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†Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay,
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Abstract

Vibrational resonance amplifies a weak
low-frequency signal by use of an addi-
tional non-resonant high-frequency mod-
ulation. The realization of weak signal
enhancement in integrated nonlinear op-
tical nanocavities is of great interest for
nanophotonic applications where optical
signals may be of low power. Here, we
report experimental observation of vi-
brational resonance in a thermo-optically
bistable photonic crystal optomechani-
cal resonator with an amplification up
to +16 dB. The characterization of the
bistability can interestingly be done using
a mechanical resonance of the membrane,
which is submitted to a strong thermo-
elastic coupling with the cavity.

Phase transitions and double-well potentials
have been extensively exploited to amplify or
detect weak signals.1 Such general physical con-
cepts, observed in various fields of science are at
the heart of the phenomenon of vibrational res-
onance2 (VR). Introduced as an analogy with
the well known stochastic resonance,3 VR uses
a high-frequency (HF) periodic signal to am-
plify a low-frequency (LF) input signal. It has
been theoretically studied in different types of
nonlinear systems, e.g. in neural network,4 in
excitable systems5 or in biological networks.6

Several experimental demonstrations have also
been conducted in electronic circuits,7 bistable

VCSELs8,9 or electromechanical Duffing res-
onator,10 for example. Despite the growing in-
terest for photonic nanodevices and their use
for signal processing and sensing, VR has not
yet been demonstrated using nonlinear optical
nanocavities.

Among optical nonlinearities, the thermo-
optic effect overwhelmingly manifests itself in
photonic micro and nano-devices. Resulting
from the temperature dependence of a mate-
rial refractive index, it is commonly utilized to
introduce tunability and to realize elementary
computational all-optical components, such as
photonic switches,11 phase-shifter12 or inte-
grated spectrometers.13 Due to the ultimate
electromagnetic field confinement achievable in
optical nanocavities, strong thermo-optic ef-
fects can lead to multistability,14–16 which has
been widely used to study nonlinear dynami-
cal behaviors such as, e.g., self-stability,17 self-
pulsing,18 excitability19 or soliton modelock-
ing.20 The usefulness of optical nanocavities
has also largely been demonstrated to sense or
manipulate mechanical vibrations.21 Thus com-
plex dynamics can emerge due to a combina-
tion of thermo-optic and optomechanical non-
linearities enabling e.g. utilization in sensing
applications,22 chaos generation,23 or electro-
optomechanical self-oscillation24 .

While stochastic resonance has been observed
in optomechanical systems,25,26 VR remains
unexplored both theoretically and experimen-
tally. Within this framework, VR in opti-
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Fig. 1: a) SEM image of the suspended photonic molecule – made of L3-defect cavities (arrows) –
and underneath SOI waveguide (red stripe). b) Waveguide transmission spectrum with four dips
corresponding to the PhC molecule photonic eigenmodes. c) Experimental setup. d) Noise spectrum
of the output optical field as a function of the injected laser wavelength. Scan performed over the
2nd and 3rd photonic modes. The fundamental mechanical resonance experiences a photothermal
shift proportional to the intracavity energy. The black (resp. gray) arrows indicate the abrupt
jumps of the mechanical frequency observed at the bistabilities’ edges under upward (backward)
scan of the laser wavelength. inset: noise spectra taken when the optical resonator is the hot state
(blue) and in the cold state (blue). The mechanical quality factor Qm ∼ 1400 is estimated from
the Lorentzian fits (white).

cal nanocavities supporting simultaneously me-
chanical modes and nonlinearities is a key de-
velopment for potential nanophotonic and op-
tomechanical applications.

In this letter, we demonstrate VR amplifi-
cation of a weak LF signal in a suspended
thermo-optic photonic crystal (PhC) nanores-
onator in the bistable regime. Thanks to a
strong thermo-elastic coupling between one me-
chanical resonance of the PhC membrane and
the optical cavity load, the state of the thermo-
optic cavity can be readout through the me-
chanical mode spectral position. It further en-
ables to characterize the threshold modulation
amplitude below which the modulation signal
does not trigger switching between the states of
the bistability. Then by adding a non-resonant

HF signal, we observe up to +16 dB amplifica-
tion of the weak LF signal.

