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1*, LoreleïCazenave1, Mickaël Berthon1, Ruben Martinez2,

Vincent Mazenod2, Marie-Claude Borion1,3, Delphine PaillerID
3, Nicolas Rocher3,
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Abstract

The Covid-19 pandemic has led millions of students worldwide to intensify their use of digital

education. This massive change is not reflected by the scant scientific research on the effec-

tiveness of methods relying on digital learning compared to other innovative and more popu-

lar methods involving face-to-face interactions. Here, we tested the effectiveness of

computer-assisted instruction (CAI) in Science and Technology compared to inquiry-based

learning (IBL), another modern method which, however, requires students to interact with

each other in the classroom. Our research also considered socio-cognitive factors–working

memory (WM), socioeconomic status (SES), and academic self-concept (ASC)–known to

predict academic performance but usually ignored in research on IBL and CAI. Five hundred

and nine middle-school students, a fairly high sample size compared with relevant studies,

received either IBL or CAI for a period varying from four to ten weeks prior to the Covid-19

events. After controlling for students’ prior knowledge and socio-cognitive factors, multilevel

modelling showed that CAI was more effective than IBL. Although CAI-related benefits were

stable across students’ SES and ASC, they were particularly pronounced for those with

higher WM capacity. While indicating the need to adapt CAI for students with poorer WM,

these findings further justify the use of CAI both in normal times (without excluding other

methods) and during pandemic episodes.

Introduction

The accelerating spread of Covid-19 has led the majority of countries across the globe to close

their schools for varying lengths of time. If closing schools seems to be a logical decision in
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order to impose social distancing in the population, it tends to have a disproportionately nega-

tive impact on academic learning over time, with half of students affected worldwide [1]. This

reality has left a poor impression on digital learning (countries used television, radio, online

platforms, and take-home packages [2]) as inequalities have increased as a result of the digital

divide [3, 4], but more importantly, due to the lack of an education expert where many respon-

sibilities and tasks were imposed on parents [5]. In order to prevent future scenarios, it is

important to focus on methods that guarantee autonomous learning trough interaction with

digital expert tutors able to monitor the learning process efficiently to mitigate learning loss.

Off-pandemic times should therefore be exploited to examine the efficacy of such methods

compared to other innovative and more popular methods involving face-to-face interactions.

The present study sought to investigate this question in Science and Technology, by examining

the benefits of computer-assisted instruction (CAI) compared to a different, although well-

established and well-defined instructional method for teaching science topics, which does not

traditionally rely on digital technologies, that is, inquiry-based learning (IBL). We were also

interested in examining the possible moderating role that socio-cognitive factors, and espe-

cially working memory (WM), may play in this respect.

Literature review

Computer-assisted instruction. Computer-assisted instruction refers to a self-learning

method using computers where instruction adopts training techniques monitored to meet spe-

cific needs and tailored to a student’s pace [6]. CAI has long been a subject of research, starting

with a large body of studies which emerged after the computer revolution in the sixties [7, 8].

Surprisingly however, CAI is still rarely used on a large scale today [9]. This tendency is, how-

ever, expected to change as the recent worldwide pandemic episodes have stressed the need to

encourage these forms of instruction in order to prevent the disastrous consequences of school

closure [10]. It is thus timely and relevant to provide an updated view of the effectiveness of

such methods in order to prepare for future scenarios.

Thanks to half a century of progress since the pioneering work of Carbonell [7], CAI now

permits the deployment of a wide-ranging content, both informative and evaluative through a

variety of high-quality virtual materials (texts, videos, graphics, audios) relating to specific top-

ics [11]. The training methods used in CAI may include drill-and-practice exercises that rein-

force basic skills through repeated exposure to content [12], problem-solving exercises [13],

tutorials that make use of hints and feedback [14], simulations that translate conceptual con-

tent into realistic situations [15], educational games where the learner playfully competes with

the computer [16] and interactive stories that propose narrative scenarios where student and

the computer form a partnership to complete the task [17].

The effectiveness of computer-assisted instruction. Research into the effectiveness of CAI can

be broken down into two distinct time periods, corresponding to the first and second genera-

tions of CAI, which were endowed with different degrees of adaptivity and artificial intelli-

gence. As documented in a meta-analysis of 50 experimental studies [8], both old and more

recent research has usually compared computer tutoring to individualized human tutors or to

teacher-led instructions, referred to as no-tutor conditions. The first generation of computer

tutors produced moderate positive effects of about .30 standard deviations relative to no-tutor

conditions [18]. The second generation, more sophisticated and adaptive and referred to as

intelligent tutoring systems, showed greater effectiveness from .37 to .66 [8, 19, 20].

To evaluate the effectiveness of CAI, the choice of comparison group is crucial and the CAI

intervention is usually contrasted with a group receiving so-called “conventional classroom

instruction” [8], or “teacher-led large group instruction” [18]. However, the notion of
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“teacher-led large group instruction” is a coarse definition of what goes on in the classroom

and the transmission of knowledge may vary greatly depending on the teachers’ characteristics

or their preferred methods of instruction. A better comparison should include instruction

based on more identifiable and well-defined practices for the domains under interest here, that

is, Science and Technology.

Inquiry-based learning. A particularly well-suited method for teaching scientific subjects

is IBL. It refers to a self-learning method that follows practices similar to those of professional

scientists in order to construct knowledge through self-directed investigations [21]. The

famous philosopher John Dewey and the Physics Nobel Prize-winner Georges Charpak

democratized IBL by promoting the application of scientific reasoning principles to education

in order to provide students with the skills required in modern societies. Typically, the method

consists in teachers supervising a group of students working collaboratively in face-to-face

interactions and elaborating scientific concepts using hypothetico-deductive thinking [22, 23].

