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Chapter 1

INTRODUCTION

1.1 Basic notions in general relativity

We provide a quick review of the basic concepts of general relativity relevant to this work.
For a proper introduction to the subject we refer to the books by R. Wald [67] and S.
Caroll [16].

1.1.1 Spacetime and causality

The main object of Einstein’s general relativity is the space-time. To define a space-time,
consider a four dimensional Lorentzian manifolds (M,g), with g denoting a Lorentzian
metric of signature (−,+,+,+). Two Lorentzian manifolds (M,g), (M′,g′) are equiva-
lent if there exists a diffeomorphism Φ :M→M′ such that g = Φ#(g′). A space-time is
simply a class of equivalence of such Lorentzian manifolds.

A Lorentzian metric divides vectors X in a tangent space Tp(M) into timelike, null and
space-like according to whether g(X,X) is, respectively, negative, zero or positive. A
curve γ(t) is said to be timelike, respectively null, if its tangent vector γ̇(t) is timelike or
null. It is called causal if it is either time-like or null.

Remark 1.1.1. Observers in general relativity are identified to timelike curves, and freely
moving observers correspond to timelike geodesics. Points of M are referred to as events

17
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and the proper time of an observer γ(t) between the events γ(t1), γ(t2) is the integral,∫ t2

t1

√
−g
(
γ̇(t), γ̇(t)

)
dt.

Massless particles, on the other hand, follow null geodesics. The proper time of such a
particle, i.e. the proper time of the corresponding null geodesic, is the affine parameter of
the geodesic vectorfield associated to the curve.

Given a set S ⊂M, we denote by I+(S) the set of all points inM which can be reached
by future directed timelike curves1 originating at S, called the future set of S. The set
J +(S), consisting of points which can be reached by future directed causal curves from
S, is called the causal future of S. One defines in the same manner the past and causal
pasts I−(S) and J −(S).

A hypersurface Σ is called space-like or null, if the direction normal to it is time-like,
respectively null. Typical spacelike hypersurfaces are given by the level surfaces of time
functions t, i.e. non-degenerate functions onM ( dt 6= 0) such that its gradient −gµν∂µt∂ν
is timelike. Typical null hypersurfaces are given by level surfaces of optical functions u,
i.e. non-degenerate functions u :M→R verifying

gµν∂µu∂νu = 0, du 6= 0. (1.1.1)

In that case the gradient L := −gµν∂µu∂ν is both null and geodesic, i.e. g(L,L) = 0 and
DLL = 0.

A spacelike hypersurface Σ is said to be a Cauchy hypersurface inM if any in-extendible
causal curve intersects Σ at precisely one point. Spacetimes which admit such hypersur-
faces rule out causal pathologies such as the presence closed timelike curves. A spacetime
is called globally hyperbolic if it possesses such a hypersurface and, in addition, all sets of
the form J +(p) ∩ J −(q) are compact.

1.1.2 The initial value formulation for Einstein equations

Let (M,g) a spacetime. Einstein equations are given by

Rαβ −
1

2
gαβR = Tαβ (1.1.2)

1We assume the space-time to be time oriented, i.e. there exists a globally defined non degenerate
timelike vectorfield T . In particular, a causal vectorfield X is future oriented if g(T,X) < 0.
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with Rαβ the Ricci curvature of g, R the scalar curvature of g, and Tαβ the energy-
momentum tensor of some matterfield defined on (M,g). An initial data set consists
of a 3 dimensional manifold Σ(0), a complete Riemannian metric g(0), a symmetric 2-
tensor k(0), and a well specified set of initial conditions corresponding to the matter-fields
under consideration. These have to verify a well known set of constraint equations. We
restrict the discussion to asymptotically flat initial data sets, i.e. outside a sufficiently
large compact set K, Σ(0) \K is diffeomorphic to the complement of the unit ball in R3

and admits a system of coordinates in which g(0) is asymptotically euclidean, and k(0)

vanishes asymptotically at appropriate order. A Cauchy development of an initial data
set is a globally hyperbolic spacetime (M,g), verifying the Einstein equations (1.1.2) in
the presence of a matterfield with energy momentum T and an embedding i : Σ → M
such that i∗(g(0)), i∗(k(0)) are the first and second fundamental forms of i(Σ(0)) in M.

We restrict our attention to the Einstein vacuum equations (EVE), i.e. the case when the
energy momentum tensor vanishes identically and the equations take the purely geometric
form,

Rαβ = 0. (1.1.3)

In that case, the constraint equations mentioned above take the form

div k(0) −∇ trk(0) = 0, R(0) − |k(0)|2 + (trk(0))
2 = 0. (1.1.4)

Here ∇ denotes the covariant derivative on Σ(0), div the usual divergence of a symmetric
2-tensor, defined with respect to ∇, and R(0) the scalar curvature of the metric g(0).
Moreover |k(0)| and trk(0) are the Riemannian norm and trace of k(0) with respect to g(0).

The most basic question concerning the initial value problem, solved in a satisfactory way
for very large classes of evolution equations, is that of local existence and uniqueness of
solutions. For the Einstein equations, this type of result was first established by Y.C.
Bruhat [14] with the help of wave coordinates2. According to this result any smooth
initial data set admits a smooth, unique (up to an isometry) globally hyperbolic Cauchy
development3. In the case of nonlinear systems of partial differential equations, the local
existence and uniqueness result leads, through a straightforward extension argument, to
a result concerning the maximal time interval of existence. The formulation of the same
type of result for the Einstein equations is a little more subtle; something similar was
achieved in [15], see also [60] for a modern version of the result.

Theorem 1.1.2 (Bruhat-Geroch). For each smooth initial data set there exists a unique,
smooth, maximal future globally hyperbolic development (MFGHD).

2These allow one to cast the Einstein vacuum equations in the form of a system of nonlinear wave
equations for which classical local existence results can be applied.

3The precise result requires some minimal regularity for the initial data set. The optimal known result,
the bounded L2 curvature theorem, see [47], requires L2 bounds for the curvature of the initial data set.
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Figure 1.1: The initial value problem for Einstein vacuum equations

1.1.3 Special solutions

Minkowski space

The Minkowski space consists of the manifold R1+3 together with a Lorentzian metric
m and a distinguished system of coordinates xα, α = 0, 1, 2, 3, called inertial, relative
to which the metric has the diagonal form mαβ = diag(−1, 1, 1, 1). We write, splitting
the spacetime coordinates xα into the time component x0 = t and space components
x = x1, x2, x3,

m = −dt2 + (dx1)2 + (dx2)2 + (dx3)2.

In polar coordinates (t, r, θ, ϕ),

m = −dt2 + dr2 + r2dσS2 , dσS2 := dθ2 + sin2 θdϕ2.

The standard optical functions in R1+3 are given by u = t − r, u = t + r, often called
retarded and advanced time coordinates. One can compactify the Minkowski space by
constructing a map P : (u, u, ω)→ (U,U, ω), ω ∈ S2, where

u = tanU, u = tanU, −π
2
< U ≤ U <

π

2
.

The map P establishes a conformal isometry4 between the Minkowski space R1+3 and its
image onto the Einstein cylinder E1+3 = R× S3 with metric

m̃ = −dUdU +
1

4
sin2(U − U)dσS2 .

More precisely

P#(m̃) = Ω2m, Ω = cosU cosU =
1

(1 + u2)1/2(1 + u2)1/2
(1.1.5)

where P#(m̃) is the pull-back by P of the metric m̃.

4For a comprehensive discussion of conformal infinity, see section 11.1 in [67].
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Definition 1.1.3. The boundary of P (R1+3) in E1+3 is given by,

∂P (R1+3) = I+ ∪ I− ∪ i0 ∪ i+ ∪ i−.

The sets

I+ :=
{
U =

π

2
, −π

2
< U <

π

2

}
, I− :=

{
U = −π

2
, −π

2
< U <

π

2

}
,

are called the future and past null infinities of Minkowski space. The sets

i0 :=
{
U = −π

2
, U =

π

2

}
, i+ :=

{
U = U =

π

2

}
, i− :=

{
U = U = −π

2

}
,

are called, respectively, spacelike, timelike future, and timelike past infinities.

Note that all time-like geodesics of Minkowski space begin at i− and end at i+, all space-
like geodesics begin and end at i0 and all null geodesics start on I− and end on I+. We
also note that I−, I+ are complete null hypersurfaces, along which dΩ 6= 0. One can also
show that the boundary ∂P (R1+3) is of class C2 at i0 and real analytic, everywhere else.

Figure 1.2: Minkowski in standard
coordinates

Figure 1.3: Penrose diagram of
Minkowski

Minkowski space has a large number of continuous symmetries given by translations,
Lorentz transformations, scaling and conformal translations. At infinitesimal level they
generate the following Killing and conformal Killing vectorfields

Tµ :=
∂

∂xµ
, Lµν := xµ∂ν − xν∂µ, S := xµ∂µ, Kµ := 2xµx

ρ ∂

∂xρ
− (xρxρ)

∂

∂xµ
.

The vectorfields T0,Lij,S,K0 play a particularly important role in the analysis of wave
equations in Minkowski space. Note that the vectorfield T0 is everywhere timelike while
K0 = (t2 + r2)∂t + 2txi∂i is timelike everywhere except along the light cone −t2 + r2 = 0
where it is null.
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Schwarzschild space

EVE admits a remarkable family of explicit, stationary, solutions given by the two pa-
rameter family of Kerr solutions among which one distinguishes the Schwarzschild family
of solutions, of mass m > 0,

gS = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dσS2 . (1.1.6)

Though the metric seems singular at r = 2m, it turns out that one can glue together
two regions r > 2m and two regions r < 2m of the Schwarzschild metric to obtain a
metric which is smooth along H = {r = 2m}, see [67] for details, called the Schwarzschild
horizon. The portion of r < 2m to the future of the hypersurface t = 0 is a black hole
whose future boundary r = 0 is singular. The similar region to the past of t = 0 is called
a white hole. The region r > 2m, called the domain of outer communication (DOC), is
free of singularities.

Figure 1.4: Kruskal’s maximal extension of Schwarzschild

To explicitly extend the metric, introduce the tortoise coordinate r∗ and the optical
functions u and u by

r∗ := r + 2m ln
( r

2m
− 1
)
, u := t− r∗, u := t+ r∗,

and Kruskal renormalized null coordinates,

u′ := −e− u
4m , u′ := e

u
4m ,

relative to which the metric takes the form

ds2 = −16m2e−
r

2m

r
du′du′ + r2dσS2 .
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Observe now that r = 2m corresponds precisely to u′u′ = 0. Indeed r is an implicit
function of u′u′ through the relation( r

2m
− 1
)
e

r
2m = −u′u′.

In the new coordinates, the Schwarzschild metric thus extends past r = 2m as illustrated
in figure 1.4.

We can also conformally compactify the Schwarzschild space by proceeding with the
transformation

U := arctan(u′), U := arctan(u′).

The completed, conformally compactified space-time is provided by figure 1.5.

Figure 1.5: Complete Penrose diagram
of Schwarzschild

Figure 1.6: Exterior region of
Schwarzschild

Here, as for Minkowski space, the boundaries I+ and I−, called future and past null
infinities, are idealized boundaries of the space-time corresponding to end points, of future
directed, respectively past directed, null geodesics. The points i+ and i− correspond
to end points of future and past time-like geodesics, while i0 corresponds to space-like
infinity. Note that the black hole region can be identified as the complement of the past
of future null infinity, i.e. the complement of J −

(
I+
)
. Similarly the white hole region

is the complement of the future of past null infinity J +
(
I−
)
. The null hypersurface

H =
{
r = 2m

}
, called the event horizon, is the boundary of the black hole and of the

white hole. In figure 1.6, representing one connected component of DOC, we note the
presence of the timelike hypersurface r = 3m on which null geodesics can be trapped.

Kerr space

The Schwarzschild family is included in a larger two parameter family of solutions K(a,m)
discovered by Kerr. A given Kerr space-time, with 0 ≤ |a| ≤ m has a well defined domain
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of outer communication r > r+ := m+ (m2−a2)1/2. In Boyer-Lindquist coordinates, well
adapted to r > r+, the Kerr metric has the form,

gK = −
(
∆− a2 sin2 θ

)
q2

dt2 − 4amr

q2
sin2 θdtdϕ+

q2

∆
dr2 + q2dθ2 +

Σ2

q2
sin2 θdϕ2

with q2 = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2mr, Σ2 = (r2 + a2)2 − a2(sin θ)2∆. Note that
∆(r+) = 0.

As in the Schwarzschild case, the exterior Kerr metric extends smoothly across the hy-
persurface r = r+. The future and past sets of any point in the domain of outer com-
munication intersect any timelike curve, passing through points of arbitrary large values
of r, in finite time as measured relative to proper time along the curve. This fact is
violated by points in the region r ≤ r+, which consists of the union between a black hole
region, extended towards the future, and a white hole region to the past. Thus physical
signals (i.e. future time-like or null geodesics) which initiate at points in r ≤ r+ cannot
be registered by far away observers5. The domain of outer communication {r > r+} is
real analytic. The boundary of the domain of outer communication {r = r+} is called the
event horizon. In the non-degenerate case, |a| < m, the event horizon consists of two null
hypersurfaces intersecting transversally on a compact 2 sphere. The Kerr solution can
also be conformally compactified in the same manner as Minkowski and Schwarzschild.
We can thus talk about the future and past null infinities I+, I− as well as i0, i+, i−. As
before, I+ is a complete null hypersurfaces, smooth away from i0.

The exterior Kerr metrics are stationary, which means, roughly, that the coefficients of
the metric are independent of the time variable t. One can reformulate this by saying that
the vectorfield T = ∂t is Killing6 (everywhere in the domain of outer communication) and
time-like at points with r large, i.e. the so called asymptotic region (where the space-time
is close to flat). One can also easily check that T is tangent to the horizon H = N ∪N ,
which is itself a null hypersurface, i.e. the restriction of the metric to the tangent space
to H is degenerate (see figure 1.7). In addition to being stationary, the coefficients of
the Kerr metric are independent of the coordinate ϕ. Thus Kerr is stationary and axially
symmetric. It has been conjectured that all asymptotically flat stationary solutions of the
Einstein vacuum equations must be Kerr solutions. The conjecture has been verified only
if additional assumptions are made, see [35] for a recent survey of known results.

The Schwarzschild metrics, corresponding to a = 0, are not just axially symmetric but
spherically symmetric, which means that the metric is left invariant by the whole rotation

5They must end in the singularity at r = 0, in Schwarzschild spacetime. Their behavior in Kerr is
more complicated due to the presence of a Cauchy horizon at r = r− along which the spacetime remains
smooth.

6A vectorfield X is said to be Killing if its associated 1-parameter flow consists of isometries of g, i.e.
the Lie derivative of the metric g with respect to X vanishes, LXg = 0.
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Figure 1.7: Exterior region of Kerr

group of the standard sphere S2. A well known theorem of Birkhoff shows that they
are the only such solutions of the Einstein vacuum equations. Another peculiarity of a
Schwarzschild metric, not true in the case of Kerr, is that the stationary Killing vectorfield
T = ∂t is orthogonal to the hypersurface t = 0. A stationary spacetime which has this
property is called static. This is also equivalent to the fact that the Schwarzschild metric
is invariant with respect to the reflection t→ −t. Moreover, T is timelike for all r > 2m
and null along the Schwarzschild horizon H = {r = 2m}. This is not the case for
Kerr solutions in which case T = ∂t is only time-like for r > m + (m2 − a2 cos2 θ)1/2,
null for r = m + (m2 − a2 cos2 θ)1/2 and space-like in the region between r+ and r =
m+ (m2 − a2 cos2 θ)1/2, called the ergosphere. Finally we remark that the Kerr family is
not physically relevant for |a| > m, hence the restriction to |a| ≤ m.

To summarize:

1. The Kerr family K(a,m), 0 ≤ |a| ≤ m, provides a two parameter family of asymp-
totically flat solutions of the Einstein vacuum equations exhibiting a smooth do-
main of outer communication and its complement, separated by the event horizon
{r = r+}. For |a| < m, the event horizon consists of two null hypersurfaces inter-
secting transversally on a compact 2 sphere.

2. All Kerr solutions are stationary, i.e. they admit a Killing vectorfield T which is
time-like in the asymptotic region. The Schwarzschild space-time (i.e. a = 0) is
also static. Moreover the Kerr family is axially symmetric, i.e. it admits another
Killing vector-field Z which vanishes on the axis of symmetry. The Schwarzschild
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Figure 1.8: Kerr solution on a fixed time slice

space-time is spherically symmetric.

3. The stationary vector-field T is tangent along the horizon and space-like for all
0 < |a| ≤ m. It remains space-like in a small region of DOC called ergo-region. In
the particular case a = 0, T is null along the horizon and time-like everywhere in
DOC.

4. In all cases 0 ≤ |a| ≤ m, DOC contains trapped null geodesics, i.e. null geodesics
which are entirely contained in a region of DOC with a bounded value of r. In the
case a = 0, all trapped null geodesics are either tangent to the time-like surface
{r = 3m} or asymptotic to it.

5. All physically acceptable Kerr solutions, i.e. |a| ≤ m, have complete future and
past null infinities corresponding to r =∞.

Here are some other important properties of the Kerr family.

• The Kerr solution has a remarkable algebraic feature, encoded in the so called Petrov
type D property, according to which it admits, at every point a pair of null vectors
(l, l), normalized by the condition g(l, l) = −2, called principal null vectors, such
that all components of the Riemann curvature tensor vanish identically except for
the two independent components

R(l, l, l, l), ?R(l, l, l, l),

with ?R the Hodge dual of R.
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• In addition to the symmetries provided by the Killing vectorfields T and Z, the Kerr
solution possesses a nontrivial Killing tensor, i.e. a symmetric 2-covariant tensor C
(the Carter tensor) verifying

D(αCβγ) = 0.

• The Kerr family is distinguished among all stationary solutions of EVE by the
vanishing of a four tensor called the Mars-Simon tensor, see [51].

1.1.4 Stability of Minkowski space

The Minkowski space (R1+3,m) is the simplest solution of the Einstein vacuum equations.
Note that it belongs to the Kerr family and corresponds to the particular case a = m = 0.
Among all Kerr solutions, the Minkowski space is the only one free pathologies such as
singular boundaries, or the presence of Cauchy horizons. In particular, it is geodesically
complete, i.e. any freely moving observer inM can be extended indefinitely, as measured
relative to its proper time. Such a spacetime is said to have a regular MFGHD. Does this
property persist under small perturbations?

The result stated below is a rough version of the global stability of Minkowski. The
complete result also provides very precise informations about the decay of the curvature
tensor along null and timelike directions as well as many other geometric informations
concerning the causal structure of the corresponding spacetime, see [20], as well as [43],
[48] and [7]. Of particular interest are peeling properties i.e. the precise decay rates of
various components of the curvature tensor along future null geodesics.

Theorem 1.1.4 (Global stability of Minkowski). The maximal future development of an
asymptotically flat initial data set, sufficiently close to that of Minkowski space, in an
appropriate topology, is geodesically complete and converges to the Minkowski space.

Here are, very schematically, some of the main ideas in the proof of the stability of
Minkowski space.

(I) Perturbations radiate and decay sufficiently fast (just fast enough!) to insure con-
vergence.

(II) Interpret the Bianchi identities as a Maxwell like system. This is an effective,
invariant, way to treat the hyperbolic character of the equations.

(III) Rely on four important PDE advances of late last century:
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(i) Vectorfield approach to get decay based on approximate Killing and conformal
Killing symmetries of the equations, see [39], [40], [41], [19].

(ii) Generalized energy estimates using both the Bianchi identities and the approximate
Killing and conformal Killing vector fields.

(iii) The null condition identifies the deep mechanism for nonlinear stability, i.e. the
specific structure of the nonlinear terms enables stability despite the slow decay
rate of the perturbations, see [38], [40], [18].

(iv) Involved bootstrap argument according to which one makes educated assumptions
about the behavior of the space-time and then proceeds to show that they are in
fact satisfied. This amounts to a conceptual linearization, i.e. a method by which
the equations become, essentially, linear7 without actually linearizing them.

1.1.5 Cosmic censorship

Unlike the situation described in Theorem 1.1.4, we expect maximal developments of
typical, non small, initial data sets to be incomplete, with singular boundaries. As shown
by D. Christodoulou [21], trapped surfaces can form in evolution starting with regular
initial conditions8. Together with the well known singularity theorem of R. Penrose,
these results show that there exists a large class of regular initial data whose MFGHD is
incomplete.

The unavoidable presence of singularities, for sufficiently large initial data sets, as well
as the analysis of explicit examples (such as Schwarzschild and Kerr) have led Penrose
to formulate two fundamental conjectures, concerning the character of general solutions
to the Einstein equations. Here we restrict our discussion only to the so called weak
cosmic censorship conjecture (WCC), which is the only one relevant to the problem of
stability. To understand the statement of (WCC), consider the different behavior of null
rays in Schwarzschild and Minkowski spacetimes. In Minkowski space, light originating
at any point p = (t0, x0) propagates, towards future, along the null rays of the null cone
t − t0 = |x − x0|. Any free observer in R1+3, following a straight time-like line, will
necessarily meet this light cone in finite time, thus experiencing the event p. On the other
hand, any point p in the trapped region r < 2m of the Schwarzschild space is such that
all null rays initiating at p remain trapped in the region r < 2m. In particular events
causally connected to the singularity at r = 0 cannot influence events in the domain of

7With quadratic and higher order terms satisfying the null condition on the right-hand side.
8That is free of trapped surfaces. See also more recent results in [46], [45] and [3].
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outer communication r > 2m, which is thus entirely free of singularities. The same holds
true in any Kerr solution with 0 ≤ |a| ≤ m.

Figure 1.9: Behavior of null geodesics outside and inside the black hole

WCC is an optimistic extension of this fact to future developments of general, asymp-
totically flat initial data sets. The desired conclusion of the conjecture is that any such
development, with the possible exception of a non-generic set of initial conditions, has the
property that any sufficiently distant observer will not encounter singularities. To make
this more precise, one needs to define what a sufficiently distant observer means. This
is typically done by introducing the notion of future null infinity I+ which provides end
points for the null geodesics that propagate to asymptotically large distances. As in the
cases analyzed above, future null infinity is constructed by conformally embedding the
physical spacetime (M,g) to a larger space-time (M̃, g̃) such that g̃ = Ω2g in M, with
a null boundary I+ (where Ω = 0, dΩ 6= 0).

Definition 1.1.5. The future null infinity I+ is said to be complete9 if any future null
geodesic along it can be indefinitely extended relative to an affine parameter10.

Conjecture (Weak Cosmic Censorship conjecture). Generic asymptotically flat initial
data sets have maximal future developments possessing a complete future null infinity.

Once the completeness of future null infinity has been established, one can then define
the black hole region B to be the complement of the causal past of null infinity

B :=M\J −(I+). (1.1.7)

The boundary H+ of B is called the event horizon of the black hole.

9A more precise definition of complete future null infinity, which avoids the technical and murky issue
of the precise degree of smoothness of the conformal compactification, was proposed by Christodoulou in
[17].

10This can be informally reformulated, for MFGHD spaces, by stating that there exists a sequence of
relatively compact sets Kn exhausting the initial hypersurface Σ(0) such that the proper future time of
observers starting in Kn+1 \Kn tends to infinity as n→∞.
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1.2 Stability of Kerr conjecture

The nonlinear stability of the Kerr family is one of the most pressing issues in mathe-
matical GR today. Roughly, the problem is to show that all spacetime developments of
initial data sets, sufficiently close to the initial data set of a Kerr spacetime, behave in
the large like a (typically another) Kerr solution. This is not only a deep mathematical
question but one with serious astrophysical implications. Indeed, if the Kerr family would
be unstable under perturbations, black holes would be nothing more than mathematical
artifacts. Here is a more precise formulation of the conjecture.

Conjecture (Stability of Kerr conjecture). Vacuum initial data sets, sufficiently close to
Kerr initial data, have a maximal development with complete future null infinity and with
domain of outer communication11 which approaches (globally) a nearby Kerr solution.

There are three, related, major obstacles in passing from the stability of Minkowski to
that of the Kerr family.

1. The first can be understood in the general framework of nonlinear hyperbolic or
dispersive equations. Given a nonlinear equation N [φ] = 0 and a stationary solu-
tion φ0 we have two notions of stability, orbital stability, according to which small
perturbations of φ0 lead to solutions φ which remain close, in some norm (typically
L2 based ) for all time, and asymptotical stability, according to which the perturbed
solutions converge, as t → ∞, to a nearby stationary solution. Note that the sec-
ond notion is far stronger, and much more precise, than the first and that orbital
stability can only be established (without appealing to the the stronger version)
only for equations with very weak nonlinearities. For quasilinear equations, such
as the Einstein field equations, a proof of stability requires, necessarily, a proof of
asymptotic stability. This must then be based on a detailed understanding of the
decay properties of the linearized12 equations.

One is thus led to study the linearized equations N ′[φ0]ψ = 0, with N ′[φ0] the
Fréchet derivative of N at φ0, which, in many important cases, are hyperbolic13

systems with variable coefficients that typically present instabilities. In the excep-
tional situation, when nonlinear stability can ultimately be established, one can tie

11This presupposes the existence of an event horizon. Note that the existence of such an event horizon
can only be established upon the completion of the proof of the conjecture.

12It is irrelevant whether a specific linearization procedure needs to be implemented; what is important
here is to identify the linear mechanism for decay, such as the Maxwell system in the case of the stability
of Minkowski space mentioned above.

13In the case of EVE the linearized equations are linear hyperbolic only after we mod out the linearized
version of general coordinate transformations.
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all the instability modes of the linearized system to two properties of the nonlinear
equation:

(a) The presence of a continuous14,15 family of other stationary solutions of N [φ] =
0 near φ0.

(b) The presence of a continuous family of diffeomorphisms16 of the background
manifold which map, by pull back, solutions to solutions.

For a typical stationary solution φ0, both properties exist and generate nontrivial
solutions of the linearized equation N ′[φ0]ψ = 0. In the case of relatively simple
scalar nonlinear equations, where the symmetry group of the equation is small, an
effective strategy of dealing with this problem (known under the name of modulation
theory) has been developed, see for example [53], [55]. In the case of the Einstein
equations this problem is compounded by the large invariance group of the equations,
i.e. all diffeomorphisms of the spacetime manifold. To deal with both problems and
establish stability one has to

• Track the parameters (af ,mf ) of the final Kerr spacetime.

• Track the coordinate system (gauge condition) relative to which we have decay
for all linearized quantities. Such a coordinate system cannot be imposed a-
priori, it has to emerge dynamically in the construction of the spacetime.

2. As described earlier, the fundamental insight in the stability of the Minkowski space
was that we can treat the Bianchi identities as a Maxwell system in a slightly
perturbed Minkowski space by using the vectorfield method. This cannot work
for perturbations of Kerr due to the fact that some of the null components of the
curvature tensor17 are non-trivial in Kerr.

3. Even if we can establish a useful version of linearization (i.e. one which addresses the
above mentioned problems), there are still major obstacles in understanding their
decay properties. Indeed, when one considers the simplest, relevant, linear equation
on a fixed Kerr background, i.e. the wave equation �gψ = 0 (often referred to
as the poor’s man linearization of EVE), one encounters serious difficulties even
to prove the boundedness of solutions for the most reasonable, smooth, compactly
supported, data. Below is a very short description of these.

14In the case of the stability of Kerr we have a 2 parameter family of solutions K(a,m).
15This is responsible of the fact that a small perturbation of the fixed stationary solution φ0 may not

converge to φ0 but to another nearby stationary solution.
16In the case of EVE, any diffeomorphism has that property.
17With respect to the so called principal null directions.
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• The problem of trapped null geodesics. This concerns the existence of null
geodesics18 neither crossing the event horizon nor escaping to null infinity,
along which solutions can concentrate for arbitrary long times. This leads to
degenerate energy estimates which require a very delicate analysis.

• The trapping properties of the horizon. The horizon itself is ruled by null
geodesics, which do not communicate with null infinity and can thus concen-
trate energy. This problem was solved by understanding the so called red-shift
effect associated to the event horizon, which more than counteracts this type
of trapping.

• The problem of superradiance. This is essentially the failure of the stationary
Killing field T = ∂t to be everywhere timelike in the domain of outer communi-
cations and, thus, the failure of the associated conserved energy to be positive.
Note that this problem is absent in Schwarzschild and, in general, for axially
symmetric solutions.

• Superposition problem. This is the problem of combining the estimates in the
near region, close to the horizon, (including the ergoregion and trapping) with
estimates in the asymptotic region, where the spacetime looks Minkowskian.

4. The full linearized system of EVE around Kerr, usually referred to as the linearized
gravity system (LGS), whatever its formulation, presents far more difficulties beyond
those mentioned above concerning the poor man’s linear scalar wave equation on
Kerr, see the discussion below.

Historically, two versions of LGS have been considered.

(a) At the level of the metric itself, i.e. if G denotes the Einstein tensor, Gαβ =
Rαβ − 1

2
Rgαβ,

G′(g0) δg = 0. (1.2.1)

(b) Via the Newman-Penrose (NP) formalism, based on null frames.

In what follows we review the main known results concerning solutions to the linearized
equations on a Kerr background.

18In the Schwarzschild case, these geodesics are located on the so-called photon sphere r = 3m.
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1.2.1 Formal mode analysis

The first important results concerning both items (3) and (4) above were obtained by
physicists based on the classical method of separation of variables and formal mode anal-
ysis. In the particular case where g0 is the Schwarzschild metric, the linearized equations
(1.2.1) can be formally decomposed into modes, by associating t-derivatives with mul-
tiplication by iω and angular derivatives with multiplication by l, i.e. the eigenvalues
of the spherical laplacian. A similar decomposition, using oblate spheroidal harmonics,
can be done in Kerr. The formal study of fixed modes from the point of view of metric
perturbations as in (1.2.1) was initiated by Regge-Wheeler [59] who discovered the mas-
ter Regge-Wheeler equation for odd-parity perturbations. This study was completed by
Vishveshwara [66] and Zerilli [71]. A gauge-invariant formulation of metric perturbations
was then given by Moncrief [56]. An alternative approach via the Newman-Penrose (NP)
formalism was first undertaken by Bardeen-Press [6]. This latter type of analysis was
later extended to the Kerr family by Teukolsky [65] who made the important discovery
that the extreme curvature components, relative to a principal null frame, satisfy decou-
pled, separable, wave equations. These extreme curvature components also turn out to
be gauge invariant in the sense that small perturbations of the frame lead to quadratic
errors in their expression. The full extent of what could be done by mode analysis, in
both approaches, can be found in Chandrasekhar’s book [12]. Chandrasekhar also intro-
duced (see [13]) a transformation theory relating the two approaches. More precisely, he
exhibits a transformation which connects the Teukolsky equations to the Regge-Wheeler
one. This transformation was further elucidated and extended by R. Wald [68] and re-
cently by Aksteiner and al [2]. The full mode stability, i.e. lack of exponentially growing
modes, for the Teukolsky equation on Kerr is due to Whiting [70] (see also [61] for a
stronger quantitive version).

1.2.2 Vectorfield method

Note that mode stability is far from establishing even boundedness of solutions to the
linearized equations. To achieve that and, in addition, to derive realistic decay estimates
one needs an entirely different approach based on a far reaching extension of the classical
vectorfield method19 used in the proof of the nonlinear stability of Minkowski [20]. The
new vectorfield method compensates for the lack of enough Killing and conformal Killing
vectorfields on a Schwarzschild or Kerr background by introducing new vectorfields whose
deformation tensors have coercive properties in different regions of spacetime, not nec-

19Method based on the symmetries of Minkowski space to derive uniform, robust, decay for nonlinear
wave equations, see [39], [40], [41], [19].
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essarily causal. The new method has emerged in the last 15 years in connection to the
study of boundedness and decay for the scalar wave equation in the Kerr space K(a,m),

�ga,mψ = 0. (1.2.2)

The starting and most demanding part of the new method is the derivation of a global,
simultaneous, Energy-Morawetz estimate which degenerates in the trapping region. This
task is somewhat easier in Schwarzschild, or for axially symmetric solutions in Kerr, where
the trapping region is restricted to a smooth hypersurface. The first such estimates, in
Schwarzschild, were proved by Blue and Soffer in [8], [9] followed by a long sequence
of further improvements in [11], [23], [54] etc. See also [36] and [63] for a vectorfield
method treatment of the axially symmetric case in Kerr with applications to nonlinear
equations. In the absence of axial symmetry the derivation of an Energy-Morawetz esti-
mate in Kerr(a,m), |a/m| � 1 requires a more refined analysis involving either Fourier
decompositions, see [25], [64], or a systematic use of the second order Carter operator, see
[4]. The derivation of such an estimate in the full sub-extremal case |a| < m is even more
subtle and was recently achieved by Dafermos, Rodnianski and Shlapentokh-Rothman
[28] by combining mode decomposition with the vectorfield method.

Once an Energy-Morawetz estimate is established one can commute with the time trans-
lation vectorfield and the so called redshift vectorfield20, first introduced in [23], to derive
uniform bounds for solutions. The most efficient way to also get decay, and solve the
superposition problem, is due to Dafermos and Rodnianski, see [24], based on the pres-
ence of a family of rp-weighted, quasi-conformal vectorfields defined in the far r region of
spacetime21.

1.3 Nonlinear stability of Schwarzschild under polar-

ized perturbations

1.3.1 Bare-bones version our theorem

The goal of the book is to prove the nonlinear stability of the Schwarzschild spacetime
under axially symmetric polarized perturbations, i.e. solutions of the Einstein vacuum

20Note that the redshift vectorfield is also used as a multiplier in the derivation of the Energy-Morawetz
estimate.

21These replace the scaling and inverted time translation vectorfields used in [39] or their corresponding
deformations used in [20]. A recent improvement of the method, relevant to our work here, allowing one
to derive higher order decay can be found in [5]. See also [57] for further extensions of this method.
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equations (1.1.3) for asymptotically flat 1+3 dimensional Lorentzian metrics which admit
a hypersurface orthogonal spacelike Killing vectorfield Z with closed orbits. This class
of perturbations allows us to restrict our analysis to the case when the final state of
evolution is itself a Schwarzschild spacetime. This is not the case in general, as a typical
perturbation of Schwarzschild may approach a member of the Kerr family with small
angular momentum.

The simplest version of our main theorem can be stated as follows.

Theorem 1.3.1 (Main Theorem (first version)). The future globally hyperbolic develop-
ment of an axially symmetric, polarized22, asymptotically flat initial data set, sufficiently
close (in a specified topology) to a Schwarzschild initial data set of mass m0 > 0, has
a complete future null infinity I+ and converges in its causal past J −1(I+) to another
nearby Schwarzschild solution of mass m∞ close to m0.

Our theorem is an important step in the long standing effort to prove the full nonlinear
stability of Kerr spacetimes K(a,m), in the sub-extremal regime |a| < m. We give a
succinct review below of some of the most important results which have been obtained so
far in this direction.

1.3.2 Linear stability of the Schwarzschild space-time

A first quantitative (i.e. which provides precise decay estimates) proof of the linear
stability of Schwarzschild spacetime has recently been established23 by Dafermos, Holzegel
and Rodnianksi in [26], via the NP formalism (expressed in a double null foliation24). It is
important to note that while the Teukolsky equation (in the NP formalism) is separable,
and thus amenable to mode analysis, it is not Lagrangian and thus cannot be treated
by direct energy type estimates. To overcome this difficulty [26] relies on a new physical
space version of the Chandrasekhar transformation [13], which takes solutions of the
Teukolsky equations to solutions of Regge-Wheeler, which is manifestly both Lagrangian
and coercive. After quantitative decay has been established for this latter equation, based
on the new vectorfield method, the physical space form of the transformation allows one
to derive quantitative decay for solutions of the original Teukolsky equation. Once decay

22See section 2.1.1 for a precise definition of axial symmetry and polarization. This property is preserved
by the Einstein equations, i.e. if the data is axially symmetric, polarized, so is its development.

23A somewhat weaker version of linear stability of Schwarzschild was subsequently proved in [34] by
using the original, direct, Regge-Wheeler, Zerilli approach combined with the vectorfield method and
adapted gauge choices. See also [37] for an alternate proof of linear stability of Schwarzschild using wave
coordinates.

24This is possible in Schwarzschild where the principal null directions are integrable.
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estimates for the Teukolsky equation have been established, the remaining work in [26] is
to bound all other curvature and Ricci coefficients associated to the double null foliation.
This last step requires carefully chosen gauge conditions along the event horizon of the
fixed Schwarzschild background. This final gauge is itself then quantitatively bounded in
terms of the initial data, giving thus a comprehensive statement of linear stability.

1.3.3 Main ideas in the proof of Theorem 1.3.1

In the passage from linear to nonlinear stability of Schwarzschild one has to overcome
major new difficulties. Some are similar to those encountered in the stability of Minkowski
[20] such as,

1. Need of an appropriate geometric setting which takes into account the decay and
peeling properties of the curvature. In [20] this was achieved with the help of the
foliation of the perturbed spacetime given by two optical functions (int)u and (ext)u
and a maximal time function t. The exterior optical function (ext)u, which was
initialized at infinity, was essential to derive the decay and peeling properties along
null directions while (int)u, initialized on a timelike axis, was responsible for covering
the interior, non-radiative, back scattering, decay.

2. The peeling and decay estimates have to be derived by some version of the geometric
vectorfield method which relates decay to generalized energy type estimates.

3. The peeling and decay estimates mentioned above should be sufficiently strong to
be able to deal with the error terms generated by the vectorfield method. For this
to happen, the error terms need to exhibit an appropriate null structure.

The new main difficulties are as follows:

1. One needs a procedure which allows to take into account the change of mass and
detect its final value. Note also that we need to restrict the nature of the per-
turbations to insure that the final state of a perturbation of Schwarzschild is still
Schwarzschild.

2. While in the stability of Minkowski space all components of the curvature tensor
where expected to approach zero, this is no longer true. Indeed, the middle curvature
component (relative to an adapted null frame), ought to converge to its respective
value in the final Schwarzschild spacetime. This statement is unfortunately hard to
quantify since that value depends both on the final mass and on the corresponding
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Schwarzschild coordinates. Moreover, some of the other curvature components,
which are expected to converge to zero, are also ill defined since a small change of
the null frame can produce small linear distortion to the basic equation which these
curvature components verify. Note that this difficulty was absent in the stability
of the Minkowski space where small changes in the frame produce only quadratic
errors.

3. The classical vector-field method used in the nonlinear stability of Minkowski space
was based on the construction, together with the spacetime, of an adequate fam-
ily of approximate Killing and conformal Killing vectorfields which mimic the role
played by the corresponding vectorfields in Minkowski space in establishing uniform
decay estimates. The Schwarzschild space however has a much more limited set of
Killing vectorfields and no useful conformal Killing ones. As mentioned above, this
problem appears already in the analysis of the standard scalar linear wave equation
in Schwarzschild.

4. As in the stability of the Minkowski space, one needs to make gauge conditions to
insure that we are measuring decay relative to an appropriate center of mass frame.
Yet, as we saw above, it is no longer true that small perturbations of the null frame
produce only quadratic errors for the curvature, as was the case in the stability of
Minkowski space. In fact, the center of mass frame of the perturbed black hole
continuously changes in response to incoming radiation. This, the so called recoil
problem, does not occur in linear theory.

Here is a very short summary of how we solve these new challenges in our work.

1. We resolve the first difficulty by restricting our analysis to axially symmetric, polar-
ized perturbations and by tracking the mass using a quantity, called the quasi-local
Hawking mass, for which we derive simple propagation equations which establish
monotonicity of the mass up to errors which are quadratic with respect to the per-
turbations.

2. We resolve the second difficulty by making use of the fact that the extreme com-
ponents of the curvature are, up to quadratic terms, invariant under null frame
transformations. As in [26], we also make use of a transformation, similar to that
of Chandrasekhar mentioned above, which maps the extreme components of the
curvature to a new quantity q, defined up to quadratic errors, that verifies a Regge-
Wheeler type equation. Once we manage to control q, i.e. to derive quantitative
decay estimates for it, we can also control, in principle25, the two extreme curvature

25Provided that one can deal with the nonlinear terms.
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invariants α and α, the first by inverting the Chandrasekhar transformation and
the second by using a variant of the Teukolsky- Starobinski identities. One is then
left with the arduous task of recovering26 all other null components of the curvature
tensor and all connection coefficients.

3. The third difficulty manifests itself in the most sensitive part of the entire argument,
i.e. in the task of deriving quantitative decay estimates for q by making use of the
Regge-Wheeler type equation it verifies. To do this we rely on the new vectorfield
method as outlined in section 1.2.2 above. The main new difficulties are:

(i) The vectorfield method introduces new error terms, not present in linear the-
ory. To estimate these terms we need precise decay information, off the final
Schwarzschild space, for all connection coefficients and curvature of the per-
turbation.

(ii) The most difficult terms are those due to the quadratic errors made in the
derivation of the Regge-Wheeler equation for q. As in the proof the stability
of the Minkowski space the precise rates of decay for various curvature and
connection coefficients, i.e. the peeling properties of the perturbation, and the
the precise structure of these error terms is of fundamental importance.

4. We solve the fourth and most important new difficulty by a procedure we call
General Covariant Modulation (GCM). This procedure, which takes advantage of
the full covariance of the Einstein equations, allows us to construct the perturbed
spacetime by a continuity argument involving finite GCM admissible spacetimes
M as represented in figure 1.10. The past boundaries C1 ∪ C1 are incoming and
outgoing null hypersurfaces on which the initial perturbation is prescribed. The
future boundaries consists of the union A ∪ C∗ ∪ C∗ ∪ Σ∗ where A and Σ∗ are
spacelike, C∗ is incoming null, C∗ outgoing null. The boundary A is chosen so that,
in the limit whenM converges to the final state, is included in the perturbed black
hole. The spacelike boundary Σ∗ plays a fundamental role in our construction as
seen below. The spacetimeM also contains a timelike hypersurface T which divides
M into an exterior region we call (ext)M and an interior one (int)M. We say that
M is a GCM admissible spacetime if it verifies the following properties.

(i) The far region (ext)M is foliated by a geodesic foliation induced by an outgoing
optical function u initialized on Σ∗

(ii) The near region (int)M is foliated by a geodesic foliation induced by an incom-
ing optical function u initialized at T such that its level sets on T coincide
with those of u.

26In the linear setting this was partially achieved in [27].
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Figure 1.10: The GCM admissible space-time M

(iii) The foliation induced on Σ∗ is such that specific geometric quantities take
Schwarzschildian values. We refer to these as GCM conditions. These condi-
tions are dynamically reset in the continuation process on which our proof is
based.

(iv) The area radius r(u) of the spheres of constant u along Σ∗ is far greater than
the corresponding value of u. This condition allows us to simplify somewhat
the null structure and Bianchi equations induced on Σ∗ and corresponds to the
expectation that the spacelike hypersurfaces Σ∗ converges to the null infinity
of the final state of the perturbation.

5. The GCM conditions together with the control derived on q, α and α mentioned
earlier allows us to control all null connection and curvature coefficients along on Σ∗,
i.e. to derive appropriated decay estimates for them. These estimates can then be
transported to (ext)M using the the full scope of the null structure and null Bianchi
identities associated to the outgoing geodesic foliation.

6. The decay estimates in (ext)M can then be used as initial condition along the time-
like hypersurface T for the incoming foliation of (int)M. These allows us to also
derive appropriate decay estimates for all null connection and curvature coefficients
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of the foliation induced by u.

7. The precise decay estimates derived in 5 are sufficiently strong to allow us to control
all error terms generated in the process of estimating q, as mentioned in 3.

Note that in figure 1.10, one starts with initial conditions on the union of null hypersurfaces
C1∪C1 rather than an initial spacelike hypersurface Σ(0). One can justify this simplification
based on the results of [43], [44], see Remark 3.3.1. The full red line H+ represents the
future event horizon of the perturbed Schwarzschild. The line T represents the timelike
hypersurface separating (int)M from (ext)M. In deriving decay estimates the precise
choice of T is irrelevant. A choice, however, needs to be made in order to avoid a derivative
loss for our top energy estimates27.

The spacetime is constructed by a continuity argument, i.e. we assume that the spacetime
terminating at C∗ ∪ C∗ saturates a given bootstrap assumption (BA) and show, by a
long sequence of a-priori estimates which take advantage of the smallness of the initial
perturbation, that (BA) can be improved and the spacetime extended past C∗ ∪ C∗ ∪Σ∗.

Our work here is the first to prove the nonlinear stability of Schwarzschild in a restricted
class of nontrivial perturbations, i.e. perturbations for which new ideas, such as our GCM
procedure are needed. To a large extent, the restriction to this class of perturbations is
only needed to ensure that the final state of evolution is another Schwarzschild space. We
are thus confident that our procedure may apply in a more general setting. We would like
to single out two other recent important contributions to nonlinear stability of black holes.
In the context of asymptotically flat Einstein vacuum equations the result of Dafermos-
Holzegel-Rodnianski [27] constructs a class of Kerr black hole solutions starting from
future infinity while Hintz-Vasy [30]28 prove the nonlinear stability of Kerr-de Sitter,
for small angular momentum, in the context of the Einstein vacuum equations with a
nontrivial positive cosmological constant. Though the two results are very different they
share in common the fact that the perturbations they treat decay exponentially. This
makes the analysis significantly easier than in our case when the decay is barely enough
to control the nonlinear terms.

1.4 Organization

The paper is organized as follow. In Chapter 2 we introduce the main quantities, equations
and basic tools needed later. It is our main reference kit providing all main null structure

27See [20] for a similar situation.
28See also [31] for the stability of Kerr-Newman de Sitter.
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and null Bianchi equations, in general null frames, in the context of axially symmetric
polarized spacetimes. Though we work with the reduced equations, i.e the equations
reduced by the symmetries, most of the work in the paper does not really depend of the
reduction. Besides insuring that the final state is a Schwarzschild space the reduction
only plays a significant role in the GCM construction.

Chapter 3, the heart of the paper, contains the precise version of our main theorem,
its main conclusions as well as a full strategy of its proof, divided in nine supporting
intermediate results, Theorems M0–M8. We also give a short description of the proof of
each theorem.

In the other chapters of this paper we give complete proofs of Theorems, M0–M8 and a
full description of our GCM procedure.

The reader versed in the formalism of null structure and Bianchi equations, as discussed
in [20], is encouraged to glance fast over Chapter 2, to get familiarized with the notation,
and then move directly to Chapter 3.
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Chapter 2

PRELIMINARIES

2.1 Axially symmetric polarized spacetimes

2.1.1 Axial symmetry

We consider vacuum, four dimensional, simply connected, axially symmetric spacetimes
(M,g,Z) with g Lorentzian and Z an axial Killing vectorfield on M. We denote by A
the axis of symmetry, i.e. the points on M for which X := g(Z,Z) = 0. In the case of
interest for us we assume dX 6= 0 and that A is a smooth manifold of codimension 2. The
Ernst potential of the spacetime is given by,

σµ := Dµ(−ZαZα)− i ∈µβγδ ZβDγZδ.

The 1-form σµdx
µ is closed and thus there exists a function σ : M → C, called the Z-

Ernst potential, such that σµ = Dµσ. Note also that Dµg(Z,Z) = 2GµλZ
λ = −<(σµ)

where Gµν = DµZν . Hence we can choose the potential σ such that <σ = −X. By a
standard calculation one can show that,

�σ = −X−1DµσDµσ.

Definition 2.1.1. An axially symmetric Lorentzian manifold (M,g,Z) is said to be po-
larized if the Ernst potential σ is real, i.e. σ = −X. In that case the metric g can be
written in the form,

g = Xdϕ2 + gabdx
adxb (2.1.1)

43
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where X and g are independent of ϕ. We refer to the orbit spaceM/Z as the reduced space
and the metric g = gabdx

adxb as the reduced metric. Note that the reduced space (M/Z, g)
is smooth away from the axis A. Moreover the scalar X verifies the wave equation,

�gX = X−1DµXDµX. (2.1.2)

We denote by R, resp. R the curvature tensor of the spacetime metric g, respectively g,
and by �g, resp �g the d’Alembertian with respect to g and resp. the reduced metric g.
We also denote by Γ the Christoffel symbols of g and by Γ the ones of g. Note that the
only non-vanishing Christoffel symbols are:

Γϕ
ϕb =

1

2
X−1∂bX, Γa

ϕϕ = −1

2
gas∂sX, Γa

bc = Γabc. (2.1.3)

One can easily prove the following.

Proposition 2.1.2. The scalar curvature R of the reduced metric g of an axially sym-
metric polarized Einstein vacuum spacetime vanishes identically1. Moreover, setting Φ :=
1
2

logX we find,

Rab = DaDbΦ +DaΦDbΦ, �gΦ = −DaΦDaΦ. (2.1.4)

Also,

Raϕb
ϕ = −1

2
X−1DaDbX +

1

4
X−2DaXDbX = −Rab,

Racb
ϕ = 0, (2.1.5)

Rabc
d = Rabc

d,

and,

Rabcd = gacRbd + gbdRac − gadRbc − gbcRad. (2.1.6)

Finally, when applied to Z-invariant functions,

�g = �g + gab∂aΦ∂b. (2.1.7)

Remark 2.1.3. The wave equation in (2.1.4) is equivalent to

�gΦ = 0. (2.1.8)

Remark 2.1.4. Schwarzschild spacetime is axially symmetric polarized with,

X = r2(sin θ)2, Φ = log(r) + log(sin θ).

1This is an easy consequence of the equation (2.1.2).
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2.1.2 Z-frames

We consider orthonormal frames e0, e1, eθ = e2, eϕ = X−1/2Z, with X := g(Z,Z), which
are Z-equivariant, i.e. [Z, eα] = 0. From now on, the index ϕ is referring to the frame
rather than the coordinates

Lemma 2.1.5. Setting (Λα)βγ := g(Dαeγ, eβ) we have,

(Λϕ)aϕ = −DaΦ, (Λϕ)ab = (Λa)bϕ = 0, ∀a = 0, 1, 2, (2.1.9)

and,

Daeb = Daeb,

Daeϕ = 0,

Dϕea = (Λϕ)ϕaeϕ = (DaΦ)eϕ,

Dϕeϕ = (Λϕ)aϕea = −DaΦea.

(2.1.10)

Proof. Straightforward verification.

Lemma 2.1.6. We have,

DsRabcd = DsRabcd,

DsRϕbcd = 0,

DsRϕbϕd = −DsRbd,

DϕRabcd = 0,

DϕRϕbcd = DsΦRsbcd +DcΦRbd −DdΦRbc,

DϕRϕbϕd = 0.

Proof. Straightforward verification.

Definition 2.1.7. We say that a spacetime tensor U is Z-invariant if LZU = 0 and Z-
invariant polarized if its contractions to an odd number of eϕ = X−1/2Z vanish identically.

Proposition 2.1.8. All higher covariant derivatives of the Riemann curvature tensor R
of an axially symmetric polarized spacetime (M,g,Z) are Z-invariant, polarized.

Proof. The statement has been already verified above for both R and DR. It suffices
to show that, given an arbitrary Z-invariant, polarized tensor U, its covariant derivative
DU is also Z-invariant, polarized. The invariance is immediate. To show polarization
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we consider all frame components of DU with respect to our adapted equivariant frame
e1, e2, e3, eϕ. Assume first that the components of DU contain only one eϕ. These are,

DϕUa, DaUbϕc

with various combinations of horizontal indices a, b, c. Now, in view of the polarization
property of U and the relations Daeb = Daeb, Daeϕ = 0 we easily deduce,

DaUbϕc = eaUbϕc −UDabϕc −UbDaϕc −Ubϕc = 0.

Similarly, since eϕ(Ua) = X−1/2Z(Ua) = X−1/2LZUa = 0 and Dϕea is proportional to eϕ,

DϕUa = eϕ(Ua)−UDϕea = 0.

Similarly we can check that the contraction of DU with any odd number of eϕ must be
zero.

In what follows we shall refer to Z-invariant, polarized tensors as simply Z-polarized.

2.1.3 Axis of symmetry

We denote by A the axis of symmetry of Z, i.e. the set of zeroes of X = g(Z,Z). Since
we assume dX 6= 0, A is a smooth timelike submanifold of dimension 2. In view of the
definition of axial symmetry every trajectory of Z is closed and intersects A at one point.
The following regularity result at A holds true.

Lemma 2.1.9. At the axis of symmetry A we have,

gµν∂µX∂νX

4X
= e2Φgµν∂µΦ∂νΦ −→ 1. (2.1.11)

Proof. This is a classical result, see for example [52]. We provide a proof for the con-
venience of the reader. We introduce a coordinates system (x0, x1, x2, x3) centered at a
point q = (0, 0, 0, 0) on the axis such that the Christoffel symbols of the metric vanish
at q and ∂x0 |q and ∂x1 |q are tangent to the axis at q. In particular, in this coordinates
system, the matrix ∂αZ

µ(q) is given by

∂αZ
µ(q) =

(
0 0
0 A

)
,

where A is an antisymmetric matrix. Note that we used the fact that Z vanishes on the
axis, that q belongs to the axis, and that ∂αZ

µ(q) is antisymmetric since Z is Killing.
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Now, if x(ϕ) denotes an orbit of Z close to q, and y = (x2, x3), we have in particular from
Taylor formula

dy

dϕ
= Ay +O(y2).

Hence

exp(−ϕA)y(ϕ) = y(0) +O(ϕy2)

and since y(2π) = y(0) in view of the 2π-periodicity of the orbits of Z, we infer

exp(−2πA)y(0) = y(0) +O(y2).

As y(0) can be taken arbitrarily small, we infer that exp(2πA) is the 2×2 identity matrix.
Since A is antisymmetric and non zero, its eigenvalues necessarily are i and −i, and hence
ATA = I. This yields

Aα µAγ
νAαν = Aα µ(ATA)γα = Aγµ

and hence

∂αZµ(q)∂γZ
ν(q)∂αZν(q) = ∂γZµ(q).

Finally, since Z vanishes on the axis, and since the coordinates system we use in this
lemma has vanishing Christoffel symbols at q, we have as |x| goes to 0

gµν∂µX∂νX

4X
=

ZµDαZµZ
νDαZν

ZµZµ

=
∂βZ

µ(q)xβ∂αZµ(q)∂γZ
ν(q)xγ∂αZν(q)

∂βZµ(q)xβ∂γZµ(q)xγ
+O(x).

Together with the previous identity, we infer near any point q on the axis

gµν∂µX∂νX

4X
−→ 1.

This concludes the proof of the lemma.

We note that Z-polarized, smooth, vectorfields are automatically tangent to A. This is
the content of the following.

Lemma 2.1.10. Any, regular (i.e. smooth) Z-polarized vectorfield U is tangent to the
axis A.
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Proof. Let U a polarized Z-invariant regular vectorfield. Since it is Z-invariant, we have

0 = [Z,U] = ZαDαU−UαDαZ.

Since Z = 0 on the axis and U is regular (hence bounded on the axis) we infer that
UαDαZ = 0 on A. In view of (2.1.10),

UαDαZ = U(eφ)eϕ,

and since eϕ is unitary, we infer that

U(X1/2) = U(eφ) = 0 on A

and hence U(X) = 0 when X = 0.

Corollary 2.1.11. Let u be a smooth regular optical function, i.e. gαβDαuDβu = 0,
which is Z -invariant, i.e. Z(u) = 0. Then its associated null geodesic generator L =
−gαβ∂αu∂β is Z-invariant, polarized, tangent to the axis of symmetry A.

Proof. It is easy to check that L is Z-invariant, polarized. It must therefore be tangent
to A in view of Lemma 2.1.10.

2.1.4 Z-polarized S- surfaces

Throughout our work we shall deal various Z- polarized, S- foliations i.e. foliations given
by compact 2- surfaces S with induced metrics of the form,

g/ = γdθ2 +Xdϕ2, γ = γ(θ) > 0, θ ∈ [0, π]. (2.1.12)

Here γ and X are independent of ϕ, and eΦ vanishes on the poles θ = 0 and θ = π, where
Φ = 1

2
logX.

The regularity condition (2.1.11) takes the form,

lim
sin θ→0

(
eθ(e

Φ)
)2

= 1 (2.1.13)

where eθ is the unit vector,

eθ := γ−1/2∂θ.
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We denote the induced covariant derivative ∇/ and define the volume radius of S by the
formula

|S| = 4πr2

where |S| is the volume of the surface using the volume form of the metric g/ . Note also
that the area element on S is given by

√
γeΦdθdϕ.

In this section we record some basic general formulas concerning these surfaces. We
consider adapted orthonormal frames

eθ, eϕ = X−1/2Z = X−1/2∂ϕ.

Note that in view of (2.1.10) we have,

∇/ ϕeϕ = −(eθΦ)eθ, ∇/ ϕeθ = (eθΦ)eϕ, ∇/ θeθ = ∇/ θeϕ = 0. (2.1.14)

In what follows, we consider Z-invariant polarized tensors tangent to S or simply polarized
k-tensors on S.

In view of Lemma 2.1.10, a regular Z-polarized tensor on S must vanish on the axis of
symmetry i.e. at θ = 0 and θ = π. More precisely we have,

Lemma 2.1.12. The following facts hold true for Z-polarized tensors on S.

1. If U is a 1-form then, on the axis of symmetry2 of Z, (i.e. for θ = 0 and θ = π),

Uθ := U(eθ) = 0

2. For a covariant 2-tensor, then, on the axis of symmetry3 of Z, (i.e. for θ = 0 and
θ = π),

Uθθ = Uϕϕ = 0.

Similar statements can be deduced for higher order tensors.

Proof. Immediate consequence of Lemma 2.1.10.

Lemma 2.1.13. The Gauss curvature K of the metric (2.1.12) can be expressed in terms
of the polar function Φ := 1

2
logX by the formula,

4/Φ = −K. (2.1.15)

Proof. Direct calculation using the form of the g/ metric in (2.1.12).

2Note that the component Uϕ must automatically vanish on S.
3Note that the components Uθϕ, Uϕθ must automatically vanish on S.
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Basic operators on S

We recall (see [20] chapter 2) the following operations which preserve the space of fully
symmetric traceless tensors:

Definition 2.1.14. We denote by Sk the set of k-covariant polarized tensors which are
fully symmetric and traceless, i.e. which verify,

fA1...Ak = f(A1...Ak), g/ A1A2fA1A2...Ak = 0.

We define the following operators on Sk-tensors.

1. The operator D/k which takes Sk into Sk−1 is the divergence operator,

(D/kf)A2,...Ak : = (div/ f)A2,...Ak := g/ AB∇/ BfAA2,...Ak .

2. The operator D?/k which takes Sk−1 into Sk is the fully symmetrized, traceless, co-
variant derivative operator4,

(D?/kf)A1...Ak : =

{
−∇/ A1f, k = 1,

− 1
k
∇/ (A1fA2...Ak) + 1

k(k−1)
g/ (A1A2(div/ f)A3...Ak), k ≥ 2.

3. The operator 4/ k takes Sk to Sk,
(4/ kf)A1...Ak := g/ BC∇/ B∇/ CfA1...Ak .

Remark 2.1.15. Note that if f ∈ Sk then curl/ f :=∈BC ∇/ BfCA1...Ak = 0.

Lemma 2.1.16. Given f ∈ Sk, k ≥ 1, we have the identity,

∇/ BfA1...Ak = −(D?/k+1f)BA1...Ak +
1

k
g/ (BA1(D/kf)A2...Ak). (2.1.16)

In other words the covariant derivatives of any tensor in Sk can be expressed as a linear
combination of D?/k+1f and g/ ⊗ D/kf .

Proof. The proof follows easily from definitions and the vanishing of the curl/ . For exam-
ple, if k = 2,

3∇/ BfA1A2 = (∇/ BfA1A2 +∇/ A1fA2B +∇/ A2fBA1)

+ (∇/ BfA1A2 −∇/ A1fBA2) + (∇/ BfA1A2 −∇/ A2fA1B)

= −3 [(D?/3f)BA1A2 − g/ A1A2(D/2f)B − g/ A2B(D/2f)A1 − g/ A1A2(D/2f)B]

= −3

[
(D?/3f)BA1A2 −

1

2
g/ (BA1(D/2f)A2)

]
.

4For an arbitrary k-tensor, f(A1...Ak) = 1
k!

∑
σ∈Sk fAσ(1)...Aσ(k). In the particular case when k = 1 we

get (D?/1f)A = −∇/Af and when k = 2 we get D?/2fAB = − 1
2 (∇/AfB +∇/BfA − g/ABdiv/ f).
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We can easily check that D?/k is the formal adjoint of D/k, i.e.,∫
S

(D/kf)g =

∫
S

f(D?/k g).

It is also easy to check that the kernels of D/k are trivial for all k ≥ 1 (see also Chapter 2
in [20]). The kernel of D?/1 : S0 −→ S1 consists of constants on S while the kernel of D?/2

consists of constant multiple of co-vectors f with fθ = CeΦ. Moreover,

D?/1 · D/1 = −4/ 1 +K, D/1 · D?/1 = −4/ 0,

D?/2 · D/2 = −1

2
4/ 2 +K, D/2 · D?/2 = −1

2
(4/ 1 +K).

(2.1.17)

Similar identities also hold for higher k. Using (2.1.17) one can also prove the following
(see also Chapter 2 in [20]).

Proposition 2.1.17. Let (S, g/ ) be a compact manifold with Gauss curvature K. We
have,

i.) The following identity holds for vectorfields f ∈ S1,∫
S

(
|∇/ f |2 +K|f |2

)
=

∫
S

| D/1f |2.

ii.) The following identity holds for symmetric, traceless tensors in S2,∫
S

(
|∇/ f |2 + 2K|f |2

)
= 2

∫
S

| D/2f |2.

iii.) The following identity holds for scalars f ∈ S0,∫
S

|∇/ f |2 =

∫
S

| D?/1 f |2.

iv.) The following identity holds for vectors f ∈ S1,∫
S

(
|∇/ f |2 −K|f |2

)
= 2

∫
S

| D?/2f |2.

Proof. All statements appear in [20].
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Proposition 2.1.18. we have for f ∈ S0,∫
S

(
|∇/ 2f |2 +K|∇/ f |2

)
=

∫
S

|4/ 0f |2.

Moreover, under mild assumptions on the curvature such as

K =
1

r2
+O

( ε
r2

)
, reθ(K) = O

( ε
r2

)
,

for any f ∈ Sk, k ≥ 1,∫
S

(
|∇/ 2f |2 + r−2|∇/ f |2

)
.
∫
S

|4/ kf |2 +O(ε)r−4

∫
S

|f |2.

Proof. Follows from the standard Bochner identity on S.

Reduced picture

Lemma 2.1.19. The following relations hold true between the spacetime picture and the
reduced one.

1. Let (1+3)f ∈ Sk sucht that (1+3)fθ...θ = f . Then,

(D/k (1+3)f)θ...θ = eθ(f) + keθ(Φ)f. (2.1.18)

2. If f ∈ S0 we have,

d?/1f = −eθ(f).