The system is a 12 × 21 µm2 rectangular
InP membrane with thickness 265 nm sus-
pended over a 250 nm airgap. The membrane is
pierced with a 2D PhC in which four L3 defect-
cavities are diagonally arranged (fig. 1a) such
that the electromagnetic field confined in each
defect can evanescently couple to the neighbor-
ing ones.27 A SOI waveguide is placed under-
neath the membrane for integrated light injec-
tion.28 The electromagnetic modes confined in
the PhC molecule are characterized by injecting
a broadband superluminescent diode through
the waveguide. The IR spectral analysis of the
waveguide transmission, shown in fig. 1b, ev-
idences four resonance dips. Here, the use of
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a PhC molecule enables higher optomechanical
coupling to the MHz drum modes of the mem-
brane – i.e. whose associated displacement field
is extended on the whole membrane – and on
which we focus here.

The PhC eigenmodes can alternatively be
injected with a preliminary amplified tunable
laser (see fig. 1c) enabling coherent and reso-
nant excitation of the photonic modes. Doing
so, the brownian motion of the suspended mem-
brane is optomechanically transduced into the
optical field. The analysis of the output field
noise spectrum is done via an electrical spec-
trum analyzer (ESA). The membrane carries
several mechanical modes in the MHz domain.
Focusing on the 6 MHz fundamental mechan-
ical mode, we plot the noise spectrum of the
output optical field as a function of the input
laser wavelength in fig. 1d. The laser is scanned
over the 2nd and 3rd photonic modes and the
estimated power sent to the photonic molecule
is Pin = 2.4 mW. The use of sufficiently high
circulating power reveals a thermo-optic non-
linearity which leads both photonic modes to
shift and to become bistable. Note that the 2nd

mode experiences a stronger red-shift than the
3rd mode. The thermal origin of this nonlinear
effect is confirmed in the following by the tem-
poral response of the optical cavity. Interest-
ingly, the intra-cavity field intensity is partially
absorbed which also provokes the photothermal
shift of the mechanical frequencies through the
thermo-elastic effect. Indeed, as the laser wave-
length is upwardly swept from off-resonance to
on-resonance the mechanical frequency experi-
ences a linear photothermal shift. The abrupt
intra-cavity intensity drop occurring when pass-
ing the edge of the first bistability (2nd photonic
resonance) translates into an abrupt red-shift of
the mechanical frequency (black arrow). The
same phenomenon happens when scanning the
3rd photonic bistable resonance (fig. 1d). The
downward scan can only be performed manu-
ally and gives access to the hysteresis turning
point. The backward jumps of the mechani-
cal frequency are measured and shown with the
gray arrows. The corresponding trajectory su-
perposes with the upward trajectory except in
the bistable regions. Therefore it is possible to

evaluate the intra-cavity field intensity by mea-
suring the frequency shift of a mechanical mode.
In the following we set the laser wavelength
at the center of the second photonic mode
bistability (λ = 1566.75 nm) to symmetrize
the double-well potential.29 Thus we name hot
(blue) and cold (green) mechanical states the
corresponding mechanical frequencies Ωhot

m /2π
and Ωcold

m /2π (see inset in fig. 1d). A lorentzian
fit of the mechanical lineshape (white lines) re-
turns a mechanical linewidth Γm/2π = 4.3 kHz,
hence a mechanical quality factor of about 1400.

When the optical resonator state flips, it re-
quires a certain time to reach its new stable
state. Under strong modulation of the input
field intensity, the optical state is asked to flip
twice per modulation period, which is possible
only if the switching time τs is short enough.
Therefore, the maximum modulation frequency
allowing the system to accurately flip is given
by 2τ−1

s . We estimate this cut-off modulation
frequency by measuring the typical switching
time of the system. To do so, we modulate the
input laser field slowly enough such that the
transitory regime – in which the system leaves
a stable state to reach the other one – can be
measured. The laser wavelength is modulated
in an intensity electro-optic modulator (EOM,
with half-wave voltage Vπ = 7.5V ) on which
we apply a square electrical signal carrying am-
plitude Vmod and frequency Ωmod. A femtowatt
sensitivity photodetector converts the transmit-
ted laser field into a voltage Vout we input in an
oscilloscope (see fig. 1c).