When addressing a particular science topic, the IBL process is based on the active reproduc-

tion–by students themselves–of the fundamental steps of scientific reasoning: formulating

hypotheses, designing an experiment, collecting results, interpreting them and drawing con-

clusions [24, 25]. To do so, students work hands-on in dedicated classrooms, thus allowing

them to interact with physical material, under the guidance of a trained teacher who ensures

that the IBL reasoning phases are completed successfully.

The effectiveness of inquiry-based learning has long been a subject of debate. While the

evidence from the early studies indicated positive effects of IBL compared to more conven-

tional, teacher-led instruction [26, 27], international reports have challenged this position. The

2015 PISA [28, 29] report investigated achievements in science among students from primary

to middle school across all countries and economies included in the project. Regarding the

impact on IBL on academic performance, the PISA report showed that after statistically con-

trolling for students’ and schools’ socioeconomic status (SES), IBL was negatively associated

with students’ performance in fifty-six countries. When the analysis was restricted to the

OECD countries, IBL was positively associated with features other than performance, such as

epistemological convictions and motivation to engage in a scientific career, even though these

correlations were weaker than with direct instructional methods. Providing a fine analysis of

PISA 2015 in England, Jerrim et al. [30] reached similar conclusions. The analysis showed that,

unless associated with high levels of guidance, IBL had a very weak positive relationship with

attainment in science, and that this small effect was robust regardless of the type of inquiry,

test measure, varying levels of disciplinary climates in classrooms, gender, and prior

attainment.

Indeed, guidance is an important variable that seems to account almost entirely for the

presence of an IBL effect [25, 31]. Applying a meta-analytic approach to 72 studies, Lazonder

and Harmsen [25] distinguished among studies using different types of guidance and con-

trasted these studies with others using unguided IBL. They found that a minimal amount of

guidance was needed for IBL to be effective, with an average effect size of .50 on learning out-

comes in terms of learning skills and domain knowledge. The fact that the IBL size effect on

learning skills was twice as high (.78) as that on domain knowledge (.37) is consistent with pre-

vious findings suggesting that IBL is particularly suited for improving epistemological thinking

rather than memorizing factual content [29], and better suited for deep than surface learning

[32]. Furthermore, increasing the degree of guidance (i.e., from mere supervision to full expla-

nations) seemed to have little impact except on measures of performance during ongoing

activities [25], suggesting that any type of guidance is sufficient to elicit an IBL effect on learn-

ing outcomes. However, it should be remembered that Jerrim et al. [30] found that IBL was

effective only when coupled with high levels of guidance. Finally, Lazonder and Harmsen [25]
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showed that the positive effect of guided IBL was not specific to age, suggesting that children,

teenagers and adolescents benefited equally from it.

Comparing the two methods. Although the popularity of IBL has risen more steeply than

that of CAI in recent years (cf. Fig 1), this does not necessarily mean that IBL is more effective.

Curiously, the two methods have never been compared directly in a single integrative study on

identical objects of knowledge in the Science and Technology field. Our approach is oriented

towards helping teachers to identify which methods, among available ones, are most efficient

in inculcating knowledge and competences that reflect standard evaluation criteria from the

national programme. It is worth noting that in the general curriculum, those criteria largely

involve the acquisition of factual and conceptual knowledge more than meta-cognitive skills

[33]. Therefore, in the absence new evaluation policies, a method’s efficiency is here under-

stood as its ability to address those standard criteria. In the context of the digital revolution,

and given the considerable financial supports available for digital technologies in education

(EdTechs) [34], it is critically important to determine whether CAI is beneficial compared to

well-established and well-defined alternative forms of instruction such as IBL. The CAI vs IBL

comparison is interesting as both methods a) are typically associated with active learning. In

both methods, students play an active role in the learning process by engaging in problem-

solving activities, an approach which requires more than just listening [35, 36]. Furthermore,

in both methods b) students benefit from highly interactive environments and c) work autono-

mously in a self-paced manner under the supervision of the teacher [17, 37].

Conversely, CAI and IBL differ with regard to three main factors. These concern a) the use

of digital technology for learning (absent in IBL) and b) the collaborative nature of IBL prac-

tices. In IBL, students indeed typically engage in peer to peer interactions [23], while in CAI,

they typically interact with the computer agent [38]. Therefore, in IBL they can engage in

debates and discussions, activities which are minimized in CAI. Another difference concerns

c) the immersive properties and frequent use of private feedback in CAI which are known to

provide high control over the task and keep students busy and motivated [39]. Feedback in

CAI is delivered by the computer thus not visible by the peers. In contrast most feedback in

IBL is public, especially those coming from peers. It should be noted that IBL has also been

Fig 1. The popularity of IBL and CAI over the past twenty years.

https://doi.org/10.1371/journal.pone.0259664.g001
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adapted for use in computer-assisted environments [40, 41]. In the present study, however, we

are interested in the very pragmatic and direct comparison of CAI vs IBL in their differing but

conventional forms as applied to identical objects of knowledge. This comparison was

prompted by the following simple and pragmatic question: which of the two methods, in their

conventional form, is more effective for teaching identical topics in Science and Technology?

The role of working memory, academic self-concept and socioeconomic status. Not

only has no direct comparison ever been made, but there is also a striking lack of documenta-

tion on how basic socio-cognitive individual differences–fundamental in education–may mod-

ulate the effectiveness of the two methods. The intrinsic navigational nature of CAI and its

rich functionalities and content raise questions regarding the cognitive requirements that can

support such a form of instruction, especially in terms of WM capacity [42, 43]. WM is

thought of as a flexible but limited mental capacity that permits the temporal maintenance and

manipulation of information in an active state for ongoing processing [44]. It reflects “an abil-

ity to maintain information in the maelstrom of divergent thought” [45], where maintenance
relates to the crucial ability to temporarily store information in memory while directing atten-

tion towards the stimuli that are relevant to our current goals (e.g., learning). WM is a strong

predictor of general cognitive abilities [45, 46] and academic achievement [47, 48]. More pre-

cisely, WM is essential for supporting complex activities such as language, reading comprehen-

sion, problem-solving and reasoning [49, 50].

