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An explicit finite volume scheme on staggered grids for the Euler
equations: unstructured meshes, stability analysis and energy

conservation

Thierry Goudon∗, Julie Llobell†, Sebastian Minjeaud‡

Université Côte d’Azur, Inria, CNRS, LJAD
Parc Valrose, F-06108 Nice, France

Abstract

We set up a numerical strategy for the simulation of the Euler equations, in the framework
of finite volume staggered discretizations where numerical densities, energies and velocities are
stored on different locations. The main difficulty relies on the treatment of the total energy,
which mixes quantities stored on different grids. The proposed method is strongly inspired, on
the one hand, from the kinetic framework for the definition of the numerical fluxes, and, on
the other hand, from the Discrete Duality Finite Volume (ddfv) framework, which has been
designed for the simulation of elliptic equations on complex meshes. The time discretization is
explicit and we exhibit stability conditions that guaranty the positivity of the discrete densities
and internal energies. Moreover, while the scheme works on the internal energy equation, we
can define a discrete total energy which satisfies a local conservation equation. We provide a set
of numerical simulations to illustrate the behaviour of the scheme.
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1 Introduction
This work is concerned with the simulation of the Euler system of gas dynamics

∂tρ+ ∇ ·
(
ρu
)

= 0,

∂t
(
ρu
)

+ ∇ ·
(
ρu⊗ u

)
+ ∇p = 0,

∂t
(
ρE
)

+ ∇ ·
(
ρEu

)
+ ∇ ·

(
pu
)

= 0.
(1)

The unknowns depend on the time and space variables (t, x) ∈ [0,∞)×Ω with Ω ⊂ R2, a regular
and bounded domain. In (1), ρ, u, E and p stand for the mass density, the velocity field, the
total energy and the pressure respectively. The pressure is related to the independent unknowns
(ρ,u, E) through an equation of state that depends of the adiabatic exponent γ > 1; in what
follows we set

E = ‖u‖
2

2 + e and p = (γ − 1)ρe,

where e is the internal energy.
The originality of our approach is to consider staggered grids, which means that the numerical

unknowns are stored at different locations of the mesh. Consequently, in contrast to the usual
approaches for the Euler equations, (1) is not treated as a system for the conserved quantities
(ρ, ρu, ρE), but instead each equation is considered “independently” on its own grid. Therefore,
the scheme is not based on resolution of local Riemann problems, but it uses only a relevant (and
simple) notion of numerical fluxes, and the upwinding principles. This viewpoint is particularly
motivated by the will to address simulations of complex models for mixtures which include an
additional constraint on the velocity field, or the simulation of flows in low Mach regimes. It is
indeed known that standard colocalized methods might lead to severe stability constraints, or
simply fail in capturing the correct solutions in these regimes, see [15, 16, 27, 28]. These issues
(which would require some appropriate implicit time dicretization) are beyond the scope of the
present paper: here, we focus on the preliminary step which consists in designing an efficient
scheme for the Euler system on staggered grids.

This contribution takes place in a series of works, which started in [6] where the method
is introduced for the barotropic Euler equation in one-dimension. In particular, the proposed
scheme introduced numerical fluxes strongly inspired from the framework of kinetic schemes.
The scheme is shown to be stable, under suitable CFL-conditions, it preserves the entropy-
structure and the consistency analysis à la Lax-Wendroff can be performed too [5]. This ap-
proach is further developped to handle complex systems for mixture flows [7]. The method
has been adapted to deal with multi-dimensional equations, when working on Cartesian grids
in [25]. It also includes muscl strategies that make the scheme second order accurate (for
smooth solutions), for both the barotropic and the full Euler system. When considering the
full Euler equations, we face the difficulty that the total energy mixes up quantities, typically
densities/energies vs. velocities, naturally defined on different grids. It leads to work with the
internal energy equation, at the price of taking into account appropriately the kinetic energy
balance, as in [30, 33]. Restricting to the barotropic case, the scheme has been adapted, still on
Cartesian grids, to set up an asymptotic preserving method in the low Mach regimes [24]. In
such a situation, the asymptotic regime leads to an incompressible limit. Accordingly the limit

2



scheme correctly handles the incompressibility constraint: owing to the staggered strategy, the
scheme has enforced stability/consistency properties, reminiscient of the mac approach, in the
spirit of the pioneering work of F. H. Harlow and J. E. Welch [29]. However, these versions of
the scheme use strongly the Cartesian geometry of the grid. Here, we address the question of
the design of the method on unstructured meshes, for the full Euler system. The main difficulty
consists in finding consistent transfer procedures between the different grids, and a relevant ap-
proach for the energy equation, which cannot be treated by mere averages, due to the complex
geometry of the mesh.

To this end, the adaptation we are going to discuss on unstructured grids is strongly inspired
by the Discrete Duality Finite Volume (ddfv) framework. The ddfv framework has been
introduced in the 2000s in [18, 35] to solve the Laplace equation on general 2d meshes, including
non-conformal meshes, and, more generally, to numerically deal with elliptic operators ∇ ·
(A∇u), x 7→ A(x) being a matrix valued function. In the Finite Volume approach, one has
to define numerical fluxes A∇u · n on the interfaces of the control volumes, and finding a
relevant formula that uses only unknowns stored at the center of the control volumes is not
possible without severe restrictions on the mesh geometry1. The ddfv approach has been
extended to the Stokes equations in [9, 13, 14, 38] and to the Navier-Stokes equations in [21,
22, 39, 44]. The main idea of the ddfv method is to introduce additional unknowns so that
full gradients can be reconstructed, and to mimic at the discrete level the duality formula
involving differential operators we are used to for continuous quantities. The Euler systems
does not involve any elliptic operator, and it only involves first order derivatives. Nevertheless,
the staggered scheme we propose gets its inspiration from the ddfv approach designed in [21] to
solve the non homogeneous Navier-Stokes equations. We shall use ideas from [21] that consist
in duplicating variables, together with a suitable treatment of the convection terms in order to
restore the consistency for the equations on the primal and the dual meshes. We do not address
this issue here, but we expect this approach to be well-adapted to handle low Mach regimes
on unstructured meshes. Moreover, the duplication of variables can also open perspectives to
reconstruct gradients and to design a second-order version of the scheme, in the spirit of [8]
where a muscl scheme for the Euler equation is constructed based on ddfv principles.

The paper is organized as follows. In Section 2 we set up a few useful notations and make the
definition of the different mesh-related quantities we are going to use precise. Section 3 details
the construction of the scheme. Two ingredients are crucial. First, the definition of the mass
fluxes, inspired from the kinetic framework, is very specific and induces several properties which
play a central role in the stability-consistency analysis. Second, suitable footbridges should be
introduced in order to transfer information from a grid to another, an issue pointed out in [4].
We pay attention to make such a transfer consistently, which relies on a general statement, as
discussed in [23]. We shall equally discuss the stability analysis: under a suitable constraint
on the time step, the scheme preserves the positivity of the mass density and of the internal
energy. The constraint has the usual flavor of CFL conditions: the larger the material velocity
and the sound speed and the finer the mesh, the smaller the time step; the constraint also
involves some regularity coefficient associated with the mesh geometry. In Section 4, we turn to
the balance of total energy. Precisely, we are able to provide a relevant definition of the discrete
total energy and we justify that its time evolution satisfies a local conservation law. This desired
statement can be seen as a consistency property of the scheme with the system of conservation
laws, not obvious at first sight since the scheme works on a different version, non-conservative,
of the equations. According to the recent works [2, 19, 20, 31], such a property could be the
preliminary step to justify a consistency statement à la Lax-Wendroff [40]. Finally, Section 5
validates the scheme by a series of numerical experiments.

1if xK and xL stand for centers of adjacent control volumes, we only get an approximation of ∇v in the direction
of [xK , xL], while we need a full gradient to compute the flux A∇u · n when A is a full matrix
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2 Notation: meshes, unknowns
From now on, we suppose that Ω is an open bounded polygonal domain of R2 and its boundary
is denoted ∂Ω.

Meshes. The construction uses three meshes: the primal mesh, the dual mesh and the diamond
mesh; the main steps of the construction are illustrated by Fig. 1.

σ = K|L

σ ′=
K
|M

σ ∗
=
K
∗|L ∗

s=
D
σ
,σ
∗
∩D
σ
′ ,σ
∗
′

•xM

•
xK

•
xL•

xN

•
xK∗

• xL∗

•xM∗

n
K
,σ

n
D
σ,σ ∗ ,s

Figure 1: Meshes and associated notations.

• The primal mesh M consists of disjoint, non-degenerate, convex polygons K called “primal
cells”. We associate with each cell K its barycenter xK (see the cells with blue edges in
Fig. 1).

• The dual mesh M∗ ∪ ∂M∗ is made of cells built “around the vertices xK∗” of the primal
mesh. See the cells with red edges in Fig. 1. There are several options to construct the dual
mesh. To this end, it is convenient to distinguish the interior dual mesh M∗ associated
to vertices xK∗ which do not belong to ∂Ω, and the boundary of the dual mesh ∂M∗

associated to xK∗ ∈ ∂Ω. In what follows, we focus on the direct approach: the interior
dual mesh M∗ consists of cells K∗ by joining the centers xK of all cells K having xK∗ as a
vertex (see the red cell in Fig. 1). When xK∗ ∈ ∂Ω, a dual cell K∗ is made by joining the
centers xK of the cells K that share the vertex xK∗ and the centers of the two boundary
edges containing xK∗ .

• The diamond meshD is made of quadrilateral cellsDσ,σ∗ obtained by joining the endpoints
of the edges σ = [xK∗ , xL∗ ] of the primal mesh to the centers xK and xL of the primal mesh
cells that share this edge, and we denote σ∗ = [xK , xL]. See the cells with green edges in
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Fig. 1. We distinguish the diamonds of the boundary Dext = {Dσ,σ∗ ∈ D such that σ ∈
∂Ω} and Dint = D\Dext. In the specific case where Dσ,σ∗ ∈ Dext, the diamond cell Dσ,σ∗

degenerates to a triangle.

As explained above, we work with the direct dual mesh. From now on, we assume that the
primal mesh is such that all associated diamonds are convex. In such a case the diagonals
σ = [xK∗ , xL∗ ], and σ∗ = [xK , xL], which are equally edges of the primal – resp. dual – mesh,
are included in the diamonds. In appendix A, we shall relax this assumption and consider an
alternative construction of the dual mesh – the barycentrentric mesh – and we shall detail how
the discussion can be adapted to this case.

Of course, the three meshes cover the computational domain:

Ω =
⋃
K∈M

K =
⋃

K∗∈M∗∪∂M∗
K∗ =

⋃
Dσ,σ∗∈D

Dσ,σ∗ .

The discretization is thus defined as a pair (T,D) where T = M ∪M∗ ∪ ∂M∗ combines the
primal mesh M and the dual mesh M∗ ∪ ∂M∗ and D stands for the diamond mesh. Note that
contrarily to standard ddfv notation, we do not introduce here the notation ∂M for the set of
edges of the primal mesh M included in ∂Ω, considered as degenerate cells.
Remark 2.1. The introduction of the three meshes M, M∗ ∪ ∂M∗ and D is needed to explain
the construction of the scheme and its analysis. However, at the end of the day, the obtained
formula which defines the scheme uses only geometrical quantities (e.g. the measure of the
diamond cells) and connectivities (e.g. the index number of control volume sharing a given edge)
that can be easily computed from basic descriptors of the primal mesh. When implementing
the scheme, these geometrical quantities are computed in a pre-processing step which is done
once and for all for a given mesh.

Boundaries. For boundary conditions, we distinguish
• the zero-flux boundaries with nothing going out or going in at the interface between the

domain and the outside,
• the outflow boundaries with no information coming from the outside of the domain,
• the Dirichlet boundaries where the variables are supposed to be known, equal to (ρDir,uDir, eDir).

Notations. We refer the reader to Fig. 1 for the following notations.
• We denote σ = K|L = [xK∗ , xL∗ ] the edge separating two adjacent cells K and L of the

primal mesh, and σ∗ = [xK , xL] is the segment that joins the centers of the cells K and
L. For the direct dual mesh, we have σ∗ = K∗|L∗, the edge separating the adjacent cells
K∗ and L∗ of the dual mesh.

• We denote s = Dσ,σ∗ |Dσ′,σ∗′ the face separating two diamond cells Dσ,σ∗ and Dσ′,σ∗′ .
• For K ∈ M, we denote DK = {Dσ,σ∗ ∈ D, σ ∈ ∂K}. For K∗ ∈ M∗ ∪ ∂M∗, we similarly

denote DK∗ = {Dσ,σ∗ ∈ D, σ∗ ∈ ∂K∗}.
• The area of a cell X of M, M∗ ∪ ∂M∗ or D is denoted |X| and the length of an edge x of

type σ, σ∗ or s is denoted |x|.
• We denote hDσ,σ∗ the diameter of the diamond cell Dσ,σ∗ .
• For a cell X of M, M∗ ∪ ∂M∗ or D and for x ∈ ∂X, we define a unit vector nX,x normal

to the face x of the cell X and pointing outwards: nK,σ (with σ ∈ ∂K for K ∈M), nK∗,σ∗
(with σ∗ ∈ ∂K∗ for K∗ ∈M∗), and nDσ,σ∗ ,s (with s ∈ ∂Dσ,σ∗ for Dσ,σ∗ ∈ D). Note that,
for σ = K|L, for σ∗ = K∗|L∗ and for s = Dσ,σ∗ |Dσ′,σ∗′ , we have

nK,σ = −nL,σ, nK∗,σ∗ = −nL∗,σ∗ , nDσ,σ∗ ,s = −nD
σ′,σ∗′ ,s

.
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• Given s ∈ R, we denote [s]+ = max(s, 0) = |s|+s
2 , and [s]− = max(−s, 0) = |s|−s

2 , its
positive and negative parts, respectively. Note they are both non negative [s]± ≥ 0 and
that s = [s]+ − [s]−, |s| = [s]+ + [s]−.

• In order to analyze the preservation of the non negativity of the density and the internal
energy, we need to introduce a positive number reg (T) that measures the regularity of the
mesh M:

reg (T) = sup
({ 1

sin(αDσ,σ∗ ) , Dσ,σ∗ ∈ D
}
∪
{ hDσ,σ∗√
|Dσ,σ∗ |

, Dσ,σ∗ ∈ D
}

∪
{ |Dσ,σ∗ |
|Dσ,σ∗ ∩X|

, X ∈ T, Dσ,σ∗ ∈ DX

}
∪
{ |X|
|Dσ,σ∗ |

, X ∈ T, Dσ,σ∗ ∈ DX

})
,

where αDσ,σ∗ is the angle in (0, π/2] between the two diagonals of the diamond cell Dσ,σ∗ .
Given two internal cells K and L with a common interface σ = K|L, the diamond Dσ,σ∗

can be cast as the reunion (Dσ,σ∗ ∩K) ∪ (Dσ,σ∗ ∩ L) and |Dσ,σ∗ |
|Dσ,σ∗∩K|

= 1 + |Dσ,σ∗∩L|
|Dσ,σ∗∩K|

, so
that sup

( |Dσ,σ∗ |
|Dσ,σ∗∩X|

, X ∈ {K,L}
)
≥ 2 and accordingly reg (T) ≥ 2. The quantity reg (T)

measures the regularity of the mesh, the higher reg (T), the flatter the cells. It is known
that we can find a constant C which depends only on reg (T) such that, for any diamond
cell Dσ,σ∗ and for any edge s of Dσ,σ∗ ,

hDσ,σ∗

C
6 |σ| 6 ChDσ,σ∗ ,

hDσ,σ∗

C
6 |σ∗| 6 ChDσ,σ∗ ,

hDσ,σ∗

C
6 |s| 6 ChDσ,σ∗ ,

and
h2
Dσ,σ∗

C
6 |Dσ,σ∗ | 6 Ch2

Dσ,σ∗
.

