing single-pixel reconstruction networks
are still limited to 2D convolutions, with the problem of hyperspectral reconstruction still awaiting
to be addressed.

In this paper, we propose deep learning networks for hyperspectral single-pixel imaging.
Contrary to black-box approaches, we propose interpretable networks where layers provide
solution of classical inverse problems and generalize the reconstruction network proposed in [27]
to the more complex problem of HSI single-pixel imaging. Our networks combine the classical
optimization scheme for denoising in the measurement domain with the deep learning approach
for projection from the measurement domain to the image domain, and a final regularization of
the solution in the image domain. To the best of our knowledge, this is the first effort to apply
generalized Tikhonov regularization and to develop a 3D reconstructor for the single-pixel HSI.
In addition, since there is a lack of HSI datasets to train such networks, we propose a method to
simulate a HSI dataset from RGB images dataset. Finally, the proposed networks are evaluated
both on simulated and experimental HSI data. Upon the acceptance of the manuscript, our
hyperspectral reconstruction network will be integrated into the open source spyrit package
[34], and the pipeline for HSI synthesis from RGB images will be integrated into the open source
spihim package [35].

2. Single-pixel imaging

2.1. Image acquisition

Single-pixel imaging can be modeled as m = αH1f , where m ∈ RM represents the raw
measurements, H1 ∈ RM×N , with M<N, are the patterns uploaded onto a SLM, f ∈ [0; 1]N
is the unknown image, and α is the unknown image intensity (in photons). The patterns H1
are traditionally chosen in an orthogonal basis H ∈ RN×N , with the classical choices including
Fourier, discrete cosine transform, wavelets, and Hadamard bases. They can be either chosen
before the acquisition [36] or sampled adaptively during the acquisition [37]. In practice, the raw
measurements are corrupted by the mixture of Poisson, and Gaussian noise [38,39], where the
Poisson noise is signal-dependent and arises due to the discrete nature of the electronic charge,
and the Gaussian noise occurs due to the fluctuations in the circuit and is signal-independent.
Because the SLMs, such as digital micromirror devices (DMDs), cannot implement the negative
values, it is necessary to decompose the patterns H1 into a set of patterns with only the positive
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values [40], leading to the measurement of

mα
+,− ∼ K P(αH+,−

1 f ) +N(µdark,σ2
dark). (1)

Here, P denotes the Poisson distribution, while H+1 and H−
1 are the positive and the negative parts

of H1, respectively, K is the calibration coefficient that represents the overall system gain, µdark
and σ2

dark are the mean and the variance of the dark current. One simple, yet efficient, differential
approach is to measure the fraction

mα =
mα
+ − mα

−

Kα
, (2)

where the normalization factor Kα is introduced to get the images with intensities in [0, 1].

2.2. Deep image reconstruction

Following the recent widespread success of deep neural networks, the reconstruction of f was
proposed to be performed with the non-linear models [26]

f̂ = Gθ(mα), (3)

where G is a neural network, the parameters of which are denoted as θ. Given an image database
consisting of S measurement-image pairs {mα,(s), f (s)}, 1 ≤ s ≤ S, the network parameters θ are
optimized during a training phase by minimizing the so-called loss function

min
θ

S∑︂
s=1

∥f (s) − Gθ(mα,(s))∥2
2 + J(θ), (4)

where J is typically chosen to penalize large network parameters and reduce the freedom in the
neural network. Traditionally, neural networks are a composition of cascaded layers

Gθ = GL
θ ◦ . . . ◦ G1

θ , (5)

where Gℓ
θ , 1 ≤ ℓ ≤ L is the ℓ-th (nonlinear) layer of the network and ◦ is the function composition.

2.3. Denoised completion (Tikhonov) network

The denoised completion network (DC-Net) establishes a link between traditional and deep
image reconstruction methods by freezing the first layer of the network such that it provides the
best linear estimator of the minimum mean squared error solution, also known as the Tikhonov
solution. An overview of the DC-Net architecture is given in Fig. 1(a).