Students with low WM capacity (i.e., hence, those who are less able to control their atten-

tion) might be particularly impacted by the diversity of content, materials and navigational fea-

tures of CAI, which may distract them from their learning goals. The digital environments

implemented in CAI indeed expose students to large amounts of information presented in dif-

ferent modalities and through hypertext links that may overload the cognitive system [51, 52],

especially in students with low WM capacity who may need to repeat the same action several

times in order to understand specific pieces of information before moving on to the next step.

As an illustration of the deleterious effects of navigational features, Scharinger et al. (2015)

[53] found an additional cognitive load when reading involved having to navigate through

hypertext links compared to pure reading.

For different reasons, IBL could be equally challenging for the attentional system. Accord-

ing to Cognitive Load theorists (e.g., [42, 54]), classic IBL relies little on previous explicit expo-

sure to content, thus preventing novice students from building a mental model of the material

itself in long-term memory [55, 56]. This may result in IBL instructional designs that increase

cognitive load [55, 57] and impair retention [58]. However, providing high levels of guidance

in IBL reduces cognitive load [55] and the more complex the task is, the more guidance is

required [57].

Additionally, the present study considered two other major socio-cognitive factors that

may moderate the CAI/IBL effects, namely academic self-concept (ASC) and SES. Academic

self-concept, the perception that students have about their own abilities compared with those

of their classmates [59], constitutes one of the most relevant variables in the academic world

because of its influence on motivation, learning and cognitive functioning [60]. As IBL

requires students to work collectively, those with a low ASC may experience negative social

comparisons with some of their classmates and lack the necessary confidence when reasoning

in their presence [61]. This in turn may hamper their progression due to increased confusion

or increased social withdrawal under IBL, a problem that may be reduced under CAI. This

idea is supported by evidence showing that publicly drawing attention to the failures of stu-

dents with low ASC—even without any intention to force a negative comparison with their

peers- may cause new failures to arise [61]. An alternative hypothesis holds that collaborative

work may be a means to improve self-efficacy [62], a construct close to ASC [63]. In particular,
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students who deliberately pay attention to peers who succeed in the task at hand are likely to

increase their sense of self-efficacy [62, 64].

Students’ socioeconomic background may also make a difference. Those from privileged

backgrounds may have access to more opportunities to explore sciences outside the school

(e.g., family support, going to museums, having encyclopaedias and personal computers at

home) [65], thus enhancing their knowledge and potentially giving them an advantage in both

methods compared with their low-socioeconomic counterparts.

Research questions

The aim of the present study was to compare the two methods on identical Science and Tech-

nology topics taken from the official French national educational programme, while also

focusing on socio-cognitive factors, WM in particular, as possible moderators of the effects of

these instructional methods. More precisely, we sought to answer the following questions:

1. Is CAI more effective than IBL in learning similar topics in Science and Technology?

2. Do WM capacity, ASC and SES modulate the effects of these instructional methods?

Materials and methods

Participants

An initial sample of 837 middle-school students participated in this study. Of the initial sample

of students, 4.2% did not complete the academic tests in at least one of the disciplines, includ-

ing Physics-Chemistry, Earth and Life Sciences, and Technology. Of the remaining 802 partici-

pants, 26.6% made errors on more than 50% of the secondary task of the WM task (see the

“Working memory capacity” subsection of the Materials) and were therefore excluded from

the analyses. We additionally excluded 5.8% of the remaining 589 students as they were identi-

fied as univariate outliers on WM performance on at least one of the two following criteria:

interquartile range�1.5 and Cook’s distance. Of the remaining 555 participants, 8.3% did not

complete all the items of all the ASC scales in the related disciplines. The final sample therefore

consisted of 509 middle-school students (Mage = 12.82, SD = 0.44; 272 females), which is quite

large compared to experimental field studies in these areas [8, 25]. All of the students were sev-

enth graders, 282 took all three courses (55%), 97 took two courses (19%), and the remaining

130 took only one course (26%). Within the final sample size (N = 509), 46% were categorized

as privileged students and 54% were disadvantaged students according to the nomenclature

of professions and socio-professional categories of the French Ministry of Education. Three-

hundred-and-twenty-eight students (64%) received IBL instruction and the remaining one-

hundred-and-eighty-one students (36%) were taught using CAI. Since our research project

took place in authentic school settings, the level of participation of particular schools and refer-

ent teachers determined the enrolment of individuals or groups of students in one or more

topics.

Ethics statement

The study is part of a larger research project which received an approval from the Clermont

Auvergne University Ethics Committee (number IRBO0011540-2018-08) in conformity with

the French law on bioethics (covering Psychology). All participants’ parents received a written

informed consent form several weeks before the study that they had to read and sign to allow

their child to participate.
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Lesson plan and implementation

Computer-assisted instruction implementation. The CAI versions used for each subject

and topic (“mass and volume” in Physics-Chemistry, “climate” in Earth and Life Sciences, and

“material structure” in Technology) came from recent versions of a tool (Tactileo©) developed

by Maskott©. These more sophisticated and dynamic versions were the product of a collabora-

tive project in which programmers integrated the material content provided by teachers while

parametrizing the CAI in accordance with teachers’ and researchers’ recommendations. For

this study, we adopted the idea that technologies created or adapted by research teams and

including teachers are more efficient for learning than those either taken from the commercial

market or that simply use the technology as a delivery system [66]. For each topic, secondary

education teachers, school inspectors, programmers and designers collaboratively transcribed

the knowledge content of specific topics taken from the official French national educational

programme into the system. The selection of the knowledge content was decided on and

supervised by state school inspectors representative of the three disciplines involved. The

knowledge content was adapted to the CAI architecture by means of a variety of pedagogical

training methods that are typically reported in the CAI literature [13, 14, 17], including prob-

lem solving exercises and tutoring modes embedded in narrative scenarios (see S1 and S2