Unknowns.
• Density, internal energy and pressure are piecewise constants over the diamond cells; al-

ternatively, we can think of quantities stored on the edges of the initial mesh: ρσ,σ∗ and
eσ,σ∗ are constant on the diamond cell Dσ,σ∗ ∈ D and we set pσ,σ∗ = (γ − 1)ρσ,σ∗eσ,σ∗ .

• The numerical velocity fields are piecewise constants over the primal and dual cells, stored
at both the centers and the vertices of the cell of the primal mesh: uK is constant on the
primal cell K ∈M and uK∗ is constant on the dual cell K∗ ∈M∗ ∪ ∂M∗.

Observe that, in contrast to the Cartesian framework studied in [25], we store all the components
of the velocity on the centers and vertices of the primal meshes. The Cartesian case is less
demanding in terms of storage since the geometry allows us to store only the horizontal or
the vertical component at a given location, in the same fashion as the mac discretization for
incompressible flows.

It is finally convenient to introduce further quantities, related to the internal energy and the
velocity, that are stored at the edges of the diamond mesh and at the boundary edges of the
primal mesh.
Definition 2.2. For s = Dσ,σ∗ |Dσ′,σ∗′ , we denote

es :=
eσ,σ∗ + eσ′,σ∗′

2 .

For s = [xK , xK∗ ] an edge of Dσ,σ∗ , we denote

uDσ,σ∗ ,s := uK + uK∗
2 · nDσ,σ∗ ,s.
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For σ = [xK∗ , xL∗ ] an edge of K such that σ ⊂ ∂Ω, we denote

eσ =
{
eσ,σ∗ if σ is a zero-flux or an outflow boundary,
eDir if σ is a Dirichlet boundary,

uσ =


0 if σ is a zero-flux boundary,
uK∗ + uL∗

2 if σ is an outflow boundary,
uDir if σ is a Dirichlet boundary,

and
uσ := uσ · nK,σ.

Similarly, we denote uDir := uDir · nK,σ when σ is a Dirichlet boundary.

Note that
uDσ,σ∗ ,s = −uD

σ′,σ∗′ ,s
if s = Dσ,σ∗ |Dσ′,σ∗′ .

Remark 2.3. This discretisation technique differs from the staggered approach developed in [30,
33]: dealing with grids made of quadrilaterals in dimension 2, in [30, 33] densities and pressures
are stored at the center of the control volumes and, using ideas reminiscent to Rannacher-
Turek or Crouzeix-Ravart finite element methods, velocities are stored at the center of the faces
of the mesh. The corresponding scheme can be shown to conserve globally the total energy,
and stability/consistency properties are further discussed in [30, 33]. While the method differs
by many aspects (discretization, definition of the numerical mass and momentum fluxes), the
analysis of our scheme is based on manipulations close to the proofs of [30, 33].

In what follows, we shall repeatedly use the following elementary claim.

Lemma 2.4. Consider a triangle ABC. For a given vertex V , we denote |v| the length of the
edge v that does not contain V and nV stands for the outward unit vector, see Fig. 2. The
following equality holds: |a|nA + |b|nB + |c|nC = 0.

A

B

C

|a|
|b|

|c|

nA

nB

nC

Figure 2: Triangle ABC

3 Definition of the scheme
For further purposes, we remind the reader that the sound speed of (1) is

c(e) =
√
γ(γ − 1)e,

which only depends on the internal energy e. This quantity naturally enters in the definition of
the numerical fluxes since it is related to the speed of propagation of the information as driven
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by (1). Indeed, let us write (1) in the non-conservative form
∂tρ+ u ·∇ρ+ ρ∇ · u = 0,
∂tu + (u ·∇)u + ρ−1∇p = 0,
∂te+ u ·∇e+ ρ−1p∇ · u = 0.

Denoting U = (ρ,u, e), it can be cast in matrix from as ∂tU +A(U,∇)U = 0 with

A(U,∇) =

 u ·∇ ρ∇· 0
ρ−1 ∂p

∂ρ |e∇ u ·∇ ρ−1 ∂p
∂e |ρ∇

0 ρ−1p∇· u ·∇

 .

Let ξ ∈ R2 with ‖ξ‖ = 1. Then, denoting u = u · ξ, λ−(u, c) = u− c, u and λ+(u, c) = u+ c are
the eigenvalues of the matrix A(U, ξ) and they will play a central role in the construction of the
scheme.

It is well-known that the conservative and non-conservative formulations of the Euler system
are equivalent only for smooth solutions. As far as the solutions are smooth, we can indeed
substract the kinetic energy balance from the equation for the total energy, which leads to the
evolution equation for the internal energy

∂t(ρe) + ∇ · (ρeu) + p∇ · u = 0. (2)

This equality does not hold for discontinuous solutions, in which case, additionally, the product
of the pressure p with ∇ · u can be misleading.

This is the reason why Eulerian numerical methods are often based on discretized versions
of (1). However, working with Eulerian staggered discretizations raises the issue of the definition
of the total energy: the kinetic energy ‖uK‖

2

2 , the density ρσ,σ∗ , and internal energy eσ,σ∗ are
defined on different grids. In this perspective, it would be natural to make use of (2) to update
the internal energy [30, 33].

Note that Lagrangian approaches are also inspired by the non-conservative form, with grid
displacements based on the material velocity and a projection step to go back to a fixed Eulerian
grid, see [17, Chap. 5] for an introduction. Inspired by the seminal work [52], there exists
staggered versions of Lagrangian methods, including high order schemes: see [1, 12, 41] and the
references therein for recent developments.

Let us explain the basis of our approach. We have at hand discrete density ρσ,σ∗ , internal
energy eσ,σ∗ and velocities uK ,uK∗ . We denote by z̄ the update of the quantity z over a time
step. We start with the discrete mass conservation, which takes the form

ρσ,σ∗ − ρσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s = 0,

where δt stands for the time step and FDσ,σ∗ ,s are the discrete mass fluxes that will be defined in
Section 3.1. From this, we can define a discrete density ρK on the primal mesh, and we update
the momentum on primal mesh with a formula which looks like

ρKuK − ρKuK
δt

+ 1
|K|

∑
Dσ,σ∗∈DK

|σ|GK,σ + (∇dp)K = 0.

The momentum fluxes GK,σ correspond to the discretization of ∇ · (ρu⊗u); they will be defined
from suitable average of the mass fluxes FDσ,σ∗ ,s, according to the conservation principles of the
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equations. The discrete pressure gradient (∇dp)K stands for a discrete version of ∇p. We also
construct a similar formula for updating ρK∗uK∗ . Finally, we update the internal energy with
the following discrete version of (2)

ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|EDσ,σ∗ ,s + pσ,σ∗ (∇d · u)σ,σ∗ = Rσ,σ∗ .

In this formula, we need to define the energy fluxes EDσ,σ∗ ,s, the discrete divergence ∇d ·u and
the correction term Rσ,σ∗ which should keep track of possible discontinuities. The construction
of the latter is inspired from [30, 33]. Similar ideas are applied in the context of Lagrangian
methods in [12]. We shall pay attention to the design of the former, in order to preserve the
consistency with the local conservation of the total energy. It relies on suitable definitions of
the fluxes and duality relation between the discrete operators ∇d ·u and ∇dp. Note that these
formula also need to be adapted to handle boundaries of the computational domain.

3.1 Mass conservation on the diamond cells
We start by defining the mass fluxes on the interfaces of the diamond cell. The construction of
the fluxes proposed in [6] involves the following function, parametrized by ρ > 0, c > 0, u ∈ R,

ξ ∈ R 7−→M[ρ,c,u](ξ) = ρ

2c1|ξ−u|6c,

which has a compact support, precisely limited by the characteristic speeds of the Euler system.
This function arises in the definition of kinetic schemes for solving the Euler system [37], and
the support property plays a crucial role in the stability analysis of such schemes [47, 48]. The
numerical fluxes are defined by using this function, accounting for both a direction of propagation
and the characteristic speeds.

Definition 3.1. Let

F+(ρ, c, u) =
∫
ξ>0

ξM[ρ,c,u](ξ)dξ =


0 if u 6 −c,
ρ

4cλ+(u, c)2 if |u| 6 c,

ρu if u > c,

(3)

and

F−(ρ, c, u) =
∫
ξ<0

ξM[ρ,c,u](ξ)dξ =


ρu if u 6 −c,
− ρ

4cλ−(u, c)2 if |u| 6 c,

0 if u > c.

(4)

It is worth pointing out that, despite its “kinetic” flavor, the definition of the flux function
has a very simple expression and does not need any numerical computation of integrals. The
following properties are fundamental for analysing the scheme [5, 6, 7, 25].

Lemma 3.2. The functions F± satisfy the following properties
• symmetry :

F−(ρ, c, u) = −F+(ρ, c,−u), (5)

• consistency :
F+(ρ, c, u) + F−(ρ, c, u) = ρu, (6)

• for any u ∈ R, ρ > 0 and c > 0, we have

0 6 F+(ρ, c, u) 6 ρ[λ+(c, u)]+ and − ρ[λ−(c, u)]− 6 F−(ρ, c, u) 6 0. (7)
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The scheme is next based on the upwinding principles applied to the expression

F± =
∫
ξ≶0

ξMdξ.

Namely, given an interface, the mass flux associated to the positive (resp. negative) kinetic
velocities ξ uses the backward (frontward) density. This definition significantly differs from the
scheme introduced in [30, 32, 33] which is based instead on the material velocity u only (and not
on the characteristic speeds), in the spirit of AUSM schemes [43, 42]. It induces naturally some
numerical diffusion which prevents the formation of oscillations when the material u velocity
becomes small, see [6, Appendix B].

We thus define the mass flux FDσ,σ∗ ,s from the diamond cell Dσ,σ∗ through the interface
s = Dσ,σ∗ |Dσ′,σ∗′ as follows

FDσ,σ∗ ,s = F+
Dσ,σ∗ ,s

+ F−Dσ,σ∗ ,s
with

F+
Dσ,σ∗ ,s

= F+(ρσ,σ∗ , c(es), uDσ,σ∗ ,s) and F−Dσ,σ∗ ,s = F−(ρσ′,σ∗′ , c(es), uDσ,σ∗ ,s). (8)

It uses the velocity uDσ,σ∗ ,s and the sound speed c(es) naturally given on the interface by
Definition 2.2, and upwinds the density. The symmetry property (5) implies that

FDσ,σ∗ ,s = −FD
σ′,σ∗′ ,s

and thus FDσ,σ∗ ,s is a conservative flux. Moreover we have the following two equalities:

F+
Dσ,σ∗ ,s

= −F−D
σ′,σ∗′ ,s

and F−Dσ,σ∗ ,s = −F+
D
σ′,σ∗′ ,s

.

The discrete mass equation on a cell Dσ,σ∗ ∈ Dint is given by

ρσ,σ∗ − ρσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s = 0. (9)

The definition needs to be slightly adapted at the boundary. For the diamond cell Dσ,σ∗ ∈
Dext, we have to define the outgoing mass flux Fσ = F+

σ + F−σ through the boundary edge σ.
Denoting K the primal cell whose σ is an edge, we adopt the following definition:

• F+
σ = 0 and F−σ = 0 for zero-flux conditions,

• F+
σ = F+ (ρσ,σ∗ , c(eσ), uσ) and F−σ = 0 for outflow conditions,

• F+
σ = F+(ρσ,σ∗ , c(eσ), uσ) and F−σ = F−(ρDir, c(eσ), uσ) for Dirichlet conditions.

The boundary quantities uσ and c(eσ) are given in Definition 2.2.

The discrete mass equation on a cell Dσ,σ∗ ∈ Dext is given by

ρσ,σ∗ − ρσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗ ,s + |σ|
|Dσ,σ∗ |

Fσ = 0. (10)

3.2 Transfer lemma and mass conservation on primal and dual cells
In order to transfer the information from a grid to another, we shall make use of the following
transfer lemma, extracted from [23].
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Lemma 3.3. Consider a cell C and for each edge s of C , with unit outward normal nC ,s, we
consider a given flux-type quantity XC ,s. There exists a function ωC , which lies in Hdiv, such
that

∇ · ωC = 1
|C |

∑
s∈∂C

|s|XC ,s (11)

and ∫
s

ωC · nC ,s = |s|XC ,s. (12)

The question of designing fluxes in order to maintain consistency between different meshes
has been addressed in [4]. Lemma 3.3 appeared in [4] where solutions were proposed in the
framework of Crouzeix-Raviart and Rannacher-Turek discretizations. It also appeared in [21],
in the specific case of quadrilateral and convex cells, as a key ingredient for designing con-
vection fluxes for the incompressible Navier-Stokes equation with variable density; it has been
generalized in [23], which, furthermore, provides practical procedures to compute the transfer
formula. This statement will be used in different places. First, we need it in order to define
the momentum fluxes to be used for updating the velocity. To this end, we apply Lemma 3.3
on the diamond cells C = Dσ,σ∗ ∈ D. This allows us to define numerical densities on the
primal and dual meshes, together with numerical conservative mass fluxes, so that a discrete
mass conservation holds on these meshes too. Second, we will work the other way around, with
C = K or K∗ in Section 4 in order to justify the local conservation of the total energy.

Let us explain how this works on the diamond cells C = Dσ,σ∗ ∈ D. We remind the
reader that the edges s of the diamond cell Dσ,σ∗ are of the form sXZ∗ = [xX , xZ∗ ] with
(X,Z∗) ∈ {(K,K∗), (L,K∗), (L,L∗), (K,L∗)}, see Fig. 3, and at each edge is associated a mass
flux FDσ,σ∗ ,s. Thus, Lemma 3.3 gives the existence of a function ωDσ,σ∗ ∈ Hdiv such that

∇ · ωDσ,σ∗ = 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s,

and ∫
s

ωDσ,σ∗ · nDσ,σ∗ ,s = |s|FDσ,σ∗ ,s.

s K
L
∗

sKK∗

s
L
K
∗

sLL∗

xK

xK∗

xLxL∗
σ∗σ

Figure 3: Diamond cell Dσ,σ∗ .