3. If (1+3)f ∈ Sk−1, k ≥ 2, such that (1+3)fθ...θ = f we have,

2(D?/k (1+3)f)θ...θ = −eθ(f) + (k − 1)eθ(Φ)f. (2.1.19)

4. Let (1+3)f ∈ Sk sucht that (1+3)fθ...θ = f . Then,

4/ k (1+3)fθ1...θk = eθ(eθf) + eθ(Φ)eθf − k2
(
eθ(Φ)

)2
f.

Proof. The proof follows easily from the definitions of D/k, D?/k, 4/ k and the formulae
(2.1.14). We check below the formula (2.1.18).

−(D?/k (1+3)f)θ...θ = eθf −
1

2
(D/k−1f)θ...θ = eθ(f)− 1

2
(eθf + (k − 1)eθ(Φ)f)

=
1

2
(eθf − (k − 1)eθ(Φ)f)

as desired.
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Definition 2.1.20. We say that a scalar f is a reduced k-scalar on S if there is a Z-
invariant, polarized, k-covector (1+3)f ∈ Sk such that,

f = (1+3)fθ...θ.

We denote by sk the set of k reduced scalars.

• Given a k reduced scalar f , reduced from (1+3)f we define,

|∇/ f |2 = |∇/ (1+3)f |2, |∇/ lf |2 = |∇/ l (1+3)f |2.

• Given a k-reduced scalar f on S we define,

d/kf := eθ(f) + keθ(Φ)f.

• Given a (k − 1)-reduced scalar f ∈ Sk−1 we define,

d?/kf := −eθ(f) + (k − 1)eθ(Φ)f.

• Given a k-reduced scalar f ∈ sk we define,

4/ kf := eθ(eθf) + eθ(Φ)eθf − k2
(
eθ(Φ)

)2
f.

In view of Lemma 2.1.19 we have,

d/kf = (D/k (1+3)f)θ...θ

and,

d?/kf =

{
(D?/k (1+3)f)θ...θ, k = 1,

2(D?/k (1+3)f)θ...θ, k ≥ 2.

Clearly d/k takes k-reduced scalars into (k − 1)-reduced scalars, d?/k takes (k − 1)-reduced
ones into k-reduced and 4/ k takes k-reduces scalars into k-reduced scalars.

Remark 2.1.21. Note that, in view of Lemma 2.1.12, any reduced scalar in sk, for k ≥ 1,
must vanish on the axis of symmetry of Z, i.e. at the two poles.

Remark 2.1.22. The operator d/k and d?/k can only be applied to k-reduced, resp (k − 1)-
reduced scalars. Thus whenever we write a sequence of operators involving d/k, d?/k we
understand from the context to which type of k-reduced scalars they are applied, see for
example the proposition below. The same remark applies to 4/ k.
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Remark 2.1.23. Note that for given reduced scalar f ∈ sk and h ∈ s1 we can write,

heθ(f) =
1

2
h ( d/kf − d?/k+1f) .

The term h d/kf is the reduced form of a tensor product of (1+3)h with D/k (1+3)f while
h d?/k+1f is the reduced form of a contraction between (1+3)h and D?/k+1

(1+3)f This can be
formalized precisely using Lemma 2.1.16. The Remark will be useful in what follows, for
example in Lemma 2.2.14.

Remark 2.1.24. The duality between the operators d/k and d?/k follows in view of the
duality of D/k and D?/k. It can also be interpreted directly in terms of the area element√
γeΦdθdϕ,∫
S

( d/kfg − f d?/kg)daS =

∫
S

eθ(fg) + eθ(Φ)fg =

∫ π

0

∫ 2π

0

(eθ(fg) + eθ(Φ)fg)
√
γeΦdθdϕ

=

∫ π

0

∫ 2π

0

∂θ(e
Φfg)dθdϕ = 0.

Proposition 2.1.25. The following identities hold true,

d?/k d/k = −4/ k + kK,

d/k d
?/k = −4/ k−1 − (k − 1)K.

(2.1.20)

In particular for k = 1, 2

d?/1 d/1 = −4/ 1 +K, d/1 d
?/1 = −4/ 0, d?/2 d/2 = −4/ 2 + 2K, d/2 d

?/2 = −4/ 1 −K.

Moreover, note the following commutation formulas

d/k d
?/k − d?/k−1 d/k−1 = −2(k − 1)K,

− d/k4/ k +4/ k−1 d/k = −(2k − 1)K d/k − keθ(K),

− d?/k4/ k−1 +4/ k d?/k = (2k − 1)K d?/k + (k − 1)eθ(K).

Proof. We have, for a k reduced scalar f ,

− d?/k d/kf = (eθ − (k − 1)eθ(Φ))(eθ(f) + keθ(Φ)f)

= eθ(eθ(f)) + keθ(Φ)eθf + k(eθeθΦ)f − (k − 1)eθ(Φ))(eθ(f) + keθ(Φ)f)

= eθ(eθ(f)) + eθ(Φ)eθf + k(eθeθΦ)f − k(k − 1)
(
eθ(Φ)

)2
.

In view of Lemma 2.1.13 we have, since Φ is a scalar

−K = 4/Φ = eθeθ(Φ) +
(
eθ(Φ)

)2
.
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Therefore,

− d?/k d/kf = eθ(eθ(f)) + eθ(Φ)eθf + k
(
−K −

(
eθ(Φ)

)2
)
f − k(k − 1)

(
eθ(Φ)

)2

= eθ(eθ(f)) + eθ(Φ)eθf − kKf − k2
(
eθ(Φ)

)2

= 4/ kf − kKf.
Similarly, for a (k − 1)-reduced f ,

− d/k d?/kf = (eθ + keθ(Φ))(eθ(f)− (k − 1)eθ(Φ)f)

= eθ(eθ(f)) + keθ(Φ)eθf − (k − 1)(eθeθΦ)f − (k − 1)eθ(Φ)eθ(f)

− k(k − 1)
(
eθ(Φ)

)2
f

= eθ(eθ(f)) + eθ(Φ)eθf − (k − 1)
(
−K −

(
eθ(Φ)

)2
)
f − k(k − 1)

(
eθ(Φ)

)2
f

= eθ(eθ(f)) + eθ(Φ)eθf + (k − 1)Kf − (k − 1)2
(
eθ(Φ)

)2
f

= 4/ k−1f + (k − 1)Kf.

Next, we check the commutation formulas. We have

d/k d
?/k − d?/k−1 d/k−1 = −4/ k−1 − (k − 1)K −

(
−4/ k−1 + (k − 1)K

)
= −2(k − 1)K

from which we infer

d/k(−4/ k) = d/k( d
?/k d/k − kK)

= d/k d
?/k d/k − kK d/k − keθ(K)

=
(
d?/k−1 d/k−1 − 2(k − 1)K

)
d/k − kK d/k − keθ(K)

=
(
−4/ k−1 − (k − 1)K

)
d/k − kK d/k − keθ(K)

and hence

− d/k4/ k +4/ k−1 d/k = −(2k − 1)K d/k − keθ(K).

Also, we have

d?/k(−4/ k−1) = d?/k( d/k d
?/k + (k − 1)K)

= d?/k d/k d
?/k + (k − 1)K d?/k + (k − 1)eθ(K)

=
(
−4/ k + kK

)
d?/k + (k − 1)K d?/k + (k − 1)eθ(K)

and hence

− d?/k4/ k−1 +4/ k d?/k = (2k − 1)K d?/k + (k − 1)eθ(K)

as desired.
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A remarkable identity

First, note the following observation which follows immediately from the form of d?/2.

Lemma 2.1.26. The kernel of d?/2 is spanned by eΦ.

The above lemma, in connection with a Poincaré inequality for d?/2, see (2.1.35), will result
in the need of a specific treatment for the projection of some of the quantities on the kernel
of d?/2. This motivates the following definition.

Definition 2.1.27 (The ` = 1 mode). For a 1-reduced scalar f , the ` = 1 mode denotes
its projection on the kernel of d?/2, i.e. ∫

S

feΦ.

For a 0-reduced scalar f , the ` = 1 mode denotes the projection of eθ(f) on the kernel of
d?/2, i.e. ∫

S

eθ(f)eΦ.

Remark 2.1.28. The above definition is motivated by the fact that, in Schwarzschild,
this corresponds to the projection on the ` = 1 spherical harmonic5.

We are now ready to state the following remarkable identity which will play a crucial role
later in the paper.

Lemma 2.1.29 (Vanishing of the ` = 1 mode of the Gauss curvature). The ` = 1 mode
of K vanishes identically, i.e. ∫

S

eθ(K)eΦ = 0. (2.1.21)

Proof. To prove (2.1.21) we write,

−
∫
S

eθ(K)eΦ =

∫
S

d?/1(K)eΦ =

∫
S

K d/1(eΦ) = 2

∫
S

Keθ(Φ)eΦ.

5In general, there are 3 spherical harmonics corresponding to ` = 1, but only one is axially symmetric.
This is why we have only one projection instead of 3 in our case.
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Thus, in view of (2.1.15), using in addition 4/Φ = eθ(eθ(Φ)) + eθ(Φ)2∫
S

eθ(K)eΦ = 2

∫
S

4/Φeθ(Φ)eΦ = 2

∫
S

(
eθ(eθ(Φ)) + eθ(Φ)2

)
eθ(Φ)eΦ

=

∫
S

d/2

(
(eθΦ)2

)
eΦ =

∫
S

(eθΦ)2 d?/2(eΦ) = 0

as desired6.

Poincaré inequalities on 2-spheres

Proposition 2.1.17 takes the following reduced form,

Proposition 2.1.30. The following identities hold true for reduced k-scalars f ∈ sk.

i.) If f ∈ s1, ∫
S

(
|∇/ f |2 +Kf 2

)
=

∫
S

| d/1f |2. (2.1.22)

ii.) If f ∈ s2, ∫
S

(
|∇/ f |2 + 4Kf 2

)
= 2

∫
S

| d/2f |2. (2.1.23)

iii.) If f ∈ s0, ∫
S

|∇/ f |2 =

∫
S

| d?/1 f |2. (2.1.24)

iv.) If f ∈ s1, ∫
S

(
|∇/ f |2 −Kf 2

)
=

∫
S

| d?/2f |2. (2.1.25)

v.) If f ∈ s0, ∫
S

|∇/ 2f |2 +

∫
S

K|∇/ f |2 =

∫
S

|4/ 0f |2. (2.1.26)

Under mild assumptions on the Gauss curvature K, such as

K =
1

r2
+O

( ε
r2

)
, reθ(K) = O

( ε
r2

)
.

6Note that the boundary term which appears from the last integration by parts has the form
(∂θΦ)2e2Φ(π) − (∂θΦ)2e2Φ(0) and hence vanishes in view of the regularity condition (2.1.13), see also
the computation in Remark 2.1.24.
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We also have for f ∈ sk, k ≥ 1,

‖∇/ 2f‖2
L2(S) + r−2‖∇/ f‖2

L2(S) . ‖4/ kf‖2
L2(S) + εr−4‖f‖2

L2(S). (2.1.27)

Proof. The proof of the above statements can be either derived from their space-time
version or checked directly.

Lemma 2.1.31. The following relations hold between Z-polarized S-tensors and reduced
scalars7.

• If f ∈ s0

|∇/ f |2 = |eθf |2,
|∇/ 2f |2 = |eθ(eθf)|2 + |eθΦeθf |2.

• If f ∈ s1,

|∇/ f |2 = |eθf |2 + |eθ(Φ)|2|f |2.

• If f ∈ s2,

|∇/ f |2 = 2
(
|eθf |2 + 4|eθ(Φ)|2|f |2

)
.

Proof. If f ∈ s0,

|∇/ 2f |2 = ∇A∇/ Bf∇/ A∇/ Bf = |∇/ θ∇/ θf |2 + |∇/ ϕ∇/ ϕf |2 = |eθ(eθf)|2 + |eθΦeθf |2.

If f ∈ s1 is reduced from a Z invariant, polarized vector F ,

|∇/ f |2 = ∇AFB∇/ AFB = |∇/ θFθ|2 + |∇/ ϕFϕ|2
= |eθf |2 + |eθΦf |2.

If f ∈ s2 is reduced from a symmetric, traceless Z-invariant, polarized tensor F = (1+3)f
we have,

|∇/ f |2 = |∇/ θFθθ|2 + 2|∇/ θFϕθ|2 + |∇/ θFϕϕ|2 + |∇/ ϕFθθ|2 + 2|∇/ ϕFϕθ|2 + |∇/ ϕFϕϕ|2
= |∇/ θFθθ|2 + |∇/ θFϕϕ|2 + 2|∇/ ϕFϕθ|2

7Note that the expressions on the left of the inequalities below should be interpreted as applying to
the spacetime tensor from which f is reduced.
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and,

∇/ θFθθ = eθf = −∇/ θFϕϕ,
∇/ ϕFϕθ = eθΦFθθ − eθΦFϕϕ = 2eθΦf.

Thus,

|∇/ f |2 = 2|eθf |2 + 8(eθΦf)2

as desired.

Proposition 2.1.32 (Poincaré). The following inequalities hold for k-reduced scalars.

1. If f ∈ s0, ∫
S

|∇/ 2f |2 ≥
∫
S

K| d?/1f |2. (2.1.28)

2. If f ∈ s1 ∫
S

|∇/ f |2 ≥
∫
S

Kf 2. (2.1.29)

3. If f ∈ s2, ∫
S

|∇/ f |2 ≥ 4

∫
S

Kf 2. (2.1.30)

Proof. We first prove the result for f ∈ s2. According to Lemma 2.1.31,

2−1|∇/ f |2 = |eθf |2 + 4|eθ(Φ)|2|f |2 = (eθf − 2eθ(Φ)f)2 + 4f(eθf)eθ(Φ)

= (eθf − 2eθ(Φ)f)2 + 2eθ(f
2)eθ(Φ).

Hence,

2−1

∫
S

|∇/F |2daS =

∫
S

(eθf − 2eθ(Φ)f)2daS + 2

∫
S

eθ(f
2)eθ(Φ)

√
γeΦdθdϕ.

Now,∫
S

eθ(f
2)eθ(Φ)

√
γeΦdθdϕ =

∫ π

0

∫ 2π

0

∂θ(f
2)eθ(Φ)eΦdθdϕ = −

∫ π

0

∫ 2π

0

f 2eθ(e
ΦeθΦ)

√
γdθdϕ

= −
∫ π

0

∫ 2π

0

(
eθeθΦ + (eθΦ)2

)
f 2eΦ√γdθdϕ =

∫
S

Kf 2daS.
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Hence, ∫
S

|∇/ f |2 ≥ 4

∫
S

Kf 2

as desired.

The result for f ∈ s1 is proved in the same way.

If f ∈ s0 we write, according to Lemma 2.1.31,

|∇/ 2f |2 = |eθ(eθf)|2 + |eθΦeθf |2 = |eθh|2 + |eθΦ|2|eθf |2
= (eθeθf − eθ(Φ)eθf)2 + eθ[(eθf)2] eθ(Φ).

Integrating by parts as before,∫
S

eθ[(eθf)2] eθ(Φ)daS = −
∫ π

0

∫ 2π

0

(eθf)2eθ(e
ΦeθΦ)

√
γdθdϕ =

∫
S

K(eθf)2daS.

Thus, ∫
S

|∇/ 2f |2 ≥
∫
S

K(eθf)2.

As a corollary we deduce the following,

Corollary 2.1.33. The following hold true for reduced scalars,

1. If f ∈ s1, ∫
S

| d/1f |2 ≥
∫
S

2Kf 2. (2.1.31)

2. If f ∈ s2, ∫
S

| d/2f |2 ≥ 4

∫
S

Kf 2. (2.1.32)

Proof. According to (2.1.22),∫
S

(
|∇/ f |2 +Kf 2

)
=

∫
S

| d/1f |2.
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We deduce, ∫
S

| d/1f |2 ≥ 2

∫
S

Kf 2.

According to (2.1.23) ∫
S

(
|∇/ f |2 + 4Kf 2

)
= 2

∫
S

| d/2f |2.

Hence,

2

∫
S

| d/2f |2 ≥ 8

∫
S

Kf 2

as desired.

Corollary 2.1.34. Under the following mild assumptions on the Gauss curvature

K =
1

r2
+O

( ε
r2

)
, reθ(K) = O

( ε
r2

)
,

the following holds.

1. If f ∈ s0 is orthogonal to the kernel of d?/1, i.e.
∫
S
f = 0, then, we have∫

S

| d?/1f |2 ≥ 2

∫
S

(1 +O(ε))Kf 2. (2.1.33)

2. If f ∈ s1 is orthogonal to the kernel of d?/2, i.e
∫
S
feΦ = 0, then, we have∫

S

| d/1f |2 ≥ 6

∫
S

(1 +O(ε))Kf 2 and

∫
S

| d?/2f |2 ≥ 4

∫
S

(1 +O(ε))Kf 2. (2.1.34)

Proof. We start with the first assertion. If f ∈ s0 satisfies
∫
S
f = 0 then, f is orthogonal

to 1 which generates the kernel of d?/1, and hence, f is in the image of d/1, i.e. there exists
h ∈ s1 such that

f = d/1h.

We deduce ∫
S

( d?/1(f))2 =

∫
S

( d?/1 d/1h)2 =

∫
S

( d?/1 d/1)2hh.
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Now, the above Poincaré inequality for d/1 and the assumption on K implies a lower bound
for the spectrum of the selfadjoint operator d?/1 d/1 by 2K(1 +O(ε)), and hence∫

S

( d?/1(f))2 ≥ 2

∫
S

K(1 +O(ε))( d?/1 d/1)hh

≥ 2

∫
S

(1 +O(ε))K( d/1h)2

≥ 2

∫
S

(1 +O(ε))Kf 2

which yields the first assertion.

Assume now that f ∈ s1 satisfies
∫
S
feΦ = 0 i.e. ,f is orthogonal to eΦ which generates

the kernel of d?/2, and hence, f is in the image of d/2, i.e. there exists h ∈ s2 such that

f = d/2h.

We deduce∫
S

( d/1f)2 =

∫
S

( d/1 d/2h)2

∫
S

d?/1 d/1 d/2h d/2h =

∫
S

( d/2 d
?/2 + 2K) d/2h d/2h

=

∫
S

( d?/2 d/2)2hh+

∫
2K( d/2h)2.

Now, the above Poincaré inequality for d/2 and the assumption on K implies a lower bound
for the spectrum of the selfadjoint operator d?/2 d/2 by 4K(1 +O(ε)), and hence∫

S

( d/1f)2 ≥ 4

∫
S

K(1 +O(ε))( d?/2 d/2)hh+

∫
2K( d/2h)2

≥ 6

∫
S

(1 +O(ε))K( d/2h)2

≥ 6

∫
S

(1 +O(ε))Kf 2.

Together with the fact that∫
S

( d?/2f)2 =

∫
S

d/2 d
?/2ff =

∫
S

( d?/1 d/1 − 2K)ff =

∫
S

( d/1f)2 − 2

∫
S

Kf 2,

this yields the second assertion and concludes the proof of the corollary.

Lemma 2.1.35. Assume that

K =
1

r2
+O

( ε
r2

)
, reθ(K) = O

( ε
r2

)
,

∫
S

e2Φ = r4

(
8π

3
+O(ε)

)
.
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Then, If f ∈ s1, we have the estimate,∫
S

∣∣f |2 . r2

∫
S

| d?/2f |2 + r−4

∣∣∣∣∫
S

eΦf

∣∣∣∣2 . (2.1.35)

More precisely,

f =

∫
S
feΦ∫

S
e2Φ

eΦ + f⊥ (2.1.36)

with ∫
S

∣∣f⊥|2 . r2

∫
S

| d?/2f |2.

Proof. According to Corollary 2.1.34, see 2.1.34, if f ∈ s1 is orthogonal to the kernel of
d?/2, i.e

∫
S
feΦ = 0, then, we have∫

S

| d?/2f |2 ≥ 4

∫
S

(1 +O(ε))Kf 2.

As a consequence f⊥ = f −
(∫

S fe
Φ∫

S e
2Φ

)
eΦ verifies,

r−2

∫
S

|f⊥|2 .
∫
S

| d?/2(f⊥)|2 =

∫
S

| d?/2f |2

from which we derive,

∫
S

∣∣∣∣f − (
∫
S
feΦ∫

S
e2Φ

)
eΦ

∣∣∣∣2 . r2

∫
S

| d?/2f |2

or, ∫
S

∣∣f |2 . r2

∫
S

| d?/2f |2 +

∣∣∣∣∫
S

eΦf

∣∣∣∣2 1∫
S
e2Φ

. r2

∫
S

| d?/2f |2 + r−4

∣∣∣∣∫
S

eΦf

∣∣∣∣2
as desired.
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Higher derivative operators and spaces

Definition 2.1.36. Given f a k-reduced scalar and s a positive integer we define,

d/sf =

{
r2p4/ pk, if s = 2p,

r2p+1 d/k4/ pk, if s = 2p+ 1.
(2.1.37)

We also define the norms,

‖f‖hs(S) : =
s∑
i=0

‖ d/if‖L2(S). (2.1.38)

Lemma 2.1.37. Assume the Gauss curvature K of S verifies the condition,

K =
1

r2
+O(ε), |ri∇/ iK| = O(ε), 1 ≤ i ≤ [s/2] + 1.

Then, the following holds.

1. If f is a k-scalar, reduced from (1+3)f , we have,

‖f‖hs(S) ∼
s∑
j=0

rj‖∇/ jf‖L2(S) (2.1.39)

where ∇/ denotes the usual covariant derivative operator on S.

2. Equivalently, the norm r−s‖f‖hs(S) of a reduced scalar f ∈ ss(S) can be defined as
the sum of L2 norms of any allowable sequence of Hodge operators d/a, d?/a applied
to f .

Proof. For s = 1, 2 the proof of the first part follows immediately from Proposition 2.1.30.
For higher s the proof follows, step by step, by a simple commutation argument between
covariant derivatives and 4/ k and applications of Proposition 2.1.30. The proof of the
second part follows from our reduced elliptic estimates and definition of the reduced
Hodge operators.

As a consequence of the lemma we can derive the reduce form of the standard Sobolev
and product Sobolev inequalities. Before stating the result we pause to define the product
of two reduced scalars.
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Definition 2.1.38. Let f ∈ sa be reduced from an Sa tensor and g ∈ sb reduced from
an Sb tensor. We define the product f · g to be the reduction of any product between
the corresponding tensors on S, i.e. any contraction of the tensor product between them.
Thus f · g ∈ sa+b−2c where c denotes the number of indices affected by the contraction.

Examples. Here are the most relevant examples for us.

• f ∈ s0, g ∈ sk in which case f · g ∈ sk and equals fg.

• f ∈ s1, g ∈ sk in which case f · g ∈ sk−1 or f · g ∈ sk+1 and in both cases f · g = fg
as simple product of the reduced scalars.

• f ∈ s2, g ∈ sk in which case f · g ∈ sk−2 or f · g ∈ sk or f · g ∈ sk+2. In the first case
f · g = 2fg. In the second case and third cases f · g = fg as simple product of the
reduced scalars.

Lemma 2.1.39. Let f ∈ sa(S), g ∈ sb(S), a ≥ b, a > 0, and f · g ∈ sa+b−2c where
0 ≤ c ≤ 1

2
(a− b) denotes the order of contraction. Then,

d/a+b−2c(fg) = f d/bg + g
((

1− c

a

)
d/af −

c

a
d?/a+1f

)
,

d?/a+b−2c+1(fg) = f d?/b+1g + g
(
− c
a
d/af −

(
−1 +

c

a

)
d?/a+1f

)
.

(2.1.40)

Proof. Assume a ≥ b and c ≤ a−b
2

. We write,

d/a+b−2c(fg) = f d/bg + g (eθf + (a− 2c)eθ(Φ)f) .

We look for reals A,B wit A+B = 1 such that

eθf + (a− 2c)eθ(Φ)f = Ad/af −B d?/a+1f = eθf + a(A−B)eθΦf.

Therefore,

a(1− 2B) = a− 2c

i.e. B = c
a
, A = 1− c

a
and we derive,

d/a+b−2c(fg) = f d/bg + g
((

1− c

a

)
d/af −

c

a
d?/a+1f

)
.

Also,

d?/a+b−2c+1(fg) = f d?/b+1g + g (−eθ(f) + (a− 2c)eθ(Φ)f) .
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As before we write, with A+B = −1

−eθ(f) + (a− 2c)eθ(Φ)f = Ad/af −B d?/a+1f = −eθf + a(A−B)eθΦf.

Hence,

a(−1− 2B) = a− 2c

i.e. B = −1 + c
a
, A = − c

a
. Hence,

d?/a+b−2c+1(fg) = f d?/b+1g + g
(
− c
a
d/af −

(
−1 +

c

a

)
d?/a+1f

)
as desired.

Proposition 2.1.40. The following results hold true for k-reduced scalars on S,

1. If f ∈ sk we have,

‖f‖L∞(S) . r−1‖f‖h2(S).

2. Given two reduced scalars f, g we have,

‖f · g‖hs(S) . r−1
(
‖f‖h[s/2]+2(S)‖g‖hs(S) + ‖g‖h[s/2]+2(S)‖f‖hs(S)

)
where [s/2] denotes the largest integer smaller than s/2.

Proof. Both statements are classical for Sk(S) tensors with respect to the norm on the
right hand side of (2.1.39). A direct proof can also be derived using Lemma 2.1.39 and
the equivalence definition of the hs(S) norms.

S-averages

Definition 2.1.41. Given any f ∈ s0 we denote its average by,

f̄ : =
1

|S|

∫
S

f, f̌ := f − f̄.

The following follows immediately from the definition.
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Lemma 2.1.42. For any two scalar reduced scalars f and g in s0 we have

fg = f g + f̌ ǧ,

and,

fg − fg = f̌ g + fǧ +
(
f̌ ǧ − f̌ ǧ

)
.

Remark 2.1.43. In view of the notations above, we may rewrite the Poincaré inequal-
ity for d?/1 as follows. Under mild assumptions on the Gauss curvature (K = r−2 +
O(εr−2), reθ(K) = O(εr−2)), we have for any f ∈ s0∫

S

| d?/1f |2 ≥ 2

∫
S

(1 +O(ε))K(f̌)2.

2.1.5 Invariant S-foliations

In this section we record the main equations associated to general, Z-invariant Einstein
vacuum spacetimes (M,g). We start by recalling the spacetime framework of [20] and
then we show how the null structure and Bianchi identities simplify in the reduced picture.
Throughout this section we consider given an invariant S-foliation8 and a fixed adapted
null pair e3, e4, i.e. future directed Z- invariant, polarized, null vectors orthogonal to the
leaves S of the foliation such as g(e3, e4) = −2.

Definition 2.1.44. We denote by Sk(M) the set of k-covariant polarized tensors on M
tangent to the S-foliation and which restrict to Sk(S) on any S-surface of the foliation
and by sk(M) their corresponding reductions.

Spacetime null decompositions

Following [20] we define the spacetime Ricci coefficients,

(1+3)χAB : = g(DAe4, eB), (1+3)ξA :=
1

2
g(D4e4, eA), (1+3)ηA :=

1

2
g(D3e4, eA),

(1+3)ζA : =
1

2
g(DAe4, e3), (1+3)ω :=

1

4
g(D4e4, e3),

(2.1.41)

and interchanging e3, e4,

(1+3)χ
AB

: = g(DAe3, eB), (1+3)ξ
A

:=
1

2
g(D3e3, eA), (1+3)η

A
:=

1

2
g(D4e3, eA),

(1+3)ζA : = −1

2
g(DAe3, e4), (1+3)ω :=

1

4
g(D3e3, e4).

(2.1.42)

8From now on, an invariant S foliation is automatically assumed to be a Z invariant polarized foliation.
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We also define the spacetime null curvature components,

(1+3)αAB : = RA4B4,
(1+3)βA :=

1

2
RA434,

(1+3)ρ :=
1

4
R3434,

(1+3)αAB : = RA3B3,
(1+3)β

A
:=

1

2
RA334,

(1+3)?ρ :=
1

4
?R3434.

(2.1.43)

Reduced null decompositions

We define the spacetime Ricci coefficients as follows

Definition 2.1.45 (Ricci coefficients). Let e3, e4, eθ be a reduced null frame. The following
scalars

χ = g(Dθe4, eθ), χ = g(Dθe3, eθ),

η =
1

2
g(D3e4, eθ), η =

1

2
g(D4e3, eθ),

ξ =
1

2
g(D4e4, eθ), ξ =

1

2
g(D3e3, eθ),

ω =
1

4
g(D4e4, e3), ω =

1

4
g(D3e3, e4),

ζ =
1

2
g(Dθe4, e3),

(2.1.44)

are called the Ricci coefficients associated to our canonical null pair.

Lemma 2.1.46. The following lemma follows easily from the definitions,

D4e4 = −2ωe4 + 2ξeθ, D3e3 = −2ωe3 + 2ξeθ,

D4e3 = 2ωe3 + 2ηeθ, D3e4 = 2ωe4 + 2ηeθ,

D4eθ = ηe4 + ξe3, D3eθ = ξe4 + ηe3,

Dθe4 = −ζe4 + χeθ, Dθe3 = ζe3 + χeθ,

Dθeθ =
1

2
χe4 +

1

2
χe3.

(2.1.45)

Definition 2.1.47. The null components of the Ricci curvature tensor9 of the metric g
are denoted by

R33 = α, R44 = α, R3θ = β, R4θ = β, Rθθ = R34 = ρ, R34 = ρ.

9Recall that the scalar curvature of the reduced metric g vanishes, R = 0, and hence R34 = Rθθ.
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Comparison to the space-time frame

Let e3, e4, eθ be a null frame for the reduced metric g and e3, e4, eθ, eϕ = X−1/2∂ϕ the
augmented adapted 3 + 1 frame for g. Recall that we have denoted,

(1+3)χ, (1+3)ξ, (1+3)η, (1+3)η, (1+3)ζ, (1+3)ω, (1+3)χ, (1+3)ξ, (1+3)ω,

the standard (as defined in [20] ) space-time Ricci coefficients and by

(1+3)α, (1+3)β, (1+3)ρ, (1+3)?ρ, (1+3)β, (1+3)α,

the null decomposition of the curvature tensor R.

Proposition 2.1.48. The following relations between the spacetime and reduced Ricci
and curvature null components hold true,

• We have,

(1+3)χθθ = χ, (1+3)χθϕ = 0, (1+3)χϕϕ = e4(Φ),
(1+3)χ

θθ
= χ, (1+3)χθϕ = 0, (1+3)χϕϕ = e3(Φ),

(1+3)αθθ = α, (1+3)αθϕ = 0, (1+3)αϕϕ = −α,
(1+3)αθθ = α, (1+3)αθϕ = 0, (1+3)αϕϕ = −α.

• All eϕ components of (1+3)η, (1+3)η, (1+3)ζ, (1+3)ξ, (1+3)ξ, (1+3)β, (1+3)β vanish and,

(1+3)ηθ = η, (1+3)η
θ

= η, (1+3)ζθ = ζ, (1+3)ξθ = ξ, (1+3)ξ
θ

= ξ,

and10

(1+3)βθ = β, (1+3)β
θ

= −β.

Also,

(1+3)ω = ω, (1+3)ω = ω, (1+3)ρ = ρ, (1+3)?ρ = 0.

• We have,

(1+3)trχ = χ+ e4(Φ), (1+3)trχ = χ+ e3(Φ).

10Note the change of sign for the β component.
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Recalling, see definition in [20],

(1+3)χ̂AB = (1+3)χAB −
1

2
( (1+3)trχ)g/ AB,

(1+3)χ̂
AB

= (1+3)χ
AB
− 1

2
( (1+3)trχ)g/ AB,

we have

(1+3)χ̂θθ =
1

2
(χ− e4(Φ)) , (1+3)χ̂

θθ
=

1

2

(
χ− e3(Φ)

)
.

Proof. We check only the less obvious relations such as those involving the null compo-
nents of curvature. Using (2.1.5) and (2.1.6) we deduce,

(1+3)αθθ = Rθ4θ4 = Rθ4θ4 = gθθR44 = α,
(1+3)αθϕ = Rθ4ϕ4 = 0,
(1+3)αϕϕ = Rϕ4ϕ4 = −R44 = −α,
2 (1+3)βθ = Rθ434 = Rθ434 = −g34Rθ4 = 2β,

2 (1+3)βϕ = Rϕ343 = 0,

4 (1+3)ρ = R3434 = R3434 = −2g34R34 = 4ρ,

4 (1+3)?ρ = ?R3434 = 0,

2 (1+3)β
θ

= Rθ334 = Rθ334 = g34Rθ3 = −2β,

2 (1+3)β
ϕ

= Rϕ334 = 0.

Definition 2.1.49. We introduce the notation,

ϑ : = χ− e4(Φ), κ := (1+3)trχ = χ+ e4(Φ),

ϑ : = χ− e3(Φ), κ := (1+3)trχ = χ+ e3(Φ).

Thus,

(1+3)χ̂θθ = (1+3)χ̂ϕϕ =
1

2
ϑ, (1+3)χ̂

θθ
= (1+3)χ̂

ϕϕ
=

1

2
ϑ.

In particular, χ = 1
2
(ϑ+ κ) and χ = 1

2
(ϑ+ κ).

Remark 2.1.50. In view of Proposition 2.1.48 we have,

1. The quantities κ, κ, ω, ω, ρ are reduced scalars in s0.

2. The quantities η, η, ζ, ξ, ξ, β, β are reduced scalars in s1.

3. The quantities ϑ, ϑ, α, α are reduced scalars in s2.
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Commutation identities

We record first the commutation relations between the elements of the frame,

[eθ, e3] =
1

2
(κ+ ϑ)eθ + (ζ − η)e3 − ξe4,

[eθ, e4] =
1

2
(κ+ ϑ)eθ − (ζ + η)e4 − ξe3,

[e3, e4] = 2ωe4 − 2ωe3 + 2(η − η)eθ.

Lemma 2.1.51. The following commutation formulae hold true for reduced scalars.

1. If f ∈ sk,

[ d/k, e3]f =
1

2
κ d/kf + Comk(f),

Comk(f) = −1

2
ϑ d?/k+1f + (ζ − η)e3f − kηe3Φf − ξ(e4f + ke4(Φ)f)− kβf,

[ d/k, e4]f =
1

2
κ d/kf + Comk(f),

Comk(f) = −1

2
ϑ d?/k+1f − (ζ + η)e4f − kηe4Φf − ξ(e3f + ke3(Φ)f)− kβf.

(2.1.46)

2. If f ∈ sk−1

[ d?/k, e3]f =
1

2
κ d?/kf + Com∗k(f),

Com∗k(f) = −1

2
ϑ d/k−1f − (ζ − η)e3f − (k − 1)ηe3Φf + ξ(e4f − (k − 1)e4(Φ)f)

− (k − 1)βf,

[ d?/k, e4]f =
1

2
κ d?/kf + Com∗k(f),

Com∗k(f) = −1

2
ϑ d/k−1f + (ζ + η)e4f − (k − 1)ηe4Φf + ξ(e3f − (k − 1)e3(Φ)f)

− (k − 1)βf.

(2.1.47)

Proof. We write,

[eθ + keθ(Φ), e3]f = [eθ, e3]f − k(e3eθΦ)f.

Recall that (see (2.1.4)), DaDbΦ = Rab −DaΦDbΦ. Hence,

e3eθΦ− ξe4Φ− ηe3Φ = D3DθΦ = R3θ −D3ΦDθΦ = β − e3ΦeθΦ.
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Thus,

e3eθΦ = β − e3ΦeθΦ + ηe3(Φ) + ξe4Φ.

We deduce, since e3Φ = 1
2
(κ− ϑ),

[eθ + keθ(Φ), e3]f = [eθ, e3]f − k
(
β − e3ΦeθΦ + ηe3(Φ) + ξe4Φ

)
f

=
1

2
(κ+ ϑ)eθf + (ζ − η)e3f − ξe4f − k

(
β − e3ΦeθΦ + ηe3(Φ) + ξe4Φ

)
f

=
1

2
(κ+ ϑ)eθf + k

1

2
(κ− ϑ)eθΦf

+ (ζ − η)e3f − kηe3Φf − ξ(e4f + ke4(Φ)f)− kβf

=
1

2
κ d/kf +

1

2
ϑ(eθf − keθΦf)

+ (ζ − η)e3f − kηe3Φf − ξ(e4f + ke4(Φ)f)− kβf

i.e., recalling the definition of d?/k+1,

[eθ + keθ(Φ), e3]f =
1

2
κ d/kf + Comk(f),

Comk(f) = −1

2
ϑ d?/k+1f + (ζ − η)e3f − kηe3Φf − ξ(e4f + ke4(Φ)f)− kβf.

The other commutation formulae are proved in the same manner.

2.1.6 Schwarzschild spacetime

In standard coordinates the Schwarzschild metric has the form,

ds2 = −Υdt2 + Υ−1dr2 + r2dθ2 +X2dϕ2, (2.1.48)

where,

Υ := 1− 2m

r
, X = r2 sin2 θ.

We denote by T the stationary Killing vectorfield T = ∂t and by Z = ∂ϕ the axial
symmetric one. Recall the regular, Z-invariant optical functions in the exterior region
r ≥ 2m of Schwarzschild

u = t− r∗, u = t+ r∗,
dr∗
dr

= Υ−1 (2.1.49)
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with r∗ = r + 2m log( r
2m
− 1). The corresponding null geodesic generators are,

L := −gab∂au∂b = Υ−1∂t − ∂r, L := −gab∂au∂b = Υ−1∂t + ∂r. (2.1.50)

Clearly,

g(L,L) = g(L,L) = 0, g(L,L) = −2Υ−1, DLL = DLL = 0.

Definition 2.1.52. We can use the null geodesic generators L,L to define the following
canonical null pairs. In all cases all curvature components vanish identically except,

(1+3)ρ = −2m

r3
. (2.1.51)

1. The null frame (e3, e4) for which e3 is geodesic (which is regular towards the future
for all r > 0) is given by

e3 = L = Υ−1∂t − ∂r, e4 = ΥL = ∂t + Υ∂r, Υ = 1− 2m

r
. (2.1.52)

All Ricci coefficients vanish except,

χ =
Υ

r
, χ = −1

r
, ω = −m

r2
, ω = 0.

2. The null frame (e3, e4) for which e4 is geodesic.

e4 = L = Υ−1∂t + ∂r, e3 = ΥL = ∂t −Υ∂r.

All Ricci coefficients vanish except,

χ =
1

r
, χ = −Υ

r
, ω = 0, ω =

m

r2
.

Note that the null pair (2.1.52) is regular along the future event horizon as can be easily
seen by studying the behavior11. of future directed ingoing null geodesics near r = 2m.

2.2 Main equations

In this section we translate the null structure and null Bianchi identities associated to an
S-foliation in the reduced picture. We start with general, Z-invariant, S foliation . We
then consider the special case of geodesic foliations.

11i.e. the null geodesics in the direction of L reach the horizon in finite proper time. Note that, on the
other hand, the past null geodesics in the direction of L still meet the horizon in infinite proper time.
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2.2.1 Main equations for general S-foliations

We consider a fixed Z-invariant S-foliation with a fixed Z-invariant null frame e3, e4.

Null structure equations

We simply translate the well known spacetime null structure equations (see12 proposition
7.4.1 in [20]) in the reduced picture. Thus the spacetime equation13,

∇/ 3χ̂+ trχ χ̂ = ∇/ ⊗̂ξ − 2ωχ̂+ (η + η − 2ζ)⊗̂ξ − α

becomes14,

e3(ϑ) + κϑ = 2(eθ(ξ)− eθ(Φ)ξ)− 2ω ϑ+ 2(η + η − 2ζ) ξ − 2α. (2.2.1)

The spacetime equation,

e3(trχ) +
1

2
trχ2 = 2div/ ξ − 2ωtrχ+ 2ξ · (η + η − 2ζ)− χ̂ · χ̂

becomes,

e3(κ) +
1

2
κ2 + 2ω κ = 2(eθξ + eθ(Φ)ξ) + 2(η + η − 2ζ)ξ − 1

2
ϑϑ. (2.2.2)

The spacetime equation,

∇/ 4χ̂+
1

2
trχ χ̂ = ∇/ ⊗̂η + 2ωχ̂− 1

2
trχχ̂+ ξ⊗̂ξ + η⊗̂η

becomes,

e4ϑ+
1

2
κϑ− 2ωϑ = 2(eθη − eθ(Φ)η)− 1

2
trχϑ+ 2(ξ ξ + η2).

The spacetime equation,

∇/ 4trχ+
1

2
trχ trχ = 2div/ η + 2ρ+ 2ω trχ− χ̂ · χ̂+ 2(ξ · ξ + η · η)

becomes,

e4(κ) +
1

2
κκ− 2ωκ = 2(eθη + eθ(Φ)η) + 2ρ− 1

2
ϑϑ+ 2(ξ ξ + η η).

12Note however that the notation in [20] are different, see section 7.3 for the definitions.
13For convenience we drop the (1+3) labels in what follows.
14recall that (1+3)χ̂θθ = 1

2ϑ



2.2. MAIN EQUATIONS 75

The spacetime equation,

∇/ 3ζ = −β − 2∇/ ω − χ̂ · (ζ + η)− 1

2
trχ(ζ + η) + 2ω(ζ − η) + (χ̂+

1

2
trχ)ξ + 2ωξ

becomes (note that (1+3)β = −β !),

e3ζ +
1

2
κ(ζ + η)− 2ω(ζ − η) = β − 2eθ(ω) + 2ωξ +

1

2
κ ξ − 1

2
ϑ(ζ + η) +

1

2
ϑ ξ.

The spacetime equation,

∇/ 4ξ −∇/ 3η = −β + 4ωξ + χ̂ · (η − η) +
1

2
trχ(η − η)

becomes15,

e4(ξ)− e3(η) = β + 4ωξ +
1

2
κ(η − η) +

1

2
ϑ(η − η).

The spacetime equation,

∇/ 4ω +∇/ 3ω = ρ+ 4ωω + ξ · ξ + ζ · (η − η)− η · η
becomes

e4ω + e3ω = ρ+ 4ωω + ξ ξ + ζ(η − η)− η η.

The spacetime Codazzi equation,

(1+3)div/ (1+3)χ̂ = (1+3)β +
1

2
( (1+3)∇/ (1+3)trχ− (1+3)trχ (1+3)ζ) + (1+3)χ̂ · (1+3)ζ

becomes16,

1

2
(eθ(ϑ) + 2eθ(Φ)ϑ) = −β +

1

2
(eθ(κ)− κζ) +

1

2
ϑζ.

The Gauss equation,

K = −1

4
(1+3)trχ (1+3)trχ+

1

2
(1+3)χ̂ (1+3)χ̂− (1+3)ρ

becomes,

K = −1

4
κκ+

1

4
ϑϑ− ρ.

We summarize the results in the following proposition.

15Note that (1+3)β = −β and d?/1f = −eθ(f).
16Note that (1+3)β

θ
= −β, (1+3)χ̂ = 1

2ϑ.
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Proposition 2.2.1.

e3(ϑ) + κϑ+ 2ω ϑ = −2α− 2 d?/2 ξ + 2(η + η − 2ζ) ξ,

e3(κ) +
1

2
κ2 + 2ω κ = 2 d/1ξ + 2(η + η − 2ζ)ξ − 1

2
ϑ2,

e4ϑ+
1

2
κϑ− 2ωϑ = −2 d?/2 η −

1

2
κϑ+ 2(ξ ξ + η2),

e4(κ) +
1

2
κκ− 2ωκ = 2 d/1η + 2ρ− 1

2
ϑϑ+ 2(ξ ξ + η η),

e3ζ +
1

2
κ(ζ + η)− 2ω(ζ − η) = β + 2 d?/1 ω + 2ωξ +

1

2
κ ξ − 1

2
ϑ(ζ + η) +

1

2
ϑ ξ,

e4(ξ)− 4ωξ − e3(η) = β +
1

2
κ(η − η) +

1

2
ϑ(η − η),

e4ω + e3ω = ρ+ 4ωω + ξ ξ + ζ(η − η)− η η.

(2.2.3)

In view of the symmetry e3 − e4, we also derive,

e4(ϑ) + κϑ+ 2ωϑ = −2α− 2 d?/2 ξ + 2(η + η + 2ζ)ξ,

e4(κ) +
1

2
κ2 + 2ω κ = 2 d/1ξ + 2(η + η + 2ζ)ξ − 1

2
ϑ2,

e3ϑ+
1

2
κϑ− 2ωϑ = −2 d?/2 η −

1

2
κϑ+ 2(ξ ξ + η2),

e3(κ) +
1

2
κκ− 2ωκ = 2 d/1η + 2ρ− 1

2
ϑϑ+ 2(ξ ξ + η η),

−e4ζ +
1

2
κ(−ζ + η) + 2ω(ζ + η) = β + 2 d?/1ω + 2ωξ +

1

2
κ ξ − 1

2
ϑ(−ζ + η) +

1

2
ϑ ξ,

e3(ξ)− e4(η) = β + 4ωξ +
1

2
κ(η − η) +

1

2
ϑ(η − η),

e4ω + e3ω = ρ+ 4ωω + ξ ξ + ζ(η − η)− η η.

(2.2.4)

We also have the Codazzi equations,

d/2ϑ = −2β − d?/1 κ− ζκ+ ϑ ζ,

d/2ϑ = −2β − d?/1 κ+ ζκ− ϑ ζ,

and the Gauss equation,

K = −ρ− 1

4
κκ+

1

4
ϑϑ.
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2.2.2 Null Bianchi identities

We now translate the spacetime null Bianchi identities of [20] (see proposition 7.3.2.) in
the reduced picture. The spacetime equation (note that D?/2β := −1

2
(1+3)∇/ ⊗ β),

∇/ 3α +
1

2
trχα = −2D?/2 β + 4ωα− 3(χ̂ρ+ ? χ̂ ?ρ) + (ζ + 4η)⊗ β

becomes (note that ?ρ = 0),

e3α +
1

2
κα = (eθ(β)− (eθΦ)β) + 4ωα− 3

2
ϑρ+ (ζ + 4η)β. (2.2.5)

The spacetime equation,

∇/ 4β + 2trχβ = div/ α− 2ωβ + (2ζ + η) · α + 3(ξρ+ ?ξ ?ρ)

becomes,

e4β + 2κβ = (eθα + 2(eθΦ)α)− 2ωβ + (2ζ + η)α + 3ξρ. (2.2.6)

The spacetime equation,

∇/ 3β + trχβ = D?/1(−ρ, ?ρ) + 2χ̂ · β + 2ω β + ξ · α + 3(ηρ+ ?η ?ρ)

becomes (recall (1+3)β
θ

= −β),

e3β + κβ = eθ(ρ) + 2ωβ + 3ηρ− ϑβ + ξα. (2.2.7)

The spacetime equation,

e4ρ+
3

2
trχρ = div/ β − 1

2
χ̂ · α + ζ · β + 2(η · β − ξ · β)

becomes,

e4ρ+
3

2
κρ = (eθ(β) + (eθΦ)β)− 1

2
ϑα + ζ β + 2(η β + ξ β). (2.2.8)

Indeed note that,

(1+3)χ̂ · (1+3)α = 2 (1+3)χ̂
θθ

(1+3)αθθ = ϑα.

All other equations in the proposition below are derived using the e3 − e4 symmetry. We
summarize the results in the following proposition.
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Proposition 2.2.2.

e3α +
1

2
κα = − d?/2 β + 4ωα− 3

2
ϑρ+ (ζ + 4η)β,

e4β + 2κβ = d/2α− 2ωβ + (2ζ + η)α + 3ξρ,

e3β + κβ = − d?/1ρ+ 2ωβ + 3ηρ− ϑβ + ξα,

e4ρ+
3

2
κρ = d/1β −

1

2
ϑα + ζ β + 2(η β + ξ β),

e3ρ+
3

2
κρ = d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β),

e4β + κβ = − d?/1ρ+ 2ωβ + 3ηρ− ϑβ + ξα,

e3β + 2κβ = d/2α− 2ω β + (−2ζ + η)α + 3ξρ,

e4α +
1

2
κα = − d?/2 β + 4ωα− 3

2
ϑρ+ (−ζ + 4η)β.

(2.2.9)

Mass aspect functions

We define the mass aspect functions,

µ : = − d/1ζ − ρ+
1

4
ϑϑ,

µ : = d/1ζ − ρ+
1

4
ϑϑ.

(2.2.10)

One can derive useful propagation equations, in the e4 direction for µ and in the e3

direction for µ by using the null structure and null Bianchi equations, see [20] and [43].
In the next section we will do this in the context of null-geodesic foliations.

2.2.3 Hawking mass

Definition 2.2.3. The Hawking mass m = m(S) of S is defined by the formula,

2m

r
= 1 +

1

16π

∫
S

κκ. (2.2.11)

Proposition 2.2.4. The following identities hold true.
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1. The average of ρ is given by the formulas,

ρ = −2m

r3
+

1

16πr2

∫
S

ϑϑ. (2.2.12)

2. The average of the mass aspect function is,

µ = µ =
2m

r3
. (2.2.13)

3. The average of κ and κ are related by,

κκ = −4Υ

r2
− κ̌κ̌ (2.2.14)

where Υ = 1− 2m
r

.

Proof. We have from the Gauss equation

K = −1

4
κκ+

1

4
ϑϑ− ρ.

Integrating on S and using the Gauss Bonnet formula, we infer

4π = −1

4

∫
S

κκ+
1

4

∫
S

ϑϑ−
∫
S

ρ.

Together with the definition of the Hawking mass, we infer∫
S

ρ = −4π

(
1 +

1

16π

∫
S

κκ

)
+

1

4

∫
S

ϑϑ

= −8πm

r
+

1

4

∫
S

ϑϑ

and hence

ρ = −2m

r3
+

1

16πr2

∫
S

ϑϑ.

which proves our first identity. The second identity follows easily from the definition of
µ, µ and the first formula. Thus, for example,

µ =
1

|S|

∫
S

µ =
1

|S|

∫
S

(
− d/1ζ − ρ+

1

4
ϑϑ

)
= −ρ+

1

4|S|

∫
S

ϑϑ =
2m

r3
.
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To prove the last identity we remark that, in view of the definition of the Hawking mass,

−Υ =
2m

r
− 1 =

1

16π

∫
S

κκ =
1

16π

(
|S|κκ+

∫
S

κ̌κ̌

)
and hence

κκ = −16πΥ

|S| −
1

|S|

∫
S

κ̌κ̌

= −4Υ

r2
− κ̌κ̌.

This concludes the proof of the proposition.

2.2.4 Outgoing geodesic foliations

We restrict our attention to geodesic foliations, i.e. geodesic foliations by Z invariant
optical functions.

Basic definitions

Assume given an outgoing optical function u, i.e. Z-invariant solution of the equation,

gαβ∂αu∂βu = gab∂au∂bu = 0

and L = −gab∂bu∂a its null geodesic generator. We choose e4 such that,

e4 = ςL, L(ς) = 0. (2.2.15)

Remark 2.2.5. In our definition of a GCM admissible spacetime, see section 3.1, we
initialize ς on the spacelike hypersurface Σ∗.

We then choose s such that

e4(s) = 1. (2.2.16)

The functions u, s generate what is called an outgoing geodesic foliation. Let Su,s be the
2-surfaces of intersection between the level surfaces of u and s. We choose e3 the unique
Z-invariant null vectorfield orthogonal to Su,s and such that g(e3, e4) = −2. We then let
eθ to be unit tangent to Su,s, Z-invariant and orthogonal to Z. We also introduce

Ω := e3(s). (2.2.17)



2.2. MAIN EQUATIONS 81

Lemma 2.2.6. We have

ω = ξ = 0, η = −ζ, (2.2.18)

ς =
2

e3(u)
,

e4(ς) = 0,

eθ(log ς) = η − ζ,
eθ(Ω) = −ξ − (η − ζ)Ω,

e4(Ω) = −2ω.

(2.2.19)

Proof. Recall that L is geodesic, e4 = ςL and L(ς) = 0. This immediately implies that e4

is geodesic, and hence we have

ω = ξ = 0.

Applying the vectorfield

[e4, eθ] = (η + ζ)e4 + ξe3 − χeθ

to s, and since e4(s) = 1 and eθ(s) = 0, we derive,

η + ζ = 0.

Next, note that

e3(u) = g(e3,−L) = −ς−1g(e3, e4) =
2

ς

and hence

ς =
2

e3(u)
.

Applying the vectorfield

[e3, eθ] = ξe4 + (η − ζ)e3 − χeθ

to u and making use of the relation e4(u) = eθ(u) = 0 we deduce,

(η − ζ)e3(u) = e3(eθu)− eθe3(u) = −eθe3(u)
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which together with the identity ς = 2/e3(u) yields

η − ζ = −eθ log(e3u) = −eθ log

(
2

ς

)
= eθ(log ς)

and hence

eθ(log ς) = η − ζ.

Applying the vectorfield

[e3, eθ] = ξe4 + (η − ζ)e3 − χeθ

to s we deduce, since e4(s) = 1, eθ(s) = 0 and e3(s) = Ω,

eθ(Ω) = −ξ − (η − ζ)Ω.

Finally applying

[e4, e3] = −2ωe4 − 2(η − η)eθ + 2ωe3

to s, and using e4(s) = 1 and eθ(s) = 0, we infer e4(e3(s)) = −2ω, i.e. e4(Ω) = −2ω as
desired.

Remark 2.2.7. In the particular case when ς is constant we have η = ζ = −η. In
Schwarzschild, relative to the standard outgoing geodesic frame, we have

ς = 1, Ω = −Υ = −
(

1− 2m

r

)
.

Basic equations

Proposition 2.2.8. Relative to an outgoing geodesic foliation we have
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1. The reduced null structure equations take the form,

e4(ϑ) + κϑ = −2α,

e4(κ) +
1

2
κ2 = −1

2
ϑ2,

e4ζ + κζ = −β − ϑζ,

e4(η − ζ) +
1

2
κ(η − ζ) = −1

2
ϑ(η − ζ),

e4ϑ+
1

2
κϑ = 2 d?/2 ζ −

1

2
κϑ+ 2ζ2,

e4(κ) +
1

2
κκ = −2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2,

e4ω = ρ+ ζ(2η + ζ),

e4(ξ) = −e3(ζ) + β − 1

2
κ(ζ + η)− 1

2
ϑ(ζ + η),

and

e3(ϑ) + κϑ+ 2ω ϑ = −2α− 2 d?/2 ξ + 2(η − 3ζ) ξ,

e3(κ) +
1

2
κ2 + 2ω κ = 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2,

e3ζ +
1

2
κ(ζ + η)− 2ω(ζ − η) = β + 2 d?/1 ω +

1

2
κ ξ − 1

2
ϑ(ζ + η) +

1

2
ϑ ξ,

e3ϑ+
1

2
κϑ− 2ωϑ = −2 d?/2 η −

1

2
κϑ+ 2η2,

e3(κ) +
1

2
κκ− 2ωκ = 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2,

and

d/2ϑ = −2β − d?/1 κ− ζκ+ ϑ ζ,

d/2ϑ = −2β − d?/1 κ+ ζκ− ϑ ζ,
K = −ρ− 1

4
κκ+

1

4
ϑϑ.

2. The null Bianchi identities are given in this case by

e3α +
1

2
κα = − d?/2 β + 4ωα− 3

2
ϑρ+ (ζ + 4η)β,

e4β + 2κβ = d/2α + ζα,

e3β + κβ = − d?/1ρ+ 2ωβ + 3ηρ− ϑβ + ξα,

e4ρ+
3

2
κρ = d/1β −

1

2
ϑα− ζβ,
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e3ρ+
3

2
κρ = d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β),

e4β + κβ = − d?/1ρ− 3ζρ− ϑβ,
e3β + 2κβ = d/2α− 2ω β + (−2ζ + η)α + 3ξρ,

e4α +
1

2
κα = − d?/2 β −

3

2
ϑρ− 5ζβ.

3. The mass aspect function µ = − d/1ζ − ρ + 1
4
ϑϑ, defined in (2.2.10) verifies the

transport equation,

e4(µ) +
3

2
κµ = Err[e4µ],

Err[e4µ] : =
1

2
κζ2 + eθ(κ)ζ + d/1(ϑζ)− 1

8
κϑ2.

Proof. Concerning the null structure equations we only need to derive the equation for
η − ζ. According to Proposition (2.2.1) we have,

e3(ξ)− e4(η) = β + 4ωξ + 1
2
κ(η − η) + 1

2
ϑ(η − η)

which becomes

e4η = −β − 1

2
κ(η − η)− 1

2
ϑ(η − η)

and,

−e4ζ +
1

2
κ(−ζ + η) + 2ω(ζ + η) = β + 2 d?/1ω + 2ωξ + 1

2
κ ξ − 1

2
ϑ(−ζ + η)− 1

2
ϑ ξ

which becomes,

e4ζ = −κζ − β − ϑζ.

Hence,

e4(ζ − η) = −κζ − ϑζ +
1

2
κ(η − η) +

1

2
ϑ(η − η)

= κ

(
−ζ +

1

2
(η − η)

)
+ ϑ

(
−ζ +

1

2
(η − η)

)
.

Since ζ = −η we deduce −ζ + 1
2
(η − η) = 1

2
(−ζ + η) and thus,

e4(ζ − η) = −κ(ζ − η)− ϑ(ζ − η)
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as desired.

The Bianchi equations equations follow immediately from the general equations derived
in the previous section. It only remains to check the equation verified by the mass aspect
function µ. We have

e4(µ) = −[e4, d/1]ζ − d/1e4(ζ)− e4(ρ) +
1

4
e4(ϑϑ)

=
1

2
κ d/1ζ −

1

2
ϑ d?/2ζ + e4(Φ)ζ2 − βζ − d/1(−κζ − β − ϑζ)

−
(
−3

2
κρ+ d/1β −

1

2
ϑα− ζβ

)
+

1

4
ϑ

(
−1

2
κϑ+ 2 d?/2 ζ −

1

2
κϑ+ 2ζ2

)
+

1

4
ϑ (−κϑ− 2α)

=
3

2
κ

(
d/1ζ + ρ− 1

4
ϑϑ

)
− 1

2
ϑ d?/2ζ +

1

2
(κ− ϑ)ζ2 + eθ(κ)ζ + d/1(ϑζ)

+
1

4
ϑ

(
2 d?/2 ζ −

1

2
κϑ+ 2ζ2

)
and hence

e4(µ) +
3

2
κµ =

1

2
κζ2 + eθ(κ)ζ + d/1(ϑζ)− 1

8
κϑ2

as desired. This concludes the proof of the proposition.

Transport equations for S-averages

Proposition 2.2.9. For any scalar function f , we have,

e4

(∫
S

f

)
=

∫
S

(e4(f) + κf),

e3

(∫
S

f

)
=

∫
S

(e3(f) + κf) + Err

[
e3

(∫
S

f

)]
,

(2.2.20)

where the error term is given by the formula

Err

[
e3

(∫
S

f

)]
: = −ς−1ς̌

∫
S

(e3(f) + κf) + ς−1

∫
S

ς̌(e3(f) + κf)

+
(
Ω̌ + ς−1Ως̌

) ∫
S

(e4f + κf)− ς−1Ω

∫
S

ς̌(e4f + κf)

− ς−1

∫
S

Ω̌ ς(e4f + κf).
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In particular, we have

e4(r) =
r

2
κ, e3(r) =

r

2
(κ+ A) (2.2.21)

where

A : = −ς−1κς̌ + κ
(
Ω̌ + ς−1Ως̌

)
+ ς−1ς̌ κ̌− ς−1Ω ς̌ κ̌− ς−1Ω̌ςκ. (2.2.22)

Proof. See section A.1.

Corollary 2.2.10. For a reduced scalar f , we have

e4

(∫
S

feΦ

)
=

∫
S

(
e4(f) +

(
3

2
κ− 1

2
ϑ

)
f

)
eΦ

and

e3

(∫
S

feΦ

)
=

∫
S

(
e3(f) +

(
3

2
κ− 1

2
ϑ

)
f

)
eΦ + Err

[
e3

(∫
S

feΦ

)]
.

Proof. In view of Proposition 2.2.9, we have

e4

(∫
S

feΦ

)
=

∫
S

(
e4(feΦ) + κfeΦ

)
=

∫
S

(
e4(f) + (κ+ e4Φ)f

)
eΦ

=

∫
S

(
e4(f) +

(
3

2
κ− 1

2
ϑ

)
f

)
eΦ

as desired.

Also, using again Proposition 2.2.9, we have

e3

(∫
S

feΦ

)
=

∫
S

(
e3(feΦ) + κfeΦ

)
+ Err

[
e3

(∫
S

feΦ

)]
=

∫
S

(
e3(f) + (κ+ e3Φ)f

)
eΦ + Err

[
e3

(∫
S

feΦ

)]
=

∫
S

(
e3(f) +

(
3

2
κ− 1

2
ϑ

)
f

)
eΦ + Err

[
e3

(∫
S

feΦ

)]
as desired.
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Corollary 2.2.11. Given a scalar function f we have,

e4(f) = e4(f) + κ̌ f̌ ,

e4(f̌) = e4(f)− e4(f)− κ̌ f̌ ,
(2.2.23)

and

e3

(
f
)

= e3(f) + Err[e3f ],

e3(f̌) = e3(f)− e3(f)− Err[e3(f)],
(2.2.24)

where,

Err[e3(f)] = −ς−1ς̌
(
e3f + κf − κf

)
+ ς−1

(
ς̌(e3f + κf)− ς̌ κ̌ f

)
+
(
Ω̌ + ς−1Ως̌

) (
e4f + κf)− κ f

)
− ς−1Ω

(
ς̌(e4f + κf)− ς̌ κ̌ f

)
− ς−1

(
Ω̌ς(e4f + κf)− Ω̌ς κf

)
+ κ̌f̌ .

(2.2.25)

Proof. We have, recalling Lemma 2.1.42 and |S| = 4πr2,

e4(f) = e4

(∫
S
f

|S|

)
=

1

|S|

∫
S

(e4(f) + κf)− e4(|S|)
|S| f = e4(f) + κf − 2

e4r

r
f

= e4(f) + κ f − κ f = e4(f) + κ̌ f̌ .

This also yields

e4(f̌) = e4(f)− e4(f) = e4(f)− e4(f)− κ̌ f̌

as desired.

Similarly,

e3(f) = e3

(∫
S
f

|S|

)
=

1

|S|e3

(∫
S

f

)
− 2e3(r)

r
f

=
1

|S|

∫
S

(e3f + κf) +
1

|S|Err

[
e3

(∫
S

f

)]
− (κ+ A)f

= e3(f) + κf − κf +
1

|S|Err

[
e3

(∫
S

f

)]
− Af

= e3(f) + κ̌f̌ +
1

|S|Err

[
e3

(∫
S

f

)]
− Af.
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We deduce,

e3(f) = e3(f) + Err[e3(f)]

where, recalling the definitions of the error terms Err
[
e3

(∫
S
f
)]

and A,

Err[e3(f)] = κ̌f̌ +
1

|S|Err

[
e3

(∫
S

f

)]
− Af

= κ̌f̌ − ς−1ς̌ e3f + κf + ς−1 ς̌(e3f + κf) +
(
Ω̌ + ς−1Ως̌

)
e4f + κf

− ς−1Ω ς̌(e4f + κf)− ς−1 Ω̌ς(e4f + κf)

− f
(
−ς−1κς̌ + ς−1ς̌ κ̌+ κ

(
Ω̌ + ς−1Ως̌

)
− ς−1Ω ς̌ κ̌− ς−1Ω̌ςκ

)
,

i.e.,

Err[e3(f)] = κ̌f̌ − ς−1ς̌
(
e3f + κf − κf

)
+ ς−1

(
ς̌(e3f + κf)− ς̌ κ̌ f

)
+

(
Ω̌ + ς−1Ως̌

) (
e4f + κf − κ f

)
− ς−1Ω

(
ς̌(e4f + κf)− ς̌ κ̌ f

)
− ς−1

(
Ω̌ς(e4f + κf)− Ω̌ςκf

)
as stated. Finally

e3(f̌) = e3f − e3(f) = e3f − e3(f)− Err[e3f ]

which ends the proof of the corollary.

