

Results of a prospective follow-up study after type A aortic dissection repair: a high rate of distal aneurysmal evolution and reinterventions

Marine Gaudry, Alizée Porto, Carine Guivier-Curien, Arnaud Blanchard, Laurence Bal, Noemie Resseguier, Virgile Omnes, Mariangela de Masi, Meghann Ejargue, Alexis Jacquier, et al.

▶ To cite this version:

Marine Gaudry, Alizée Porto, Carine Guivier-Curien, Arnaud Blanchard, Laurence Bal, et al.. Results of a prospective follow-up study after type A aortic dissection repair: a high rate of distal aneurysmal evolution and reinterventions. European Journal of Cardio-Thoracic Surgery, 2022, 61, pp.152-159. 10.1093/ejcts/ezab317. hal-03428257

HAL Id: hal-03428257

https://hal.science/hal-03428257

Submitted on 19 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Results of a prospective follow-up study after type A aortic dissection repair: a high rate

of distal aneurysmal evolution and reinterventions

Marine Gaudry, MD¹, Alizée Porto, MD², Carine Guivier-Curien, PHD³, Arnaud Blanchard,

PHD¹ Laurence Bal MD¹, Noemie Resseguier ⁴, Virgile Omnes ¹, Mariangela De Masi¹,

Meghann Ejargue MD¹, Alexis Jacquier, MD, PHD⁵, Vlad Gariboldi PHD², Valérie Deplano,

PHD³, Philippe Piquet, MD¹

1. APHM, Timone Hospital, Department of Vascular Surgery, Timone Aortic Center

13005, Marseille, France.

2. APHM, Timone Hospital, Department of Cardiac Surgery, 13005, Marseille,

France.

3. Aix-Marseille Université, CNRS, Ecole Centrale Marseille, IRPHE UMR 7342,

13384 Marseille, France.

4. APHM, department of epidemiology and public health cost

5. APHM, Timone Hospital, Department of Radiology, 13005, Marseille, France.

Corresponding author: Marine Gaudry

Phone: +33491388120

Email: marine.gaudry@ap-hm.fr

Short title: Distal evolution of residual aortic dissection after type A repair

Words count: 4993

IRB approval: 2019-48

Visual abstract

Key question: What happens to the distal descending thoracic aorta after type A aortic dissection repair?

Key finding: Residual aortic dissection (RAD) is associated with a high rate of aneurysmal evolution and reintervention

Take-home message: RAD justifies close follow-up and patients with poor prognostic factors could be treated at an early phase to improve long-term outcomes

Glossary of abbreviations

RAD: residual aortic dissection after type A repair

TEVAR: thoracic endovascular aortic repair

CT: computed tomography

FL: false lumen

TL: true lumen

CPB: cardiopulmonary bypass

ACP: antegrade cerebral perfusion

CA: circulatory arrest

SA: supra-aortic

IA: innominate artery

LCC: left common carotid artery

LSA: left subclavian artery

TAAD: type A aortic dissection

BAV: bicuspid aortic valve

ABSTRACT

OBJECTIVES We investigated the anatomical evolution of residual aortic dissection after type A repair and factors associated with poor prognosis at a high-volume aortic center.

METHODS Between 2017 and 2019, all type A aortic dissections were included for prospective follow-up. Patients without follow-up CT scan available for radiological analysis and patients without residual aortic dissection were excluded from this study.

The primary endpoint was a composite endpoint defined as dissection-related events including aneurysmal evolution (increased diameter > 5 mm/year), aortic reintervention for malperfusion syndrome, aortic diameter > 55 mm, rapid aortic growth >10 mm/year, or aortic rupture and death. The secondary endpoints were risk factors for dissection-related events and reintervention analysis. All immediate and last postoperative CT scans were analyzed.

RESULTS Among 104 patients, after a mean follow-up of 20.4 months (8-41), the risk of dissection-related events was 46.1% (48/104) and the risk of distal reintervention was 17.3% (18/104). Marfan syndrome (p<0.01), aortic bicuspid valve (p=0.038), innominate artery debranching (p=0.025), short aortic cross clamp time (p=0.011), initial aortic diameter >40 mm (p<0.01), and absence of resection of the primary entry tear (p=0.015) were associated with an increased risk of dissection-related events or reintervention during follow-up.

CONCLUSION Residual aortic dissection is a serious disease requiring close follow-up at an expert center. This study shows higher reintervention and aneurysmal development rates than currently published. To improve long-term outcomes, the early demographic and anatomic poor prognostic factors identified may be used for more aggressive treatment at an early phase.