Since the diagonal σ is an edge of the primal mesh, say for the cell K, we get a mass flux by
setting

|σ|FK,σ =
∫
σ

ωDσ,σ∗ · nK,σ. (13)
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This quantity has actually a simple expression by means of the original mass fluxes FDσ,σ∗ ,s.
Indeed, we have

|σ|FK,σ =
∫
Dσ,σ∗∩K

∇ · ωDσ,σ∗ −
∫
sKK∗

ωDσ,σ∗ · nsKK∗ −
∫
sKL∗

ωDσ,σ∗ · nsKL∗

= |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s − |sKK∗ |Fσ,sKK∗ − |sKL∗ |Fσ,sKL∗ .

Using the obvious relation |D| = |D ∩K|+ |D ∩ L|, for the interface σ = K|L we finally arrive
at

FK,σ = |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
FDσ,σ∗ ,s −

|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
FDσ,σ∗ ,s. (14)

These mass fluxes will be used to obtain a mass conservation equation on the primal mesh, but
they will also enter into the definition of the momentum fluxes. For this purpose, we need to
split

FK,σ = F+
K,σ + F−K,σ, ±F±K,σ > 0,

since we wish to apply upwinding principles. A naive attempt would consist in performing the
same construction starting from the original decomposition FDσ,σ∗ ,s = F+

Dσ,σ∗ ,s
+F−Dσ,σ∗ ,s; but

there is no reason that the corresponding fluxes (13) on the interfaces of K and K∗ preserve the
sign property. Instead, we simply rearrange terms in (14)

FK,σ = |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
F+
Dσ,σ∗ ,s

− |Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
F−Dσ,σ∗ ,s

︸ ︷︷ ︸
>0

+ |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
F−Dσ,σ∗ ,s −

|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
F+
Dσ,σ∗ ,s

︸ ︷︷ ︸
60

.

This is the definition we are going to use for F+
Dσ,σ∗ ,s

and F−Dσ,σ∗ ,s, namely

F±K,σ = |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
F±Dσ,σ∗ ,s −

|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
F∓Dσ,σ∗ ,s. (15)

Owing to the convexity assumption on the diamond cells, the diagonal σ∗ is an edge of the dual
mesh, and we obtain similarly the following expression for the mass fluxes on the dual cells

FK∗,σ∗ = F+
K∗,σ∗ + F−K∗,σ∗

with

F±K∗,σ∗ = |Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L∗

|s|
|σ∗|
F±Dσ,σ∗ ,s −

|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
|σ∗|
F∓Dσ,σ∗ ,s. (16)

What is crucial is the fact the fluxes are conservative: with σ = K|L and σ∗ = K∗|L∗,

FK,σ = −FL,σ and FK∗,σ∗ = −FL∗,σ∗ .
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More specifically we have

F±K,σ = −F∓L,σ and F±K∗,σ∗ = −F∓L∗,σ∗ . (17)

For interfaces σ and σ∗ such that Dσ,σ∗ ∈ Dext, since Fσ was previously defined as the flux
outgoing through σ, we naturally set

FK,σ = Fσ and FK∗,σ = Fσ.

with K the unique cell in M such that Dσ,σ∗ ⊂ K and σ∗ = K∗|L∗. Moreover, denoting
σ = [xK∗ , xL∗ ], we set FK∗,σ∗ = F+

K∗,σ∗ + F−K∗,σ∗ with

|σ∗|F±K∗,σ∗ = |Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F±Dσ,σ∗ ,sKL∗ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

|sKK∗ |F∓Dσ,σ∗ ,sKK∗

+ |Dσ,σ∗ ∩K∗|
2|Dσ,σ∗ |

|σ|F±σ −
|Dσ,σ∗ ∩ L∗|

2|Dσ,σ∗ |
|σ|F∓σ . (18)

With the motivation of writing a conservative equation for the momentum ρu, we introduce
averaged densities on T.
Definition 3.4. The averaged density on a cell K of the primal mesh is defined by

ρK =
∑

Dσ,σ∗∈DK

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ for K ∈M

and on a cell K∗ of the dual mesh, we set

ρK∗ =
∑

Dσ,σ∗∈DK∗

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗ for K∗ ∈M∗ ∪ ∂M∗.

With this definition at hand, considering either the primal or the dual mesh, the averaged
densities ρK and ρK∗ satisfy conservative equations, as observed in [21].
Proposition 3.5. The averaged densities ρK , ρK∗ satisfy the following conservative equations
for any K ∈M and any K∗ ∈M∗ ∪ ∂M∗:

|K|ρK − ρK
δt

+
∑

Dσ,σ∗∈DK

|σ|FK,σ = 0,

|K∗|ρK∗ − ρK
∗

δt
+

∑
Dσ,σ∗∈DK∗

|σ∗|FK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 Fσ = 0.

Proof. This is a consequence of the construction of the fluxes. Indeed, when considering
|K|ρK−ρKδt , we are led to compute

∑
Dσ,σ∗∈DK∩Dint

 |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s


+

∑
Dσ,σ∗∈DK∩Dext

 |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

[
|σ|Fσ +

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗ ,s
] .

By definition and going back to Lemma 3.3, we get

∑
Dσ,σ∗∈DK∩Dint

 |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s


=

∑
Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|∇ · ωDσ,σ∗ =
∑

Dσ,σ∗∈DK∩Dint

∫
Dσ,σ∗∩K

∇ · ωDσ,σ∗ .
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By virtue of the divergence theorem, this becomes

∑
Dσ,σ∗∈DK∩Dint

 ∑
s∈∂(D∩K)

∫
s

ωDσ,σ∗ · ns


=

∑
Dσ,σ∗∈DK∩Dint

∫
σ

ωDσ,σ∗ · nσ +
∑

s∈∂Dσ,σ∗ , s⊂K

∫
s

ωDσ,σ∗ · ns


=

∑
Dσ,σ∗∈DK∩Dint

|σ|FK,σ +
∑

s∈∂Dσ,σ∗ , s⊂K

|s|FDσ,σ∗ ,s


=

∑
Dσ,σ∗∈DK∩Dint

|σ|FK,σ + 0.

A similar computation holds for the external cells and the dual cells. The result can be equally
be checked by using the explicit formula (15) and (16), see [45].

3.3 Momentum equation on the primal and dual cells
We now turn to the definition of the momentum fluxes GK,σ for the primal cells and GK∗,σ∗ for
the dual cells. We first consider the case of interfaces σ 6⊂ ∂Ω. In this case, for the primal cells
we set

GK,σ = F+
K,σuK + F−K,σuL. (19)

Namely, for defining the momentum fluxes we use the mass fluxes F±K,σ given by (15). For the
dual cells, a similar formula based on (16)

GK∗,σ∗ = F+
K∗,σ∗uK∗ + F−K∗,σ∗uL∗ . (20)

applies directly: the convexity assumption of the diamond cells implies that σ∗ is an edge for
the dual cell and is included in Dσ,σ∗ . Note that the momentum fluxes are conservative as a
consequence of (17). For the boundary conditions, that is for σ ⊂ ∂Ω, we define:

GK,σ = F+
σ uK + F−σ uσ and GK∗,σ = F+

σ uK∗ + F−σ uσ.

Remark 3.6. For the fluxes GK,σ, the formula (19) is valid also for σ ⊂ ∂Ω if we use the
convention uL = uσ in this case.

The momentum equation also requires to introduce a discrete pressure gradient. It is obtained
by mimicking the formula ∫

X

∇p =
∫
∂X

pn.

Definition 3.7. The discrete pressure gradient ∇dp is defined on T by

(∇dp)K = 1
|K|

∑
Dσ,σ∗∈DK

|σ|pσ,σ∗nK,σ, for K ∈M,

(∇dp)K∗ = 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ|pσ,σ∗nK∗,σ∗ , for K∗ ∈M∗,

(∇dp)K∗ = 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dint

|σ∗|pσ,σ∗nK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dint

|σ|
2 pσ,σ∗nK,σ, for K∗ ∈ ∂M∗.
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The discrete momentum equation is given for K ∈ T by

ρKuK − ρKuK
δt

+ 1
|K|

∑
Dσ,σ∗∈DK

|σ|GK,σ + (∇dp)K = 0,

ρK∗uK∗ − ρK∗uK∗
δt

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ∗|GK∗,σ∗

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 GK

∗,σ + (∇dp)K∗ = 0,

(21)

with ρK and ρK∗ given by Definition 3.4, fluxes defined in (19), (20) and pressure gradients in
Definition 3.7.

3.4 Internal energy balance on the diamond mesh
As explained in Section 3, at the continuous level, considering smooth enough functions, the
internal energy equation (2) is deduced from the kinetic energy balance, which is itself obtained
by multiplying the momentum equation by u. At the discrete level, multiplying the discrete
momentum equation by uK or uK∗ , whatever the considered mesh, introduces a remainder term
that has to be taken into account to write the discrete internal energy equation [30, 33]. To this
end, let us introduce kinetic fluxes KK,σ from primal cells and KK∗,σ∗ , KK∗,σ from dual cells.
For σ 6⊂ ∂Ω, we set

KK,σ = F+
K,σ

‖uK‖2

2 + F−K,σ
‖uL‖2

2 , and KK∗,σ∗ = F+
K∗,σ∗

‖uK∗‖2

2 + F−K∗,σ∗
‖uL∗‖2

2 . (22)

These fluxes are conservative (KK,σ = −KL,σ, and so on...) as a consequence of (17). For the
boundary conditions, that is σ ⊂ ∂Ω, we set

KK,σ = F+
σ

‖uK‖2

2 + F−σ
‖uσ‖2

2 and KK∗,σ = F+
σ

‖uK∗‖2

2 + F−σ
‖uσ‖2

2 .

Remark 3.8. Note that, as for momentum fluxes (see Remark 3.6), formula (22) for fluxes
KK,σ, is valid also for σ ⊂ ∂Ω if we use the convention uL = uσ in this case.
Definition 3.9. For K ∈M we set

RK = ρK
2δt‖uK − uK‖2 + 1

|K|
∑

Dσ,σ∗∈DK

|σ|F−K,σ
(
‖uK − uK‖2

2 − ‖uK − uL‖2

2

)
,

with the convention that uL = uσ when σ ⊂ ∂Ω.
For K∗ ∈M∗ ∪ ∂M∗ we set

RK∗ = ρK∗

2δt ‖uK
∗ − uK∗‖2 + 1

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|F−K∗,σ∗
(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uL∗‖2

2

)

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

−
σ

(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uσ‖2

2

)
.

Lemma 3.10. The discrete balance of kinetic energy is given for K ∈M and K∗ ∈M∗ ∪ ∂M∗
by

ρK
‖uK‖2

2 − ρK
‖uK‖2

2
δt

+ 1
|K|

∑
Dσ,σ∗∈DK

|σ|KK,σ + (∇dp)K · uK = −RK . (23)

15



ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2
δt

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ∗|KK∗,σ∗

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 KK

∗,σ + (∇dp)K∗ · uK∗ = −RK∗ .

(24)

Proof. For X ∈ T, we multiply by uX the momentum equation (21) and use the averaged
mass equation in Proposition (3.5).

a) Let K ∈M. In what follows, we use the convention that uL = uσ when the edge σ ⊂ ∂Ω;
so that the expressions (19) and (22) are valid for σ ⊂ ∂Ω too (see Remarks 3.6 and 3.8). We
start by remarking that

ρKuK − ρKuK
δt

· uK = 1
δt

(
ρK
‖uK‖2

2 − ρK
‖uK‖2

2 + ρK
2 ‖uK − uK‖2

)
− ρK − ρK

δt

(
‖uK‖2

2 − uK · uK
)
.

Thus using the average mass balance stated in Proposition (3.5) we get
ρKuK − ρKuK

δt
· uK = 1

δt

(
ρK
‖uK‖2

2 − ρK
‖uK‖2

2 + ρK
2 ‖uK − uK‖2

)
+ 1
|K|

∑
Dσ,σ∗∈DK

|σ|FK,σ
(
‖uK‖2

2 − uK · uK
)
.

Next, using the notation F |.| = F+ −F− and bearing in mind that F = F+ + F−, we get

GK,σ =
F |.|K,σ + FK,σ

2 uK +
FK,σ −F |.|K,σ

2 uL = FK,σ
uK + uL

2 + F |.|K,σ
uK − uL

2 .

Hence, the momentum equation multiplied by uK becomes

ρK
‖uK‖2

2 − ρK
‖uK‖2

2
δt

+ ρK
2δt‖uK − uK‖2 + (∇dp)K · uK + 1

|K|
∑

Dσ,σ∗∈DK

|σ|BK,σ = 0,

where

BK,σ = FK,σ
(
‖uK‖2

2 − uK − uL
2 · uK

)
+ F |.|K,σ

uK − uL
2 · uK

=
(
F+
K,σ

‖uK‖2

2 + F−K,σ
‖uL‖2

2

)
+ F−K,σ

(
‖uK‖2

2 − ‖uL‖
2

2 − (uK − uL) · uK
)
.

With definition (22) we are left with

BK,σ = KK,σ + F−K,σ
(
‖uK − uK‖2

2 − ‖uK − uL‖2

2

)
,

and thus we obtain (23).

b) For K∗ ∈M∗ ∪ ∂M∗, as previously, we first remark that
ρK∗uK∗ − ρK∗uK∗

δt
· uK∗ = 1

δt

(
ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2 + ρK∗

2 ‖uK
∗ − uK∗‖2

)
− ρK∗ − ρK∗

δt

(
‖uK∗‖2

2 − uK∗ · uK∗
)
.
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Thus using the average mass balance stated in Proposition (3.5) we get
ρK∗uK∗ − ρK∗uK∗

δt
· uK∗ = 1

δt

(
ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2 + ρK∗

2 ‖uK
∗ − uK∗‖2

)
+ 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ∗|FK∗,σ∗
(
‖uK∗‖2

2 − uK∗ · uK∗
)

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 FK

∗,σ

(
‖uK∗‖2

2 − uK∗ · uK∗
)
.

The momentum equation multiplied by uK∗ becomes

ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2
δt

+ ρK∗

2δt ‖uK
∗ − uK∗‖2 + (∇dp)K∗ · uK∗

+ 1
|K∗|

 ∑
Dσ,σ∗∈DK∗

|σ∗|FK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 Fσ

(‖uK∗‖2
2 − uK∗ · uK∗

)

+ 1
|K∗|

 ∑
Dσ,σ∗∈DK∗

|σ∗|GK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 GK

∗,σ

 · uK∗ = 0.

We obtain (24) by remarking that, as in the first part of the proof, we have for all Dσ,σ∗ ∈ DK∗

FK∗,σ∗
(
‖uK∗‖2

2 − uK∗ · uK∗
)

+ GK∗,σ∗ · uK∗

= KK∗,σ∗ + F−K∗,σ∗
(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uL∗‖2

2

)
.

and similarly, we also get for all Dσ,σ∗ ∈ DK∗ ∩Dext that

Fσ
(
‖uK∗‖2

2 − uK∗ · uK∗
)

+ GK∗,σ · uK∗

= KK∗,σ + F−σ
(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uσ‖2

2

)
.