The following is also an immediate application of Proposition 2.2.9.

Corollary 2.2.12. If f verifies the scalar equation

e4(f) +
p

2
κf = F,

then,

e4(rpf) = rpF.

Commutation identities revisited

We revisit the general commutation identities of Lemma 2.1.51 in an outgoing geodesic
foliation.
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Lemma 2.2.13. The following commutation formulae holds true,

1. If f ∈ sk,

[r d/k, e4]f = r

[
Comk(f) +

1

2
κ̌ d/kf

]
,

[r d/k, e3]f = r

[
Comk(f) +

1

2
(−A+ κ̌) d/kf

]
.

(2.2.26)

2. If f ∈ sk−1

[r d?/k, e4]f = r

[
Com∗k(f) +

1

2
κ̌ d?/kf

]
,

[r d?/k, e3]f = r

[
Com∗k(f) +

1

2
(−A+ κ̌) d?/kf

]
.

(2.2.27)

Also, we have

Comk(f) = −1

2
ϑ d?/k+1f + (ζ − η)e3f − kηe3Φf − ξ(e4f + ke4(Φ)f)− kβf,

Comk(f) = −1

2
ϑ d?/k+1f + kζe4Φf − kβf,

Com∗k(f) = −1

2
ϑ d/k−1f − (ζ − η)e3f − (k − 1)ηe3Φf + ξ(e4f − (k − 1)e4(Φ)f)

− (k − 1)βf,

Com∗k(f) = −1

2
ϑ d/k−1f + (k − 1)ζe4Φf − (k − 1)βf.

Proof. We make use of the commutation Lemma 2.1.51 and the definition of A, see Propo-
sition 2.2.9, to write, for f ∈ sk,

[r d/k, e4]f = r[ d/k, e4]f − e4(r) d/kf

=
1

2
rκ d/kf + rComk(f)− r

2
κ d/kf

= r

[
Comk(f) +

1

2
κ̌ d/kf

]
[r d/k, e3]f = r[ d/k, e4]f − e3(r) d/kf

=
1

2
rκ d/kf + rComk(f)− r

2
(A+ κ) d/kf

= r

[
Comk(f) +

1

2
(−A+ κ̌) d/kf

]
.
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The remaining formulae are proved in the same manner. Also, the form of Comk(f),
Comk(f), Com∗k(f) and Com∗k(f) follows from Lemma 2.1.51 and the fact that we have
ξ = η + ζ = 0 in an outgoing geodesic foliation.

We also record here for future use the following lemma.

Lemma 2.2.14. Let T = 1
2

(e3 + Υe4), with Υ = 1− 2m
r

. We have,

[T, e4] =

((
ω − m

r2

)
− m

2r

(
κ− 2

r

)
+
e4(m)

r

)
e4 + (η + ζ)eθ,

[T, e3] =

(
−Υ

(
ω − m

r2

)
− m

2r

(
κ+

2Υ

r

)
− m

2r
A+

e3(m)

r

)
e4 − (η + ζ)Υeθ.

(2.2.28)

Proof. Recall that [e3, e4] = 2ωe4 + 2(η + ζ)eθ. Thus,

[T, e4] =
1

2
[e3 + Υe4, e4] =

1

2

(
2ωe4 + 2(η + ζ)eθ − e4

(
1− 2m

r

)
e4

)
=

(
ω − m

r2
e4(r) +

e4(m)

r

)
e4 + (η + ζ)eθ

=

((
ω − m

r2

)
− m

r2
(e4(r)− 1) +

e4(m)

r

)
e4 + (η + ζ)eθ

=

((
ω − m

r2

)
− m

r2

(r
2
κ− 1

)
+
e4(m)

r

)
e4 + (η + ζ)eθ

=

((
ω − m

r2

)
− m

2r

(
κ− 2

r

)
+
e4(m)

r

)
e4 + (η + ζ)eθ

and,

[T, e3] =
1

2
[e3 + Υe4, e3] =

1

2

(
Υ (−2ωe4 − 2(η + ζ)eθ)− e3

(
1− 2m

r

)
e4

)
=

(
−Υω − m

r2
e3(r) +

e3(m)

r

)
e4 −Υ(η + ζ)eθ

=

(
−Υ

(
ω − m

r2

)
−Υ

m

r2
− m

r2

r

2
(κ+ A) +

e3(m)

r

)
e4 −Υ(η + ζ)eθ

=

(
−Υ

(
ω − m

r2

)
− m

2r

(
κ+

2Υ

r

)
− m

2r
A+

e3(m)

r

)
e4 −Υ(η + ζ)eθ

which concludes the proof of the lemma.
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Remark 2.2.15. When applying the formulas of Lemma 2.2.14 to a k reduced scalar
f ∈ sk, the term (η + ζ)eθ(f) should correspond to a reduced scalar. In fact, recalling
Remark 2.1.23, we can write,

ζeθ(f) =
1

2
ζ ( d/kf − d?/k+1f)

which can indeed be shown to be a k-reduced scalar in sk.

Derivatives of the Hawking mass

Proposition 2.2.16 (Derivatives of the Hawking mass). We have the following identities
for the Hawking mass,

e4(m) =
r

32π

∫
S

Err1, (2.2.29)

and

e3(m) =
(
1− ς−1ς̌

) r

32π

∫
S

Err1 +
(
Ω̌ + ς−1Ως̌

) r

32π

∫
S

Err1

+ς−1 r

32π

∫
S

ς̌
(
2ρκ̌+ 2ρ̌κ+ 2κ d/1η + 2κ d/1ξ + Err2

)
−ς−1 r

32π

∫
S

(Ως̌ + Ω̌ς) (2ρκ̌+ 2ρ̌κ− 2κ d/1ζ + Err2)

−m
r
ς−1
[
−ς̌ κ̌+ Ω ς̌ κ̌+ Ω̌ςκ

]
, (2.2.30)

where

Err1 := 2κ̌ρ̌+ 2eθ(κ)ζ − 1

2
κϑ2 − 1

2
κ̌ϑϑ+ 2κζ2,

Err1 := 2ρ̌κ̌− 2eθ(κ)η − 2eθ(κ)ξ − 1

2
κ̌ϑϑ+ 2κη2 + 2κ

(
η − 3ζ

)
ξ − 1

2
κϑ2,

Err2 := 2ρ̌κ̌− 1

2
κϑ2 − 1

2
κϑϑ+ 2κζ2,

Err2 := 2ρ̌κ̌+ κ

(
2η2 − 1

2
ϑϑ

)
+ 2κ

(
η − 3ζ

)
ξ − 1

2
κϑ2.

Proof. The proof relies on the definition of the Hawking mass m given by the formula
2m
r

= 1+ 1
16π

∫
S
κκ, Proposition 2.2.9, and the the null structure equations for e4(κ), e4(κ),

e3(κ) and e3(κ) provided by Proposition 2.2.8. We refer to section A.2 for the details.
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Transport equations for main averaged quantities

Lemma 2.2.17. The following equations hold true

e4

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
= −1

4
ϑ2 +

1

2
κ̌2,

e4

(
ω − m

r2

)
= ρ+

2m

r3
+
m

r2

(
κ− 2

r

)
− e4(m)

r2
+ 3ζ(2η + ζ) + κ̌ω̌,

(2.2.31)

and

e3

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
= 2ω

(
κ− 2

r

)
+

4

r

(
ω − m

r2

)
+ 2

(
ρ+

2m

r3

)
− ς−1

(
−1

2
κκ+ 2ω κ+ 2ρ

)
ς̌

−1

2
κ2
(
Ω̌ + ς−1Ως̌

)
− 1

r
ς−1κς̌ +

1

r
κ
(
Ω̌ + ς−1Ως̌

)
+ Err

[
e3

(
κ− 2

r

)]
, (2.2.32)

where,

Err

[
e3

(
κ− 2

r

)]
:= 2η2 + 2ω̌ κ̌− 1

2
κ̌ κ̌− 1

2
ϑϑ+

1

r
ς−1ς̌ κ̌− 1

r
ς−1Ω ς̌ κ̌− 1

r
ς−1Ω̌ςκ

−ς−1ς̌

(
1

2
κ̌κ̌+ 2ω̌κ̌− 1

2
ϑϑ+ 2η2

)
+ς−1

(
ς̌

(
1

2
κκ+ 2ωκ+ 2ρ̌+ 2 d/1η −

1

2
ϑϑ+ 2η2

)
− ς̌ κ̌ κ

)

+
(
Ω̌ + ς−1Ως̌

)(1

2
κ̌2 − 1

4
ϑ2

)
− ς−1Ω

(
ς̌

(
1

2
κ2 − 1

4
ϑ2

)
− ς̌ κ̌ κ

)

−ς−1

(
Ω̌ς

(
1

2
κ2 − 1

4
ϑ2

)
− Ω̌ς κ κ

)
+ κ̌κ̌. (2.2.33)

Proof. The proof relies on Corollary 2.2.11 and the null structure equations for e4(κ) and
e3(κ) provided by Proposition 2.2.8. We refer to section A.3 for the details.
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Transport equations for main checked quantities

Proposition 2.2.18 (Transport equations for checked quantities). We have the following
transport equations in the e4 direction,

e4κ̌+ κ κ̌ = Err[e4κ̌],

Err[e4κ̌] : = −1

2
κ̌2 − 1

2
κ̌2 − 1

2
(ϑ2 − ϑ2),

e4κ̌+
1

2
κκ̌+

1

2
κ̌κ = −2 d/1ζ + 2ρ̌+ Err[e4κ̌],

Err[e4κ̌] : = −1

2
κ̌κ̌− 1

2
κ̌κ̌+

(
−1

2
ϑϑ+ 2ζ2

)
−
(
−1

2
ϑϑ+ 2ζ2

)
,

e4ω̌ = ρ̌+ Err[e4ω̌],

Err[e4ω̌] : = −κ̌ω̌ + (ζ(2η + ζ)− ζ(2η + ζ)),

(2.2.34)

e4ρ̌+
3

2
κρ̌+

3

2
ρκ̌ = d/1β + Err[e4ρ̌],

Err[e4ρ̌] : = −3

2
κ̌ρ̌+

1

2
κ̌ρ̌−

(
1

2
ϑα + ζβ

)
+

(
1

2
ϑα + ζβ

)
,

e4µ̌+
3

2
κµ̌+

3

2
µκ̌ = Err[e4µ̌],

Err[e4µ̌] : = −3

2
κ̌µ̌+

1

2
κ̌µ̌+ Err[e4µ]− Err[e4µ],

e4(Ω̌) = −2ω̌ + κ̌Ω̌.

(2.2.35)

Also in the e3 direction,

e3(κ̌) = 2 d/1η + 2ρ̌− 1

2
(κκ̌+ κκ̌) + 2 (ωκ̌+ κω̌)

+ ς−1

(
−1

2
κκ+ 2ω κ+ 2ρ

)
ς̌ +

1

2
κ2
(
Ω̌ + ς−1Ως̌

)
+ Err[e3κ̌],

e3(κ̌) + κ κ̌ = 2 d/1ξ − 2 (ω̌ κ+ ω κ̌) + ς−1ς̌

(
−1

2
κ2 − 2ω κ

)
−
(
Ω̌ + ς−1Ως̌

) (
−1

2
κκ+ 2ρ

)
+ Err[e3(κ̌)],

e3ρ̌+
3

2
κρ̌ = −3

2
ρκ̌+ d/1β −

3

2
κ ρς−1ς̌ +

3

2
κ ρ
(
Ω̌ + ς−1Ως̌

)
+ Err[e3ρ̌],

(2.2.36)
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with error terms given by,

Err[e3κ̌] := 2
(
η2 − η2

)
− 1

2
κ̌κ̌+ 2ω̌κ̌− 1

2

(
ϑϑ− ϑϑ

)
+ ς−1ς̌

(
1

2
κ̌κ̌+ 2ω̌κ̌− 1

2
ϑϑ+ 2η2

)
− ς−1

(
ς̌

(
1

2
κκ+ 2ωκ+ 2ρ̌+ 2 d/1η −

1

2
ϑϑ+ 2η2

)
− ς̌ κ̌ κ

)

−
(
Ω̌ + ς−1Ως̌

)(1

2
κ̌2 − 1

4
ϑ2

)
+ ς−1Ω

(
ς̌

(
1

2
κ2 − 1

4
ϑ2

)
− ς̌ κ̌ κ

)

+ ς−1

(
Ω̌ς

(
1

2
κ2 − 1

4
ϑ2

)
− Ω̌ς κ κ

)
− κ̌κ̌,

(2.2.37)

Err[e3(κ̌)] := −1

2
κ̌2 − 2ω̌ κ̌+ 2(η − 3ζ)ξ − 2(η − 3ζ)ξ − 1

2

(
ϑ2 − ϑ2

)
− ς−1

(
ς̌

(
1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
− ς̌ κ̌ κ

)

+ ς−1Ω

(
ς̌

(
1

2
κκ− 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− ς̌ κ̌ κ

)

+ ς−1

(
Ω̌ς

(
1

2
κκ− 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− Ω̌ς κ κ

)
− κ̌2,

(2.2.38)

and

Err[e3ρ̌] := −
(

1

2
ϑα + ζβ − 2ηβ − 2ξβ

)
+

(
1

2
ϑα + ζβ − 2ηβ − 2ξβ

)
− 3

2
κ̌ρ̌

+ ς−1ς̌

(
−1

2
κ̌ρ̌− 1

2
ϑα− ζ β + 2(η β + ξ β)

)
− ς−1

(
ς̌

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

)
− ς̌ κ̌ ρ

)

−
(
Ω̌ + ς−1Ως̌

) (
−1

2
κ̌ρ̌− 1

2
ϑα− ζβ

)
+ ς−1Ω

(
ς̌

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζβ

)
− ς̌ κ̌ ρ

)

+ ς−1

(
Ω̌ς

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζβ

)
− Ω̌ς κ

)
− κ̌ρ̌.

(2.2.39)
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Proof. The proof relies on Corollary 2.2.11 and the null structure equations of Proposition
2.2.8. We refer to section A.4 for the details.

2.2.5 Additional equations

We derive below additional equations for ω, η, ξ.

Proposition 2.2.19. The following identities hold true for a general forward geodesic
foliation.

• The scalar ω verifies

2 d?/1ω = −1

2
κξ +

(
1

2
κ+ 2ω +

1

2
ϑ

)
η + e3(ζ)− β

+
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ.

• The reduced 1-form η verifies

2 d/2 d
?/2η = κ

(
−e3(ζ) + β

)
− e3(eθ(κ))− κ

(
1

2
κζ − 2ωζ

)
+ 6ρη − κeθκ

− 1

2
κeθ(κ) + 2ωeθ(κ) + 2eθ(ρ) + Err[ d/2 d

?/2η],

Err[ d/2 d
?/2η] =

(
2 d/1η −

1

2
κϑ+ 2η2

)
η + 2eθ(η

2)− κ
(

1

2
ϑζ − 1

2
ϑξ

)
− 1

2
ϑeθ(κ)

−
(

2 d/1η −
1

2
ϑϑ+ 2η2

)
ζ − 1

2
eθ(ϑϑ)− 1

2
ϑ2ξ − 3

2
ϑϑη.

• The reduced 1-form ξ verifies

2 d/2 d
?/2ξ = −e3(eθ(κ)) + κ

(
e3(ζ)− β

)
+ κ2ζ − 3

2
κeθκ+ 6ρξ − 2ωeθ(κ)

+ Err[ d/2 d
?/2ξ],

Err[ d/2 d
?/2ξ] =

(
2 d/1ξ +

1

2
κϑ+ 2ηξ − 1

2
ϑ2

)
η + 2eθ(ηξ)−

1

2
eθ(ϑ

2)

+ κ

(
1

2
ϑζ − 1

2
ϑξ

)
− 1

2
ϑeθκ−

1

2
ϑϑξ − ζ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ ξ

(
− ϑϑ− 2 d/1ζ + 2ζ2

)
− 6ηζξ − 6eθ(ζξ).
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Proof. The proof relies on the null structure equations of Proposition 2.2.8, in particular
the ones for e3(ζ), e3(κ) and e3(κ). We refer to section A.5 for the details.

2.2.6 Ingoing geodesic foliation

All the equations of section 2.2.4 for outgoing geodesic foliations have a counterpart for
ingoing geodesic foliations. The corresponding equations can be easily deduced from the
ones in section 2.2.4 by performing the following substitutions

u→ u, s→ s, Cu → Cu, Su,s → Su,s, r → r, m→ m,

e4 → e3, e3 → e4, eθ → eθ, e4(s) = 1→ e3(s) = −1,

α→ α, β →, β, ρ→ ρ, µ→ µ, β → β, α→ α,

ξ → ξ, ω → ω, κ→ κ, ϑ→ ϑ, η → η, η → η, ζ → −ζ, κ→ κ,

ϑ→ ϑ, ω → ω, ξ → ξ, Ω = e3(s)→ Ω = e4(s), ς =
2

e3(u)
→ ς =

2

e4(u)
,

κ− 2

r
→ κ+

2

r
, κ+

2Υ

r
→ κ− 2Υ

r
, ω − m

r2
→ ω +

m

r2
, ρ+

2m

r3
→ ρ+

2m

r3
,

µ− 2m

r3
→ µ− 2m

r3
, Ω + Υ→ Ω−Υ, ς − 1→ ς − 1,

A =
2

r
e3(r)− κ→ A =

2

r
e4(r)− κ.

2.2.7 Adapted coordinates systems

(u, s, θ, ϕ) coordinates

Proposition 2.2.20. Consider, in addition to the functions u, s, ϕ an additional Z in-
variant function θ. Then, relative to the coordinates system (u, s, θ, ϕ), the following hold
true,

1. The spacetime metric takes the form,

g = −2ςduds+ ς2Ωdu2 + γ

(
dθ − 1

2
ς(b− Ωb)du− bds

)2

+ e2Φ(dϕ)2 (2.2.40)

where,

Ω = e3(s), b = e4(θ), b = e3(θ), γ−1 = eθ(θ)
2. (2.2.41)
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2. In these coordinates the reduced frame takes the form,

∂s = e4 − b
√
γeθ, ∂u = ς

(
1

2
e3 −

1

2
Ωe4 −

1

2

√
γ(b− bΩ)eθ

)
, ∂θ =

√
γeθ.(2.2.42)

3. In the particular case when b = e4(θ) = 0 we have,

e4(γ) = 2χγ, e4(b) = −2(ζ + η)γ−1/2. (2.2.43)

Proof. First, from the fact that (e3, e4, eθ) forms a null frame, we easily verify that (2.2.42)
holds. Then, (2.2.40) immediately follows from (2.2.42) and the fact that (e3, e4, eθ) forms
a null frame.

To prove the last statement, when b = e4(θ) = 0, we start with,

[e4, e3] = 2ωe3 − 2ωe4 + 2(η − η)eθ = −2(ζ + η)eθ − 2ωe4.

Applying this to θ we derive,

[e4, e3](θ) = (−2(ζ + η)eθ − 2ωe4)(θ) = −2(ζ + η)eθ(θ) = −2(ζ + η)γ−1/2.

We deduce,

e4(b) = e4(e3(θ)) = −2(ζ + η)γ−1/2.

To prove the equation for γ we make use of,

[e4, eθ] = (η + ζ)e4 + ξe3 − χeθ = −χeθ
so that

e4eθ(θ) = [e4, eθ](θ) = −χeθ(θ) = −χγ−1/2.

Thus

e4(γ−1/2) = −χγ−1/2

from which

e4(γ) = 2χγ.

This concludes the proof of the lemma.

Remark 2.2.21. In Schwarzschild, relative to the above coordinate system, we have

ς = 1, Ω = −Υ, b = b = 0, γ = r2, eΦ = r sin θ,

so that we obtain outgoing Eddington-Finkelstein coordinates.

Remark 2.2.22. The (u, s, θ, ϕ) coordinates system, with the choice b = 0 (i.e. θ is
transported by e4(θ) = 0), will be used in section 3.7 and Chapter 9 in connection with
our GCM procedure.
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(u, r, θ, ϕ) coordinates

Proposition 2.2.23. Consider, in addition to the functions u, r, ϕ an additional Z in-
variant function θ. Relative to the coordinates (u, r, θ, ϕ) the following hold true,

1. The spacetime metric takes the form,

g = − 4ς

rκ
dudr +

ς2(κ+ A)

κ
du2 + γ

(
dθ − 1

2
ςbdu− b

2
Θ

)2

(2.2.44)

where,

b = e4(θ), b = e3(θ), γ =
1

(eθ(θ))2
(2.2.45)

and,

Θ :=
4

rκ
dr − ς

(
κ+ A

κ

)
du.

2. The reduced coordinates derivatives take the form,

∂r =
2

rκ
e4 −

2
√
γ

rκ
beθ,

∂θ =
√
γeθ,

∂u = ς

[
1

2
e3 −

1

2

κ+ A

κ
e4 −

1

2

√
γ

(
b−

(
κ+ A

κ

)
b

)
eθ

]
.

(2.2.46)

3. To control eΦ, we will rely on the following transport equation

e4

(
eΦ

r sin θ
− 1

)
=

eΦ

2r sin θ
(κ̌− ϑ) . (2.2.47)

Proof. First, from the fact that (e3, e4, eθ) forms a null frame, we easily verify that (2.2.46)
holds. Then, (2.2.44) immediately follows from (2.2.46) and the fact that (e3, e4, eθ) forms
a null frame.

It remains to prove (2.2.47). It follows from

e4

(
eΦ

r sin θ
− 1

)
=

eΦ

r sin θ

(
e4(Φ)− e4(r)

r

)
=

eΦ

r sin θ

(
1

2
(κ− ϑ)− κ

2

)
=

eΦ

2r sin θ
(κ̌− ϑ)

which concludes the proof of the lemma.



2.2. MAIN EQUATIONS 99

Remark 2.2.24. In Schwarzschild, relative to the above coordinate system, we have

κ =
2

r
, κ = −2Υ

r
, ς = 1, A = 0, b = b = 0, γ = r2, eΦ = r sin θ,

so that we obtain outgoing Eddington-Finkelstein coordinates.

Remark 2.2.25. The (u, r, θ, ϕ) coordinates system, with the choice (2.2.52) for θ intro-
duced below, will be used in Proposition 3.4.3 to prove the convergence to the outgoing
Eddington-Finkelstein coordinates of Schwarzschild.

(u, r, θ, ϕ) coordinates

We easily deduce an analog statement relative to (u, r, θ, ϕ) coordinates.

Proposition 2.2.26. Consider, in addition to the functions u, r, ϕ an additional Z in-
variant function θ. Relative to the coordinates (u, r, θ, ϕ) the following hold true,

1. The spacetime metric takes the form,

g = − 4ς

rκ
dudr +

ς2(κ+ A)

κ
du2 + γ

(
dθ − 1

2
ςbdu− b

2
Θ

)2

(2.2.48)

where,

b = e4(θ), b = e3(θ), γ =
1

(eθ(θ))2
(2.2.49)

and,

Θ :=
4

rκ
dr − ς

(
κ+ A

κ

)
du.

2. The reduced coordinates derivatives take the form,

∂r =
2

rκ
e3 −

2
√
γ

rκ
beθ,

∂θ =
√
γeθ,

∂u = ς

[
1

2
e4 −

1

2

κ+ A

κ
e3 −

1

2

√
γ

(
b−

(
κ+ A

κ

)
b

)
eθ

]
.

(2.2.50)
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3. To control eΦ, we will rely on the following transport equation

e3

(
eΦ

r sin θ
− 1

)
=

eΦ

2r sin θ
(κ̌− ϑ) . (2.2.51)

Remark 2.2.27. In Schwarzschild, relative to the above coordinate system, we have

κ =
2

r
, κ = −2Υ

r
, ς = 1, A = 0, b = b = 0, γ = r2, eΦ = r sin θ,

so that we obtain ingoing Eddington-Finkelstein coordinates.

Remark 2.2.28. The (u, r, θ, ϕ) coordinates system, with the choice (2.2.52) for θ in-
troduced below, will be used in Proposition 3.4.4 to prove the convergence to the ingoing
Eddington-Finkelstein coordinates of Schwarzschild.

Initialization of θ

We now introduce the coordinate function θ that will be used for the (u, r, θ, ϕ) coordinates
system and for the (u, r, θ, ϕ) coordinates system, see Remarks 2.2.25 and 2.2.28.

Lemma 2.2.29. Let θ ∈ [0, π] be the Z-invariant scalar on M defined by,

θ := cot−1 (reθ(Φ)) . (2.2.52)

Then,

eΦ

r sin θ
=
√

1 + a. (2.2.53)

where,

a :=
e2Φ

r2
+ (eθ(e

Φ))2 − 1. (2.2.54)

Moreover, we have in an outgoing geodesic foliation

reθ(θ) = 1 +
r2(K − 1

r2 )

1 + (reθ(Φ))2
,

e3(θ) = −
rβ + r

2
(−κ̌+ A+ ϑ) eθ(Φ) + rξe4(Φ) + rηe3(Φ)

1 + (reθ(Φ))2
,

e4(θ) = −rβ + r
2

(−κ̌+ ϑ) eθ(Φ)− rζe3(Φ)

1 + (reθ(Φ))2
,

and analog identities hold for an ingoing geodesic foliation.
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Proof. In view of the definition of θ, we have θ ∈ [0, π], sin θ ≥ 0 and

sin θ =
1√

1 + cot θ2
=

1√
1 + (reθ(Φ))2

=
eΦ√

e2Φ + (reθ(eΦ)))2

=
eΦ

r
√

e2Φ

r2 + (eθ(eΦ))2

=
eΦ

r
√

1 + a
.

Hence

eΦ

r sin θ
=

√
e2Φ

r2
+ (eθ(eΦ))2 =

√
1 + a.

Also, we compute

reθ(θ) = − r2eθeθ(Φ)

1 + (reθ(Φ))2
.

Next, recall that we have

eθeθ(Φ) = −K − (eθ(Φ))2.

We infer

reθ(θ) =
r2(K + (eθ(Φ))2)

1 + (reθ(Φ))2
= 1 +

r2(K − 1
r2 )

1 + (reθ(Φ))2
.

as desired.

Also, we have in an outgoing geodesic foliation

e4(θ) = −re4eθ(Φ) + e4(r)eθ(Φ)

1 + (reθ(Φ))2

= −r(D4DθΦ +DD4eθΦ) + e4(r)eθ(Φ)

1 + (reθ(Φ))2

= −
rβ + r

(
e4(r)
r
− e4(Φ)

)
eθ(Φ)− rζe4(Φ)

1 + (reθ(Φ))2

= −rβ + r
2

(−κ̌+ ϑ) eθ(Φ)− rζe4(Φ)

1 + (reθ(Φ))2
.
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Finally, we compute in an outgoing geodesic foliation

e3(θ) = −re3eθ(Φ) + e3(r)eθ(Φ)

1 + (reθ(Φ))2

= −r(D3DθΦ +DD3eθΦ) + e3(r)eθ(Φ)

1 + (reθ(Φ))2

= −
rβ + r

(
e3(r)
r
− e3(Φ)

)
eθ(Φ) + rξe4(Φ) + rηe3(Φ)

1 + (reθ(Φ))2

= −
rβ + r

2
(−κ̌+ A+ ϑ) eθ(Φ) + rξe4(Φ) + rηe3(Φ)

1 + (reθ(Φ))2
.

This concludes the proof of the lemma.

In view of (2.2.53), we will need to control the quantity a defined in (2.2.54). To this end,
we will need the following lemma.

Lemma 2.2.30. The quantity a defined in (2.2.54) vanishes on the axis of symmetry and
verifies the following identities in an outgoing geodesic foliation,

e4(a) =
(κ̌− ϑ)e2Φ

r2
+ 2eθ(e

Φ)
(
β − e4(Φ)ζ

)
eΦ,

eθ(a) = 2eθ(Φ)e2Φ

((
ρ+

2m

r3

)
+

1

4

(
κκ+

4Υ

r2

)
− 1

4
ϑϑ

)
,

e3(a) =

(
κ̌− A− ϑ

)
e2Φ

r2
+ 2eθ(e

Φ)
(
β + e3(Φ)η + ξe4(Φ)

)
eΦ,

and analog identities hold in an ingoing geodesic foliation.

Proof. The vanishing on the axis follow easily from the fact that both e2Φ and eθ(e
Φ))2−1

vanish on the axis (see (2.1.13)). To prove the second part of the lemma we recall that,
with respect to the reduced metric (see equation (2.1.4)),

Rab = DaDbΦ +DaΦDbΦ,

and (see Definition 2.1.47)

R3θ = β, R4θ = β, Rθθ = R34 = ρ, R34 = ρ.
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Starting with the definition a = e2Φ

r2 + (eθ(e
Φ))2 − 1, we compute in an outgoing geodesic

foliation

e4(a) =
2e4(Φ)e2Φ

r2
− 2e4(r)e2Φ

r3
+ 2eθ(e

Φ)e4(eθ(e
Φ))

=
(κ− ϑ)e2Φ

r2
− κe2Φ

r2
+ 2eθ(e

Φ)
(
e4(eθ(Φ)) + eθ(Φ)e4(Φ)

)
eΦ

=
(κ̌− ϑ)e2Φ

r2
+ 2eθ(e

Φ)
(
β − e4(Φ)ζ

)
eΦ.

Also

eθ(a) =
2eθ(Φ)e2Φ

r2
+ 2eθ(e

Φ)eθ(eθ(e
Φ))

=
2eθ(Φ)e2Φ

r2
+ 2eθ(e

Φ)
(
eθ(eθ(Φ)) + eθ(Φ)2

)
eΦ

=
2eθ(Φ)e2Φ

r2
+ 2eθ(e

Φ)
(
ρ+DDθeθΦ

)
eΦ

=
2eθ(Φ)e2Φ

r2
+ 2eθ(e

Φ)
(
ρ+

1

2
χe3Φ +

1

2
χe4Φ

)
eΦ

=
2eθ(Φ)e2Φ

r2
+ 2eθ(e

Φ)
(
ρ+

1

4
κκ− 1

4
ϑϑ
)
eΦ

= 2eθ(Φ)e2Φ

((
ρ+

2m

r3

)
+

1

4

(
κκ+

4Υ

r2

)
− 1

4
ϑϑ

)
.

Finally, we have in an outgoing geodesic foliation

e3(a) =
2e3(Φ)e2Φ

r2
− 2e3(r)e2Φ

r3
+ 2eθ(e

Φ)e3(eθ(e
Φ))

=
(κ− ϑ)e2Φ

r2
−

(
κ+ A

)
e2Φ

r2
+ 2eθ(e

Φ)
(
e3(eθ(Φ)) + eθ(Φ)e3(Φ)

)
eΦ

=

(
κ̌− A− ϑ

)
e2Φ

r2
+ 2eθ(e

Φ)
(
β + e3(Φ)η + ξe4(Φ)

)
eΦ.

This concludes the proof of the lemma.

Remark 2.2.31. The function θ defined by (2.2.52) defines

• together with the functions (u, r, ϕ), a regular coordinates system with the axis of
symmetry corresponding to θ = 0, π,

• together with the functions (u, r, ϕ), a regular coordinates system with the axis of
symmetry corresponding to θ = 0, π.
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2.3 Perturbations of Schwarzschild and invariant quan-

tities

Recall that in Schwarzschild all Ricci coefficients ξ, ξ, ϑ, ϑ, η, η, ζ and curvature compo-
nents α, α, β, β vanish identically. In addition the check quantities κ̌, κ̌, ω̌, ω̌ and ρ̌ also
vanish. Thus, roughly, we expect that in perturbations of Schwarzschild these quantities
stay small, i.e. of oder O(ε) for a sufficiently small ε. More precisely we say that a smooth,
vacuum, Z-invariant, polarized spacetime is an O(ε)-perturbation of Schwarzschild, or
simply O(ε)-Schwarzschild, if the following are true relative to a Z-invariant null frame
e3, e4, eθ,

ξ, ξ, ϑ, ϑ, η, η, ζ, κ̌, κ̌, ω̌, ω̌ α, α, β, β , ρ̌ = O(ε) (2.3.1)

Moreover,

e3(r)− r

2
κ = O(ε), e4(r)− r

2
κ = O(ε), (2.3.2)

where r is the area radius of the 2-spheres generated by eθ, eϕ, see (2.1.12).

In reality, of course, we expect that small perturbations of Schwarzschild, remain not only
close to the original Schwarzschild but also converge to a nearby Schwarzschild solution
but for the discussion below this will suffice.

2.3.1 Null frame transformations

Our definition of O(ε)-Schwarzschild perturbations does not specify a particular frame. In
what follows we investigate how the main Ricci and curvature quantities change relative to
frame transformations, i.e linear transformations which take null frames into null frames.

Lemma 2.3.1. A general null transformation can be written in the form,

e′4 = λ

(
e4 + feθ +

1

4
f 2e3

)
,

e′θ =

(
1 +

1

2
ff

)
eθ +

1

2
fe4 +

1

2
f

(
1 +

1

4
ff

)
e3,

e′3 = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
.

(2.3.3)
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Proof. It is straightforward to check that the transformation (2.3.3) takes null frames into
null frames. One can also check that it can be written in the form type(3) ◦ type(1) ◦
type(2) where the type 1 transformations fix e3, i.e.(λ = 1, f = 0), type 2 transformations

fix e4, i.e. (λ = 1, f = 0) and type 3 transformations keep the directions of e3, e4 i.e.
(f = f = 0).

Remark 2.3.2. Note that f, f are reduced from spacetime 1 forms while λ is reduced from
a scalar.

Remark 2.3.3. A transformation consistent with O(ε)- Schwarzschild spacetimes must
have f, f = O(ε) and a := log λ = O(ε).

Proposition 2.3.4 (Transformation formulas). Under a general transformation of type
(2.3.3), the Ricci coefficients and curvature components transform as follows:

ξ′ = λ2

(
ξ +

1

2
λ−1e′4(f) + ωf +

1

4
fκ

)
+ λ2Err(ξ, ξ′),

Err(ξ, ξ′) =
1

4
fϑ+ l.o.t.,

ξ′ = λ−2

(
ξ +

1

2
λe′3(f) + ω f +

1

4
f κ

)
+ λ−2Err(ξ, ξ′),

Err(ξ, ξ′) = −1

8
λf 2e′3(f) +

1

4
f ϑ+ l.o.t.,

(2.3.4)

ζ ′ = ζ − e′θ(log(λ)) +
1

4
(−fκ+ fκ) + fω − fω + Err(ζ, ζ ′),

Err(ζ, ζ ′) =
1

2
fe′θ(f) +

1

4
(−fϑ+ fϑ) + l.o.t.,

η′ = η +
1

2
λe′3(f) +

1

4
κf − fω + Err(η, η′),

Err(η, η′) =
1

4
fϑ+ l.o.t.,

η′ = η +
1

2
λ−1e′4(f) +

1

4
κf − fω + Err(η, η′),

Err(η, η′) = −1

8
f 2λ−1e′4(f) +

1

4
fϑ+ l.o.t.,

(2.3.5)

κ′ = λ (κ+ d/1
′(f)) + λErr(κ, κ′),

Err(κ, κ′) = f(ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.,

κ′ = λ−1
(
κ+ d/1

′(f)
)

+ λ−1Err(κ, κ′),

Err(κ, κ′) = −1

4
f 2e′θ(f) + f(−ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.,

(2.3.6)
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ϑ′ = λ (ϑ− d?/2
′(f)) + λErr(ϑ, ϑ′),

Err(ϑ, ϑ′) = f(ζ + η) + fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.

ϑ′ = λ−1
(
ϑ− d?/2

′(f)
)

+ λ−1Err(ϑ, ϑ′),

Err(ϑ, ϑ′) = −1

4
f 2e′θ(f) + f(−ζ + η) + fξ +

1

4
ffκ+ ffω − f 2ω + l.o.t.,

(2.3.7)

ω′ = λ

(
ω − 1

2
λ−1e′4(log(λ))

)
+ λErr(ω, ω′),

Err(ω, ω′) =
1

4
fe′4(f) +

1

2
ωff − 1

2
fη +

1

2
fξ +

1

2
fζ − 1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.,

ω′ = λ−1

(
ω +

1

2
λe′3(log(λ))

)
+ λ−1Err(ω, ω′),

Err(ω, ω′) = −1

4
fe′3(f) + ωff − 1

2
fη +

1

2
fξ − 1

2
fζ − 1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.

(2.3.8)

The lower order terms we denote by l.o.t. are linear with respect Γ = {ξ, ξ, ϑ, κ, η, η, ζ, κ, ϑ}
and quadratic or higher order in f, f , and do not contain derivatives of these latter.

Also,

α′ = λ2α + λ2Err(α, α′),

Err(α, α′) = 2fβ +
3

2
f 2ρ+ l.o.t.,

β′ = λ

(
β +

3

2
ρf

)
+ λErr(β, β′),

Err(β, β′) =
1

2
fα + l.o.t.,

ρ′ = ρ+ Err(ρ, ρ′),

Err(ρ, ρ′) =
3

2
ρff + fβ + fβ + l.o.t.,

β′ = λ−1

(
β +

3

2
ρf

)
+ λ−1Err(β, β′),

Err(β, β′) =
1

2
fα + l.o.t.,

α′ = λ−2α + λ−2Err(α, α′),

Err(α, α′) = 2f β +
3

2
f 2ρ+ l.o.t.

(2.3.9)

The lower order terms we denote by l.o.t. are linear with respect to the curvature quantities
α, β, ρ, β, α and quadratic or higher order in f, f , and do not contain derivatives of these
latter.
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Proof. See Appendix A.6.

Lemma 2.3.5. In the particular case when λ = 1, f = 0, we have

e′4 = e4 + feθ +
1

4
f 2e3,

e′θ = eθ +
1

2
fe3,

e′3 = e3,

and

ξ′ = ξ +
1

2
e′4f +

1

4
κf + fω +

1

4
fϑ+

1

4
f 2η − 1

4
f 2η +

1

2
f 2ζ − 1

16
f 3κ

−1

4
f 3ω − 1

16
f 3ϑ− 1

16
f 4ξ,

ω′ = ω +
1

2
fζ − 1

2
ηf − 1

4
f 2ω − 1

8
f 2κ− 1

8
f 2ϑ− 1

8
f 3ξ,

ζ ′ = ζ −
(

1

4
κ+ ω

)
f − f

(
1

4
ϑ+

1

2
fξ

)
,

η′ = η +
1

2
e′3(f)− fω − 1

4
f 2ξ.

Proof. The proof follows from Proposition 2.3.4 by setting λ = 1, f = 0. Since we need
precise formulas for the error terms, we provide a proof in section A.9.

Lemma 2.3.6 (Transport equations for (f, f , λ)). Assume that we have in the new null
frame (e′3, e

′
4, e
′
θ) of type (2.3.3)

ξ′ = 0, ω′ = 0, ζ ′ + η′ = 0.

Then, (f, f, log(λ)) satisfy the following transport equations

λ−1e′4(f) +
(κ

2
+ 2ω

)
f = −2ξ + E1(f,Γ),

λ−1e′4(log(λ)) = 2ω + E2(f,Γ),

λ−1e′4(f) +
κ

2
f = −2(ζ + η) + 2e′θ(log(λ)) + 2fω + E3(f, f ,Γ),

where E1, E2 and E3 are given by

E1(f,Γ) = −1

2
ϑf + l.o.t.,

E2(f,Γ) = fζ − 1

2
f 2ω − ηf − 1

4
f 2κ+ l.o.t.,

E3(f, f ,Γ) = −fe′θ(f)− 1

2
fϑ+ l.o.t.,
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Here, l.o.t. denote terms which are cubic or higher order in f, f (or in f only in the case

of E1 and E2) and Γ̌ and do not contain derivatives of these quantities, where Γ and Γ̌
denotes the Ricci coefficients and renormalized Ricci coefficients w.r.t. the original null
frame (e3, e4, eθ).

Proof. See section A.7.

To avoid a potential log loss for the third equation in Lemma 2.3.6, i.e. the transport
equation for f , we state the following renormalized version of the lemma.

Corollary 2.3.7. Assume given a null frame (e3, e4, eθ) associated to an outgoing geodesic
foliation as in section 2.2.4, and let r denote the corresponding area radius. Assume that
we have in the new null frame (e′3, e

′
4, e
′
θ) of type (2.3.3)

ξ′ = 0, ω′ = 0, ζ ′ + η′ = 0.

Then, (f, f, log(λ)) satisfy the following transport equations

λ−1e′4(rf) = E ′1(f,Γ),

λ−1e′4(log(λ)) = E ′2(f,Γ),

λ−1e′4

(
rf − 2r2e′θ(log(λ)) + rfΩ

)
= E ′3(f, f , λ,Γ),

where

E ′1(f,Γ) = −r
2
κ̌f − r

2
ϑf + l.o.t.,

E ′2(f,Γ) = fζ − 1

2
f 2ω − ηf − 1

4
f 2κ+ l.o.t.,

E ′3(f, f , λ,Γ) = −r
2
κ̌f + r2

(
κ̌−

(
κ− 2

r

))
e′θ(log(λ)) + r2

(
d/′1(f) + λ−1ϑ′

)
e′θ(log(λ))

−r
2
κ̌Ωf + rE3(f, f ,Γ)− 2r2e′θ(E2(f,Γ)) + rΩE1(f,Γ),

and where E1, E2 and E3 are given in Lemma 2.3.6.

Proof. See section A.8.

2.3.2 Schematic notation Γg and Γb

Many of the identities which we present below, contain a huge number of O(ε2) terms. In
what follows we introduce schematic notation meant to keep track of the most important
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error terms. Note that the decomposition below between the terms Γg and Γb is consistent
with our main bootstrap assumptions BA-E on energy and BA-D on decay, see section
3.4.1.

Definition 2.3.8. We divide the small connection coefficient terms (relative to an arbi-
trary null frame) into17

Γ(0)
g =

{
rξ, ϑ, ζ, η,

2

r
e4(r)− κ, 1

r
eθ(r)

}
, Γ

(0)
b =

{
η, ϑ, ξ,

2

r
e3(r)− κ

}
.

For higher derivatives we introduce,

Γ(1)
g =

{
dΓ(0)

g , r2eθ(ω), reθ(κ), reθ(κ)
}
, Γ

(1)
b =

{
dΓ

(0)
b , reθ(ω)

}
,

and for s ≥ 2,

Γ(s)
g = d≤sΓg, Γ

(s)
b = d≤sΓb,

where we have introduced the notations

d = {e3, re4, d/},

with angular derivatives d/ of reduced scalars in sk defined by (2.1.37).

Remark 2.3.9. According to the main bootstrap assumptions BA-E, BA-D (see section
3.4.1), the terms Γb behave worse in powers of r than the terms in Γg. Thus, in the

calculations below, we replace the terms of the form Γ
(s)
g + Γ

(s)
b by Γ

(s)
b . Given the form of

the bootstrap assumptions, we may also replace r−1Γ
(s)
b by Γ

(s)
g . We will denote l.o.t. the

cubic and higher error terms in Γ̌, Ř. We also include in l.o.t. terms which decay faster
in powers of r than the main quadratic terms.

2.3.3 The invariant quantity q

Note from the transformation formulas of Proposition 2.3.4 that the only quantities which
remain invariant up to quadratic or higher order error terms are α, α and ρ. Among these
only α, α vanish in Schwarzschild. We call such quantities O(ε2) invariant. In what follows
we show that, in addition to these two invariants, there exist other important invariants.

17In the frames we are using, we have in fact ξ = 0 for r ≥ 4m0 so that it behaves in fact better than

the other components of Γ
(0)
g .
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Lemma 2.3.10. The expression,

e3(e3(α)) + (2κ− 6ω)e3(α) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α

is an O(ε2) invariant. It is also a conformal invariant, i.e. invariant under transforma-
tions (2.3.3) with f = f = 0.

Proof. Clearly the quantity vanishes in Schwarzschild and is an O(ε2) invariant. For
a conformal transformation, the result follows by a straightforward application of the
transformation properties of Proposition 2.3.4 in the particular case where f = f = 0.

Remark 2.3.11. Alternatively one can also define the corresponding quantity obtained
by interchanging e3, e4, i.e.

e4(e4(α)) + (2κ− 6ω)e4(α) +

(
−4e4(ω) + 8ω2 − 8ωκ+

1

2
κ2

)
α.

Note that it differs by O(ε2) from the previous one.

Definition 2.3.12. Given a general null frame (e4, e3, eθ), and given a scalar function r
satisfying the assumptions for section 2.3.2, i.e.

2

r
e4(r)− κ ∈ Γg,

1

r
eθ(r) ∈ Γg,

2

r
e3(r)− κ ∈ Γb,

we defined our main quantity q as

q := r4

[
e3(e3(α)) + (2κ− 6ω)e3(α) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α

]
. (2.3.10)

2.3.4 Several identities for q

In this section, we state three identities involving the quantity q defined by (2.3.10). All
calculations are made in a general frame.

Proposition 2.3.13. We have

q = r4

(
d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ

)
+ Err[q] (2.3.11)

with error term written schematically in the form

Err[q] = r4e3η · β + r2d≤1
(
Γb · Γg). (2.3.12)
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Proof. See section A.10

The following consequence of Proposition 2.3.13 will prove to be very useful in the sequel.

Proposition 2.3.14. We have

e3(rq) = r5

{
d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ −

3

2
κρα +

3

4
(2ρ2 − κκρ)ϑ

}
+Err[e3(rq)], (2.3.13)

where the error term Err[e3(rq)] is given schematically by

Err[e3(rq)] = rΓbq + r5d≤1
(
e3η · β

)
+ r3d≤2

(
Γb · Γg

)
. (2.3.14)

Proof. See section A.11.

We deduce from Proposition 2.3.14 the following nonlinear version of the Teukolsky-
Starobinski identity.

Proposition 2.3.15. The following identity holds true in (int)M,

e3(r2e3(rq)) + 2ωr2e3(rq) = r7

{
d?/2 d

?/1 d/1 d/2α +
3

2
ρ
(
κe4 − κe3

)
α

}
+ Err[TS], (2.3.15)

where the error term Err[TS] is given schematically by

Err[TS] = r4
(
d/Γb + rΓb · Γb) · α + r2

(
Γbe3(rq) + (d≤1Γb)rq

)
+ r7d≤2

(
e3η · β

)
+ r5d≤3

(
Γb · Γg

)
.

Proof. See section A.12.

2.4 Invariant wave equations

In this section, we write wave equations for the invariant quantities α, α and q.
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2.4.1 Preliminaries

Lemma 2.4.1. With respect to a general S-foliation we have, for a reduced scalar ψ ∈ s0,

�gψ = −1

2
(e3e4 + e4e3)ψ +4/ψ +

(
ω − 1

2
κ

)
e4ψ +

(
ω − 1

2
κ

)
e3ψ

+ (η + η)eθψ.

(2.4.1)

Also,

�gψ = −e3e4ψ +4/ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ,

�gψ = −e4e3ψ +4/ψ +

(
2ω − 1

2
κ

)
e3ψ −

1

2
κe4ψ + 2ηeθψ.

Proof. We calculate, in spacetime,

�gψ = g34D3D4ψ + g43D4D3ψ + δABDADBψ = −1

2
(D3D4 + D4D3)ψ + gABDADBψ.

Now,

δABDADBψ = 4/ψ − 1

2
(1+3)trχe3ψ −

1

2
(1+3)trχe4ψ,

D3D4ψ = e3e4ψ − 2ωe4ψ − 2ηeθψ,

D4D3ψ = e4e3ψ − 2ωe3ψ − 2ηeθψ.

Hence,

�gψ = −1

2
(e3e4 + e4e3)ψ +4/ψ − 1

2
(1+3)trχe3ψ −

1

2
(1+3)trχe4ψ

+ ωe4ψ + ηeθψ + ωe3ψ + ηeθψ

= −1

2
(e3e4 + e4e3)ψ +4/ψ +

(
ω − 1

2
(1+3)trχ

)
e4ψ +

(
ω − 1

2
(1+3)trχ

)
e3ψ

+ (η + η)eθψ.

Since,

1

2
e4e3ψ =

1

2
e3e4ψ + ωe3ψ − ωe4ψ + (η − η)eθψ

we also have,

�gψ = −e3e4ψ +4/ψ +

(
2ω − 1

2
(1+3)trχ

)
e4ψ −

1

2
(1+3)trχe3ψ + 2ηeθψ.

Since κ = (1+3)trχ, κ = (1+3)trχ, this concludes the proof of the lemma.
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Definition 2.4.2. Given a reduced k-scalar ψ ∈ sk we define,

�kψ = −1

2
(e3e4 + e4e3)ψ +4/ kψ + (ω − 1

2
trχ)e4ψ + (ω − 1

2
trχ)e3ψ

+ (η + η)eθψ.
(2.4.2)

Equivalently, we have

�kψ = −e3e4ψ +4/ kψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ,

�kψ = −e4e3ψ +4/ kψ +

(
2ω − 1

2
κ

)
e3ψ −

1

2
κe4ψ + 2ηeθψ.

Remark 2.4.3. Not that the terms ηeθψ, ηeθψ have to be interpreted as in Remark 2.1.23,
i.e.

ηeθψ =
1

2
η ( d/kψ − d?/k+1ψ) .

The term η d/kψ is the reduced form of a tensor product of (1+3)η with D/k (1+3)ψ while
η d?/k+1ψ is the reduced form of a contraction between the 1 form (1+3)η and k + 1 tensor
D?/k+1

(1+3)ψ.

Remark 2.4.4. Recall that (recall Definition 2.1.20),

4/ kf := eθ(eθf) + eθ(Φ)eθf − k2
(
eθ(Φ)

)2
f.

Thus, for a ψ ∈ sk, we have,

4/ kψ = 4/ψ − k2
(
eθ(Φ)

)2
ψ.

Spacetime interpretation of Definition 2.4.2

The linearized equation verified by our main quantity q, which will be derived in the next
section, has the form,

�2ψ = V ψ. (2.4.3)

with V a scalar potential. In what follows we give simple spacetime interpretation of the
equation (see Appendix D for more details).

Given a mixed spacetime tensor in TkM⊗Tl
SM of the form Uµ1...µk,A1...AL where eµ is an

orthonormal frame on M with (eA)A=1,2 tangent to S. We define,

ḊµUν1...νk,A1...AL = eµUν1...νk,A1...Al − UDµν1...νk,A1...Al − . . .− Uν1...Dµνk,A1...Al

− Uν1...νk,ḊµA1...Al
− Uν1...νk,A1...ḊµAl
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with ḊµA denoting the projection of DeµeA on S. One can easily check the commutator
formulae,

(ḊµḊν − ḊνḊµ)ΨA = RA
B
µνΨB,

(ḊµḊν − ḊνḊµ)ΨλA = Rλ
σ
µνΨσA + RA

B
µνΨλB.

Define,

�̇gΨ := gµνḊµḊνΨ.

Consider the following Lagrangian for Ψ = ΨAB ∈ S2.

L[Ψ] = g/ A1B1g/ A2B2

(
gµνḊµΨA1A2ḊµΨB1B2 + VΨA1A2ΨB1B2

)
.

Proposition 2.4.5. The Euler- Lagrange equations for the Lagrangian L[Ψ] above are
given by:

�̇Ψ = VΨ (2.4.4)

and its reduced for ψ = Ψθθ is precisely (2.4.3).

Proof. Straightforward verification.

2.4.2 Wave equations for α, α, and q

We start with the wave equations for α and α, which are derived in a general null frame.

Proposition 2.4.6. The following identities hold true.

1. The invariant quantity α ∈ s2 verifies the Teukolsky wave equation,

�2α = −4ωe4(α) + (4ω + 2κ)e3(α) + V α + Err[�gα],

V = −4ρ− 4e4(ω)− 8ωω + 2ω κ− 10κω +
1

2
κκ,

(2.4.5)

where Err[�gα] is given schematically by

Err(�gα) = Γge3(α) + r−1d≤1
(

(η,Γg)(α, β)
)

+ ξ(e3(β), r−1dρ̌) + l.o.t.

where l.o.t. denote terms which are quadratic and enjoy better decay properties or
are higher order and decay at least as good.
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2. The invariant quantity α ∈ s2 verifies the Teukolsky wave equation,

�2α = −4ωe3(α) + (4ω + 2κ)e4(α) + V α + Err[�gα],

V = −4ρ− 4e3(ω)− 8ωω + 2ωκ− 10κω +
1

2
κκ,

(2.4.6)

where

Err(�gα) = r−1d(Γbα) + d(Γbβ) + l.o.t.

Proof. See appendix A.13

We may now state the wave equation satisfied by q.

Theorem 2.4.7. The invariant scalar quantity q defined in (2.3.10) verifies the equation,

�2q + κκ q = Err[�2q] (2.4.7)

where Err[�2q] is O(ε2).

If q is defined relative to a null frame satisfying, in addition to the assumptions of section
2.3.2, that η ∈ Γg and ξ = 0 for r ≥ 4m0, the error term is then given schematically by

Err[�2q] = r2d≤2(Γg · (α, β)) + e3

(
r3d≤2(Γg · (α, β))

)
+ d≤1(Γg · q) + l.o.t. (2.4.8)

Proof. See appendix A.14.

Remark 2.4.8. Note that the main frame used in this paper is an outgoing geodesic null
frame in r ≥ 4m0 so that ξ = 0, but unfortunately, as it turns out, η ∈ Γb. This would
not allow us to control the error term appearing in (2.4.7). To overcome this problem, we
are forced to define q relative to a different frame where ξ = 0 still holds for r ≥ 4m0 and
for which we have in addition η ∈ Γg, see Proposition 3.5.5 for the existence of such a
frame. See also the discussion at the beginning of section 3.4.6.

The remark above leads us to the following.

Remark 2.4.9. The quantity q we will be working with for the rest of the paper is defined,
according to equation (2.3.10), relative to the global frame of Proposition 3.5.5 for which
η ∈ Γg. It is only in such a frame that q verifies the correct decay estimates.



116 CHAPTER 2. PRELIMINARIES



Chapter 3

MAIN THEOREM

3.1 General covariant modulated admissible space-

times

Note that all definitions below are consistent with the framework of Z-invariant polarized
spacetimes.

3.1.1 Initial data layer

Recall that m0 > 0 is given as the mass of the Schwarzschild solution to which the initial
data is ε0 close. Let δH > 0 be a sufficiently small constant which will be specified later.

Definition 3.1.1 (Initial data layer). We consider a spacetime region (L0, g), sketched
below in figure 3.1, where

• The metric g is a reduced metric from a Lorentzian spacetime metric g close to
Schwarzschild in a suitable topology1.

• L0 = (ext)L0 ∪ (int)L0.

• The intersection (ext)L0 ∩ (int)L0 is non trivial.

1This topology will be specified in our initial data layer assumptions, see (3.3.5) as well as section
3.2.4.

117
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Furthermore, our initial data layer (L0, g) satisfies

1. Boundaries. The future and past boundaries of L0 are given by

∂+L0 = A0 ∪ C(2,L0) ∪ C(2,L0),

∂−L0 = C(0,L0) ∪ C(0,L0),

where

(a) The past outgoing null boundary of the far region (ext)L0 is denoted by C(0,L0).

(b) The past incoming null boundary of the near region (int)L0 is denoted by C(0,L0).

(c) (ext)L0 is unbounded in the future outgoing null directions.

(d) The future outgoing null boundary of the far region (ext)L0 is denoted by C(2,L0).

(e) The future incoming null boundary of the near region (int)L0 is denoted by
C(2,L0).

(f) The future spacelike boundary of the near region (int)L0 is denoted by A0.

2. Foliations of L0 and adapted null frames. The spacetime L0 = (ext)L0∪ (int)L0

is foliated as follows

(a) The far region (ext)L0 is foliated by two functions (uL0 ,
(ext)sL0) such that

• uL0 is an outgoing optical function on (ext)L0 whose leaves are denoted by
C(uL0

,L0).

• (ext)sL0 is an affine parameter along the level hypersurfaces of uL0, i.e.

(ext)L0( (ext)sL0) = 1 where (ext)L0 := −gab∂b(uL0)∂a.

• We denote by ( (ext)(e0)3,
(ext)(e0)4,

(ext)(e0)θ) the null frame adapted to the
outgoing geodesic foliation (uL0 ,

(ext)sL0) on (ext)L0.

• Let (ext)rL0 denote the area radius of the 2-spheres S(uL0 ,
(ext)sL0) of this

foliation.

• The outgoing future null boundary C(2,L0) corresponds precisely to uL0 = 2
and the outgoing past null boundary C(0,L0) corresponds to uL0 = 0.

• The foliation by uL0 of (ext)L0 terminates at the time like boundary{
(ext)rL0 = 2m0

(
1 +

δH
4

)}
.

(b) The near region (int)L0 is foliated by two functions (uL0
, (int)sL0) such that
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• uL0
is an ingoing optical function on (int)L0 whose leaves are denoted by

C(uL0
,L0).

• (int)sL0 is an affine parameter along the level hypersurfaces of uL0
, i.e.

(int)L0( (int)sL0) = −1 where (ext)L0 := −gab∂b(uL0
)∂a.

• We denote by ( (int)(e0)3,
(int)(e0)4,

(int)(e0)θ) the null frame adapted to the
outgoing geodesic foliation (uL0 ,

(int)sL0) on (int)L0.

• Let (int)rL0 denote the area radius of the 2-spheres S(uL0
, (int)sL0) of this

foliation.

• The (uL0
, (int)s) foliation is initialized on (ext)rL0 = 2m0(1 + δH

2
) as it will

be made precise below.

• The foliation by uL0
, of (int)L0 terminates at the space like boundary

A0 =
{

(int)rL0 = 2m0(1− 2δH)
}

where m0 and δH have been defined above.

• The ingoing future null boundary C(2,L0) corresponds precisely to uL0
= 2

and the ingoing past null boundary C(0,L0) corresponds to uL0
= 0.

• The foliation by uL0
of (int)L0 terminates at the time like boundary{

(int)rL0 = 2m0 (1 + 2δH)
}
.

3. Initializations of the (uL0
, (int)sL0) foliation.

The (uL0
, (int)sL0) foliation is initialized on (ext)rL0 = 2m0(1 + δH

2
) by setting,

uL0
= uL0 ,

(int)sL0 = (ext)sL0

and, with λ0 = (ext)λ0 = 1− 2m0
(ext)rL0

,

(int)(e0)4 = λ0
(ext)(e0)4,

(int)(e0)3 = λ−1
0

(ext)(e0)3,
(int)(e0)θ = (ext)(e0)θ.

4. Coordinates system on (ext)L0( (ext)rL0 ≥ 4m0). In (ext)L0( (ext)rL0 ≥ 4m0), there
exists adapted coordinates (uL0 ,

(ext)sL0 , θL0 , ϕ) with b = 0, see Proposition 2.2.20,
such that the spacetime metric g takes the form,

g = −2duL0 d
(

(ext)sL0

)
+ ΩL0

(duL0)2 + γL0

(
dθL0 −

1

2
bL0

duL0

)2

+ e2Φdϕ2. (3.1.1)
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Figure 3.1: The initial data layer L0

3.1.2 Main definition

Recall that m0 > 0 is given as the mass of the Schwarzschild solution to which the initial
data is ε0 close, and that δH > 0 is a sufficiently small constant which will be specified
later.

Definition 3.1.2 (GCM-admissible spacetime). We consider a spacetime (M, g), sketched
below in figure 3.2, where

• The metric g is a reduced metric from a Lorentzian spacetime metric g close to
Schwarzschild in a suitable topology2.

• M = (ext)M∪ (int)M

• T = (ext)M∩ (int)M is a time-like hyper-surface.

(M, g) is called a general covariant modulated admissible (or shortly GCM-admissible)
spacetime if it is defined as follows

2This topology will be specified in our bootstrap assumptions, see (3.3.6) as well as section 3.2.
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1. Boundaries. The future and past boundaries of M are given by

∂+M = A ∪ C∗ ∪ C∗ ∪ Σ∗,

∂−M = C1 ∪ C1,

where

(a) The past boundary C1 ∪ C1 is included in the initial data layer L0, defined in
section 3.1.1, in which the metric on M is specified to be a small perturbation
of the Schwarzschild data.

(b) The future spacelike boundary of the far region (ext)M is denoted by Σ∗.

(c) The future outgoing null boundary of the far region (ext)M is denoted by C∗.
(d) The future incoming null boundary of the near region (int)M is denoted by C∗.
(e) The future spacelike boundary of the near region (int)M is denoted by A.

(f) The time-like boundary T , separating (ext)M from (int)M, starts at C1 ∩ C1

and terminates at C∗ ∩ C∗.
2. Foliations ofM and adapted null frames. The spacetimeM = (ext)M∪ (int)M

is foliated as follows

(a) The far region (ext)M is foliated by two functions (u, (ext)s) such that

• u is an outgoing optical function on (ext)M, initialized on Σ∗, whose leaves
are denoted by C(u).

• (ext)s is an affine parameter along the level hypersurfaces of u, i.e.

L( (ext)s) = 1 where L := −gab∂bu∂a.
• The (u, (ext)s) foliation is initialized on Σ∗ as it will be made precise below.

• We denote by ( (ext)e3,
(ext)e4,

(ext)eθ) the null frame adapted to the outgoing
geodesic foliation (u, (ext)s) on (ext)M where (ext)e4 = L.

• Let (ext)r and (ext)m respectively the area radius and the Hawking mass of
the 2-spheres S(u, (ext)s) of this foliation.

• The outgoing future null boundary C∗ corresponds precisely to u = u∗ and
the outgoing past null boundary C1 corresponds to u = 1.

• The foliation by u of (ext)M terminates at the time like boundary

T =
{

(ext)r = rT
}

where rT satisfies3

2m0

(
1 +

δH
2

)
≤ rT ≤ 2m0

(
1 +

3δH
2

)
.

3A specific choice of rT will be made in section 3.8.9, see (3.8.8), in the context of a Lebesgue point
argument needed to recover the top order derivatives.
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(b) The near region (int)M is foliated by two functions (u, (int)s) such that

• u is an ingoing optical function on (int)M, initialized on T , whose leaves
are denoted by C(u).

• (int)s is an affine parameter along the level hypersurfaces of u, i.e.

L( (int)s) = −1 where L := −gab∂bu∂a.

• The (u, (int)s) foliation is initialized on T as it will be made precise below.

• We denote by ( (int)e3,
(int)e4,

(int)eθ) the null frame adapted to the outgoing
geodesic foliation (u, (int)s) on (int)M where (int)e3 = L.