KEYWORDS: prospective follow-up; aortic center; type A aortic dissection; residual aortic dissection; aneurysmal evolution; reinterventions

Introduction

A patent false lumen (FL) in the descending aorta is the most common situation encountered after replacement of the ascending aorta for type A aortic dissection (TAAD), ranging from 43% to 77.5% and is a well-known risk factor for aortic growth, reinterventions and mortality(1-6).

In addition, several risk factors also promote aneurysmal evolution of the descending aorta after residual dissection: a ratio of the true and FL diameter < 1, young age, male sex, connective tissue diseases, aortic diameter > 40 mm, absence of resection of the primary entry tear or new entry tear and technique used for the initial TAAD repair (2-5, 7-9). Aortic arch repair has been reported to improve the long-term outcomes of acute type A aortic dissection, avoid aneurysmal evolution and provide extensive repair (10, 11). However, ascending aorta or hemiarch replacement remains the most commonly used surgical procedure (12) but is associated with a high risk of patent FL.

Several studies (including randomized controlled trials) have shown the long-term benefit of thoracic endovascular repair (TEVAR) compared to optimal medical treatment in type B aortic dissection to prevent aortic aneurysm progression and mortality(13, 14). However, there is little knowledge on TEVAR for residual aortic dissection (RAD), and some series have shown that endovascular treatment is associated with good anatomical results and a low rate of morbimortality(15).

Knowing the exact rate of long-term aneurysmal evolution, reoperations and mortality of RAD would justify more aggressive interventional treatment at the subacute phase to prevent dissection-related events.

The aim of this study was to assess the rate of aneurysmal evolution and reintervention of RAD after TAAD repair and factors associated with poor prognosis at a high-volume aortic center with prospective follow-up.

Patients and Methods

Study patients

The institutional review board approved the project (approval number 2019-48). The ethics committee waived the need for individual written informed consent.

Between January 2017 and December 2019, all patients treated surgically for TAAD aortic dissection at our aortic center were included for prospective follow-up. In our center, TAAD were surgically treated, we did not perform endovascular treatment and patients were contraindicated to surgery after multidisciplinary discussion taking into account physiological age, neurological status, comorbidities and operative risk. (i.e major stroke, limited life expectancy).

Demographic and pre- and intraoperative variables were collected, including age, sex, cardiovascular risk factors, past medical and surgical history, cardiorespiratory and renal status, operative risk, symptoms in the acute phase, and procedure details.

Inclusion and exclusion criteria

All survivors (discharge alive from intensive care units) with a postoperative CT scan in our center were included in this study. Patients without follow-up CT scan available for radiological analysis and patients without RAD were excluded from the study.

Endpoints

The primary endpoint was a composite endpoint: dissection-related events including an eurysmal evolution (a ortic growth > 5 mm) distal reintervention or death.

The secondary endpoints were demographical and anatomical risk factors (entry tear > 10 mm and maximum aortic diameter on the arch and/or descending aorta > 40 mm, location and absence of resection of the primary entry tear) for dissection-related events and reinterventions.

Follow-up

All patients had an immediate postoperative computed tomography (CT) scan and underwent clinical and radiological follow-up at 3, 6 and 12 months and annually in the case of favorable progress.

In this study, all preoperative, immediate postoperative and last postoperative CT scans were analyzed by 1 vascular surgeon, 1 cardiac surgeon and 1 radiologist. For patients with reintervention, we analyzed the last CT scan before reintervention.

CT protocol

All patients underwent postoperative and follow-up examinations with a three-phase CT scan. Image analysis and measurements were performed using three-dimensional imaging software (OSIRIX software, Geneva, Switzerland). The maximal aortic diameter measurements were performed on the perpendicular axis according to the centerline using a semiautomated centerline algorithm at three different levels of the aorta (ascending aorta aortic arch and descending thoracic aorta). The principal entry tear (new entry tear or nonresected primary entry tear) was measured and located. FL patency was assessed as an FL that was enhanced anywhere in the downstream aorta during arterial- and venous-phase CT and FL disappearance was considered complete FL thrombosis (1).

Surgical procedures

Initial surgery for TAAD

At our center, during an emergency, if the entry site was located at the ascending aorta, replacement of the ascending aorta or hemiarch aorta was performed. Hemiarch replacement with open distal anastomosis during moderate hypothermic circulatory arrest (CA) with cardiopulmonary bypass (CPB) and selective antegrade cerebral perfusion (ACP) was preferred

when possible. If the entry site was located at the distal part of the aortic arch, partial arch replacement with innominate artery (IA) debranching was performed.