We remind the reader that the kinetic energy equation does not have to be solved since
we already know the velocity on the primal and dual meshes from the momentum equation.
This computation only aims at defining the remainder terms RK and RK∗ that will be used
in the equation for updating the internal energy. Before this, we need to introduce a discrete
divergence operator, naturally inspired from∫

X

∇ · u =
∫
∂X

u · n.

Definition 3.11. The discrete divergence operator on a cell Dσ,σ∗ ∈ D is defined as

(∇d · u)σ,σ∗ = 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗ ,s,

when Dσ,σ∗ ∈ Dint, while for Dσ,σ∗ ∈ Dext, we set

(∇d · u)σ,σ∗ = 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗\∂Ω

|s|uDσ,σ∗ ,s + |σ|
2|Dσ,σ∗ |

(
uσ + uK∗ + uL∗

2

)
· nK,σ.
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The following statement gives an equivalent formulation of the discrete divergence; it will be
useful to study the stability of the scheme.
Lemma 3.12. The discrete divergence operator on a cell Dσ,σ∗ ∈ D recasts as

(∇d · u)σ,σ∗ = 1
2|Dσ,σ∗ |

(|σ| (uL − uK) · nK,σ + |σ∗| (uL∗ − uK∗) · nK∗,σ∗) , ∀Dσ,σ∗ ∈ Dint.

(∇d · u)σ,σ∗ = 1
2|Dσ,σ∗ |

(|σ| (uσ − uK) · nK,σ + |σ∗| (uL∗ − uK∗) · nK∗,σ∗) , ∀Dσ,σ∗ ∈ Dext.

Proof. Let us first assume that Dσ,σ∗ ∈ Dint. Using the definition of uDσ,σ∗ ,s and of
(∇d · u)σ,σ∗ , we have∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗ ,s = uK
2 · (|sKK

∗ |nσ,sKK∗ + |sKL∗ |nσ,sKL∗ ) + uK∗
2 · (|sKK∗ |nσ,sKK∗ + |sLK∗ |nσ,sLK∗ )

+ uL
2 · (|sLK

∗ |nσ,sLK∗ + |sLL∗ |nσ,sLL∗ ) + uL∗
2 · (|sKL∗ |nσ,sKL∗ + |sLL∗ |nσ,sLL∗ ) .

By using Lemma 2.4, it follows that∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗ ,s = −uK
2 · |σ|nK,σ −

uK∗
2 · |σ∗|nK∗,σ∗ −

uL
2 · |σ|nL,σ −

uL∗
2 · |σ∗|nL∗,σ∗ .

We conclude by using −nL,σ = nK,σ and −nL∗,σ∗ = nK∗,σ∗ .
The proof for Dσ,σ∗ ∈ Dext follows exactly the same lines and is left to the reader.

For the discretization of the internal energy equation, we define the following numerical
fluxes, for all Dσ,σ∗ ∈ Dint and s = Dσ,σ∗ |Dσ′,σ∗′ ∈ ∂Dσ,σ∗ ,

EDσ,σ∗ ,s = eσ,σ∗F+
Dσ,σ∗ ,s

+ eσ′,σ∗′F
−
Dσ,σ∗ ,s

. (25)

We observe that the fluxes EDσ,σ∗ ,s are conservative by definition. For Dσ,σ∗ ∈ Dext, we have
to define the outgoing flux Eσ through the primal egde σ ⊂ ∂Dσ,σ∗ ∩ ∂Ω. We take

Eσ = eσ,σ∗F+
σ + eσF−σ

Finally, we also give the definition of a remainder term Rσ,σ∗ on the diamond cell, which is
based on the remainder term RK and RK∗ given in Definition 3.9,

Rσ,σ∗ = |Dσ,σ∗ ∩K|RK + |Dσ,σ∗ ∩ L|RL + |Dσ,σ∗ ∩K∗|RK∗ + |Dσ,σ∗ ∩ L∗|RL∗
2|Dσ,σ∗ |

, (26)

with the convention that RL = 0 if Dσ,σ∗ ∈ Dext. This definition comes from the derivation of
the local conservation of the total energy that will be discussed in the forthcoming Section 4.
The remainder Rσ,σ∗ is defined so that it exactly balances the kinetic energy contributions that
will appear when summing the internal energy equation and the kinetic energy equations.

The discrete internal energy equation is given by

ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|EDσ,σ∗ ,s

+ pσ,σ∗ (∇d · u)σ,σ∗ = Rσ,σ∗ , ∀Dσ,σ∗ ∈ Dint

ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗\∂Ω

|s|EDσ,σ∗ ,s + |σ|
|Dσ,σ∗ |

Eσ

+ pσ,σ∗ (∇d · u)σ,σ∗ = Rσ,σ∗ , ∀Dσ,σ∗ ∈ Dext

(27)

where the flux EDσ,σ∗ ,s is defined by (25), ∇d · u is given by Definition 3.11, and Rσ,σ∗ by (26).
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3.5 Stability analysis
We now turn to the stability analysis of the scheme. We exhibit a CFL-condition of the following
form for interior diamonds (see (38) and (39))

δt

hDσ,σ∗

( ∑
s∈∂Dσ,σ∗

|s|[uDσ,σ∗ ,s]+ +
(
|σ|+ |σ∗|

)
c(eσ,σ∗)

)
6 C, ∀Dσ,σ∗ ∈ Dint,

(with C ∈ (0, 1) depending only on reg (T) and γ) which ensures that the numerical density and
the internal energy remain non-negative. It also guarantees that the remainder terms RK and
RK∗ , and thus Rσ,σ∗ , are kept positive. To this end, we shall use Lemma 3.2 and specifically
property (7) of the numerical flux.

We do not claim, though, that the obtained condition is optimal. The value of the constant
C (made explicit with (38) and (39)) is not used in practice to choose the time step. This result
is however reassuring since it proves that the condition linking the time step and the mesh size
involves the chararacteristic speeds in a classical way. Note it also involves the geometry of the
cells, through the regularity parameter reg (T). As reg (T) increases, which means dealing with
a less regular mesh, containing elongated cells, the constant C tends to 0.

Proposition 3.13. Let ρσ,σ∗ > 0. We assume that the following CFL-like conditions are
satisfied

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗ ,s)]+ 6 1, ∀Dσ,σ∗ ∈ Dint

δt

|Dσ,σ∗ |

[ ∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗ ,s)]+ + |σ|[λ+(c(eσ), uσ)]+
]
6 1, ∀Dσ,σ∗ ∈ Dext.

(28)
Then, the non negativity of the density ρσ,σ∗ is preserved: ρσ,σ∗ > 0.

Proof. Let Dσ,σ∗ ∈ Dint. We go back to the mass conservation equation (9) and we make use
of Lemma 3.2 and we are thus led to

ρσ,σ∗ = ρσ,σ∗ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|
(
F+(ρσ,σ∗ , uDσ,σ∗ ,s) + F−(ρσ′,σ∗′ , uDσ,σ∗ ,s)

)
> ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+(ρσ,σ∗ , uDσ,σ∗ ,s)

> ρσ,σ∗ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|ρσ,σ∗ [λ+(c(es), uDσ,σ∗ ,s)]+.

With ρσ,σ∗ > 0, the right hand side of this inequality remains non negative under the CFL-like
condition (28). The proof for Dσ,σ∗ ∈ Dext follows exactly the same lines and is left to the
reader.

Remark 3.14. In order to compare the stability condition with the CFL condition obtained in
1d and on mac grids, see [6, 25], we remind the reader that uDσ,σ∗ ,s = −uD

σ′,σ∗′ ,s
so that the

characteristic speeds of the system satisfy:

[λ+(c(es), uDσ,σ∗ ,s)]+ = [λ+(c(es),−uD
σ′,σ∗′ ,s

)]+

= [−λ−(c(es), uD
σ′,σ∗′ ,s

)]+ = [λ−(c(es), uD
σ′,σ∗′ ,s

)]−.
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It allows us to rewrite the conditions (28) in a form similar to what has been obtained on
Cartesian grids. For instance, the first one can be recast as

δt

|Dσ,σ∗ |

 ∑
s∈∂Dσ,σ∗

s⊂K

|s|[λ+(c(es), uDσ,σ∗ ,s)]+ +
∑

s∈∂Dσ,σ∗
s⊂L

|s|[λ−(c(es), uD
σ′,σ∗′ ,s

)]−

 6 1.

We now turn to the remainder term RK . The fact that RK remains non-negative depends
on the mesh-regularity coefficient reg (T), and the obtained condition is stronger than (28).

Proposition 3.15. Let us assume that the following CFL-like conditions are satisfied

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗ ,s)]+ 6

1
1 + reg (T) , ∀Dσ,σ∗ ∈ Dint, (29)

δt

|Dσ,σ∗ |

( ∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗ ,s)]+

+ |σ|[λ+(c(eσ), uσ)]+ + |σ|Λ−σ,Dir

)
6

1
reg (T) , ∀Dσ,σ∗ ∈ Dext,

(30)

with Λ−σ,Dir = 1
2
ρDir
ρσ,σ∗

[λ−(c(eDir), uDir)]− if σ is a Dirichlet boudary and 0 otherwise. Then,

RK > 0 ∀K ∈M, RK∗ > 0 ∀K∗ ∈M∗ ∪ ∂M∗ and Rσ,σ∗ > 0 ∀Dσ,σ∗ ∈ D.

Proof. Let us split the proof into two parts depending on the type of cell we consider.

a) Let K ∈M. By using the averaged mass equation in Proposition 3.5, the remainder term
RK in Definition 3.9 can be rewritten as

RK = ‖uK − uK‖2

2δt

ρK − δt

|K|
∑

Dσ,σ∗∈DK

|σ|F+
K,σ

− 1
|K|

∑
Dσ,σ∗∈DK

|σ|F−K,σ
‖uK − uL‖2

2 ,

where the last contribution is non negative since F−K,σ 6 0. Hence, we get

RK >
‖uK − uK‖2

2δt AK where AK = ρK −
δt

|K|
∑

Dσ,σ∗∈DK

|σ|F+
K,σ. (31)

Having AK > 0 is thus enough to ensure RK > 0. Going back to Definition 3.4 for ρK and to
(15) for the expression of F+

K,σ, we modify the expression of AK , and we arrive at

AK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ

)

+
∑

Dσ,σ∗∈DK∩Dint

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|F+
Dσ,σ∗ ,s

+ δt

|K|
|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|F−Dσ,σ∗ ,s
)
.
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Adding and substracting |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗ ,s

leads to:

AK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ

)

+
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s


+ δt

|K|
∑

Dσ,σ∗∈DK∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
(
|Dσ,σ∗ ∩K|F+

Dσ,σ∗ ,s
+ |Dσ,σ∗ ∩ L|F−Dσ,σ∗ ,s

)
.

Let us start by rewriting the third sum. By using the equality |Dσ,σ∗∩L| = |Dσ,σ∗ |−|Dσ,σ∗∩K|,
we have∑
Dσ,σ∗∈DK∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
(
|Dσ,σ∗ ∩K|F+

Dσ,σ∗ ,s
+ |Dσ,σ∗ ∩ L|F−Dσ,σ∗ ,s

)

=
∑

Dσ,σ∗∈DK∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
(
|Dσ,σ∗ ∩K|F |·|Dσ,σ∗ ,s + |Dσ,σ∗ |F−Dσ,σ∗ ,s

)
.

(32)
Since the flux FDσ,σ∗ ,s is conservative, we get∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|FDσ,σ∗ ,s = −
∑

Dσ,σ∗∈DK∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗ ,s,

and thus ∑
Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F−Dσ,σ∗ ,s = −
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗ ,s

−
∑

Dσ,σ∗∈DK∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗ ,s.

This equality can be used to rewrite the last term in (32). Finally, plugging this result in the
definition of AK yields

AK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗ ,s
)

+
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s



+ δt

|K|

 ∑
Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|F |·|Dσ,σ∗ ,s −
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗ ,s

 .

We are now going to establish a bound from below for AK . To this end, we proceed as follows.
Since F |·| > 0 and F 6 F+, we get

AK > BextK + BintK ,

21



with

BextK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗\∂Ω

|s|F+
Dσ,σ∗ ,s

)
,

and

BintK =
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s


− δt

|K|
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗ ,s

.

Substracting the non negative term
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂L

|s|F+
Dσ,σ∗ ,s

to BintK , we get

BintK >
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s


− δt

|K|
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

|s|F+
Dσ,σ∗ ,s

>
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

) ∑
s∈∂Dσ,σ∗

|s|
F+
Dσ,σ∗ ,s

ρσ,σ∗

 .

By using the definition of mass flux (8) and Lemma 3.2 we end up with

BintK >
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗ ,s)]+
 .

(33)
Therefore BintK > 0 holds when

1 >
δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗ ,s)]+.

This inequality holds when (29) is fulfilled since reg (T) > |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

.

We now turn to the study of BextK . Since, for all Dσ,σ∗ ∈ DK ∩Dext, |Dσ,σ∗ ∩K| = |Dσ,σ∗ |,
we have

BextK =
∑

Dσ,σ∗∈DK∩Dext

|Dσ,σ∗ |
|K|

ρσ,σ∗

(
1− δt

|Dσ,σ∗ |
|σ| F

+
σ

ρσ,σ∗
− δt

|Dσ,σ∗ |
|K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗\∂Ω

|s|
F+
Dσ,σ∗ ,s

ρσ,σ∗

)

>
∑

Dσ,σ∗∈DK∩Dext

|Dσ,σ∗ |
|K|

ρσ,σ∗

(
1− δt

|Dσ,σ∗ |
|σ|[λ+(c(eσ), uσ)]+

− δt

|Dσ,σ∗ |
reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗ ,s)]+
)
.

(34)
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Therefore BextK > 0 holds when

1 >
δt

|Dσ,σ∗ |

(
|σ|[λ+(c(eσ), uσ)]+ + reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗ ,s)]+
)

This inequality holds when (30) is fulfilled since reg (T) > 1. Thus, RK > 0, for any K ∈M.

b) We now turn to the study of RK∗ for K∗ ∈ M∗ ∪ ∂M∗. The proof follows the same
lines. By using the averaged mass equation in Proposition 3.5, the remainder term RK∗ in
Definition 3.9 can be rewritten as

RK∗ = ‖uK
∗ − uK∗‖2

2δt

(
ρK∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|F+
K∗,σ∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

+
σ

)

− 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ∗|F−K∗,σ∗
‖uK∗ − uL∗‖2

2

− 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

−
σ

‖uK∗ − uσ‖2

2 ,

where the two last contribution are non negative since F−K∗,σ∗ 6 0 and F−σ 6 0. Hence, we get

RK∗ >
‖uK∗ − uK∗‖2

2δt AK∗ , (35)

where
AK∗ = ρK∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|F+
K∗,σ∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

+
σ .