• Let (int)r and (int)m respectively the area radius and the Hawking mass of
the 2-spheres S(u, (int)s) of this foliation.

• The foliation by u of (int)M terminates at the space like boundary

A =
{

(int)r = 2m0(1− δH)
}

where m0 and δH have been defined above.

• The ingoing future null boundary C∗ corresponds precisely to u = u∗ and
the ingoing past null boundary C1 corresponds to u = 1.

3. GCM foliation of Σ∗. The (u, (ext)s)-foliation of (ext)M restricted to the spacelike
hypersurface Σ∗ has the following properties

(a) There exists a constant cΣ∗ such that

Σ∗ := {u+ (ext)r = cΣ∗}.

(b) We have4

r � u∗ on Σ∗. (3.1.2)

(c) (ext)s satisfies5

(ext)s = (ext)r on Σ∗.

(d) We say that Σ∗ is a general covariant modulated hypersurface6 (or shortly GCM
hypersurface) if relative to the above defined null frame of (ext)M, the following

4See (3.3.4) for the precise condition.
5Recall that (ext)s satisfies on (ext)M the transport equation L( (ext)s) = 1 and thus needs to be

initialized on a hypersurface transversal to L, chosen here to be Σ∗.
6More generally, a GCM hypersurface is one with the property that we can specify, using the full

covariance of the Einstein equations, a number of vanishing conditions (equal to the number of degrees
of freedom of the diffeomorphism group) for well-chosen components of Γ̌.
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conditions hold7 along Σ∗

κ =
2

r
, d?/2 d

?/1κ = 0, d?/2 d
?/1µ = 0,∫

S

ηeΦ = 0,

∫
S

ξeΦ = 0, a
∣∣
SP

= −1− 2m

r
,

(3.1.3)

where a is the unique scalar function such that ν = e3 + ae4 is tangent to Σ∗,
and SP denotes the south poles of the spheres on Σ∗. Moreover we also assume∫

S∗

βeΦ = 0,

∫
S∗

eθ(κ)eΦ = 0, with S∗ := Σ∗ ∩ C∗. (3.1.4)

Note that the role of the GCM foliation of Σ∗ is to initialize the (u, (ext)s)-
foliation of (ext)M.

(e) In view of the definition of ν and ς, we have ν(u) = e3(u) + ae4(u) = 2/ς. ν
being tangent to Σ∗, u is thus transported along Σ∗, and hence defined up to a
constant. To calibrate u on Σ∗, we fix the value u = 1 as follows

S1 = Σ∗ ∩ {u = 1} is such that S1 ∩ C(1,L0) ∩ SP 6= ∅, (3.1.5)

i.e. S1 is the unique sphere of Σ∗ such that its south pole intersects the south
pole of one of the sphere of the outgoing null cone C(1,L0) of the initial data
layer.

4. Initialization the (u, (int)s)-foliation on T . The (u, (int)s) foliation is initialized
on T such that,

u = u, (int)s = (ext)s

In particular, the 2-spheres S(u, (int)s) coincide on T with S(u, (ext)s) and (int)r =
(ext)r. Moreover, the null frame ( (int)e3,

(int)e4,
(int)eθ) is defined on T by the fol-

lowing renormalization,

(int)e4 = λ (ext) e4,
(int)e3 = λ−1 (ext)e3,

(int)eθ = (ext)eθ on T
where

λ = (ext)λ = 1− 2 (ext)m
(ext)r

.

Remark 3.1.3. In Schwarzschild, u = t− r∗, u = t+ r∗, with dr∗
dr

= Υ−1, and

(ext)e4 = Υ−1∂t + ∂r,
(ext)e3 = ∂t −Υ∂r,

(int)e4 = ∂t + Υ∂r,
(int)e3 = Υ−1∂t − ∂r.

7The existence of such hypersurfaces is an essential part of our construction.
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Figure 3.2: The GCM admissible space-time M

3.1.3 Renormalized curvature components and Ricci coefficients

For convenience, we introduce in this section a notation for renormalized curvature com-
ponents and Ricci coefficients.

Definition 3.1.4 (Renormalized curvature components and Ricci coefficients in (ext)M).
We introduce the following notations in (ext)M

(ext)Ř =
{
α, β, ρ̌, µ̌, β, α

}
, (ext)Γ̌ =

{
κ̌, ϑ, ζ, η, κ̌, ϑ, ω̌, ξ

}
,

where, recall,

ρ̌ = ρ− ρ, µ̌ = µ− µ, κ̌ = κ− κ, κ̌ = κ− κ, ω̌ = ω − ω,

and
ξ = ω = 0, η = −ζ.

Note that all the above quantities are defined with respect to the outgoing geodesic foli-
ation of (ext)M (see section 2.2.4), and that the averages are taken with respect to that
corresponding 2-spheres.
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Definition 3.1.5 (Renormalized curvature components and Ricci coefficients in (int)M).
We introduce the following notations in (int)M

(int)Ř =
{
α, β, ρ̌, µ̌, β, α

}
,

(int)Γ̌ =
{
ξ, ω̌, κ̌, ϑ, ζ, η, κ̌, ϑ

}
,

where we have defined

ρ̌ = ρ− ρ, µ̌ = µ− µ, κ̌ = κ− κ, κ̌ = κ− κ, ω̌ = ω − ω,
and we recall that

ξ = ω = 0, η = ζ, µ− 2m

r3
= 0.

Note that all the above quantities are defined with respect to the ingoing geodesic folia-
tion of (int)M (see section 2.2.6), and that the averages are taken with respect to that
corresponding 2-spheres.

Remark 3.1.6. In Schwarzschild, we have

(ext)Ř = 0, (int)Ř = 0, (ext)Γ̌ = 0, (int)Γ̌ = 0.

3.2 Main norms

3.2.1 Main norms in (ext)M

All quantities appearing in this section are defined relative to the (ext)M frame adapted
to the (u, (ext)s) foliation. In particular, recall that with respect to this frame, we have

ξ = ω = 0, η = −ζ.

Recall the definition (2.1.37) of higher order angular derivatives d/s of reduced scalars in
sk. We introduce the notations

d = {e3, re4, d/}.
Definition 3.2.1. We introduce the vectorfield T defined on (ext)M as

T :=
1

2

((
1− 2m

r

)
e4 + e3

)
. (3.2.1)

We also introduce the vectorfield N is defined on (ext)M by

N :=
1

2

((
1− 2m

r

)
e4 − e3

)
. (3.2.2)
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Remark 3.2.2. In Schwarzschild, we have

T = ∂t, N =

(
1− 2m0

r

)
∂r

in the standard (t, r, θ, ϕ) coordinates.

We are ready to introduce our norms in (ext)M.

L2 curvature norms in (ext)M

Let δB > 0 a small constant to be specified later. We introduce the weighted curvature
norms,(

(ext)R≥4m0
0 [Ř]

)2

:= sup
1≤u≤u∗

∫
Cu(r≥4m0)

(
r4+δBα2 + r4β2

)
+

∫
Σ∗

(
r4+δB(α2 + β2) + r4(ρ̌)2 + r2β2 + α2

)
+

∫
(ext)M(r≥4m0)

(
r3+δB(α2 + β2) + r3−δB(ρ̌)2 + r1−δBβ2 + r−1−δBα2

)
,

(
(ext)R≤4m0

0 [Ř]
)2

:=

∫
(ext)M(r≤4m0)

(
1− 3m

r

)2

|Ř|2,

and

(ext)R0[Ř] := (ext)R≥4m0
0 [Ř] + (ext)R≤4m0

0 [Ř].

For any nonzero integer k, we introduce the following higher derivatives norms(
(ext)Rk[Ř]

)2

:=
(

(ext)R0[d≤kŘ]
)2

+

∫
(ext)M(r≤4m0)

(
|d≤k−1NŘ|2 + |d≤k−1Ř|2

)
.

Remark 3.2.3. Note that the derivative in the N direction, unlike all other first deriva-
tives of Ř, appear in the spacetime integral

∫
(ext)M(r≤4m0)

with top number of derivatives.

This reflects the fact the N- derivatives do not degenerate at r = 3m in the Morawetz
estimate.
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L2 Ricci coefficients norms in (ext)M

For any k ≥ 2, we introduce the following norms

(
(ext)G≥4m0

k

[
Γ̌
] )2

:=

∫
Σ∗

[
r2
(

(d≤kϑ)2 + (d≤kκ̌)2 + (d≤kζ)2 + (d≤kκ̌)2
)

+ (d≤kϑ)2

+ (d≤kη)2 + (d≤kω̌)2 + (d≤kξ)2

]

+ sup
λ≥4m0

(∫
{r=λ}

[
λ2
(

(d≤kϑ)2 + (d≤kκ̌)2 + (d≤kζ)2
)

+ λ2−δB(d≤kκ̌)2 + (d≤kϑ)2 + (d≤kη)2 + (d≤kω̌)2 + λ−δB(d≤kξ)2

])
,

(
(ext)G≤4m0

k

[
Γ̌
] )2

:=

∫
(ext)M(≤4m0)

∣∣d≤k (Γ̌)∣∣2 ,
and

(ext)Gk

[
Γ̌
]

:= (ext)G≤4m0

k

[
Γ̌
]

+ (ext)G≥4m0

k

[
Γ̌
]
.

Decay norms in (ext)M

Let δdec > 0 a small constant to be specified later. We define

(ext)D0[α] := sup
(ext)M

(
r2(2r + u)1+δdec + r3(2r + u)

1
2

+δdec
)
|α|,

(ext)D0[β] := sup
(ext)M

(
r2(2r + u)1+δdec + r3(2r + u)

1
2

+δdec
)
|β|,

(ext)D0[ρ̌] := sup
(ext)M

(
r2u1+δdec + r3u

1
2

+δdec
)
|ρ̌|,

(ext)D0[µ̌] := sup
(ext)M

r3u1+δdec |µ̌|,
(ext)D0[β] := sup

(ext)M
r2u1+δdec |β|,

(ext)D0[α] := sup
(ext)M

ru1+δdec |α|,
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and

(ext)D0[Ř] := (ext)D0[α] + (ext)D0[β] + (ext)D0[ρ̌] + (ext)D0[µ̌] + (ext)D0[β] + (ext)D0[α].

Also, we introduce the following higher derivatives norms

(ext)D1[Ř] := (ext)D0[Ř] + (ext)D0[dŘ]

+ sup
(ext)M

(
r3(2r + u)1+δdec + r4(2r + u)

1
2

+δdec
)
|e3(α)|

+ sup
(ext)M

(
r3u1+δdec + r4u

1
2

+δdec
)
|e3(β)|+ sup

(ext)M
r3u1+δdec |e3(ρ̌)|,

and for any integer k ≥ 2

(ext)Dk[Ř] := (ext)D1[d≤k−1Ř].

Also, we define

(ext)D0[κ̌] := sup
(ext)M

r2u1+δdec|κ̌|,

(ext)D0[ϑ] := sup
(ext)M

(
ru1+δdec + r2u

1
2

+δdec
)
|ϑ|,

(ext)D0[ζ] := sup
(ext)M

(
ru1+δdec + r2u

1
2

+δdec
)
|ζ|,

(ext)D0[κ̌] := sup
(ext)M

(
ru1+δdec + r2u

1
2

+δdec
)
|κ̌|,

(ext)D0[ϑ] := sup
(ext)M

ru1+δdec |ϑ|,

(ext)D0[η] := sup
(ext)M

ru1+δdec |η|+
(∫

Σ∗

u2+2δdecη2

) 1
2

,

(ext)D0[ω̌] := sup
(ext)M

ru1+δdec |ω̌|,
(ext)D0[ξ] := sup

(ext)M
ru1+δdec |ξ|,

and

(ext)D0[Γ̌] := (ext)D0[κ̌] + (ext)D0[ϑ] + (ext)D0[ζ] + (ext)D0[κ̌] + (ext)D0[ϑ] + (ext)D0[η]

+ (ext)D0[ω̌] + (ext)D0[ξ].

Also, we introduce the following higher derivatives norms

(ext)D1[Γ̌] := (ext)D0[dΓ̌] + sup
(ext)M

r2u1+δdec|e3(ϑ, ζ, κ̌)|
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and for any integer k ≥ 2

(ext)Dk[Γ̌] := (ext)D1[d≤k−1Γ̌].

Remark 3.2.4. The integral bootstrap assumption on Σ∗ for η will only be needed in the
proof of Proposition 3.4.6 and recovered in Proposition 7.3.6. In fact, other components
satisfy an analog integral estimate on Σ∗: this is the case of ϑ, ξ and rβ, see Proposition
7.3.6. But η is the only component for which we need to make this type of bootstrap
assumption.

3.2.2 Main norms in (int)M

All quantities appearing in this section are defined relative to the (int)M frame adapted
to the (u, (int)s) foliation.

L2 based norms in (int)M

We introduce the curvature norms,(
(int)R0[Ř]

)2

:=

∫
(int)M

|Ř|2.

For any nonzero integer k, we introduce the following higher derivatives norms

(int)Rk[Ř] := (int)R0[d≤kŘ].

For any k ≥ 0, we introduce the following norms(
(int)Gk[Γ̌]

)2

:=

∫
(int)M

|d≤kΓ̌|2.

Decay norms in (int)M

We define

(int)D0[Ř] := sup
(int)M

u1+δdec |Ř|, (int)D0[Γ̌] := sup
(int)M

u1+δdec |Γ̌|.

Also, we introduce the following higher derivatives norms for any integer k ≥ 1

(int)Dk[Ř] := (int)D0[d≤kŘ], (int)Dk[Γ̌] := (int)D0[d≤kΓ̌].
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3.2.3 Combined norms

We define the following norms M by combining our above norms on (ext)M and (int)M

N
(En)
k := (ext)Rk[Ř] + (ext)Gk[Γ̌] + (int)Rk[Ř] + (int)Gk[Γ̌],

N
(Dec)
k := (ext)Dk[Ř] + (ext)Dk[Γ̌] + (int)Dk[Ř] + (int)Dk[Γ̌].

3.2.4 Initial layer norm

Recall the notations of section 3.1.1 concerning the initial data layer L0. Recall that the
constant m0 > 0 is the mass of the initial Schwarzschild spacetime relative to which our
initial perturbation is measured. We define the initial layer norm to be8,

Ik := (ext)Ik + (int)Ik + I′k

where

(ext)I0 := sup
(ext)L0

[
r

7
2

+δB (|α|+ |β|) + r3

∣∣∣∣ρ+
2m0

r3

∣∣∣∣+ r2|β|+ r|α|
]

+ sup
(ext)L0

r2

(
|ϑ|+

∣∣∣∣κ− 2

r

∣∣∣∣+ |ζ|+
∣∣∣∣∣κ+

2
(
1− 2m0

r

)
r

∣∣∣∣∣
)

+ sup
(ext)L0

r
(
|ϑ|+

∣∣∣ω − m0

r2

∣∣∣+ |ξ|
)

+ sup
(ext)L0( (ext)r0≥4m0)

(
r
∣∣∣ γ
r2
− 1
∣∣∣+ r|b|+ |Ω + Υ|+ |ς − 1|+ r

∣∣∣∣ eΦ

r sin θ
− 1

∣∣∣∣) ,
(int)I0 := sup

(int)L0

(
|α|+ |β|+

∣∣∣∣ρ+
2m0

r3

∣∣∣∣+ |β|+ |α|
)

+ sup
(int)L0

(
|ϑ|+

∣∣∣∣∣κ− 2
(
1− 2m0

r

)
r

∣∣∣∣∣+ |ζ|+
∣∣∣∣κ+

2

r

∣∣∣∣+ |ϑ|+
∣∣∣ω +

m0

r2

∣∣∣+ |ξ|
)
,

I′0 := sup
(int)L0∩ (ext)L0

(
|f |+ |f |+ | log(λ−1

0 λ)|
)
, λ0 = (ext)λ0 = 1− 2m0

(ext)rL0

,

8Recall that the initial data layer foliations satisfy η + ζ = 0, as well as ξ = ω = 0 on (ext)L0 and

η = ζ as well as ξ = ω = 0 on (int)L0.
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with Ik the corresponding higher derivative norms obtained by replacing each component
by d≤k of it. In the definition of I′0 above, (f, f , λ) denote the transition functions of

Lemma 2.3.1 from the frame of the outgoing part (ext)L0 of the initial data layer to the
frame of the ingoing part (int)L0 of the initial data layer in the region (int)L0 ∩ (ext)L0.

Remark 3.2.5. Note that in the definition of (ext)Ik we allow a higher power of r in front
α, β and their derivatives than what it is consistent with the results of [20] and [43]. The
additional rδB power, for δB small, is consistent instead with the result of [44].

3.3 Main theorem

3.3.1 Smallness constants

Before stating our main theorem, we first introduce the following constants that will be
involved in its statement.

• The constant m0 > 0 is the mass of the initial Schwarzschild spacetime relative to
which our initial perturbation is measured.

• The integer klarge which corresponds to the maximum number of derivatives of the
solution.

• The size of the initial data layer norm is measured by ε0 > 0.

• The size of the bootstrap assumption norms are measured by ε > 0.

• δH > 0 measures the width of the region |r − 2m0| ≤ 2m0δH where the redshift
estimate holds and which includes in particular the region (int)M.

• δdec is tied to decay estimates in u, u for Γ̌ and Ř.

• δB is involved in the r-power of the rp weighted estimates for curvature.

In what follows m0 is a fixed constant, δH, δB, and δdec are fixed, sufficiently small,
universal constants, and klarge is a fixed, sufficiently large, universal constant, chosen such
that

0 < δH, δdec, δB � min{m0, 1}, δB > 2δdec, klarge �
1

δdec
. (3.3.1)
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Then, ε and ε0 are chosen such that

ε0, ε� min

{
δH, δdec, δB,

1

klarge
,m0, 1

}
(3.3.2)

and

ε = ε
2
3
0 . (3.3.3)

Using the definition of ε0, we may now precise the behavior (3.1.2) of r on Σ∗

inf
Σ∗
r = ε

− 2
3

0 u1+δdec
∗ . (3.3.4)

From now on, in the rest of the paper, . means bounded by a constant depending only
on geometric universal constants (such as Sobolev embeddings, elliptic estimates,...) as
well as the constants

m0, δH, δdec, δB, klarge

but not on ε and ε0.

3.3.2 Statement of the main theorem

We are now ready to give the following precise version of our main theorem.

Main Theorem (Main theorem, version 2). There exists a sufficiently large integer klarge
and a sufficiently small constant ε0 > 0 such that given an initial layer defined as in section
3.1.1 and satisfying the bound

Iklarge+5 ≤ ε
5
3
0 , (3.3.5)

there exists a globally hyperbolic development with a complete future null infinity I+ and
a future horizon H+ together with foliations and adapted null frames verifying the admis-
sibility conditions of section 3.1.2 such that following bound is satisfied

N
(En)
klarge

+ N
(Dec)
ksmall

≤ Cε0 (3.3.6)

where C is a large enough universal constant and where ksmall is given by

ksmall =

⌊
1

2
klarge

⌋
+ 1. (3.3.7)

In particular,
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• On (ext)M, we have

|α|, |β| . min

{
ε0

r3(u+ 2r)
1
2

+δdec
,

ε0
r2(u+ 2r)1+δdec

}
,

|ρ̌| . min

{
ε0

r3u
1
2

+δdec
,

ε0
r2u1+δdec

}
,

|β| . ε0
r2u1+δdec

,

|α| . ε0
ru1+δdec

,

and

|κ̌| . ε0
r2u1+δdec

,

|ϑ|, |ζ|, |κ̌| . min

{
ε0

r2u
1
2

+δdec

ε0
ru1+δdec

}
,

|η|, |ϑ|, |ω̌|, |ξ| . ε0
ru1+δdec

.

• On (int)M we have, with Γ̌ = {κ̌, ϑ, ζ, η, κ̌, ϑ, ω̌, ξ}, Ř = {α, β, ρ̌, β, α},

|Γ̌, Ř| . ε0
u1+δdec

.

• The Bondi mass converges as u→ +∞ along I+ to the final Bondi mass which we
denote by m∞. The final Bondi mass verifies the estimate∣∣∣∣m∞m0

− 1

∣∣∣∣ . ε0.

In particular m∞ > 0.

• The Hawking mass m satisfies

|m−m∞|
m0

.


ε0

u1+δdec
on (ext)M,

ε0
u1+δdec

on (int)M.

• The location of the future horizon H+ satisfies

r = 2m∞ +O

( √
ε0

u1+
δdec

2

)
on H+.
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• On (ext)M, we have ∣∣∣∣ρ+
2m∞
r3

∣∣∣∣ . min

{
ε0

r3u
1
2

+δdec
,

ε0
r2u1+δdec

}
,∣∣∣∣κ− 2

r

∣∣∣∣ . ε0
r2u1+δdec

,∣∣∣∣∣κ+
2
(
1− 2m∞

r

)
r

∣∣∣∣∣ . min

{
ε0

r2u
1
2

+δdec

ε0
ru1+δdec

}
,∣∣∣ω − m∞

r2

∣∣∣ . ε0
ru1+δdec

.

• On (int)M, we have.∣∣∣∣ρ+
2m∞
r3

∣∣∣∣ , ∣∣∣∣κ+
2

r

∣∣∣∣ ,
∣∣∣∣∣κ− 2

(
1− 2m∞

r

)
r

∣∣∣∣∣ , ∣∣∣ω +
m∞
r2

∣∣∣ . ε0
u1+δdec

.

• On (ext)M, the space-time metric g is given in the (u, r, θ, ϕ) coordinates system by

g = gm∞, (ext)M +O
( ε0
u1+δdec

)(
(dr, du, rdθ)2, r2(sin θ)2(dϕ)2

)
where gm∞, (ext)M denotes the Schwarzschild metric of mass m∞ > 0 in outgoing
Eddington-Finkelstein coordinates, i.e.

gm∞, (ext)M := −2dudr −
(

1− 2m∞
r

)
(du)2 + r2

(
(dθ)2 + (sin θ)2(dϕ)2

)
.

• On (int)M, the space-time metric g is given in the (u, r, θ, ϕ) coordinates system by

g = gm∞, (int)M +O

(
ε0

u1+δdec

)(
(dr, du, rdθ)2, r2(sin θ)2(dϕ)2

)
where gm∞, (ext)M denotes the Schwarzschild metric of mass m∞ > 0 in ingoing
Eddington-Finkelstein coordinates, i.e.

gm∞, (int)M := 2dudr −
(

1− 2m∞
r

)
(du)2 + r2

(
(dθ)2 + (sin θ)2(dϕ)2

)
.

Note that analog statements of the above estimates also hold for dk derivatives with k ≤
ksmall.
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Remark 3.3.1. In this paper, we choose to specify the closeness to Schwarzschild of our
initial data in the context of the Characteristic Cauchy problem. Note that the conclusions
of our main theorem can be immediately extended to the case where the data are specified
to be close to Schwarzschild on a spacelike hypersurface Σ. Indeed, one can reduce this
latter case to our situation by invoking

• The results in [43] [44] which allow us to control the causal region between Σ and
the outgoing part of the initial data layer9.

• A standard local existence result which controls the finite causal region between Σ
and the ingoing part of the initial data layer.

Remark 3.3.2. In the context of the previous remark, we note that the constant m0 > 0
appearing in the initial data layer norm of the assumption (3.3.5) of our main theorem
does not necessarily coincide with the ADM mass of the corresponding initial data set on
the spacelike hypersurface Σ. With respect to this ADM mass, we would recover the well
known inequality stating that the final Bondi mass is smaller than the ADM mass.

Remark 3.3.3. For most of the proof, it is sufficient to assume the following weaker
analog of (3.3.5) for the initial data layer

Iklarge+5 ≤ ε0.

The only place where we need the stronger assumption (3.3.5) on the initial data layer is
in section 8.1, see Remark 8.1.1.

3.4 Bootstrap assumptions and first consequences

3.4.1 Main bootstrap assumptions

We assume that the combined norms N
(En)
k and N

(Dec)
k defined in section 3.2 verifies the

following bounds

BA-E (Bootstrap Assumptions on energies and weighted energies)

N
(En)
klarge

≤ ε, (3.4.1)

9Note that the results of [44] are consistent with our initial data layer assumptions.
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BA-D (Bootstrap Assumptions on decay)

N
(Dec)
ksmall

≤ ε. (3.4.2)

In the remaining of section 3.4.1, we state several simple consequences of the bootstrap
assumptions which will be proved in Chapter 4.

3.4.2 Control of the initial data

While the smallness constant involved in the bootstrap assumptions is ε > 0, we need the
smallness constant involved in the control of the initial data to be ε0 > 0. This is achieved
in the theorem below.

Theorem M0. Assume that the initial data layer L0, as defined in section 3.1.1, satisfies

Iklarge+5 ≤ ε0.

Then under the bootstrap assumptions BA-D on decay, the following holds true on the
initial data hypersurface C1 ∪ C1,

max
0≤k≤klarge

{
sup
C1

[
r

7
2

+δB
(
|dk (ext)α|+ |dk (ext)β|

)
+ r

9
2

+δB |dk−1e3( (ext)α)|
]

+ sup
C1

[
r3

∣∣∣∣dk ( (ext)ρ+
2m0

r3

)∣∣∣∣+ r2|dk (ext)β|+ r|dk (ext)α|
]}
. ε0,

max
0≤k≤klarge

sup
C1

[
|dk (int)α|+ |dk (int)β|+

∣∣∣∣dk ( (int)ρ+
2m0

r3

)∣∣∣∣
+|dk (int)β|+ |dk (int)α|

]
. ε0,

and

sup
C1∪C1

∣∣∣∣ mm0

− 1

∣∣∣∣ . ε0.
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3.4.3 Control of averages and of the Hawking mass

The following two lemma are simple consequence of the bootstrap assumptions and will
be proved in section 4.2.

Lemma 3.4.1 (Control of averages). Assume given a GCM admissible spacetime M
as defined in section 3.1.2 verifying the bootstrap assumption for some sufficiently small
ε > 0. Then, we have

sup
(ext)M

u1+δdec

(
r3

∣∣∣∣d≤ksmall (κ− 2

r

)∣∣∣∣+ r3

∣∣∣∣d≤ksmall (ρ+
2m

r3

)∣∣∣∣) . ε0,

sup
(ext)M

u1+δdec

(
r2

∣∣∣∣d≤ksmall (κ+
2Υ

r

)∣∣∣∣+ r2
∣∣∣d≤ksmall (ω − m

r2

)∣∣∣) . ε0,

sup
(ext)M

u
1
2

+δdec

(
r3

∣∣∣∣d≤klarge (κ− 2

r

)∣∣∣∣+ r3

∣∣∣∣d≤klarge (ρ+
2m

r3

)∣∣∣∣) . ε0,

sup
(ext)M

u
1
2

+δdec

(
r2

∣∣∣∣d≤klarge (κ+
2Υ

r

)∣∣∣∣+ r2
∣∣∣d≤klarge (ω − m

r2

)∣∣∣) . ε0,

sup
(int)M

u1+δdec

(∣∣∣∣d≤ksmall (κ− 2Υ

r

)∣∣∣∣+

∣∣∣∣d≤ksmall (ρ+
2m

r3

)∣∣∣∣) . ε0,

sup
(int)M

u1+δdec

(∣∣∣∣d≤ksmall (κ+
2

r

)∣∣∣∣+
∣∣∣d≤ksmall (ω +

m

r2

)∣∣∣) . ε0,

sup
(int)M

u
1
2

+δdec

(∣∣∣∣d≤klarge (κ− 2Υ

r

)∣∣∣∣+

∣∣∣∣d≤klarge (ρ+
2m

r3

)∣∣∣∣) . ε0,

sup
(int)M

u
1
2

+δdec

(∣∣∣∣d≤klarge (κ+
2

r

)∣∣∣∣+
∣∣∣d≤klarge (ω +

m

r2

)∣∣∣) . ε0.

Also, we have

sup
(ext)M

(
u1+δdecr

∣∣d≤ksmall (Ω + Υ
)∣∣+ u

1
2

+δdecr
∣∣d≤klarge (Ω + Υ

)∣∣ ) . ε0,

sup
(int)M

(
u1+δdec

∣∣d≤ksmall (Ω−Υ
)∣∣+ u

1
2

+δdec
∣∣d≤klarge (Ω−Υ

)∣∣ ) . ε0.

Finally, recall that µ and µ are given by the following formula

µ =
2m

r3
on (ext)M, µ =

2m

r3
on (int)M.
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Lemma 3.4.2 (Control of the Hawking mass). Assume given a GCM admissible spacetime
M as defined in section 3.1.2 verifying the bootstrap assumption for some sufficiently small
ε > 0. Then, we have

max
0≤k≤klarge

sup
(ext)M

u1+δdec
(
|dke3(m)|+ r|dke4(m)|

)
. ε0,

max
0≤k≤klarge

sup
(int)M

u1+δdec
(
|dke3(m)|+ |dke4(m)|

)
. ε0.

The e4 derivatives behave better in powers of r,

max
0≤k≤ksmall

sup
(ext)M

r2u1+δdec|dke4(m)| . ε0,

max
0≤k≤klarge

sup
(ext)M

r2u
1
2

+δdec |dke4(m)| . ε0.

Moreover,

sup
M

∣∣∣∣ mm0

− 1

∣∣∣∣ . ε0.

3.4.4 Control of coordinates system

The following two propositions on the existence of a suitable coordinates system both
in (ext)M and in (int)M are also consequences of the bootstrap assumptions and will be
proved in section 4.3.

Proposition 3.4.3 (Control of a coordinates system on (ext)M). Let θ ∈ [0, π] be the
Z-invariant scalar on M defined by (2.2.52), i.e.

θ = cot−1 (reθ(Φ)) . (3.4.3)

Consider the (u, r, θ, ϕ) coordinates system introduced in Proposition 2.2.23. Then, rela-
tive to these (u, r, θ, ϕ) coordinates,

1. The spacetime metric takes the form,

g = − 4ς

rκ
dudr +

ς2(κ+ A)

κ
du2 + γ

(
dθ − 1

2
ςbdu− b

2
Θ

)2

(3.4.4)

where,

b = e4(θ), b = e3(θ), γ =
1

(eθ(θ))2
(3.4.5)
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and,

Θ =
4

rκ
dr − ς

(
κ+ A

κ

)
du.

2. The reduced coordinates derivatives take the form,

∂r =
2

rκ
e4 −

2
√
γ

rκ
beθ,

∂θ =
√
γeθ,

∂u = ς

[
1

2
e3 −

1

2

κ+ A

κ
e4 −

1

2

√
γ

(
b−

(
κ+ A

κ

)
b

)
eθ

]
.

(3.4.6)

3. The following estimates hold true:

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
)(∣∣∣dk ( γ

r2
− 1
)∣∣∣+ r

∣∣dkb∣∣) . ε,

max
0≤k≤ksmall

sup
(ext)M

u1+δdec
(∣∣dkΩ̌∣∣+

∣∣dk(ς − 1)
∣∣+ r

∣∣dkb∣∣) . ε.

Also, eΦ satisfies

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
) ∣∣∣∣dk ( eΦ

r sin θ
− 1

)∣∣∣∣ . ε.

Proposition 3.4.4 (Control of a coordinates system on (int)M). Let θ ∈ [0, π] be the
Z-invariant scalar on M defined by (3.4.3). Consider the (u, r, θ, ϕ) coordinates system
introduced in Proposition 2.2.26. Then, relative to these (u, r, θ, ϕ) coordinates,

1. The spacetime metric takes the form,

g = − 4ς

rκ
dudr +

ς2(κ+ A)

κ
du2 + γ

(
dθ − 1

2
ςbdu− b

2
Θ

)2

(3.4.7)

where,

b = e4(θ), b = e3(θ), γ =
1

(eθ(θ))2
(3.4.8)

and,

Θ :=
4

rκ
dr − ς

(
κ+ A

κ

)
du.
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2. The reduced coordinates derivatives take the form,

∂r =
2

rκ
e3 −

2
√
γ

rκ
beθ,

∂θ =
√
γeθ,

∂u = ς

[
1

2
e4 −

1

2

κ+ A

κ
e3 −

1

2

√
γ

(
b−

(
κ+ A

κ

)
b

)
eθ

]
.

(3.4.9)

3. The following estimates hold true:

max
0≤k≤ksmall

sup
(int)M

u1+δdec
(∣∣dkΩ̌∣∣+

∣∣dk(ς − 1)
∣∣+
∣∣∣dk ( γ

r2
− 1
)∣∣∣+

∣∣dkb∣∣+
∣∣dkb∣∣) . ε.

Also, eΦ satisfies

max
0≤k≤ksmall

sup
(int)M

u1+δdec

∣∣∣∣dk ( eΦ

r sin θ
− 1

)∣∣∣∣ . ε.

3.4.5 Pointwise bounds for high order derivatives

We will need later to interpolate between the estimates provided by the bootstrap as-
sumptions on decay and the bootstrap assumptions on energy. To this end, we will need
the following consequence of the bootstrap assumptions on weighted energies.

Proposition 3.4.5. The Ricci coefficients and curvature components satisfy the following
pointwise estimates on M

max
k≤klarge−5

sup
M

{
r

7
2

+
δB
2

(
|dkα|+ |dkβ|

)
+ r3

(
|dkµ|+ |dkρ̌|

)
+r2

(
|dkκ̌|+ |dkζ|+ |dkϑ|+ |dkκ̌|+ |dkβ|

)
+r
(
|dkη|+ |dkϑ|+ |dkω̌|+ |dkξ|+ |dkα|

)}
. ε.

3.4.6 Construction of a second frame in (ext)M

Recall that the quantity q satisfies the following wave equation, see (2.4.7),

�2q + κκq = Err[�2q]
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where the nonlinear term Err[�2q] has the schematic structure exhibited in (2.4.8). Also,
recall that according to our bootstrap assumption on decay and Proposition 3.4.5, η
satisfies on (ext)M

|d≤ksmallη| ≤ ε

ru1+δdec
, |d≤klarge−5η| . ε

r
.

As discuss in Remark 2.4.8, this decay in r−1 is too weak to derive suitable decay for
q. We thus need to provide another frame for (ext)M. This is the aim of the following
proposition.

Proposition 3.4.6. Let an integer kloss and a small constant δ0 > 0 satisfying10

16 ≤ kloss ≤
δdec
3

(klarge − ksmall), δ0 :=
kloss

klarge − ksmall
. (3.4.10)

Let (e4, e3, eθ) the outgoing geodesic null frame of (ext)M. There exists another frame
(e′4, e

′
3, e
′
θ) of (ext)M provided by

e′4 = e4 + feθ +
1

4
f 2e3,

e′θ = eθ +
1

2
fe3,

e′3 = e3,

such that the Ricci coefficients and curvature components with respect to that frame satisfy

ξ′ = 0,

10Recall from (3.3.1) and (3.3.7) that we have

0 < δdec � 1, δdec klarge � 1, ksmall =

⌊
1

2
klarge

⌋
+ 1.

In particular, we have δdec(klarge−ksmall)� 1 and hence the exists an integer kloss satisfying the required
constraints.
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max
0≤k≤ksmall+kloss

sup
(ext)M

{(
r2u

1
2

+δdec−2δ0 + ru1+δdec−2δ0
)
|dkΓ′g|+ ru1+δdec−2δ0 |dkΓ′b|

+r2u1+δdec−2δ0

∣∣∣∣dk−1e′3

(
κ′ − 2

r
, κ′ +

2Υ

r
, ϑ′, ζ ′, η′, η′

)∣∣∣∣
+
(
r

7
2

+
δB
2 + r3u

1
2

+δdec−2δ0 + r2u1+δdec−2δ0
)(
|dkα′|+ |dkβ′|

)
+
(
r

9
2

+
δB
2 + r3u1+δdec + r4u

1
2

+δdec−2δ0
)
|dk−1e′3(α′)|

+
(
r3u1+δdec + r4u

1
2

+δdec−2δ0
)
|dk−1e′3(β′)|

+
(
r3u

1
2

+δdec−2δ0 + r2ru1+δdec−2δ0
)
|dkρ̌′|

+u1+δdec−2δ0
(
r2|dkβ′|+ r|dkα′|

)}
. ε,

where we have used the notation11

Γ′g =

{
rω′, κ′ − 2

r
, ϑ′, ζ ′, η′, η′, κ′ +

2Υ

r
, r−1(e′4(r)− 1), r−1e′θ(r), e

′
4(m)

}
,

Γ′b =
{
ϑ′, ω′ − m

r2
, ξ′, r−1(e′3(r) + Υ), r−1e′3(m)

}
.

Furthermore, f satisfies

|dkf | . ε

ru
1
2

+δdec−2δ0 + u1+δdec−2δ0
, for k ≤ ksmall + kloss + 2 on (ext)M,

|dk−1e′3f | .
ε

ru1+δdec−2δ0
for k ≤ ksmall + kloss + 2 on (ext)M.

(3.4.11)

Remark 3.4.7. The crucial point of Proposition 3.4.6 is that in the new frame (e′4, e
′
3, e
′
θ)

of (ext)M, η′ belongs to Γ′g and thus displays a better decay in r−1 than η corresponding

to the outgoing geodesic frame (e4, e3, eθ) of (ext)M.

3.5 Global null frames

In this section, we construct 2 smooth global frames on M by matching the frame of
(int)M on the one hand with a renormalization of the frame on (ext)M, and on the other
hand, with a renormalization of the second frame of (ext)M given by Proposition 3.4.6.

11Here, r and m denote respectively the area radius and the Hawking mass of the outgoing geodesic
foliation of (ext)M, i.e. r = (ext)r and m = (ext)m. In particular, while eθ(r) = eθ(m) = 0, we have in
general e′θ(r) 6= 0 and e′θ(m) 6= 0.
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3.5.1 Extension of frames

To construct the first global frame, we need to extend the frame ((int)e4,
(int)e3,

(int)eθ)
of (int)M slightly into (ext)M, and the frame ((ext)e4,

(ext)e3,
(ext)eθ) of (ext)M slightly

into (int)M. We keep the same labels for the extended frame, i.e. ((int)e4,
(int)e3,

(int)eθ)
represents the extended frame of (int)M in (ext)M and vice versa. This convention also
applies to the Ricci coefficients, curvature components, area radius and Hawking mass of
the extended frames.

Note that these extensions require, in addition to the initialization of the frames on T , to
initialize

1. ((ext)e4,
(ext)e3,

(ext)eθ) on C∗ by

((ext)e4,
(ext)e3,

(ext)eθ) = (((int)Υ)−1(int)e4,
(int)Υ(int)e3,

(int)eθ).

2. ((int)e4,
(int)e3,

(int)eθ) on C∗ by

((int)e4,
(int)e3,

(int)eθ) = ((ext)Υ(ext)e4, (
(ext)Υ)−1(ext)e3,

(ext)eθ).

3.5.2 Construction of the first global frame

We start with the definition of the region where the frame of (int)M and a conformal
renormalization of the frame of (ext)M will be matched.

Definition 3.5.1. We define the matching region as the spacetime region

Match :=

(
(ext)M∩

{
(int)r ≤ 2m0

(
1 +

3

2
δH

)})
∪
(

(int)M∩
{

(int)r ≥ 2m0

(
1 +

1

2
δH

)})
,

where, as explained in the previous section, (int)r denotes the area radius of the ingoing
geodesic foliation of (int)M and its extension to (ext)M.

Here is our main proposition concerning our first global frame.

Proposition 3.5.2. There exists a global null frame defined on (int)M ∪ (ext)M and
denoted by ((glo)e4,

(glo)e3,
(glo)eθ) such that

(a) In (ext)M\Match, we have

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(ext)Υ (ext)e4,
(ext)Υ−1(ext)e3,

(ext)eθ
)
.
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(b) In (int)M\Match, we have

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(int)e4,
(int)e3,

(int)eθ
)
.

(c) In the matching region, we have

max
0≤k≤ksmall−2

sup
Match∩ (int)M

u1+δdec
∣∣dk((glo)Γ̌, (glo)Ř)

∣∣ . ε,

max
0≤k≤ksmall−2

sup
Match∩ (ext)M

u1+δdec
∣∣dk((glo)Γ̌, (glo)Ř)

∣∣ . ε,

max
0≤k≤klarge−1

(∫
Match

∣∣dk((glo)Γ̌, (glo)Ř)
∣∣2) 1

2

. ε,

where (glo)Ř and (glo)Γ̌ are given by

(glo)Ř =

{
α, β, ρ+

2m

r3
, β, α

}
,

(glo)Γ̌ =

{
ξ, ω +

m

r2
, κ− 2Υ

r
, ϑ, ζ, η, η, κ+

2

r
, ϑ, ω, ξ

}
.

(d) Furthermore, we may also choose the global frame such that, in addition, one of the
following two possibilities hold,

i. We have on all (ext)M

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(ext)Υ (ext)e4,
(ext)Υ−1(ext)e3,

(ext)eθ
)
.

ii. We have on all (int)M

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(int)e4,
(int)e3,

(int)eθ
)
.

Remark 3.5.3. The global frame on M of Proposition 3.5.2 will be used to construct
the second global frame in the next section, see Proposition 3.5.5. It will also be used to
recover high order derivatives in Theorem M8 (stated in section 3.6.2), see section 8.3.2.

3.5.3 Construction of the second global frame

We start with the definition of the region where first global frame of M (i.e. the one of
Proposition 3.5.2) and a conformal renormalization of the frame second frame of (ext)M
(i.e. the one of Proposition 3.4.6) will be matched.
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Definition 3.5.4. We define the matching region as the spacetime region

Match′ := (ext)M∩
{

7m0

2
≤ (ext)r ≤ 4m0

}
,

where (ext)r denotes the area radius of the outgoing geodesic foliation of (ext)M.

Here is our main proposition concerning our second global frame.

Proposition 3.5.5. Let an integer kloss and a small constant δ0 > 0 satisfying (3.4.10).
There exists a global null frame ((glo′)e4,

(glo′)e3,
(glo′)eθ) defined on (int)M∪ (ext)M such

that

(a) In (ext)M∩ { (ext)r ≥ 4m0}, we have

((glo′)e4,
(glo′)e3,

(glo′)eθ) =
(

(ext)Υ (ext)e′4,
(ext)Υ−1(ext)e′3,

(ext)e′θ
)
,

where ((ext)e′4,
(ext)e′3,

(ext)e′θ) denotes the second frame of (ext)M, i.e. the fame of
Proposition 3.4.6.

(b) In (int)M∪ ( (ext)M∩ { (ext)r ≤ 7m0

2
}), we have

((glo′)e4,
(glo′)e3,

(glo′)eθ) = ((glo)e4,
(glo)e3,

(glo)eθ),

where ((glo)e4,
(glo)e3,

(glo)eθ) denotes the first global frame of M, i.e. the frame of
Proposition 3.5.2.

(c) In the matching region, we have

max
0≤k≤ksmall+kloss

sup
Match′

u1+δdec−2δ0
∣∣∣dk((glo′)Γ̌, (glo′)Ř)

∣∣∣ . ε,

where (glo′)Ř and (glo′)Γ̌ are given by

(glo′)Ř =

{
α, β, ρ+

2m

r3
, β, α

}
,

(glo′)Γ̌ =

{
ξ, ω +

m

r2
, κ− 2Υ

r
, ϑ, ζ, η, η, κ+

2

r
, ϑ, ω, ξ

}
.

with the Ricci coefficients and curvature components being the one associated to the
frame ((glo′)e4,

(glo′)e3,
(glo′)eθ).

(d) Furthermore, we may also choose the global frame such that, in addition, one of the
following two possibilities hold,



146 CHAPTER 3. MAIN THEOREM

i. We have on (ext)M∩ { (ext)r ≥ 15m0

4
}

((glo′)e4,
(glo′)e3,

(glo′)eθ) =
(

(ext)Υ (ext)e′4,
(ext)Υ−1(ext)e′3,

(ext)e′θ
)
.

ii. We have on (int)M∪ ( (ext)M∩ { (ext)r ≤ 15m0

4
})

((glo′)e4,
(glo′)e3,

(glo′)eθ) = ((glo)e4,
(glo)e3,

(glo)eθ).

Remark 3.5.6. The global frame onM of Proposition 3.5.5 will be needed to derive decay
estimates for the quantity q in Theorem M1 (stated in section 3.6.1).

3.6 Proof of the main theorem

3.6.1 Main intermediate results

We are ready to state our main intermediary results.

Theorem M1. Assume given a GCM admissible spacetimeM as defined in section 3.1.2
verifying the bootstrap assumptions12 BA-E and BA-D for some sufficiently small ε > 0.
Then, if ε0 > 0 is sufficiently small, there exists δextra > δdec such that we have the
following estimates in M,

max
0≤k≤ksmall+20

sup
(ext)M

{(
ru

1
2

+δextra + u1+δextra
)
|dkq|+ ru1+δextra |dke3q|

}
+ max

0≤k≤ksmall+20
sup

(int)M
u1+δextra |dkq| . ε0.

Moreover, q also satisfies the following estimate

max
0≤k≤ksmall+21

u2+2δextra

∫
(int)M(≥u)

|dkq|2 + max
0≤k≤ksmall+20

u2+2δextra

∫
Σ∗(≥u)

|dke3q|2 . ε20.

Theorem M2. Under the same assumptions as above we have the following decay esti-
mates for (ext)α

max
0≤k≤ksmall+20

sup
(ext)M

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)(
|dk (ext)α|+ r|dke3

(ext)α|
)
. ε0.

12Recall in particular that the conclusions of Theorem M0 hold under the bootstrap assumptions BA-E
and BA-D.
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Theorem M3. Under the same assumptions as above we have the following decay esti-
mates for α

(int)Dksmall+16[α] . ε0, max
0≤k≤ksmall+18

∫
Σ∗

u2+2δextra |dkα|2 . ε20.

Theorem M4. Under the same assumptions as above we also have the following decay
estimates in (ext)M

(ext)Dksmall+8[Ř] + (ext)Dksmall+8[Γ̌] . ε0.

Theorem M5. Under the same assumptions as above we also have the following decay
estimates for Ř and Γ̌ in (int)M

(int)Dksmall+5[Ř] + (int)Dksmall+5[Γ̌] . ε0.

Note that, as an immediate consequence of Theorem M2 to Theorem M5 we have ob-
tained, under the same assumptions as above, the following improvement of our bootstrap
assumptions on decay

N
(Dec)
ksmall+5 . ε0. (3.6.1)

3.6.2 End of the proof of the main theorem

Definition 3.6.1 (Definition of ℵ(u∗)). Let ε0 > 0 and ε > 0 be given small constants
satisfying the constraint (3.3.3). Let ℵ(u∗) be the set of all GCM admissible spacetimes
M defined in section 3.1.2 such that

• u∗ is the value of u on the last outgoing slice C∗,

• u∗ satisfies (3.3.4),

• the bootstrap assumptions (3.4.1) (3.4.2) hold true, i.e., relative to the combined
norms defined in section 3.2.3, we have

N
(En)
klarge

≤ ε, N
(Dec)
ksmall

≤ ε.

Definition 3.6.2. Let U be the set of all values of u∗ ≥ 0 such that the spacetime ℵ(u∗)
exists.

The following theorem shows that U is not empty.
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Theorem M6. There exists δ0 > 0 small enough such that for sufficiently small constants
ε0 > 0 and ε > 0 satisfying the constraints (3.3.3) (3.3.4), we have [1, 1 + δ0] ⊂ U .

In view of Theorem M6, we may define U∗ as the supremum over all value of u∗ that
belongs to U .

U∗ := sup
u∗∈U

u∗.

Assume by contradiction that
U∗ < +∞.

Then, by the continuity of the flow, U∗ ∈ U . Furthermore, according to the consequence
(3.6.1) of Theorem M2 to Theorem M5, the bootstrap assumptions on decay (3.4.2) on
any spacetime of ℵ(U∗) are improved by

N
(Dec)
ksmall+5 . ε0.

To reach a contradiction, we still need an extension procedure for spacetimes in ℵ(u∗) to
larger values of u, as well as to improve our bootstrap assumptions on weighted energies
(3.4.1). This is done in two steps.

Theorem M7. Any GCM admissible spacetime in ℵ(u∗) for some 0 < u∗ < +∞ such
that

N
(Dec)
ksmall+5 . ε0,

has a GCM admissible extension (satisfying (3.3.4)), i.e. u′∗ > u∗, initialized by Theorem
M0, which verifies

N
(Dec)
ksmall

. ε0.

Remark 3.6.3. Recall that the definition of a GCM admissible spacetime in section 3.1.2
is such that T = {r = rT } for some rT satisfying

2m0

(
1 +

δH
2

)
≤ rT ≤ 2m0

(
1 +

3δH
2

)
. (3.6.2)

All results obtained so far, in particular Theorems M0–M7, hold for any choice of rT
satisfying (3.6.2), see Remark 8.3.1 for a more precise statement. It is at this stage,
in Theorem M8 below, that we need to make a specific choice of rT in the context of a
Lebesgue point argument required for the control of top order derivatives. This choice will
be made in (8.3.2).
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Theorem M8. There exists a choice of rT satisfying (3.6.2) such that the GCM admis-
sible spacetime exhibited in Theorem M7 satisfies in addition

N
(En)
klarge

. ε0

and therefore belongs to ℵ(u′∗). In particular u′∗ belongs to U .

In view of Theorem M8, we have reached a contradiction, and hence

U∗ = +∞

so that the spacetime may be continued forever. This concludes the proof of the main
theorem.

3.6.3 Conclusions

The Penrose diagram of M

Complete future null infinity. We first deduce from our estimate that our spacetime
M has a complete future null infinity I+. The portion of null infinity ofM corresponds to
the limit r → +∞ along the leaves Cu of the outgoing geodesic foliation of (ext)M. As Cu
exists for all u ≥ 0 with suitable estimates, it suffices to prove that u is an affine parameter
of I+. To this end, recall from our main theorem that the estimates N

(Dec)
ksmall

. ε0 hold
which implies in particular13

sup
(ext)M

ru1+δdec
(
|ξ|+

∣∣∣ω − m

r2

∣∣∣+ r−1|ς − 1|
)
. ε0. (3.6.3)

As |m−m0| . ε0m0, see Lemma 3.4.2, m is bounded. We infer that

lim
Cu,r→+∞

ξ, ω = 0 for all 1 ≤ u <∞.

In view of the identity

D3e3 = −2ωe3 + 2ξeθ,

we infer that e3 is a null geodesic generator of I+. Since we have e3(u) = 2
ς

with |ς−1| . ε0
in view of (3.6.3), u is an affine parameter of I+ so that I+ is indeed complete.

13Using also Proposition 3.4.3 for the control of ς.
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Existence of a future event horizon. Next, note that the estimates N
(Dec)
ksmall

. ε0 also
imply

sup
(int)M

u1+δdec

(∣∣∣∣κ+
2

r

∣∣∣∣+

∣∣∣∣∣κ− 2
(
1− 2m

r

)
r

∣∣∣∣∣
)
. ε0.

In particular, considering the spacetime region r ≤ 2m0(1− δH/2) of (int)M, and in view
of the estimate |m−m0| . ε0m0, we infer, for all r ≤ 2m0(1− δH/2), that

κ ≤ 2
r − 2m

r2
+O(ε0) .

2

r2
(r − 2m0 + 2m0 − 2m) +O(ε0) .

2m0

r2
(−δH + ε0) +O(ε0).

Thus, since 0 < ε0 � δH � 1, we deduce,

sup
(int)M

(
r≤2m0

(
1− δH

2

))κ ≤ − δH

2m0

(
1− δH

2

)2 +O(ε0)

≤ − δH
4m0

.

Thus, all 2-spheres S(u, s) of the ingoing geodesic foliation of (int)M which are located
in the spacetime region r ≤ 2m0(1− δH/2) of (int)M are trapped. This implies that the
past of I+ in M does not contain this region, and hence M contains the event horizon
H+ of a black hole in its interior. Moreover, since the timelike hyper surface T is foliated
by the outgoing null cones Cu of (ext)M, it is in the past of I+. Hence, since T is one of
the boundaries of (int)M, H+ is actually located in the interior of the region (int)M.

Asymptotic stationarity of M. Recall that we have introduced a vectorfield T in
(ext)M as well as one in (int)M by

T = e3 + Υe4 in (ext)M, T = e4 + Υe3 in (int)M.

We can easily express all components of (T )π in terms of Γ̌, e3(m), e4m. Thus, making us

of the estimate N
(Dec)
ksmall

. ε0 of our main theorem, we deduce,

|(T)π| . ε0
ru1+δdec

in (ext)M and |(T)π| . ε0
u1+δdec

in (int)M.

In particular, T is an asymptotically Killing vectorfield and hence our spacetime M is
asymptotically stationary.

The above conclusions regarding I+ and H+ allow us to draw the Penrose diagram ofM,
see figure 3.3.
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Figure 3.3: The Penrose diagram of the space-time M

Limits at null infinity and Bondi mass

Recall the following formula for the derivative of the Hawking mass in (ext)M, see Propo-
sition 2.2.16

e4(m) =
r

32π

∫
S

(
−1

2
κϑ2 − 1

2
κ̌ϑϑ+ 2κ̌ρ̌+ 2eθ(κ)ζ + 2κζ2

)
.

As a simple corollary of the decay estimates of our main theorem, i.e., N
(Dec)
ksmall

. ε0, we
deduce,

|e4(m)| . ε20
r2u1+2δdec

. (3.6.4)

Since r−2 is integrable, we infer the existence of a limit to m as r → +∞ along Cu

MB(u) = lim
r→+∞

m(u, r) for all 1 ≤ u < +∞

where MB(u) is the so-called Bondi mass.
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Next, we recall the following formula in (ext)M, see Proposition 2.2.8

e4(ϑ) +
1

2
κϑ = 2 d?/2ζ −

1

2
κϑ+ 2ζ2.

In view of N
(Dec)
ksmall

. ε0, we deduce

|e4(rϑ)| . ε0

r2u
1
2

+δdec
.

Since r−2 is integrable, we infer the existence of a limit to rϑ as r → +∞ along Cu

Θ(u, ·) = lim
r→+∞

rϑ(r, u, ·) for all 1 ≤ u < +∞.

On the other hand, in view of N
(Dec)
ksmall

. ε0 again,

r|ϑ| . ε0
u1+δdec

, on (ext)M.

We infer that

|Θ(u, ·)| . ε0
u1+δdec

for all 1 ≤ u < +∞.

The spheres at null infinity are round

The Gauss curvature is given by the formula,

K = −ρ− 1

4
κκ+

1

4
ϑϑ.

Thus, in view of our estimates in (ext)M,∣∣∣∣K − 1

r2

∣∣∣∣ . ε0

r3u
1
2

+δdec

so that

lim
r→+∞

r2K = 1.

In particular the spheres at null infinity are round.
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A Bondi mass formula

Using the formula for e3(m) in (ext)M, see Proposition 2.2.16, together with the estimates

N
(Dec)
ksmall

. ε0, we deduce ∣∣∣∣e3(m) +
r

64π

∫
S

κϑ2

∣∣∣∣ . ε20

ru
3
2

+2δdec

and hence ∣∣∣∣e3(m) +
1

8|S|

∫
S

(rϑ)2

∣∣∣∣ . ε20

ru
3
2

+2δdec
.

Letting r → +∞ along Cu, and using that the spheres at null infinity are round, we infer
in view of the definition of MB and Θ

e3(MB)(u) = −1

8

∫
S2

Θ2(u, ·) for all 1 ≤ u < +∞.

Since e3(u) = 2
ς

and e3 is orthogonal to the spheres foliating I+, we infer e3 = 2
ς
∂u. Thus,

we obtain the following Bondi mass type formula

∂uMB(u) = − ς

16

∫
S2

Θ2(u, ·) for all 1 ≤ u < +∞,

with ς satisfying (3.6.3).

Final Bondi mass

In view of the estimate

|Θ(u, ·)| . ε0
u1+δdec

for all 1 ≤ u < +∞,

and the control for ς in (3.6.3), we infer that

|∂uMB(u)| . ε20
u2+2δdec

for all 1 ≤ u < +∞.

In particular, since u−2−2δdec is integrable, the limit along I+ exists

MB(+∞) = lim
u→+∞

MB(u)

and is the so-called final Bondi mass. We denote it as m∞, i.e. m∞ = MB(+∞).



154 CHAPTER 3. MAIN THEOREM

Control of m−m∞. We have as a consequence of the above estimate for ∂uMB and the
definition of m∞

|MB(u)−m∞| .
ε20

u1+2δdec
for all 1 ≤ u < +∞.

Also, recall from (3.6.4) that we have obtained in (ext)M

|e4(m)| . ε20
r2u1+2δdec

which yields, together with the definition of MB(u), by integration in r at fixed u

|m(r, u)−MB(u)| . ε20
ru1+2δdec

in (ext)M.

We infer

sup
(ext)M

u1+2δdec |m−m∞| . ε20. (3.6.5)

Also, recall the following formula for the derivative of the Hawking mass in (int)M, see
Proposition 2.2.16 in the context of an outgoing geodesic foliation,

e3(m) =
r

32π

∫
S

(
−1

2
κϑ2 − 1

2
κ̌ϑϑ+ 2κ̌ρ̌− 2eθ(κ)ζ + 2κζ2

)
.

Together with the estimates N
(Dec)
ksmall

. ε0, we deduce

|e3(m)| . ε20
u2+2δdec

on (int)M

and hence by integration in r at fixed u, for r ∈ [2m0(1− δH), rT ],∣∣∣m(r, u)−m
(
rT , u

)∣∣∣ . ε20
u2+2δdec

m0δH on (int)M.

According to (3.6.5), since {r = rT } = T = (ext)M∩ (int)M ⊂ (ext)M, and since u = u
in T by the initialization of u,

u1+2δdec

∣∣∣m(rT , u)−m∞∣∣∣ . ε20.

We deduce

sup
(int)M

u1+2δdec |m−m∞| . ε20. (3.6.6)

Combining (3.6.5) and (3.6.6) with the estimate

sup
M
|m−m0| . ε0m0,

in the statement of our main theorem (see also Lemma 3.4.2), we infer that

|m∞ −m0| . ε0m0.

In particular we deduce that m∞ > 0 since ε0 can be made arbitrarily small.
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Coordinates systems on (ext)M and (int)M

In view of Proposition 3.4.3, and together with the control of the averages κ, κ provided

by Lemma 3.4.1, the control of κ̌ provided by the estimates N
(Dec)
ksmall

. ε0, and the control

of m − m∞ obtained in (3.6.5), we infer for the space-time metric g on (ext)M in the
(u, r, θ, ϕ) coordinates system

g = gm∞, (ext)M +O
( ε0
u1+δdec

)(
(dr, du, rdθ)2, r2(sin θ)2(dϕ)2

)
where gm∞, (ext)M denotes the Schwarzschild metric of massm∞ > 0 in outgoing Eddington-
Finkelstein coordinates, i.e.

gm∞, (ext)M = −2dudr −
(

1− 2m∞
r

)
(du)2 + r2

(
(dθ)2 + (sin θ)2(dϕ)2

)
.

Also, in view of Proposition 3.4.4, and together with the control of the averages κ, κ

provided by Lemma 3.4.1, the control of κ̌ provided by the estimates N
(Dec)
ksmall

. ε0, and

the control of m−m∞ obtained in (3.6.6), we infer for the space-time metric g on (int)M
in the (u, r, θ, ϕ) coordinates system

g = gm∞, (int)M +O

(
ε0

u1+δdec

)(
(dr, du, rdθ)2, r2(sin θ)2(dϕ)2

)
where gm∞, (ext)M denotes the Schwarzschild metric of mass m∞ > 0 in ingoing Eddington-
Finkelstein coordinates, i.e.

gm∞, (int)M = 2dudr −
(

1− 2m∞
r

)
(du)2 + r2

(
(dθ)2 + (sin θ)2(dϕ)2

)
.

Asymptotic of the future event horizon. We show below that H+ is located in the
following region of (int)M

2m

(
1−

√
ε0

u1+δdec

)
≤ r ≤ 2m

(
1 +

√
ε0

u1+
δdec

2

)
on H+ for any 1 ≤ u < +∞. (3.6.7)

Note first that the lower bound follows from the fact that

sup
(int)M

(
r≤2m

(
1−

√
ε0

u1+δdec

))κ ≤ −
√
ε0

u1+δdec

m
(

1−
√
ε0

u1+δdec

)2 +O

(
ε0

u1+δdec

)

≤ −
√
ε0

2m0u1+δdec
< 0.
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Concerning the upper bound, we need to show that any 2-sphere

S(u1) := S

u1, r = 2m

1 +

√
ε0

u
1+

δdec
2

1

 , 1 ≤ u1 < +∞ (3.6.8)

is in the past of I+. Since (ext)M is in the past of I+, it suffices to show that the forward
outgoing null cone emanating from any 2-sphere (3.6.8) reaches (ext)M in finite time.

Assume, by contradiction, that there exists an outgoing null geodesic, denoted by γ,
perpendicular to S(u1), that does not reach (ext)M in finite time. Let e′4 be the geodesic
generator of γ. In view of Lemma 2.3.1 on general null frame transformation, and denoting
by (e4, e3, eθ) the null frame14 of (int)M, we look for e′4 under the form

e′4 = λ

(
e4 + feθ +

1

4
f 2e3

)
,

and the fact that e′4 is geodesic implies the following transport equations along γ for f
and λ in view of Lemma 2.3.6 (applied15 with f = 0)

λ−1e′4(f) +
(κ

2
+ 2ω

)
f = −2ξ + E1(f,Γ),

λ−1e′4(log(λ)) = 2ω + E2(f,Γ),

where E1 and E2 are given schematically by

E1(f,Γ) = −1

2
ϑf + l.o.t.,

E2(f,Γ) = fζ − 1

2
f 2ω − ηf − 1

4
f 2κ+ l.o.t.

Here, l.o.t. denote terms which are cubic or higher order in f and Γ denotes the Ricci
coefficients w.r.t. the original null frame (e3, e4, eθ) of (int)M.

We then proceed as follows

1. First, we initialize f and λ as follows on the γ ∩ S(u1)

f = 0, λ = 1 on γ ∩ S(u1).

14Recall that we assume by contradiction that γ does not reach (ext)M and hence stays in (int)M.
15i.e. we keep the direction of e3 fixed.
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2. Then, we initiate a continuity argument by assuming for some

u1 < u2 < u1 +

(
u1

ε0

) δdec
2

that we have

|f | ≤
√
ε0

u
1
2

+δdec
1

, Υ ≥
√
ε0

2u
1+

δdec
2

1

, 0 < λ < +∞ on γ(u1, u2) ∩ (int)M (3.6.9)

where γ(u1, u2) denotes the portion of γ in u1 ≤ u ≤ u2.

3. We have

λ−1e′4(u) = e4(u) +
1

4
f 2e3(u) =

2

ς
.

Relying on our control of the ingoing geodesic foliation of (int)M, the above as-
sumption for f and the transport equation for f , we obtain on γ(u1, u2) ∩ (int)M

sup
γ(u1,u2)∩ (int)M

|f | . ε0

u1+δdec
1

(u2 − u1)

.
ε

1− δdec
2

0

u
1+

δdec
2

1

which improves our assumption in (3.6.9) on f .

4. We have in view of the control of f

λ−1e′4(r) = e4(r) +
1

4
f 2e3(r) = Υ +O

(
ε0

u1+δdec
1

)
.