After systemic heparinization, CPB was established by direct cannulation of the right axillary artery.

Retrograde cold blood cardioplegia was infused every 15 minutes. CA was instituted when the vesical temperature was 25°C. We preferred moderate hypothermia with ACP for cerebral protection during CA.

Aortic root replacement with a composite prosthesis was performed according to the modified Bentall procedure in patients with dilation of the aortic root or an aortic root damaged by the entry tear.

Distal reintervention

Indications for reinterventions were aortic diameter greater than 55 mm, rapid aortic growth (10 mm/y), malperfusion syndrome or aortic rupture.

Hybrid treatment with TEVAR and open supra-aortic (SA) debranching in at least two steps remain the first-line therapy at our center when the RAD involves the aortic arch, as detailed regarding hybrid repair (16). The decision to extend the proximal landing zone was based on the location of the main new entry tear (on distal anastomosis of the ascending aortic repair, on the aortic arch or in the descending thoracic aorta). In the absence of RAD in the aortic arch and when the entry tear was in the descending thoracic aorta, we performed TEVAR on the descending thoracic aorta.

The distal extension of the stent graft was based on the distal extension of the dissected aortic aneurysm. Since 2017, we have added bare stent deployment in the thoraco-abdominal aorta to induce remodeling of the distal dissected aorta (the Stent-Assisted Balloon-Induced Intimal Disruption and Relamination in Aortic Dissection Repair (STABILISE) technique).

Statistical analysis

All analyses were performed using R software, version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria). Means and standard deviations were used to describe continuous variables; categorical variables were described as numbers and frequencies.

Risk factors for dissection-related events and distal reinterventions were assessed using time-to-event analysis. The survival rate without events was estimated using the Kaplan-Meier method. Univariable Cox models were built to estimate hazard ratios with their 95% confidence intervals to quantify the association between baseline characteristics and event risk over time. A multivariable analysis was then performed to estimate adjusted hazard ratios with their 95% confidence intervals. All variables whose p value was <.20 in the univariable analysis were considered candidates for the multivariable Cox model. Backward stepwise selection was applied to keep only variables that were statistically associated with the endpoint in the multivariable analysis. Primary entry tears > 10 and primary entry tears on distal anastomosis were forced in the multivariable model when analyzing distal reintervention. Firth's penalized maximum likelihood bias reduction was applied to limit the width of the 95% confidence intervals. The log minus log survival (LML) plot was graphed to assess whether the Cox proportional hazards assumption was met.

All statistical tests were two-sided, and for all analyses a p value < .05 was considered statistically significant.

Results

Population characteristics

Between January 2017 and December 2019, 202 patients were admitted for TAAD at our aortic center: 14 patients were contraindicated to open surgery and 188 patients were treated and included for prospective follow-up. The mean age was 63.7 years (25-83 years), and 70.2% were men (132/188). The in-hospital mortality rate was 13.8% (26/188), 44 patients (23.4%) did not have RAD (41 type II De Bakey aortic dissections, and in 3 type I De Bakey aortic dissections, the dissected aorta disappeared after the initial aortic repair), and 17 patients (9.0%) did not have a follow-up CT scan available for radiological analysis because follow-up was carried out in their city or country. These patients were excluded from radiological analysis. In total, 104 survivors of RAD with at least a 1-year follow-up comprised the study group. Demographic data are presented in Table 1.

Perioperative data

Perioperative characteristics are summarized in Table 2.

We performed 31 concomitant procedures: 5 coronary artery bypass grafts, 23 IA debranching (entry tears in the distal aortic arch), 1 superior mesenteric artery stenting, 1 LCC stenting and 1 right carotid artery stenting for neurological deficits prior to cardiac surgery due to carotid dissection.

On the postoperative CT scan, there was a patent FL in 94.2% of cases (98/104), a new entry tear on distal anastomosis in 49.0% of cases (51/104), and a residual entry tear in the aortic arch or the distal aorta in 23.1% (24/104) and 31.7% (33/104) of cases, respectively.

