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This work presents a consistent formulation of the phase-field approach to model the behavior of
nonmiscible alloys under irradiation which includes elastic strain fields, an example of a long-range
interaction. Simulations show that the spatial isotropy that is characteristic of radiation-induced patterns
breaks down as a result of the elastic strain energy. The consequence of this is the emergence of superlattice
structures under irradiation liable to modify macroscopic material properties. This approach is assessed
against the experimental study of a AgCu alloy under irradiation: we compare our simulation results to
measured solubility limits and Young moduli.
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Self-organization and pattern formation have beenwidely
observed in various systems far from equilibrium [1–3].
In contrast to patterning in equilibrium systems [1,4–6],
predicting all possible nonequilibrium steady states and
rationalizing conditions in which they appear still constitute
substantial challenges [1,7]. Meeting these challenges has
wide ranging implications for the development of new
technologies in almost every field of science and engineer-
ing. For example, mesoscopic nonequilibrium patterns
formed by precipitates constitute one of the main factors
influencing mechanical properties of advanced multiphase
materials.
In solid-state physics, the time evolution of numerous

systems such as block copolymer melts, ferrofluids, and
magnetic systems [8] can be described by a Cahn-Hilliard
(CH) equation [9] also known as model B in the Halperin-
Hohenberg classification [10]. Many studies [1,7] have
highlighted the fact that long-range interactions resulting in
strain [11] or electric fields [12] can substantially influence
the microstructure at equilibrium. For instance, the elastic
strain energy induced by coherent B-rich precipitates in
nonmiscible AB alloys is responsible for decreasing the
critical temperature Tc at which demixing occurs [13,14].
The CH equation is also extensively applied to model the

formation of radiation-induced patterns [15,16]. Under
irradiation, two antagonistic influences may combine to
drive an alloy toward a particular steady state [17,18]:

thermodynamic forces (chemical potentials in our case)
which are conducive to demixion, on the one hand, and
atomic recoils induced by the slowing down of incident
particles, on the other hand, otherwise known as ballistic
mixing [19], which have a tendency to homogenize the
system. This latter phenomenon acts over a characteristic
length scale of a few nanometers [20,21]. Nonequilibrium
steady states resulting from a combination between short-
(chemical potential) and intermediate-range (ballistic mix-
ing) interactions lead to patterning [15,16,22]. The objec-
tive of this Letter is to address the question of the impact of
directional, long-range interactions (of a few hundreds of
nanometers) on out of equilibrium patterning. We focus in
the present study on the effect of the elastic strain energy
induced by the presence of coherent precipitates under
irradiation.
Because atomic scale modeling such as molecular

dynamics or kinetic Monte Carlo techniques are by con-
struction constrained to finite size simulation boxes, a
number of technical difficulties may arise when long-range
interactions are relevant [1]. The phase-field method
provides a quite unique framework for treating these
interactions explicitly [14,23,24] and therefore appears
as a potentially useful tool for studying their impact on
out of equilibrium patterns.
Let c0 be the atomic fraction of species B at Tc, c

p
eq (cmeq)

the equilibrium atomic fraction of species B in the
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precipitate (matrix), and θðr; tÞ ¼ ½cðr; tÞ − c0�=½cpeq − cmeq�
the dimensionless scalar order parameter (OP) which is
proportional to the local atomic fraction cðr; tÞ of species B
in the AB alloy. By solving the modified CH equation,
changes in the radiation-induced microstructure of the alloy
may be modeled [16]:

∂θðr; tÞ
∂t ¼ ∇2

δL½θ�
δθðr; tÞ ; ð1Þ

where the functional L½θ� captures the dependence of
θðr; tÞ to chemical potentials, ballistic mixing, and the
elastic strain energy. We will see later that L½θ� may be
regarded as a Lyapunov functional, the minimization of
which provides the steady state solutions to Eq. (1). The
elastic strain energyW½θ� associated with spatial variations
of θðr; tÞ results from the crystal lattice mismatch between
the radiation-induced coherent B-rich precipitates and the
A-rich matrix. Because the timescales for thermal (tT),
ballistic (tB), and elastic (tW) relaxation processes in solids
[25] differ by several orders of magnitude, they act upon the
system independently of each other so that L½θ� may be
expressed as the sum of three contributions:

L½θ� ¼ F ½θ� þMðT;ϕÞGR½θ� þW½θ�: ð2Þ

F ½θ� is a temperature dependent short-range free energy.
It is modeled by the usual dimensionless Landau-
Ginzburg functional F ½θ�¼R ½θðr;tÞ4=4�− ½θðr;tÞ2=2�þ
½j∇θðr;tÞj2=2�dr and captures the evolution of the chemical
potential of the alloy in the absence of radiation. The
functional GR½θ�¼ 1

2

R R
θðr;tÞgRðr−r0Þθðr0;tÞdrdr0 models

ballistic mixing. Its kernel gRðrÞ ∝ expð−r=RÞ=r is a
exponential-like potential [16] whose characteristic range
R is of a few nanometers [20]. It is a function of the energy
and the nature of the incident particle [19]. The term
MðT;ϕÞ ∝ tT=tB characterizes the relative contributions
of thermal and ballistic processes [16]. The functional
W½θ� ¼ 1

2

R R
θðr; tÞg∞ðr; r0Þθðr0; tÞdrdr0 describes the

long-range elastic strain energy due to the presence of
B-rich precipitates. These precipitates induce a state of
strain characterized by the following eigenstrain tensor
[26]: ϵ0ijðr; tÞ ¼ ϵ0δijΔθðr; tÞ [Δθðr; tÞ ¼ θðr; tÞ − θ̄]. ϵ0 ¼
½ðaA − aBÞðcpeq − cmeqÞ=ā� is a measure of the misfit between
a B-rich precipitate and the A-rich matrix; ā, aA, and aB are
lattice constants of a fictitious homogeneous alloy of
composition θ̄ and pure A and B metals [1]. In addition
to this, one must also take into account the modification of
the elastic tensor resulting from local variations of θðr; tÞ:

Cijklðr; tÞ ¼ C̄ijkl þ ΔCijklΔθðr; tÞ; ð3Þ

where C̄ijkl is the elasticity tensor of a fictitious homo-
geneous system of average OP, θ̄. The elastic energy of this

homogeneous system is chosen as the reference elastic
strain energy. C̄ijkl can be computed from ab initio tech-
niques [27]. ΔCijkl is equal to ðCB

ijkl − CA
ijklÞðcpeq − cmeqÞ,

where CB
ijkl (CA

ijkl) is the elasticity tensor for pure B
(pure A).
In the absence of an elastic strain energy contribution

[16], i.e., when W½θ� is negligible, as in the case
of nonmiscible alloys exhibiting very small misfits,
ballistic effects dominate if MðT;ϕÞ ≫ 1 and the alloy
eventually ends up as a homogeneous solid solution. For
MðT;ϕÞ ≪ 1, chemical effects dominate and B-rich pre-
cipitates indefinitely coarsen. For MðT;ϕÞ ∝ 1, B-rich
precipitates will coarsen to a certain point and reach
a typical stable size of a few nanometers [18]. As the
fourth-order term θðr; tÞ4=4 in the Landau-Ginzburg free
energy affects the amplitude of the OP only [28], informa-
tion relative to its spatial modulations is contained in the
quadratic part of L½θ�. In Fourier space, this term reduces to
1
2

R
DðqÞjcΔθðq; tÞj2½dq=ð2πÞ3�, where DðqÞ ¼ ½−1þ q2þ

MðT;ϕÞĝRðqÞ�.DðqÞ is isotropic, i.e., depends exclusively
upon the modulus of q, q. The minimization of DðqÞ with
respect to q provides the modulations of B-rich precipitates
which exhibit a wavelength 2π=q0 (½dDðqÞ=dq� ¼ 0 for
q ¼ q0). In general [16], ground states of L½θ� are degen-
erate and wave vectors define a sphere of radius q0 in
Fourier space [16], which produces an isotropic pattern in
real space.
The question arises whether this pattern is modified by

W½θ�. The total strain field in our heterogeneous material
can be expressed as the sum of two contributions: the first is
an average strain field produced by the load exerted on the
domain boundary and the second is a local strain field
resulting from the presence of coherent B-rich precipitates.
In this study, all calculations are performed assuming a zero
external load. The functional W½θ� can be computed from
linear elasticity theory and is influenced by θðr; tÞ through
Eq. (3), but also by the displacement field uðr; tÞ due to the
eigenstrain tensor ϵ0ijðr; tÞ.
As the relaxation time associated with elastic effects (tW)

is much smaller than that associated with diffusion phe-
nomena (tT and tB), the components of the elastic dis-
placement field ussi ðrÞ (i ¼ 1, 2, 3) may always be treated
as being in a stationary state and therefore satisfy the time-
independent mechanical equilibrium equation [29]:

Z X3
l¼1

G−1
il ðr; r0Þussl ðr0Þdr0 ¼ fiðrÞ: ð4Þ

G−1 is the inverse Green operator of the problem [29].
The matrix element, G−1

il is expressed as G−1
il ¼P

3
j;k¼1C̄ijklð∂2=∂rj∂rkÞþΔCijklð∂=∂rjÞ½Δθð∂=∂rkÞ�. The

right-hand side term of Eq. (4), fi¼
P

3
j;k;l¼1ϵ

0δkl ×
fC̄ijkl½∂Δθðr;tÞ=∂rj�þΔCijkl½∂ðΔθðr;tÞ2Þ=∂rj�g has two
contributions. The first is the eigenstrain tensor ϵ0ijðr; tÞ
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resulting from the presence of B-rich precipitates and the
second is a consequence of the local variations of Cijklðr; tÞ.
Solving Eq. (4) provides the displacement field ussðrÞ
whence the elastic strain energy is derived. If no additional
hypotheses are formulated, the solution toEq. (4) can only be
obtained numerically [24].
In order to derive an analytical solution for under-

standing how the elastic strain energy influences micro-
structural changes under irradiation, we assume that
the interface between a precipitate and the matrix is
abrupt. The implication is that ½∂ðΔθðr; tÞÞ2=∂rj�≈
2ω½∂ðΔθðr; tÞÞ=∂rj�, which makes fi a linear
function of ½∂ðΔθðr; tÞÞ=∂rj� [ω ¼ f½ðmaxðθðr; tÞÞ þ
minðθðr; tÞÞÞ=2� − θ̄g is the difference between the local
and global average values of θðr; tÞ]. This allows us to
establish an explicit expression for W½θ� since ussðrÞ can
be analytically computed from Eq. (4) [29]:

W½θ� ¼ 1

2
⨍⨍ ĝ∞ðq;q0ÞΔ̂θðq; tÞcΔθðq0; tÞ dq

ð2πÞ3
dq0

ð2πÞ3 ; ð5Þ

where cΔθðq; tÞ is the Fourier transform of Δθðr; tÞ and
cΔθðq; tÞ denotes the complex conjugate of cΔθðq; tÞ.
ĝ∞ðq;q0Þ ¼ P

3
i;j¼1 σ̄iðqÞĜijðq; q0Þσjðq0Þ, is the Fourier

transform of g∞ðr; r0Þ, where σiðqÞ ¼ i
P

3
j;k;l¼1 qjðC̄ijkl þ

ΔCijklωÞϵ0δkl (i2 ¼ −1). Cauchy’s principal value ⨍ must
be used to compute W½θ� as ĝ∞ðq;q0Þ is singular at q ¼ 0
(elastic interactions have an infinite range). The key point
here is that g∞ðr; r0Þ is a function of vectors r and r0. The
elastic strain energy W½θ� is therefore anisotropic, in
contrast toF ½θ� and GR½θ�. Note that numerical calculations
[24,30] have demonstrated the anisotropic character of
W½θ� in the case of smooth interfaces also.
Equation (5) provides the last expression necessary to

calculate L½θ�. Since jθj < 1, L½θ� has a lower bound. In
addition, it is a decreasing function of time and so may be
seen as a Lyapounov functional for Eq. (1). Steady states of
Eq. (1) are therefore obtained from the minimization of
L½θ� with the constraint that ð1=ΩÞ R θðr; tÞdr ¼ θ̄. They
are anisotropic as they must minimize L½θ� along specific
directions corresponding to minima of W½θ� and this
induces the formation of B-rich precipitate superlattices.
It is a phenomenon that requires no energy and is induced
by Goldstone modes [31] as observed in liquid to solid
transitions.
To go one step beyond, W½θ� and therefore Gðr; r0Þ

need to be computed. The inverse Green operator may be
written as

G−1
il ¼

X3
j;k¼1

C̄ijkl

� ∂2

∂rj∂rk þ
ΔCijkl

C̄ijkl

∂
∂rj

�
Δθ

∂
∂rk

��

¼ ðG−1
0 Þil þ Vil: ð6Þ

G−1
0 is associated with the homogeneous elasticity tensor

C̄ijkl and V which is proportional to ΔCijkl=C̄ijkl con-
stitutes a perturbation term which captures the variations of
the elastic tensor due to the formation of B-rich precipitates.
The Dyson equation (G ¼ G0 −G0VG) provides an
expression for G which may further be written as an
analytical series expansion of operators G0 and V: G ¼P∞