As described in [27], the Tikhonov solution is given by f̃ = H⊤ỹ, where ỹ(mα) = [y1
⊤, y2

⊤]⊤

can be computed in two steps as

y1 = µ1 + Σ1[Σ1 + Σα]
−1(mα − µ1), (6a)

y2 = µ2 + Σ21Σ
−1
1 [y1 − µ1]. (6b)

Here, µ1 ∈ RM and Σ1 ∈ RM×M are the expected value and covariance of the measured
coefficients, respectively, Σα ∈ RM×M is the noise covariance, µ2 ∈ RN−M is the expected value
of the missing coefficients, and Σ21 ∈ R(N−M)×M is the covariance between the missing and
measured coefficients. The computation of these quantities is described in 3.3.

The first step given by Eq. (6a) can be interpreted as the denoising of the raw measurements
while the second step given by Eq. (6b) can be interpreted as the completion of the missing
coefficients with relevant values. This choice for the first layer allows also for faster training
compared to alternatives based on pseudo-inverse or back projection [26].



Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 39562

  

(a)

(b)

(c)

Fig. 1. Overview of the deep reconstruction networks. (a) Architecture of the 2D and
3D denoised completion networks (DC-Net). Denoising and completion occur in the
measurement domain, for all channels independently in both the 2D and 3D cases. In the 2D
case (top part of the diagram), the learnable layers (GL

θ ◦ . . . ◦ G2
θ ) correspond to 2D UNet;

in the 3D case (bottom part of the diagram), to a 3D UNet. (b) Architecture of the 2D UNet.
(c) Architecture of the 3D UNet.
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3. Proposed deep hyperspectral reconstruction

In the specific case of hyperspectral imaging, the (noiseless) image formation process can be
written as

mα
λ = αH1fλ, 1 ≤ λ ≤ Λ, (7)

where mλ and fλ are the λ-th channel of a measurement and its corresponding image, respectively.
We also denote the full measurements vector by m = [m1

⊤ . . .mΛ⊤]⊤ and the full hyperspectral
image (HSI) by f = [f 1

⊤ . . . fΛ⊤]⊤.
In the next sections, we explore the approaches for reconstruction of the hyperspectral f from

the measurement vector m. Our final architecture of the proposed 3D denoised completion
network for the reconstruction of a single-pixel hyperspectral images is presented in Fig. 1(a).

3.1. 2D denoised completion network

A naive approach consists in processing each spectral channel independently, which can be
summarized by

f̃λ = G1
θ (m

α
λ ), 1 ≤ λ ≤ Λ, (8a)

ˆfλ = (GL
θ ◦ . . . ◦ G2

θ )(f̃λ), 1 ≤ λ ≤ Λ, (8b)

where G1 implements the denoised completion solution given by Eq. (6). Note that each spectral
channel is processed independently. In particular, the layers of (GL

θ ◦ . . . ◦ G2
θ ) rely on 2D

convolution kernels that act in the spatial domain only and that are trained using grayscale images.

3.2. 3D denoised completion network

To exploit the correlation between the spectral channels of a hyperspectral image, we introduce a
3D neural network. After the reconstruction in a per-channel manner using Eq. (6), we introduce
higher-order convolutions into the image domain

f̃λ = G1
θ (m

α
λ ), 1 ≤ λ ≤ Λ, (9a)

f̂ = Gθ(f̃ ). (9b)

where the learnable layers of Gθ act across all of the three dimensions of a hypercube, regularizing
both the spatial and spectral dimensions contrary to the 2D network.