Follow-up results

Dissection-related events of the descending aorta (Figure 1)

After a mean follow-up of 20.4 months (range 8-41), the incidence of dissection-related events of the descending aorta was 46.1% (48/104) and the mean aortic diameter of the descending

thoracic aorta in this group was 52.1 mm (SD 5.5). There were 18 reinterventions (17.3%) among which 1 aortic-related death (0.9%) and 30 aneurysmal evolution >5mm/year (28.8%) The Kaplan-Meier estimated dissection-related events-free survival rates at 12, 24 and 36 months were 80.4%57.3%% and 22.0%%, respectively (Figure 4).

Distal reintervention details and results

Twenty-six patients (25.0%) had an indication for reintervention, and the mean aortic diameter in this group was 55.7 mm (SD 4.6). Among them, 8 did not undergo reintervention:6 patients were followed up until 60 mm because of a high risk of reoperation and 2 patients had a contraindication for reintervention (1 patient with a previous stroke and sequala after type A repair and 1 contraindication in an elderly patient (82y/o patient)).

Among 18 reinterventions, 13 patients were treated before the end of the first year of follow-up, 4 during the second year (1 at 14 months, 1 at 16 months, 2 at 18 months) and 1 at 32 months; the mean delay between TAAD repair and distal reintervention was 11.2 months (range 1-36).

One patient was treated for malperfusion syndrome and aneurysmal evolution >5mm and 17 patients were treated for aneurysmal evolution >55 mm or 10 mm/year.

We performed 2 TEVAR and 16 hybrid repairs with SA debranching and TEVAR. Among 16 hybrid repairs, we performed complete SA debranching in 15 patients: LSA debranching alone in 1 case (Figures 2 and 3). One patient died due to aortic rupture during the delay between SA debranching and TEVAR after discharge.

In 1 patient with Marfan syndrome, there was also aneurysmal evolution of the abdominal aorta and iliac arteries treated by aorto-bi-iliac graft through median laparotomy.

After TEVAR, the technical success rate was 100% (17/17), and no perioperative death was observed. FL thrombosis of the thoracic aorta was obtained in 100% of patients. There was no stroke or spinal cord ischemia.

Risk factors for dissection-related events and distal reinterventions

Univariable analysis is summarized in table 3.

Independent risk factors identified in the multivariable analysis are described in Table 4:

An initial aortic diameter > 40 mm was an independent risk factor for dissection-related events and distal reintervention (HR = 9.00 CI = [4.17-22.89], p < 0.01 and HR = 28.54 CI₉₅ = [3.63-224.18], p < 0.01, respectively).

A short clamping time (HR 0.99 CI95 = [0.98-1.00], p = 0.011) and Marfan syndrome (HR = 9.06 CI95 = [2.74-29.99], p <0.01) were independent risk factors for dissection-related events and distal reintervention, respectively.

Discussion

The rate of aneurysmal evolution after acute TAAD repair was estimated to be between 40 and 50% at 5 years in a few studies with long-term CT scan analysis (2, 7, 17). Despite this high rate of aneurysmal evolution, the risk of reintervention was low between 5 and 20% at 5 years, probably due to a large number of patients lost to follow-up (1-5, 7, 17, 18). Indeed, with multidisciplinary prospective follow-up at an aortic center, the natural course of RAD appears to be poor, with a higher rate of dissection-related events (46.1%) and reinterventions (17.3%) than previously published. This finding highlights the need for close follow-up with CT scans for these patients starting in the first few months. Indeed, most patients need reinterventions for aneurysmal evolution in the first year, and early follow-up could avoid fatal issues at mid-term. Moreover, a multidisciplinary approach with vascular surgeons, cardiac surgeons and radiologists allows a better analysis of CT scans with different views and improves the management of this complex pathology.

In the present study, Marfan syndrome was associated with the risk of distal reinterventions. This finding has already been described in several studies (1, 3, 4, 8, 18). Marfan disease causes fragility of the aortic wall, which is responsible for rapid aortic dilation in a large number of cases, more aortic reinterventions, and more aortic-related death (19).

We showed new and major results, with bicuspid aortic valves (BAV) associated with a risk of distal aortic reintervention. BAV patients have an increased incidence of aortic dilation, noted in approximately 40% of patients at referral centers (20) and we believe that aortopathy is in fact not limited to the ascending aorta but extends to the whole aorta. The risk of unfavorable long-term evolution could be linked to aortic fragility and to a larger initial diameter. Despite its importance, to our knowledge, this association has not been previously published. Kreibich et al reported a significantly larger diameter in the ascending aorta in TAAD between BAV patients and tricuspid aortic valve patients without long-term different results, but the authors

did not measure the descending aortic diameter during follow-up and did not report the distal reintervention rate (21).