Appendices in S1 File). The content was displayed through a variety of materials (texts,

videos, audios). The teachers’ role was to introduce the topic and then to let their students

learn on their own by interacting with the CAI and only intervene in the case of problems or

questions from students. Students were instructed to avoid collaboration with other students

in order to maximize the time spent at their computer. However, if students spontaneously

interacted with their classmates, the teachers did not stop them from doing so as long as the

exchange was brief. The teachers therefore encouraged their students to interact primarily

with the computer. Each student assigned to the CAI condition was equipped with a digital

tablet and interacted with the CAI in their usual classrooms in the presence of their usual sub-

ject teacher.

Inquiry-based learning implementation. All teachers in the IBL condition had been

trained in this method by experts from a national foundation dedicated to IBL, represented

locally by the “House for Science in Auvergne” (Maison Pour la Science en Auvergne). This

training was a prerequisite for teachers to be involved in the IBL condition and guaranteed

that they met the national standards for good IBL practices, including being able to give an

appropriate level of guidance to students (c.f. [30]). The underlying content knowledge in the

IBL condition was identical to that of the CAI condition and adapted to the instructional

method by expert IBL teachers under the supervision of state school inspectors. In the same

way as in the CAI condition, teachers in the IBL condition introduced the topic and provided

general guidelines on how to reason scientifically about the topics under study. Students

worked in their usual classrooms and were instructed by their teachers to learn on their own

by collaborating with other students (in groups of 3–4 students) according to the IBL guide-

lines of the House for Science in Auvergne. Teachers intervened in the case of problems or

questions from students, while also ensuring that the different phases of IBL reasoning (i.e.,

formulating hypotheses, designing an experiment, collecting results, interpreting them and

drawing conclusions) proceeded correctly.

Intervention duration. In both the IBL and CAI conditions, students were exposed to

topics related to Physics-Chemistry, Earth and Life Sciences, and Technology (see Fig 2) for a

period varying from four to ten weeks. More precisely, the exposure duration to CAI and IBL

differed across disciplines depending on the usual amount of time devoted to each topic in the

French national educational programme. The CAI and IBL interventions lasted four weeks for
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Technology (focusing on material structure), six weeks for Earth and Life Sciences (climate),

and ten weeks for Physics-Chemistry (mass and volume).

Materials

Academic performance. Test of prior knowledge (T0) before intervention. Measures of

prior knowledge were taken in order to determine the efficacy of CAI on academic perfor-

mance in Physics-Chemistry, Earth and Life Science and Technology. These measures assessed

contents from the national educational programme acquired during the previous year and were

used to provide a performance baseline intended to control for initial individual differences in

performance as well as to examine potential interactions with instructional methods. The tests

of prior knowledge consisted in short-answer questions and multiple-choice questions focusing

on relevant topics from the national educational programme for each subject. Students took the

T0 at least two weeks before the experimental interventions. Both to maximize statistical power

and to standardize test metrics, the three T0 scores were centred, averaged and scaled to form

composite Science and Technology scores ranging from 0 to 20 points.

Tests of knowledge (T1) after intervention. As for T0, T1 measures also consisted in short-

answer and multiple-choice questions focusing on relevant topics of the national educational

programme for each subject (for an example of a T1 knowledge test, see S3 Appendix in S1

File). In contrast with T0, T1 measures assessed contents that were taught during the current

curriculum year (seventh grade) via participation in one of the two instructional methods (IBL

or CAI). The T1 tests included a mixture of factual knowledge and learning skills in accor-

dance with the requirements of the French government (see S4 Appendix in S1 File), which

was represented by state school inspectors who actively collaborated in this study. In Physics,

for example, the students had to learn to differentiate the notions of mass and volume, to

understand which instruments are used to measure one or the other, and their conditions of

use. The “paths” for this learning were therefore different depending on whether the students

Fig 2. The experimental design of the present study. The pedagogical material and academic test metrics in Physics-

Chemistry, Earth and Life Sciences, and Technology were collaboratively elaborated by teams of teachers from each

discipline. All data were collected in real classroom environments via an online platform dedicated to the present

research, including demographics, academic tests, questionnaires, and WM measures.

https://doi.org/10.1371/journal.pone.0259664.g002
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were exposed to the CAI or IBL method. However, the final test was composed of questions

and exercises corresponding to the common denominator of the knowledge and skills that

each student could, in principle, acquire with these two methods. Students took T1 approxi-

mately two weeks after the intervention. Again, the three T1 scores were merged into a single

Science and Technology score ranging from 0 to 20 points.

Socio-cognitive assessments. Working memory capacity. This continuous variable was the

WM performance score on the Operation span task adapted from [67] and available online at

http://englelab.gatech.edu/taskdownloads. The Operation span task is a computer-based task

consisting of lists of to-be-remembered (TBR) items interspersed with to-be-processed (TBP)

items. Participants had to memorize lists of TBR items while processing the items in the second-

ary task and to recall the lists of TBR items at the end of each trial. The TBR items were letters

and the secondary task was an arithmetic operation judgment task. For each TBP item, partici-

pants had to click on “yes” or “no” response buttons to determine whether the current item was

correct or incorrect among an equal number of correct and incorrect items. At the end of a

trial, a response screen invited participants to recall the TBR items in serial order by clicking on

the right items presented among a number of distracters and then press an “enter” button to

validate the response. The WM score corresponded to the average proportion of memory items

(i.e., consonants) that were correctly recalled in serial order for lists of 4, 5 and 6 consonants.