Modulating the input field with Vmod = 1 V
and Ωmod/2π = 10 kHz, the system response
is recorded over several hundred of modulation
cycles. The data are averaged cycle by cycle
and plotted in fig. 2a. During one cycle, the
resonator, initially set in the hot state, tran-
sits towards the cold state and then switches
back to the hot state at half a modulation cy-
cle. Note that since the cavity load is accessed
through the waveguide transmission, the cav-
ity hot state (resp. cold state) corresponds to
the low (high) transmission level. This tran-
sient regime manifests as an exponential decay
from one state to the other. Fitting the aver-
aged data provides the switching time τs ≈ 4
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Fig. 2: a) Output signal (Vout) averaged
during hundreds of modulation periods with
Ωmod/2π = 10 kHz. The switching decay
times is fitted with exponential fits. b) For
Vmod = 900, 980 and 1200 mV, from top to bot-
tom: reference modulation signal, transmitted
signal Vout and demodulated noise amplitude at
the hot (cold) state mechanical frequency Ωhot

m

(Ωcold
m ). Ωmod/2π = 10 Hz. c) Probability for

the optical state to be in the hot (blue) or cold
(green) state.

µs. This value is similar for both transitions
hot→cold or cold→hot. The corresponding cut-
off frequency, as discussed above, is of the order
of 125 kHz, which is consistent with previous es-
timation made in a similar InP photonic crystal

nanocavity.30

In order to clearly resolve the mechanical fre-
quency, we use in the following a LF weak-signal
with frequency of Ωmod/2π = 10 Hz. In princi-
ple, the use of faster signal should not prevent
from the realization of amplification as demon-
strated below. However, the modulation tones
present in the driving field couple with the op-
tomechanical cavity such that they are trans-
duced into the mechanical frequency domain.31

As a result, the mechanical response at reso-
nance would be weakened as sidebands would
be created. Keeping Ωmod � Γm guarantees
here the demonstration of VR.

Once the laser wavelength and modulation
frequency are set, the switching between op-
tical stable states can be achieved only if the
modulation amplitude passes a certain thresh-
old. The demonstration of VR amplification re-
lies on the use of a weak signal, i.e. with ampli-
tude lying below this threshold, whose knowl-
edge is consequently required. To evaluate the
latter, we increase the modulation amplitude
and check the optical response. When the am-
plitude is sufficiently high, the optical state flips
periodically at the modulation frequency.

In our case, the optical state can be ac-
cessed both through the transmission signal or
through the spectral position of the mechani-
cal resonance. In parallel of the direct output
measurement (Vout), the output signal is ana-
lyzed in the ESA via a fast photodetector. From
the spectrum, we determine the two positions
of the mechanical peak Ωcold

m /2π = 6.0572 MHz
and Ωhot

m /2π = 6.0164 MHz for the cold and
hot optical states, respectively. The RF signal
is therefore amplified and demodulated using a
lock-in amplifier. Two demodulation channels
are used at frequencies Ωcold

m and Ωhot
m and with

1 kHz wide passband filters. The two corre-
sponding demodulated signal amplitudes V cold

m

and V hot
m are recorded in the oscilloscope. Due

to the demodulation filter whose bandwidth is
smaller than the mechanical linewidth, noise in
the demodulated signal is induced by frequency
fluctuations of the mechanical resonance.

The resulting time traces are shown for three
values of the modulation amplitudes in fig. 2b.
For each situation, we show the reference mod-
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ulation signal (black), the transmission signal
(red) and the demodulation amplitudes (blue
and green). Around a threshold value Vt = 980
mV, the optical state starts to flip but tends to
remain in the cold state. The dynamics of the
mechanical frequency is in perfect correlation
with these jumps. For Vmod > Vt, the opti-
cal state jumps are perfectly synchronous with
the modulation reference signal. Note that the
signal-to-noise ratio in the mechanical spectrum
is higher in the hot state, due to higher optome-
chanical coupling which is proportional to the
energy stored in the optical cavity. This dif-
ference is also visible in the amplitude of the
mechanical response (inset of fig. 1d).

For a given time trace, one can calculate the
residence probability of the optical state. It
consists in evaluating the amount of time spent
by the system in the cold (or hot) optical state.
To do so, a threshold line is arbitrarily chosen in
between the two corresponding amplitude lev-
els. The probability for the system to set in the
initial state, is 100% for low modulation ampli-
tudes (see fig. 2c). It quickly converges to 50%
around the threshold amplitude Vt = 980 mV.
Such data treatment performed on Vout, V

hot
m or

V cold
m all provide the same residence probability

shown in fig. 2c.
With the full knowledge on the cut-off fre-

quency and the threshold modulation ampli-
tude, we investigate the amplification of a weak
signal via an additional HF intensity modu-
lation with frequency Ωhf and amplitude Vhf .
Thus the field now carries both tones Ωmod and
Ωhf :

Vref = Vmodsign(sin(Ωmodt) + Vhf cos(Ωhft)