Aortic cross clamp time was associated with an increased risk of dissection-related events The risk of aortic events is directly related to the permeability of the FL (1, 2, 7, 18, 22); the causes of patent FL are related to distal new entry tears or entry tears on the distal aorta. In the present study, 49 % of distal anastomosis new entry tears were found, but all patients included had a RAD with a patent FL in most cases, which could explain this finding. Tamura et al reported distal new entry tears in 19 patients (41% of cases) with patent FL (5). In cases of short aortic cross clamp time, aortic resection is more limited, and re-entry or unresected tears located in the distal arch are probably more frequent. However, perioperative mortality increases with longer operative times (12, 23), which are balanced with the risk of long-term complications. Partial aortic arch repair associated with IA debranching was also associated with the risk of reintervention, probably because this was performed in cases of distal entry tears in the aortic arch or descending thoracic aorta which were identified as risk factors for dissection-related events and reintervention. A more aggressive primary operation with total aortic arch repair or frozen elephant trunk would be beneficial with respect to long-term results, allowing more extensive repair without residual entry tears (24, 25). However, ascending aorta or hemiarch replacement remains the most commonly used surgical procedure in most centers because of a lower perioperative mortality risk (12).

The most relevant anatomical criteria found in the literature were the initial aortic diameter (1, 2, 4, 5, 7, 8, 17, 18) and the presence of a new entry tear on distal anastomosis(5) or the absence of resection of the primary entry tear (1-4, 26). Our study confirmed these results: an initial aortic diameter > 40 mm, absence of primary entry tear resection and distal entry tears in the aortic arch or descending thoracic aorta were risk factors for dissection-related events and reintervention.

The early demographic and anatomic poor prognostic factors identified in this study could be

used to propose early endovascular treatment with better anatomical results and a low rate of

perioperative complications. Indeed, TEVAR of acute or subacute dissection was associated

with rapid expansion of the TL and collapse of the FL, whereas TEVAR for chronic dissection

failed to induce positive aortic remodeling in most cases (27).

Limitations: This was a monocentric study, which could limit the external validity of this study.

The absence of long-term follow-up limited the definitive interpretation of the "real" rate of

aneurysmal evolution, and reintervention.

Conclusion

Patient inclusion in a prospective cohort improves the quality of the surveillance and could

reduce the long-term mortality linked to the risk of late a ortic rupture after TAAD repair.

In this study, the rate of aneurysmal evolution and reintervention confirms that RAD is a serious

pathology that justifies close follow-up at an aortic center as soon as the first months after the

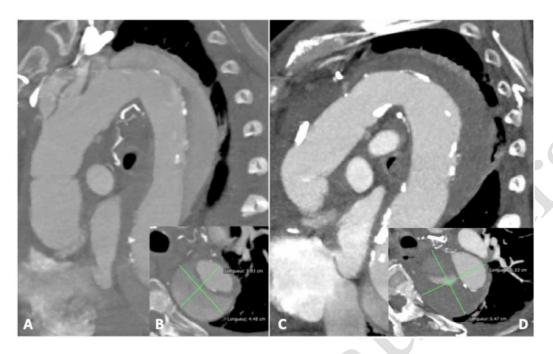
procedure.

Anatomical criteria coupled with demographic factors associated with poor prognosis, could be

used in the future to propose more aggressive treatment in the acute or subacute phase to reduce

long-term reinterventions and death rates.

Author's contribution statement: All authors contributed to the study conception, design


and writing. All authors read and approved the final manuscript.

Funding: none

Conflict of interest: none

Figure legends

Figure 1: Aneurysmal evolution of the distal descending thoracic aorta.

A-Immediate postoperative CT scan with a sagittal view. B- Immediate postoperative CT scan with an axial view in the centerline. C-1-year postoperative CT scan with a sagittal view. D-1-year postoperative CT scan with an axial view in the centerline.

Figure 2: Distal reintervention for aneurysmal evolution of residual aortic dissection: hybrid repair with LSA debranching and endoprosthesis implantation in zone 2.

Figure 3: Hybrid repair for aneurysmal evolution of residual aortic dissection. A: CT scan after TAAD repair with IA debranching; B: intrathoracic complete supra-aortic trunk debranching and endoprosthesis implantation in zone 0.