Having AK∗ > 0 is thus enough to ensure RK∗ > 0. Going back to Definition 3.4 for ρK∗ and
to (16) and (18) for F+

K∗,σ∗ , we modify the expression of AK∗ , and we arrive at

AK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

(
|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗ −
δt

|K∗|
|σ|
2 F

+
σ

− δt

|K∗|
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F+
Dσ,σ∗ ,sKL∗

+ δt

|K∗|
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

|sKK∗ |F−Dσ,σ∗ ,sKK∗

− δt

|K∗|
|Dσ,σ∗ ∩K∗|

2|Dσ,σ∗ |
|σ|F+

σ + δt

|K∗|
|Dσ,σ∗ ∩ L∗|

2|Dσ,σ∗ |
|σ|F−σ

)
+

∑
Dσ,σ∗∈DK∗∩Dint

(
|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗ −
δt

|K∗|
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L∗

|s|F+
Dσ,σ∗ ,s

+ δt

|K∗|
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F−Dσ,σ∗ ,s
)
.
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Adding and substracting |Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗ ,s

leads to:

AK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
))

+ δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

(
− |Dσ,σ∗ ∩K∗|

|Dσ,σ∗ |
|sKL∗ |F+

Dσ,σ∗ ,sKL∗
+ |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
|sKK∗ |F−Dσ,σ∗ ,sKK∗

)

+
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s

)

+ δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
(
|Dσ,σ∗ ∩K∗|F+

Dσ,σ∗ ,s
+ |Dσ,σ∗ ∩ L∗|F−Dσ,σ∗ ,s

)
.

Let us start by rewriting the fourth sum. Using equality |Dσ,σ∗ ∩ L∗| = |Dσ,σ∗ | − |Dσ,σ∗ ∩K∗|,
we have∑
Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
(
|Dσ,σ∗ ∩K∗|F+

Dσ,σ∗ ,s
+ |Dσ,σ∗ ∩ L∗|F−Dσ,σ∗ ,s

)

=
∑

Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
(
|Dσ,σ∗ ∩K∗|F |·|Dσ,σ∗ ,s + |Dσ,σ∗ |F−Dσ,σ∗ ,s

)
.

Since the flux FDσ,σ∗ ,s is conservative, we get∑
Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|FDσ,σ∗ ,s = −
∑

Dσ,σ∗∈DK∗∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

s⊂K∗

|s|FDσ,σ∗ ,s,

and thus∑
Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F−Dσ,σ∗ ,s

= −
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗ ,s

−
∑

Dσ,σ∗∈DK∗∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

s⊂K∗

|s|FDσ,σ∗ ,s.
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Plugging this result in the definition of AK∗ yields

AK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
))

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

(
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F+
Dσ,σ∗ ,sKL∗

+|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKK∗ |F−Dσ,σ∗ ,sKK∗+|sKK∗ |F
+
Dσ,σ∗ ,sKK∗

)

+
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s

)

+ δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s||Dσ,σ∗ ∩K∗|F |·|Dσ,σ∗ ,s

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗ ,s

.

Since F |·| > 0 and F−Dσ,σ∗ ,sKK∗ 6 0, we have

AK∗ > BextK∗ + BintK∗ ,

with

BextK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
))

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

(
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F+
Dσ,σ∗ ,sKL∗

+ |sKK∗ |F+
Dσ,σ∗ ,sKK∗

)
and

BintK∗ =
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s

)

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗ ,s

.

Substracting the non negative term δt
|K∗|

∑
Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂L∗

|s|F+
Dσ,σ∗ ,s

to BintK∗ , we get

BintK∗ >
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗ ,s

)

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

|s|F+
Dσ,σ∗ ,s

>
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

) ∑
s∈∂Dσ,σ∗

|s|
F+
Dσ,σ∗ ,s

ρσ,σ∗

 .

By using Lemma 3.2 we end up with

BintK∗ >
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1+ |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗ ,s)]+
 .

(36)
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Therefore BintK∗ > 0 holds when

1 >
δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗ ,s)]+.

This inequality holds when (29) is fulfilled since reg (T) > |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

.

We now turn to the study of BextK∗ . We have

BextK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −

|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
)

− δt

|Dσ,σ∗ |

(
|sKL∗ |F+

Dσ,σ∗ ,sKL∗
+ |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

|sKK∗ |F+
Dσ,σ∗ ,sKK∗

))
>

∑
Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗

(
1− δt

|Dσ,σ∗ |
|σ|
2

(
(1 + reg (T)) F

+
σ

ρσ,σ∗
+ (reg (T)− 1)−F

−
σ

ρσ,σ∗

)

− δt

|Dσ,σ∗ |
reg (T)

(
|sKL∗ |

F+
Dσ,σ∗ ,sKL∗

ρσ,σ∗
+ |sKK∗ |

F+
Dσ,σ∗ ,sKK∗

ρσ,σ∗

))
.

(37)
Therefore, since reg (T) > 2, BextK > 0 holds when (30) is fulfilled. Thus, RK∗ > 0.

That RDσ,σ∗ is non negative follows from the fact that RK , RL, RK∗ and RL∗ are all non
negative.

We are now able to exhibit the CFL-like condition that ensures the non-negativity of the
internal energy eσ,σ∗ .
Proposition 3.16. Let eσ,σ∗ > 0 and ρσ,σ∗ > 0, ∀Dσ,σ∗ ∈ D. Let assume that the following
CFL-like conditions are satisfied

δt

|Dσ,σ∗ |

(
reg (T)2 |σ∗|+ |σ|√

2
c(eσ,σ∗)+

∑
s∈∂Dσ,σ∗

|s|
(

[uDσ,σ∗ ,s]+ + c(es)
))

6 min
(

1
γ
,

1
1 + reg (T)

)
, ∀Dσ,σ∗ ∈ Dint

(38)

δt

|Dσ,σ∗ |

(
reg (T)2 |σ∗|+ |σ|√

2
c(eσ,σ∗) +

∑
s∈∂Dσ,σ∗\∂Ω

|s|
(

[uDσ,σ∗ ,s]+ + c(es)
)

+ |σ|[λ+(c(eσ), uσ)]+ + |σ|Λ−σ,Dir

)
6 min

(
1
γ
,

1
1 + reg (T)

)
, ∀Dσ,σ∗ ∈ Dext

(39)

with Λ−σ,Dir = 1
2
ρDir
ρσ,σ∗

[λ−(c(eDir), uDir)]− if σ is a Dirichlet boudary and 0 otherwise. Then, the
non negativity of the internal energy is preserved: we have eσ,σ∗ > 0, ∀Dσ,σ∗ ∈ D.
Proof. We start by observing that (38), (39) implies (28) and (29), (30). In particular, thanks
to Proposition 3.13, we have ρσ,σ∗ > 0, ∀Dσ,σ∗ ∈ D. Next, we turn to the non negativity of
eσ,σ∗ ; we follow the arguments in [25].

Let us write (∇d · u)σ,σ∗ as in Lemma 3.12 and then apply the Young inequality for each
four terms. For X ∈M and i ∈ {0, 1} we write

(−1)ipσ,σ∗uX · nK,σ = (−1)i(γ − 1) [ρσ,σ∗eσ,σ∗(uX − uX) · nK,σ + ρσ,σ∗eσ,σ∗uX · nK,σ]

> −ρσ,σ∗
[
c(eσ,σ∗)
2
√

2γ
‖uX − uX‖2 + (γ − 1)eσ,σ∗

(
c(eσ,σ∗)√

2
− (−1)iuX · nK,σ

)]
,
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so that

− δt|σ|
2|Dσ,σ∗ |

pσ,σ∗(uL − uK) · nK,σ > − δt|σ|
2|Dσ,σ∗ |

ρσ,σ∗
c(eσ,σ∗)
2
√

2γ
(
‖uK − uK‖2 + ‖uL − uL‖2

)
− δt|σ|

2|Dσ,σ∗ |
(γ − 1)ρσ,σ∗eσ,σ∗

(
2c(eσ,σ∗)√

2
+ (uL − uK) · nK,σ

)
.

Exactly the same computation for K∗ and L∗ leads to

− δt|σ∗|
2|Dσ,σ∗ |

pσ,σ∗(uL∗ − uK∗) · nK∗,σ∗ > −
δt|σ∗|

2|Dσ,σ∗ |
ρσ,σ∗

c(eσ,σ∗)
2
√

2γ
(
‖uK∗ − uK∗‖2 + ‖uL∗ − uL∗‖2

)
− δt|σ∗|

2|Dσ,σ∗ |
(γ − 1)ρσ,σ∗eσ,σ∗

(
2c(eσ,σ∗)√

2
+ (uL∗ − uK∗) · nK∗,σ∗

)
.

We now split the proof into two steps, depending on the localisation of Dσ,σ∗ in Dint or
Dext.

a) Suppose that Dσ,σ∗ ∈ Dint with σ = K|L and σ∗ = K∗|L∗. Owing to (27), we get
ρσ,σ∗eσ,σ∗ > T0 + TK + TL + TK∗ + TL∗

with

T0 = ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt|σ|

2|Dσ,σ∗ |
(γ − 1)

(
2c(eσ,σ∗)√

2
+ (uL − uK) · nK,σ

)
− ρσ,σ∗eσ,σ∗

δt|σ∗|
2|Dσ,σ∗ |

(γ − 1)
(

2c(eσ,σ∗)√
2

+ (uL∗ − uK∗) · nK∗,σ∗
)

− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|EDσ,σ∗ ,s,

and

TX = δt

2|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X|RX −

|σ|
2
√

2γ
ρσ,σ∗c(eσ,σ∗)‖uX − uX‖2

)
, X ∈ {K,L},

TX∗ = δt

2|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X∗|RX∗ −

|σ∗|
2
√

2γ
ρσ,σ∗c(eσ,σ∗)‖uX∗ − uX∗‖2

)
, X∗ ∈ {K∗, L∗}.

In order to guaranty eσ,σ∗ > 0 it is sufficient to ensure that these five terms are non negative.
Using Lemma 3.12 on (∇d · u)σ,σ∗ , T0 becomes

T0 = ρσ,σ∗eσ,σ∗

(
1− δt

|Dσ,σ∗ |
(γ − 1)

(
|σ∗|+ |σ|√

2
c(eσ,σ∗)+

∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗ ,s
))

− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|EDσ,σ∗ ,s.

Owing to Lemma 3.2, we have
EDσ,σ∗ ,s = eσ,σ∗F+

Dσ,σ∗ ,s
+ eσ′,σ∗′F

−
D
σ′,σ∗′ ,s

6 eσ,σ∗F+
Dσ,σ∗ ,s

6 ρσ,σ∗eσ,σ∗ [λ+(c(es), uDσ,σ∗ ,s)]+

and this allows us to bound T0 from below as

T0 > ρσ,σ∗eσ,σ∗

(
1− δt

|Dσ,σ∗ |
(γ − 1)

(
|σ∗|+ |σ|√

2
c(eσ,σ∗) +

∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗ ,s
)

− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗ ,s)]+

)
.
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Finally, since uDσ,σ∗ ,s 6 [uDσ,σ∗ ,s]+ and [λ+(c(es), uDσ,σ∗ ,s)]+ 6 [uDσ,σ∗ ,s]+ + c(es), the fact
that T0 > 0 follows from

1 >
δt

|Dσ,σ∗ |
(γ − 1)

(
|σ∗|+ |σ|√

2
c(eσ,σ∗)+

∑
s∈∂Dσ,σ∗

|s|[uDσ,σ∗ ,s]+
)

+ δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|([uDσ,σ∗ ,s]+ + c(es)).

This inequality is ensured by the assumption (38). Next, we turn to the term TK . We use the
bound for RK given in the proof of Proposition 3.15. Using the same notation, owing to (31),
we can write

TK >
‖uK − uK‖2

4|Dσ,σ∗ |

(
|Dσ,σ∗ ∩K|AK − ρσ,σ∗c(eσ,σ∗)

δt|σ|√
2γ

)
.

Moreover, we proved that AK > BintK + BextK with BextK > 0 since (30) holds. Thus, going back

to (33), we have AK > BintK >
∑

D
σ′,σ∗′∈DK∩Dint

|Dσ′,σ∗′ ∩K|
|K|

ρσ′,σ∗′Pσ′,σ∗′ where

Pσ′,σ∗′ = 1− δt

|Dσ′,σ∗′ |

(
1 +

|Dσ′,σ∗′ |
|Dσ′,σ∗′ ∩K|

) ∑
s∈∂D

σ′,σ∗′

|s|[λ+(c(es), uD
σ′,σ∗′ ,s

)]+. (40)

However, since (29) holds, we also proved that Pσ′,σ∗′ > 0 for each Dσ′,σ∗′ ∈ Dint so that
AK > |Dσ,σ∗∩K|

|K| ρσ,σ∗Pσ,σ∗ and we obtain

TK >
|Dσ,σ∗ ∩K|2

4|Dσ,σ∗ ||K|
ρσ,σ∗‖uK − uK‖2P̃σ,σ∗ ,

where
P̃σ,σ∗ = Pσ,σ∗ − c(eσ,σ∗)

δt√
2γ

|σ||K|
|Dσ,σ∗ ∩K|2

.

To ensure that TK is non negative, it is sufficient to prove that P̃σ,σ∗ > 0. We first observe that

|K||Dσ,σ∗ |
|Dσ,σ∗ ∩K|2

= |K|
|Dσ,σ∗ |

×
(
|Dσ,σ∗ |

|Dσ,σ∗ ∩K|

)2
6 reg (T)3

.

It leads to

P̃σ,σ∗ > Pσ,σ∗ −
δt

|Dσ,σ∗ |
reg (T)3
√

2γ
|σ|c(eσ,σ∗)

> 1− δt

|Dσ,σ∗ |

((
1 + reg (T)

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗ ,s)]+ + reg (T)3
√

2γ
|σ|c(eσ,σ∗)

)
.

Thus, TK is non negative as soon as
δt

|Dσ,σ∗ |

((
1 + reg (T)

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗ ,s)]+ + reg (T)3
√

2γ
|σ|c(eσ,σ∗)

)
6 1,

and this inequality holds thanks to assumption (38). Obviously, exactly the same result holds
for TL. Concerning TK∗ (and TL∗), owing to (36), we first observe that, as for AK , the following
bound holds

AK∗ > BintK∗ >
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗Pσ,σ∗ ,

(with the same definition of Pσ,σ∗ , i.e. given by (40)). Therefore, following the same lines, we
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obtain that TK∗ and TL∗ are non negative provided
δt

|Dσ,σ∗ |

((
1 + reg (T)

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗ ,s)]+ + reg (T)3
√

2γ
|σ∗|c(eσ,σ∗)

)
6 1.