3.3. Estimation of the mean and covariance matrices

The first steps of the denoised completion network, given by Eq. (6), require the mean µ and
covariance Σ of the data, as well as the noise covariance Σα. As described in [27], we compute
the mean µ and covariance Σ from the STL-10 database prior to the training phase and estimate
the noise covariance from the raw measurements. Here, we have

Σαλ = Diag(σ2
αλ
) =

1
Kα2

λ

Diag
(︁
mα
+λ +mα

−λ

)︁
− ρ

2µdark

α2
λK
+ ρ

2σ2
dark

α2
λK2

, (10)

where Diag(σ2
αλ
) refers to the diagonal matrix with the diagonal coefficients being the elements

of the noise variance σ2
αλ

, which depends on the spectral channel, as different channels of the
same measurement contain different numbers of photons. The experimental parameters µdark,
σdark and K can be estimated as described in [39]. The parameter ρ corresponds to the number
of raw channels that are binned to produce each of the Λ spectral channels.
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4. Experiments

We compare the proposed 3D denoised completion network (DC-UNet-3) against the 2D denoised
completion network (DC-UNet-2) and the Tikhonov solution given by Eq. (6). We also investigate
the property of the 2D UNet to obtain multichannel output from multichannel input by applying a
convolutional kernel with the same number of input channels as the input data. With this method,
hereafter named as DC-UNet-2ch, we consider regularization across both spectral and spatial
dimensions via the 2D multichannel convolutional kernels. Finally, we consider the method
described in [22] (DL-FSPI). The DL-FSPI framework is developed for 2D Fourier single-pixel
images, but we use the reconstruction encoder-decoder network proposed by the authors as the
postprocessing step and build our denoised completion network upon it. This way we are able to
compare our proposed network with another approach and explore different architecture for the
regularization stage. We dub this method as DC-DL-FSPI.

For DC-UNet-2 and DC-UNet-2ch, we use a customized 2D UNet architecture (with 13,394,177
learned parameters) based on the one described in [41] and presented in Fig. 1(b). For DC-UNet-3,
we employ a 3D UNet architecture (with 16,320,257 learned parameters) described in [42] and
presented in Fig. 1(c). The number of learned parameters in the encoder-decoder DL-FSPI
network is 317,121.

In detail, the 2D UNet consists of a contracting path and an expansive path. Starting from
initial convolution layer with a number of feature channels equal to 64, with each max-pooling
procedure, except the last one, this number increases by the factor of 2, reaching the value of
512 at the last convolutional layer of the contracting path. During expansion, the number of
feature channels decreases accordingly. The steps of the expanding path of the 2D UNet consist
of bilinear upsampling of the feature maps, concatenation with feature maps from the contracting
path and two convolutional layers. Each convolutional layer, except the last one, employs kernel
of size 3 × 3 and is followed by batch normalization and a ReLU layer. The last layer, that
produces the network output, consists of one convolutional layer with the kernel of size 1 × 1.

The implemented 3D UNet repeats the 2D UNet structure, however, each convolutional layer,
except the last one, employs kernel of size 3 × 3 × 3. The last layer, that produces the network
output, consists of one convolutional layer with the kernel of size 1 × 1 × 1. Starting from initial
convolution layer with the number of feature channels equal to 32, this number doubles within
each convolution layer, reaching the value of 512 in the last layer of the contracting path. In this
network, the nearest neighbor algorithm is used for upsampling.

The architecture of the network used for DC-DL-FSPI is described in details in [22].

4.1. Training of the networks

To train our networks, we use the STL-10 database [43] which consists of 105,000 color images
corresponding to the ‘train’ and ‘unlabeled’ subsets. The original 96 × 96 images are resized to
64 × 64 using bicubic transform. We create a dataset of hyperspectral images from the RGB
images [f r, f g, f b] ∈ RN×3 by combining the three channels for every wavelength λ as

fλ = f rηr
λ + f gη

g
λ + f bηb

λ (11)

where ηr
λ ∈ R, ηg

λ ∈ R, and ηb
λ ∈ R are spectral weights, chosen here to represent the spectral

sensitivity of the long-, medium- and short-wavelength human photo-receptors, respectively
[44,45]. As such, we create HSIs with Λ = 10 spectral channels.

During training, we simulate the raw data from the hyperspectral dataset according to Eq. (1),
where the system gain is set to one and the dark noise is set to zero for simplicity. However, the
actual system gain and dark noise of our system are taken into account through Eq. (10) for the
reconstruction of experimental data.