This yields

λ−1e′4(log(Υ)) =
2m
r2 e4(r)− 2

r
λ−1e′4(m)

Υ

=

2m
r2 Υ +O

(
ε0

u
1+δdec
1

)
Υ

.

Thanks to our assumption on the lower bound of Υ, we infer

λ−1e′4(log(Υ)) =
2m

r2
(1 +O(

√
ε0))
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and since we are in (int)M
λ−1e′4(log(Υ)) ≥ 1

3m0

.

Integrating from u = u1, we deduce

Υ ≥
√
ε0

(1 +
√
ε0)u

1+
δdec

2
1

exp

(
u− u1

3m0

)
which is an improvement of our assumption in (3.6.9) on Υ.

5. In view of the control of f and of the ingoing geodesic foliation of (int)M, we rewrite
the transport equation for λ as

λ−1e′4(log(λ)) = 2ω + E2(f,Γ)

= −2m

r2
+O

(
ε0

u1+δdec
1

)
.

Since we have obtained above the other hand

λ−1e′4(log(Υ)) =
2m

r2
(1 +O(

√
ε0))

we immediately infer

λ−1e′4(log(λ)Υ2) > 0, λ−1e′4(log(λ)
√

Υ) < 0.

Integrating from u = u1, this yields( √
ε0

(1 +
√
ε0)u1+

δdec
2

)2

Υ−2 ≤ λ ≤
( √

ε0

(1 +
√
ε0)u1+

δdec
2

) 1
2

Υ−
1
2 .

Since Υ has an explicit lower bounded in view of our previous estimate, as well as
an explicit upper bound since we are in (int)M, this yields an improvement of our
assumptions in (3.6.9) for λ.

6. Since we have improved all our bootstrap assumptions (3.6.9), we infer by a conti-
nuity argument the following bound

Υ ≥
√
ε0

(1 +
√
ε0)u

1+
δdec

2
1

exp

(
u− u1

3m0

)
on γ

u1, u1 +

(
u1

ε0

) δdec
2

 ∩ (int)M.

Now, in this u interval, we may choose

u3 := u1 + 3m0

(
1 +

δdec
2

)
log

(
u1

ε0

)
for which we have Υ ≥ 1. This is a contradiction since Υ = O(δH) in (int)M. Thus,
we deduce that γ reaches (ext)M before u = u3, a contradiction to our assumption
on γ. This concludes the proof of (3.6.7).
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3.7 The general covariant modulation procedure

The role of this section is to give a short description of the results concerning our General
Covariant Modulation (GCM) procedure, which is at the heart of our proof. We will apply
it in (ext)M under our main bootstrap assumptions BA-E BA-D. The results stated in
this section will be proved in Chapter 9.

3.7.1 Spacetime assumptions for the GCM procedure

To state our results, which are local in nature, it is convenient to consider axially sym-
metric polarized spacetime regions R foliated by two functions (u, s) such that

• On R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4.

• We denote by (e3, e4, eθ) the null frame adapted to the outgoing geodesic foliation
(u, s) on R.

• We denote by
◦
S a fixed sphere of R

◦
S := S(

◦
u,
◦
s) (3.7.1)

and by
◦
r the area radius of

◦
S, where S(u, s) denote the 2-spheres of the outgoing

geodesic foliation (u, s) on R.

• In adapted coordinates (u, s, θ, ϕ) with b = 0, see Proposition 2.2.20, the spacetime
metric g in R takes the form, with Ω = e3(s), b = e3(θ),

g = −2ςduds+ ς2Ωdu2 + γ

(
dθ − 1

2
ςbdu

)2

+ e2Φdϕ2, (3.7.2)

where θ is chosen such that b = e4(θ) = 0.

• The spacetime metric induced on S(u, s) is given by,

g/ = γdθ2 + e2Φdϕ2. (3.7.3)

• The relation between the null frame and coordinate system is given by

e4 = ∂s, e3 =
2

ς
∂u + Ω∂s + b∂θ, eθ = γ−1/2∂θ. (3.7.4)
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• We denote the induced metric on
◦
S by

◦
g/ =

◦
γ dθ2 + e2Φdϕ2.

Definition 3.7.1. Let 0 <
◦
δ ≤ ◦ε two sufficiently small constants. Let (

◦
u,
◦
s) real numbers

so that

1 ≤ ◦
u < +∞, 4m0 ≤

◦
s < +∞. (3.7.5)

We define R = R(
◦
δ,
◦
ε) to be the region

R :=
{
|u− ◦u| ≤ δR, |s− ◦s| ≤ δR

}
, δR :=

◦
δ
(◦
ε
)− 1

2 , (3.7.6)

such that assumption A1-A3 below with constant
◦
ε on the background foliation of R, are

verified. The smaller constant
◦
δ controls the size of the GCM quantities as it will be made

precise below.

Consider the renormalized Ricci and curvature components associated to the (u, s) geodesic
foliation of R

Γ̌ : =

{
κ̌, ϑ, ζ, η, κ− 2

r
, κ+

2Υ

r
, κ̌, ϑ, ξ, ω̌, ω − m

r2
, Ω̌,

(
Ω + Υ

)
,
(
ς + 1

)}
,

Ř : =

{
α, β, ρ̌, ρ+

2m

r3
, β, α

}
.

Since our foliation is outgoing geodesic we also have,

ξ = ω = 0, η + ζ = 0. (3.7.7)

We decompose Γ̌ = Γg ∪ Γb where,

Γg =

{
κ̌, ϑ, ζ, κ̌, κ− 2

r
, κ+

2Υ

r

}
,

Γb =
{
η, ϑ, ξ, ω̌, ω − m

r2
, r−1Ω̌, r−1ς̌ , r−1

(
Ω + Υ

)
, r−1

(
ς − 1

)}
.

(3.7.8)

Given an integer smax, we assume the following16

16In applications, smax = ksmall + 4 in Theorem M7, and smax = klarge + 5 in Theorem M0 and
Theorem M6.
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A1. For k ≤ smax, we have on R
‖Γg‖k,∞ .

◦
εr−2,

‖Γb‖k,∞ .
◦
εr−1,

(3.7.9)

and,

‖α, β, ρ̌, µ̌‖k,∞ .
◦
εr−3,

‖e3(α, β)‖k−1,∞ .
◦
εr−4,

‖β‖k,∞ .
◦
εr−2,

‖α‖k,∞ .
◦
εr−1.

(3.7.10)

A2. We have, with m0 denoting the mass of the unperturbed spacetime,

sup
R

∣∣∣∣ mm0

− 1

∣∣∣∣ . ◦
ε. (3.7.11)

A3. The metric coefficients are assumed to satisfy the following assumptions in R, for
all k ≤ smax

r

∥∥∥∥( γr2
− 1, b,

eΦ

r sin θ
− 1

)∥∥∥∥
∞,k

+ ‖Ω + Υ‖∞,k + ‖ς − 1‖∞,k .
◦
ε (3.7.12)

We will assume, in addition, that there exists scalar functions C = C(u, s), M = M(u, s)
such that the following small GCM conditions hold true on R,∣∣∣∣κ− 2

r

∣∣∣∣+
∣∣dkκ̌∣∣+ r

∣∣dk−1( d?/1κ− CeΦ)
∣∣

+r2
∣∣dk−1( d?/1µ−MeΦ)

∣∣ . ◦
δr−2 for all k ≤ smax, (3.7.13)

r−2

∣∣∣∣∫
S

ηeΦ

∣∣∣∣ . ◦
δ, r−2

∣∣∣∣∫
S

ξeΦ

∣∣∣∣ . ◦δ. (3.7.14)

Also, ∣∣∣∣(2

ς
+ Ω

) ∣∣∣
SP
− 1− 2m

r

∣∣∣∣ . ◦δ. (3.7.15)

Additionally we may assume on R

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣ . ◦δ, r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ◦δ, r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ◦δ. (3.7.16)
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3.7.2 Deformations of surfaces

Definition 3.7.2. We say that S is an O(
◦
ε) Z-polarized deformation of

◦
S if there exists

a map Ψ :
◦
S −→ S of the form,

Ψ(
◦
u,
◦
s, θ, ϕ) =

(◦
u+ U(θ),

◦
s+ S(θ), θ, ϕ

)
(3.7.17)

where U, S are smooth functions defined on the interval [0, π] of amplitude at most
◦
ε. We

denote by ψ the reduce map defined on the interval [0, π],

ψ(θ) = (
◦
u+ U(θ),

◦
s+ S(θ), θ). (3.7.18)

We restrict ourselves to deformations which fix the South Pole, i.e.

U(0) = S(0) = 0. (3.7.19)

3.7.3 Adapted frame transformations

We consider general null transformations introduced in Lemma 2.3.1,

e′4 = λ

(
e4 + feθ +

1

4
f 2e3

)
,

e′θ =

(
1 +

1

2
ff

)
eθ +

1

2
fe4 +

1

2
f

(
1 +

1

4
ff

)
e3,

e′3 = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
.

(3.7.20)

Definition 3.7.3. Given a deformation Ψ :
◦
S −→ S we say that a new frame (e′3, e

′
4, e
′
θ),

obtained from the standard frame (e3, e4, eθ) via the transformation (3.7.20), is S-adapted
if we have,

e′θ = eSθ =
1

(γS)1/2
ψ#(∂θ) (3.7.21)

where ψ#(∂θ) is the push-forward defined by the deformation map ψ.

The condition translates into the following relations between the functions U, S defining
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the deformation and the transition functions (f, f).

ς#∂θU =
(
(γS )#

)1/2
f#

(
1 +

1

4
(ff)#

)
,

∂θS −
ς#

2
Ω#∂θU =

1

2

(
(γS )#

)1/2
f#,

(γS)# = γ# + (ς#)2

(
Ω +

1

4
b2γ

)#

(∂θU)2 − 2ς#∂θU∂θS − (γςb)#∂θU,

U(0) = S(0) = 0.

(3.7.22)

3.7.4 GCM results

Theorem 3.7.4 (GCMS-I). Consider the region R as above, verifying the assumptions

A1–A3 and the small GCM conditions17 (3.7.13). Let
◦
S denote the sphere

◦
S = S(

◦
u,
◦
s).

For any fix Λ,Λ ∈ R verifying,

|Λ|, |Λ| .
◦
δ
(◦
r
)2
, (3.7.23)

1. There exists a unique GCM sphere S = S(Λ,Λ), which is a deformation18 of
◦
S, and an

adapted null frame eS3 , e
S
θ , e

S
4 , such that the following GCM conditions are verified19

components.

d/S,?
2 d/S,?

1 κS = d/S,?
2 d/S,?

1 µS = 0, κS =
2

rS
. (3.7.24)

In addition ∫
S

feΦ = Λ,

∫
S

feΦ = Λ, (3.7.25)

where (f, f) belong to the triplet (f, f , λ = ea) which denote the change of frame

coefficients from the frame of
◦
S to the one of S.

2. The transition functions (f, f , log λ) verify,∥∥(f, f , log λ)
∥∥
hk(S)

.
◦
δ, k ≤ smax + 1. (3.7.26)

17Here, the other assumptions (3.7.14) (3.7.15) are not needed.
18In the sense of Definition 3.7.2.
19ΓS, RS denote the Ricci and curvature components with respect to the adapted frame on S.
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3. The area radius rS and Hawking mass mSof S verify,∣∣rS − ◦r ∣∣ . ◦δ, ∣∣mS − ◦
m
∣∣ . ◦δ. (3.7.27)

The precise version of Theorem 3.7.4 and its proof are given in section 9.4.

The next result requires stronger assumptions for Γb than those made in A1.

A1-Strong. For k ≤ smax,∥∥∥Γg

∥∥∥
k,∞
.
◦
εr−2,

∥∥∥Γb

∥∥∥
k,∞
.
◦
εr−1,

∥∥∥Γb

∥∥∥
k,∞
. (

◦
ε)

1
3 r−2. (3.7.28)

Theorem 3.7.5 (GCMS-II). In addition to the assumptions of Theorem 3.7.4 we also
assume that A1-Strong and (3.7.16) hold true. Then,

1. There exists a unique GCM sphere S, which is a deformation of
◦
S, such that in

addition to (3.7.24) the following GCM conditions also hold true on S.∫
S

βSeΦ = 0,

∫
S

eSθ (κS)eΦ = 0. (3.7.29)

2. The transition functions (f, f , log λ) verify the estimates (3.7.26).

3. The area radius rS and Hawking mass mSof S verify (3.7.27).

The precise version of Theorem 3.7.5 and its proof are given in 9.7.

Theorem 3.7.6 (GCMH). Consider the region R as above, verifying the assumptions

A1–A3 and the small GCM conditions (3.7.13)–(3.7.15). Let S0 = S0[
◦
u,
◦
s,Λ0,Λ0] the

deformation of
◦
S constructed in Theorem GCMS-I above.

There exists a smooth spacelike hypersurface Σ0 ⊂ R passing through S0, a scalar function
uS defined on Σ0, whose level surfaces are topological spheres denoted by S, and a smooth
collection of constants ΛS,ΛS verifying,

ΛS0 = Λ0, ΛS0 = Λ0,

such that the following conditions are verified:

1. The surfaces S of constant uS verifies all the properties stated in Theorem GCMS-
I for the prescribed constants ΛS,ΛS. In particular they come endowed with null
frames (eS4 , e

S
θ , e

S
3 ) such that
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i. For each S the GCM conditions (3.7.24), (3.7.25) hold with Λ = ΛS,Λ = ΛS.

ii. The transversality conditions hold true on each S.

ξS = 0, ωS = 0, ηS + ζS = 0. (3.7.30)

2. We have, for some constant cΣ0,

uS + rS = cΣ0 , along Σ0. (3.7.31)

3. Let νS be the unique vectorfield tangent to the hypersurface Σ0, normal to S, and
normalized by g(νS, eS4 ) = −2. There exists a unique scalar function aS on Σ0 such
that νS is given by

νS = eS3 + aSeS4 .

The following normalization condition holds true at the South Pole SP of every
sphere S, i.e. at θ = 0,

aS
∣∣∣
SP

= −1− 2mS

rS
. (3.7.32)

4. Under the additional transversality condition20 on Σ0

eS4 (uS) = 0, e4(rs) =
rS

2
κS = 1. (3.7.33)

the Ricci coefficients ηS, ξS are well defined and verify,∫
S

ηSeΦ =

∫
S

ξSeΦ = 0. (3.7.34)

5. The transition functions (f, f , log λ) verify the estimates (3.7.26).

6. The area radius rS and Hawking mass mSof S verify (3.7.27).

The precise version of Theorem 3.7.6 and its proof are given in section 9.8.

3.7.5 Main ideas

Both theorems GCMS-II and GCMH are based on Theorem GSMS-I. They are heavily
based on the transformation formulas for the Ricci and curvature coefficients recorded in
Proposition 2.3.4.

20Here the average of κS is taken on S. In view of the GCM conditions (3.7.24) we deduce eS4 (rS) = 1.
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Sketch of the proof of Theorems GSMS-I and GSMS-II

A given deformation Ψ :
◦
S −→ S is fixed by the parameters U, S and transition functions

F = (f, f , λ) connected by the system (3.7.22). Making use of the transformation formulas
one can show that the GCM conditions (3.7.24)-(3.7.25) holds true if and only if the
transition functions F verify a coercive nonlinear elliptic Hodge system of the form DΨF =
B(Ψ), where the operator DΨ depends on the deformation Ψ and the right hand side B,
depends on both Ψ and the background foliation (see Proposition 9.4.2 for the precise
form of the system). To find a desired GSMS deformation we have to solve a coupled
system between the transport type equations in (3.7.22) and the elliptic coercive system
DΨF = 0 of Proposition 9.4.2.

The actual proof is thus based on an iteration procedure for a sequence of deformation

spheres S(n) of
◦
S given by the maps Ψ(n) = (U (n), S(n)) :

◦
S −→ S(n) and the corre-

sponding transition functions (f (n), f (n), λ(n)). The iteration procedure for the quintets

Q(n) = (U (n), S(n), f (n), f (n), λ(n)), starting with the trivial quintet Q(0) corresponding to
the zero deformation, is described in section 9.4.3. The main steps in the proof are as
follows.

1. Given the triplet (f (n), f (n), λ(n)) the pair (U (n), S(n)) defines the deformation sphere

S(n) and the corresponding pull back map #n :
◦
S −→ S(n) according to the

equation (3.7.22).

2. Given the pair Ψ(n) = (U (n), S(n)) and the deformation sphere S(n) we define the
triplet (f (n+1), f (n+1), λ(n+1)) by solving the corresponding elliptic system

DΨ(n)F
(n+1) = B(Ψ(n))

This step is based on the crucial apriori estimates of section 9.4.1.

3. Given the new pair (f (n+1), f (n+1)) we make use of the equations (3.7.22) to find a

unique new map (U (n+1), S(n+1)) and thus the new deformation sphere S(n+ 1).

4. The convergence of the iterates Q(n), described in section 9.4.5 in the boundedness
Proposition 9.4.11 and the contraction Proposition 9.4.12. The latter requires us to

carefully compare the iterates Q(n), Q(n+1) by pulling them back to
◦
S. One has to

be particularly careful with the behavior of the iterates on the axis of symmetry.

Theorem GSMS-II, which is an easy consequence of Theorem GSMS-I is proved in section
9.7 and the transformation formulas which relate

∫
S
βSeΦ to Λ =

∫
S
feΦ and

∫
S
eSθ (κS)eΦ
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to Λ =
∫
S
feΦ. One can show that there exist choices of Λ,Λ such that

∫
S
βSeΦ =∫

S
eSθ (κS)eΦ = 0.

Sketch of the proof of Theorem GCMH

The proof of Theorem GCMH makes use of Theorem GCMS-I to construct Σ0 as a union
of GCMS spheres.

Step 1. Theorem GCMS-I allows to construct, for every value of the parameters (u, s)
in R (i.e. such that the background spheres S(u, s) ⊂ R) and every real numbers (Λ,Λ),
a unique GCM sphere S[u, s,Λ,Λ], as a Z-polarized deformation of S(u, s). In particular

(3.7.24) and (3.7.25) are verified and S0 = S0[
◦
u,
◦
s,Λ0,Λ0].

Step 2. We look for functions Ψ(s),Λ(s),Λ(s) such that

1. We have,

Ψ(
◦
s) =

◦
u, Λ(

◦
s) = Λ0, Λ(

◦
s) = Λ0.

2. The resulting hypersurface Σ0 = ∪sS[Ψ(s), s,Λ(s),Λ(s)] verifies

uS + rS = cΣ0 , along Σ0.

3. The additional GCM conditions (3.7.32) and (3.7.34) of Theorem GCMH are veri-
fied.

These conditions lead to a first order differential system for Ψ(s),Λ(s),Λ(s), with pre-

scribed initial conditions at
◦
s which allows us to determine the desired surface. The proof

is given in detail in section 9.8.

3.8 Overview of the proof of Theorem M0-M8

In this section, we provide a brief overview of the proof of Theorem M0-M8. In addition
to the null frame adapted to the outgoing foliation of (ext)M and to the null frame
adapted to the ingoing foliation of (int)M, we have also introduced 2 global frames on
M = (int)M∪ (ext)M as well as associated scalars r and m in section 3.5. Unless otherwise
specified, when we discuss a particular spacetime region, i.e. (ext)M, (int)M or M, it
should be understood that the frame as well as r and m are the ones corresponding to
that region.
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3.8.1 Discussion of Theorem M0

Step 1. Recall our GCM conditions on S∗ = Σ∗ ∩ C∗∫
S∗

eθ(κ)eΦ = 0,

∫
S∗

βeΦ = 0.

Recall that ν = e3 +a∗e4 is the unique tangent vectorfield to Σ∗ which is orthogonal to eθ
and normalized by g(ν, e4) = −2. Using the null structure equation for e3(κ) and e3(β),
as well as e4(κ) and e4(β), we obtain transport equations along Σ∗ in the ν direction for∫

S

eθ(κ)eΦ and

∫
S

βeΦ = 0.

Integrating these transport equations in ν, we propagate the control on S∗ to Σ∗. In
particular, we obtain the following estimates on S1 = Σ∗ ∩ C1,∣∣∣∣∫

S1

eθ(κ)eΦ

∣∣∣∣+ r

∣∣∣∣∫
S1

βeΦ

∣∣∣∣ . ε2 +
ε

r
. ε0, (3.8.1)

where we used in the last inequality the dominance condition of r on Σ∗, see (3.3.4).

Step 2. We consider the transition functions (f, f , λ) from the frame of the initial data

layer to the frame of (ext)M. Since

• S1 is a sphere of (ext)M in the initial data layer,

• S1 is a sphere of the GCM hypersurface Σ∗,

• the estimate (3.8.1) holds on S1,

we can invoke a corollary of the GCM procedure of section 3.7.4 to obtain a first improved
bound for (f, f , λ) on S1 with O(ε0) smallness constant. After further improvements,
leading in particular to a r−1 gain for f compared to f and λ, this ultimately leads to

sup
S1

(
r|d≤klarge+4f |+ |d≤klarge+4(f, log λ)|+ |m−m0|

)
. ε0. (3.8.2)

Step 3. Relying on the transport equations21 in e4 for (f, f , λ), see Corollary 2.3.7, and
Proposition 2.2.16 for m, we propagate (3.8.2) to C1, and then, proceeding similarly in

21The control of f on C1 requires in fact a more subtle treatment, see Step 10 and Step 11 of the proof
of Theorem M0.
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the e3 direction to propagate the estimates to C1, we finally obtain

sup
C1∪C1

(
r|d≤klarge+1f |+ |d≤klarge+1(f, log λ)|+ |m−m0|

)
. ε0. (3.8.3)

Together with the control of the initial data layer foliation and the transformation formulas
of Proposition 2.3.4, we then obtain the desired estimates on C1 ∪ C1 for the curvature
components.

Remark 3.8.1. The fact that f and λ display a r loss compared to f in (3.8.3) does not
affect the desired estimates for the curvature components on C1 ∪ C1, see Remark 4.1.4.
See also Remark 4.1.5 for a heuristic explanation of this a priori anomalous behavior.

3.8.2 Discussion of Theorem M1

Here are the main steps in the proof of Theorem M1.

Step 1. Consider the global frame on M constructed in Proposition 3.5.5 and the
definition of q on M with respect to that frame, see section 2.3.3 for the definition of q
with respect to any null frame. According to Theorem 2.4.7 we have,

�2q + V q = N, V = κκ (3.8.4)

where the nonlinear term N = Err[�gq] is a long expression of terms quadratic, or
higher order, in Γ̌, Ř involving various powers of r. Making use of the symbolic notation
introduced in definition 2.3.8 we have, see (2.4.8),

Err[�2q] = r2d≤2(Γg · (α, β)) + e3

(
r3d≤2(Γg · (α, β))

)
+ d≤1(Γg · q) + l.o.t.

where the terms denoted by l.o.t. are higher order in (Γ̌, Ř).

Remark 3.8.2. Recall from Remark 2.4.8 that the above good structure of the error term
Err[�2q] only holds in a frame for which ξ = 0 for r ≥ 4m0 and η ∈ Γg. This is why,
in Theorem M1, q is defined relative to the global frame of Proposition 3.5.5, see also
Remark 2.4.9.

Step 2. We follow the Dafermos-Rodnianski version of the vector-field method to derive
desired decay estimates. We recall that, in the context of a wave equation of the form
�(Sch)ψ = 0 on Schwarzschild spacetime, their strategy consists in the following:

• Start by deriving Morawetz-energy type estimates for ψ with nondegenerate flux
energies and the usual degeneracy of bulk integrals at r = 3m.
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• Derive rp weighted estimates for 0 < p < 2 and use them, in conjunction to the
Morawetz estimates, to derive decay estimates.

• The decay estimates obtained by using the standard rp weighted approach are too
weak to be useful in our nonlinear approach. We improve them by making use of a re-
cent variation of the Dafermos-Rodnianski approach due to Angelopoulos, Aretakis
and Gajic [5] which is based on first commuting the wave equation is �(Sch)ψ = 0
with r2(e4 + r−1) and then repeating the process described for the resulting new
equation. This procedure allows to derive the improved decay estimates consistent
with our decay norms.

• Derive estimates for higher derivatives by commuting with T, r d/, the red-shift
vectorfield, and re4.

Step 3. The estimates mentioned in step 2 have to be adapted to the case of our equation
(3.8.4). There are three main differences to take into account

• The application of the vectorfield method to our context produces various nontrivial
commutator terms which have to be absorbed. This is taken care by our bootstrap
assumption for Γ̌, Ř, as well as, in some cases, by integration by parts.

• The presence of the potential V is mostly advantageous but various modifications
have to be nevertheless made, especially near the trapping region22.

• The presence of the nonlinear term N is the most important complication. The
precise null structure of N is essential and various integrations by parts are needed.

• The quadratic terms involving η in N can only be treated provided the definition of
q is done with respect to the global frame on M constructed in Proposition 3.5.5,
for with η behaves better in powers of r−1.

3.8.3 Discussion of Theorem M2

Recall from section 2.3.3 that q is defined with respect to a general null frame as follows

q = r4

(
e3(e3(α)) + (2κ− 6ω)e3(α) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α

)
22At the linear level, on a Schwarzschild spacetime, this step was also treated (minus the improved

decay) in the paper [26].
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which yields the following transport equation for α

e3(e3(α)) + (2κ− 6ω)e3(α) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α =

q

r4
.

Recall also that q, controlled in Theorem M1, is defined w.r.t. the global frame of Propo-
sition 3.5.5 whose normalization is such that, in particular, ω is a small quantity. Also,
since we have

e3(r) =
r

2
κ+ l.o.t.

we infer

e3(e3(r2α)) =
q

r2
+ l.o.t.

Integrating twice this transport equation from C1 where we control the initial data - and
in particular α - in view of Theorem M0, and using the decay for q provided by Theorem
M1, we deduce23

sup
(ext)M

(
r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra

)
|d≤ksmall+20α| . ε0,

sup
(ext)M

(
r3(2r + u)1+δextra

log(1 + u)
+ r4(2r + u)

1
2

+δextra

)
|d≤ksmall+19e3(α)| . ε0.

Now that we control α in the global frame of Proposition 3.5.5, we need to go back to the
frame of (ext)M. By invoking the relationships between our various frame of (ext)M, see
Proposition 3.5.5 and Proposition 3.4.6, and the transformation formula for α, we infer

(ext)Dksmall+20

[
(ext)α

]
. ε0

and hence the conclusion of Theorem M2.

3.8.4 Discussion of Theorem M3

Here are the main steps in the proof of Theorem M3.

Step 1. To derive decay estimates for α in M, we first recall the following Teukolsky-
Starobinski identity, see (2.3.15),

e3(r2e3(rq)) + 2ωr2e3(rq) = r7

{
d?/2 d

?/1 d/1 d/2α +
3

2
κρe4α−

3

2
κρe3(α)

}
+ l.o.t.

23Recall that δextra has been introduced in Theorem M1 and satisfies δextra > δdec.
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where l.o.t. denotes terms which are quadratic of higher, and where all quantities are
defined w.r.t. the global frame of Proposition 3.5.5. Then, introducing the vectorfield

T̃ = e4 −
1

κ

(
κ+ κΩ̌− κ̌Ω̌

)
e3,

we rewrite the identity as

6mT̃α + r4 d?/2 d
?/1 d/1 d/2α =

1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
+ l.o.t. (3.8.5)

As it turns out, see Remark 6.2.3, this is a forward parabolic equation on each hyper
surface of contant r in (int)M.

Step 2. Thanks to

• the control in (int)M of the RHS of (3.8.5) which follows from the decay estimates
of Theorem M1 for q, as well as the bootstrap assumptions for the quadratic and
higher order terms,

• the control of α on C1 - i.e. of the initial data of (3.8.5) - provided by Theorem M0,

• parabolic estimates for the forward parabolic equation (3.8.5),

we obtain the desired decay estimates for α in (int)M.

Step 3. It remains to control α on Σ∗. Recall that ν denotes the unique tangent vectorfield
to Σ∗ which can be written as ν = e3 + ae4. The Teukolsky-Starobinski identity of Step
1 can then be written as

6mνα + r4 d?/2 d
?/1 d/1 d/2α =

1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
+ l.o.t. (3.8.6)

where l.o.t. denotes terms which are quadratic of higher, as well as terms which are linear
but display additional decay in r. This is a forward parabolic equation along Σ∗. To
obtain the desired decay for α along Σ∗, one then proceeds as in Step 2, using in addition,
for the linear term with extra decay in r, the behavior (3.3.4) of r on Σ∗.

3.8.5 Discussion of Theorem M4

Here are the main steps in the proof of Theorem M4.

Step 1. We derive decay estimates for the spacelike GCM hypersurface Σ∗. More pre-
cisely, thanks to
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• the GCM conditions on Σ∗

κ =
2

r
, d?/2 d

?/1κ = 0, d?/2 d
?/1µ = 0,

∫
S

ηeΦ = 0,

∫
S

ξeΦ = 0,

• the control of q in (ext)M, established in Theorem M1, and hence in particular on
Σ∗,

• the control of α of the outgoing geodesic foliation in (ext)M, established in Theorem
M2, and hence in particular on Σ∗,

• the control of α on Σ∗, established in Theorem M3,

• the dominance condition (3.3.4) of r on Σ∗

r
∣∣
Σ∗
≥ ε

− 2
3

0 u1+δdec ,

• the identity (2.3.11) relating q to derivatives of ρ, i.e.

q = r4

(
d?/2 d

?/1ρ+
3

4
ρκϑ+

3

4
ρκϑ+ · · ·

)
,

• elliptic estimates for Hodge operators on the 2-spheres foliating Σ∗,

we infer the control with improved decay of all Ricci and curvature components on the
spacelike hypersurface Σ∗.

Step 2. We derive decay estimates for the outgoing geodesic foliation of (ext)M. More
precisely:

• First, we propagate the estimates involving only u−
1
2
−δdec decay in u from Σ∗ to

(ext)M.

• We then focus on the harder to recover estimates, i.e. the ones involving u−1−δdec

decay in u. We proceed as follows.

– We first propagate the main GCM quantities κ̌, µ̌, and a renormalized quantity
involving κ̌ (see the quantity Ξ in Lemma 7.5.2) from Σ∗ to (ext)M.

– We then recover the estimates involving u−1−δdec decay in u on T . To this end,
we use that we control the main GCM quantities, α from Theorem M3 (since
T belongs both to (ext)M and (int)M), q and α from Theorem M1–M2, and
the estimates are then derived somewhat in the spirit of the ones on Σ∗, in
particular by relying on elliptic estimates for Hodge operators on the 2-spheres
foliating T .
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– To recover the remaining estimates in (ext)M involving u−1−δdec decay in u, we
integrate the transport equations in e4 forward from T , which concludes the
proof of Theorem M4.

3.8.6 Discussion of Theorem M5

Here are the main steps in the proof of Theorem M5.

Step 1. We first derive decay estimates for the ingoing geodesic foliation of (int)M on
the timelike hyper surface T . More precisely, thanks to

• the fact that the null frame of (int)M is defined on T as a simple conformal renor-
malization of the null frame of (ext)M in view of its initialization, see section 3.1.2,

• the control of the outgoing geodesic foliation of (ext)M on T obtained in Theorem
M4,

this allows us to transfer the decay estimates for ((ext)Ř, (ext)Γ̌) to ((int)Ř, (int)Γ̌) on T .

Step 2. We derive on (int)M decay estimates for the ingoing geodesic foliation of (int)M.
More precisely, thanks to

• the improve decay estimates for α in (int)M derived in Theorem M3,

• the improved decay estimates for Γ̌ and Ř on T derived in the Step 1,

• the null structure equations and Bianchi identities,

we infer O(ε0u
−1−δdec) decay estimates for Γ̌ and Ř corresponding to the ingoing geodesic

foliation of (int)M which concludes the proof of Theorem M5.

3.8.7 Discussion of Theorem M6

Step 1. Using

(a) The control of the initial data layer,
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(b) Theorem GCMS-II of section 3.7.4,

(c) Theorem GCMH of section 3.7.4,

we produce a smooth hypersurface Σ∗ in the initial data layer starting from a GCM sphere
S∗, and satisfying all the required properties for the future spacelike boundary of a GCM
admissible spacetime, according to item 3 of definition 3.1.2.

Step 2. We then consider the outgoing geodesic foliation initialized on Σ∗ which foliates
the region we denote (ext)M, to the past of Σ∗, and included in the outgoing part (ext)L0

of the initial data layer. In order to control it, we consider the transition functions (f, f , λ)

from the background frame of the initial data layer to the frame of (ext)M. These functions
satisfy transport equations in e4 with right-hand side depending on (f, f , λ) and the Ricci
coefficients of the background foliation. Integrating the transport equations from Σ∗,
where (f, f , λ) are under control as a by product of the use of Theorem GCMH in Step

1, we obtain the control of (f, f , λ) in (ext)M. Using the transformation formulas of
Proposition 2.3.4, and using the control of the initial data layer, we then infer the desired
control (i.e. with ε0 smallness constant and suitable r-weights) for the Ricci coefficients
and curvature components of the foliation of (ext)M.

Step 3. (ext)M terminates on a timelike hypersurface T of constant area radius24. We
then consider the ingoing geodesic foliation initialized on T according to item 4 of defini-
tion 3.1.2, which foliates the region we denote (int)M, included in the ingoing part (int)L0

of the initial data layer. Proceeding as in Step 2, relying on transport equations in e3

instead of e4, we then derive the desired control (i.e. with ε0 smallness constant) for the
Ricci coefficients and curvature components of the foliation of (int)M, thus concluding
the proof of Theorem M6.

3.8.8 Discussion of Theorem M7

From the assumptions of Theorem M7 we are given a GCM admissible spacetime M =
M(u∗) ∈ ℵ(u∗) verifying the following improved bounds, for a universal constant C > 0,

N
(Dec)
ksmall+5(M) ≤ Cε0

provided by Theorems M1-M5. We then proceed as follows.

24With respect to the foliation of (ext)M.
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Step 1. We extend M by a local existence argument, to a strictly larger spacetime
M(extend), with a naturally extended foliation and the following slightly increased bounds

N
(Dec)
ksmall+5(M(extend)) ≤ 2Cε0.

but which may not verify our admissibility criteria.

Step 2. Using

(a) The control of the extended spacetime M(extend),

(b) Theorem GCMS-II of section 3.7.4,

(c) Theorem GCMH of section 3.7.4,

we produce a small piece of smooth GCM hypersurface Σ̃∗ inM(extend) \M starting from

a GCM sphere S̃∗.

Step 3. By a continuity argument based on a priori estimates, we extend Σ̃∗ all the way
to the initial data layer, while ensuring that it remains inM(extend) \M and satisfying all
the required properties for the future spacelike boundary of a GCM admissible spacetime,
according to item 3 of definition 3.1.2.

Step 4. We then consider the outgoing geodesic foliation initialized on Σ̃∗ which foliates
the region we denote (ext)M̃, included in the outgoing part of M(extend). In order to
control it, we consider the transition functions (f, f , λ) from the background frame of the

initial data layer to the frame of (ext)M̃. These functions satisfy transport equations in e4

with right-hand side depending on (f, f , λ) and the Ricci coefficients of the background

foliation. Integrating the transport equations from Σ̃∗, where (f, f , λ) are under control
as a by product of the use of Theorem GCMH in Step 2, we obtain the control of (f, f , λ)

in (ext)M̃. Using the transformation formulas of Proposition 2.3.4, and using the control
of the initial data layer, we then derive the desired control (i.e. with ε0 smallness constant
and suitable u and r weights) for the Ricci coefficients and curvature components of the

foliation of (ext)M̃.

Step 5. (ext)M̃ terminates on a timelike hypersurface T̃ of constant area radius25. We
then consider the ingoing geodesic foliation initialized on T̃ according to item 4 of defi-
nition 3.1.2, which foliates the region we denote (int)M̃, included in the ingoing part of
M(extend). Proceeding as in Step 4, relying on transport equations in e3 instead of e4, we

25With respect to the foliation of (ext)M̃.
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then derive the desired control (i.e. with ε0 smallness constant and suitable u-weights) for

the Ricci coefficients and curvature components of the foliation of (int)M̃, thus concluding
the proof of Theorem M7.

3.8.9 Discussion of Theorem M8

So far, we have only improved our bootstrap assumptions on decay estimates. We now
improve our bootstrap assumptions on energies and weighted energies for Ř and Γ̌ relying
on an iterative procedure recovering derivatives one by one26.

Step 0. Let Im0,δH the interval of R defined by

Im0,δH :=

[
2m0

(
1 +

δH
2

)
, 2m0

(
1 +

3δH
2

)]
. (3.8.7)

Recall that T = {r = rT }, where rT ∈ Im0,δH , and note, see also Remark 3.6.3, that the
results of Theorems M0–M7 hold for any rT ∈ Im0,δH .

It is at this stage that we need to make a specific choice of rT in the context of a Lebesgue
point argument. More precisely, we choose rT such that we have∫

{r=rT }
|d≤klargeŘ|2 = inf

r0∈Im0,δH

∫
{r=r0}

|d≤klargeŘ|2. (3.8.8)

In view of this definition, and since T = {r = rT }, we infer that∫
T
|d≤klargeŘ|2 .

∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2. (3.8.9)

Remark 3.8.3. From now on, we may thus assume that the spacetime M satisfies the
conclusions of Theorem M0 and Theorem M7, as well as (3.8.9), and our goal is to prove

Theorem M8, i.e. to prove that N
(En)
klarge

. ε0 holds.

Step 1. The O(ε0) decay estimates derived in Theorem M7 imply in particular the
following (non sharp) consequence

N
(En)
ksmall

. ε0,

26See also [33] for a related strategy to recover higher order derivatives from the control of lower order
ones.
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where we recall27

N
(En)
k = (ext)Rk[Ř] + (ext)Gk[Γ̌] + (int)Rk[Ř] + (int)Gk[Γ̌].

This allows us to initialize our iteration scheme in the next step.

Step 2. Next, for J such that ksmall ≤ J ≤ klarge − 1, consider the iteration assumption

N
(En)
J . εB[J ], (3.8.10)

where

εB[J ] :=
J∑

j=ksmall−2

(ε0)`(j) B1−`(j) + ε
`(J)
0 B, `(j) := 2ksmall−2−j, (3.8.11)

B :=

∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2
 1

2

. (3.8.12)

In view of Step 1, (3.8.10) holds for J = ksmall. From now on, we assume that (3.8.10)
holds for J such that ksmall ≤ J ≤ klarge − 2, and our goal is to show that this also holds
for J + 1 derivatives.

Step 3. Using the Teukolsky wave equations for α and α, as well as a wave equation for
ρ̌, see Proposition 8.4.1, we derive Morawetz type estimates for J + 1 derivatives of these
quantities in terms of O(εB[J ] + ε0N

(En)
J+1 ).

Step 4. Relying on Bianchi identities, we also derive Morawetz type estimates for J + 1
derivatives for β and β. As a consequence, we obtain Morawetz type estimates for J + 1

derivatives of all curvature components in terms of O(εB[J ] + ε0N
(En)
J+1 ).

Step 5. As a consequence of Step 4, we immediately obtain, for any r0 ≥ 4m0,

(int)RJ+1[Ř] + (ext)RJ+1[Ř] ≤ (ext)R≥r0J+1[Ř] +O(r10
0 (εB[J ] + ε0N

(En)
J+1 )).

Step 6. Relying on the Bianchi identities, we derive rp-weighted estimates for J + 1
derivatives of curvature on r ≥ r0 with r0 ≥ 4m0. We obtain

(ext)R≥r0J+1[Ř] .
1

rδB0

(ext)G≥r0k [Γ̌] + r10
0 (εB[J ] + ε0N

(En)
J+1 ).

27See sections 3.2.1 and 3.2.2 for the definition of our norms measuring energies for curvature compo-
nents and Ricci coefficients.
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Step 7. Next, we estimate the Ricci coefficients of (ext)M. To control them, we rely
on the null structure equations in (ext)M. Using the null structure equations in (ext)M
and the GCM conditions on Σ∗, we derive the following weighted estimates for J + 1
derivatives of the Ricci coefficients

(ext)GJ+1[Γ̌] . (ext)RJ+1[Ř] + εB[J ] + ε0N
(En)
J+1 .

Together with the estimates of Step 5 and Step 6, we infer for a large enough choice of r0

(ext)GJ+1[Γ̌] + (int)RJ+1[Ř] + (ext)RJ+1[Ř] . εB[J ] + ε0N
(En)
J+1 .

Step 8. Next, we estimate the Ricci coefficients of (int)M. Using the information on T
induced by Step 7 and the null structure equations in (int)M, we derive

(int)GJ+1[Γ̌] . (int)RJ+1[Ř] + εB[J ] + ε0N
(En)
J+1 +

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

We need to deal with the last term. Relying on a trace theorem in the spacetime region
(ext)M(r ∈ Im0,δH), and the fact that J + 2 ≤ klarge, we obtain

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4

( (ext)RJ+1[Ř])
1
2

+ (ext)RJ+1[Ř].

Step 9. The last estimate of Step 7 and the 2 estimates of Step 8 yield, for ε0 > 0 small
enough,

N
(En)
J+1 . εB[J ] +

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4 (
εB[J ] + ε0N

(En)
J+1

) 1
2
.

In view of the definition (3.8.11) of εB[J ], we infer that

N
(En)
J+1 . εB[J + 1]

which is the iteration assumption (3.8.10) for J + 1 derivatives. We deduce that (3.8.10)
holds for all J ≤ klarge − 1, and hence

N
(En)
klarge−1 . εB[klarge − 1].
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Step 10. Relying on the conclusion of Step 9, and arguing as in Step 3 to Step 7, we
obtain the conclusion of Step 7 for J = klarge − 1, i.e.

(ext)Gklarge [Γ̌] + (int)Rklarge [Ř] + (ext)Rklarge [Ř] . εB[klarge − 1] + ε0N
(En)
klarge

.

We then infer that

εB[klarge − 1] . ε0 + ε0N
(En)
klarge

which yields, together with the last estimate of Step 9,

(ext)Gklarge [Γ̌] + (int)Rklarge [Ř] + (ext)Rklarge [Ř] . ε0 + ε0N
(En)
klarge

.

Step 11. It remains to recover (int)Gklarge [Γ̌]. Arguing as for the first estimate of Step 8
with J = klarge − 1, we have

(int)Gklarge [Γ̌] . (int)Rklarge [Ř] + εB[klarge − 1] + ε0N
(En)
klarge

+

(∫
T
|dklarge((ext)Ř)|2

) 1
2

.

Thanks to the outcome of Step 10, we deduce that

(int)Gklarge [Γ̌] . ε0 + ε0N
(En)
klarge

+

(∫
T
|dklarge((ext)Ř)|2

) 1
2

and hence, for ε0 > 0 small enough, using again the last estimate of Step 10,

N
(En)
klarge

. ε0 +

(∫
T
|dklarge((ext)Ř)|2

) 1
2

.

It remains to estimate the last term of the RHS of the previous inequality. It is at this
stage that we use the choice of rT , or rather its consequence (3.8.9), which implies(∫

T
|dklarge((ext)Ř)|2

) 1
2

. ε0 + ε0N
(En)
klarge

so that we finally obtain, for ε0 > 0 small enough,

N
(En)
klarge

. ε0

which concludes the proof of Theorem M8.
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3.9 Structure of the rest of the paper

The rest of this paper is devoted to the proof of Theorem M0-M8, as well as our GCM
procedure. More precisely,

1. Theorem M0, together with other first consequences of the bootstrap assumptions,
is proved in Chapter 4.

2. Theorem M1 is proved in Chapter 5.

3. Theorems M2 and M3 are proved in Chapter 6.

4. Theorems M4 and M5 are proved in Chapter 7.

5. Theorems M6, M7 and M8 are proved in Chapter 8.

6. Our GCM procedure is described in details in Chapter 9.

7. Chapter 10 contains estimates for Regge-Wheeler type wave equations used in The-
orem M1.

8. Many of the long calculations are to be found in the appendix.
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Chapter 4

CONSEQUENCES OF THE
BOOTSTRAP ASSUMPTIONS

4.1 Proof of Theorem M0

According to the statement of Theorem M0 we consider given the initial layer L0 =
(ext)L0 ∪ (int)L0 as defined in Definition 3.1.1. We also assume that the initial layer norm
verifies

sup
k≤klarge+5

Ik . ε0 (4.1.1)

where Ik =(ext) Ik + (int)Ik + I′k and,

(ext)I0 = sup
(ext)L0

[
r

7
2

+δB (|α|+ |β|) + r3

∣∣∣∣ρ+
2m0

r3

∣∣∣∣+ r2|β|+ r|α|
]

+ sup
(ext)L0

r2

(
|ϑ|+

∣∣∣∣κ− 2

r

∣∣∣∣+ |ζ|+
∣∣∣∣∣κ+

2
(
1− 2m0

r

)
r

∣∣∣∣∣
)

+ sup
(ext)L0

r
(
|ϑ|+

∣∣∣ω − m0

r2

∣∣∣+ |ξ|
)

+ sup
(ext)L0( (ext)r0≥4m0)

(
r
∣∣∣ γ
r2
− 1
∣∣∣+ r|b|+ |Ω + Υ|+ |ς − 1|+ r

∣∣∣∣ eΦ

r sin θ
− 1

∣∣∣∣) ,
183
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(int)I0 = sup
(int)L0

(
|α|+ |β|+

∣∣∣∣ρ+
2m0

r3

∣∣∣∣+ |β|+ |α|
)

+ sup
(int)L0

(
|ϑ|+

∣∣∣∣∣κ− 2
(
1− 2m0

r

)
r

∣∣∣∣∣+ |ζ|+
∣∣∣∣κ+

2

r

∣∣∣∣+ |ϑ|+
∣∣∣ω +

m0

r2

∣∣∣+ |ξ|
)
,

I′0 = sup
(int)L0∩ (ext)L0

(
|f |+ |f |+ | log(λ−1

0 λ)|
)
, λ0 = (ext)λ0 = 1− 2m0

(ext)rL0

,

with Ik the corresponding higher derivative norms obtained by replacing each component
by d≤k of it. In the definition of I′0 above, (f, f , λ) denote the transition functions of

Lemma 2.3.1 from the frame of the outgoing part (ext)L0 of the initial data layer to the
frame of the ingoing part (int)L0 of the initial data layer in the region (int)L0 ∩ (ext)L0.

We divide the proof of Theorem M0 in the following steps.

Step 1. We have the following lemma.

Lemma 4.1.1. We have on (ext)M

e4

(∫
S

eθ(κ)eΦ

)
=

∫
S

(
− κeθ(κ) + 4Kζ − ϑeθ(κ) + 2eθ(ζ

2)
)
eΦ,

e4

(∫
S

βeΦ

)
=

∫
S

(
−1

2
κβ + ζα− 1

2
ϑβ

)
eΦ,

e3

(∫
S

βeΦ

)
= −1

4

∫
S

eθ(κκ)eΦ + 3ρ

∫
S

ηeΦ +
1

4

∫
S

eθ(ϑϑ)eΦ

+

∫
S

(
1

2
κβ + 2ωβ + 3ηρ̌− ϑβ + ξα− 1

2
ϑβ

)
eΦ + Err

[
e3

(∫
S

βeΦ

)]
,

and

e3

(∫
S

eθ(κ)eΦ

)
= κe3

(∫
S

ζeΦ

)
− κ

∫
S

βeΦ

+

∫
S

(
− κ̌β − 1

2
κ2ζ + 6ρξ − 2ωeθ(κ)− 1

2
ϑ(eθ(κ)− κζ) + Err[ d/2 d

?/2ξ]

)
eΦ

+Err

[
e3

(∫
S

eθ(κ)eΦ

)]
+

∫
S

κ̌

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ

−κ̌
∫
S

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ − κErr

[
e3

(∫
S

ζeΦ

)]
.
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Proof. We have in (ext)M, see Proposition 2.2.8,

e4(κ) +
1

2
κκ = −2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2.

Together with the following commutation relation

[eθ, e4] =
1

2
(κ+ ϑ)eθ,

we infer

e4(eθ(κ)) + κeθ(κ) +
1

2
ϑeθ(κ) +

1

2
κeθ(κ) = 2 d?/1 d/1ζ + 2eθ(ρ)− 1

2
eθ(ϑϑ) + 2eθ(ζ

2).

Also, we have in view of Proposition 2.2.19 the following identity

e3(eθ(κ))− κe3(ζ) = −2 d/2 d
?/2ξ − κβ + κ2ζ − 3

2
κeθκ+ 6ρξ − 2ωeθ(κ) + Err[ d/2 d

?/2ξ].

Next, in view of Corollary 2.2.10, we have in (ext)M

e4

(∫
S

eθ(κ)eΦ

)
=

∫
S

(
e4(eθ(κ)) +

(
3

2
κ− 1

2
ϑ

)
eθ(κ)

)
eΦ

e4

(∫
S

βeΦ

)
=

∫
S

(
e4(β) +

(
3

2
κ− 1

2
ϑ

)
β

)
eΦ,

e3

(∫
S

βeΦ

)
=

∫
S

(
e3(β) +

(
3

2
κ− 1

2
ϑ

)
β

)
eΦ + Err

[
e3

(∫
S

βeΦ

)]
,

and

e3

(∫
S

eθ(κ)eΦ

)
− κe3

(∫
S

ζeΦ

)
=

∫
S

(
e3(eθ(κ)) +

(
3

2
κ− 1

2
ϑ

)
eθ(κ)

)
eΦ + Err

[
e3

(∫
S

eθ(κ)eΦ

)]
−κ
∫
S

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ − κErr

[
e3

(∫
S

ζeΦ

)]
=

∫
S

(
e3(eθ(κ))− κe3(ζ) +

(
3

2
κ− 1

2
ϑ

)
(eθ(κ)− κζ)

)
eΦ + Err

[
e3

(∫
S

eθ(κ)eΦ

)]
+

∫
S

κ̌

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ − κ̌

∫
S

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ − κErr

[
e3

(∫
S

ζeΦ

)]
.
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Together with the above identities for e4(eθ(κ)) and e3(eθ(κ)), as well as the Bianchi
identities of Proposition 2.2.8 for e4(β) and e3(β), we infer

e4

(∫
S

eθ(κ)eΦ

)
=

∫
S

(
1

2
κeθ(κ)− 1

2
κeθ(κ) + 2 d?/1 d/1ζ + 2eθ(ρ)− 1

2
eθ(ϑϑ)

−ϑeθ(κ) + 2eθ(ζ
2)

)
eΦ,

e4

(∫
S

βeΦ

)
=

∫
S

(
−1

2
κβ + d/2α + ζα− 1

2
ϑβ

)
eΦ,

e3

(∫
S

βeΦ

)
=

∫
S

(
1

2
κβ + eθ(ρ) + 2ωβ + 3ηρ− ϑβ + ξα− 1

2
ϑβ

)
eΦ

+Err

[
e3

(∫
S

βeΦ

)]
,

and

e3

(∫
S

eθ(κ)eΦ

)
− κe3

(∫
S

ζeΦ

)
=

∫
S

(
− 2 d/2 d

?/2ξ − κβ −
1

2
κ2ζ + 6ρξ − 2ωeθ(κ)− 1

2
ϑ(eθ(κ)− κζ) + Err[ d/2 d

?/2ξ]

)
eΦ

+Err

[
e3

(∫
S

eθ(κ)eΦ

)]
+

∫
S

κ̌

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ

−κ̌
∫
S

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ − κErr

[
e3

(∫
S

ζeΦ

)]
.

Using in particular the fact that d?/2(eΦ) = 0, that d?/2 is the adjoint of d/2, and the identity
d?/1 d/1 = d/2 d

?/2 + 2K, we deduce

e4

(∫
S

eθ(κ)eΦ

)
=

∫
S

(
1

2
κeθ(κ)− 1

2
κeθ(κ) + 4Kζ + 2eθ(ρ)− 1

2
eθ(ϑϑ)

−ϑeθ(κ) + 2eθ(ζ
2)

)
eΦ,

e4

(∫
S

βeΦ

)
=

∫
S

(
−1

2
κβ + ζα− 1

2
ϑβ

)
eΦ,

e3

(∫
S

βeΦ

)
=

∫
S

eθ(ρ)eΦ + 3ρ

∫
S

ηeΦ +

∫
S

(
1

2
κβ + 2ωβ + 3ηρ̌− ϑβ + ξα− 1

2
ϑβ

)
eΦ

+Err

[
e3

(∫
S

βeΦ

)]
,
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and

e3

(∫
S

eθ(κ)eΦ

)
= κe3

(∫
S

ζeΦ

)
− κ

∫
S

βeΦ

+

∫
S

(
− κ̌β − 1

2
κ2ζ + 6ρξ − 2ωeθ(κ)− 1

2
ϑ(eθ(κ)− κζ) + Err[ d/2 d

?/2ξ]

)
eΦ

+Err

[
e3

(∫
S

eθ(κ)eΦ

)]
+

∫
S

κ̌

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ

−κ̌
∫
S

(
e3(ζ) +

(
3

2
κ− 1

2
ϑ

)
ζ

)
eΦ − κErr

[
e3

(∫
S

ζeΦ

)]
.

Finally, from the identity (2.1.21) for eθ(K) and the formula for K, we have

∫
S

eθ(ρ)eΦ = −1

4

∫
S

eθ(κκ)eΦ +
1

4

∫
S

eθ(ϑϑ)eΦ.

We deduce

e4

(∫
S

eθ(κ)eΦ

)
=

∫
S

(
− κeθ(κ) + 4Kζ − ϑeθ(κ) + 2eθ(ζ

2)
)
eΦ,

and

e3

(∫
S

βeΦ

)
= −1

4

∫
S

eθ(κκ)eΦ + 3ρ

∫
S

ηeΦ +
1

4

∫
S

eθ(ϑϑ)eΦ

+

∫
S

(
1

2
κβ + 2ωβ + 3ηρ̌− ϑβ + ξα− 1

2
ϑβ

)
eΦ + Err

[
e3

(∫
S

βeΦ

)]

which concludes the proof of Lemma 4.1.1.

Step 2. Using the transport equations of Lemma 4.1.1 and the bootstrap assumptions
on decay for k = 0, 1 derivatives in (ext)M, we infer in that region, and in particular on
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Σ∗ ∣∣∣∣e4

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
1

r2

∣∣∣∣∫
S

ζeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e4

(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e3

(∫
S

βeΦ

)∣∣∣∣ . ∣∣∣∣∫
S

eθ(κκ)eΦ

∣∣∣∣+ r−3

∣∣∣∣∫
S

ηeΦ

∣∣∣∣+
1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

ru1+δdec
,∣∣∣∣e3

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . 1

r

∣∣∣∣e3

(∫
S

ζeΦ

)∣∣∣∣+
1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣
+

1

r3

∣∣∣∣∫
S

ξeΦ

∣∣∣∣+
1

r2

∣∣∣∣∫
S

ζeΦ

∣∣∣∣+
1

r2

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
ε2

u2+2δdec
.

Recall the following GCM conditions

κ =
2

r
,

∫
S

ηeΦ = 0,

∫
S

ξeΦ = 0 on Σ∗.

We deduce on Σ∗∣∣∣∣e4

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . 1

r2

∣∣∣∣∫
S

ζeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e4

(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e3

(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

ru1+δdec
,∣∣∣∣e3

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . 1

r

∣∣∣∣e3

(∫
S

ζeΦ

)∣∣∣∣+
1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣
+

1

r2

∣∣∣∣∫
S

ζeΦ

∣∣∣∣+
1

r2

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
ε2

u2+2δdec
.

Also, projecting both Codazzi on eΦ, using d?/2(eΦ) = 0 and the fact that d?/2 is the adjoint
of d/2, and using also the GCM condition for κ on Σ∗, we have on Σ∗∫

S

βeΦ = −1

2

∫
S

d?/1 κe
Φ − 1

2

∫
S

ζκeΦ +
1

2

∫
S

ϑ ζeΦ,∫
S

ζeΦ = r

∫
S

βeΦ +
r

2

∫
S

ϑ ζeΦ.
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Together with the bootstrap assumptions on decay for k = 0, 1 derivatives in (ext)M, we
infer on Σ∗ ∣∣∣∣e3

(∫
S

ζeΦ

)∣∣∣∣ . r

∣∣∣∣e3

(∫
S

βeΦ

)∣∣∣∣+

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

u1+δdec
,∣∣∣∣∫

S

ζeΦ

∣∣∣∣ . r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

u1+δdec
,∣∣∣∣∫

S

βeΦ

∣∣∣∣ . ∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
1

r

∣∣∣∣∫
S

ζeΦ

∣∣∣∣+
ε2

u
3
2

+δdec

.

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

u
3
2

+δdec
+

ε2

ru1+δdec
.

We have thus on Σ∗∣∣∣∣e4

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e4

(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e3

(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

ru1+δdec
,∣∣∣∣e3

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . ∣∣∣∣e3

(∫
S

βeΦ

)∣∣∣∣+
1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣
+

ε2

ru1+δdec
+

ε2

u2+2δdec
.

(4.1.2)

In view of the behavior (3.3.4) of r on Σ∗, and plugging the third equation in the fourth,
we infer on Σ∗,∣∣∣∣e4

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . ε
2
3
0

u1+δdec∗

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e4

(∫
S

βeΦ

)∣∣∣∣ . ε
2
3
0

u1+δdec∗

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

r2u1+δdec
,∣∣∣∣e3

(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
ε

2
3
0

u1+δdec∗

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε2

ru1+δdec
,∣∣∣∣e3

(∫
S

eθ(κ)eΦ

)∣∣∣∣ . ε
2
3
0

u1+δdec∗

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε

2
3
0

u1+δdec∗

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
ε2

u2+2δdec
.

Step 3. Let ν∗ the unique tangent vector to Σ∗ which can be written as

ν∗ = e3 + ae4
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where a is a scalar function on Σ∗. Recall that there exists a constant c∗ such that
Σ∗ = {u+ r = c∗}. We infer ν∗(u+ r) = 0 and hence

0 = e3(u+ r) + ae4(u+ r) =
2

ς
+
r

2
(κ+ A) + a

r

2
κ

which yields

a = −
2
ς

+ r
2
(κ+ A)
r
2
κ

.

In view of the GCM condition on κ and the definition of the Hawking mass m, we have
on Σ∗

κ =
2

r
, κ = −2Υ

r

and hence, we have on Σ∗

a = −2

ς
+ Υ− r

2
A.

The bootstrap assumptions on decay for k = 0 derivatives in (ext)M, the definition (2.2.22)
of A, and the estimates for ς and Ω yield the rough estimate1

|a| . 1.

Together with the fact that ν∗ = e3 + ae4 and the estimates of Step 2, we infer∣∣∣∣ν∗(∫
S

eθ(κ)eΦ

)∣∣∣∣ . ε
2
3
0

u1+δdec∗

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
ε

2
3
0

u1+δdec∗

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
ε0

u2+2δdec
,∣∣∣∣ν∗(∫

S

βeΦ

)∣∣∣∣ . ε
2
3
0

u1+δdec∗

∣∣∣∣∫
S

βeΦ

∣∣∣∣+
1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
ε0

ru1+δdec
.

Step 4. We assume on Σ∗ the following bootstrap assumptions recovered at the end of
this step

u1+δdec

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+ ruδdec
∣∣∣∣∫
S

βeΦ

∣∣∣∣ ≤ ε. (4.1.3)

1The estimates for Ω and ς are proved later in Proposition 3.4.3. Since the proof does not rely on
Theorem M0, we may use it here.
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This implies, using also the behavior (3.3.4) of r on Σ∗, and the fact that ε = ε
2
3
0 ,∣∣∣∣ν∗(∫

S

eθ(κ)eΦ

)∣∣∣∣ . ε0
u2+2δdec

,∣∣∣∣ν∗(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+
ε0

ru1+δdec
.

(4.1.4)

Now, recall that we have the following GCM on the last sphere S∗ = Σ∗ ∩ C∗ of Σ∗∫
S∗

eθ(κ)eΦ =

∫
S∗

βeΦ = 0.

Integrating backward from S∗ the estimate for eθ(κ) in (4.1.4) yields on Σ∗∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ε0
u1+δdec

.

Plugging in the estimate for β in (4.1.4), we infer on Σ∗∣∣∣∣ν∗(∫
S

βeΦ

)∣∣∣∣ . ε0
ru1+δdec

.

Integrating backward from S∗ yields on Σ∗∣∣∣∣∫
S

βeΦ

∣∣∣∣ . ε0
ruδdec

.

We have therefore obtained

u1+δdec

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+ ruδdec
∣∣∣∣∫
S

βeΦ

∣∣∣∣ . ε0

which is an improvement of the bootstrap assumptions (4.1.3). In particular, at the first
sphere S1 = Σ∗ ∩ C1 of Σ∗, we have obtained∣∣∣∣∫

S1

eθ(κ)eΦ

∣∣∣∣+ r

∣∣∣∣∫
S1

βeΦ

∣∣∣∣ . ε0. (4.1.5)

Remark 4.1.2. Note that the only bootstrap assumptions used in the proof of Theorem M0
are the bootstrap assumption BA-D on decay for k = 0, 1 derivatives. Indeed, to obtain
(4.1.5), we have only used, in Steps 1–4, the bootstrap assumption BA-D on decay for
k = 0, 1 derivatives, while, from now on, we will only rely on (4.1.5) and the assumptions
(4.1.1) on the initial data layer. This observation will allow us to use the conclusions of
Theorem M0, not only for the bootstrap spacetime M in Theorem M1–M5, but also for
the extended spacetime in the proof of Theorem M8, where the only assumptions are the
one on decay (which are established for the extended spacetime in Theorem M7).
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Step 5. On the sphere S1 = Σ∗ ∩ C1 of Σ∗, we have in view of the GCM conditions of Σ∗
and (4.1.5)

κ =
2

r
, d?/2 d

?/1κ = 0, d?/2 d
?/1µ = 0,

∣∣∣∣∫
S1

eθ(κ)eΦ

∣∣∣∣+ r

∣∣∣∣∫
S1

βeΦ

∣∣∣∣ . ε0. (4.1.6)

We consider the transition functions (f, f , λ) from the frame of the outgoing part (ext)L0

of the initial data layer to the frame of (ext)M. We assume the following bootstrap
assumptions along C1

sup
S⊂C1

(
‖f‖h4(S) + r−1‖(f, log(λ))‖h4(S)

)
≤ ε. (4.1.7)

In particular, the estimate (4.1.7) allows us to apply Lemma 9.2.10 with δ1 = ε which
yields

sup
S1

(
( (ext)r)−1| (ext)r − (ext)rL0 |+ |u− uL0|+ ( (ext)r)−1| (ext)s− (ext)sL0|

)
. ε. (4.1.8)

In particular, since u = 1 on S1, and (ext)r = (ext)s on Σ∗ verifies the dominant condition
in r, we infer

sup
S1

|uL0 − 1| . ε, inf
S1

(ext)sL0 ≥
1

2
ε
− 2

3
0 .

Since (ext)L0 contains the region {4m0 ≤ (ext)sL0 < +∞} ∪ {0 ≤ uL0 ≤ 2}, we infer that
the sphere S1 is included in (ext)L0.