Academic self-concept. A 6-point Likert-type scale [68] was adapted from the French trans-

lation by Huguet et al. (2009) [59]. We modified Huguet et al.’s version developed for French

and Mathematics to assess self-concept in Physics-Chemistry, Earth and Life Sciences, and

Technology. All three versions showed very good reliability (Cronbach’s alphas > .80). Aca-

demic self-concept scales were tailored to each discipline; therefore, if students were taking

more than one course, their ASC in related disciplines were averaged.

Socioeconomic status. We used the nomenclature of professions and socio-professional cate-

gories published by the French National Institute for Statistical and Economic Studies [69].

We collapsed the original four-category indicator (i.e., disadvantaged, medium, privileged to

highly privileged backgrounds) into two categories (i.e., low and high) in order to simplify the

statistical analyses.

Data collection

All these data (academic performance and socio-cognitive assessments) were collected online

via a dedicated platform built for the purpose of the study. Students completed the tests and

questionnaires directly on the platform, which was made accessible from the school computer

lab. Data collection was supervised by national education personnel trained for the purpose of

the study. During data collection, each class was divided into two groups to guarantee a suffi-

cient number of computers per student and minimize noise.

Data collection spanned a maximum of thirty-seven weeks and varied depending on each

Science and Technology discipline. At the beginning of the school year, all students completed

the psychological assessments over a period of four weeks. Several weeks later (two to four

weeks for Technology, nine to eleven weeks for Earth and Life Sciences and thirteen to-fifteen

weeks for Physics-Chemistry), the academic pre-tests were administered. Two weeks later, the

intervention was deployed for four to ten weeks (see Intervention duration). Finally, two

weeks after each intervention, the academic post-test was administered.

Data analyses

We applied multilevel random intercept models to the three-level structure of the data (509

students in 48 classes in 11 schools). Random attribution to experimental conditions (i.e., IBL,
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CAI) was simply not feasible here since an optimum CAI approach depended on essential

equipment-related conditions, such as an adequate internet connection or a sufficient number

of modern computers per student, that not all schools could fulfil. This is a typical field con-

straint found in many large-scale studies [70]. To overcome this constraint, we followed up-to-

date recommendations [71, 72] and performed multilevel modelling, while carefully control-

ling a range of parameters in order to increase validity by reducing estimation bias, as

described below. We conducted all the statistical analyses with R software version 4.0.1 [73]

and used the CAR [74] and lme4 [75] packages for the preliminary analyses and subsequent

multilevel models, respectively.

Results

Preliminary analyses

We conducted preliminary analyses of pre-test imbalance (Fig 3) for students’ prior knowl-

edge, SES, WM and ASC to ensure that students exposed to IBL and CAI had similar socio-

cognitive characteristics. These analyses resulted in non-significant group differences for prior

knowledge, F(1, 507) = 1.31, p = .25, SES, χ2 (1) = 3.02, p = .08, and WM, F< 1. Only ASC

showed an imbalance at pre-test, F(1, 507) = 17.09, p< .001; however, as the effect size was

very small (η2 = .03), it was easily dealt with in the subsequent statistical procedure by fixing all

covariates at their grand mean [71, 72]. Prior knowledge and socio-cognitive factors were

entered as covariates and fixed at their grand mean in subsequent multilevel analyses. This

procedure allowed us to obtain bias-free estimates of the effects of the instructional methods

on learning outcomes.

Fig 3. Pre-test imbalance analysis for measures of prior knowledge, socioeconomic status, working memory

capacity and academic self-concept.

https://doi.org/10.1371/journal.pone.0259664.g003
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Multilevel models

Out of a series of models testing either main effects of instructional methods, prior knowledge

and socio-cognitive factors, or moderation effects in addition to main effects, two models fitted

the data equally well (see Table 1). Of the two models (Models 1 and 4), Model 1 comprised

main effects of instructional method, prior achievement, and socio-cognitive variables,

Table 1. Random intercept multilevel models in Sciences and Technology for the IBL vs. CAI comparison.

n

students = 509,

n classes = 48, n

schools = 11

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

E 95% CI E 95% CI E 95% CI E 95% CI E 95% CI E 95% CI

Fixed Effects

Student Level
Intercept 13.22 [12.75;13.75] 13.68��� [13.35;.13.99] 13.66��� [13.29;14.01] 13.69��� [13.36;14.00] 13.71��� [13.40;14.04] 13.68��� [13.31;14.00]

T0 1.22��� [.93;1.48] 1.16��� [.90;1.45] 1.22��� [.94;1.49] 1.21��� [.92;1.44] 1.22��� [.93;1.50]

SES -.78�� [-1.24;-0.29] -.76�� [-1.31;-.30] -.71� [-1.28;-.05] -.80�� [-1.31;-.35] -.78�� [-1.26;-.24]

WM .22 [-.04;.49] .23 [-.04;.47] .23 [-.04;.48] .41�� [.13;.70] .23 [.001;.48]

ASC .31� [.04;.61] .31� [.05;.60] .31� [.04;.58] .30� [.04;.57] .31�� [.01;.60]

School Level
CAI 1.29�� [.68;1.86] 1.28�� [.65;1.87] 1.30�� [.79;1.83] 1.38�� [.79;1.97] 1.29�� [.64;1.89]

Cross Level
Interactions

CAI x T0 -.23 [-.75;.30]

CAI x SES .22 [-.82;1.35]

CAI x WM .57� [.06;.1.12]

CAI x ASC -.01 [-.61;.51]

Random

Effects

Residual
variance

Student Level

(SD)

9.65 (3.11) 7.48 (2.73) 7.46 (2.73) 7.48 (2.74) 7.42 (2.72) 7.45 (2.74)

Class Level

(SD)

.00 (.00) .00 (.00) .00 (.00) .00 (.00) .00 (.00) .00 (.00)

School Level

(SD)