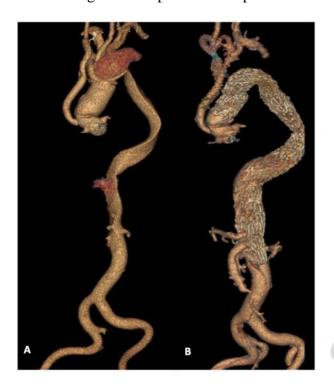


Figure 4: Kaplan-Meier event-free survival curves for dissection-related events and reintervention or death (+: censored data).

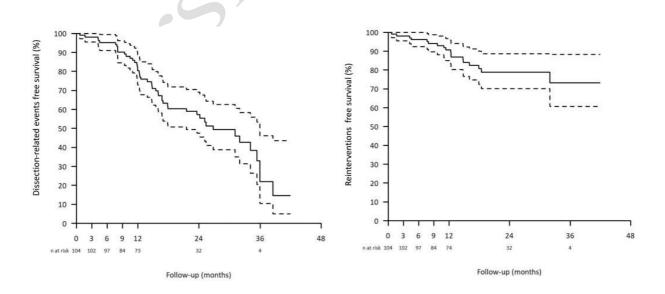


 Table 1: Baseline characteristics

Variables	Total N=104	Dissection related events N=48	No dissection related events N=56
Male sex, n (%)	75 (72.1)	32 (66.7)	43 (76.8)
Age, mean (SD)	62.1 (11.1)	63.5 (10.7)	60.7 (11.3)
Hypertension, n (%)	62 (59.6)	33 (68.8)	29 (51.8)
Dyslipidemia, n (%)	17 (16.3)	6 (12.5)	11 (19.6)
Smoking, n (%)	24 (23.1)	13 (27.1)	11 (19.6)
Diabetes, n (%)	2 (1.9)	0 (0.0)	2 (3.6)
COPD, n (%)	8 (7.7)	5 (10.4)	3 (5.4)
Atrial fibrillation, n (%)	11 (10.6)	8 (16.7)	3 (5.4)
CAD, n (%)	11 (10.6)	4 (8.3)	7 (12.5)
Renal failure, n (%)	2 (1.9)	0 (0.0)	2 (3.6)
Marfan syndrome, n (%)	10 (9.6)	6 (12.5)	4 (7.1)
Bicuspid aortic valve, n (%)	8 (7.7)	6 (12.5)	2 (3.6)

COPD: chronic obstructive pulmonary disease, CAD: coronary artery disease, SD: standard deviation

 Table 2: Perioperative characteristics

Variables	Total N =104	dissection related events N=48	No dissection related eventsN=56
Primary entry tear n, (%)			
Ascending aorta	89 (85.6)	36 (75.0)	53 (94.6)
Aortic arch	19 (18.3)	14 (29.2)	5 (8.9)
Descending aorta	6 (5.8)	5 (10.4)	1 (1.8)
Resection	95 (91.3)	40 (83.3)	55 (98.2)
Distal replacement n, (%)			
Ascending aorta	102 (98.1)	47 (97.9)	55 (98.2)
Ascending aorta + hemiarch	79 (76.0)	36 (75.0)	43 (76.8)
Partial arch + IA debranching	23 (22.1)	11 (22.9)	12 (21.4)
Aortic root management n, (%)			
Bentall intervention	22 (21.2)	7 (14.6)	15 (26.8)
Supracoronary aortic replacement	82 (78.8)	41 (85.4)	41 (73.2)
Operative timing, mean (SD)			
CPB time (min)	168 (58.2)	160.9 (51.7)	174.1 (62.1)
Aortic cross clamp time (min)	98.4 (47.9)	88.3 (41.5)	110.1 (53.7)
CA time (min)	25.6 (10.8)	24.8 (11.3)	25.7 (10.8)
Arterial cannulation n, (%)			
Axillary cannulation alone	79 (76.0)	39 (81.3)	40 (71.4)
Femoral cannulation alone	19 (18.3)	8 (16.7)	11 (19.6)
Axillary and femoral cannulation	6 (5.8)	1 (2.1)	5 (8.9)

IA: innominate artery, CPB: cardiopulmonary bypass, CA: circulatory arrest, SD: standard deviation

Table 3: Summary and details of significant results of univariable analysis for risk factors for dissection-related events and reintervention