We implement the full network training using PyTorch [46] and optimize it using Adam [47],
with an initial learning rate of 10−3 that is divided by 5 every 20 epochs. We use a maximum of
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100 epochs. We trained our proposed 3D reconstructor with an NVIDIA Quadro RTX 6000,
and training process took 28 h 51 min on 4 GPUs. The two dimensional neural networks were
trained with a NVIDIA GeForce GTX 1080Ti, and training took 10 h 35 min on 2 GPUs for
DC-UNet-2 and DC-UNet-2ch and 7 h 50 min on 2 GPUs for DC-DL-FSPI. To accelerate and
stabilize the training process [48], we normalize our images, both grayscale and hyperspectral, in
the range [-1;1].

4.2. Experimental data

We consider the single-pixel camera described in [11] and the open single-pixel hyperspectral
imaging (SPIHIM) dataset [35]. The SPIHIM dataset contains different objects acquired using
4096 Hadamard patterns of dimension N = 64 × 64 for 2048 spectral channels in the range
[317, 1064]. The objects are available for different light intensities corresponding to different
neutral densities placed between the illumination lamp and the object.

In this work, we select four grayscale objects: the STL-10 cat, the Siemens star resolution
target [49], the off-centered Siemens star target, and the LED lamp. For each object, we obtain a
high noise dataset by placing a neutral optical density behind the lamp to reduce the light flux.
We consider an optical density of 0.6 for the STL-10 cat and of 1.3 for the other objects. We
choose an integration time of 8 ms for the centered star target and to 4 ms for all other objects.
We also consider a color Siemens star resolution target where the colors are taken from the hue
color wheel.

Finally, we down-sample the full measurement vector by retaining only M = 1024 measurements
for all objects. We only retain the spectral channels in the visible range [390, 700] nm that we
merge into Λ = 10 new spectral channels by summing ρ = 77 original channels, i.e., each new
spectral channel contains 77 raw spectral channels. The ground truth images are obtained from
the full measurement vectors with the lowest neutral optical density, either 0 or 0.3.

4.3. Evaluation metrics

To assess the performance of the reconstruction methods quantitatively, we use the standard peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) metrics, implemented
in scikit-image library [50], the feature similarity index measure (FSIM) [51], and the spectral
angle mapper (SAM) [52] metrics implemented in image-quality-assessment library [53]. For
experimental data, we estimate the ground truth as f = H⊤ygt, where ygt is a fully sampled (i.e.,
M = N) measurement vector with high signal-to-noise ratio. Before computing metrics, we
normalize the ground truth images in the range [-1;1]. To compute the FSIM and the SAM, we
normalize both the ground truth and all the computed images in the range [0;255].

We compute the PSNR, SSIM, and FSIM for hyperspectral images f̂ as the mean across all
channels. The SAM is computed as the spectral angle between each pixel of the reconstructed
image and ground truth and then is averaged across all the pixels.

5. Results and discussion

5.1. Reconstruction from simulated data

We evaluate the Tikhonov, DC-UNet-2, DC-UNet-2ch, DC-DL-FSPI, and DC-UNet-3 methods
on the (unseen) images of the test set of our hyperspectral database, for three different image
intensities α (150, 200 and 500 photons) corresponding to different noise levels. Note that in
the case of DC-UNet-2 the input to the postprocessing network has the shape of 1 × 64 × 64,
while in the case of DC-UNet-2ch the input to the postprocessing network has the shape of
10 × 64 × 64. Here the first number corresponds to the number of input channels and the last
two values correspond to the spatial size. In Table 1, we report the PSNR, SSIM, FSIM, and
SAM obtained from the networks that are trained for the corresponding intensities α. In Fig. 2
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we display ground truths and reconstruction results along with the per-channel SSIM for the first
and the last channels of simulated hyperspectral cubes acquired with α = 150.