This inequality is implied by assumption (38).

b) Suppose now that Dσ,σ∗ ∈ Dext, we get ρσ,σ∗eσ,σ∗ > T0 + TK + TL + TK∗ + TL∗ with

T0 = ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt|σ|

2|Dσ,σ∗ |
(γ − 1)

(
2c(eσ,σ∗)√

2
+ (uL − uK)nK,σ

)
− ρσ,σ∗eσ,σ∗

δt|σ∗|
2|Dσ,σ∗ |

(γ − 1)
(

2c(eσ,σ∗)√
2

+ (uL∗ − uK∗)nK∗,σ∗
)

− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗\∂Ω

|s|EDσ,σ∗ ,s −
δt

|Dσ,σ∗ |
|σ|Eσ,

and

TX = δt

2|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X|RX −

|σ|
2
√

2γ
ρσ,σ∗c(eσ,σ∗)‖uX − uX‖2

)
, X ∈ {K,L}

TX∗ = δt

2|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X∗|RX∗ −

|σ∗|
2
√

2γ
ρσ,σ∗c(eσ,σ∗)‖uX∗ − uX∗‖2

)
. X∗ ∈ {K∗, L∗}

As previously, in order to guaranty eσ,σ∗ > 0 it is sufficient to ensure that these five terms are
non negative. We first note that the expression of T0 is the same than in the case a) (that is
Dσ,σ∗ ∈ Dint) up to the additional boundary term |σ|Eσ. Thus, following the same lines and
using the inequalities Eσ 6 eσ,σ∗F+

σ 6 ρσ,σ∗eσ,σ∗ [λ+(c(eσ), uσ)]+ we arrive at the conclusion
that T0 is non negative as soon as

1 >
δt

|Dσ,σ∗ |
(γ − 1)

 |σ∗|+ |σ|√
2

c(eσ,σ∗) +
∑

s∈∂Dσ,σ∗
|s|[uDσ,σ∗ ,s]+


+ δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗\∂Ω

|s|([uDσ,σ∗ ,s]+ + c(es)) + δt

|Dσ,σ∗ |
|σ|[λ+(c(eσ), uσ)]+.

This is ensured by assumption (39).
Next, we turn to the term TK . As in the case a), we use the notation of the proof of

Proposition 3.15. We have

TK >
‖uK − uK‖2

4|Dσ,σ∗ |

(
|Dσ,σ∗ ∩K|AK − ρσ,σ∗c(eσ,σ∗)

δt|σ|√
2γ

)
.

Moreover, we proved that AK > BintK + BextK with BintK > 0 since (29) holds. Thus, going back

to (34), we have AK > BextK >
∑

D
σ′,σ∗′∈DK∩Dext

|Dσ′,σ∗′ |
|K|

ρσ′,σ∗′Qσ′,σ∗′ where

Qσ′,σ∗′ = 1− δt

|Dσ,σ∗ |
|σ|[λ+(c(eσ), uσ)]+ − δt

|Dσ,σ∗ |
reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗ ,s)]+.

(41)
Since (30) holds, the terms Qσ′,σ∗′ are non negative for all Dσ′,σ∗′ ∈ Dext and consequently

AK >
|Dσ,σ∗ |
|K|

ρσ,σ∗Qσ,σ∗ .
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Thus, TK is non negative as soon as

Qσ,σ∗ − c(eσ,σ∗)
δt√
2γ
|σ||K|
|Dσ,σ∗ |2

> 0

or equivalently, using the expression of Qσ,σ∗ ,

1 >
δt

|Dσ,σ∗ |

(
|σ|[λ+(c(eσ), uσ)]++reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗ ,s)]++reg (T)√
2γ
|σ|c(eσ,σ∗)

)
.

This inequality holds when assumption (39) is fulfilled. The same result obviously holds for TL.
Concerning TK∗ (and TL∗), we obtain a slightly different condition. Indeed, owing to (35), we
can write

TK∗ >
‖uK∗ − uK∗‖2

4|Dσ,σ∗ |

(
|Dσ,σ∗ ∩K∗|AK∗ − ρσ,σ∗c(eσ,σ∗)

δt|σ∗|√
2γ

)
.

Going back to (37) and since (30) holds, we have AK∗ > |Dσ,σ∗∩K∗|
|K∗| ρσ,σ∗Q

∗
σ,σ∗ where

Q∗σ,σ∗ > 1− δt

|Dσ,σ∗ |
|σ|
2

((
1 + reg (T)

) F+
σ

ρσ,σ∗
− reg (T) F

−
σ

ρσ,σ∗

)
− δt

|Dσ,σ∗ |
reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|
F+
Dσ,σ∗ ,s

ρσ,σ∗
.

Thus, we obtain that TK∗ is non negative as soon as

1 >
δt

|Dσ,σ∗ |

(
|σ|
2

((
1 + reg (T)

) F+
σ

ρσ,σ∗
− reg (T) F

−
σ

ρσ,σ∗

)
+ reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|
F+
Dσ,σ∗ ,s

ρσ,σ∗
+ c(eσ,σ∗)

|σ∗|√
2γ

reg (T)3

)
We conclude that TK∗ and TL∗ are non negative if the following condition holds

1 >
δt

|Dσ,σ∗ |

(
|σ|
2

((
1 + reg (T)

)
[λ+(c(eσ), uσ)]+ + reg (T) ρDir

ρσ,σ∗
[λ−(c(eDir), uDir)]−

)
+reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗ ,s)]+ + c(eσ,σ∗)|σ∗|reg (T)3
√

2γ

)
.

This last inequality is implied by assumption (39). This concludes the proof.

4 Conservation of total energy
Definition 4.1. We define a kinetic energy Ekin

σ,σ∗ , stored on the cell Dσ,σ∗ ∈ Dint, by the
formula

Ekin
σ,σ∗=

|Dσ,σ∗∩K|
ρK‖uK‖2

2 +|Dσ,σ∗∩L|
ρL‖uL‖2

2 +|Dσ,σ∗∩K∗|
ρK∗‖uK∗‖2

2 +|Dσ,σ∗∩L∗|
ρL∗‖uL∗‖2

2
2|Dσ,σ∗ |ρσ,σ∗

and a total energy Eσ,σ∗ , stored on the cell Dσ,σ∗ ∈ Dint, by setting

Eσ,σ∗ = eσ,σ∗ + Ekin
σ,σ∗ .
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We wish to write a local conservation equation for the total energy ρσ,σ∗Eσ,σ∗ . This property
is in fact related to the duality relations between discrete operators, as discussed in [23], and
based on Lemma 3.3.

Proposition 4.2. The discrete total energy ρσ,σ∗Eσ,σ∗ satisfies the following conservative equa-
tion on Dint:

ρσ,σ∗Eσ,σ∗ − ρσ,σ∗Eσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|TDσ,σ∗ ,s + 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|qDσ,σ∗ ,s = 0,

where
• TDσ,σ∗ ,s is a conservative total energy flux through the interface s of the diamond cell

Dσ,σ∗ ,
• 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|qDσ,σ∗ ,s is a conservative discrete version of ∇ · (pu) on the diamond cell

Dσ,σ∗ .

Proof. We identify the corresponding fluxes by using Lemma 3.3. It is helpful to bear in
mind the typical shape of a diamond cell with vertices xK , xK∗ , xL, xL∗ as depicted in Fig. 3.
Let X ∈ {K,L,K∗, L∗} and multiply the kinetic energy balance equation on the cell X by
|Dσ,σ∗∩X|
2|Dσ,σ∗ |

. Next, add the four relations to the equation for the internal energy (27) on the cell
Dσ,σ∗ .

*) The first task is to identify some conservative fluxes KDσ,σ∗ ,s such that∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗ ,s = |Dσ,σ∗ ∩K|
2|K|

∑
σ′∈∂K

|σ′|KK,σ′ + |Dσ,σ∗ ∩ L|
2|L|

∑
σ′∈∂L

|σ′|KL,σ′

+ |Dσ,σ∗ ∩K∗|
2|K∗|

∑
σ′∈∂K∗

|σ′|KK∗,σ′ + |Dσ,σ∗ ∩ L∗|
2|L∗|

∑
σ′∈∂L∗

|σ′|KL∗,σ′ . (42)

Applying Lemma 3.3, on each primal cell C = K with XK,σ = KK,σ provides a function ωK
which satisfies (11) and (12). For the dual mesh, we proceed as for the primal mesh to define
ωK∗ from the fluxes XK∗,σ∗ = KK∗,σ∗ on the interfaces of K∗. We next define a conservative
flux of kinetic energy for each s = [xK , xK∗ ] ∈ ∂Dσ,σ∗ as follows

KDσ,σ∗ ,s = 1
2|s|

∫
s

(ωK + ωK∗)nDσ,σ∗ ,s where s = sKK∗ .

With a convenient reorganization of the terms, we write
∑

s∈∂Dσ,σ∗ |s|KDσ,σ∗ ,s as

1
2

(∫
sKK∗

ωKnDσ,σ∗ ,sKK∗ +
∫
sKL∗

ωKnDσ,σ∗ ,sKL∗
)

+ 1
2

(∫
sLK∗

ωLnDσ,σ∗ ,sLK∗ +
∫
sLL∗

ωLnDσ,σ∗ ,sLL∗
)

+ 1
2

(∫
sKK∗

ωK∗nDσ,σ∗ ,sKK∗ +
∫
sLK∗

ωK∗nDσ,σ∗ ,sLK∗
)

+ 1
2

(∫
sKL∗

ωL∗nDσ,σ∗ ,sKL∗ +
∫
sLL∗

ωL∗nDσ,σ∗ ,sLL∗
)
.

Since the kinetic energy fluxes KK,σ and KK∗,σ∗ are conservative, we have
KK,σ +KL,σ = 0 and KK∗,σ∗ +KL∗,σ∗ = 0. (43)
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Applying again (12) in Lemma 3.3, these two equalities recast as
1
2

(∫
σ

ωKnK,σ +
∫
σ

ωLnL,σ
)

= 0

and
1
2

(∫
σ∗
ωK∗nK∗,σ∗ +

∫
σ∗
ωL∗nL∗,σ∗

)
= 0. (44)

We add these expressions in the sum
∑

s∈∂Dσ,σ∗ |s|KDσ,σ∗ ,s and we get∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗ ,s = 1
2

(∫
σ

ωKnK,σ +
∫
sKK∗

ωKnDσ,σ∗ ,sKK∗ +
∫
sKL∗

ωKnDσ,σ∗ ,sKL∗
)

+ 1
2

(∫
σ

ωLnL,σ +
∫
sLK∗

ωLnDσ,σ∗ ,sLK∗ +
∫
sLL∗

ωLnDσ,σ∗ ,sLL∗
)

+ 1
2

(∫
σ∗
ωK∗nK∗,σ∗ +

∫
sKK∗

ωK∗nDσ,σ∗ ,sKK∗ +
∫
sLK∗

ωK∗nDσ,σ∗ ,sLK∗
)

+ 1
2

(∫
σ∗
ωL∗nL∗,σ∗ +

∫
sKL∗

ωL∗nDσ,σ∗ ,sKL∗ +
∫
sLL∗

ωL∗nDσ,σ∗ ,sLL∗
)
.

Thus, by the divergence theorem, and because ∇ · ωX is constant over the cell X, we get∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗ ,s = |Dσ,σ∗ ∩K|
2 ∇ · ωK + |Dσ,σ∗ ∩ L|

2 ∇ · ωL

+ |Dσ,σ∗ ∩K∗|
2 ∇ · ωK∗ + |Dσ,σ∗ ∩ L∗|

2 ∇ · ωL∗ .

Applying (11) in Lemma 3.3 shows that (42) is satisfied. Finally, we define a conservative flux
of total energy TDσ,σ∗ ,s through the interface s of the diamond cell Dσ,σ∗ by

TDσ,σ∗ ,s = KDσ,σ∗ ,s + EDσ,σ∗ ,s.

**) We now turn to the pressure term. There are four terms coming from the sum of the
kinetic energy equations and the discrete version of p∇ · u, namely

|Dσ,σ∗ ∩K|
2 uK · (∇dp)K + |Dσ,σ∗ ∩ L|

2 uL · (∇dp)L

+ |Dσ,σ∗ ∩K∗|
2 uK∗ · (∇dp)K∗ + |Dσ,σ∗ ∩ L∗|

2 uL∗ · (∇dp)L∗

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ . (45)
We wish to rewrite this sum as

∑
s∈∂Dσ,σ∗ |s|qDσ,σ∗ ,s with qDσ,σ∗ ,s verifying the conservation

property qDσ,σ∗ ,s = −qD
σ′,σ∗′ ,s

where s = Dσ,σ∗ |Dσ′,σ∗′ .
To this end, we apply Lemma 3.3 again on each primal (resp. dual) cell C = K (resp. K∗)

with, now, XK,σ = pσ,σ∗uK · nK,σ (resp. XK∗,σ∗ = pσ,σ∗uK∗ · nK∗,σ∗ . It provides functions ωK
(resp. ωK∗) that satisfy (11) and (12).

We next define, for each s = [xK , xK∗ ] ∈ ∂Dσ,σ∗ ,

qDσ,σ∗ ,s = 1
2|s|

∫
s

(ωK + ωK∗) · nDσ,σ∗ ,s where s = sKK∗ .

By construction, this quantity is conservative.

We are now going to check that the sum
∑

s∈∂Dσ,σ∗ |s|qDσ,σ∗ ,s coincides with (45). With a
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convenient reorganization of the terms, we write
∑

s∈∂Dσ,σ∗ |s|qDσ,σ∗ ,s as

1
2

(∫
sKK∗

ωK · nσ,sKK∗ +
∫
sKL∗

ωK · nσ,sKL∗
)

+ 1
2

(∫
sLK∗

ωL · nσ,sLK∗ +
∫
sLL∗

ωL · nσ,sLL∗
)

+ 1
2

(∫
sKK∗

ωK∗ · nσ,sKK∗ +
∫
sLK∗

ωK∗ · nσ,sLK∗
)

+ 1
2

(∫
sKL∗

ωL∗ · nσ,sKL∗ +
∫
sLL∗

ωL∗ · nσ,sLL∗
)
.

We make use again of Lemma 3.3 to write∫
σ

ωK · nK,σ = |σ|pσ,σ∗uK · nK,σ and
∫
σ∗
ωK∗ · nK∗,σ∗ = |σ∗|pσ,σ∗uK∗ · nK∗,σ∗ . (46)

For X ∈ {K,L} we add 1
2
∫
σ
ωX · nX,σ + 1

2
∫
σ∗
ωX∗ · nX∗,σ∗ and substract |σ|2 pσ,σ∗uX · nX,σ +

|σ∗|
2 pσ,σ∗uX∗ · nX∗,σ∗ in the above expression and we get∑

s∈∂Dσ,σ∗
|s|qDσ,σ∗ ,s =1

2

(∫
σ

ωK · nK,σ +
∫
sKK∗

ωK · nσ,sKK∗ +
∫
sKL∗

ωK · nσ,sKL∗
)

+ 1
2

(∫
σ

ωL · nL,σ +
∫
sLK∗

ωL · nσ,sLK∗ +
∫
sLL∗

ωL · nσ,sLL∗
)

+ 1
2

(∫
σ∗
ωK∗·nK∗,σ∗ +

∫
sKK∗

ωK∗ · nσ,sKK∗ +
∫
sLK∗

ωK∗ · nσ,sLK∗
)

+ 1
2

(∫
σ∗
ωL∗ · nL∗,σ∗ +

∫
sKL∗

ωL∗ · nσ,sKL∗ +
∫
sLL∗

ωL∗ · nσ,sLL∗
)

− |σ|2 pσ,σ∗(uK · nK,σ + uL · nL,σ)− |σ
∗|

2 pσ,σ∗(uK∗ · nK∗,σ∗ + uL∗ · nL∗,σ∗).