p¼0ð−1ÞpðG0VÞpG0 [29]. Replacing G by its expansion
in Eq. (5) provides an expression forW½θ� in the form of an
infinite series, the general term of which is Wp½θ�.
We have applied this theoretical approach to the study of

irradiated AgCu cubic alloys which exhibit a large eigen-
strain tensor (ϵ0 ≈ 0.10). Based on the knowledge of the
elastic constants for Ag and Cu [32], the convergence
radius of the series expansion of G may be estimated. It is
proportional to ðΔC2323=C̄2323Þ and therefore remains
always lower than 1, thus proving the convergence
of the series. Moreover, Wp½θ� ∝ ðΔC2323=C̄2323ÞpW0½θ�
decreases rapidly; e.g.,W1=W0¼0.26 andW2=W0¼0.08.
It therefore appears to be necessary and sufficient to use a
first-order expansion of W½θ� (i.e., including terms W0½θ�
and W1½θ� only) to model radiation-induced patterning
adequately. The zero-order elastic strain energy contribu-
tion to L½θ� represents approximately 8% of the free
energy: W0=F 0 ¼ ½C̄2323ðϵ0Þ2=F 0� ≈ 0.08. This high ratio
shows that the AgCu alloy is particularly sensitive to elastic
strains within the range of temperatures we have studied.
Equation (1) is solved numerically assuming periodic and
zero-flux boundary conditions [∇θðr; tÞ ¼ 0 on domain
boundary δΩ]. Based on Eyre’s work [33], a semi-implicit
unconditionally stable scheme can be set up in Fourier
space. This is done by expressing L½θ� as the difference
between contracting (the quadratic part of F ½θ�, GR½θ�, and
W0½θ�) and expansive (the nonquadratic quadratic part of
F ½θ� and W1½θ�) contributions. Coefficients of the Landau
expansion a2ðTÞ, a3ðTÞ, and a4ðTÞ are obtained from
fitting the AgCu equilibrium phase diagram [34]. The
stiffness term related to the width of precipitate-matrix
interfaces was estimated at 1.5 eV nm−1 from Monte Carlo
simulations [35]. The characteristic length for ballistic
mixing R (0.3 nm) was determined assuming a binary
collision approximation [35]. Refer to Ref. [36] for details.
Silver and copper atoms are initially randomly distributed
as the alloy temperature lies above Tc. This provides the
initial conditions for the OP.
Figure 1 shows steady state microstructures of an

Ag0.42Cu0.58 irradiated sample as computed from Eq. (1).
The introduction of an elastic strain energy is responsible
for a drastic modification of the microstructure. In the
absence of this contribution, the calculation indicates the
emergence of a pattern [see Fig. 1(a)] which is isotropic in
q space [see Fig. 1(d)]. Accounting for the zero-order
elastic term W0 destabilizes this pattern and induces an
ordered superlattice of stripes [see Figs. 1(b) and 1(e)].
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Addition of the first-order term W1 produces a stable
microstructure which is a two-dimensional superlattice of
B-rich rods [see Figs. 1(c) and 1(f)]. The characteristic size
of these rods is roughly 5 nm, in line with experimental
observations [18,37,38] and with the fact that precipitates
are coherent. Figure 1(c) and its associated Fourier trans-
form Fig. 1(f) show that the elastic energy contribution
induces a condensation of wave vectors along specific
directions, thus destroying the originally isotropic pattern
illustrated in Figs. 1(a) and 1(d).
We now endeavor to illustrate through comparison to

experimental data the relevance of the theory exposed
above. Assessment of the model is carried out against two
types of data: solubility limits and Young moduli pertaining
to Ag0.42Cu0.58 samples irradiated at various temperatures
with a 6 × 1011 cm−2 s−1 flux of 1.6 MeV krypton ions to a
fluence of 2 × 1016 cm−2, thus ensuring that steady states
are reached [37]. Five thin-film samples were prepared
using plasma vapor deposition on (100) silicon single
crystal wafers. The thin-film thickness was chosen so that
the damage it sustained was homogeneous and to guarantee
that the krypton ions were not implanted in the thin film.
Ion irradiations were carried out at the SCALP facility [39].
Solubility limits have already been reported in a previous
Letter [16], whereas Young moduli constitute original
data. Experimental solubility limits reported in Fig. 2 were
obtained from a room temperature, grazing incidence, x-ray
diffraction characterization of irradiated samples. The
incidence angle of x rays (1°) was chosen to maximize
the intensity of diffraction patterns. The full pattern
analysis of diagrams provided values for lattice parameters