Fig. 2. Reconstruction of the simulated acquisition of two hyperspectral cubes with α = 150.
Two top rows: reconstructions of the 1st channel; two bottom rows: reconstructions of
the 10th channel. We compare the reconstruction results using five methods: Tikhonov,
DC-DL-FSPI, DC-UNet-2, DC-UNet-2ch, DC-UNet-3.

Table 1. PSNR, SSIM, FSIM, and SAM of simulated reconstructed images under various noise
levels (the entire HSI α = 150, 200, 500) on the STL-10 dataset. ‘Tikhonov’ refers to the generalised
Tikhonov regularisation (Eq. (6)), ‘DC-DL-FSPI’ refers to the denoised completion network with a

posprocessing network from [22] applied per channel, ‘DC-UNet-2’ refers to the denoised
completion network with the UNet using 2D convolutions applied per channel (Sec.2.3),

‘DC-UNet-2ch’ refers to the denoised completion network with the UNet using 2D convolutions
applied to entire HSI, ‘DC-UNet-3’ refers to the denoised completion network with the UNet using 3D

convolutions (Sec.3.2). The highest metrics are highlighted in bold.

α Tikhonov DC-DL-FSPI DC-UNet-2 DC-UNet-2ch DC-UNet-3

150

PSNR 21.91 ± 2.06 23.06 ± 1.64 22.90 ± 2.47 27.49 ± 1.97 27.70 ± 1.98
SSIM .6699 ± .0724 .7201 ± .0609 .7311 ± .0626 .8861 ± .0366 .8908 ± .0366
FSIM .6987 ± .0460 .7325 ± .0313 .7481 ± .0322 .8389 ± .0230 .8407 ± .0229
SAM .0896 ± .0465 .0799 ± .0354 .0685 ± .0286 .0228 ± .0117 .0244 ± .0138

200

PSNR 22.37 ± 2.17 23.50 ± 1.68 23.33 ± 2.58 28.14 ± 2.09 28.68 ± 2.20
SSIM .6947 ± .0711 .7409 ± .0592 .7504 ± .0612 .9001 ± .0335 .9111 ± .0357
FSIM .7141 ± .0448 .7452 ± .0307 .7610 ± .0321 .8512 ± .0240 .8571 ± .0250
SAM .0833 ± .0446 .0748 ± .0343 .0643 ± .0281 .0221 ± .0125 .0206 ± .0107

500

PSNR 23.66 ± 2.53 24.72 ± 1.85 24.58 ± 2.95 28.22 ± 2.11 29.31 ± 2.26
SSIM .7639 ± .0631 .7608 ± .0611 .8065 ± .0559 .9008 ± .0303 .9239 ± .0313
FSIM .7579 ± .0389 .7798 ± .0290 .7988 ± .0296 .8524 ± .0212 .8692 ± .0231
SAM .0641 ± .0388 .0605 ± .0317 .0488 ± .0201 .0201 ± .0117 .0186 ± .0109
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We observe that both methods that consider spatial-spectral information (DC-UNet-2ch and
DC-UNet-3) achieve significantly higher reconstruction metrics w.r.t. the methods that take into
account spatial information only (Tikhonov, DC-DL-FSPI, and DC-UNet-2). Achieving the best
reconstruction metrics, DC-UNet-3 outperforms DC-UNet-2 and DC-DL-FSPI by at least 4.6
dBs and DC-UNet-2ch by at least 0.2 dBs.

From the results presented in Fig. 2 we observe that while Tikhonov, DC-DL-FSPI, and
DC-UNet-2 fail to reconstruct information from the first and the last channels of HSI, introduction
of spatial-spectral correlation helps DC-UNet-2ch and DC-UNet-3 to recover these channels.
Inclusion of higher order convolutions allows DC-UNet-3 to perform the best reconstruction of
image details.