Thus, using equation (11) of Lemma 3.3 together with Definition 3.11 of the discrete divergence
operator yields ∑

s∈∂Dσ,σ∗
|s|qDσ,σ∗ ,s = |Dσ,σ∗ ∩K|

2 ∇ · ωK + |Dσ,σ∗ ∩ L|
2 ∇ · ωL

+ |Dσ,σ∗ ∩K∗|
2 ∇ · ωK∗ + |Dσ,σ∗ ∩ L∗|

2 ∇ · ωL∗

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ .
Applying (12) in Lemma 3.3 shows that∑

s∈∂Dσ,σ∗
|s|qDσ,σ∗ ,s = |Dσ,σ∗ ∩K|

2|K|
∑
σ′∈∂K

|σ′|qK,σ′ + |Dσ,σ∗ ∩ L|
2|L|

∑
σ′∈∂L

|σ′|qL,σ′

= |Dσ,σ∗ ∩K∗|
2|K∗|

∑
σ∗′∈∂K∗

|σ∗
′
|qK∗,σ∗′ + |Dσ,σ∗ ∩ L∗|

2|L∗|
∑

σ∗′∈∂L∗
|σ∗
′
|qL∗,σ∗′

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ .
Finally, coming back to the definition of qK,σ and next, to Definition 3.7 of the discrete pressure
gradient, we remark that for X ∈ {K,L,K∗, L∗}

1
|X|

∑
σ′∈∂X

|σ′|qX,σ′ = 1
|X|

∑
σ′∈∂X

|σ′|pσ′,σ∗′uX · nX,σ′ = uX · (∇dp)X .
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We can conclude that∑
s∈∂Dσ,σ∗

|s|qDσ,σ∗ ,s = |Dσ,σ∗ ∩K|
2 uK · (∇dp)K + |Dσ,σ∗ ∩ L|

2 uL · (∇dp)L

+ |Dσ,σ∗ ∩K∗|
2 uK∗ · (∇dp)K∗ + |Dσ,σ∗ ∩ L∗|

2 uL∗ · (∇dp)L∗

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ .

While the numerical strategy is based on staggered discretization and makes use of the
internal energy equation, obtaining a discrete conservative equation on a quantity which is
consistent with the total energy is a remarkable fact. It opens doors to check the convergence
of the scheme in the spirit of Lax-Wendroff’s analysis [40] — which is far from obvious since the
standard notion of flux-consistency does not make sense on staggered grids; we refer the reader
to [2] and [19, 31] for developments in this direction. The derivation of entropy inequalities is a
much more delicate issue, which requires further efforts.

5 Numerical simulations
In this Section we present some numerical test cases on unstructured grids. We compare the
performance of the scheme to the mac discretization [25]. The unstructured primal meshes used
in this Section are tessellations made of triangles, provided by GMSH, which leads to a dual mesh
the cells of which are polygons of any type.

For these meshes, the coefficient reg (T) takes values around 10. We define the characteristic
length h of the different meshes as follows

h = max(|σ|, |σ∗|).

5.1 Consistency analysis with a 2D manufactured solution
In order to numerically validate the scheme, we compute the solution of the 2d problem

∂tρ+ ∇ ·
(
ρu
)

= 0,

∂t
(
ρu
)

+ ∇ ·
(
ρu⊗ u

)
+ ∇p = f(t,x),

∂t(ρe) + ∇ · (ρeu) + p∇ · u = 0,

where the force field (t,x) 7→ f(t,x) is tailored so that the smooth solution reads

ρex(t,x) = exp
(
− 2
√

(x cos(t) + y sin(t) + 1)2 + (−x sin(t) + y cos(t)− 0.1)2
)
,

uex(t,x) = −y,

vex(t,x) = x,

eex(t,x) =
exp

(
− 3
√

(x cos(t) + y sin(t) + 1)2 + (−x sin(t) + y cos(t) + 0.1)2
)

ρ(t,x) ,

with x = (x, y). We perform the simulations for t ∈ [0, 0.2] with γ = 1.4 on the circle of center
(0, 0) and radius 2. We use a series of tessellations made of triangles, provided by GMSH: the
characteristic length used in GMSH (the quantity that determines the mesh size) is divided by 2
between each mesh.
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The discrete L2 norms of the errors between the discrete and the exact solutions, for the
density, the internal energy and the first component of the velocity, on the different meshes, are
reported in Table 1 and Table 2:

e2,ρ =
( ∑

Dσ,σ∗∈D
σ∗=[xK∗ ,xL∗ ]

∣∣Dσ,σ∗
∣∣∣∣∣ρDσ,σ∗ − ρex

(xK∗ + xL∗
2

)∣∣∣2) 1
2

,

e2,e =
( ∑

Dσ,σ∗∈D
σ∗=[xK∗ ,xL∗ ]

∣∣Dσ,σ∗
∣∣∣∣∣eDσ,σ∗ − eex

(xK∗ + xL∗
2

)∣∣∣2) 1
2

,

e2,u =
( ∑
K∈M

|K|
∣∣∣uK − uex(xK)∣∣∣2) 1

2

, e2,v =
( ∑
K∈M

|K|
∣∣∣vK − vex(xK)∣∣∣2) 1

2

,

e2,u∗ =
( ∑
K∈M∗∪∂M∗

|K∗|
∣∣∣uK∗−uex(xK∗)∣∣∣2) 1

2

, e2,v∗ =
( ∑
K∈M∗∪∂M∗

|K∗|
∣∣∣vK∗−vex(xK∗)∣∣∣2) 1

2

.

We also report the characteristic length h of the different meshes. The results are almost the
same for the second component of the velocities. For this test case, we have set δt = 10−4: the
small value of the time step ensures that the stability condition is satisfied for all the considered
grids. It appears that it corresponds to the following condition at the initial time:

max
Dσ,σ∗∈Dint

(
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗ ,s)]+

)
= 1

4 .

We use Dirichlet boundary conditions. We observe as expected a first order convergence. In
Fig. 4 we show the numerical solutions (density and the internal energy) obtained on the finest
mesh at time t = 0 and t = 0.2.

i h(i) e
(i)
2,ρ

log(e(i)2,ρ/e
(i−1)
2,ρ )

log(h(i)/h(i−1))
e
(i)
2,e

log(e(i)2,e/e
(i−1)
2,e )

log(h(i)/h(i−1))
1 2.62× 10−1 4.07× 10−2 −− 1.71× 10−1 −−
2 1.43× 10−1 2.49× 10−2 0.82 9.28× 10−2 1.02
3 7.10× 10−2 1.40× 10−2 0.82 4.87× 10−2 0.92
4 3.74× 10−2 8.04× 10−3 0.87 2.54× 10−2 1.01
5 1.96× 10−2 4.45× 10−3 0.91 1.31× 10−2 1.02
6 1.01× 10−2 2.36× 10−3 0.96 6.74× 10−3 1.01

Table 1: Error in L2-norm between approximate and exact solutions for the density and the internal
energy on several meshes.
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i h(i) e
(i)
2,u

log(e(i)2,u/e
(i−1)
2,u )

log(h(i)/h(i−1))
e
(i)
2,u∗

log(e(i)2,u∗/e
(i−1)
2,u∗ )

log(h(i)/h(i−1))
1 2.62× 10−1 1.12× 10−1 −− 3.01× 10−1 −−
2 1.43× 10−1 6.19× 10−2 0.98 1.67× 10−1 0.97
3 7.10× 10−2 3.36× 10−2 0.87 9.40× 10−2 0.82
4 3.74× 10−2 1.80× 10−2 0.97 5.27× 10−2 0.90
5 1.96× 10−2 9.56× 10−3 0.98 2.89× 10−2 0.93
6 1.01× 10−2 4.94× 10−3 1.00 1.57× 10−2 0.92

Table 2: Error in L2-norm between approximate and exact solutions for the first component of the
velocity on several meshes.

(a) Density, t = 0
(max = 1.01, min = 2.43e-3)

(b) Density, t = 0.2
(max = 0.96, min = 2.47e-3)

(c) Internal energy, t = 0
(max = 1.49, min = 4.52e-2)

(d) Internal energy, t = 0.2
(max = 1.46, min = 4.67e-2)

Figure 4: Density and internal energy, numerical solution on a mesh with 921772 primal cells.
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5.2 Simulations of 1d Riemann problems
We now check the ability of the scheme in finding non smooth solutions. To this end, we
run the 2d code, on a 2d unstructured grid, but with Riemann data constant in the second
direction y. We thus expect to preserve the 1d geometry of the solution, given by solving the
1d Riemann problem. The mesh size is h = 6.9 × 10−4. The mesh contains about 5 cells
in the y direction and 21305 cells in total. The time step is δt = 2 × 10−6. Beyond the
geometric robustness, dealing with such discontinuous solutions it is also important to check
whether or not the scheme is able to capture the expected solution, without developing non
entropic singularities. In the staggered framework where the equations are treated “separately”,
the order in which the unknowns are updated might matter. The difficulty is illustrated in
[34] on standard Sod’s problems [50], showing differences between the updates “density/internal
energy/velocity” and “density/velocity/internal energy”, the latter (which is the order used
here) producing non entropic shocks, see [34, Fig. 23]. The 1D simulations performed in [25]
on the same test case shows that working with the numerical fluxes introduced in Definition 3.1
restores the expected entropic solution, see [34, Fig. 19]. This is confirmed by the experiments
performed with the 2d unstructured code: Fig. 5 compares the exact solution of the Riemann
problem and the numerical solution for the initial data ρl = ρr = 1, ul = ur = 0 pl = 1000,
pr = 0.001, T = 0.012, with the adiabatic exponent γ = 1.4. Contrarily to the results of [34],
the rarefaction wave does not contain non admissible shocks and the results are similar to those
obtained in the purely 1D simulations of [25].

(a) Density ρ (b) Velocity (horizontal component)

(c) Pressure p (d) Internal energy e

Figure 5: Riemann problem, horizontal cutlines (y = 0) at time T = 0.012. Exact solution (black
dotted line) and numerical solutions (blue solid line), h = 6.9× 10−4, δt = 2× 10−6.
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5.3 Simulations of 2d singular solutions

(a) Density
(min=0.0023, max=5.44)

(b) Pressure
(min=0.00, max=0.50)

Figure 6: Sedov blast wave problem, density and pressure at time T = 0.4 on an unstructured
triangular grid with 341136 primal cells (h = 3.02× 10−3) and δt = 10−6.

1. Sedov blast wave problem. This test case [49] gives rise to a diverging radially sym-
metric shock wave [12, 26, 46]. Initially the gas has constant state ρ = 1, u = 0, and the
pressure is 0, except at the origin where the total energy is concentrated. The analytical
solution is explicitly known [36]. To approximate this solution, we start from a constant
pressure in the set C of the diamond cells that contain the origin, with an initial energy
E0 = 1. Since, initially, the velocity is zero and ρ = 1, it means that we set

pD = (γ − 1)E0

|C|
, ∀D ∈ C and pD = 0, ∀D 6∈ C,

at the initial time. Thanks to the symmetry of the solution, it is possible to only perform
the simulations on the quarter plane. In this case, to take into account the symmetry, |C|
is replaced by 4|C| in the initialisation of the pressure. We perform three computations
with three different triangular meshes respectively with 21502, 85376 and 341136 primal
cells. The corresponding mesh sizes and the time steps we used are the following: (h =
1.17 × 10−2, δt = 2 × 10−5), (h = 5.93 × 10−3, δt = 2 × 10−6) and (h = 3.02 × 10−3,
δt = 10−6). Fig. 6 shows the discrete density and pressure at time T = 0.4 on the finest
mesh. It shows the expansion of the blast wave: the symmetry of the solution is well
preserved. We see in Fig. 7 radial cutlines of the exact and the numerical solutions at
T = 0.2 and T = 0.4 for the three different meshes. The solution is well captured with an
improved accuracy as the mesh is refined and the expansion speed is correct.
We also check on this test case the conservation properties of the scheme. The total mass∑
Dσ,σ∗∈D |Dσ,σ∗ |ρσ,σ∗ is preserved up to machine precision. The discrete integral of the

averaged total energy (see definition 4.1)∑
Dσ,σ∗∈D

|Dσ,σ∗ |ρσ,σ∗Eσ,σ∗
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is also preserved up to machine precision. The discrete total momentum ( computed on
both primal and dual meshes)∑

K∈T

|K|ρKuK and
∑
K∗∈T

|K∗|ρK∗uK∗

are also preserved up to the machine precision when the simulation is perfomed on the
full domain. On the quarter plane, the pressure term in the momentum equation brings a
non-vanishing contribution on the boundary.

(a) Density (b) Pressure

(c) Momentum

Figure 7: Sedov blast wave problem, radial cutlines at time T = 0.2 and T = 0.4. Exact solution
and numerical solutions on three different meshes.

2. Mach 3 Wind Tunnel. We use the scheme for the simulation of the 2d Mach 3 wind
tunnel with a step. The computational domain Ω is the L-shaped domain

Ω = Ω0 \ Ωstep, Ω0 = [0, 3]× [0, 1], Ωstep = [0.6, 3]× [0, 0.2].

We perform the simulation for t ∈ [0, 4] with γ = 1.4 and δt = 10−4. The initial data reads
ρ = 1.4, u = (3, 0) and p = 1. On the top and bottom walls, we use reflection boundary
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conditions which means zero flux boundary conditions. To make the flow enter through
the left boundary we use a Dirichlet boundary condition, ρ = 1.4, p = 1 and u = (3, 0),
whereas a free boundary condition is used for the right section.
In Fig. 8 (at the top), we present the result obtained at T = 4 with an unstructured primal
mesh made of 204 254 triangles and 307 081 edges. We compare this result to the one
obtained in [25] on a 960× 320 cartesian grid which is reported in Fig. 8 (at the bottom).

Figure 8: Simulation of the 2d Mach 3 wind tunnel with a step, density with 50 contour lines
on a mac mesh at bottom (min=0.30, max=6.53) and on an unstructured triangular grid at top
(min=0.33, max=6.84) at T = 4.