.47 (.69) .04 (.19) .04 (.22) .04 (.19) .04 (.19) .04 (.19)

Log

Likelihood

-1305.0 -1235.0 -1235.2 -1235.5 -1233.3 -1235.6

AIC 2618.1 2489.1 2490.3 2491.0 2486.6 2491.1

BIC 2635.0 2527.2 2532.6 2533.3 2528.9 2533.5

Χ2 (df) 138.95 (5) - .83 (1) .18 (1) 4.56 (1) .002 (1)

P < .001 - = .36 = .67 = .03 = .96

Note. The model in bold is the preferred model. T0 = test of prior knowledge; SES = socioeconomic status; WM = working memory; ASC = academic self-concept;

CAI = computer-assisted instruction (effect); E = estimate; CI = confidence interval; SD = standard deviation; df = degrees of freedom; AIC = Akaike information

criteria; BIC = Bayesian information criteria

� = significant at p< .05

�� = at p < .01

��� = at p< .001. Model 1 (main effects only) was the reference for comparison with all other models. Model comparison was based on a combination of fit indicators,

namely, X2p, AIC and BIC values. The model with the lowest AIC and BIC values along with a significant X2p indicated best fit for the data and was therefore preferred.

The AIC value indicated that Model 4 best fitted the data while the BIC value (penalizing for model complexity) indicated a better fit for Model 1.

https://doi.org/10.1371/journal.pone.0259664.t001
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whereas Model 4 additionally comprised a moderation effect of instructional method due to

WM capacity. As both models showed equal utility, we focused on the more explanative, inter-

action model (Model 4). The percentages of variance (Intra-Class Correlation coefficients,

ICCs) explained by schools and classes out to the total variance were negligibly small (ICC-

schools = 0.5% and ICCclasses = 0%) and are therefore not depicted. Importantly, as shown in Fig

4, prior knowledge and each socio-cognitive variable independently contributed to learning

outcomes.

Values of the regression coefficients from Model 4 for main effects of prior knowledge, SES,

WM and ASC are shown in Table 1, Model 4. Fig 4 shows adjusted regression lines. Each effect

was estimated at the grand mean of the other factors. The following factors positively predicted

academic performance: prior knowledge, β = 1.21, p< .001, 95% CI [.92; 1.44], WM, β = .41, p
= .008, 95% CI [.13; .70], and ASC, β = .30, p = .04, 95% CI [.04; .57]. Socioeconomic status

negatively predicted academic performance, β = -.80, p = .001, 95% CI [-1.31; -.35]. As

described below, only WM capacity modulated the effects of instructional methods.

Is computer-assisted instruction more effective than inquiry-based

learning in learning similar topics in Science and Technology?

Fig 5 (left panel) displays the significant main effect of instructional methods (β = 1.38, p =

.001, 95% CI [.79; 1.97]) found in Model 4, Table 1. The results revealed that students who

received CAI significantly outperformed students who received IBL in Science and Technol-

ogy by 1.38 points (out to 20). This roughly corresponds to an improvement from the 50th to

the 68th percentile. In other words, average students without any special commendation would

Fig 4. Estimated regression coefficient effects of prior knowledge, socioeconomic status, working memory and

academic self-concept on Science and Technology scores (Model 4).

https://doi.org/10.1371/journal.pone.0259664.g004
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be eligible for a cum laude distinction if instructed with CAI as opposed to IBL. Regarding the

prevention of school failure, these results indicate that about 6% of students receiving IBL who

failed on national evaluations would have succeeded with CAI. Six percent of seventh graders

still represents a population of nearly 50,000 students in France [76] and 300,000 students in

the US [77].

Do working memory capacity, academic self-concept and socioeconomic

status modulate the effects of instructional methods?

Fig 5 (right panel) shows the significant Instruction Method � WM capacity interaction effect

(β = .57, p = .03, 95% CI [.06; 1.12]) found in Model 4, Table 1. A one-standard deviation gain

in WM capacity resulted in a supplementary CAI benefit of 0.57 points (out to 20) regardless

of students’ prior knowledge, SES, and ASC. This additional benefit corresponds to an approx-

imate improvement from the 68th to the 78th percentile. This means that among students who

failed on national evaluations, an additional 2% would have succeeded if taught with CAI

instead of IBL, thanks to their higher WM capacity of about one standard deviation above

average. Transposed to the general population of seventh graders, this proportion would repre-

sent 15,000 and 90,000 students in France [76] and in the US [77], respectively.

Discussion

The PISA 2015 [29] survey (i.e. a survey conducted every 3 years with a sample of more than

500,000 middle-school students in 72 participating countries) reported no link between finan-

cial investments in information and communication technologies for education and students’

results on standardized tests, a finding which has revived the debate about the effectiveness of

digital devices in education [10]. However, the PISA (2015) report is based on non-

Fig 5. Adjusted mean Science and Technology scores (Model 4) in inquiry-based learning and computer-assisted

instruction (left panel) and as a function of students’ working memory capacity (right panel).

https://doi.org/10.1371/journal.pone.0259664.g005
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experimental and cross-sectional data. While the correlational analyses reported in the PISA

surveys may question the usefulness of digital practices, they are not sufficient to invalidate the

relevance of such practices in education. Furthermore, digital education represents an

umbrella term for very different methods where sophisticated tutoring approaches such as

CAI are lumped together with less sophisticated ones that merely deliver content, which limi-

tations in terms of effectiveness have been put forward by the Covid-19 events [5].