5.2. Reconstruction from experimental data

Figure 3 and Fig. 4 illustrate the performance of the five methods for recovering the four
experimental datasets described in 4.2. We plot the spectral curves of a small region in Fig. 5. We
observe that the inclusion of the artifact correction network in the image domain produces less
noisy and smoother images than those provided by the Tikhonov method. Since DC-DL-FSPI
and DC-UNet-2 act in the spatial domain, they tend to improve images w.r.t. the Tikhonov
method in each spectral channel separately. Despite some remaining artifacts, DC-UNet-2ch and

Fig. 3. Reconstruction of the experimental acquisition of two objects: STL-10 cat (columns
1–3) and off-centered Siemens star (columns 4–6). The top row displays the ground truth
images for the 2nd, 5th and 9th channels. We compare the reconstruction results using five
methods: Tikhonov, DC-DL-FSPI, DC-UNet-2, DC-UNet-2ch, DC-UNet-3.

DC-UNet-3 allow to restore sharper image details in all spectral channels with DC-UNet-3 being
clearly superior. This is especially noticeable on the border channels – cat face in STL-10 cat,
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Fig. 4. Reconstruction of the experimental acquisition of two objects: centered Siemens
star (columns 1–3) and LED lamp (columns 4–6). The top row displays the ground truth
images for the 2nd, 5th and 9th channels. We compare the reconstruction results using five
methods: Tikhonov, DC-DL-FSPI, DC-UNet-2, DC-UNet-2ch, DC-UNet-3.

letters in the off-centered Siemens star resolution target, and the Siemens star beams are closer to
those of the ground truth images. This is achieved thanks to the spatial-spectral regularization
nature and higher order convolutions of the postprocessing 3D network.

From the analysis of the spectral curves presented in Fig. 5 we observe, that while per-channel
based methods (Tikhonov, DC-DL-FSPI, and DC-UNet-2) are closer to the ground truth images
in terms of reflectance values in the border channels, DC-UNet-3 demonstrates closer values
to the ground truths in all other channels. Notable that per-channel based methods (Tikhonov,
DC-DL-FSPI, and DC-UNet-2) have the identical shape of the curve. From the first row, first
column, and the third row, second column in Fig. 5 it is seen that DC-UNet-3 tends to show the
most accurate repetition of the ground truth spectrum shape. DC-UNet-2ch, in turn, is often far
from the ground truth (Fig. 5, first row, second row, first column, third row, first column).

DC-UNet-3 achieves superior results in terms of noise reduction compared to all other methods
and better preservation of details compared to DC-UNet-2ch. We observe that taking into account
spectral correlation between adjacent channels helps to recover channels that initially contain less
information. This can be seen clearly from the off-centered Siemens star resolution target, where
the inscription is preserved in all spectral channels in contradistinction to the results obtained
with Tikhonov, DC-UNet-2, and DC-DL-FSPI.

Figure 6 presents the reconstruction of the color Siemens star target recovery using Tikhonov,
DC-DL-FSPI, DC-UNet-2, DC-UNet-2ch, and DC-UNet-3 methods. The Tikhonov solution
presents some artifacts such as the square-like structures on the frontier of the branches that stems
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Fig. 5. Spectral curves of the experimental reconstructions. Left column: 5th channels of
the ground truth images. Middle column: spectral curves for five methods and the reference,
corresponding to the point 1 on the image. Right column: spectral curves for five methods
and the reference, corresponding to the point 2 on the image.