When Vmod < Vt and Vhf = 0, we know that
the square signal cannot flip the optical state.
However, the increase of Vhf comes with a sig-
nificant distortion of the bistability until the
switching process can be re-activated. Ensur-
ing that Ωmod � Ωhf ,

10 we arbitrarily set the
frequency of the HF signal to Ωhf/2π = 80 kHz
and Vmod = 250 mV, and record the output op-
tical response for increasing value of Vhf . The
results are shown through three examples. In
each case, we plot the time trace (fig. 3a) and
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Fig. 3: a) Time-domain and b) frequency-
domain transmitted signal Vout for three values
of the high frequency signal amplitude Vhf =
400, 640 and 750 mV. c) SNR as the function
of the HF signal below and above the amplifi-
cation threshold, resp. with Vmod = 150 mV
(gray) and Vmod = 150 mV (black). We use
Ωhf/2π = 80 kHz.

the corresponding FFT spectrum (fig. 3b). At
frequency Ωmod, a peak testifies the presence
of the LF square modulation. Its amplitude
increases when the switching process becomes
more efficient. While at Vhf = 400 mV the sys-
tem remains in the hot state, switching is ob-
tained at 640 mV, with 100% fidelity to the LF
signal. In both cases, the noise remains con-
stant in the FFT spectrum. At Vhf = 750 mV,
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the fidelity drops which results from a clear in-
crease of the noise floor.

For a given LF signal amplitude Vmod, the
signal-to-noise ratio (SNR) is evaluated as a
function of the HF signal amplitude Vhf .

8 The
SNR is taken as the amplitude of the LF mod-
ulation peak in the FFT spectrum, to the noise
level around this peak. This measurement is
reproduced for several values of Vmod. The re-
sulting amplification curves are shown in fig. 3c.
Amplification occurs when the SNR is higher
than its value for Vhf = 0. These reference
levels are indicated with dashed lines. We ob-
serve a significant amplification (Vmod = 250
mV, black curve) up to +16 dB. The range of
Vhf – in which amplification is observed – is de-
limited by transitory regions where the switch-
ing is imperfectly achieved, resulting in a high
noise level, as discussed above. Weakening fur-
ther the LF signal amplitude modifies amplifi-
cation features as observed with the gray curve
in fig. 3c, where we use Vmod = 150 mV. An am-
plification of 5 dB is observed around Vhf = 900
mV. It is likely that higher amplification could
be obtained by increasing Vhf .

The observation of VR reported here can be
consistently modeled with a single waveguide-
coupled optical mode including a photothermal
nonlinearity. Numerical simulations, available
in the Supporting information, provide a qual-
itative agreement with the experimental find-
ings.

VR amplification could not be performed by
exploiting the demodulated signals, V hot

m and
V cold

m at the mechanical resonances because of
the appearance of sidebands through the HF
tone. Indeed, the presence of the latter (with
Ωm > Ωhf � Γm) can produce strong sidebands
reducing the effective mechanical response at
resonance, and whose intensity depend on the
modulation depth and frequency.31 Therefore,
optimal adjustment of these parameters is ex-
pected to render possible the characterization
of VR in the mechanical domain. Other solu-
tions might also be investigated. Self-sustained
oscillation regimes enabled in high optical qual-
ity factor and low phase-noise optomechanical
cavities32 would constitute an ideal support to
explore manipulation of mechanical oscillations

through the presently described phenomenon of
vibrational resonance.

In conclusion, we have demonstrated am-
plification of a weak LF signal using vi-
brational resonance in a waveguide-coupled
thermo-optic nano-resonator. The character-
ization of the bistable system is made both
through the waveguide transmission optical
field and through the thermo-mechanical effect
induced by photo-thermal absorption in the op-
tomechanical cavity. This strong thermo-elastic
coupling could be exploited in sensing applica-
tions22 or in the realization of FM modulation
of nanomechanical oscillators, as demonstrated
here. Our system made of coupled PhC cav-
ity constitutes an ideal test-bed for such in-
vestigations. Additionally, the amplification of
weak signals could be enhanced and enriched
by the presence of multistability, which can oc-
cur when two or more bistable resonances over-
lap.16

Acknowledgement This work is supported
by the French RENATECH network, the Eu-
ropean Union’s Horizon 2020 research innova-
tion program under grant agreement No 732894
(FET Proactive HOT), the Agence Nationale
de la Recherche as part of the “Investissements
d’Avenir” program (Labex NanoSaclay, ANR-
10-LABX-0035) with the flagship project CON-
DOR and the JCJC project ADOR (ANR-19-
CE24-0011-01).