Computer-assisted instruction was more effective than inquiry-based

learning on students’ performances in Science and Technology

In the present comparative experimental approach, our findings suggest that CAI generally out-

performs IBL in Science and Technology, with the benefits being greater for students with

higher WM capacity. Although it is beyond the scope of this article to determine all the charac-

teristics responsible for the better performance observed in CAI, there may be several explana-

tions. First, the highly-structured nature of CAI, supported by a variety of training methods,

helps keep students engaged in the learning process and avoid off-task behaviours [78]. Con-

versely, research has shown that collaborative work (such as in IBL) is prone to off-task behav-

iours [79] and may lead to great variability in within-group individual contributions to the task

[80] both having negative consequences on learning outcomes [81]. Second, and more impor-

tantly, the tutoring modes in CAI ensure structured support adapted to each student’s learning

pace [82]. This entails more regular feedback than in IBL simply because teachers working with

large classes have limited time and attention, making it difficult to support each student individ-

ually [83]. Although student peers may provide some degree of feedback during IBL, the quality

of this feedback may not be as valid and reliable as a teacher’s expert feedback [84]. Third, the

narrative scenarios in CAI may produce more contextualized representations in long-term

memory and foster meaning attribution [85, 86] although this element is less likely to make a

difference as the IBL environment is highly contextualized too and additionally provides physi-

cal interaction with the real word, which is known to enhance memory retention [87, 88].

The finding that CAI outperforms IBL is an important one since IBL is considered a gold

standard method for teaching Science and Technology at school. In these domains, in which

reasoning, planning and finding solutions through face-to-face collaborative interactions–all

of which are central to IBL–are the rule rather than the exception, our results are counter-intu-

itive. Our findings do not mean that these highly desirable practices are not efficient. Instead,

they mean that allowing students to reason and plan alone with CAI may also be a valuable

option at certain points in students’ learning trajectories, meaning that teachers should be able

to include CAI in their repertoires along with other alternatives. An optimally balanced combi-

nation between different instruction methods may follow a dynamic adjustment to match

individual needs and temporary states during the learning process. For example, performing

CAI prior to IBL might help a student gain more confidence before being confronted with oth-

ers’ opinions while the opposite might give another student the opportunity to reflect on previ-

ous actions and discussions when receiving feedback from the digital tutor agent.

Another lesson learned from our data is that CAI proved superior regardless of student’s

ASC and SES, indicating that many students may indeed derive the same benefits from it. This

lesson is more encouraging than the correlational reanalyses reported in the PISA 2015 data

[89] which suggest that increasing the use of digital technologies for educational purposes

among students who are less likely to use these technologies benefits only students of medium

and high SES. By focusing specifically on the effectiveness of CAI by means of an experimental

approach, we challenge this position by suggesting that CAI may help bring about greater

equality of learning opportunities among students from different socioeconomic backgrounds.
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Likewise, the fact that CAI was of equal benefit to students with high and low ASC echoes

what has been reported experimentally in undergraduate students receiving either face-to-face

or online instructions [90].

The benefit of computer-assisted instruction was higher for students with a

higher working memory capacity

Interestingly, we found a greater benefit of CAI in students with higher WM capacity. Given

that the content was identical across the CAI and IBL conditions, we interpret the observed

effect as being a consequence of the instructional design. Students’ WM might be overloaded

by the complexity of the CAI environment, with the result that students who are better able to

overcome this difficulty benefit more. In particular, the navigational nature of CAI, including

hypertext links and tools that enhance student’s autonomy, might distract attention from

essential information that will not be properly assimilated by the attentional system [43]. The

navigational demands of CAI particularly affect the extraneous component of cognitive load,

that is, the complexity of task-irrelevant material associated with the way information is pre-

sented (cf. the instructional design), as opposed to intrinsic load, that is to say the complexity

of the information itself [42, 91].

Another possibility is that IBL could have made greater demands on WM by increasing the

cognitive load [55]. However, this account is not supported by the significant Instruction

Method � WM capacity interaction effect, which indicates that CAI imposes greater WM

demands. There are two possible explanations for this. First, the IBL teachers in our study

were trained to meet the national standards for IBL. These include an appropriate level of

guidance [25, 30], which reduces the cognitive load [55, 57] and therefore also the WM

demands of the task. The second explanation is based on the collaborative nature of IBL and

transactive memory. Transactive memory refers to a collective mechanism through which a

group develops a memory system that distributes information across partners [92]. In collabo-

rative tasks, the interaction between partners seeking to achieve a common goal often results

in a specialized division of labour where the different partners adopt specific roles in the task

[92, 93]. In a first encoding phase, the partners’ roles are defined [94], for example, different

members perform the different scientific steps involved in IBL. During a storage phase, the

members store the information specific to their roles, thus retaining as opposed to sharing dif-

ferent information [92, 95]. During a retrieval phase, the members combine the different

sources of information that have been encoded and stored within the framework of their

respective roles. Consequently, each partner works as a memory aid for the others, leading to a

collaborative memory system that exceeds the capacity of each individual member [92, 93]. As

retention is distributed across partners, the cognitive load for each individual, and thus the

WM demands of the IBL instructional design for each individual learner, may be reduced.

Given that students work individually in CAI, WM demands are higher since each student

must memorize the content on their own, making the contribution of WM more visible.

To help reduce school failure through AI -during both normal and troubled times- our

findings suggest that one important aspect requiring attention is the consequences of CAI use

for students with below-average WM capacity, for whom CAI brought no benefit (see Fig 2,

right panel, students with -2 standard deviations from the mean WM measure). This suggests

that the conditions of use of CAI should be adapted for these students, who are more likely to

exhibit attentional problems. In line with previous recommendations, one solution may be to

shorten or sequence the CAI session (e.g., 15-min sessions, 3 times per day) in order to relieve

attention and memory load [96]. Fortunately, this objective could easily be achieved since CAI

is highly flexible, individualized and remains accessible outside of school. Furthermore,
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adaptations could be made based on the instructional design of CAI according to each stu-

dent’s WM capacity. To reduce the cognitive load for all students and further boost the benefits

of CAI, our CAI condition should have carefully considered the split attention effect [42, 97].