Univariable analysis for risk of dissection -related	HR [95% CI]	p value
event		
Initial aortic diameter > 40 mm,	8.59 [4.03 - 21.69]	< 0.01
Bicuspid aortic valve	2.70 [1.06 - 5.83]	0.038
Aortic cross clamping time (min),	0.99 [0.98 - 1.00]	0.048
Primary entry tear		
Ascending aorta	0.42 [0.22 - 0.84]	0.015
Aortic arch	2.36 [1.22 - 4.34]	0.012
Descending aorta	2.83 [1.02 - 6.37]	0.045
Resection	0.36 [0.18 - 0.81]	0.015
Univariable analysis for risk of reintervention	HR [95% CI]	p value
Initial aortic diameter > 40 mm	14.33 [3.61 - 129.83]	< 0.01
Marfan syndrome	6.54 [2.35 - 16.57]	< 0.01
Bicuspid aortic valve	6.48 [2.17 - 16.80]	< 0.01
Partial arch replacement + IA debranching	2.68 [1.05 - 6.62]	0.025
Primary entry tear		
Descending thoracic aorta	4.45 [1.16 - 12.80]	0.032
Resection	0.30 [0.11 - 0.98]	0.047

HR: Hazard ratio. IA: innominate artery,

Table 4: Results of multivariable analysis for risk factors for dissection-related events and reintervention

Variable	HR [95% CI]	p value			
Dissection-related events					
Initial aortic diameter > 40 mm	9.00 [4.17 - 22.89]	< 0.01			
Aortic cross clamping time (min),	0.99 [0.98 - 1.00]	0.011			
Distal reintervention					
Initial aortic diameter > 40 mm	28.54 [3.63 - 224.18]	< 0.01			
Marfan syndrome	9.06 [2.74 - 29.99]	< 0.01			

HR: Hazard ratio, SD: standard deviation

References

- 1. Kimura N, Itoh S, Yuri K, Adachi K, Matsumoto H, Yamaguchi A, et al. Reoperation for enlargement of the distal aorta after initial surgery for acute type A aortic dissection. J Thorac Cardiovasc Surg 2015;149(2 Suppl):S91-8 e1.
- 2. Yeh CH, Chen MC, Wu YC, Wang YC, Chu JJ, Lin PJ. Risk factors for descending aortic aneurysm formation in medium-term follow-up of patients with type A aortic dissection. Chest. 2003;124(3):989-95.
- 3. Inoue Y, Matsuda H, Omura A, Seike Y, Uehara K, Sasaki H, et al. Long-term outcomes of total arch replacement with the non-frozen elephant trunk technique for Stanford Type A acute aortic dissection. Interact Cardiovasc Thorac Surg. 2018;27(3):455-60.
- 4. Suzuki T, Asai T, Kinoshita T. Predictors for Late Reoperation After Surgical Repair of Acute Type A Aortic Dissection. Ann Thorac Surg. 2018;106(1):63-9.
- 5. Tamura K, Chikazawa G, Hiraoka A, Totsugawa T, Sakaguchi T, Yoshitaka H. The prognostic impact of distal anastomotic new entry after acute type I aortic dissection repair. Eur J Cardiothorac Surg.2017;52(5):867-73.
- 6. Lederle FA, Johnson GR, Wilson SE, Littooy FN, Krupski WC, Bandyk D, et al. Yield of repeated screening for abdominal aortic aneurysm after a 4-year interval. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch Intern Med. 2000;160(8):1117-21.
- 7. Zierer A, Voeller RK, Hill KE, Kouchoukos NT, Damiano RJ, Jr., Moon MR. Aortic enlargement and late reoperation after repair of acute type A aortic dissection. Ann Thorac Surg. 2007;84(2):479-86; discussion 86-7.
- 8. Leontyev S, Haag F, Davierwala PM, Lehmkuhl L, Borger MA, Etz CD, et al. Postoperative Changes in the Distal Residual Aorta after Surgery for Acute Type A Aortic