Supporting information

Theoretical model

Here we derive a model to describe the vibra-
tional resonance amplification of a weak sig-
nal in a thermo-optic waveguide-coupled optical
mode. We consider a single optical mode with
complex amplitude a. We write ωc, κi, κe, si
and ωL respectively the mode frequency, its in-
trinsic loss rate, its external loss rate, the laser
amplitude and the laser frequency. The system
can be modelled within coupled mode theory
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approach:

ȧ(t) =
(
j(ωL−ωc)−

κt
2

)
a(t)+

√
κe×si(t) (1)

where κt = κi + κe is the optical mode total
resonance linewidth.

We introduce the thermo-optic nonlinearity
through the cavity temperature dynamics, with
∆T the temperature elevation in the optical
cavity:

∆̇T = Kt
(
κth|a|2 −∆T

)
(2)

with Kt the thermalization rate of the cavity
and κth the thermal resistance (in K/J).

The optical mode resonance wavelength is
thermally shifted by an amount:

∆λ =
λ0

n0

dn

dT
∆T (3)

with λ0 = 2πc/ω0 the optical mode wave-
length – ω0 and n0 being respectively the
cavity natural frequency and refractive index,
both taken at room temperature – and dn

dT
the

thermo-optic coefficient of the material.

Table 1: List of parameters used in the numer-
ics.

Physical parameter value
λ0 : resonance wavelength 1566.3 nm
κi : internal loss rate 28.2 GHz
κe : external loss rate 18.4 GHz
n0 : refractive index 3.16
dn
dT

: thermo-optic coef. 1.9298·10−4K−1

Kt : Thermalization rate 125 kHz
κth : thermal resistance 1.62 K.fJ−1

In the numerical simulation, we integrate
eqs. (1) to (3) using the real and imaginary
parts of a, and considering a temperature de-
pendent resonance frequency for the optical
mode:

ωc = ω0(1− 1

n0

dn

dT
∆T ) (4)

The ODEs are integrated after time-
normalization t −→ Ktt, as Kt constitutes the

cut-off frequency of the thermo-optic nonlinear-
ity. The input field is modelled with a square
modulation at Ωmod plus a high frequency si-
nusoidal signal at Ωhf . Both components have
respective amplitudes given by the modulation
depths, respectively αmod and αhf :

si(t) =
√
Pin

[
1 + ejπ

(
− 1

2
+αmodf(Ωmodt)+αhf cos(Ωhf t)

)]
(5)

where Pin is the laser input power and f(t) is
the square signal function,

f(t) =
4

π

N∑
p=0

sin
(
(2p+ 1)t

)
2p+ 1

In the numerics we use N=15. All the con-
stants are given in table 1.

Numerical simulations

In fig. 4a the mode intensity is numerically eval-
uated as a function of the laser wavelength un-
der forward and backward scans (resp. black
and red curves). Tuning the input power Pin,
the spectral span (∼ 1 nm) of the bistability
(red region) is adjusted to qualitatively match
the experiment. Note that playing with the
power of with the thermo-optic coefficient is
equivalent in this model. We find the best
agreement for Pin = 10 mW.

Using the laser wavelength λL = 1566.3 nm),
we numerically resolve the ODE for increasing
modulation depth αmod. The modulation fre-
quency is set to Ωmod/2π = 500 Hz rather than
10 Hz in the experiments, in order to reduce
the integration time. The time trace |a|2(t) is
used to calculate the residence probability of
the optical mode (see fig. 4b).

Enabling the high-frequency modulation with
Ωhf/2π = 10 kHz, the amplification curve is
obtained by evaluating the signal-to-noise ratio
(SNR) of the weak low-frequency modulation in
the mode response, as a function of the HF sig-
nal amplitude, αhf . The results are shown for
two different values of αmod, in fig. 5. Significa-
tive amplification is obtained for αmod = 0.005
(black curve), but not for αmod = 10−5 (gray

7
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curve). The shape of the amplification curve
as well as its amplitude of nearly 22 dB show
a good qualitative agreement with the experi-
mental results.
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Fig. 5: Signal-to-noise ratio (SNR) plotted as a
function of the high-frequency signal amplitude,
αhf , for αmod = 0.005 (black) and αmod = 10−5

(gray). Ωmod/2π = 500 Hz and Ωhf/2π = 10
kHz.

Note that the model here accounts for a sin-
gle optical mode. Therefore the significative
overlap between bistable optical modes that we
observe experimentally is not captured by the

present simple model.
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