3. Falling water columns. The next test case is inspired from [3]: we consider the 2d
simulation of three falling columns into a rectangular basin. The computational domain
is the two-dimensional square [−1, 1] × [−1, 1]. We deal with the full Euler system with
γ = 2. Initially we suppose a constant initial temperature (or internal energy e) in the
basin. The PDE system is endowed with zero flux boundary conditions and the following
initial data

ρ(0,x) = 3 + 1(x−0.5)2+(y−0.5)2<(0.15)2 + 1(x+0.5)2+(y+0.5)2<(0.15)2 + 2 · 1x2+y2<(0.2)2 ,
e(0,x) = 1,
u(0,x) = 0,
v(0,x) = 0,

with x = (x, y). In Fig. 9 and 10, we show the density and the internal energy at time
T = 1.035 with δt = 10−4. The mesh has 43400 primal cells made of triangles and 65356
edges. The result is compared with the same simulation made on a 255 × 255 Cartesian
grid with the mac scheme presented in [25].
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Figure 9: Simulation of the 2d three falling columns into a rectangular basin: Density with 50
contour lines on an unstructured grid at left (min=2.83, max=4.01) and a 255 × 255 Cartesian
mesh at right (min=2.79, max=4.04) at T = 1.035.

Figure 10: Simulation of the 2d three falling columns into a rectangular basin: Internal energy
with 50 contour lines on an unstructured grid at left (min=0.81, max=1.11) and on a 255 × 255
Cartesian mesh at right (min=0.81, max=1.12) at T = 1.035.

4. Flow past a circular bump. The last test case is a 2d supersonic flow in a channel
with a circular arc bump. The fluid flows from left to right. Due to the geometry of the
obstacle, the mac grid proposed in [25] is not appropriate. The computational domain Ω
is the rectangle [0, 3]× [0, 1] with a circular arc bump of length 1 and thickness 0.04 located
at the bottom, at a distance 1 from the inlet. We perform the simulation up to the final
time T = 5. We have set γ = 1.4 and the time step is δt = 10−4. The initial data are given
by ρ = 1, u = (1.65, 0) and p = 1, so that the initial Mach number is 1.65. On the top
and bottom walls, we use zero flux boundary conditions and on the left we use Dirichlet
boundary condition ρ = 1, u = (1.65, 0) and p = 1 whereas on the right boundary a free
boundary condition is used. In Fig. 11, we show the Mach Number with 50 contour lines.
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(a) Direct dual mesh

Primal mesh

Dual mesh

∂Ω

(b) Barycentric dual mesh

Figure 12: Structured triangular mesh

The simulation is performed on a triangular mesh with 516192 primal cells and 775313
edges. Oblique shocks are formed at the two extremities of the bump. All the shocks are
well resolved. The simulation can be compared with the result presented in [51].

Figure 11: Simulation of the 2d supersonic flow in a channel with a circular arc bump flows from
left to right: Mach number (min=1.28, max=1.96) at time T = 5 with 50 contour lines on an
unstructured mesh.

A Barycentric mesh
An alternative construction of the dual mesh is obtained by joining the centers xK to the
midpoints of the edges of the primal mesh: this is the barycentric mesh [13, 14]. Fig. 12 provides
an example of the direct and the barycentric approaches, starting from the same structured
triangular primal mesh. Clearly, the barycentric dual mesh can have a much more complicated
structure than the direct dual mesh, requiring more involved descriptors in the code, but in
practice it can be more robust with respect to mesh orientation effects and stability issues, see
for instance [10, 11].

It might happen that the direct dual mesh produces non convex diamonds cells, in which
case the edges of the dual mesh are not included in the diamond. This is illustrated in Fig. 13.
For such complicated geometries, it is preferable to work with the barycentric dual mesh. In
this situation, considering a diamond cell Dσ,σ∗ , σ = [xK∗ , xL∗ ] is still included in the diamond,
and there are two edges of the dual mesh, hereafter denoted σ∗K and σ∗L, which belong to this
diamond, while possibly σ∗ = [xK , xL] 6⊂ Dσ,σ∗ , see Fig. 13. For the barycentric mesh, the
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definition of DK∗ should be adapted: it becomes DK∗ = {Dσ,σ∗ ∈ D, ∂K∗ ∩ Dσ,σ∗ 6= ∅}. All
statements of the paper apply to this framework; we are going to discuss the slight adaptations
of the arguments, which still relies on the construction derived in [23].

σ∗

σ

xK

xK∗

xL

xL∗

•

•

•

•

σ∗K

σ∗L

Figure 13: A case of non convex diamond cells: there are two edges of the dual mesh included in
the diamond cell. The shaded area is Dσ,σ∗ ∩ L∗

Let us detail how the construction of the mass fluxes FK,σ and FK∗,σ∗ made in Section 3.2
generalizes for the barycentric dual mesh. We refer the reader to Fig. 13 again. As in Section 3.2,
Lemma 3.3 gives the existence of a function ωDσ,σ∗ ∈ Hdiv such that

∇ · ωDσ,σ∗ = 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s,

and ∫
s

ωDσ,σ∗ · nDσ,σ∗ ,s = |s|FDσ,σ∗ ,s.

There is no restriction at all on the geometry of the cells, in defining a mass flux on an edge r
(of X = K or X = K∗) contained in Dσ,σ∗ , with the unit outward normal nX,r by the formula

|r|FX,r =
∫
r

ωDσ,σ∗ · nX,r. (47)

This is still a conservative quantity: if r = X|Y ⊂ Dσ,σ∗ , then FX,r = −FY,r, and we adopt this
definition from now on. The domain Dσ,σ∗∩L∗ is delimited by σ∗K , σ∗L (which are not necessarily
on the same direction), sKL∗ , and sL∗L. The mass fluxes are already known on sKL∗ , and sL∗L,
which are boundaries of the diamond Dσ,σ∗ , and we wish to clarify their expression on σ∗K , σ∗L,
the boundaries of L∗. Therefore, by definition of ωDσ,σ∗ and the divergence theorem, we obtain∫

Dσ,σ∗∩L∗
∇ · ωDσ,σ∗ = |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|FDσ,σ∗ ,s

= |σ∗K |FL∗,σ∗K + |σ∗L|FL∗,σ∗L
+|sKL∗ |FDσ,σ∗ ,sKL∗ + |sL∗L|FDσ,σ∗ ,sL∗L .

We write
1 = |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
+ |Dσ,σ∗ ∩K∗|

|Dσ,σ∗ |
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so that

|σ∗K |FL∗,σ∗K + |σ∗L|FL∗,σ∗L = |Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗ ,s

−|sKL∗ |FDσ,σ∗ ,sKL∗ − |sL∗L|FDσ,σ∗ ,sL∗L
= |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗∩K∗
|s|FDσ,σ∗ ,s

−|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗∩L∗

|s|FDσ,σ∗ ,s.

(48)

We recover the same expression as for the direct mesh, and it makes sense to still denote this
sum by FK∗,σ∗ . It is worth pointing out that computing FK∗,σ∗ does not need to determine
explicitly |σ∗K |FL∗,σ∗K and |σ∗L|FL∗,σ∗L : the sum can be evaluated directly form the knowledge
of the mass fluxes on the interfaces of the diamond cells. Next, we can define the splitting
FK∗,σ∗ = F+

K∗,σ∗ + F−K∗,σ∗ as we did for the primal mesh or the direct dual mesh, which leads
to (16). It is worth detailing further this decomposition and explaining its consistency. Indeed,
the auxilliary function ωDσ,σ∗ depends on the fluxes FDσ,σ∗ ,s = F+

Dσ,σ∗ ,s
+F−Dσ,σ∗ ,s, and, it turns

out that FX,r, defined by (47) appears as a linear combination of these fluxes; we get

FX,r =
∑

s∈∂Dσ,σ∗ , Dσ,σ∗∈DX

ηsFDσ,σ∗ ,s.

The expression of the coefficients is fully detailed in [23], but we dot not need this here: we
point out that the ηs are real, without definite sign; this explains why a construction applying
directly Lemma 3.3 to the F±Dσ,σ∗ ,s would fail: it is not guaranteed that the combination of the
F±Dσ,σ∗ ,s keeps the sign. Nevertheless, we can write

FX,r =
∑
ηs>0

ηsF+
Dσ,σ∗ ,s

+
∑
ηs60

ηsF−Dσ,σ∗ ,s︸ ︷︷ ︸
>0

+
∑
ηs60

ηsF+
Dσ,σ∗ ,s

+
∑
ηs>0

ηsF−Dσ,σ∗ ,s︸ ︷︷ ︸
60

.

This defines the splitting FX,r = F+
X,r + F−X,r. We apply this construction to define FK∗,σ∗

K
=

F+
K∗,σ∗

K
+F−K∗,σ∗

K
and FK∗,σ∗

L
= F+

K∗,σ∗
L

+F−K∗,σ∗
L
. By summing these contributions, we go back

to
|σ∗|FK∗,σ∗ = |σ∗K |FK∗,σ∗K + |σ∗L|FK∗,σ∗L ,

and then we obtain
|σ∗|F±K∗,σ∗ = |σ∗K |F±K∗,σ∗

K
+ |σ∗L|F±K∗,σ∗

L
. (49)

The proof of Proposition 3.5 can now be reproduced: the same formula holds for both the direct
and the barycentric dual meshes, by merging contributions as in (48).

Next, we turn to the momentum equation, as in Section 3.3. For the barycentric dual mesh,
there are two viewpoints:
*) either we define the mass fluxes on all interfaces of the dual mesh, by using the general

formula (47). Then, on these interfaces, say σ∗K , we split as described above the flux into
positive and negative parts FK∗,σ∗

K
= F+

K∗,σ∗
K

+ F−K∗,σ∗
K
, and we apply the upwinding
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principles accordingly by setting GK∗,σ∗
K

= F+
K∗,σ∗

K
uK∗ + F−K∗,σ∗

K
uL∗ . As in (48), we can

merge the contributions |σ∗K |GK∗,σ∗K and |σ∗L|GK∗,σ∗L : the sum can be cast into

(|σ∗K |F+
K∗,σ∗

K
+ |σ∗L|F+

K∗,σ∗
L

)uK∗ + (|σ∗K |F−K∗,σ∗
K

+ |σ∗L|F+
K∗,σ∗

L
)uL∗ .

**) or, we use directly the averaged formula (48), which defines F±K∗,σ∗ by (16) too, and then
we make use of (20).

The two viewpoints coincide, owing to (49).

Definition 3.7 of the pressure gradient can be readily adapted: the formula for (∇dp)K∗ still
makes sense, by setting

|σ∗|nK∗,σ∗ = |σ∗K |nK∗,σ∗K + |σ∗L|nK∗,σ∗L , (50)

remarking that this vector is indeed orthogonal to σ∗, by virtue of Lemma 2.4.
For obtaining the kinetic energy fluxes, as in Section 3.4, we can define the “intermediate”

kinetic energy fluxes KK∗,σ∗
K
, KK∗,σ∗

L
by going back to (49). It yields

KK∗,σ∗
K

=
(
F+
K∗,σ∗

K

‖uK∗‖2

2 + F−K∗,σ∗
K

‖uL∗‖2

2

)
,

KK∗,σ∗
L

=
(
F+
K∗,σ∗

L

‖uK∗‖2

2 + F−K∗,σ∗
L

‖uL∗‖2

2

)
,

|σ∗|KK∗,σ∗ = |σ∗K |KK∗,σ∗K + |σ∗L|KK∗,σ∗L .

(51)

Proof of Lemma 3.12 still follows by using −nL,σ = nK,σ and −nL∗,σ∗ = nK∗,σ∗ owing to
definition (50) for nK∗,σ∗ .

It remains to discuss the conservation of total energy and to extend Proposition 4.2. When
working with the barycentric mesh, we still apply Lemma 3.3, but in order to define ωK∗ , we
should use the two quantities XK∗,σ∗

K
= KK∗,σ∗

K
and XK∗,σ∗

L
= KK∗,σ∗

L
, see (51), associated to

the two interfaces σ∗K and σ∗L of K∗ that belong to Dσ,σ∗ . We next define a conservative flux of
kinetic energy for each s = [xK , xK∗ ] ∈ ∂Dσ,σ∗ as follows

KDσ,σ∗ ,s = 1
2|s|

∫
s

(ωK + ωK∗)nDσ,σ∗ ,s where s = sKK∗ .

With a convenient reorganization of the terms, we write
∑

s∈∂Dσ,σ∗ |s|KDσ,σ∗ ,s as

1
2

(∫
sKK∗

ωKnDσ,σ∗ ,sKK∗ +
∫
sKL∗

ωKnDσ,σ∗ ,sKL∗
)

+ 1
2

(∫
sLK∗

ωLnDσ,σ∗ ,sLK∗ +
∫
sLL∗

ωLnDσ,σ∗ ,sLL∗
)

+ 1
2

(∫
sKK∗

ωK∗nDσ,σ∗ ,sKK∗ +
∫
sLK∗

ωK∗nDσ,σ∗ ,sLK∗
)

+ 1
2

(∫
sKL∗

ωL∗nDσ,σ∗ ,sKL∗ +
∫
sLL∗

ωL∗nDσ,σ∗ ,sLL∗
)
.

In the energy balance, we should modify (43) since we take into account the two interfaces σ∗K
and σ∗L; on the dual cell K∗ we now have

KK∗,σ∗
K

+KL∗,σ∗
K

= 0 and KK∗,σ∗
L

+KL∗,σ∗
L

= 0.
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Accordingly, (44) becomes

1
2

(∫
σ∗
K

ωK∗nK∗,σ∗
K

+
∫
σ∗
K

ωL∗nL∗,σ∗
K

)
= 0,

and
1
2

(∫
σ∗
L

ωK∗nK∗,σ∗
L

+
∫
σ∗
L

ωL∗nL∗,σ∗
L

)
= 0.

We are thus led to∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗ ,s = 1
2

(∫
σ

ωKnK,σ +
∫
sKK∗

ωKnDσ,σ∗ ,sKK∗ +
∫
sKL∗

ωKnDσ,σ∗ ,sKL∗
)

+ 1
2

(∫
σ

ωLnL,σ +
∫
sLK∗

ωLnDσ,σ∗ ,sLK∗ +
∫
sLL∗

ωLnDσ,σ∗ ,sLL∗
)

+ 1
2

(∫
σ∗
K

ωK∗nK∗,σ∗
K

+
∫
σ∗
L

ωK∗nK∗,σ∗
L

+
∫
sKK∗

ωK∗nDσ,σ∗ ,sKK∗ +
∫
sLK∗

ωK∗nDσ,σ∗ ,sLK∗
)

+ 1
2

(∫
σ∗
K

ωL∗nL∗,σ∗
K

+
∫
σ∗
L

ωL∗nL∗,σ∗
L

+
∫
sKL∗

ωL∗nDσ,σ∗ ,sKL∗ +
∫
sLL∗

ωL∗nDσ,σ∗ ,sLL∗
)
.

From this, we can apply the divergence theorem and conclude as for the direct mesh. The
treatment of the pressure term follows similar arguments, up to the definition XK∗,σ∗

K
=

pσ,σ∗uK∗ · nK∗,σ∗
K
, XK∗,σ∗

L
= pσ,σ∗uK∗ · nK∗,σ∗

L
and replacing (46) by the sum over the in-

terfaces σ∗K and σ∗L.
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