We will not only improve the bootstrap assumption (4.1.7), but also gain derivatives
iteratively. To this end, for 4 ≤ j ≤ klarge + 5, we consider the following iteration
assumption

‖f‖hj(S1) + r−1‖(f, log(λ))‖hj(S1) ≤ ε. (4.1.9)

Note that (4.1.9) holds true for j = 4 in view of (4.1.7), and our goal is to show that
(4.1.9) holds with j replaced by j + 1.

Since

• S1 is a sphere of (ext)M in (ext)L0,

• S1 is a sphere of the GCM hypersurface Σ∗,

• the estimate (4.1.6) holds on S1,
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• the estimate (4.1.9) holds on S1,

we can invoke Corollary 9.7.3 with the choice
◦
ε =

◦
δ = ε0, δ1 = ε, smax = j, and with the

background foliation being the one of the outgoing part (ext)L0 of the initial data layer.
We obtain

r−1‖(f, f , λ− λS1
)‖hj+1(S1) . ε0 (4.1.10)

and

|λS1 − 1| . ε0 + r−1 sup
S1

∣∣ (ext)r − (ext)rL0

∣∣ . (4.1.11)

Remark 4.1.3. In order to prove the iteration assumption (4.1.9) with j replaced by
j + 1, we need in particular to improve the estimate for f in (4.1.10) by r−1. Obtaining
this improvement is the focus of Step 6 to 8.

Remark 4.1.4. The anomalous behavior for f and λ in (4.1.7), i.e. the fact that they
display a r loss compared to f , does not affect the desired estimates for the curvature
components, see (4.1.22). This is due to the fact that, in the change of frame formulas
for the curvature components, λ and f are multiplied by terms that decay faster in r.

Remark 4.1.5. In view of (4.1.8), while |u− uL0| . ε on S1, we have |s− sL0| . rε on
S1. This, as well as the anomalous behavior of f mentioned above, shows that the sphere
S1 is a large deformation, along the outgoing direction, of spheres of the initial data layer
(ext)L0. This reflects the fact that S1 (and Σ∗) captures the center of mass frame of the
limiting Schwarzschild solution, while the initial data layer foliation captures the center
of mass frame of the initial Schwarzschild solution. The behavior of s − sL0, as well as
the one of f , is consistent with the presence of a Lorentz boost between these two center
of mass frames.

From now on, we denote the frame, Ricci coefficients and curvature components associ-
ated to the frame of (ext)M with a prime, while the frame, Ricci coefficients and curvature
components associated to the frame of (ext)L0 are un-primed. From the following trans-
formation formula of Proposition 2.3.4,

β′ = λ

(
β +

3

2
ρf +

1

2
fα + l.o.t.

)
,

together with the estimate (4.1.10) for f to estimate the linear term ρf , the estimate
(4.1.9) for (f, f , λ) to estimate the other terms, and the estimates (4.1.1) for the outgoing
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part (ext)L0 of the initial data layer2, we have, since j ≤ klarge + 5,

max
k≤j−1

r2‖ d/′kβ′‖L2(S1) . ε0. (4.1.12)

Also, we have

ρ′ = ρ+
3

2
ρff + fβ + fβ + l.o.t.

Differentiating with respect to e′θ, and using the decomposition of e′θ, we infer

e′θ(ρ
′) =

((
1 +

1

2
ff

)
eθ +

1

2
fe4 +

1

2
f

(
1 +

1

4
ff

)
e3

)
ρ+ e′θ

(
3

2
ρff + fβ + fβ + l.o.t.

)
= eθ(ρ) +

1

2
fe4(ρ) +

1

2
fe3(ρ) + e′θ

(
3

2
ρff + fβ + fβ

)
+ l.o.t.

Together with the estimate (4.1.10) for f and f to estimate the linear terms fe4(ρ) and
fe3(ρ), the estimate (4.1.9) for (f, f , λ) to estimate the other terms, and the estimates

(4.1.1) for the curvature components and the Ricci coefficients of the outgoing part (ext)L0

of the initial data layer, we have, using also the behavior (3.3.4) of r on Σ∗ and the fact
that S1 ⊂ Σ∗, as well as an elliptic estimate and the fact that j ≤ klarge + 5,

max
k≤j−1

r2‖ d/′kρ̌′‖L2(S1) . ε0. (4.1.13)

Step 6. Recall the definition of the mass aspect function µ′

µ′ = − d/1
′ζ ′ − ρ′ + 1

4
ϑ′ϑ′.

Together with the GCM conditions d?/2
′ d?/1

′µ′ = 0 on Σ∗, and the fact that S1 ⊂ Σ∗, we
infer

d?/2
′ d?/1

′ d/1
′ζ ′ = − d?/2

′ d?/1
′ρ′ +

1

4
d?/2
′ d?/1

′(ϑ′ϑ′).

In view of the identity d?/1
′ d/1

′ = d/2
′ d?/2

′ + 2K ′, we infer

( d?/2
′ d/2

′ + 2K ′) d?/2
′ζ ′ = − d?/2

′ d?/1
′ρ′ +

1

4
d?/2
′ d?/1

′(ϑ′ϑ′) + 2e′θ(K
′)ζ ′.

2We use, here and in the remainder of the proof, property 6 of Lemma 9.2.10 to control the hj(S1)
norm of the Ricci coefficients and curvature components of the initial data foliation of (ext)L0 in terms
of their sup norm.
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Using the estimate for ρ′ of Step 5 and an elliptic estimate,

max
k≤j−2

r2‖ d/′k d?/2
′ζ ′‖L2(S1) . ε0. (4.1.14)

Note that the quadratic terms involving ϑ′ϑ′ and e′θ(K
′)ζ ′ are estimated using the trans-

formation formulas3, the estimates (4.1.9) for (f, f , λ), and the estimates (4.1.1) for the

curvature components and the Ricci coefficients of the outgoing part (ext)L0 of the initial
data layer.

Step 7. Recall Codazzi for ϑ′

d/2
′ϑ′ = −2β′ − d?/′1 κ

′ + ζ ′κ′ − ϑ′ ζ ′.

We differentiate w.r.t. d?/2
′ and use the GCM condition κ′ = 2/r′ which holds on Σ∗ and

S1 ⊂ Σ∗ to deduce

d?/2
′ d/2

′ϑ′ = −2 d?/2
′β′ + κ′ d?/2

′ζ ′ − d?/2
′(ϑ′ ζ ′).

Together with the estimate of Step 5 for β′, the estimate of Step 6 for d?/2
′ζ ′, dealing with

the quadratic terms as above, and using an elliptic estimate, we infer,

max
k≤j

r‖ d/′kϑ′‖L2(S1) . ε0.

Next, recall the transformation formula

ϑ′ = λ

(
ϑ− d?/2

′(f) + f(ζ + η) + fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.

)
.

Together with the above estimate for ϑ′, the estimate (4.1.9) for (f, f , λ), and the estimates

(4.1.1) for the Ricci coefficients of the outgoing part (ext)L0 of the initial data layer, we
infer

max
k≤j
‖r d?/2

′( d/′
k
f)‖L2(S1) . ε0 + ε2 . ε0.

Together with a Poincaré inequality, we infer

max
k≤j+1

‖ d/′kf‖L2(S1) . ε0 + r−2

∣∣∣∣∫
S1

feΦ

∣∣∣∣ . (4.1.15)

3In fact, in view of the identity K ′ = −ρ′ − 1
4κ
′κ′ + 1

4ϑ
′ϑ′, the GCM conditions for κ′ and κ′, and the

control of ρ′ in Step 5, we only need the transformation formulas for ϑ′ and ϑ′. These formulas involve
at most one angular derivative of f and f , and no transversal derivative.
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Step 8. In view of the last estimate of Step 7, we need to control the ` = 1 mode of f .
Recall from Lemma 4.1.1

e′4

(
r′
∫
S

β′eΦ

)
=

∫
S

(
−1

2
κ̌′β′ + ζ ′α′ − 1

2
ϑ′β′

)
eΦ.

Transporting along C1 from S1, using the control of the ` = 1 mode of β′ in (4.1.6) on S1,
and using the bootstrap assumptions on (ext)M, we infer

sup
S⊂C1

r

∣∣∣∣∫
S

β′eΦ

∣∣∣∣ . ε0 + ε2 . ε0.

In particular, consider the sphere S4m0 = C1 ∩ {r′ = 4m0}. Then∣∣∣∣∣
∫
S4m0

β′eΦ

∣∣∣∣∣ . ε0.

Together with the transformation formula

β′ = λ

(
β +

3

2
ρf +

1

2
fα + l.o.t.

)
,

which we rewrite, multiply by eΦ, and integrate on S4m0 ,

3m′

r′3

∫
S4m0

feΦ = −
∫
S4m0

β′eΦ +

∫
S4m0

(
3m′

r′3
− 3m

r3

)
feΦ +

3

2

∫
S4m0

(λ− 1)ρfeΦ

+
3

2

∫
S4m0

(
ρ+

2m

r3

)
feΦ +

∫
S4m0

λ

(
β +

1

2
fα + l.o.t.

)
eΦ,

the bootstrap assumptions (4.1.7) for (f, f , λ), and the control of the initial data layer,
we infer∣∣∣∣∣
∫
S4m0

feΦ

∣∣∣∣∣ . ε0 + ε2 + ε sup
S4m0

(
|r′ − r|+ |m′ −m|

)
. ε0 + ε sup

S4m0

(
|r′ − r|+ |m′ −m|

)
.

Now, the bootstrap assumptions (4.1.7) for (f, f , λ), together with the estimate for r− r′
in Lemma 9.2.10 with δ1 = ε, and the one for m′−m in Corollary 9.2.14 with

◦
ε = ε, yields

sup
S4m0

(
|r′ − r|+ |m′ −m|

)
. ε

and hence ∣∣∣∣∣
∫
S4m0

feΦ

∣∣∣∣∣ . ε0 + ε2 . ε0.
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Next, recall from Corollary 2.3.7 that f satisfies the following transport equations along
C1

λ−1e′4(r′f) = E ′1(f,Γ).

We deduce from Corollary 2.2.10 that

e4

(
r′
−2

∫
S

feΦ

)
= r′

−2

∫
S

(
e′4(f) +

(
1

2
κ′ + κ̌′ − 1

2
ϑ′
)
f

)
eΦ

= r′
−2

∫
S

(
r′
−1
e′4(r′f) +

(
3

2
κ̌′ − 1

2
ϑ′
)
f

)
eΦ

= r′
−2

∫
S

(
r′
−1
λ′E ′1(f,Γ) +

(
3

2
κ̌′ − 1

2
ϑ′
)
f

)
eΦ.

In view of the form of E ′1 in Corollary 2.3.7, the bootstrap assumption (4.1.7) for f , and
the estimates (4.1.1) for the Ricci coefficients of the outgoing part (ext)L0 of the initial
data layer, we have

r2|E ′1(f,Γ)| . ε0 + ε2 . ε0 on C1.

We deduce∣∣∣∣e4

(
r′
−2

∫
S

feΦ

)∣∣∣∣ . ε0
r2

+ sup
S⊂C1

[
r−1
(
‖κ̌′‖L2(S) + ‖ϑ′‖L2(S)

)
‖f‖L2(S)

]
.

Using the bootstrap assumption (4.1.7) for f , and the bootstrap assumption on decay on
(ext)M for κ̌′ and ϑ′, we infer∣∣∣∣e4

(
r′
−2

∫
S

feΦ

)∣∣∣∣ . ε0 + ε2

r2
.
ε0
r2
.

Integrating forward from r = 4m0, and using the above estimate for the ` = 1 mode of f
on S4m0 , we obtain

sup
S⊂C1

r−2

∣∣∣∣∫
S

feΦ

∣∣∣∣ . ε0.

Together with the estimate for d/′kf of Step 7, and since S1 ⊂ C1, we deduce

max
k≤j+1

‖ d/′kf‖L2(S1) . ε0.

Together with (4.1.10), we infer

‖f‖hj+1(S1) + r−1‖(f, λ− λS1
)‖hj+1(S1) . ε0.
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In particular, the above estimate for (f, f) allows to use Lemma 9.2.10 with δ1 = ε0 which
yields

sup
S1

∣∣∣∣r′r − 1

∣∣∣∣ . ε0.

Together with (4.1.11), we infer

‖f‖hj+1(S1) + r−1‖(f, log λ)‖hj+1(S1) . ε0.

This implies the iteration assumption (4.1.9) for j + 1, for all 4 ≤ j ≤ klarge + 5. Thus,
we have obtained

‖f‖hklarge+6(S1) + r−1‖(f, log λ)‖hklarge+6(S1) . ε0.

In view of the above estimate for (f, f , λ), and since S1 ⊂ Σ∗, we may apply Corollary

9.8.2 with
◦
δ = ε0 and smax = klarge + 5 which yields

‖d≤klarge+6f‖L2(S1) + r−1‖d≤klarge+6(f, log λ)‖L2(S1)

+‖d≤klarge+5e′3(f, log λ)‖L2(S1) . ε0.

The above control of (f, f), together with Lemma 9.2.10 for δ1 = ε0, and Corollary 9.2.14

with
◦
ε = ε0, implies

sup
S1

(∣∣∣∣m′m0

− 1

∣∣∣∣+

∣∣∣∣r′r − 1

∣∣∣∣) . ε0.

We have thus obtained on S1

‖d≤klarge+6f‖L2(S1) + r−1‖d≤klarge+6(f, log(λ))‖L2(S1) (4.1.16)

+‖d≤klarge+5e′3(f, log(λ))‖L2(S1) + sup
S1

(∣∣∣∣m′m0

− 1

∣∣∣∣+

∣∣∣∣r′r − 1

∣∣∣∣) . ε0.

Finally, we will also need the following estimates on S1

r

∥∥∥∥d≤klarge+5

(
κ′ − 2

r′
, κ̌′, ϑ′

)∥∥∥∥
L2(S1)

+ r−1

∥∥∥∥d≤klarge+5

(
r′

r
− 1

)∥∥∥∥
L2(S1)

. ε0. (4.1.17)

The estimates for κ′ in (4.1.17) follow from the GCM condition on κ′, as well as Ray-
chadhuri for transversal derivatives. The estimate for ϑ′ in (4.1.17) follows from the
transformation formula, the control (4.1.16) of (f, f , λ), and the control of the initial data
layer. We obtain similarly the control of ξ′, ω′ and η′ on S1, which in turn yields the
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control of Ω′ and ς ′ on S1 in view of Lemma 2.2.6, and finally the control of r′

r
in (4.1.17)

relying on (4.1.16) and (2.2.21).

Step 9. Recall from Corollary 2.3.7 that (f, log(λ)) satisfy the following transport equa-
tions along C1

λ−1e′4(rf) = E ′1(f,Γ),

λ−1e′4(log(λ)) = E ′2(f,Γ),

where, in view of the form of E ′1, E ′2 in Corollary 2.3.7 and the estimates (4.1.1) for the
Ricci coefficients of the outgoing part (ext)L0 of the initial data layer, we have

|dkE ′1(f,Γ)|+ |dkE ′2(f,Γ)| . ε0
r2

+ |d≤kf |2 for k ≤ klarge + 5 on C1.

Next, recall from Lemma 2.2.14 the following commutator identity

[T, e4] =

((
ω − m

r2

)
− m

2r

(
κ− 2

r

)
+
e4(m)

r

)
e4 + (η + ζ)eθ

while from Lemma 2.2.13, we have schematically

[ d/, e4] =
(
κ̌, ϑ
)
d/+

(
ζ, rβ

)
Together with the fact that

λ−1e′4 = e4 + feθ +
f 2

4
e3,

the commutator above identities for [T, e4] and [ d/, e4], as well as the estimates (4.1.1) for
the Ricci coefficients and curvature components of the outgoing part (ext)L0 of the initial
data layer, we infer, for k ≤ klarge + 5,

|dk[T, λ−1e′4]h|+ |dk[ d/, λ−1e′4]h|
.

ε0
r2
|d≤k+1h|+ 1

r
|d≤k(fdh)|+ 1

r
|d≤k(hdf)|+ |d≤k(f 2dh)|+ |d≤k(hfdf)|.

By commuting first the transport equations in the direction λ−1e′4 with (T, d/)k, and by
using these transport equations to recover the e4 derivatives, we deduce

λ−1e′4(rdkf) = E ′1,k(f,Γ),

λ−1e′4(dk log(λ)) = E ′2,k(f,Γ),

where we have

|E ′1,k(f,Γ)|+ |E ′2,k(f,Γ)| . ε0
r2

+ |d≤kf |2 for k ≤ klarge + 5 on C1.
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This allows us to propagate the estimates for (f, λ) in (4.1.10) on S1 to any sphere on C1,
and hence

sup
S⊂C1

(
‖d≤klarge+5f‖L2(S) + r−1‖d≤klarge+5 log λ‖L2(S)

)
. ε0. (4.1.18)

Step 10. Our next goal is to control f along C1. We cannot proceed along the same lines
as the control of (f, λ) in Step 9. Indeed, we cannot rely on the last transport equation
along λ−1e′4 of Corollary 2.3.7, as it is not consistent with the control of f on S1 derived
in Step 8. Instead, we first control α′, κ′ and ϑ′.

Recall the following transformation formula

α′ = λ2
(
α + 2fβ +

3

2
f 2ρ+ l.o.t.

)
which does not depend on f . Together with the control of (f, λ) of Step 9 and the control
of the initial data layer, we infer

sup
S⊂C1

r
5
2

+δB‖d≤klarge+5α′‖L2(S) . ε0.

Next, recall

e′4

(
κ′ − 2

r′

)
+

1

2
κ′
(
κ′ − 2

r′

)
= −1

4
ϑ′2 +

1

2
κ̌′

2
,

e′4(κ̌′) + κ′ κ̌′ = −1

2
(κ̌′)2 − 1

2
(κ̌′)2 − 1

2
(ϑ′

2 − ϑ′2),

and

e′4(ϑ′) + κ′ϑ′ = −2α′.

Proceeding as in Step 9, we commute first these transport equations with (T, d/)k, and
use the transport equations to recover the e4 derivatives. By integrating the resulting
transport equations from S1 where κ′, κ̌′ and ϑ′ are under control in view of (4.1.17), and
using the above control of α′, we infer

sup
S⊂C1

r

∥∥∥∥d≤klarge+5

(
κ′ − 2

r′
, κ̌′, ϑ′

)∥∥∥∥
L2(S)

. ε0. (4.1.19)
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Also, we have, using in particular (2.2.21),

λ−1e′4

(
log

(
r′

r

))
=

λ−1e′4(r′)

r
− e4(r)

r
− f 2

4

e3(r)

r

=
1

2

(
λ−1κ′ − κ

)
− λ−1

2
κ̌′ +

1

2
κ̌− rf 2

8
(κ+ A)

=
1

2

(
d/′1(f) + Err(κ, κ′)

)
− λ−1

2
κ̌′ +

1

2
κ̌− rf 2

8
(κ+ A)

where we have also used the change of frame formula for κ′. Proceeding as in Step 9, we
commute first these transport equations with (T, d/)k, and use the transport equations to
recover the e4 derivatives. By integrating the resulting transport equations from S1 where
r′

r
is under control in view of (4.1.17), and using the estimate4 of Step 9 for f and λ, the

estimate of Step 10 for κ̌′, and the estimate for the initial data foliation layer on (ext)L0,
we infer

sup
S⊂C1

r−1

∥∥∥∥d≤klarge+5 log

(
r′

r

)∥∥∥∥
L2(S)

. ε0. (4.1.20)

Step 11. Recall Codazzi for ϑ′

d/2
′ϑ′ = −2β′ − d?/′1 κ

′ + ζ ′κ′ − ϑ′ ζ ′.
This yields

ζ ′ =
r′

2

(
2β′ + d/2

′ϑ′ + d?/′1 κ
′ + ϑ′ ζ ′ − ζ ′

(
κ′ − 2

r′

))
.

Together with the control of κ′, ϑ′ and r′ of Step 10, we infer

sup
S⊂C1
‖d≤klarge+4ζ ′‖L2(S) . sup

S⊂C1
r‖d≤klarge+4β′‖L2(S) + ε0 + ε0 sup

S⊂C1
‖d≤klarge+4ζ ′‖L2(S)

and hence, for ε0 small enough,

sup
S⊂C1
‖d≤klarge+4ζ ′‖L2(S) . sup

S⊂C1
r‖d≤klarge+4β′‖L2(S) + ε0.

Recall the transformation formulas

β′ = λ

(
β +

3

2
ρf +

1

2
fα + l.o.t.

)
,

ζ ′ = ζ − e′θ(log(λ)) +
1

4
(−fκ+ fκ) + fω − fω +

1

2
fe′θ(f) +

1

4
(−fϑ+ fϑ) + l.o.t.

4Note that the RHS of the transport equation does not depend on f .
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Together with the control of f and λ from Step 9, the control of the initial data foliation
layer on (ext)L0, and the above control of ζ ′, we infer

sup
S⊂C1

r−1‖d≤klarge+4f‖L2(S) . sup
S⊂C1
‖d≤klarge+4ζ ′‖L2(S) + ε0

. sup
S⊂C1

r‖d≤klarge+4β′‖L2(S) + ε0

. ε0 + ε0 sup
S⊂C1

r−1‖d≤klarge+4f‖L2(S)

and hence, for ε0 small enough,

sup
S⊂C1

r−1‖d≤klarge+4f‖L2(S) . ε0.

Together with the control of f and λ from Step 9, we have in particular

sup
S⊂C1

(
‖d≤klarge+4f‖L2(S) + r−1‖d≤klarge+4(log(λ), f)‖L2(S)

)
. ε0.

Note that this concludes the improvement of the bootstrap assumptions (4.1.7) on (f, f , λ).
Also, using Sobolev, we infer

sup
C1

(
r|d≤klarge+2f |+ |d≤klarge+2(f, log(λ))|

)
. ε0. (4.1.21)

Step 12. In view of (4.1.21), the change of frame formulas of Proposition 2.3.4, and the
estimates (4.1.1) for the curvature components of the outgoing part (ext)L0 of the initial
data layer, we obtain

max
0≤k≤klarge

{
sup
C1

[
r

7
2

+δB
(
|dk (ext)α|+ |dk (ext)β|

)
+ r

9
2

+δB |dk−1e3( (ext)α)|
]

(4.1.22)

+ sup
C1

[
r3

∣∣∣∣dk ( (ext)ρ+
2m0

r3

)∣∣∣∣+ r2|dk (ext)β|+ r|dk (ext)α|
]}
. ε0.

Also, according to Proposition 2.2.16, we have in (ext)M

(ext)e4( (ext)m) =
(ext)r

32π

∫
S

(
2 (ext)κ̌ (ext)ρ̌+ 2 (ext)eθ(

(ext)κ) (ext)ζ − 1

2
(ext)κ( (ext)ϑ)2

−1

2
(ext)κ̌ (ext)ϑ (ext)ϑ+ 2 (ext)κ( (ext)ζ)2

)
,
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which together with the bootstrap assumptions on (ext)M yields

sup
C1
r2
∣∣∣ (ext)e4( (ext)m)

∣∣∣ . ε20.

This allows us to propagate the estimates for (ext)m in (4.1.16) on S1 to any sphere on C1,
and hence

sup
C1

∣∣∣∣ (ext)mm0

− 1

∣∣∣∣ . ε0. (4.1.23)

Also, in view of the control r′

r
of Step 10, we have

sup
C1

∣∣∣∣ (ext)r
(ext)rL0

− 1

∣∣∣∣ . ε0.

Step 13. Recall that

• ((ext)e4,
(ext)e3,

(ext)eθ) denotes the null frame of (ext)M,

• ((int)e4,
(int)e3,

(ext)eθ) denotes the null frame of (int)M,

• ( (ext)(e0)3,
(ext)(e0)4,

(ext)(e0)θ) denotes the null frame of (ext)L0,

• ( (int)(e0)3,
(int)(e0)4,

(int)(e0)θ) denotes the null frame of (int)L0.

Also, recall that the timelike hyper surface T is given by

T = { (ext)r = rT } where 2m0

(
1 +

δH
2

)
≤ rT ≤ 2m0

(
1 +

3δH
2

)
to that T ⊂ (int)L0 ∩ (ext)L0, and recall that the frame of (int)M is initialed on T as
follows

(int)e4 = λ (ext) e4,
(int)e3 = λ−1 (ext)e3,

(int)eθ = (ext)eθ on T

where

λ = (ext)λ = 1− 2 (ext)m
(ext)r

.

Denoting
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• by (f, f , λ) the transition functions from the frame of the outgoing part (ext)L0 of

the initial data layer to the frame of (ext)M as in Steps 5 to 12,

• by (f ′, f ′, λ′) the transition functions from the frame of the ingoing part (int)L0 of

the initial data layer to the frame of (int)M,

• by (f̃, f̃ , λ̃) the transition functions on (int)L0∩ (ext)L0 from the frame outgoing part
(ext)L0 of the initial data layer to the frame of the ingoing part (int)L0 of the initial
data layer,

we obtain, using also that C1 ∩ C1 ⊂ T ,

sup
C1∩C1

(
|d≤klarge+2(f ′, f ′, log(λ′))|

)
. sup

C1∩C1

(
|d≤klarge+2(f, f , log(λ))|

)
+ sup
C1∩C1

(
|d≤klarge+2(f̃, f̃ , log(Υ−1

0 λ̃))|
)

+ sup
C1∩C1

(
|d≤klarge+2 log(Υ−1

0 Υ)|
)

where we have denoted

Υ0 = 1− 2m0

(ext)rL0

, Υ = 1− 2 (ext)m
(ext)r

.

Together with the control of (f̃, f̃ , log(Υ−1
0 λ̃)) provided on (int)L0∩ (ext)L0 by the estimates

(4.1.1), the estimates (4.1.21) for (f, f , λ), and the estimates (ext)m − m0 and (ext)r −
(ext)rL0 obtained in Step 12, we infer

sup
C1∩C1

(
|d≤klarge+2(f ′, f ′, log(λ′))|

)
. ε0.

Step 14. We propagate the estimate for (f ′, f ′, log(λ′)) on C1 ∩ C1 provided by Step 8 to
C1 using the analog of Corollary 2.3.7 in the ingoing direction e3. We obtain the following
estimate

sup
C1

(
|d≤klarge+2(f, log λ)|

)
+ sup
C1
|d≤klarge+1f | . ε0.

Together with the change of frame formulas of Proposition 2.3.4, and the estimates (4.1.1)
for the curvature components of the ingoing part (int)L0 of the initial data layer, we obtain

max
0≤k≤klarge

sup
C1

[
|dk (int)α|+ |dk (int)β|+

∣∣∣∣dk ( (int)ρ+
2m0

r3

)∣∣∣∣
+|dk (int)β|+ |dk (int)α|

]
. ε0. (4.1.24)
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Also, since we have as a consequence of the initialization on T of the ingoing geodesic
foliation of (int)M

(int)m = (ext)m on C1 ∩ C1

we infer from the control of (ext)m provided by Step 12

| (int)m−m0| . ε0 on C1 ∩ C1.

We then propagate, similarly to Step 12, this bound to C1 and obtain

sup
C1

∣∣ (int)m−m0

∣∣ . ε0.

Together with (4.1.22), (4.1.23) and (4.1.24), this concludes the proof of Theorem M0.

4.2 Control of averages and of the Hawking mass

In this section, we prove Lemma 3.4.1 and Lemma 3.4.2.

4.2.1 Proof of Lemma 3.4.1

Step 1. We start with the control of ρ on M. Recall the identity (2.2.12)

ρ+
2m

r3
=

1

4
ϑϑ.

Thus, in view of the bootstrap assumptions BA-D, BA-E, we have,∣∣∣ρ+
2m

r3

∣∣∣ . ε2 min{r−3u−
3
2
−δdec , r−2u−2−2δdec} in (ext)M,∣∣∣ρ+

2m

r3

∣∣∣ . ε2u−2−2δdec in (int)M.

Differentiating the equation with respect to e3, e4 we derive,

e4

(
ρ+

2m

r3

)
=

1

4
e4(ϑ)ϑ+ ϑe4(ϑ) + l.o.t.,

e3

(
ρ+

2m

r3

)
=

1

4
e3(ϑ)ϑ+ ϑe3(ϑ) + l.o.t.,

eθ

(
ρ+

2m

r3

)
= 0.
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Taking higher derivatives in e3, e4 and making use of the bootstrap assumptions BA-D,
BA-E, we derive in (ext)M,∣∣∣∣d≤ksmall (ρ+

2m

r3

)∣∣∣∣ . ε2 min{r−3u−
3
2
−δdec , r−2u−2−2δdec},∣∣∣∣d≤klarge (ρ+

2m

r3

)∣∣∣∣ . r−3u−1/2−δdec ,

and in (int)M, ∣∣∣∣d≤ksmall (ρ+
2m

r3

)∣∣∣∣ . ε2u−2−2δdec ,∣∣∣∣d≤klarge (ρ+
2m

r3

)∣∣∣∣ . ε2u−1−δdec .

In particular,

sup
(ext)M

u
3
2

+δdecr3

∣∣∣∣d≤ksmall (ρ+
2m

r3

)∣∣∣∣+ sup
(ext)M

u
1
2

+δdecr3

∣∣∣∣d≤klarge (ρ+
2m

r3

)∣∣∣∣ . ε0,

sup
(int)M

u
3
2

+δdec

∣∣∣∣d≤ksmall (ρ+
2m

r3

)∣∣∣∣+ sup
(int)M

u
1
2

+δdec

∣∣∣∣d≤klarge (ρ+
2m

r3

)∣∣∣∣ . ε0

Step 2. Next, we proceed with the control of κ in (ext)M. Recalling Lemma 2.2.17, we
start with

e4

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
= −1

4
ϑ2 +

1

2
κ̌2. (4.2.1)

In view of Corollary 2.2.12 we deduce, from the first equation,

e4

(
r

(
κ− 2

r

))
= −r

(
1
4
ϑ2 + 1

2
κ̌2
)
. (4.2.2)

Making use of the GCM condition

κ =
2

r
on Σ∗,

which yields

κ =
2

r
on Σ∗,
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we deduce, integrating (4.2.2) with respect to r along Cu from Σ∗,

sup
(ext)M

u1+δdecr3

∣∣∣∣κ− 2

r

∣∣∣∣ . ε2 . ε0.

Also, making use of the bootstrap assumptions BA-D, BA-E we easily deduce,

sup
(ext)M

u1+δdecr3

∣∣∣∣d≤ksmall+1
↗

(
κ− 2

r

)∣∣∣∣ . ε2 . ε0,

sup
(ext)M

u
1
2

+δdecr3

∣∣∣∣d≤klarge+1

↗

(
κ− 2

r

)∣∣∣∣ . ε2 . ε0.

We next commute (4.2.2) with e3 and derive,

e4e3

(
r

(
κ− 2

r

))
= e3

(
r

(
1

4
ϑ2 +

1

2
κ̌2

))
− [e3, e4]

(
r

(
κ− 2

r

))
= e3

(
r

(
1

4
ϑ2 +

1

2
κ̌2

))
− 2ω

(
r

(
κ− 2

r

))
− 2ζ

(
r

(
κ− 2

r

))
.

It is thus easy to see that we can prove estimates of the type

sup
(ext)M

u1+δdecr3

∣∣∣∣d≤ksmall+1

(
κ− 2

r

)∣∣∣∣ . ε2 . ε0,

sup
(ext)M

u
1
2

+δdecr3

∣∣∣∣d≤klarge+1

(
κ− 2

r

)∣∣∣∣ . ε2 . ε0,

provided that we can check that,

sup
(ext)M

u1+δdecr3

∣∣∣∣e≤ksmall+1
3

(
κ− 2

r

)∣∣∣∣ . ε2 . ε0,

sup
(ext)M

u
1
2

+δdecr3

∣∣∣∣e≤klarge+1
3

(
κ− 2

r

)∣∣∣∣ . ε2 . ε0.

The difficulty in this case is to make sure that we can control terms of the type,

ek+1
3

(
r

(
1

4
ek+1

3 (ϑ2) +
1

2
ek+1

3 (κ̌2)

))
using only at most k derivatives of Γ̌, Ř. To see this we note that,

e3(ϑ2) = e3ϑ2 − (Ω̌κ− Ω̌ κ̌)ϑ2 + κ̌ϑ̌2,

e3(κ̌2) = e3κ̌2 − (Ω̌κ− Ω̌ κ̌)κ̌2 + κ̌κ̌2,
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and,

e3(ϑ) +
1

2
κϑ− 2ωϑ = −2 d?/2ζ −

1

2
κϑ+ 2ζ2,

e3κ̌+
1

2
κ κ̌ = −2µ̌− 1

2
κκ̌+ 2(ω̌κ+ ωκ̌) + Ω̌κκ+ Err[e3κ̌],

Err[e3κ̌] : = 2(ζ2 − ζ2) + 2(ω̌κ̌− ω̌κ̌)− 1

2
κ̌ κ̌− 1

2
κ̌ κ̌− Ω̌κ̌ κ.

(4.2.3)

We thus derive,

sup
(ext)M

u1+δdecr3

∣∣∣∣d≤ksmall+1

(
κ− 2

r

)∣∣∣∣+ sup
(ext)M

u
1
2

+δdecr3

∣∣∣∣d≤klarge+1

(
κ− 2

r

)∣∣∣∣ . ε0.

Step 3. We next estimate κ in (ext)M making use of the identity (2.2.14) derived in
connection to the Hawking mass

κ+
2Υ

r
=

2Υ

rκ

(
κ− 2

r

)
− 1

κ
κ̌κ̌.

Thus, in view of the estimates for κ derived in step 2 we easily infer that,

sup
(ext)M

u
3
2

+δdecr2

∣∣∣∣d≤ksmall (κ+
2Υ

r

)∣∣∣∣+ sup
(ext)M

u
1
2

+δdecr2

∣∣∣∣d≤klarge (κ+
2Υ

r

)∣∣∣∣ . ε0.

as desired.

Step 4. We estimate ω in (ext)M based on the following identity in Lemma 2.2.17

e3

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
= 2ω

(
κ− 2

r

)
+

4

r

(
ω − m

r2

)
+ 2

(
ρ+

2m

r3

)
−1

2
κ

(
κ− 2

r

)
Ω̌ + 2ω̌κ̌− 1

2
ϑϑ+ 2ζ2

+
1

2
Ω̌
(
− ϑ2 + κ̌2

)
− Ω̌(e4(κ̌) + κκ̌) +

1

2
κ̌κ̌− 1

r
Ω̌κ̌,

which we rewrite as

ω − m

r2
=

r

4

{
e3

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
− 2ω

(
κ− 2

r

)
− 2

(
ρ+

2m

r3

)
+

1

2
κ

(
κ− 2

r

)
Ω̌− 2ω̌κ̌+

1

2
ϑϑ− 2ζ2 − 1

2
Ω̌
(
− ϑ2 + κ̌2

)
+Ω̌(e4(κ̌) + κκ̌)− 1

2
κ̌κ̌+

1

r
Ω̌κ̌

}
. (4.2.4)
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Using the estimates of ρ in Step 1, the estimates for κ in Step 2, as well as our bootstrap
assumptions on decay and energy, we easily derive

sup
(ext)M

u1+δdecr2
∣∣∣d≤ksmall (ω − m

r2

)∣∣∣+ sup
(ext)M

u
1
2

+δdecr2
∣∣∣d≤klarge (ω − m

r2

)∣∣∣ . ε0.

Remark 4.2.1. It is to estimate klarge derivatives of ω − mr−2 that we had to control
klarge + 1 derivatives of κ− 2/r is Step 2.

Step 5. We estimate Ω in (ext)M. First we need the control of Ω on Σ∗. To this end, we
recall that s is initialized on Σ∗ by s = r so that

ν(s− r) = 0 on Σ∗, ν = e3 + ae4,

where the scalar function a is such that the vectorfield ν is tangent to Σ∗. On the other
hand, we have e4(s) = 1 and

e4(r) =
r

2
κ = 1 on Σ∗

where we used the GCM condition κ = 2/r on Σ∗. We infer e3(s) = e3(r) on Σ∗ and
hence

Ω = e3(r) on Σ∗.

This yields

Ω = e3(r) =
rκ

2
+
r

2
A,

and hence, in view of the estimate for κ of step 3, the fact that A contains only quadratic
terms in view of the formula for A, and in view of the bootstrap assumptions on decay
and energy, we infer

sup
Σ∗

u1+δdecr
∣∣∣d≤ksmall (Ω− m

r2

)∣∣∣+ sup
Σ∗

u
1
2

+δdecr
∣∣∣d≤klarge (Ω− m

r2

)∣∣∣ . ε0.

Then, we use e4(Ω) = −2ω and Corollary 2.2.11 to obtain

e4(Ω) = −2ω + κ̌ Ω̌

and hence

e4(Ω + Υ) = −2
(
ω − m

r2

)
+
m

r

(
κ− 2

r

)
+ κ̌ Ω̌− 2e4(m)

r
.
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Commuting with d, integrating from Σ∗ where we have controlled Ω above, and using the
estimates of Step 2 for κ, Step 4 for ω, the bootstrap assumptions, and the estimates for
e4(m) of Lemma 3.4.2 (which do not depend on the control of Ω), we infer

sup
(ext)M

u1+δdecr
∣∣∣d≤ksmall (Ω− m

r2

)∣∣∣+ sup
(ext)M

u
1
2

+δdecr
∣∣∣d≤klarge (Ω− m

r2

)∣∣∣ . ε0.

Step 6. Next, we control (int)κ on the cylinder T . From the initialization of the frame
of (int)M on T , we have

(int)r = (ext)r, (int)κ = Υ (ext)κ, (int)κ = Υ−1 (ext)κ on T .

Also, making use of the identity (2.2.14) derived in connection to the Hawking mass, we
have

(ext)κ+
2Υ

r
=

2Υ

r (ext)κ

(
(ext)κ− 2

r

)
− 1

(ext)κ
(ext)κ̌ (ext)κ̌.

We deduce

(int)κ+
2

r
= Υ−1

(
(ext)κ+

2Υ

r

)
=

2

r (ext)κ

(
(ext)κ− 2

r

)
− Υ−1

(ext)κ
(ext)κ̌ (ext)κ̌ on T .

To derive higher tangential derivatives along T we remark that the vectorfield

TT = e4 −
e4(r)

e3(r)
e3 = e4 −

κ+ A

κ
e3,

together with eθ, spans the tangent space to T . The transversal derivatives, on the other
hand, can be determined with help of the equation,

e3

(
κ+

2

r

)
+

1

2
κ

(
κ+

2

r

)
= −1

4
ϑ2 +

1

2
κ̌2.

adapted to the (int)M foliation. Making use of the estimates for (ext)κ in (ext)M derived
in Step 2 and the bootstrap assumptions, we infer that,

sup
T
u

3
2

+δdec

∣∣∣∣d≤ksmall+1

(
(int)κ+

2

r

)∣∣∣∣+ sup
T
u

1
2

+δdec

∣∣∣∣d≤klarge+1

(
(int)κ+

2

r

)∣∣∣∣
. ε0 + sup

T
u

1
2

+δdec

∣∣∣dklarge+1
(

(ext)κ̌ (ext)κ̌
)∣∣∣
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Now, in view of the transport equations for (ext)e4( (ext)κ̌), (ext)e3( (ext)κ̌), (ext)e4( (ext)κ̌)
and (ext)e3( (ext)κ̌), as well as the bootstrap assumptions, we have

sup
T
u

1
2

+δdec

∣∣∣dklarge+1
(

(ext)κ̌ (ext)κ̌
)∣∣∣

. ε0 + sup
T
u

1
2

+δdec

∣∣∣ (ext)κ̌dklarge d/1( (ext)ζ)
∣∣∣+ sup

T
u

1
2

+δdec

∣∣∣ (ext)κ̌dklarge d/1( (ext)ζ)
∣∣∣

+ sup
T
u

1
2

+δdec

∣∣∣ (ext)κ̌dklarge d/1( (ext)ξ)
∣∣∣

. ε0 + sup
T
u

1
2

+δdec

∣∣∣ d?/1
(ext)κ̌dklarge (ext)ζ

∣∣∣+ sup
T
u

1
2

+δdec

∣∣∣ d?/1
(ext)κ̌dklarge (ext)ζ

∣∣∣
+ sup
T
u

1
2

+δdec

∣∣∣ d?/1
(ext)κ̌dklarge (ext)ξ

∣∣∣
. ε0

where we have integrated d/1 by parts and used that d?/1 is its adjoint. We infer

sup
T
u

3
2

+δdec

∣∣∣∣d≤ksmall+1

(
(int)κ+

2

r

)∣∣∣∣+ sup
T
u

1
2

+δdec

∣∣∣∣d≤klarge+1

(
(int)κ+

2

r

)∣∣∣∣ . ε0.

Step 7. From now on, we only work with the frame of (int)M. Starting with the equation,

e3

(
κ+

2

r

)
+

1

2
κ

(
κ+

2

r

)
= −1

4
ϑ2 +

1

2
κ̌2.

Using the estimates of step 5 we can then proceed precisely as in Step 2 ( using the (int)M
counterpart of the equations (4.2.3)) to derive,

sup
(int)M

u1+δdec

∣∣∣∣d≤ksmall+1

(
κ+

2

r

)∣∣∣∣+ sup
(int)M

u
1
2

+δdec

∣∣∣∣d≤klarge+1

(
κ+

2

r

)∣∣∣∣ . ε0.

Step 8. Finally, we estimate the remaining averages in (int)M, i.e. κ and ω. To estimate
κ we make use once more of the identity,

κ− 2Υ

r
= −2Υ

rκ

(
κ+

2

r

)
− 1

κ
κ̌κ̌.

Making use of the estimates of κ in Step 5 as well as the bootstrap assumptions for κ̌ and
κ̌ we easily derive,

sup
(int)M

u1+δdec

∣∣∣∣d≤ksmall (κ− 2Υ

r

)∣∣∣∣+ sup
(int)M

u
1
2

+δdec

∣∣∣∣d≤klarge (κ− 2Υ

r

)∣∣∣∣ . ε0.
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Step 9. To estimate ω we proceed as in Step 4 by making use of the identity

ω +
m

r2
=

r

4

{
e4

(
κ+

2

r

)
+

1

2
κ

(
κ+

2

r

)
− 2ω

(
κ+

2

r

)
− 2

(
ρ+

2m

r3

)
+

1

2
κ

(
κ+

2

r

)
Ω̌− 2ω̌κ̌+

1

2
ϑϑ− 2ζ2 − 1

2
Ω̌
(
− ϑ2 + κ̌2

)
+Ω̌(e4(κ̌) + κκ̌)− 1

2
κ̌κ̌+

1

r
Ω̌κ̌

}
.

Thus, in view of the estimates of ρ in Step 1, the estimates for κ in Step 5, the estimates
of κ above5, as well as the bootstrap assumptions BA-D and BA-E, we deduce,

sup
(int)M

u1+δdec

∣∣∣d≤ksmall (ω +
m

r2

)∣∣∣+ sup
(int)M

u
1
2

+δdec

∣∣∣d≤klarge (ω +
m

r2

)∣∣∣ . ε0.

Step 10. It remains to estimate Ω in (int)M. First we need the control of Ω on T . To
this end, we recall that s is initialized on T by s = r so that

TT (s− r) = 0 on T , TT = e4 −
κ+ A

κ
e3,

, where the vectorfield has been introduced above and is tangent to T . On the other
hand, we have e3(s) = −1 and e3(r) = rκ/2, and hence

Ω = e4(r) +
κ+ A

κ
(−1− e3(r)) =

r

2
(κ+ A)

(
1 +

κ− 2
r

κ

)
on T

This yields

Ω =
r

2
(κ+ A)

(
1 +

κ− 2
r

κ

)
on T ,

and hence, in view of the estimate for κ of step 7, the estimate for κ of step 8, the fact
that A contains only quadratic terms in view of the formula for A, and in view of the
bootstrap assumptions on decay and energy, we infer

sup
T
u1+δdec

∣∣d≤ksmall (Ω−Υ
)∣∣+ sup

T
u

1
2

+δdec
∣∣d≤klarge (Ω−Υ

)∣∣ . ε0.

Then, we use the analog of the transport equation used to estimate Ω in (ext)M, i.e.

e3(Ω−Υ) = 2
(
ω +

m

r2

)
− m

r

(
κ+

2

r

)
+ κ̌ Ω̌ +

2e3(m)

r
.

5It is to estimate klarge derivatives of ω+m/r2 that we made sure to control klarge + 1 derivatives of
κ+ 2/r.
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Commuting with d, integrating from T where we have controlled Ω above, and using the
estimates of Step 2 for κ, Step 4 for ω, the bootstrap assumptions, and the estimates for
e4(m) of Lemma 3.4.2 (which do not depend on the control of Ω), we infer

sup
(int)M

u1+δdec
∣∣d≤ksmall (Ω−Υ

)∣∣+ sup
(int)M

u
1
2

+δdec
∣∣d≤klarge (Ω−Υ

)∣∣ . ε0.

This concludes the proof of Lemma 3.4.1.

4.2.2 Proof of Lemma 3.4.2

Step 1. We start with the control of e3(m) and e4(m) in (ext)M. According to Proposition
2.2.16 we have in (ext)M

e4(m) =
r

32π

∫
S

Err1, (4.2.5)

and

e3(m) =
(
1− ς−1ς̌

) r

32π

∫
S

Err1 +
(
Ω̌ + ς−1Ως̌

) r

32π

∫
S

Err1

+ς−1 r

32π

∫
S

ς̌
(
2ρκ̌+ 2ρ̌κ+ 2κ d/1η + 2κ d/1ξ + Err2

)
−ς−1 r

32π

∫
S

(Ως̌ + Ω̌ς) (2ρκ̌+ 2ρ̌κ− 2κ d/1ζ + Err2)

−m
r
ς−1
[
−ς̌ κ̌+ Ω ς̌ κ̌+ Ω̌ςκ

]
, (4.2.6)

where

Err1 := 2κ̌ρ̌+ 2eθ(κ)ζ − 1

2
κϑ2 − 1

2
κ̌ϑϑ+ 2κζ2,

Err1 := 2ρ̌κ̌− 2eθ(κ)η − 2eθ(κ)ξ − 1

2
κ̌ϑϑ+ 2κη2 + 2κ

(
η − 3ζ

)
ξ − 1

2
κϑ2,

Err2 := 2ρ̌κ̌− 1

2
κϑ2 − 1

2
κϑϑ+ 2κζ2,

Err2 := 2ρ̌κ̌+ κ

(
2η2 − 1

2
ϑϑ

)
+ 2κ

(
η − 3ζ

)
ξ − 1

2
κϑ2.

Thus, according to the bootstrap assumption BA-D on decay, we deduce,

|e4(m)| . ε2r−2u−1−δdec ,

|e3(m)| . ε2u−2−2δdec .
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Moreover, differentiating the equations with respect to e3, e4 and making use of both
bootstrap assumptions BA-D BA-E on decay and energy, and integrating by part once
the eθ derivative for the terms involving eθ(κ) and eθ(κ) when they contain top order
derivatives, we infer that,

max
0≤k≤ksmall

sup
(ext)M

r2u1+δdec |dke4(m)| . ε0,

max
0≤k≤klarge

sup
(ext)M

(
r2u

1
2

+δdec + ru1+δdec
)
|dke4(m)| . ε0,

as well as

max
0≤k≤ksmall

sup
(ext)M

u2+2δdec|dke3(m)| . ε0,

max
0≤k≤klarge

sup
(ext)M

u1+δdec|dke3(m)| . ε0,

consistent with the statement of the lemma.

Step 2. We derive the estimates on (int)M. According to the analogue of Proposition
2.2.16 in the situation of the incoming geodesic foliations of (int)M, and proceeding as in
Step 1, we easily derive,

max
0≤k≤klarge

sup
(int)M

u1+δdec
(
|dke3(m)|+ |dke4(m)|

)
. ε2 . ε0. (4.2.7)

Step 3. We estimate m−m0 in (ext)M.

First, recall from Theorem M0 that we have

sup
C1∪C1

|m−m0| . ε0m0. (4.2.8)

We start with the control in (ext)M. Note that (ext)M is covered by integral curves of
e3 starting from C1. Thus, integrating the e3m equation and making use of the estimate
supC1 |m−m0| . ε0m0 as well as the fact that e3(u) = 2, we easily deduce that,

sup
(ext)M

|m−m0| . ε0m0 + ε2 . ε0m0.

Step 4. We estimate |m−m0| on T .

In view of our initialization of the ingoing geodesic foliation of (int)M on T ,

(int)κ (int)κ = (ext)κ (ext)κ on T .
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Since the spheres of both foliations agree on T , we infer from the definition of the Hawking
mass,

(int)m = (ext)m on T .

Using the estimate for (ext)m we infer that

sup
T
| (int)m−m0| . ε0m0.

Step 5. We estimate |m−m0| on (int)M.

Note first that in (int)M,

e3(r) + 1 =
r

2
κ+ 1 =

r

2

(
κ+

2

r

)
.

Thus, in view of the estimate for κ+ 2
r

derived in Lemma 3.4.1

sup
(int)M

|e3(r) + 1| . ε2.

Thus integrating the estimate (4.2.7) in r ∈ [2m0(1 − δH), rT ], where we recall that
rT ≤ 2m0(1 + 2δH), we derive,

sup
(int)M

|m−m0| . ε0m0.

Since M = (ext)M∪ (int)M we infer that,

sup
M
|m−m0| . ε0m0.

This concludes the proof of Lemma 3.4.2.

4.3 Control of coordinates systems

The goal of this section is to prove Propositions 3.4.3 and 3.4.4. In both cases, the first
two claims, on the form of the spacetime metric in the corresponding coordinates system
as well as on the expression of the coordinates vectorfield with respect to the null frame
(e4, e3, eθ), is already proved in Propositions 2.2.23 and 2.2.26. So we only focus on the
third claim, i.e. on estimating Ω̌, Ω̌, ς, ς, γ, b, b and eΦ. The proof of Propositions 3.4.3
and 3.4.4 thus reduces to the proof of the following lemma.
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Lemma 4.3.1. Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (2.2.52), i.e.

θ = cot−1 (reθ(Φ)) . (4.3.1)

Let

b = e4(θ), b = e3(θ), γ =
1

(eθ(θ))2
. (4.3.2)

Then, we have

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
)(∣∣∣dk ( γ

r2
− 1
)∣∣∣+ r

∣∣dkb∣∣) . ε,

max
0≤k≤ksmall

sup
(ext)M

u1+δdec
(∣∣dkΩ̌∣∣+

∣∣dk(ς − 1)
∣∣+ r

∣∣dkb∣∣) . ε,

max
0≤k≤ksmall

sup
(int)M

u1+δdec
(∣∣dkΩ̌∣∣+

∣∣dk(ς − 1)
∣∣+
∣∣∣dk ( γ

r2
− 1
)∣∣∣+

∣∣dkb∣∣+
∣∣dkb∣∣) . ε.

Also, eΦ satisfies

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
) ∣∣∣∣dk ( eΦ

r sin θ
− 1

)∣∣∣∣ . ε,

max
0≤k≤ksmall

sup
(int)M

u1+δdec

∣∣∣∣dk ( eΦ

r sin θ
− 1

)∣∣∣∣ . ε.

Proof. We prove the estimates in (ext)M. The proof in (int)M is similar and left to the
reader.

Step 1. We start with the estimate for Ω̌. Recall that

d?/1Ω̌ = ξ

so that the bootstrap assumptions for ξ imply on any 2-sphere of the foliation of (ext)M
and for any k ≤ ksmall

r
1
2‖dkr d?/1Ω̌‖L4(S) + ‖dkr d?/1Ω̌‖L2(S) . r2 sup

S
|dkξ| . εru−1−δdec .

In view of the commutation formulas of Lemma 2.2.13 and of Proposition 2.1.25, together
with the bootstrap assumptions, we infer any k ≤ ksmall, schematically,

[dk, r d?/1] = O(ε)d≤k +O(1)d≤k−1,
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and hence,

r
1
2‖r d?/1d

kΩ̌‖L4(S) + ‖r d?/1d
kΩ̌‖L2(S) . εru−1−δdec + ε‖d≤kΩ̌‖L2(S) + εr

1
2‖d≤kΩ̌‖L4(S)

+‖d≤k−1Ω̌‖L2(S) + r
1
2‖d≤k−1Ω̌‖L4(S)

. εru−1−δdec + ε‖r d?/1d
≤kΩ̌‖L2(S) + ε‖d≤kΩ̌‖L2(S)

+‖d≤k−1Ω̌‖L2(S) + ‖d≤kΩ̌‖
1
2

L2(S)‖d≤k−1Ω̌‖
1
2

L2(S),

where we used Gagliardo-Nirenberg on S. Together with the Poincaré inequality of Corol-
lary 2.1.34 for d?/1, we deduce

r
1
2‖r d?/1d

kΩ̌‖L4(S) + ‖r d?/1d
kΩ̌‖L2(S) + ‖dkΩ̌‖L2(S) . εru−1−δdec + ‖d≤k−1Ω̌‖L2(S).

By iteration, and using again Gagliardo-Nirenberg on S, we infer on any 2-sphere of the
foliation of (ext)M and for any k ≤ ksmall

‖r d?/1d
kΩ̌‖L4(S) + ‖dkΩ̌‖L4(S) . εr

1
2u−1−δdec ,

and thus, by Sobolev embedding

max
0≤k≤ksmall

sup
(ext)M

u1+δdec |dkΩ̌| . ε

which is the desired estimate for Ω̌.

Step 2. Next, we estimate ς. First, recall that we have

eθ(log ς) = η − ζ.

Since the bootstrap assumptions for η− ζ are at least as good as for ξ, we obtain, arguing

as in Step 1 the following analog of the above estimate for Ω̌

max
0≤k≤ksmall

sup
(ext)M

u1+δdec |dk ς̌| . ε.

Now that we control ς̌, we turn to the estimate for ς. First, recall from the GCM on Σ∗
that we have

u+ r = cΣ∗ and a
∣∣
SP

= −1− 2m

r
, where ν = e3 + ae4 and ν is tangent to Σ∗,

with cΣ∗ a constant, and SP denoting the south pole of the spheres of Σ∗. We deduce on
the south poles of Σ∗

0 = ν(u+ r) = e3(u) + e3(r) + ae4(r) =
2

ς
+ e3(r)−

(
1 +

2m

r

)
e4(r)
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and hence

2

ς
− 2 = −r

2

((
κ+

2Υ

r

)
+ A−

(
1 +

2m

r

)(
κ− 2

r

))
on SP ∩ Σ∗.

Together with the fact that ς = ς − ς̌, the above control of ς̌, the control of κ and κ
provided by Lemma 3.4.1, the formula for A, the control for Ω̌ in Step 1, the bootstrap
assumptions on decay, and the fact that ς is constant on the sphere, we infer

max
0≤k≤ksmall

sup
Σ∗

u1+δdec|dk(ς − 1)| . ε.

Using ς = ς + ς̌ and the above estimates for ς and ς̌, we obtain

max
0≤k≤ksmall

sup
Σ∗

u1+δdec|dk(ς − 1)| . ε.

Finally, recall

e4(ς) = 0.

Commuting with d, using the bootstrap assumptions on decay and the above control for
ς − 1 on Σ∗, we infer

max
0≤k≤ksmall

sup
(ext)M

u1+δdec |dk(ς − 1)| . ε.

Remark 4.3.2. In (int)M, we analogously transport ς from the timelike hyper surface T .
To estimate ς on T , one uses the following identity (in the frame of (int)M)

2

ς
− 1 = −κ+ A

Υκ

(
2

ς
− 1

)
− A

Υκ
−
(
κ− 2Υ

r

)
+ Υ

(
κ+ 2

r

)
Υκ

on T .

This identity follows from the definition of ς and ς, the identity for e3(r) and e4(r) in
(int)M, the fact that u = u on T , and that T = {r = rT } so that the vectorfield

TT = e4 −
e4(r)

e3(r)
e3 = e4 −

κ+ A

κ
e3

is tangent to T .

Step 3. We make the auxiliary bootstrap assumption which will be recovered at the end
of Step 5 ∣∣eΦ

∣∣ ≤ 2r,
∣∣eθ(eΦ)

∣∣ ≤ 2. (4.3.3)
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We start with the estimate for eΦ. Recall from (2.2.53) that the following identity holds

eΦ

r sin θ
=
√

1 + a. (4.3.4)

where a has been introduced in (2.2.54) by

a =
e2Φ

r2
+ (eθ(e

Φ))2 − 1.

In order to estimate eΦ, it thus suffices to estimate a.

Step 4. Now, recall from Lemma 2.2.30 that a verifies the following identities on (ext)M,

e4(a) =
(κ̌− ϑ)e2Φ

r2
+ 2eθ(e

Φ)
(
β − e4(Φ)ζ

)
eΦ,

eθ(a) = 2eθ(Φ)e2Φ

((
ρ+

2m

r3

)
+

1

4

(
κκ+

4Υ

r2

)
− 1

4
ϑϑ

)
,

e3(a) =

(
κ̌− A− ϑ

)
e2Φ

r2
+ 2eθ(e

Φ)
(
β + e3(Φ)ζ + ξe4(Φ)

)
eΦ.

Together with our bootstrap assumptions on decay for in (ext)M for κ̌, ϑ, κ̌, ϑ, β, β, ρ,

ζ, ξ and Ω̌ and the bootstrap assumption (4.3.3), we infer

max
1≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
) ∣∣dka∣∣ . ε.

In particular, we deduce,

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
)
|ǎ| . ε.

Step 5. To estimate a we make use of equation (2.1.13) according to which(
eθ(e

Φ)
)2

= 1 on the axis of symmetry.

Since e2Φ also vanishes there we infer that a = 0 on the axis. Therefore, on the axis,
ǎ = −a, i.e.,

a = −ǎ|axis

and therefore,

|a| . |ǎ| . ε

ru
1
2

+δdec + u1+δdec
.
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We conclude that,

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
) ∣∣dka∣∣ . ε. (4.3.5)

In view of (4.3.4) and (4.3.5), we immediately infer

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
) ∣∣∣∣dk ( eΦ

r sin θ
− 1

)∣∣∣∣ . ε.

Together with (4.3.5) and the definition of a, this implies

∣∣eΦ
∣∣ = (1 +O(ε))r sin θ ≤ 3r

2
,
∣∣eθ(eΦ)

∣∣ =

√
1− e2Φ

r2
+ a ≤ | cos θ|+O(ε) ≤ 3

2
, (4.3.6)

which is an improvement of the bootstrap assumption (4.3.3) which hence holds every-
where on (ext)M.

Step 6. We now prove the estimates for b, b and γ. Recall from Lemma 2.2.29 that θ
defined by (4.3.1) satisfies

reθ(θ) = 1 +
r2(K − 1

r2 )

1 + (reθ(Φ))2
,

e3(θ) = −
rβ + r

2
(−κ̌+ A+ ϑ) eθ(Φ) + rξe4(Φ) + rζe3(Φ)

1 + (reθ(Φ))2
,

e4(θ) = −rβ + r
2

(−κ̌+ ϑ) eθ(Φ)− rζe3(Φ)

1 + (reθ(Φ))2
.

In view of the definition of b, b and γ, we infer

r√
γ

= 1 +
r2(K − 1

r2 )

1 + (reθ(Φ))2
,

b = −
rβ + r

2
(−κ̌+ A+ ϑ) eθ(Φ) + rξe4(Φ) + rζe3(Φ)

1 + (reθ(Φ))2
,

b = −rβ + r
2

(−κ̌+ ϑ) eθ(Φ)− rζe3(Φ)

1 + (reθ(Φ))2
.

Also, we have in view of the definition of a

1 + (reθ(Φ))2 = 1 +
(eθ(e

Φ))2

e2Φ

r2

=
r2

e2Φ
(1 + a)
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and hence

r√
γ

= 1 +
e2Φ

r2

(
r2(K − 1

r2 )

1 + a

)
,

b = −e
2Φ

r2

(
rβ + r

2
(−κ̌+ A+ ϑ) eθ(Φ) + rξe4(Φ) + rζe3(Φ)

1 + a

)
,

b = −e
2Φ

r2

(
rβ + r

2
(−κ̌+ ϑ) eθ(Φ)− rζe3(Φ)

1 + a

)
.

The bootstrap assumptions on decay in (ext)M for κ̌, ϑ, κ̌, ϑ, β, β, ζ, ξ and Ω̌, the
estimate (4.3.5) for a, the estimate (4.3.6), and the identity

K − 1

r2
= −1

4
κκ+

1

4
ϑϑ− ρ− 1

r2

= −1

4

(
κκ+

4Υ

r2

)
−
(
ρ+

2m

r3

)
+

1

4
ϑϑ

imply

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
)(∣∣∣∣dk ( r√

γ
− 1

)∣∣∣∣+ r
∣∣dkb∣∣) . ε,

and

max
0≤k≤ksmall

sup
(ext)M

ru1+δdec
∣∣dkb∣∣ . ε.

In particular, we also have

max
0≤k≤ksmall

sup
(ext)M

(
ru

1
2

+δdec + u1+δdec
) ∣∣∣dk ( γ

r2
− 1
)∣∣∣ . ε.

These are the desired estimate for b, b and γ in (ext)M. This concludes the proof of the
lemma.

In this section, we also prove two useful lemmas concerning estimates on 2-spheres of
(ext)M and (int)M.

Lemma 4.3.3. Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (2.2.52). Then,
we have on M

reθ(Φ) =
$

sin θ
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where $ is a reduced 1-scalar satisfying

sup
M
|$| ≤ 2.

Also, we have

1

sin θ
≤ 2|reθ(Φ)|+ 2 on M.

Proof. The proof is similar on (ext)M and (int)M so we focus on (ext)M. Recall from
(4.3.6) that ∣∣eθ(eΦ)

∣∣ ≤ 3

2
.

Furthermore, in view of Proposition 3.4.3, we have in particular

sup
(ext)M

∣∣∣∣ eΦ

r sin θ
− 1

∣∣∣∣ . ε.

Since we have

$ = r sin θeθ(Φ),

we deduce

|$| =
r sin θ

eΦ
|eθ(eΦ)| ≤ 3

2
(1 +O(ε)) ≤ 2,

which is the desired estimate for $.

We now consider the upper bound for (sin θ)−1. Recall the definition (2.2.54) of a

a =
e2Φ

r2
+ (eθ(e

Φ))2 − 1.

We infer

r2eθ(Φ)2 =
r2(eθ(e

Φ))2

e2Φ

=
1 + a
e2Φ

r2

− 1

=
1 + a− (sin θ)2

(
1 +

(
e2Φ

r2(sin θ)2 − 1
))

(sin θ)2
(

1 +
(

e2Φ

r2(sin θ)2 − 1
))

=
(cos θ)2 + a− (sin θ)2

(
e2Φ

r2(sin θ)2 − 1
)

(sin θ)2
(

1 +
(

e2Φ

r2(sin θ)2 − 1
))
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and hence

sin θ|reθ(Φ)| =

√
(cos θ)2 + a− (sin θ)2

(
e2Φ

r2(sin θ)2 − 1
)

√
1 +

(
e2Φ

r2(sin θ)2 − 1
) .

Now, in view of (4.3.5), a satisfies in particular

sup
(ext)M

|a| . ε.