from downsampling in the Hadamard basis, or the grain-like appearance from the photon-based
noise, whereas reconstruction with all other methods results in smoother images. Additionally,
DC-DL-FSPI tends to provide less noisy images than DC-UNet-2. Compared to DC-DL-FSPI
and DC-UNet-2, DC-UNet-2ch and DC-UNet-3 are able to retain certain details that are lost
when removing the artifacts. This can be observed in ‘Channel 4’ and ‘Channel 6’, where the
upper branches of the star were mostly erased and lost their alignment when reconstructed using
channel-based methods, but are mostly intact after recovery with methods considering the entire
HSI. Furthermore, in ‘Channel 9’, DC-DL-FSPI and DC-UNet-2 almost erased the bottom left
branches, as opposed to the results provided by DC-UNet3. In turn, DC-UNet-2ch, introduced
unwanted artifacts into all channels. This indicates that DC-UNet-3 shows itself to be the best at
exploiting redundancy across spectral channels. To get a visual comparison of the hyperspectral
images, we also compute a pseudo color image as described in [54]. Comparing the pseudo
color images in the bottom row of Fig. 6, one can see that all five methods succeed in color
rendering. However, all methods give a slight shift in the color spectrum. The red branches
reconstructed via Tikhonov, DC-DL-FSPI, and DC-UNet-2 appear to be biased towards red
wavelengths, while the recovery with DC-UNet-2ch and DC-UNet-3 causes the red branches to
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Fig. 6. Reconstruction of the experimental color Siemens target with five methods: Tikhonov,
DC-DL-FSPI, DC-UNet-2, DC-UNet-2ch, and DC-UNet-3. Results are shown for the 2nd,
4th, 6th, and 9th channels. Bottom row displays pseudo color image computed with the
corresponding method recovery result according to [54].

shift towards orange wavelengths. A similar situation is observed in the blue branches of the
star, where Tikhonov, DC-DL-FSPI, and DC-UNet-2 applications result into the shift towards
the lower blue wavelengths, while reconstruction via DC-UNet-2ch and DC-UNet-3 shifts the
branches into the upper-blue or lower-green wavelengths. However, in terms of spatial resolution,
the branches produced by DC-UNet-3 appear to be of the highest resolution, in particular in the
upper left branches.

5.3. Limitations

The proposed three-dimensional network regularizes the reconstruction in both the spatial and
the spectral dimensions, being capable of filling in the missing information and of improving the
reconstruction quality. Still, there are some limitations to the proposed reconstruction pipeline.

The first limitation stems from a small number of spectral channels used in our study. Given
that the conventional hyperspectral applications may require additional channels, one should
carefully explore whether the spectral correlations between the channels can still be exploited
when there is a number of them. Second, in our work we considered small images of size 64× 64.
While there is no specific limitation on application of the proposed method to larger images,
training of the network in this case might require additional GPU memory, as the covariance
matrix scales with the square of the image size. This issue may be addressed by discarding the
rows and columns corresponding to small correlations. Another limitation is associated with
the choice of the architecture of the neural network. Here, we focused on the UNet because
it has demonstrated its effectiveness in many problems across many disciplines. However,
this architecture could prove too heavy if larger convolutional filters are required (to exploit



Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 39571

additional channels or dimensions, e.g., third spatial coordinate or time). In this case, the choice
of other architectures may be more sensible, e.g. the one proposed in [22] and explored within
DC-DL-FSPI. Lastly, the proposed DC-UNet-3 tends to correlate the adjacent spectral channels
during the reconstruction. While this feature can be considered as an advantage for an object
with a smooth spectra (e.g., the cat’s face or the off-centered Siemens target in Fig. 4), it could
be a disadvantage if there are spectral discontinuities (e.g., the color Siemens target in Fig. (6)).
Training a 3D DC-Net using a hyperspectral image database with distinct spectral features should
alleviate this issue.

6. Conclusion

We proposed the 3D deep neural network for reconstructing hyperspectral images from a small
number of noisy single-pixel measurements. The layers of the proposed network combine the
classical Tikhonov solution with learnable convolution filters. To exploit the correlation between
the spectral channels, it considers the filters that act in both the spatial and the spectral dimensions.
Our experiments show that the 3D UNet improves the reconstruction quality compared to the 2D
UNet that acts in the image domain only and the 2D UNet that is applied in spatial and spectral
domains. The proposed 3D network demonstrates superior performance in terms of quantitative
metrics as well as visually. This is particularly evident in the channels with low photon counts,
i.e., with the overwhelming noise and lack of information. In the future work, we plan to consider
spectral discontinuities, additional dimensions, and other architectures of the base network.
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