of the matrix and precipitates, whence solubility limits were
derived [40] (Rwp < 5% for all patterns). Figure 2 shows
that W0 and W1 terms of the W½θ� expansion must be
included in the calculation to reproduce the experimental
data satisfactorily.
The irradiated samples’ Young moduli were determined

from nanoindentation experiments carried out at
room temperature using a modified Berkovich tip. The
reduced moduli were obtained from the analysis of load-
displacement curves collected using the multiple-point
method [41]. For each indentation test, the load was
increased linearly between 0 and 5 mN. However, in
addition, a dynamical method was implemented which
involved superimposing a low amplitude (0.5 mN), 20 Hz
oscillatory motion of the indenter as it penetrated the
material [41]. This enabled us to measure a large number
of data under a single indent. Assuming a Poisson ratio of
0.24 for all irradiated thin films in agreement with our
phase-field simulations (see below), the Young modulus for
each thin film can be determined from the knowledge of the
reduced Young moduli [41]. These Young moduli are
shown in Fig. 3 as a function of irradiation temperature.
The corresponding simulated values were obtained as

follows. The effective elasticity tensor Ceff
ijkl was explicitly

calculated from the second derivative of the Lyapounov
functional with respect to the average strain tensor:

Ceff
ijkl¼ C̄ijkl−ΔCijrsArstuΔCtukl;

Arstu¼−
1

V
⨍⨍ ĝ∞ðq;q0ÞcΔθðq;tÞcΔθðq0;tÞ dq

ð2πÞ3
dq0

ð2πÞ3 : ð7Þ

The Young modulus and Poisson ratio of a polycrystalline
sample are computed by averaging Ceff

ijkl [i.e., Eq. (7)] over

FIG. 2. Comparison between experimental solubility limits
(cyan triangles) of Ag in irradiated Ag0.42Cu0.58 thin films at
different temperatures and computed from Eq. (1) [W0¼W1¼0,
red squares; W0 ≠ 0 and W1 ¼ 0, full green circles; W0 ≠ 0 and
W1 ≠ 0, blue stars].

FIG. 1. Calculated steady state modulations of the silver
concentration in Ag0.42Cu0.58 samples irradiated with 1.6 MeV
Kr ions at T ¼ 443 K (flux of 6 × 1011 cm−2 s−1). These micro-
structures are computed for different contributions of the elastic
strain energy [(a) W0 ¼ 0 and W1 ¼ 0 (no contribution),
(b) W0 ≠ 0 and W1 ¼ 0 (zero-order expansion of elastic strain
energy), (c) W0 ≠ 0 and W1 ≠ 0 (first-order expansion of elastic
strain energy)] and exhibit quite different characteristics. The
formation of ordered superlattices of precipitates occurs when an
elastic interaction is modeled, as illustrated by the Fourier
transforms [(d) W0 ¼ 0 and W1 ¼ 0, (e) W0 ≠ 0 and W1 ¼ 0,
(f) W0 ≠ 0 and W1 ≠ 0].
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all crystalline directions [42]. The calculated Poisson ratio
was found to be insensitive to irradiation temperature and
remained equal to 0.24. The computed effective Young
moduli reproduce the experimental data remarkably well
(Fig. 3). In addition, one notes that in the absence of an
elastic strain energy contribution (red line in Fig. 3), the
Young’s modulus is a decreasing function of temperature.
This demonstrates that the experimentally measured
increase of the Young modulus with irradiation temperature
results from elastic effects alone. Further, one may surmise
that point defects have no significant influence on the
Young modulus, since if this were not the case, one would
expect the Young modulus to be a decreasing function of
the irradiation temperature, as higher temperatures are
conducive to defect elimination.
To conclude, we demonstrate in this work that micro-

structural changes under irradiation in AgCu alloys may be
modeled adequately using the phase-field method, on the
condition that zero- and first-order contributions of the
elastic strain energy be modeled. It is shown that the spatial
isotropy that is characteristic of patterns in the absence of
an elastic strain energy contribution to the Lyapounov
functional disappears when elastic effects are taken into
account. The consequence of this is the emergence of
superlattices under irradiation. On a more general note,
we provide an example of how to compute an essential
but complex material property via a multiscale approach.
Atomic scale methods alone cannot provide such

information due to the long-range nature of elastic inter-
actions. By its ability to take these interactions into account
in systems maintained far from equilibrium, such an
approach could be applied for instance to the study of
mixed oxide nuclear fuels [43].
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thin films.
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