Together with

sup
(ext)M

∣∣∣∣ eΦ

r sin θ
− 1

∣∣∣∣ . ε,

we infer

sin θ|reθ(Φ)| =

√
(cos θ)2 +O(ε)√

1 +O(ε)
.

Thus, we deduce

sin θ|reθ(Φ)| ≥
√

2

2
(1 +O(ε)) ≥ 1

2
for 0 ≤ θ ≤ π

4
and

3π

4
≤ θ ≤ π.

On the other hand, we have

sin θ ≥
√

2

2
on

π

4
≤ θ ≤ 3π

4

and hence

1

sin θ
≤ 2|reθ(Φ)|+ 2 on 0 ≤ θ ≤ π

which is the desired estimate. This concludes the proof of the lemma.

Lemma 4.3.4. Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (2.2.52). Then,
for any reduced 1-scalar h, we have on any 2-sphere S on (ext)M and of (int)M

sup
S

|h|
eΦ
. r−1 sup

S
(|h|+ | d/h|) and

∥∥∥∥ heΦ

∥∥∥∥
L2(S)

. r−1‖h‖h1(S).
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Proof. The proof is similar on (ext)M and (int)M so we focus on (ext)M. Recall that the
2-surface S is parametrized by the coordinate θ ∈ [0, π], and that the axis corresponds to
the 2 poles θ = 0 and θ = π. In view of

sup
(ext)M

∣∣∣∣ eΦ

r sin θ
− 1

∣∣∣∣ . ε,

we have

sup
S∩{π

4
≤θ≤ 3π

4
}

|h|
eΦ
. r−1 sup

S
|h| and

∥∥∥∥ heΦ

∥∥∥∥
L2(S∩{π

4
≤θ≤ 3π

4
})
. r−1‖h‖L2(S)

which is the desired estimate for π/4 ≤ θ ≤ 3π/4.

It remains to consider the portions 0 ≤ θ ≤ π/4 and 3π/4 ≤ θ ≤ π of S. These regions
can be treated analogously, so we focus on 0 ≤ θ ≤ π/4. Recall from Remark 2.1.21 that
any reduced scalar in sk, for k ≥ 1, must vanish on the axis of symmetry of Z, i.e. at the
two poles. In particular, h must vanish at θ = 0. We deduce

h

eΦ
=
heΦ

e2Φ
=

∫ θ
0
∂θ(e

Φh)

e2Φ
=

∫ θ
0

√
γSeθ(e

Φh)

e2Φ
=

∫ θ
0

√
γeΦ d/1h

e2Φ
.

Since we have |γ| . r, we infer

|h|
eΦ
.

∫ θ
0
eΦ| d/h|
e2Φ

and since

sup
(ext)M

∣∣∣∣ eΦ

r sin θ
− 1

∣∣∣∣ . ε,

we deduce

|h|
eΦ
. r−1

∫ θ
0

sin(θ′)| d/h|dθ′
(sin θ)2

.

This yields

sup
S∩{0≤θ≤π

4
}

|h|
eΦ
. r−1 sup

S
| d/h|

which is the desired sup norm estimate for 0 ≤ θ ≤ π/4.
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It remains to control the L2-norm on 0 ≤ θ ≤ π/4. We have in view of the above

∥∥∥∥ heΦ

∥∥∥∥2

L2(S∩{0≤θ≤π
4
})
. r−2

∫ π
4

0

(∫ θ
0

sin(θ′)| d/h|dθ′
)2

(sin θ)4
eΦdθ

. r−1

∫ π
4

0

(∫ θ

0

(sin(θ′))2| d/h|2dθ′
)

dθ

(sin θ)2

. r−1

∫ π
4

0

(sin θ)2| d/h|2
(∫ π

4

θ

dθ′

(sin(θ′))2

)
dθ

. r−1

∫ π
4

0

| d/h|2 sin θdθ

. r−2

∫ π
4

0

| d/h|2eΦdθ

. r−2‖ d/h‖2
L2(S)

and hence ∥∥∥∥ heΦ

∥∥∥∥
L2(S∩{0≤θ≤π

4
})
. r−1‖ d/h‖L2(S)

which is the desired L2(S) estimate for 0 ≤ θ ≤ π/4. This concludes the proof of the
lemma.

4.4 Pointwise bounds for high order derivatives

The goal of this section is to prove Proposition 3.4.5. We deal first with the region r ≤ 4m0

as follows

1. The curvature components and Ricci coefficients satisfy in view of the bootstrap
assumptions on energy

max
k≤klarge

∫
(int)M

(
|Ř|2 + |Γ̌|2

)
+ max

k≤klarge−1

∫
(ext)M(r≤4m0)

(
|Ř|2 + |Γ̌|2

)
≤ ε2.

2. We first take the trace on the ingoing null cones foliating (int)M and the outgoing
null cones foliating (ext)M(r ≤ 4m0) which looses one derivative. We thus obtain

max
k≤klarge−1

sup
1≤u≤u∗

∫
Cu

(
|Ř|2 + |Γ̌|2

)
+ max

k≤klarge−2
sup

1≤u≤u∗

∫
Cu(r≤4m0)

(
|Ř|2 + |Γ̌|2

)
. ε2.
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3. We then take the trace on the 2-spheres S foliation the null cones in (int)M and
(ext)M(r ≤ 4m0) to infer

max
k≤klarge−2

sup
(int)M

(
‖Ř‖L2(S) + ‖Γ̌‖L2(S)

)
+ max

k≤klarge−3
sup

(ext)M(r≤4m0)

(
|Ř|2 + |Γ̌|2

)
. ε.

4. Finally, using the Sobolev embedding on the 2-sphere S, which looses 2 derivatives,
we deduce

max
k≤klarge−4

sup
(int)M

(
|Ř|+ |Γ̌|

)
+ max

k≤klarge−5
sup

(ext)M(r≤4m0)

(
|Ř|+ |Γ̌|

)
. ε,

which is the desired estimate in the region (int)M∪ (ext)M(r ≤ 4m0).

It remains to consider the region (ext)M(r ≥ 4m0). We proceed as follows

Step 1. The Ricci coefficients satisfy in view of the bootstrap assumptions on energy

max
k≤klarge

∫
Σ∗

[
r2
(

(d≤kϑ)2 + (d≤kκ̌)2 + (d≤kζ)2 + (d≤kκ̌)2
)

+ (d≤kϑ)2

+ (d≤kη)2 + (d≤kω̌)2 + (d≤kξ)2

]

+ sup
λ≥4m0

(∫
{r=λ}

[
λ2
(

(d≤kϑ)2 + (d≤kκ̌)2 + (d≤kζ)2
)

+ λ2−δB(d≤kκ̌)2 + (d≤kϑ)2 + (d≤kη)2 + (d≤kω̌)2 + λ−δB(d≤kξ)2

])
≤ ε2.

We take the trace on the 2-spheres S foliating the timelike cylinders {r = r0}, for r0 ≥
4m0, which looses a derivative, and infer in particular

max
k≤klarge−1

sup
(ext)M(r≥4m0)

{
r
(
‖dkκ̌‖L2(S) + ‖dkζ‖L2(S) + ‖dkϑ‖L2(S)

)
+ r1− δB

2 ‖dkκ̌‖L2(S)

+‖dkη‖L2(S) + ‖dkϑ‖L2(S) + ‖dkω̌‖L2(S) + r−
δB
2 ‖dkξ‖L2(S)

}
. ε.

Also, we take the trace on the 2-spheres S foliating the spacelike hyper surface Σ∗, which
looses a derivative, and infer in particular

max
k≤klarge−1

sup
Σ∗

r‖dkκ̌‖L2(S) . ε.
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Step 2. On can easily prove the following trace theorem

max
k≤klarge−1

(
sup
r≥4m0

r5+δB

∫
S

(dkα)2

)
. sup

1≤u≤u∗

∫
Cu
r4+δB(d≤klargeα)2,

which together with the bootstrap assumptions on energy for α in (ext)M(r ≥ 4m0)
implies

max
k≤klarge−1

(
sup
r≥4m0

r5+δB

∫
S

(dkα)2

)
. ε2.

Step 3. Using the trace theorem

max
k≤klarge−1

(
sup
r≥4m0

r5

∫
S

(dkβ)2

)
. sup

1≤u≤u∗

∫
Cu
r4(d≤klargeβ)2,

we infer, together with the bootstrap assumptions on energy for β in (ext)M(r ≥ 4m0),

max
k≤klarge−1

(
sup
r≥4m0

r5

∫
S

(dkβ)2

)
. ε2. (4.4.1)

The power of r of the above estimate is not strong enough. To upgrade the estimate,
recall that we have the Bianchi identity

e4(β) + 2κβ = d/2α + ζα.

This yields

e4

(
r5+δB

∫
S

β2

)
=

∫
S

r5+δB

(
2βe4(β) + κβ2 + b

e4(r)

r
β2

)
=

∫
S

r5+δB

(
−1− δB

2
κβ2 + 2β(r−1 d/α + ζα)− 5 + δB

2
κ̌β2

)
and hence

e4

(
r5+δB

∫
S

β2

)
+

1− δB
2

∫
S

r5+δBκβ2 =

∫
S

r4+δB

(
2β( d/α + rζα)− 5 + δB

2
κ̌β2

)
.

(∫
S

r4+δB(d≤1α)2

) 1
2
(∫

S

r4+δBβ2

) 1
2

+ ε

∫
S

r4+δBβ2

where we used the pointwise estimates of Step 1 for κ̌ and ζ. We infer

e4

(
r5+δB

∫
S

β2

)
+

∫
S

r4+δBβ2 .
∫
S

r4+δB(d≤1α)2.
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Integrating, from r ≥ 6m0, we deduce

sup
r≥6m0

r5+δB

∫
S

β2 + sup
1≤u≤u∗

∫
Cu(r≥6m0)

r4+δBβ2 . sup
1≤u≤u∗

∫
Cu
r4+δB(d≤1α)2 +

∫
Sr=6m0

β2

. ε2,

where we used the bootstrap assumptions on energy for α in (ext)M(r ≥ 4m0) and the
non sharp estimate (4.4.1) for β. Using again (4.4.1), we obtain

sup
r≥4m0

r5+δB

∫
S

β2 + sup
1≤u≤u∗

∫
Cu(r≥4m0)

r4+δBβ2 . ε2.

To discuss higher order derivatives, recall from Lemma 2.2.13 the following commutator,
written in schematic form,

[ d/, e4] = (κ̌, ϑ) d/+ (ζ, rβ).

Also, recall from Lemma 2.2.14 the following commutator,

[T, e4] =
((
ω − m

r2

)
− m

2r

(
κ− 2

r

)
+ e4(m)

r

)
e4 + (η + ζ)eθ.

In view of the estimates of Step 1 for klarge − 1 derivatives of κ̌, ϑ, ζ, η, ω̌, the pointwise
estimates for β in (4.4.1), the control of κ in Lemma 3.4.1, and the control of e4(m) in
Lemma 3.4.2, we infer, schematically,∥∥∥dk( [ d/, e4]β, [T, e4]β

)∥∥∥
L2(S)

. O(εr−2)‖d≤k+1β‖L2(S) for k ≤ klarge − 2.

Thus, commuting the Bianchi identity for e4(β) with T and d/ together with the above
commutator estimate, using the Bianchi identity to recover the e4 derivatives, we obtain
for higher order derivatives

max
k≤klarge−1

(
sup
r≥4m0

r5+δB

∫
S

(dkβ)2 + sup
1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB(dkβ)2

)
. sup

1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB(d≤klargeα)2

. ε2.

Step 4. Recall from Proposition 2.2.18 that we have

e4ρ̌+
3

2
κρ̌+

3

2
ρκ̌ = d/1β + Err[e4ρ̌],

Err[e4ρ̌] = −3

2
κ̌ρ̌+

1

2
κ̌ρ̌−

(
1

2
ϑα + ζβ

)
+

(
1

2
ϑα + ζβ

)
.
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This yields

e4

(
r4

∫
S

(ρ̌)2

)
=

∫
S

r4

(
2ρ̌e4(ρ̌) + κρ̌2 + 4

e4(r)

r
ρ̌2

)
=

∫
S

r4
(
− 3ρκ̌ρ̌+ 2ρ̌(r−1 d/β + Err[e4ρ̌]) + κ̌ρ̌2

)
and hence

e4

[(
r4

∫
S

(ρ̌)2

) 1
2

]
.

[∫
S

r4
(

(ρκ̌)2 + (r−1 d/β)2 + (Err[e4ρ̌])2 + κ̌2ρ̌2
)] 1

2

Using the estimates of Step 1, 2 and 3 for κ̌, ζ, ϑ, α and β, and the control of ρ in Lemma
3.4.1, we infer

e4

[(
r4

∫
S

(ρ̌)2

) 1
2

]
.

ε

r
3
2

+
δB
2

+
ε

r2

(
r4

∫
S

(ρ̌)2

) 1
2

.

Integrating from r = 4m0, we control ‖ρ̌‖L2(S) from the control in r ≤ 4m0, we infer

sup
r≥4m0

r4

∫
S

ρ̌2 . ε2.

Next, commuting the equation for e4(ρ̌) with T and d/ together with the commutator
estimate of Step 3, using the equation for e4(ρ̌) to recover the e4 derivatives, we obtain
similarly for higher order derivatives

max
k≤klarge−2

sup
r≥4m0

r4

∫
S

(dkρ̌)2 . ε2.

Step 5. Recall from Proposition 2.2.18 that we have the following transport equations in
the e4 direction,

e4κ̌+
1

2
κκ̌+

1

2
κ̌κ = −2 d/1ζ + 2ρ̌+ Err[e4κ̌],

Err[e4κ̌] = −1

2
κ̌κ̌− 1

2
κ̌κ̌+

(
−1

2
ϑϑ+ 2ζ2

)
−
(
−1

2
ϑϑ+ 2ζ2

)
.

This yields

e4

(
r

∫
S

(κ̌)2

)
=

∫
S

r

(
2κ̌e4(κ̌) + κκ̌2 +

e4(r)

r
κ̌2

)
=

∫
S

r

(
2κ̌

(
−1

2
κ̌κ− 2 d/1ζ + 2ρ̌+ Err[e4κ̌]

)
+ κ̌κ̌2

)
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and hence, using the the estimates of Step 1 and 4 for κ̌, ζ, ϑ and ρ̌, and the control of κ
and κ in Lemma 3.4.1, we infer

e4

(
r

∫
S

(κ̌)2

)
.

ε

r2

∫
S

rκ̌2 + εr−
3
2

(∫
S

rκ̌2

) 1
2

and hence

e4

((
r

∫
S

(κ̌)2

) 1
2

)
.

ε

r2

(
r

∫
S

(κ̌)2

) 1
2

+ εr−
3
2

Integrating backward from Σ∗, where κ̌ under control in view of Step 1, we infer

sup
r≥4m0

r2

∫
S

κ̌2 . ε2.

Next, commuting the equation for e4(κ̌) with T and d/ together with the commutator
estimate of Step 3, using the equation for e4(κ̌) to recover the e4 derivatives, we obtain
similarly for higher order derivatives

max
k≤klarge−2

sup
r≥4m0

r4

∫
S

(dkκ̌)2 . ε2.

Step 6. In view of Codazzi for ϑ, and the estimates of Step 1 on ζ, and ϑ and of Step 3
on κ̌ in (ext)M(r ≥ 4m0), we infer

max
k≤klarge−2

sup
(ext)M(r≥4m0)

r‖dkβ‖L2(S) . ε.

Step 7. In view of the null structure equation for e3(κ), and the estimates of Step 1 on
ω̌, ζ, η and ϑ, and of Step 3 on κ̌ in (ext)M(r ≥ 4m0), we infer

max
k≤klarge−3

sup
(ext)M(r≥4m0)

‖dkξ‖L2(S) . ε.

Step 8. In view of the Bianchi identity for e3(β), and the estimates of Step 1 on ω̌, ζ,

and η, the estimates of Step 2 on ρ̌, of Step 3 on κ̌ and of Step 5 on ξ in (ext)M(r ≥ 4m0),
we infer

max
k≤klarge−3

sup
(ext)M(r≥4m0)

‖dkα‖L2(S) . ε.
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Step 9. Gathering the estimates for Step 1 to Step 8, we have obtained

max
k≤klarge−1

sup
(ext)M(r≥4m0)

{
r

5
2

+
δB
2

(
‖dkα‖L2(S) + ‖dkβ‖L2(S)

)
+ r

(
‖dkκ̌‖L2(S) + ‖dkζ‖L2(S) + ‖dkϑ‖L2(S)

)
+ ‖dkϑ‖L2(S) + ‖dkϑ‖L2(S) + ‖dkω̌‖L2(S)

}
+ max

k≤klarge−2
sup

(ext)M(r≥4m0)

{
r2
(
‖dkµ‖L2(S) + ‖dkρ̌‖L2(S)

)
+ r
(
‖dkκ̌‖L2(S) + ‖dkβ‖L2(S)

)}
+ max

k≤klarge−3
sup

(ext)M(r≥4m0)

{
‖dξ‖L2(S) + ‖dkα‖L2(S)

}
. ε.

Using the Sobolev embedding on the 2-sphere S which looses 2 derivatives, and in view
of the previous estimate on (ext)M(r ≤ 4m0), we infer

max
k≤klarge−5

sup
M

{
r

7
2

+
δB
2

(
|dkα|+ |dkβ|

)
+ r3

(
|dkµ̌|+ |dkρ̌|

)
+r2

(
|dkκ̌|+ |dkζ|+ |dkϑ|+ |dkκ̌|+ |dkβ|

)
+r
(
|dkϑ|+ |dkϑ|+ |dkω̌|+ |dξ|+ |dkα|

)}
. ε

which is the desired estimate on (ext)M(r ≥ 4m0). This concludes the proof of Proposition
3.4.5.

4.5 Proof of Proposition 3.4.6

Let (e4, e3, eθ) the outgoing geodesic null frame of (ext)M. We will exhibit another frame
(e′4, e

′
3, e
′
θ) of (ext)M provided by

e′4 = e4 + feθ +
1

4
f 2e3,

e′θ = eθ +
1

2
fe3,

e′3 = e3,

(4.5.1)

where f is such that

f = 0 on Σ∗ ∩ C∗, η′ = 0 on Σ∗, ξ′ = 0 on (ext)M. (4.5.2)

The desired estimates for the Ricci coefficients and curvature components with respect to
the new frame (e′4, e

′
3, e
′
θ) of (ext)M will be obtained using
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• the change of frame formulas of Proposition 2.3.4, applied to the change of frame
from (e4, e3, eθ) to (e′4, e

′
3, e
′
θ),

• the estimates for f on (ext)M,

• the estimates for the Ricci coefficients and curvature components with respect to the
outgoing geodesic frame (e4, e3, eθ) of (ext)M provided by the bootstrap assumptions
on decay and Proposition 3.4.5.

Step 1. We start by deriving an equation for f on (ext)M. In view of the condition
ξ′ = 0 on (ext)M, see (4.5.2), in view of ξ = ω = 0 and η = −ζ satisfied by the outgoing

geodesic foliation of (ext)M, and in view of Lemma 2.3.5, we have

e′4(f) +
1

2
κf = −1

2
fϑ− 1

2
f 2η − 3

2
f 2ζ

+
1

8
f 3κ+

1

2
f 3ω +

1

8
f 3ϑ+

1

8
f 4ξ on (ext)M. (4.5.3)

We also derive an equation for f on Σ∗. In view of the condition η′ = 0 on Σ∗, see (4.5.2),
and in view of Lemma 2.3.5, we have

e′3(f) = −2η + 2fω +
1

2
f 2ξ on Σ∗. (4.5.4)

Now, since u+ r is constant on Σ∗, the following vectorfield

ν ′Σ∗ := e′3 + a′e′4, a′ := −e
′
3(u+ r)

e′4(u+ r)
,

is tangent to Σ∗. We compute in view of the above

ν ′Σ∗(f) = e′3(f) + a′e′4(f)

= −2η + 2fω +
1

2
f 2ξ + a′

{
− 1

2
κf − 1

2
fϑ− 1

2
f 2η − 3

2
f 2ζ

+
1

8
f 3κ+

1

2
f 3ω +

1

8
f 3ϑ+

1

8
f 4ξ

}
.

Using (4.5.1), we have

a′ = −e
′
3(u+ r)

e′4(u+ r)

= − e3(u+ r)(
e4 + feθ + 1

4
f 2e3

)
(u+ r)

= −
2
ς

+ r
2
(κ+ A)

r
2
κ+ 1

4
f 2
(

2
ς

+ r
2
(κ+ A)

)
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and hence

ν ′Σ∗(f) = −2η + 2fω +
1

2
f 2ξ −

2
ς

+ r
2
(κ+ A)

r
2
κ+ 1

4
f 2
(

2
ς

+ r
2
(κ+ A)

){− 1

2
κf − 1

2
fϑ

−1

2
f 2η − 3

2
f 2ζ +

1

8
f 3κ+

1

2
f 3ω +

1

8
f 3ϑ+

1

8
f 4ξ

}
on (ext)M. (4.5.5)

Step 2. Next, we estimate f on Σ∗. Introducing an integer kloss and a small constant
δ0 > 0 satisfying

16 ≤ kloss ≤
δdec
3

(klarge − ksmall), δ0 =
kloss

klarge − ksmall
,

we assume the following local bootstrap assumption

|d≤ksmall+kloss+2f | ≤
√
ε

ru
1
2

+δdec−2δ0
on u1 ≤ u ≤ u∗ (4.5.6)

where

1 ≤ u1 < u∗.

Since f = 0 on Σ∗ ∩ C∗ in view of (4.5.2), (4.5.6) holds for u1 close enough to u∗, and our
goal is to prove that we may in fact choose u1 = 1 and replace

√
ε with ε in (4.5.6).

In view of the estimates for the Ricci coefficients and curvature components with respect
to the outgoing geodesic frame (e4, e3, eθ) of (ext)M provided by Proposition 3.4.5, (4.5.5)
yields

ν ′Σ∗(f) = −2η + h, |dkh| . r−1(|d≤kf |+ |d≤kf |4) for k ≤ klarge − 5.

Using commutator identities, using also (4.5.3) and (4.5.4), and in view of (4.5.6), we
infer

|ν ′Σ∗( d/kf)| . | d/≤kη|+
√
ε

r2u
1
2

+δdec−2δ0
for k ≤ ksmall + kloss + 2, u1 ≤ u ≤ u∗.

Since f = 0 on Σ∗ ∩ C∗ in view of (4.5.2), and since ν ′Σ∗ is tangent to Σ∗, we deduce on
Σ∗, integrating along the integral curve of ν ′Σ∗

| d/kf | .
∫ u∗

u

| d/≤kη|+
√
ε

u
1
2

+δdec−2δ0

∫ u∗

u

1

ν ′Σ∗(u
′)r2

for k ≤ ksmall + kloss + 2, u1 ≤ u ≤ u∗.
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Since

ν ′Σ∗(u) = e′3(u) + a′e′4(u)

= e3(u)−
2
ς

+ r
2
(κ+ A)

r
2
κ+ 1

4
f 2
(

2
ς

+ r
2
(κ+ A)

) (e4 + feθ +
1

4
f 2e3

)
u

=
2

ς
− f 2

2ς

2
ς

+ r
2
(κ+ A)

r
2
κ+ 1

4
f 2
(

2
ς

+ r
2
(κ+ A)

)
we have

ν ′Σ∗(u) = 2 +O(ε)

and hence

| d/kf | .
∫ u∗

u

| d/≤kη|+
√
ε

u
1
2

+δdec−2δ0

∫ u∗

u

1

r2
for k ≤ ksmall + kloss + 2, u1 ≤ u ≤ u∗.

Together with the behavior (3.3.4) of r on Σ∗, we infer

| d/kf | .
∫ u∗

u

| d/≤kη|+ ε

ru
1
2

+δdec−2δ0
for k ≤ ksmall + kloss + 2, u1 ≤ u ≤ u∗.

Next, we estimate η. We have by interpolation, since kloss ≤ klarge − ksmall,

‖ d/≤ksmall+kloss+4η‖L2(S) . ‖ d/≤ksmallη‖
1− kloss+4

klarge−ksmall
L2(S) ‖ d/≤klargeη‖

kloss+4

klarge−ksmall
L2(S) ,

and hence, using δ0 > 0, we have∫ u∗

u

‖ d/≤ksmall+kloss+4η‖L2(S)

.

(∫
Σ∗(≥u)

u′
1+δ0| d/≤ksmall+kloss+4η|2

) 1
2

.
1

u
1
2

+δdec−2δ0

(∫
Σ∗

u′
2+2δdec | d/≤ksmallη|2

) 1
2
− kloss+4

2(klarge−ksmall)
(∫

Σ∗

| d/≤klargeη|2
) kloss+4

2(klarge−ksmall)

.

where we have used the fact that

kloss + 4

klarge − ksmall
(1 + δdec) +

δ0

2
=

((
1 +

4

kloss

)
(1 + δdec) +

1

2

)
δ0 ≤ 2δ0

and

1

2
+ δdec − 2δ0 =

1

2
+ δdec −

4kloss
klarge − ksmall

≥ δdec > 0
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since 16 ≤ kloss ≤ 1
8
(klarge − ksmall) and δdec > 0 is small. Now, recall from the bootstrap

assumptions on decay and energy for η along Σ∗ that we have∫
Σ∗

u2+2δdec |d≤ksmallη|2 +

∫
Σ∗

|d≤klargeη|2 ≤ ε2.

We deduce ∫ u∗

u

‖ d/≤ksmall+kloss+4η‖L2(S) .
ε

u
1
2

+δdec−2δ0
.

Together with the Sobolev embedding on the 2-spheres S foliating Σ∗, as well as the
behavior (3.3.4) of r on Σ∗, we infer∫ u∗

u

| d/≤ksmall+kloss+2η| . ε

ru
1
2

+δdec−2δ0
.

Plugging in the above estimate for f , we infer

| d/kf | . ε

ru
1
2

+δdec−2δ0
for k ≤ ksmall + kloss + 2, u1 ≤ u ≤ u∗.

Together with (4.5.3) and (4.5.4), we recover e4 and e3 derivatives to deduce

|dkf | . ε

ru
1
2

+δdec−2δ0
for k ≤ ksmall + kloss + 2, u1 ≤ u ≤ u∗.

This is an improvement of the bootstrap assumption (4.5.6). Thus, we may choose u1 = 1,
and f satisfies the following estimate

|dkf | . ε

ru
1
2

+δdec−2δ0
for k ≤ ksmall + kloss + 2 on Σ∗.

Together with (4.5.4), as well as the behavior (3.3.4) of r on Σ∗, we infer

|dk−1e′3f | . |dk−1η|+ ε

r2

.
ε

ru1+δdec−2δ0
for k ≤ ksmall + kloss + 2 on Σ∗.

Collecting the two above estimates, we obtain

|dkf | . ε

ru
1
2

+δdec−2δ0
, |dk−1e′3f | .

ε

ru1+δdec−2δ0
for k ≤ ksmall + kloss + 2 on Σ∗. (4.5.7)

Step 3. Next, we estimate f on (ext)M. We assume the following local bootstrap
assumption

|d≤ksmall+kloss+2f | ≤
√
ε

ru
1
2

+δdec−2δ0 + u1+δdec−2δ0
on r ≥ r1. (4.5.8)
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where r1 ≥ 4m0. In view of the control of f on Σ∗ provided by (4.5.7), (4.5.8) holds for
r1 sufficiently large, and our goal is to prove that we may in fact choose r1 = 4m0 and
replace

√
ε with ε in (4.5.8).

Recall (4.5.3)

e′4(f) +
1

2
κf = −1

2
fϑ− 1

2
f 2η − 3

2
f 2ζ

+
1

8
f 3κ+

1

2
f 3ω +

1

8
f 3ϑ+

1

8
f 4ξ on (ext)M.

In view of the estimates for the Ricci coefficients and curvature components with respect
to the outgoing geodesic frame (e4, e3, eθ) of (ext)M provided by Proposition 3.4.5,∣∣∣∣dk (−1

2
fϑ− 1

2
f 2η − 3

2
f 2ζ +

1

8
f 3κ+

1

2
f 3ω +

1

8
f 3ϑ+

1

8
f 4ξ

)∣∣∣∣
. εr−2u−

1
2 |d≤kf |+ r−1(|d≤kf |2 + |d≤kf |4) for k ≤ klarge − 5.

Using commutator identities, using also (4.5.3), and in view of (4.5.8), we infer6

e′4

(
( d/, T )kf

)
+

1

2
κ( d/, T )kf ≤ ε

r3u1+δdec−2δ0
for k ≤ ksmall + kloss + 2, r ≥ r1.

Integrating backwards from Σ∗ where we have (4.5.7), we deduce7

|( d/, T )kf | ≤ ε

ru
1
2

+δdec−2δ0 + u1+δdec−2δ0
for k ≤ ksmall + kloss + 2, r ≥ r1.

Together with (4.5.3), we recover the e4 derivatives and obtain

|dkf | ≤ ε

ru
1
2

+δdec−2δ0 + u1+δdec−2δ0
for k ≤ ksmall + kloss + 2, r ≥ r1.

This is an improvement of the bootstrap assumption (4.5.8). Thus, we may choose r1 =
4m0, and we have

|dkf | . ε

ru
1
2

+δdec−2δ0 + u1+δdec−2δ0
for k ≤ ksmall + kloss + 2 on (ext)M.

6Note that

δdec − 2δ0 = δdec −
2kloss

klarge − ksmall
≥ δdec

3
> 0

where we have used the definition of δ0 and the upper bound on kloss.
7Note that (4.5.7) yields

|dkf | . ε

u1+δdec−2δ0
for k ≤ ksmall + kloss + 2 on Σ∗.

in view of the behavior (3.3.4) of r on Σ∗.
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Also, commuting once (4.5.3) with e′3, using the commutator identity [e′3, e
′
4] = 2ω′e′4 −

2ω′e′3 + (η′ − η′)e′θ, and proceeding as above to integrate backward from Σ∗ where e′3f is
under control from (4.5.7), we also obtain

|dk−1e′3f | .
ε

ru1+δdec−2δ0
for k ≤ ksmall + kloss + 2 on (ext)M.

Collecting the two above estimates, we obtain

|dkf | . ε

ru
1
2

+δdec−2δ0 + u1+δdec−2δ0
, for k ≤ ksmall + kloss + 2 on (ext)M,

|dk−1e′3f | .
ε

ru1+δdec−2δ0
for k ≤ ksmall + kloss + 2 on (ext)M,

(4.5.9)

which is the desired estimate for f .

Step 4. In view of Proposition 2.3.4 applied to our particular case, i.e. a triplet (f, , f , λ)
with f = 0 and λ = 1, and the fact that the frame (e4, e3, eθ) is outgoing geodesic, we
have

ξ′ = ξ,

ζ ′ = ζ − 1

4
fκ− fω − 1

4
fϑ+ l.o.t.,

η′ = η +
1

2
e′3(f)− fω + l.o.t.,

η′ = −ζ +
1

4
κf +

1

4
fϑ+ l.o.t.,

κ′ = κ+ d/1
′(f) + f(ζ + η)− 1

4
f 2κ− f 2ω + l.o.t.,

κ′ = κ+ fξ + l.o.t.,

ϑ′ = ϑ− d?/2
′(f) + f(ζ + η)− f 2ω + l.o.t.

ϑ′ = ϑ+ fξ + l.o.t.,

ω′ = fζ − 1

8
κf 2 − 1

4
ωf 2 + l.o.t.,

ω′ = ω +
1

2
fξ,
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and

α′ = α + 2fβ +
3

2
f 2ρ+ l.o.t.,

β′ = β +
3

2
ρf + l.o.t.,

ρ′ = ρ+ fβ + l.o.t.,

β′ = β +
1

2
fα,

α′ = α.

(4.5.10)

where the lower order terms denoted by l.o.t. are linear with respect to ξ, ξ, ϑ, κ, η, η, ζ, κ, ϑ
and α, β, ρ, β, α, and quadratic or higher order in f , and do not contain derivatives of

the latter. Together with the estimates (4.5.9) for f on (ext)M, and the estimates for the
Ricci coefficients and curvature components with respect to the outgoing geodesic frame
(e4, e3, eθ) of (ext)M provided by the bootstrap assumptions on decay and Proposition
3.4.5, we immediately infer

max
0≤k≤ksmall+kloss+1

sup
(ext)M

{(
r2u

1
2

+δdec−2δ0 + ru1+δdec−2δ0
)
|dk(Γ′g \ {η′})|+ ru1+δdec−2δ0|dkΓ′b|

+r2u1+δdec−2δ0

∣∣∣∣dk−1e′3

(
κ′ − 2

r
, κ′ +

2Υ

r
, ϑ′, ζ ′, η′

)∣∣∣∣
+
(
r3(u+ 2r)

1
2

+δdec−2δ0 + r2(u+ 2r)1+δdec−2δ0
)(
|dkα′|+ |dkβ′|

)
+
(
r3(2r + u)1+δdec + r4(2r + u)

1
2

+δdec−2δ0
)
|dk−1e′3(α′)|

+
(
r3u1+δdec + r4u

1
2

+δdec−2δ0
)
|dk−1e′3(β′)|

+
(
r3u

1
2

+δdec−2δ0 + r2ru1+δdec−2δ0
)
|dkρ̌′|

+u1+δdec−2δ0
(
r2|dkβ′|+ r|dkα′|

)}
. ε (4.5.11)

where we have introduced the notation

Γ′g \ {η′} =

{
rω′, κ′ − 2

r
, ϑ′, ζ ′, η′, κ′ +

2Υ

r
, r−1(e′4(r)− 1), r−1e′θ(r), e

′
4(m)

}
.

Note also, in view of the above transformation formula for ω′, i.e.

ω′ = fζ − 1

8
κf 2 − 1

4
ωf 2 + l.o.t.,
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that we have in fact a gain of r−1 for ω′ compared to (4.5.11), i.e.

max
0≤k≤ksmall+kloss+1

sup
(ext)M

(
r3u

1
2

+δdec−2δ0 + r2u1+δdec−2δ0
)
|dkω′| . ε. (4.5.12)

We now focus on estimating η′. Proceeding as for the other Ricci coefficients would yield
for η′ the same behavior than η and hence a loss of r−1 compared to the desired estimate.
Instead, we rely on the following null structure equation which follow from Proposition
2.2.1 and the fact that ξ′ = 0

e′4(η′ − ζ ′) +
1

2
κ′(η′ − ζ ′) = 2 d?/′1ω

′ − 1

2
ϑ′(η′ − ζ ′).

Next,

• we commute with d/′ and T ′, and we rely on the corresponding commutator identities,

• we use the above equation for e′4(η′) to recover the e′4 derivatives,

• we rely on the estimates (4.5.11), as well as the estimate (4.5.12) for ω′,

which allows us to derive∣∣∣∣e′4(dk(η′ − ζ ′)) +
1

2
κ′dk(η′ − ζ ′)

∣∣∣∣ . ε

r4u
1
2

+δdec−2δ0 + r3u1+δdec−2δ0

+
ε

r2
|d≤k(η′ − ζ ′)|, k ≤ ksmall + kloss.

Integrating backwards from Σ∗ where η′ = 0 in view of (4.5.2), and using the control ζ ′

provided by (4.5.11), we infer

max
0≤k≤ksmall+kloss

sup
(ext)M

(
r2u

1
2

+δdec−2δ0 + ru1+δdec−2δ0
)
|dkη′|

. ε+ max
0≤k≤ksmall+kloss

sup
(ext)M

(
r2u

1
2

+δdec−2δ0 + ru1+δdec−2δ0
)
|dkζ ′|

. ε.

Also, commuting first the equation for e′4(η′ − ζ ′) with e′3, using the commutator identity
[e′3, e

′
4] = 2ω′e′4− 2ω′e′3 + (η′− η′)e′θ, and proceeding as above to integrate backward from

Σ∗, we also obtain

max
0≤k≤ksmall+kloss

sup
(ext)M

r2u1+δdec−2δ0|dk−1e′3η
′|

. ε+ max
0≤k≤ksmall+kloss

sup
(ext)M

r2u1+δdec−2δ0|dk−1e′3ζ
′|

. ε.
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Thus, together with (4.5.11), we infer

max
0≤k≤ksmall+kloss

sup
(ext)M

{(
r2u

1
2

+δdec−2δ0 + ru1+δdec−2δ0
)
|dkΓ′g|+ ru1+δdec−2δ0|dkΓ′b|

+r2u1+δdec−2δ0

∣∣∣∣dk−1e′3

(
κ′ − 2

r
, κ′ +

2Υ

r
, ϑ′, ζ ′, η′, η′

)∣∣∣∣
+
(
r3(u+ 2r)

1
2

+δdec−2δ0 + r2(u+ 2r)1+δdec−2δ0
)(
|dkα′|+ |dkβ′|

)
+
(
r3(2r + u)1+δdec + r4(2r + u)

1
2

+δdec−2δ0
)
|dk−1e′3(α′)|

+
(
r3u1+δdec + r4u

1
2

+δdec−2δ0
)
|dk−1e′3(β′)|

+
(
r3u

1
2

+δdec−2δ0 + r2ru1+δdec−2δ0
)
|dkρ̌′|

+u1+δdec−2δ0
(
r2|dkβ′|+ r|dkα′|

)}
. ε.

Together with the fact that ξ′ = 0 in view of (4.5.2), this concludes the proof of Proposition
3.4.6.

4.6 Existence and control of the global frames

4.6.1 Proof of Proposition 3.5.2

To match the frame of (int)M and a conformal renormalization of the frame of (ext)M,
we will need to introduce a cut-off function.

Definition 4.6.1. Let ψ : R→ R a smooth cut-off function such that 0 ≤ ψ ≤ 1, ψ = 0
on (−∞, 0] and ψ = 1 on [1,+∞). We define ψm0,δH as follows

ψm0,δH(r) =

{
1 if r ≥ 2m0

(
1 + 3

2
δH
)
,

0 if r ≤ 2m0

(
1 + 1

2
δH
)
,

and

ψm0,δH(r) = ψ

(
r − 2m0

(
1 + 1

2
δH
)

2m0δH

)
on 2m0

(
1 +

1

2
δH

)
≤ r ≤ 2m0

(
1 +

3

2
δH

)
.
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We are now ready to define the global frame of the statement of Proposition 3.5.2.

Definition 4.6.2 (Definition of the global frame). We introduce a global null frame de-
fined on (ext)M∪ (int)M and denoted by ((glo)e4,

(glo)e3,
(glo)eθ). The global frame is defined

as follows

1. In (ext)M\Match, we have

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(ext)Υ (ext)e4,
(ext)Υ−1(ext)e3,

(ext)eθ
)
.

2. In (int)M\Match, we have

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(int)e4,
(int)e3,

(int)eθ
)
.

3. It remains to define the global frame on the matching region. We denote by (f, f , λ)
the reduced scalars such that we have in the matching region

(ext)e4 = λ

(
(int)e4 + f (int)eθ +

1

4
f 2(int)e3

)
,

(ext)eθ =

(
1 +

1

2
ff

)
(int)eθ +

f

2
(int)e4 +

f

2

(
1 +

ff

4

)
(int)e3,

(ext)e3 = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
(int)e3 + f

(
1 +

ff

4

)
(int)eθ +

f 2

4
(int)e4

)
,

where we recall that the frame of (ext)M has been extended to (int)M, see section
3.5.1. Then, in the matching region, the global frame is given by

(glo)e4 = λ′
(

(int)e4 + f ′(int)eθ +
1

4
f ′

2(int)e3

)
,

(glo)eθ =

(
1 +

1

2
f ′f ′

)
(int)eθ +

f ′

2
(int)e4 +

f ′

2

(
1 +

f ′f ′

4

)
(int)e3,

(glo)e3 = λ′
−1

((
1 +

1

2
f ′f ′ +

1

16
f ′

2
f ′

2

)
(int)e3 + f ′

(
1 +

f ′f ′

4

)
(int)eθ +

f ′
2

4
(int)e4

)
,

where

f ′ = ψm0,δH( (int)r)f, f ′ = ψm0,δH( (int)r)f,

λ′ = 1− ψm0,δH( (int)r) + ψm0,δH( (int)r)(ext)Υλ.
(4.6.1)
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Remark 4.6.3. Recall that the smooth cut-off function ψ in Definition 3.5.1, allowing
to define ψm0,δH, is such that we have in particular ψ = 0 on (−∞, 0] and ψ = 1 on
[1,+∞). The following two special cases correspond to the properties (d) i. and (d) ii. of
Proposition 3.5.2.

• If the cut-off ψ in Definition 3.5.1 is such that ψ = 1 on [1/2,+∞), then

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(ext)Υ (ext)e4,
(ext)Υ−1(ext)e3,

(ext)eθ
)

on (ext)M.

• If the cut-off ψ in Definition 3.5.1 is such that ψ = 0 on (−∞, 1/2], then

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(int)e4,
(int)e3,

(int)eθ
)

on (int)M.

Definition 4.6.4 (Global area radius and Hawking mass). We definition an area radius
and a Hawking mass on (ext)M∪ (int)M as follows

• On (ext)M\Match, we have

(glo)r = (ext)r, (glo)m = (ext)m

• On (int)M\Match, we have

(glo)r = (int)r, (glo)m = (int)m

• On the matching region, we have

(glo)r = (1− ψm0,δH( (int)r)) (int)r + ψm0,δH( (int)r) (ext)r,
(glo)m = (1− ψm0,δH( (int)r)) (int)m+ ψm0,δH( (int)r) (ext)m.

The following two lemmas provide the main properties of the global frame.

Lemma 4.6.5. We have in (ext)M\Match the following relations between the quantities
in the respective frames

(glo)α = Υ2(ext)α, (glo)β = Υ(ext)β, (glo)ρ+
2m

r3
= (ext)ρ+

2m

r3
, (glo)β = Υ−1(ext)β,

(glo)α = Υ−2(ext)α, (glo)ξ = 0, (glo)ξ = Υ−2(ext)ξ, (glo)ζ = −(glo)η = (ext)ζ,

(glo)η = (ext)η, (glo)ω +
m

r2
= −m

2r

(
(ext)κ− 2

r

)
+
e4(m)

r
,

(glo)ω = Υ−1

(
(ext)ω − m

r2
+

m

2Υr

(
(ext)κ− 2Υ

r

)
+

m

2Υr

(
(ext)Ω̌(ext)κ− (ext)Ω̌(ext)κ̌

)
− e3(m)

Υr

)
,

(glo)κ− 2Υ

r
= Υ

(
(ext)κ− 2

r

)
, (glo)κ+

2

r
= Υ−1

(
(ext)κ+

2Υ

r

)
,

(glo)κ̌ = Υ(ext)κ̌, (glo)κ̌ = Υ−1(ext)κ̌, (glo)ϑ = Υ(ext)ϑ, (glo)ϑ = Υ−1(ext)ϑ.
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Proof. The proof follows immediately from the change of frame formula with the choice
(f = 0, f = 0, λ = Υ), the fact that eθ(Υ) = 0, and the fact that the frame of (ext)M is
outgoing geodesic and thus satisfies in particular ξ = ω = 0 and η = −ζ.

Lemma 4.6.6 (Control of the global frame in the matching region). In the matching
region, the following estimates holds for the global frame8

max
0≤k≤ksmall−2

(
sup

Match∩ (int)M
u1+δdec

∣∣dk((glo)Γ̌, (glo)Ř)
∣∣+ sup

Match∩ (ext)M
u1+δdec

∣∣dk((glo)Γ̌, (glo)Ř)
∣∣)

+ max
0≤k≤klarge−1

(∫
Match

∣∣dk((glo)Γ̌, (glo)Ř)
∣∣2) 1

2

. ε.

and (∫
Match

∣∣dklarge((glo)Γ̌, (glo)Ř)
∣∣2) 1

2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

.

Remark 4.6.7. The quantities associated to the global frame can be estimated as follows

• In (int)M\Match, the global frame coincides with the frame of (int)M, and hence,
the quantities associated to the global frame satisfy the same estimates than the
bootstrap assumptions for the frame of (int)M.

• In (ext)M\Match, estimates for the quantities associated to the global frame follow
from the identities of Lemma 4.6.5 together with the bootstrap assumptions for the
frame of (ext)M.

• In Match, the estimates for the quantities associated to the global frame are provided
by Lemma 4.6.6.

The proof of Proposition 3.5.2 easily follows from Definition 4.6.2, Remark 4.6.3, and
Lemma 4.6.6. Thus, from now on, we focus on the proof of Lemma 4.6.6 which is carried
out in the next section.

4.6.2 Proof of Lemma 4.6.6

In this section, we prove Lemma 4.6.6. To ease the exposition, the quantities associated
to the the frame of (int)M are unprimed, the quantities associated to the frame of (ext)M
are primed, and the quantities associated to the the global frame are double-primed.

8We only need the first estimate for the proof of Proposition 3.5.2, but the second estimate will be
needed in the proof of Theorem M8.



244 CHAPTER 4. CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS

Step 1. Let (e3, eθ, e4) denote the frame of (int)M (and its extension) and (e′3, e
′
θ, e
′
4) the

frame of (ext)M (and its extension). We denote by (f, f , λ) the reduced scalars such that

e′4 = λ

(
e4 + feθ +

1

4
f 2e3

)
,

e′θ =

(
1 +

1

2
ff

)
eθ +

f

2
e4 +

f

2

(
1 +

ff

4

)
e3,

e′3 = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 +

(
f +

1

4
f 2f

)
eθ +

f 2

4
e4

)
.

Together with the initialization of the frame of (ext)M and (int)M on T in section 3.1.2
(where the spheres coincide), we have in particular

f = f = 0, λ = Υ−1 on T . (4.6.2)

Also, recall from section 3.5.1 that in order for (e′3, e
′
θ, e
′
4) to be defined everywhere on

(int)M ∩ Match, we need - in addition to the above initialization of (f, f , λ) on T , to
initialize it also on C∗ ∩Match by

f = f = 0, λ = Υ−1 on C∗ ∩Match. (4.6.3)

Step 2. Next, we control the change of frame (f, f , λ) from (e3, eθ, e4) to (e′3, e
′
θ, e
′
4) in

the region (int)M∩Match. To this end, we rely on the transport equation of Lemma 2.3.6
together with the fact that ω′ = ξ′ = ζ ′+ η′ = 0. Then, (f, f, log(λ)) satisfy the following
transport equations

λ−1e′4(f) +
(κ

2
+ 2ω

)
f = −2ξ + E1(f,Γ),

λ−1e′4(log(λ)) = 2ω + E2(f,Γ),

λ−1e′4(f) +
κ

2
f = −2(ζ + η) + 2e′θ(log(λ)) + 2fω + E3(f, f ,Γ),

where E1, E2 and E3 are given by

E1(f,Γ) = −1

2
ϑf + l.o.t.,

E2(f,Γ) = fζ − 1

2
f 2ω − ηf − 1

4
f 2κ+ l.o.t.,

E3(f, f ,Γ) = −fe′θ(f)− 1

2
fϑ+ l.o.t.,

Here, l.o.t. denote terms which are cubic or higher order in f, f (or in f only in the case

of E1 and E2) and Γ̌ and do not contain derivatives of these quantities, where Γ and Γ̌
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denotes the Ricci coefficients and renormalized Ricci coefficients w.r.t. the original null
frame (e3, e4, eθ). We rewrite the transport equation for log(λ) as

λ−1e′4 (log (Υλ))

= λ−1e′4(log(λ)) + λ−1e′4(log(Υ))

= 2ω + E2(f,Γ) +
1

Υ

(
e4 + feθ +

1

4
f 2e3

)
Υ

= 2
(
ω +

m

r2

)
+ E2(f,Γ) +

2

Υ

m(e4(r)−Υ)

r2
− 2

Υ

e4(m)

r
− 1

Υ

(
feθ +

1

4
f 2e3

)
Υ.

In view of the above transport equations for f , f and λ, the initialization (4.6.2) (4.6.3) for
(f, f , λ) on T ∪ (C∗ ∩Match), and the control of Γ induced by the bootstrap assumptions

on (int)M, we easily deduce

max
0≤k≤ksmall

sup
(int)M∩Match

u1+δdec
∣∣dk(f, log(Υλ))

∣∣+ max
0≤k≤ksmall−1

sup
(int)M∩Match

u1+δdec
∣∣dkf ∣∣ . ε,

max
0≤k≤klarge

(∫
(int)M∩Match

∣∣dk(f, log(Υλ))
∣∣2) 1

2

+ max
0≤k≤klarge−1

(∫
(int)M∩Match

∣∣dkf ∣∣2) 1
2

. ε.

Step 3. We need to improve the number of derivatives in the top order estimate for
(f, f , log(λ)). To this end, note first in view of the transformation formulas of Proposition
2.3.4 and the control of (f, f , log(λ)) provided by Step 2, we have in particular

max
0≤k≤klarge−1

(∫
(int)M∩Match

∣∣dkŘ′∣∣2) 1
2

. ε.

Relying on this estimate, the control of the Ricci coefficients associated to the outgoing
null frame (e′4, e

′
3, e
′
θ) on T ∪ ( (int)M∩Match), and the null structure equations, we infer

max
0≤k≤klarge−1

(∫
(int)M∩Match

∣∣dkΓ̌′∣∣2) 1
2

. ε.

We refer to section 8.9 for a completely analogous proof where the Ricci coefficients are
recovered in (int)M based on the control of the curvature components.

In view of the transformation formulas of Proposition 2.3.4, which can be written schemat-
ically as

∂
(
f, f , log(λ)

)
= F (f, f , λ, Γ̌),
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the control of (f, f , log(λ)) provided by Step 2, and the above control of Γ′, we infer

max
0≤k≤klarge

(∫
(int)M∩Match

∣∣dk(f, f , log(Υλ))
∣∣2) 1

2

. ε.

Step 4. We still need to control one more derivative of (f, f , log(λ)). Repeating the
process of Step 3, we use again the transformation formulas of Proposition 2.3.4 and then
the final estimate of Step 3 for (f, f , log(λ)) yields the following control for the curvature
components

max
0≤k≤klarge

(∫
(int)M∩Match

∣∣dkŘ′∣∣2) 1
2

. ε.

Arguing as in Step 3, we infer9

max
0≤k≤klarge

(∫
(int)M∩Match

∣∣dkΓ̌′∣∣2) 1
2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

.

Using again the transformation formulas of Proposition 2.3.4, this yields the following
control for (f, f , log(λ))

max
0≤k≤klarge+1

(∫
(int)M∩Match

∣∣dk(f, f , log(Υλ))
∣∣2) 1

2

. ε.

We have finally obtained for (f, f , λ) in (int)M∩Match

max
0≤k≤ksmall−1

sup
(int)M∩Match

u1+δdec
∣∣dk(f, f , log(Υλ))

∣∣ . ε,

max
0≤k≤klarge

(∫
(int)M∩Match

∣∣dk(f, f , log(Υλ))
∣∣2) 1

2

. ε,(∫
(int)M∩Match

∣∣dklarge+1(f, f , log(Υλ))
∣∣2) 1

2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

.

Step 5. In addition to the estimate of (f, f , λ) in (int)M∩Match of Step 4, we need to

estimate (f, f , λ) in (ext)M∩Match. To this end, we first control in (ext)M∩Match the

9In Step 3, there is no term corresponding to the one integrated on T . This is due to the fact that for
k ≤ klarge − 1, we have thanks to the bootstrap assumptions on energy and a trace estimate

max
0≤k≤klarge−1

(∫
T

∣∣∣dk((ext)Ř)
∣∣∣2) 1

2

. ε.
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reduced scalar (f ′, f ′, λ′) satisfying

e3 = λ′
(
e′3 + f ′e′θ +

1

4
f ′

2
e′4

)
,

eθ =

(
1 +

1

2
f ′f ′

)
e′θ +

1

2
f ′e′3 +

1

2

(
f ′ +

1

4
ff ′

2

)
e′4,

e4 = λ′
−1

((
1 +

1

2
f ′f ′ +

1

16
f ′

2
f ′

2

)
e′4 +

(
f ′ +

1

4
f ′

2
f ′
)
e′θ +

1

4
f ′

2
e′3

)
.

Together with the initialization of the frame of (ext)M and (int)M on T in section 3.1.2
(where the spheres coincide), we have in particular

f ′ = f ′ = 0, λ′ = Υ−1 on T .
Also, recall from section 3.5.1 that in order for (e3, eθ, e4) to be defined everywhere on
(ext)M ∩ Match, we need - in addition to the above initialization of (f, f , λ) on T , to
initialize it also on C∗ ∩Match by

f ′ = f ′ = 0, λ′ = Υ−1 on C∗ ∩Match. (4.6.4)

Arguing similarly to Steps 1-4, we estimate (f ′, f ′, λ′) and (Γ̌, Ř) in (ext)M∩Match. We
obtain

max
0≤k≤ksmall−2

sup
(ext)M∩Match

u1+δdec
∣∣dk(Γ̌, Ř)

∣∣+ max
0≤k≤klarge−1

(∫
(ext)M∩Match

∣∣dk(Γ̌, Ř)
∣∣2) 1

2

. ε,(∫
(ext)M∩Match

∣∣dklargeŘ∣∣2) 1
2

. ε,

max
0≤k≤ksmall−1

sup
(ext)M∩Match

u1+δdec
∣∣dk(f ′, f ′, log(Υ′λ′))

∣∣ . ε,

max
0≤k≤klarge

(∫
(ext)M∩Match

∣∣dk(f ′, f ′, log(Υ′λ′))
∣∣2) 1

2

. ε,

and (∫
(ext)M∩Match

∣∣dklargeΓ̌∣∣2) 1
2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

,(∫
(ext)M∩Match

∣∣dklarge+1(f ′, f ′, log(Υ′λ′))
∣∣2) 1

2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

.

Step 6. As mentioned above, in addition to the estimate of (f, f , λ) in (int)M∩Match

of Step 4, we need to estimate (f, f , λ) in (ext)M∩Match. To this end, we derive simple
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algebraic relations between (f, f , λ) and (f ′, f ′, λ′) of Step 5. On the one hand, we have
from the definition of (f, f , λ)

g(e′4, e3) = −2λ, g(e′4, eθ) = λf, g(e′θ, e4) = −f
(

1 +
ff

4

)
, g(e′θ, e3) = −f,

g(e′3, e4) = −2λ−1

(
1 +

ff

2
+

1

16
f 2f 2

)
, g(e′3, eθ) = λ−1f

(
1 +

ff

4

)
.

On the other hand, we have from the definition of (f ′, f ′, λ′)

g(e3, e
′
4) = −2λ′, g(e3, e

′
θ) = λ′f ′, g(eθ, e

′
4) = −f ′, g(eθ, e

′
3) = −f ′

(
1 +

f ′f ′

4

)
,

g(e4, e
′
3) = −2λ′

−1

(
1 +

f ′f ′

2
+

1

16
f ′

2
f ′

2

)
, g(e4, e

′
θ) = λ′

−1
f ′
(

1 +
f ′f ′

4

)
.

We immediately infer

λ′ = λ, f ′ = −λf, f ′ = −λ−1f.

In view of the estimates of Step 5, we infer

max
0≤k≤ksmall−1

sup
(ext)M∩Match

u1+δdec
∣∣dk(f, f , log(Υλ))

∣∣ . ε,

max
0≤k≤klarge

(∫
(ext)M∩Match

∣∣dk(f, f , log(Υλ))
∣∣2) 1

2

. ε,

and (∫
(ext)M∩Match

∣∣dklarge+1(f, f , log(Υλ))
∣∣2) 1

2

. ε.

Together with Step 4, this yields

max
0≤k≤ksmall−1

sup
(int)M∩Match

u1+δdec
∣∣dk(f, f , log(Υλ))

∣∣ . ε,

max
0≤k≤ksmall−1

sup
(ext)M∩Match

u1+δdec
∣∣dk(f, f , log(Υλ))

∣∣ . ε,

max
0≤k≤klarge

(∫
Match

∣∣dk(f, f , log(Υλ))
∣∣2) 1

2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

,

and

max
0≤k≤klarge+1

(∫
Match

∣∣dk(f, f , log(Υλ))
∣∣2) 1

2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

.
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Step 7. Next, we estimate r′−r and m′−m. Note first the in view of the initialization of
the foliations of (ext)M and (int)M on T , as well as the initializations (4.6.3) on C∗∩Match
and (4.6.4) on C∗ ∩Match, we have

r′ = r, m′ = m on T ∪Match. (4.6.5)

We start with the region (int)M∩Match. We have

e′4(r′) =
r′

2
κ′ = 1 +

r′

2

(
κ′ − 2

r′

)
, e′3(r′) =

r′

2
(κ′ + A′) = −Υ′ +

r′

2

(
κ′ +

2Υ′

r′

)
+
r′

2
A′,

which together with the identities for e′4(m′) and e′3(m′) in the outgoing foliation of (ext)M
and the control of the foliation of (ext)M in (int)M∩Match established in Step 4 yields,
using also e′θ(r

′) = e′θ(m
′) = 0,

max
0≤k≤ksmall−2

sup
(int)M∩Match

u1+δdec
∣∣dk(e′4(r′)− 1, e′3(r′) + Υ′, e′θ(r

′), e′4(m′), e′3(m′), e′θ(m
′))
∣∣ . ε,

max
0≤k≤klarge−1

(∫
(int)M∩Match

∣∣dk(e′4(r′)− 1, e′3(r′) + Υ′, e′θ(r
′), e′4(m′), e′3(m′), e′θ(m

′))
∣∣2) 1

2

. ε.

On the other hand, we have in view of the decomposition of e′4, e′3 and e′θ of Step 1

e′4(r) = λ

(
e4 + feθ +

1

4
f 2e3

)
r

= λ

(
r

2
(κ+ A) +

1

4
f 2e3(r)

)
= 1 +

(
λΥ− 1

)
+ λ

(
r

2

(
κ− 2Υ

r

)
+
r

2
A+

1

4
f 2e3(r)

)
,

e′4(m) = λ

(
e4 + feθ +

1

4
f 2e3

)
m

= λ

(
e4(m) +

1

4
f 2e3(m)

)
,

e′3(r) = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 +

(
f +

1

4
f 2f

)
eθ +

f 2

4
e4

)
r

= λ−1

(
e3(r) +

(
1

2
ff +

1

16
f 2f 2

)
e3(r) +

f 2

4
e4(r)

)

= −Υ + λ−1(λΥ− 1) + λ−1

(
r

2

(
κ+

2

r

)
+

(
1

2
ff +

1

16
f 2f 2

)
e3(r) +

f 2

4
e4(r)

)
,
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e′3(m) = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 +

(
f +

1

4
f 2f

)
eθ +

f 2

4
e4

)
m

= λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3(m) +

f 2

4
e4(m)

)
,

e′θ(r) =

((
1 +

1

2
ff

)
eθ +

f

2
e4 +

f

2

(
1 +

ff

4

)
e3

)
r

=
f

2
e4(r) +

f

2

(
1 +

ff

4

)
e3(r),

and

e′θ(r) =

((
1 +

1

2
ff

)
eθ +

f

2
e4 +

f

2

(
1 +

ff

4

)
e3

)
m

=
f

2
e4(m) +

f

2

(
1 +

ff

4

)
e3(m).

Together with the identities for e4(m) and e3(m) in the ingoing foliation of (int)M, the
final estimates of Step 6 for f and λ, and the bootstrap assumptions for the foliation of
(int)M, we infer

max
0≤k≤ksmall−2

sup
(int)M∩Match

u1+δdec
∣∣dk(e′4(r)− 1, e′3(r) + Υ, e′θ(r), e

′
4(m), e′3(m), e′θ(m))

∣∣ . ε,

max
0≤k≤klarge−1

(∫
(int)M∩Match

∣∣dk(e′4(r)− 1, e′3(r) + Υ, e′θ(r), e
′
4(m), e′3(m), e′θ(m))

∣∣2) 1
2

. ε.

We deduce

max
0≤k≤ksmall−2

sup
(int)M∩Match

u1+δdec
∣∣dk(e′4(r′ − r), e′θ(r − r′), d(m′ −m))

∣∣ . ε,

max
0≤k≤klarge−1

(∫
(int)M∩Match

∣∣dk(e′4(r′ − r), e′θ(r − r′), d(m′ −m))
∣∣2) 1

2

. ε.

In particular, we have

sup
(int)M∩Match

u1+δdec |(e′4(r′ − r), e′4(m′ −m))| . ε,

and together with the initialization (4.6.5), we integrate the transport equation from
T ∪ ( (int)M∩Match) and obtain

sup
(int)M∩Match

u1+δdec |(r′ − r,m′ −m)| . ε.
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Together with the above estimates, and recovering the e′3(r′ − r) using

e′3(r′ − r) =
(
e′3(r′) + Υ′

)
−
(
e′3(r) + Υ

)
+ 2

(
m′

r′
− m

r

)
,

we infer

max
0≤k≤ksmall−1

sup
(int)M∩Match

u1+δdec
∣∣dk(r′ − r,m′ −m)

∣∣ . ε,

max
0≤k≤klarge

(∫
(int)M∩Match

∣∣dk(r′ − r,m′ −m)
∣∣2) 1

2

. ε.

Finally, arguing similarly in the region (ext)M∩Match, we infer

max
0≤k≤ksmall−1

sup
(ext)M∩Match

u1+δdec
∣∣dk(r′ − r,m′ −m)

∣∣ . ε,

max
0≤k≤klarge

(∫
(ext)M∩Match

∣∣dk(r′ − r,m′ −m)
∣∣2) 1

2

. ε,

and hence

max
0≤k≤ksmall−1

sup
(int)M∩Match

u1+δdec
∣∣dk(r′ − r,m′ −m)

∣∣ . ε,

max
0≤k≤ksmall−1

sup
(ext)M∩Match

u1+δdec
∣∣dk(r′ − r,m′ −m)

∣∣ . ε,

max
0≤k≤klarge

(∫
Match

∣∣dk(r′ − r,m′ −m)
∣∣2) 1

2

. ε.

Step 8. Recall from Definition 4.6.2 that we have defined the global null frame (e′′4, e
′′
3, e
′′
θ)

as

• In (int)M\Match, (e′′4, e
′′
3, e
′′
θ) = (e4, e3, eθ).

• In (ext)M\Match, (e′′4, e
′′
3, e
′′
θ) = (Υe′4,Υ

−1e′3, e
′
θ).

• In Match, (e′′4, e
′′
3, e
′′
θ) is given by the change of frame formula starting from (e4, e3, eθ)

and with change of frame coefficients (f ′′, f ′′, λ′′) given by

f ′′ = ψf, f ′′ = ψf, λ′′ = 1− ψ + ψΥ′λ,

see (4.6.1).
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Also, recall that we have defined r′′ and m′′ as

r′′ = (1− ψ)r + ψr′, m′′ = (1− ψ)m+ ψm′.

Step 9. In view of the transformation formulas of Proposition 2.3.4, we have schematically

(Γ̌′′, Ř′′) = (Γ̌, Ř) + d(f ′′, f ′′, λ′′ − 1) + f ′′ + f ′′ + (λ′′ − 1) + (r′′ − r) + (m′′ −m).

In view of the definition of (f ′′, f ′′, λ′′) and (r′′,m′′) in Step 8, we infer

(Γ̌′′, Ř′′) = (Γ̌, Ř) + d(f, f ,Υλ− 1) + f + f + (Υλ− 1) + (r′ − r) + (m′ −m).