When synchronized in a way that maximizes multimodality overlap, the use of different media

modalities helps focus students’ attention, for example through the complementary and simul-

taneous inclusion of audio and visual sources [42, 97]. For students with lower WM capacity,

decreasing the number of elements presented on screen in the light of individual capacity may

reduce the observed WM effect [93, 98]. However, considering that students with higher WM

capacity can process larger amounts of information, thus deriving more benefit from CAI, we

may still expect the achievement gap between low and high WM students to increase even

with more WM-adaptive CAI technology. This can be viewed as an extension to CAI of the

Matthew effect, a framework describing how children with various minor advantages in read-

ing (and other abilities) progress faster and draw away from their less advantaged peers, thus

steadily increasing the achievement gap throughout the schooling process [94, 96].

Implications

By indicating that, in normal times, CAI may be more efficient than the well-established

method used for Science and Technology (IBL), our findings further legitimize CAI as a way

of helping to prevent the disastrous consequences of pandemics on academic learning. How-

ever, as also indicated by our data, the benefits of CAI do not occur whatever students’ work-

ing memory capacity. The interaction found here between CAI and WM gives us reason to

doubt the commercial claims which have multiplied in the absence of solid scientific data since

the start of the pandemic, suggesting, for example, that e.learning increases retention rates by

25% to 60%. As our results indicate, even with digital technologies accessible to all (regardless

of students’ SES), their educational effectiveness is not necessarily guaranteed, as their benefits

for learning may depend on factors such as students’ WM. Failure to take this into account

would be to condemn ourselves to an “e.learning illusion” liable to aggravate rather than

improve the situation of many students around the globe. In addition to the learning losses

characterizing many students during the school holidays (roughly one month of learning on

average [99]), students with lower WM capacity would be penalized by inappropriate digital

education. There are areas in which this new approach can be implemented successfully, but it

is also necessary to be aware that the educational use of CAI and digital technologies in general

may have to be nuanced by students’ cognitive characteristics [100].

This research effort, which must be conducted in parallel with the search for Covid-19 vac-

cines and treatments, is essential if we are to assess the value of CAIs and e.learning in general

and not only on the basis of their frequency of use by teachers and students. Likewise, it is

essential that the communities concerned (teachers, students and their families, policy makers)

discuss their experiences in this area in order not only to try to optimize them but also to iden-

tify and/or enrich the most relevant avenues of research and to avoid sterile and possibly also

dangerous slogans (as can also be the case with a hastily produced vaccine). Despite the

urgency of dealing with the current pandemic, our results therefore suggest that we should not

be scared of devoting scientific research to identifying the strengths and weaknesses of the uses

of digital technologies and of the currently available services and applications. This is all the

more important given that pandemics appear to have been increasing in frequency over the

last few decades, and that the adoption of online learning may persist post-pandemic and thus

be used more intensively than before. If it has to happen, we stress that policy makers should

pay particular attention to the implementation of tutoring techniques in distant learning in

addition to the provision of content. In normal times, however, this argument should not be
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taken as in favor for a “all digitalized” education system, but rather, in favor of a diversification

of methods to better address students’ heterogeneity.

Limitations

Some limitations should be pointed out. First, we were not able to determine exactly which

characteristics of CAI specifically tap into WM. Future research is needed to provide clear

indications about which features (e.g., navigational constraints, diversity of functionalities) tap

into WM and may be further adapted for students with lower WM capacity (in addition to the

recommendations provided here on CAI). Second, this study was conducted with middle-

school students, meaning that the benefits of CAI might have been underestimated. As shown

in previous work, while the effectiveness of IBL is stable across ages [25], CAI effects increase

with school grades, with the largest effect sizes being found in postsecondary education [8].

Third, we were limited by the fact that the variety of topics studied here were analysed together

as a Science and Technology score. Indeed, although our sample size was large enough to con-

duct broad–yet robust–analyses, thereby increasing generalizability as in the case of a meta-

analysis, it lost in specificity due to the use of smaller and more heterogeneous samples in sepa-

rate school subjects and experimental conditions, precluding fine-grained–but still robust–

analyses. This heterogeneity was directly linked to field constraints and, while we acknowledge

that ecological settings do not offer ideal conditions, only this complementary approach can

provide a bridge between the laboratory and the real world. A fourth limitation of our study

stems for its lack of direct assessment of students’ interest in school subjects and topics. For

example, Maltese and Tai (2011) [101] have stressed the importance of students’ early interest

in science topics for predicting their enrolment in college science and mathematics courses,

with 65% of the students declaring that their interest started before middle school. This is espe-

cially important given that IBL is known to enhance students’ motivation to learn and interest

in scientific topics [102]. A direct assessment of interest in future studies may be useful in

order to gain insights into whether CAI or IBL may differentially benefit students with low

interest in science subjects. More generally, a better discrimination of knowledge and skills

components in our knowledge tests would have shed light on the differentiated and comple-

mentary nature of benefits that CAI and IBL produce on factual knowledge and epistemologi-

cal thinking [25, 29], which would further legitimate a combined use of these methods. Last

but not least, a fifth limitation relates to the lack of a collaborative version of CAI (using CAI

in combination with peer-to-peer interactions), which could have clarified our comparison,

controlling for the effect of collaboration per se, although the present results do not suggest a

particular benefit associated with collaborative work.

Conclusion

The present study showed the potential of CAI to improve academic performance in Science

and Technology compared to IBL, a well-established and popular method of instruction. Com-

pared to IBL, the benefits of CAI were stable across students’ ASC and SES, while being higher

for students with higher WM capacity. Despite the overall benefit of CAI, our results suggest

that special attention should be paid to the WM demands of CAI, which might require adapta-

tions to the instructional design for students with lower WM capacity.
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Direction de l’évaluation, de la prospective et de la performance. Repère et références statistiques
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