- Dissection: Impact of False Lumen Patency and Size of Descending Aorta. Thorac Cardiovasc Surg. 2017;65(2):90-8.
- 9. Rylski B, Hahn N, Beyersdorf F, Kondov S, Wolkewitz M, Blanke P, et al. Fate of the dissected aortic arch after ascending replacement in type A aortic dissectiondagger. Eur J Cardiothorac Surg. 2017;51(6):1127-34.
- 10. Uchida N, Katayama A, Tamura K, Sutoh M, Kuraoka M, Ishihara H. Frozen elephant trunk technique and partial remodeling for acute type A aortic dissection. Eur J Cardiothorac Surg.. 2011;40(5):1066-71.
- 11. Sun L, Qi R, Zhu J, Liu Y, Zheng J. Total arch replacement combined with stented elephant trunk implantation: a new "standard" therapy for type a dissection involving repair of the aortic arch? Circulation. 2011;123(9):971-8.
- 12. Conzelmann LO, Hoffmann I, Blettner M, Kallenbach K, Karck M, Dapunt O, et al. Analysis of risk factors for neurological dysfunction in patients with acute aortic dissection type A: data from the German Registry for Acute Aortic Dissection type A (GERAADA). Eur J Cardiothorac Surg. 2012;42(3):557-65.
- 13. Nienaber CA, Kische S, Rousseau H, Eggebrecht H, Rehders TC, Kundt G, et al. Endovascular repair of type B aortic dissection: long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ Cardiovasc Interv. 2013;6(4):407-16.
- 14. Brunkwall J, Kasprzak P, Verhoeven E, Heijmen R, Taylor P, Trialists A, et al. Endovascular repair of acute uncomplicated aortic type B dissection promotes aortic remodelling: 1 year results of the ADSORB trial. Eur J Vasc Endovasc Surg. 2014;48(3):285-91.
- 15. Faure EM, El Batti S, Sutter W, Bel A, Julia P, Achouh P, et al. Stent-assisted balloon-induced intimal disruption and relamination of distal remaining aortic dissection after acute DeBakey type I repair. J Thorac Cardiovasc Surg 2019;157(6):2159-65.

- 16. Gaudry M, Porto A, Blanchard A, Chazot JV, Bal L, De Masi M, et al. A 10-Year Aortic Center Experience with Hybrid Repair of Chronic "Residual" Aortic Dissection After Type A Repair. Cardiovasc Drugs Ther. 2021.
- 17. Park KH, Lim C, Choi JH, Chung E, Choi SI, Chun EJ, et al. Midterm change of descending aortic false lumen after repair of acute type I dissection. Ann Thorac Surg. 2009;87(1):103-8.
- 18. Fattouch K, Sampognaro R, Navarra E, Caruso M, Pisano C, Coppola G, et al. Long-term results after repair of type a acute aortic dissection according to false lumen patency. Ann Thorac Surg. 2009;88(4):1244-50.
- 19. Mimoun L, Detaint D, Hamroun D, Arnoult F, Delorme G, Gautier M, et al. Dissection in Marfan syndrome: the importance of the descending aorta. Eur Heart J. 2011;32(4):443-9.
- 20. Girdauskas E, Rouman M, Disha K, Espinoza A, Dubslaff G, Fey B, et al. Aortopathy in patients with bicuspid aortic valve stenosis: role of aortic root functional parameters. Eur J Cardiothorac Surg. 2016;49(2):635-43; discussion 43-4.
- 21. Kreibich M, Rylski B, Czerny M, Pingpoh C, Siepe M, Beyersdorf F, et al. Type A Aortic Dissection in Patients With Bicuspid Aortic Valve Aortopathy. Ann Thorac Surg. 2020;109(1):94-100.
- 22. Concistre G, Casali G, Santaniello E, Montalto A, Fiorani B, Dell'Aquila A, et al. Reoperation after surgical correction of acute type A aortic dissection: risk factor analysis. Ann Thorac Surg.. 2012;93(2):450-5.
- 23. Conzelmann LO, Weigang E, Mehlhorn U, Abugameh A, Hoffmann I, Blettner M, et al. Mortality in patients with acute aortic dissection type A: analysis of pre- and intraoperative risk factors from the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur J Cardiothorac Surg. 2016;49(2):e44-52.

- 24. Berger T, Kreibich M, Mueller F, Rylski B, Kondov S, Schrofel H, et al. The frozen elephant trunk technique for aortic dissection is safe after previous aortic repair. Eur J Cardiothorac Surg. 2021;59(1):130-6.
- 25. Demal TJ, Bax L, Brickwedel J, Kolbel T, Vettorazzi E, Sitzmann F, et al. Outcome of the frozen elephant trunk procedure as a redo operation. Interact Cardiovasc Thorac Surg. 2021.
- 26. Evangelista A, Salas A, Ribera A, Ferreira-Gonzalez I, Cuellar H, Pineda V, et al. Long-term outcome of aortic dissection with patent false lumen: predictive role of entry tear size and location. Circulation. 2012;125(25):3133-41.
- 27. Sayer D, Bratby M, Brooks M, Loftus I, Morgan R, Thompson M. Aortic morphology following endovascular repair of acute and chronic type B aortic dissection: implications for management. Eur J Vasc Endovasc Surg. 2008;36(5):522-9.