Together with the bootstrap assumptions in (int)M for (Γ, Ř), the estimates for (Γ, Ř) in
(ext)M provided by Step 5, the estimates for (f, f , λ) provided by Step 6 in Match, and
the estimates for r′ − r and m′ −m provided by Step 7, we deduce

max
0≤k≤ksmall−2

sup
(int)M∩Match

u1+δdec
∣∣dk(Γ̌′′, Ř′′)∣∣ . ε,

max
0≤k≤ksmall−2

sup
(ext)M∩Match

u1+δdec
∣∣dk(Γ̌′′, Ř′′)∣∣ . ε,

max
0≤k≤klarge−1

(∫
Match

∣∣dk(Γ̌′′, Ř′′)∣∣2) 1
2

. ε,(∫
Match

∣∣dklarge(Γ̌′′, Ř′′)∣∣2) 1
2

. ε+

(∫
T

∣∣dklarge((ext)Ř)
∣∣2) 1

2

.

Since the double-primed quantities correspond to the quantities associated to the the
global frame, this concludes the proof of Lemma 4.6.6.

4.6.3 Proof of Proposition 3.5.5

To match the first global frame ofM of Proposition 3.5.5 with a conformal renormalization
of the second frame of (ext)M of Proposition 3.4.6, we will need to introduce a cut-off
function.

Definition 4.6.8. Let ψ : R→ R a smooth cut-off function such that 0 ≤ ψ ≤ 1, ψ = 0
on (−∞, 0] and ψ = 1 on [1,+∞). We define ψm0 as follows

ψm0(r) =

{
1 if r ≥ 4m0,

0 if r ≤ 7m0

2
,
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and

ψm0(r) = ψ

(
2
(
r − 7m0

2

)
m0

)
on

7m0

2
≤ (ext)r ≤ 4m0.

We are now ready to define the second global frame, i.e. the global frame of the statement
of Proposition 3.5.5.

Definition 4.6.9 (Definition of the second global frame). We introduce a global null
frame defined on (ext)M ∪ (int)M and denoted by ((glo′)e4,

(glo′)e3,
(glo′)eθ). The second

global frame is defined as follows

1. In (ext)M∩ { (ext)r ≥ 4m0}, we have

((glo′)e4,
(glo′)e3,

(glo′)eθ) =
(

(ext)Υe′4,
(ext)Υ−1e′3, e

′
θ

)
,

where (e′4, e
′
3, e
′
θ) denotes the second frame of (ext)M, i.e. the one constructed in of

Proposition 3.4.6.

2. In (int)M∪ ( (ext)M∩ { (ext)r ≤ 7m0

2
}), we have

((glo′)e4,
(glo′)e3,

(glo′)eθ) =
(

(glo)e4,
(glo)e3,

(glo)eθ
)
,

where
(

(glo)e4,
(glo)e3,

(glo)eθ
)

denotes the first global frame ofM of Proposition 3.5.5.

3. It remains to define the global frame on the matching region Match′. We denote by
f the reduced scalar introduced in Proposition 3.4.6 such that we have in (ext)M

e′4 = (ext)e4 + f (ext)eθ +
1

4
f 2(ext)e3,

e′θ = (ext)eθ +
f

2
(ext)e3,

e′3 = (ext)e3.

Then, in the matching region Match′, the second global frame of M is given by

(glo′)e4 = Υ′
(

Υ′
−1 (glo)e4 + f ′(glo)eθ +

1

4
f ′

2
Υ′ (glo)e3

)
,

(glo′)eθ = (glo)eθ +
f ′

2
Υ′ (glo)e3,

(glo′)e3 = (glo)e3,

where

f ′ = ψm0( (ext)r)f, Υ′ = 1− ψm0( (ext)r) + ψm0( (ext)r) (ext)Υ. (4.6.6)
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Remark 4.6.10. Recall that the smooth cut-off function ψ in Definition 3.5.4, allowing
to define ψm0,δH, is such that we have in particular ψ = 0 on (−∞, 0] and ψ = 1 on
[1,+∞). The following two special cases correspond to the properties (d) i. and (d) ii. of
Proposition 3.5.5.

• If the cut-off ψ in Definition 3.5.4 is such that ψ = 1 on [1/2,+∞), then

((glo′)e4,
(glo′)e3,

(glo′)eθ) =
(

(ext)Υe′4,
(ext)Υ−1e′3, e

′
θ

)
on (ext)M

(
(ext)r ≥ 15m0

4

)
.

• If the cut-off ψ in Definition 3.5.4 is such that ψ = 0 on (−∞, 1/2], then

((glo′)e4,
(glo′)e3,

(glo′)eθ) =
(

(glo)e4,
(glo)e3,

(glo)eθ
)

on (int)M∪ (ext)M
(

(ext)r ≤ 15m0

4

)
.

Remark 4.6.11. When dealing with the second global frame ((glo′)e4,
(glo′)e3,

(glo′)eθ), the
area radius and Hawking mass that we use are the ones corresponding to the first global
frame, i.e. (glo)r and (glo)m.

The following two lemmas provide the main properties of the second global frame of M.

Lemma 4.6.12. We have in (ext)M(r ≥ 4m0) the following relations between the quan-
tities in the second global frame of M, i.e. ((glo′)e4,

(glo′)e3,
(glo′)eθ), and the second frame

of (ext)M, i.e. (e′4, e
′
3, e
′
θ),

(glo′)α = Υ2α′, (glo′)β = Υβ′, (glo′)ρ+
2m

r3
= ρ′ +

2m

r3
, (glo′)β = Υ−1β′,

(glo′)α = Υ−2α′, (glo′)ξ = 0, (glo′)ξ = Υ−2ξ′, (glo′)ζ = −(glo′)η = ζ ′,

(glo′)η = η′, (glo′)ω +
m

r2
= Υω′ +

m

r2
(1− e′4(r)) +

e′4(m)

r
,

(glo′)ω = Υ−1

(
ω′ − m

r2
+
m

r2

(
1− e′3(r)

Υ

)
− e′3(m)

Υr

)
, (glo′)κ− 2Υ

r
= Υ

(
κ′ − 2

r

)
,

(glo′)κ+
2

r
= Υ−1

(
κ′ +

2Υ

r

)
, (glo′)ϑ = Υϑ′, (glo′)ϑ = Υ−1ϑ′.

Proof. The proof follows immediately from the change of frame formula with the choice
(f = 0, f = 0, λ = Υ), the fact that eθ(Υ) = 0, and the fact that the frame (e′4, e

′
3, e
′
θ) is

such that ξ′ = 0 and η′ = −ζ ′.
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Lemma 4.6.13 (Control of the second global frame in the matching region). In the
matching region, the following estimates holds for the second global frame

max
0≤k≤ksmall+kloss

sup
Match′

u1+δdec−2δ0
∣∣∣dk((glo′)Γ̌, (glo′)Ř)

∣∣∣ . ε.

Remark 4.6.14. The quantities associated to the second global frame can be estimated
as follows

• In (int)M∪ (ext)M( (ext)r ≤ 7m0

2
), the second global frame coincides with the first

global frame, and hence, the quantities associated to the second global frame satisfy
the same estimates than the corresponding quantities for the first global frame.

• In (ext)M( (ext)r ≥ 4m0), estimates for the quantities associated to the second global
frame follow from the identities of Lemma 4.6.12 together with the estimates of
Proposition 3.4.6 for the second frame of (ext)M.

• In Match′, the estimates for the quantities associated to the global frame are provided
by Lemma 4.6.13.

The proof of Proposition 3.5.5 easily follows from Definition 4.6.9, Remark 4.6.10, and
Lemma 4.6.13. Thus, from now on, we focus on the proof of Lemma 4.6.13 which is
carried out below.

Proof of Lemma 4.6.13. Recall from definition 4.6.9 that we have in the matching region
Match′

(glo′)e4 = Υ′
(

Υ′
−1 (glo)e4 + f ′(glo)eθ +

1

4
f ′

2
Υ′ (glo)e3

)
,

(glo′)eθ = (glo)eθ +
f ′

2
Υ′ (glo)e3,

(glo′)e3 = (glo)e3,

where

f ′ = ψm0( (ext)r)f, Υ′ = 1− ψm0( (ext)r) + ψm0( (ext)r) (ext)Υ.

Now, since (ext)r ≥ 7m0

2
on Match′, we also have in that region

((glo)e4,
(glo)e3,

(glo)eθ) = ((ext)Υ (ext)e4, (
(ext)Υ)−1 (ext)e3,

(ext)eθ).
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We deduce on Match′

(glo′)e4 = (ext)Υ

(
(ext)e4 + f ′′(ext)eθ +

1

4
f ′′

2(ext)e3

)
,

(glo′)eθ = (ext)eθ +
f ′′

2
(ext)e3,

(glo′)e3 = ((ext)Υ)−1 (ext)e3,

where

f ′′ = Υ′((ext)Υ)−1f ′

=
(

1− ψm0( (ext)r) + ψm0( (ext)r) (ext)Υ
)

((ext)Υ)−1ψm0( (ext)r)f.

In view of the transformation formulas of Proposition 2.3.4, we deduce, schematically,(
(glo′)Γ̌, (glo′)Ř

)
=

(
(ext)Γ̌, (ext)Ř

)
+ df + f.

Together with the bootstrap assumptions on decay and Proposition 3.4.5 for ((ext)Γ̌, (ext)Ř),
and the estimate (3.4.11) for f , we infer

max
0≤k≤ksmall+kloss

sup
Match′

u1+δdec−2δ0
∣∣∣dk((glo′)Γ̌, (glo′)Ř)

∣∣∣ . ε

which concludes the proof of Lemma 4.6.13.



Chapter 5

DECAY ESTIMATES FOR q
(Theorem M1)

The goal of the chapter is to prove Theorem M1, i.e. to derive decay estimates for the
quantity q for k ≤ ksmall + 20 derivatives. To this end, we will make use of the wave
equation satisfied by q (see (2.4.7))

�2q + κκ q = N, (5.0.1)

where N contains only quadratic or higher order terms. Now, in order to have a suitable
right-hand side N , recall from the discussion in Remarks 2.4.8 and 2.4.9 that q is defined
relative to the global null frame of Proposition 3.5.5 for which ξ = 0 for r ≥ 4m0 and
η ∈ Γg. For such a global fame, N is given schematically by, see (2.4.8),

N = r2d≤2(Γg · (α, β)) + e3

(
r3d≤2(Γg · (α, β))

)
+ d≤1(Γg · q) + l.o.t. (5.0.2)

5.1 Preliminaries

Smallness constants

Recall from the beginning of section 3.3.2 the constant m0 and the main small constants
δH, δB, δdec, ε and ε0 such that

• The constant m0 > 0 is the mass of the initial Schwarzschild spacetime relative to
which our initial perturbation is measured.

257
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• The integer klarge which corresponds to the maximum number of derivatives of the
solution.

• The size of the initial data layer norm is measured by ε0 > 0.

• The size of the bootstrap assumption norms are measured by ε > 0.

• δH > 0 measures the width of the region |r − 2m0| ≤ 2m0δH where the redshift
estimate holds and which includes in particular the region (int)M.

• δdec is tied to decay estimates in u, u for Γ̌ and Ř.

• δB is involved in the r-power of the rp weighted estimates for curvature.

Recall also that these constants satisfy in view of (3.3.1) (3.3.2) (3.3.3)

0 < δH, δdec, δB � min{m0, 1}, δB > 2δdec, klarge �
1

δdec
,

ε0, ε� min{δH, δdec, δB,m0, 1},

and

ε = ε
2
3
0 .

We will need the following additional small constants in this chapter

• δextra > 0, tied to the decay of q, and is chosen such that δextra > δdec,

• δ > 0 for various degeneracies,

• δ0 > 0 which comes from interpolating between k ≤ ksmall derivatives of (Γ̌, Ř) and
k ≤ klarge derivatives of (Γ̌, Ř), see Lemma 5.1.1,

• q0 > 0 which will allow us to recover the fact that the decay for q in Theorem M1
has an extra gain u−(δextra−δdec) compared from the expected behavior inferred from
the bootstrap assumptions.

We will choose δextra such that

δdec < δextra < 2δdec, δB ≥ 2δextra,
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δ and δ0 such that

0 < ε, ε0 � δ, δ0 � δdec, δextra, δH,m0, 1, (5.1.1)

and q0 such that1

2δdec < q0 < 4δdec − 4δ0 − 4δ. (5.1.2)

5.1.1 The foliation of M by τ

Recall that the spacetime M is decomposed as M = (int)M∪ (ext)M and that u is an
outgoing optical function on (ext)M while u is an ingoing optical function. In this chapter,
we rely on the global frame (e3, e4, eθ, eϕ) defined in section 3.5, and r and m denote the
corresponding scalar functions associated to it. Also, we define the trapping region region
Mtrap as,

Mtrap :=

{
5m0

2
≤ r ≤ 7m0

2

}
. (5.1.3)

Also, let (trap
/

)M =M\ (trap)M the complement of (trap)M in M.

We foliate our spacetime domain M by Z invariant hypersurfaces Σ(τ) which are:

• Incoming null in (int)M, with e3 as null incoming generator. We denote this portion
(int)Σ(τ).

• Strictly spacelike in (trap)M. We denote this portion by (trap)Σ.

• Outgoing null in M>4m0 . We denote this portion by Σ>4m0(τ).

• The parameter τ of Σ(τ) can be chosen, smoothly, such that

τ :=


u in M>4m0 ,

u+ r in Mtrap,

u in (int)M.

(5.1.4)

1This will allow us to choose in the proof of Theorem M1, see (5.2.10),

δextra =
q0 − δ

2

which satisfies the desired estimate δextra > δdec for δ > 0 small enough.
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• In particular, the unit normal in the region Mtrap, i.e. the normal to (trap)Σ,
satisfies2

−2 ≤ g(NΣ, e4) ≤ −1, −2 ≤ g(NΣ, e3) ≤ −1 on Mtrap. (5.1.5)

5.1.2 Assumptions for Ricci coefficients and curvature

Recall from Remark 2.4.9 that q is defined, according to equation (2.3.10) in Lemma
2.3.10, relative to the global frame of Proposition 3.5.5 for which η ∈ Γg with the notation

Γg = Γ(0)
g =

{
ξ, ϑ, ω +

m

r2
, κ− 2Υ

r
, η, η, ζ, A

}
,

Γb = Γ
(0)
b =

{
ϑ, κ+

2

r
, A, ω, ξ

}
,

where we recall that

Υ = 1− 2m

r
, A =

2

r
e4(r)− κ, A =

2

r
e3(r)− κ.

Note also that ξ vanishes in (ext)M away from the matching region of Proposition 3.5.5,
and in particular for r ≥ 4m0.

For higher derivatives we write,

Γ(1)
g =

{
dξ, dϑ, reθω, reθ(κ), dη, dη, dζ, dA

}
Γ

(1)
b =

{
dϑ, reθ(κ), dξ, dA, reθω, dξ

}
and for s ≥ 2,

Γ(s)
g = ds−1Γ(1)

g , Γ
(s)
b = ds−1Γ

(1)
b

Moreover we denote

Γ≤sg =
{

Γ(0)
g ,Γ(1)

g , . . .Γ(s)
g

}
, Γ≤sb =

{
Γ

(0)
b ,Γ

(1)
b , . . .Γ

(s)
b

}
.

2NΣ is given in view of its definition by

NΣ =
1√

2
√
e4(r)(e3(u) + e3(r))

(
e4(r)e3 + (e3(u) + e3(r))e4

)
=

1√
2
√

2−Υ +O(ε)

(
(1 +O(ε))e3 + (2−Υ +O(ε))e4

)
where we used the bootstrap assumptions.
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With these notations, we may now state the estimates satisfied by the Ricci coefficients
and curvature components.

Lemma 5.1.1. Consider the global frame of Proposition 3.5.5 and the above definition3

of Γg and Γb. Let an integer kloss and a small constant δ0 > 0 satisfying4

16 ≤ kloss ≤
δdec
3

(klarge − ksmall), δ0 =
kloss

klarge − ksmall
. (5.1.6)

Then, the Ricci coefficients and curvature components with respect to the global frame of
Proposition 3.5.5 satisfy

ξ = 0 on r ≥ 4m0,

max
0≤k≤ksmall+kloss

sup
M

{(
r2τ

1
2

+δdec−2δ0 + rτ 1+δdec−2δ0
)
|dkΓg|+ rτ 1+δdec−2δ0|dkΓb|

+
(
r

7
2

+
δB
2 + r3τ

1
2

+δdec−2δ0 + r2τ 1+δdec−2δ0
)(
|dkα|+ |dkβ|

)
+
(
r3τ

1
2

+δdec−2δ0 + r2τ 1+δdec−2δ0
)
|dkρ̌|

+τ 1+δdec−2δ0
(
r2|dkβ|+ r|dkα|

)}
. ε,

max
0≤k≤ksmall+kloss

sup
M

{
r2τ 1+δdec−2δ0|dk−1e3(Γg)|

+r3(τ + 2r)1+δdec−2δ0
(
|dk−1e3(α)|+ |dke3(β)|

)}
. ε.

Proof. In r ≥ 4m0, the global frame of Proposition 3.5.5 coincides with a conformal
renormalization of the second frame of (ext)M, see Proposition 3.4.6. The estimates
there follow immediately from the ones of Proposition 3.4.6. In the matching region
7/2m0 ≤ r ≤ 4m0, the estimates are stated in Proposition 3.5.5. Finally, for (ext)M(r ≤
7/2m0) and (int)M, the estimates follow directly from interpolation between the bootstrap
assumptions on decay for k ≤ ksmall and the pointwise estimates of Proposition 3.4.5 for
k ≤ klarge − 5.

3Recall in particular that the global frame of Proposition 3.5.5 is such that η ∈ Γg.
4Recall that we have

0 < δdec � 1, δdec klarge � 1, ksmall =

⌊
1

2
klarge

⌋
+ 1.

In particular, we have δdec(klarge − ksmall) � 1 and hence there exists an integer kloss satisfying the
required constraints. We will in fact choose kloss = 33, see (5.2.3).
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5.1.3 Structure of nonlinear terms

The following lemma will be important in what follows.

Lemma 5.1.2. For the solution q to the wave equation (5.0.1), the structure of the error
term N can be written schematically as follows

N = Ng + e3(rNg) +Nm[q] (5.1.7)

where,

Ng = r2d≤2(Γg · (α, β)),

Nm[q] = d≤1(Γg · q).
(5.1.8)

Moreover, for every k ≤ klarge − 3 we have schematically,

dkN = d≤kNg + e3(dk(rNg)) + dkNm[q]. (5.1.9)

Remark 5.1.3. In fact, (5.1.7) and (5.1.9) also contain lower order terms which are
strictly better in powers of r and contain at most the same number of derivatives. For
convenience, we drop them in the rest of the proof of Theorem M1.

Proof. For k = 0, this is an immediate consequence of (5.0.2). For the higher derivatives
we write,

dk(e3(rNg)) = e3(dk(rNg)) + [dk, e3](rNg).

In view of the formula for [e3, d/] of Lemma 2.2.13, and the commutator formula for [e3, e4],
we have, schematically,

[e3, e3] = 0, [ d/, e3] = Γbd + Γb, [re4, e3] =

(
1

r
+ Γb

)
d.

In view of our assumptions.∣∣di(Γb)∣∣ ≤ r−1ε, i ≤ klarge − 4,

Γb is at least as good as r−1, and hence, we deduce, schematically,

[d, e3] =
1

r
d +

1

r
.

On the other hand, we have, schematically,

[d, r] = r
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and hence, for k ≤ klarge − 3,

[dk, e3](rNg) =
∑

i+j≤k−1

di
(

1

r
d +

1

r

)
dj(rNg)

= d≤kNg

as desired.

5.1.4 Main quantities

We restrict our attention to the region M(τ1, τ2) = M ∩ {τ1 ≤ τ ≤ τ2}. For a given
ψ ∈ s2(M) we introduce the following quantities, for 0 ≤ τ1 < τ2 ≤ τ∗.

Morawetz bulk quantities

Consider the vectorfields,

T :=
1

2
(e4 + Υe3) , R :=

1

2
(e4 −Υe3) . (5.1.10)

Let θ a smooth bump function equal 1 on |Υ| ≤ δ
1
10
H vanishing for |Υ| ≥ 2δ

1
10
H and define

the modified vectorfields,

R̆ := θ
1

2
(e4 − e3) + (1− θ)Υ−1R =

1

2

[
θ̆e4 − e3

]
,

T̆ := θ
1

2
(e4 + e3) + (1− θ)Υ−1T =

1

2

[
θ̆e4 + e3

]
,

(5.1.11)

where θ̆ = θ + Υ−1(1− θ). Note that,

θ̆ =

{
1 for |Υ| ≤ δ

1
10
H ,

Υ−1 for |Υ| ≥ 2δ
1
10
H .

(5.1.12)

Remark 5.1.4. Note that

R̆ + T̆ = e4, −R̆ + T̆ = e3 in (int)M and R̆ + T̆ = Υ−1e4, −R̆ + T̆ = e3 in M>4m0 .
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We define the quantities

Mor[ψ](τ1, τ2) : =

∫
M(τ1,τ2)

1

r3
|R̆ψ|2 +

1

r4
|ψ|2 +

(
1− 3m

r

)2
1

r

(
|∇/ψ|2 +

1

r2
|T̆ψ|2

)
,

Morr[ψ](τ1, τ2) : = Mor[ψ](τ1, τ2) +

∫
M>4m0 (τ1,τ2)

r−1−δ|e3(ψ)|2,

(5.1.13)

with m = m(τ, r) = m(u, r) the Hawking mass inM. The constant δ > 0 is a sufficiently
small quantity. An equivalent definition for Morr[ψ](τ1, τ2) is given below,

Morr[ψ](τ1, τ2) =

∫
(trap)M(τ1,τ2)

|Rψ|2 + r−2|ψ|2 +

(
1− 3m

r

)2(
|∇/ψ|2 +

1

r2
|Tψ|2

)
+

∫
(trap

/
)M(τ1,τ2)

r−3
(
|e4ψ|2 + r−1|ψ|2

)
+ r−1|∇/ψ|2 + r−1−δ|e3ψ|2

(5.1.14)

where (trap
/

)M denotes the complement of (trap)M.

Weighted bulk quantities

Define, for 0 < p < 2,

Ḃp ;R[ψ](τ1, τ2) : =

∫
M≥R(τ1,τ2)

rp−1
(
p|ě4(ψ)|2 + (2− p)|∇/ψ|2 + r−2|ψ|2

)
,

Bp[ψ](τ1, τ2) : = Morr[ψ](τ1, τ2) + Ḃp ; 4m0 [ψ](τ1, τ2).

(5.1.15)

The bulk quantity Bp[ψ](τ1, τ2) is equivalent to5

Bp[ψ](τ1, τ2) '
∫ τ2

τ1

Mp−1[ψ](τ)dτ

where,

Mp−1[ψ](τ) =

∫
Σ≤4m0

(τ)

|R̆ψ|2 + r−2|ψ|2 +

(
1− 3m

r

)2(
|∇/ψ|2 +

m2

r2
|T̆ψ|2

)
+

∫
Σ≥4m0

(τ)

rp−1
(
p|e4(ψ)|2 + (2− p)|∇/ψ|2 + r−2|ψ|2

)
+

∫
Σ≥4m0

(τ)

r−1−δ|e3ψ|2.

5This equivalence follows from the coarea formula and the fact that the lapse of the τ -foliation is
controlled uniformly from above and below.
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Remark 5.1.5. Note that, for δ ≤ p ≤ 2− δ,
Bp[ψ](τ1, τ2) : = Morr[ψ](τ1, τ2) + Ḃp ; 4m0 [ψ](τ1, τ2)

is equivalent to,

Bp[ψ](τ1, τ2) ' Morr[ψ](τ1, τ2) +

∫
M≥4m0

(τ1,τ2)

rp−1
(
|ě4(ψ)|2 + |∇/ψ|2 + r−2|e3ψ|2 + r−2|ψ|2

)
.

Indeed, ∫
M≥4m0

(τ1,τ2)

rp−3|e3ψ|2 .
∫
M≥4m0

(τ1,τ2)

r−1−δ|e3ψ|2.

Therefore, since r2 (|ě4(ψ)|2 + |∇/ψ|2) . |dψ|2, we have,

Bp[ψ](τ1, τ2) ' Morr[ψ](τ1, τ2) +

∫
M≥4m0

(τ1,τ2)

rp−3
(
|dψ|2 + |ψ|2

)
. (5.1.16)

Basic energy-flux quantity

The basic energy-flux quantity on a hypersurface Σ(τ) is defined by

E[ψ](τ) =

∫
Σ(τ)

(
1

2
(NΣ, e3)2 |e4ψ|2 +

1

2
(NΣ, e4)2 |e3ψ|2 + |∇/ψ|2 + r−2|ψ|2

)
. (5.1.17)

Here NΣ denotes a choice for the normal to Σ so that in particular we have

NΣ =

{
NΣ = e3 on (int)Σ,

NΣ = e4 on (ext)Σ,
(5.1.18)

and, in view of (5.1.5),

(NΣ, e3) ≤ −1 and (NΣ, e4) ≤ −1 on (trap)Σ. (5.1.19)

Weighted energy-flux type quantities

We have

Ėp ;R[ψ](τ) :=


∫

Σ≥R(τ)

rp
(
|ě4ψ|2 + r−2|ψ|2

)
for p ≤ 1− δ,∫

Σ≥R(τ)

rp
(
|ě4ψ|2 + r−p−1−δ|ψ|2

)
for p > 1− δ,

(5.1.20)
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and

Ep[ψ](τ) := E[ψ](τ) + Ėp ; 4m0 [ψ](τ). (5.1.21)

Here ě4 denotes the first order operator

ě4ψ = r−1Υ−1e4(rψ). (5.1.22)

Remark 5.1.6. To control the weighted quantities (5.1.21), it will be convenient to in-
troduce in (ext)M(r ≥ 4m0) the following renormalized frame

e′4 = Υ−1e4, e′3 = Υe3, e′θ = eθ.

In particular, this yields

ě4ψ = r−1e′4(rψ).

Note also that we have the following alternate form

ě4ψ = e′4ψ + r−1ψ +
e′4(r)− 1

r
ψ

where e′4(r)− 1 = Υ−1e4(r)− 1 = O(εr−1) in view of our assumption on Γg.

Flux quantities

The boundary of M(τ1, τ2) is given by

∂M(τ1, τ2) = Σ(τ1) ∪ Σ(τ2) ∪ A(τ1, τ2) ∪ Σ∗(τ1, τ2).

Our basic flux quantity along the spacelike hypersurfaces A and Σ∗ is given by

F [Ψ](τ1, τ2) :=

∫
A(τ1,τ2)

(
δ−1
H |e4Ψ|2 + δH|e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+

∫
Σ∗(τ1,τ2)

(
|e4Ψ|2 + |e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
, (5.1.23)

with A(τ1, τ2) = A ∩M(τ1, τ2) and Σ∗(τ1, τ2) = Σ∗ ∩M(τ1, τ2).

Weighted flux quantities

Ḟp[ψ](τ1, τ2) :=

∫
Σ∗(τ1,τ2)

rp
(
|e4ψ|2 + |∇/ψ|2 + r−2|ψ|2

)
,

Fp[ψ](τ1, τ2) := F [ψ](τ1, τ2) + Ḟp[ψ](τ1, τ2).

(5.1.24)
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Weighted quantities for the inhomogeneous term N

Recall the decomposition (5.1.7) for the inhomogeneous term N

N = Ng + e3(rNg) +Nm[q].

We define, for p ≥ δ,

Ip[Ng](τ1, τ2) =

(∫ τ2

τ1

dτ‖Ng‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+p|Ng|2

+

∫
(trap

/
)M(τ1,τ2)

r2+p|Ng||e3(Ng)|+ sup
τ∈[τ1,τ2]

∫
Σ(τ)

rp+2
∣∣Ng

∣∣2
+

∫
(trap

/
)M(τ1,τ2)

r3+δ|e3(Ng)|2. (5.1.25)

Remark 5.1.7. While Nm[q] is present in the decomposition of the inhomogeneous term
N , (5.1.25) only contains a norm for Ng. In fact, Nm[q] will always be absorbed by the
left hand side wherever it appears.

Higher derivative quantities

We define the higher order derivative quantities Es[ψ],Mors[ψ],Morrs[ψ], Es
p[ψ], Bs

b [ψ],
M s

p [ψ], F s[ψ], F s
p [ψ], Isp [Ng] by the obvious procedure,

Qs[ψ] =
∑
k≤s

Q[dkψ].

Remark 5.1.8. Note that in view of Remark 5.1.5 we can also write, equivalently, for
p < 2− δ,

Bs
p[ψ](τ1, τ2) = Morrs[ψ](τ1, τ2) +

∫
M>4m0 (τ1,τ2)

rp−3|d≤1+sψ|2. (5.1.26)
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Decay norms

We introduce,

Esp,d[ψ] : = sup
0≤τ≤τ∗

(1 + τ)dEs
p[ψ](τ),

Bsp,d[ψ] : = sup
0≤τ≤τ∗

(1 + τ)dBs
p[ψ](τ, τ∗),

' sup
0≤τ≤τ∗

(1 + τ)d
∫ τ∗

τ

M s
p−1[ψ](τ ′)dτ ′,

F sp,d[ψ] : = sup
0≤τ≤τ∗

(1 + τ)dF s
p [ψ](τ, τ∗),

Isp,d[Ng] : = sup
0≤τ≤τ∗

(1 + τ)dIsp [Ng](τ, τ∗).

(5.1.27)

5.2 Proof of Theorem M1

Recall that we have to prove for k ≤ ksmall + 20

|dkq| . ε0r
−1(1 + τ)−

1
2
−δextra ,

|dkq| . ε0r
− 1

2 (1 + τ)−1−δextra ,

|dke3(q)| . ε0r
−1(1 + τ)−1−δextra ,

and ∫
(int)M(τ,τ∗)

|dke3q|2 +

∫
Σ∗(τ,τ∗)

|dke3q|2 . ε20(1 + τ)−2−2δextra ,

for some constant δextra such that δdec < δextra < 2δdec.

5.2.1 Flux decay estimates for q

The following result establishes decay of flux estimates for q.

Theorem 5.2.1. Let 0 < q0 < 1 be a fixed number and s ≤ ksmall+25. Then, for all δ > 0
we have, with a constant C depending only on s, δ and q0 such that for all δ ≤ p ≤ 2− δ,
we have

Esp,2+q0−p[q] + Bsp,2+q0−p[q] + F sp,2+q0−p[q]

. Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + Is+5

q0+2,0[Ng] + Is+5
δ,2+q0−δ[Ng], (5.2.1)
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where we recall that the decay norms Isp,d[Ng] are defined by,

Isp,d[Ng] = sup
0≤τ≤τ∗

(1 + τ)dIsp [Ng](τ, τ∗).

Theorem 5.2.1 will be proved in section 5.4.3.

To prove Theorem M1 we have to eliminate the norms Isp,d[Ng] on the right hand side of
Theorem 5.2.1.

Proposition 5.2.2. Let s ≤ ksmall + 30 and assume

q0 < 4δdec − 4δ0 (5.2.2)

where

δ0 =
33

klarge − ksmall
=

33

klarge − bklarge2
c − 1

(5.2.3)

is the small constant appearing in Lemma 5.1.1. Then, the following estimates hold true,

Isq0+2,0[Ng] + Isδ,2+q0−δ[Ng] . ε4.

The proof of Proposition 5.2.2 is postponed to section 5.2.3. Together with Theorem
5.2.1, Proposition 5.2.2 immediately yields the proof of the following corollary.

Corollary 5.2.3. In addition to the assumptions of Theorem 5.2.1 we assume

2δdec < q0 < 4δdec − 4δ0 (5.2.4)

where δ0 > 0 is given by (5.2.3). Then for a sufficiently small bootstrap constant ε > 0,
for all s ≤ ksmall + 25 and for all δ ≤ p ≤ 2− δ, we have

Esp,2+q0−p[q] + Bsp,2+q0−p[q] + F sp,2+q0−p[q] . Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + ε4.

5.2.2 Proof of Theorem M1

Since ε = ε
2/3
0 , and in view of the control on q at τ = 0 provided by Theorem M0,

we immediately deduce from Corollary 5.2.3, For all 0 < q ≤ q0, δ ≤ p ≤ 2 − δ, and
s ≤ ksmall + 25,

Esp,2+q0−p[q] + Bsp,2+q0−p[q] + F sp,2+q0−p[q] . ε20. (5.2.5)

We will also need the following two propositions concerning L2 estimates on spheres.
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Proposition 5.2.4. On any S = S(τ, r) ⊂ Σ(τ), for s ≤ ksmall + 25,

(1 + τ)1+q0

∫
Sr

|q(s)|2 .
(
Es1+δ,1+q0−δ[q]

) 1
2
(
Es1−δ,1+q0+δ[q]

) 1
2 (5.2.6)

and,

r−1(1 + τ)2+q0−δ
∫
Sr

|q(s)|2 . Esδ,2+q0−δ[q]. (5.2.7)

Proposition 5.2.5. We have for s ≤ ksmall + 25

(1 + τ)2+q0−δ
∫

Σ∗(τ,τ∗)

|e3d
≤sq|2 . F sδ,2+q0−δ[q]. (5.2.8)

Also, on any S = S(τ, r) ⊂ Σ(τ), for s ≤ ksmall + 23, we have

(1 + τ)2+q0−δ
∫
Sr

|e3d
≤sq|2 . ε20 + F s+1

δ,2+q0−δ[q] + Es+2
δ,2+q0−δ[q]. (5.2.9)

The proof of Proposition 5.2.4 is postponed to section 5.4.4, and the proof of Proposition
5.2.5 is postponed to section 5.4.5.

We now conclude the proof of Theorem M1. Indeed, in view of (5.2.5), Proposition 5.2.4
and Proposition 5.2.5, we infer for s ≤ ksmall + 25

(1 + τ)2+q0−δ
∫

(int)M(τ,τ∗)

|d≤s+1q|2 . ε20,

(1 + τ)1+q0

∫
Sr

|q(s)|2 . ε20,

r−1(1 + τ)2+q0−δ
∫
Sr

|q(s)|2 . ε20,

(1 + τ)2+q0−δ
∫

Σ∗(τ,τ∗)

|e3d
≤sq|2 . ε20,

and for s ≤ ksmall + 23

(1 + τ)2+q0−δ
∫
S

|dse3q|2 . ε20.

In view of the standard Sobolev inequality on the 2-surfaces S i.e.,

‖ψ‖L∞(S) . r−1‖(r∇/ )≤2ψ‖L2(S),
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we immediately infer for s ≤ ksmall + 23

|q(s)| . ε0r
−1(1 + τ)−

1
2
− q0

2 ,

|q(s)| . ε0r
− 1

2 (1 + τ)−1− q0−δ
2 ,

and for s ≤ ksmall + 21

|dse3(q)| . ε0r
−1(1 + τ)−1− q0−δ

2 .

Recall that q0 > 2δdec and that δ > 0 can be chosen arbitrarily small so that we have
q0 − δ > 2δdec. In particular, we may choose

δextra :=
q0 − δ

2
, δextra > δdec, (5.2.10)

which together with the above estimates for q implies for s ≤ ksmall + 25

(1 + τ)2+q0−δ
∫

(int)M(τ,τ∗)

|d≤s+1q|2 . ε20,

(1 + τ)2+2δextra

∫
Σ∗(τ,τ∗)

|e3d
≤sq|2 . ε20,

for s ≤ ksmall + 23

|q(s)| . ε0r
−1(1 + τ)−

1
2
−δextra ,

|q(s)| . ε0r
− 1

2 (1 + τ)−1−δextra ,

and for s ≤ ksmall + 21

|dse3(q)| . ε0r
−1(1 + τ)−1−δextra

as desired. This concludes the proof of Theorem M1.

5.2.3 Proof of Proposition 5.2.2

Recall that,

Ip[Ng](τ1, τ2) =

(∫ τ2

τ1

dτ‖Ng‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+p|Ng|2

+

∫
(trap

/
)M(τ1,τ2)

r2+p|Ng||e3(Ng)|+ sup
τ∈[τ1,τ2]

∫
Σ(τ)

rp+2
∣∣Ng

∣∣2
+

∫
(trap

/
)M(τ1,τ2)

r3+δ|e3(Ng)|2
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and,

Isp,d[Ng] = sup
0≤τ≤τ∗

(1 + τ)dIsp [Ng](τ, τ∗).

Since we have

rδ(1 + τ)2+q0−δ . r2+q0 + (1 + τ)2+q0 ,

and∫
(trap

/
)M(τ,τ∗)

r2|d≤se3(Ng)||d≤sNg| .
∫

(trap

/
)M(τ,τ∗)

r|d≤sNg|2 +

∫
(trap

/
)M(τ,τ∗)

r3|d≤se3(Ng)|2,

we infer

Isq0+2,0[Ng] + Isδ,2+q0−δ[Ng] (5.2.11)

. sup
0≤τ≤τ∗

[∫
(trap

/
)M(τ,τ∗)

r4+q0 |d≤s+1Ng|2 + sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r4+q0
∣∣d≤sNg

∣∣2
+(1 + τ)2+q0

(∫
(trap

/
)M(τ,τ∗)

r|d≤sNg|2 +

∫
(trap

/
)M(τ,τ∗)

r3+δ|d≤se3(Ng)|2

+ sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r2
∣∣d≤sNg

∣∣2)+ (1 + τ)2+q0

(∫ τ∗

τ

dτ ′‖d≤sNg‖L2( (trap)Σ(τ ′))

)2
]
.

In order to prove Proposition 5.2.2, it suffices to estimate the right-hand side of (5.2.11).
To this end, we will estimate separately the terms with highest power of r, i.e. the first
two terms, and the terms with highest power the τ , i.e. the four last terms.

Terms with highest power of r in (5.2.11)

We estimate the first two terms of (5.2.11). Recall from Lemma 5.1.2 that

Ng = r2d≤2(Γg · (α, β)).

Recall from Lemma 5.1.1 we have

max
0≤k≤klarge−3

sup
(ext)M(r≥4m0)

r
7
2

+
δB
2

(
|dkα|+ |dkβ|

)
. ε.

We infer for s ≤ klarge − 6

|d≤s+1Ng| . εr−
7
2
− δB

2 |r2d≤s+3Γg|
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and hence, for s ≤ klarge − 6, we deduce∫
(trap

/
)M(τ,τ∗)

r4+q0|d≤s+1Ng|2 + sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r4+q0
∣∣d≤sNg

∣∣2
. ε2

∫
(trap

/
)M(τ,τ∗)

r−3−δB+q0(r2d≤s+3Γg)
2 + ε2 sup

τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r−3−δB+q0(r2d≤s+2Γg)
2
)
.

Since we also have for s ≤ klarge − 6

sup
r0≥4m0

∫
{r=r0}

(r2d≤s+3Γg)
2 . ε2,

∫
Mr≤4m0

(d≤s+3Γg)
2 . ε2, sup

M
|r2d≤s+2Γg| . ε,

we deduce ∫
(trap

/
)M(τ,τ∗)

r4+q0|d≤s+1Ng|2 + sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r4+q0
∣∣d≤sNg

∣∣2
. ε4

(
1 +

∫
r≥4m0

dr

r1+δB−q0

)
.

Since q0 < 4δdec and δB ≥ 4δdec, we have q0 < δB and hence, we obtain for s ≤ klarge − 6∫
(trap

/
)M(τ,τ∗)

r4+q0 |d≤s+1Ng|2 + sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r4+q0
∣∣d≤sNg

∣∣2 . ε4.

This is the desired control of the terms with highest power of r in (5.2.11).

Terms with highest power of τ in (5.2.11)

We estimate the four last terms of (5.2.11). In view of Lemma 5.1.1 with kloss = 33, so
that

δ0 =
33

klarge − ksmall − 2
=

33

klarge − bklarge2
c − 3

,

we have ∣∣∣d≤ksmall+33Γg

∣∣∣ . εr−2τ−1/2−δdec+2δ0 ,∣∣∣d≤ksmall+33Γg

∣∣∣ . εr−1τ−1−δdec+2δ0 ,∣∣∣d≤S+32e3Γg

∣∣∣ . εr−2[τ−1−δdec ]1−δ0 . εr−2τ−1−δdec+2δ0 ,∣∣∣d≤ksmall+33(α, β)
∣∣∣ . εr−3(τ + r)−1/2−δdec+2δ0 ,∣∣∣d≤ksmall+33(α, β)
∣∣∣ . εr−2(τ + r)−1−δdec+2δ0 ,∣∣∣d≤S+32e3(α, β)
∣∣∣ . εr−3− 1

2
δ0 [τ−1−δdec ]1−δ0 . εr−3τ−1−δdec+2δ0 .
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In particular, together with the bootstrap assumption for k ≤ ksmall, the pointwise bound

|d≤klarge−5α|+ |d≤klarge−5β| . εr−
7
2
− δB

2

and since Ng = r2d≤2(Γg · (α, β)), we infer for s ≤ ksmall + 30

|dsNg| . ε2r−3τ−1−2δdec+2δ0

|dsNg| . ε2r−1τ−2−2δdec+2δ0 ,

|dse3(Ng)| . ε2r−3τ−
3
2
−2δdec+2δ0 ,

|dse3(Ng)| . ε2r−
7
2
− δB

2 τ−1−δdec+2δ0 .

(5.2.12)

Using these 4 bounds and interpolation, we infer for δ > 0

(1 + τ)2+q0

(∫
(trap

/
)M(τ,τ∗)

r|d≤sNg|2 +

∫
(trap

/
)M(τ,τ∗)

r3+δ|d≤se3(Ng)|2

+ sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r2
∣∣d≤sNg

∣∣2)+ (1 + τ)2+q0

(∫ τ∗

τ

dτ ′‖d≤sNg‖L2( (trap)Σ(τ ′))

)2

. ε4(1 + τ)2+q0

∫
(trap

/
)M(τ,τ∗)

r(r−3τ ′
−1−2δdec+2δ0)1+δ(r−1τ ′

−2−2δdec+2δ0)1−δ

+ε4(1 + τ)2+q0

∫
(trap

/
)M(τ,τ∗)

r3+δ(r−3τ ′
− 3

2
−2δdec+2δ0)2−2δ(r−

7
2
− δB

2 τ ′
−1−δdec+2δ0)2δ

+ε4(1 + τ)2+q0 sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r2(r−3τ ′
−1−2δdec+2δ0)2

+ε4(1 + τ)2+q0

(∫ τ∗

τ

τ ′
−2−2δdec+2δ0dτ ′

)2

. ε4(1 + τ)2+q0

∫
(trap

/
)M(τ,τ∗)

r−3−δδBτ ′
−3−4δdec+δ+4δ0+2δδdec

+ε4(1 + τ)2+q0 sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r−4τ ′
−2−4δdec+4δ0 + ε4(1 + τ)2+q0

(∫ τ∗

τ

τ ′
−2−2δdec+2δ0dτ ′

)2

and since δ > 0, we obtain

(1 + τ)2+q0

(∫
(trap

/
)M(τ,τ∗)

r|d≤sNg|2 +

∫
(trap

/
)M(τ,τ∗)

r3+δ|d≤se3(Ng)|2

+ sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r2
∣∣d≤sNg

∣∣2)+ (1 + τ)2+q0

(∫ τ∗

τ

dτ ′‖d≤sNg‖L2( (trap)Σ(τ ′))

)2

. ε4(1 + τ)q0−4δdec+δ+4δ0+2δδdec .
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As we have q0 < 4δdec − 4δ0, there exists δ > 0 small enough such that

q0 − 4δdec + δ + 4δ0 + 2δδdec ≤ 0,

and hence

(1 + τ)2+q0

(∫
(trap

/
)M(τ,τ∗)

r|d≤sNg|2 +

∫
(trap

/
)M(τ,τ∗)

r3+δ|d≤se3(Ng)|2

+ sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r2
∣∣d≤sNg

∣∣2)+ (1 + τ)2+q0

(∫ τ∗

τ

dτ ′‖d≤sNg‖L2( (trap)Σ(τ ′))

)2

. ε4.

This is the desired control of the terms with highest power of τ in (5.2.11). Together with
(5.2.11) and the above control of the terms with highest power of r, we infer

Isq0+2,0[Ng] + Isδ,2+q0−δ[Ng]

. sup
0≤τ≤τ∗

[∫
(trap

/
)M(τ,τ∗)

r4+q0 |d≤s+1Ng|2 + sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r4+q0
∣∣d≤sNg

∣∣2
+(1 + τ)2+q0

(∫
(trap

/
)M(τ,τ∗)

r|d≤sNg|2 +

∫
(trap

/
)M(τ,τ∗)

r3+δ|d≤se3(Ng)|2

+ sup
τ ′∈[τ,τ∗]

∫
Σ(τ ′)

r2
∣∣d≤sNg

∣∣2)+ (1 + τ)2+q0

(∫ τ∗

τ

dτ ′‖d≤sNg‖L2( (trap)Σ(τ ′))

)2
]

. ε4

which is the desired estimate. This concludes the proof of Proposition 5.2.2.

5.3 Improved weighted estimates

The goal of this section is to prove the two following theorems on improved weighted
estimates.

Theorem 5.3.1. Assume q verifies following wave equation, see (5.0.1),

�2q + κκ q = N

with N given, in view of Lemma 5.1.2, by

N = Ng + e3(rNg) +Nm[q].

Then, for any δ ≤ p ≤ 2− δ, 0 ≤ s ≤ ksmall + 30,

sup
τ∈[τ1,τ2]

E s
p[q](τ) +Bs

p[q](τ1, τ2) + F s
p [q](τ1, τ2) . E s

p[q](τ1) + Is+1
p [Ng](τ1, τ2). (5.3.1)
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The next result deals with weighted estimates for the quantity

q̌ = f2ě4q, (5.3.2)

where f2 is a fixed smooth function of r defined as follows,

f2(r) =

{
r2 for r ≥ 6m0,

0 for r ≤ 4m0.
(5.3.3)

Theorem 5.3.2. Assume q verifies equation, see (5.0.1),

�2q + κκ q = N

with,

N = Ng + e3(rNg) +Nm[q]

as in Lemma 5.1.2. Then, for any −1 + δ < q ≤ 1− δ, 0 ≤ s ≤ ksmall + 29,

sup
τ∈[τ1,τ2]

E s
q[q̌](τ) +Bs

q [q̌](τ1, τ2) . E s
q[q̌](τ1) + E s+1

q+1[q](τ1) + Is+2
q+2 [Ng](τ1, τ2). (5.3.4)

Remark 5.3.3. Note that in (5.3.1) and (5.3.4), the term Nm[q] does not appear in the
right-hand side since it turns out that it can be absorbed by the left hand side.

The proof of Theorem 5.3.1 is postponed to section 5.3.2, and the proof of Theorem 5.3.2
is postponed to section 5.3.3. These proofs will rely on weighted energy flux estimates
introduced in the next section.

5.3.1 Basic and higher weighted estimates for wave equations

Assume given a spacetime M verifying the bootstrap assumptions with small constant
ε > 0. The proof of Theorem 5.3.1 and Theorem 5.3.2 will rely on estimates stated below
for solutions ψ ∈ s2(M) of the equation,

�2ψ = V ψ +N, V = −κκ. (5.3.5)

Basic weighted estimates

Theorem 5.3.4. Recall the definitions in (5.1.21), (5.1.15). The following holds for any
0 ≤ s ≤ ksmall + 30. For all δ ≤ p ≤ 2− δ, we have,

sup
τ∈[τ1,τ2]

Es
p[ψ](τ) +Bs

p[ψ](τ1, τ2) + F s
p [ψ](τ1, τ2) . Es

p[ψ](τ1) + Jsp [ψ,N ](τ1, τ2), (5.3.6)
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where, for p ≥ δ, we have introduced the notation

Jp,R[ψ,N ](τ1, τ2) : =

∣∣∣∣ ∫
M≥R(τ1,τ2)

rpě4ψN

∣∣∣∣,
Jp[ψ,N ](τ1, τ2) : =

(∫ τ2

τ1

dτ‖N‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|N |2

+ Jp,4m0 [ψ,N ](τ1, τ2),

(5.3.7)

and

Jsp [ψ,N ](τ1, τ2) :=
∑
k≤s

Jp[d
kψ, dkN ](τ1, τ2).

The proof of Theorem 5.3.4 is postponed to section 10.4.5.

Higher weighted estimates

The next result deals with weighted estimates for the quantity

ψ̌ = f2ě4ψ, (5.3.8)

where f2 is a fixed smooth function of r defined as follows,

f2(r) =

{
r2 for r ≥ 6m0,

0 for r ≤ 4m0.
(5.3.9)

Theorem 5.3.5. The following holds for any −1 + δ < q ≤ 1− δ, 0 ≤ s ≤ ksmall + 29,

sup
τ∈[τ1,τ2]

E s
q[ ψ̌](τ) +Bs

q [ ψ̌](τ1, τ2) . E s
q[ ψ̌](τ1) + J̌sq [ ψ̌, N ](τ1, τ2)

+ E s+1
max(q,δ)[ψ](τ1) + Js+1

max(q,δ)[ψ,N ],
(5.3.10)

where we have introduced the notation

J̌q[ ψ̌, N ](τ1, τ2) := Jq,4m0

[
ψ̌, r2

(
e4N +

3

r
N

)]
(τ1, τ2)

=

∫
M≥4m0

(τ1,τ2)

rq+2
(
ě4 ψ̌

)
·
(
e4N +

3

r
N

)
,

and

J̌sq [ ψ̌, N ](τ1, τ2) :=
∑
k≤s

J̌q[d
k ψ̌, dkN ](τ1, τ2).
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The proof of Theorem 5.3.5 is postponed to section 10.4.6.

We now proceed to the proof of Theorem 5.3.1 and Theorem 5.3.2 in the next 2 sections.
The proofs will follow from the structure of the nonlinear term N of q provided by Lemma
5.1.2 and the use of Theorem 5.3.4 and Theorem 5.3.5.

5.3.2 Proof of Theorem 5.3.1

Applying Theorem 5.3.4 to the equation for q, with N given by Lemma 5.1.2, we derive
corresponding estimates with the norm Jsp [q, N ](τ1, τ2) on the right hand side, i.e. for
0 ≤ s ≤ ksmall + 30, and for δ ≤ p ≤ 2− δ,

sup
τ∈[τ1,τ2]

E s
p[q](τ) +Bs

p[q](τ1, τ2) + F s
p [q](τ1, τ2) . E s

p[q](τ1) + Jsp [q, N ](τ1, τ2). (5.3.11)

To prove Theorem 5.3.1, it suffices, in view of (5.3.11), to estimate Jsp [q, N ](τ1, τ2). Recall
that, see (5.3.7) and (5.1.25)

Ip[N ](τ1, τ2) =

(∫ τ2

τ1

dτ‖N‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+p|N |2

+

∫
(trap

/
)M(τ1,τ2)

r2+p|Ng||e3(Ng)|+ sup
τ∈[τ1,τ2]

∫
Σ(τ)

rp+2
∣∣N ∣∣2

+

∫
(trap

/
)M(τ1,τ2)

r3+δ|e3(Ng)|2

and,

Jp,R[q, N ] =

∣∣∣∣ ∫
M≥R(τ1,τ2)

rpě4(q)N

∣∣∣∣,
Jp[q, N ](τ1, τ2) =

(∫ τ2

τ1

dτ‖N‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|N |2

+Jsp,4m0
[q, N ](τ1, τ2),

Jsp [q, N ](τ1, τ2) =
∑
k≤s

Jp[d
kq, dkN ],

Recall also from (5.1.9)

dkN = d≤kNg + e3(dk(rNg)) + dkNm[q] (5.3.12)



5.3. IMPROVED WEIGHTED ESTIMATES 279

and consider separately the three terms.

Case of Nm[q]. Recall that Nm[q] = d≤1(Γg · q). We have, schematically,

dkNm[q] = d1+k(Γg · q) =
∑

i+j=k+1

d≤iΓgd
≤jq.

We make use of the following consequence of the bootstrap assumptions for k ≤ klarge− 5∣∣d≤kΓg∣∣ ≤ εr−2

to deduce, ∣∣dkNm[q]
∣∣ . εr−2

∣∣d≤k+1q
∣∣. (5.3.13)

We deduce,

Jsp,4m0
[q, Nm[q]](τ1, τ2) .

∑
k≤s

∫
M≥4m0

(τ1,τ2)

rp
∣∣ě4q

(k)
∣∣ ∣∣dkNm[q]

∣∣
. ε

∑
k≤s

∫
M≥4m0

(τ1,τ2)

rp−3
∣∣d1+kq

∣∣2.
Thus, recalling Remark 5.1.8, we infer

Jsp,4m0
[q, Nm[q]](τ1, τ2) . εBs

p[q](τ1, τ2). (5.3.14)

Next, we estimate in view of (5.3.13)∫
(trap

/
)M(τ1,τ2)

r1+δ|dkNm[q]|2 . ε

∫
(trap

/
)M(τ1,τ2)

rδ−3|d≤k+1q|2

which yields, using again Remark 5.1.8,∫
(trap

/
)M(τ1,τ2)

r1+δ|dkNm[q]|2 . εBs
δ [q](τ1, τ2). (5.3.15)

We next estimate the integral∫ τ2

τ1

dτ‖dkNm[q]‖L2( (trap)Σ(τ)).

In view of the definition of Nm[q] = d≤1(Γg · q),

dkNm[q] = d≤k+1(Γg · q) =
∑

i+j=k+1

d≤iΓg d
≤jq

= dj≤(k+1)/2Γg d
≤k+1q + dj≤(k+1)/2q d≤k+1Γg = J1 + J2.
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Now, since k+1
2
≤ ksmall we have∣∣∣dj≤(k+1)/2Γg

∣∣∣ . ε(1 + τ)−1−δdec

Hence,

‖J1‖2
L2( (trap)Σ(τ)) =

∫
(trap)Σ(τ)

∣∣∣dj≤(k+1)/2Γg

∣∣∣2∣∣∣d≤k+1q
∣∣∣2

. ε2(1 + τ)−2−2δdecEs[q](τ)

i.e.,

‖J1‖L2( (trap)Σ(τ)) . ε(1 + τ)−1−δdec (Es[q](τ))1/2 .

For J2 we write,

‖J2‖2
L2( (trap)Σ(τ)) =

∫
(trap)Σ(τ)

∣∣∣dj≤(k+1)/2q
∣∣∣2∣∣∣d≤k+1Γg

∣∣∣2
.

(
sup

(trap)Σ(τ)

∣∣∣dj≤(k+1)/2q
∣∣∣)2 ∫

(trap)Σ(τ)

∣∣∣d≤k+1Γg

∣∣∣2
.

∫
(trap)Σ(τ)

∣∣∣d≤(k+1)/2+2q
∣∣∣2 ∫

(trap)Σ(τ)

∣∣∣d≤k+1Γg

∣∣∣2
or, since (k + 1)/2 + 2 ≤ s,

‖J2‖L2( (trap)Σ(τ)) .

[∫
(trap)Σ(τ)

∣∣∣d≤sq∣∣∣2]1/2 [∫
(trap)Σ(τ)

∣∣∣d≤k+1Γg

∣∣∣2]1/2

.

In view of the above estimates for J1 and J2, we deduce, for all k ≤ s ≤ klarge − 5∫ τ2

τ1

dτ‖dkNm[q]‖L2( (trap)Σ(τ))

. ε sup
τ1≤τ≤τ2

(Es[q](τ))1/2 +

∫ τ2

τ1

dτ

[∫
(trap)Σ(τ)

∣∣∣d≤sq∣∣∣2]1/2 [∫
(trap)Σ(τ)

∣∣∣d≤sΓg∣∣∣2]1/2

. ε sup
τ1≤τ≤τ2

(Es[q](τ))1/2 +

(∫
(trap

/
)M(τ1,τ2)

∣∣∣d≤sq∣∣∣2) 1
2
(∫
Mr≤4m0

∣∣∣d≤sΓg∣∣∣2)1/2

Making use of the following consequence of the bootstrap assumptions(∫
Mr≤4m0

∣∣∣d≤sΓg∣∣∣2)1/2

. ε,
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as well as the fact that ∫
(trap

/
)M(τ1,τ2)

∣∣∣d≤sq∣∣∣2 . Morrs[q](τ1, τ2),

we deduce,(∫ τ2

τ1

dτ‖dkNm[q]‖L2( (trap)Σ(τ))

)2

. ε2 sup
τ1≤τ≤τ2

Es[q](τ) + ε2Morrs[q](τ1, τ2) (5.3.16)

which together with (5.3.15) and (5.3.14) yields for any p ≥ δ

Jsp [q, Nm[q]](τ1, τ2) . ε2 sup
τ1≤τ≤τ2

Es[q](τ) + εBs
p[q](τ1, τ2). (5.3.17)

Case of Ng. We write, as before,

Jsp,4m0
[q, Ng](τ1, τ2) .

∑
k≤s

∫
M≥4m0

(τ1,τ2)

rp
∣∣ě4q

(k)dkNg

∣∣
.

∑
k≤s

(∫
M≥4m0

(τ1,τ2)

rp−1
∣∣ě4q

(k)
∣∣2)1/2(∫

M≥4m0
(τ1,τ2)

rp+1
∣∣dkNg

∣∣2)1/2

.

Therefore,

Jsp,4m0
[q, Ng](τ1, τ2) .

(
Bs
p[q](τ1, τ2)

)1/2 (
Isp [Ng](τ1, τ2)

)1/2

. δ1B
s
p[q](τ1, τ2) + δ−1

1 Isp [Ng](τ1, τ2)

where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
p[q](τ1, τ2)

by the left hand side of our main estimate.

Also, we have in view of the definition of Isp [N ](τ1, τ2) and the fact that p ≥ δ(∫ τ2

τ1

dτ‖d≤sNg‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|d≤sNg|2 . Isp [Ng](τ1, τ2).

Therefore,

Jsp [q, Ng](τ1, τ2) =

(∫ τ2

τ1

dτ‖d≤sNg‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|d≤sNg|2

+Jsp,4m0
[q, Ng](τ1, τ2)

. Isδ [Ng](τ1, τ2) + δ−1
1 Isp [Ng](τ1, τ2) + δ1B

s
p[q](τ1, τ2),
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i.e.,

Jsp [q, Ng](τ1, τ2) . δ−1
1 Isp [Ng](τ1, τ2) + δ1B

s
p[q](τ1, τ2). (5.3.18)

Case of e3(rNg). First, note that we have(∫ τ2

τ1

dτ‖d≤se3(rNg)‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|d≤se3(rNg)|2

.

(∫ τ2

τ1

dτ‖d≤s+1Ng‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|d≤sNg|2

+

∫
(trap

/
)M(τ1,τ2)

r3+δ|d≤se3(Ng)|2

where we used the fact that |d≤se3(r)| . 1 and |d≤sr| . r. Hence, we infer in view of the
definition of Isp [N ](τ1, τ2) and the fact that p ≥ δ(∫ τ2

τ1

dτ‖d≤se3(rNg)‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|d≤se3(rNg)|2

. Is+1
p [Ng](τ1, τ2). (5.3.19)

We then estimate

Jp,4m0 [q(k), e3(dk(rNg))](τ1, τ2), k ≤ s.

To this end, we introduce a smooth cut-off function φ0 vanishing for r ≤ 4m0 and equal
to 1 for r ≥ 8m0. Then, we have

Jp,4m0 [q(k), dk(rNg)](τ1, τ2) =

∣∣∣∣∫
M(τ1,τ2)

rpě4q
(k) e3d

k(rNg)

∣∣∣∣
. Jp,4m0 [q(k), φ0d

k(rNg)](τ1, τ2)

+Jp,4m0 [q(k), (1− φ0)rNg](τ1, τ2). (5.3.20)

In view of the fact that 1− φ0 is supported in r ≤ 8m0, we easily obtain

Jp,4m0 [q(k), (1− φ0)rNg](τ1, τ2) .

(
sup

τ1≤τ≤τ2
Es[q](τ) +Bs

p[q](τ1, τ2)

)1/2 (
Is+1
p [Ng](τ1, τ2)

) 1
2

and hence

Jp,4m0 [q(k), (1− φ0)rNg](τ1, τ2)

. δ1

(
sup

τ1≤τ≤τ2
Es[q](τ) +Bs

p[q](τ1, τ2)
)

+ δ−1
1 Is+1

p [Ng](τ1, τ2) (5.3.21)
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where δ1 > 0 is chosen sufficiently small so that we can later absorb the terms δ1 supτ1≤τ≤τ2 E
s[q](τ)

and δ1B
s
p[q](τ1, τ2) by the left hand side of our main estimate.

It remains to estimate the terms

Jp,4m0 [q(k), φ0e3(dk(rNg))](τ1, τ2), k ≤ s

which is supported for r ≥ 4m0. Note that e3(rNg) behaves like rNg and therefore the
same sequence of estimates as for Ng would lead to a loss of r−1. For this reason we need
to integrate by parts by parts in e3.

Proposition 5.3.6. The following estimate holds true, for all k ≤ s ≤ klarge − 5,∑
k≤s

Jp,4m0 [q(k), φ0e3(dk(rNg))](τ1, τ2) . δ1B
s
p[q](τ1, τ2) + δ−1

1 Is+1
p [Ng](τ1, τ2) (5.3.22)

for a sufficiently small δ1 > 0.

We postponed the proof of Proposition 5.3.6 to the end of the section. We are now in
position to conclude the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1. (5.3.21) and (5.3.22) yield∑
k≤s

Jp,4m0 [q(k), e3(dk(rNg))](τ1, τ2) . δ1B
s
p[q](τ1, τ2) + δ−1

1 Is+1
p [Ng](τ1, τ2).

Together with (5.3.17), (5.3.18) and (5.3.19), we infer

Jsp [q, N ](τ1, τ2) . (δ1 + ε)Bs
p[q](τ1, τ2) + δ−1

1 Is+1
p [Ng](τ1, τ2) + ε2 sup

τ1≤τ≤τ2
Es[q](τ).

In view of (5.3.11), this concludes the proof of Theorem 5.3.1.

The proof of Proposition 5.3.6 will rely in particular on the following identity.

Lemma 5.3.7. The following hold true for any ψ ∈ s2

• We have, schematically,

e3e4(rψ) = −r�2ψ + r4/ 2ψ + r−1dψ. (5.3.23)

• The following identity holds true, schematically,

e3e4(rdkψ) = −d≤k(r�2ψ) + r4/ 2(d≤kψ) + r−1d≤k+1ψ. (5.3.24)
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Proof. We start with the following identity for ψ ∈ s2, see Definition 2.4.2,

�2ψ = −e3e4ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ

from which we deduce,

r�2ψ = −re3e4ψ + r

(
4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ

)
.

On the other hand,

re3e4ψ = e3(re4ψ)− (e3r)e4ψ = e3(e4(rψ)− e4(r)ψ)− (e3r)e4ψ

= e3e4(rψ)− e4(r)e3ψ − (e3r)e4ψ − (e3e4r)ψ.

Hence,

r�2ψ = −e3e4(rψ) + e4(r)e3ψ + (e3r)e4ψ + (e3e4r)ψ + r4/ 2ψ

+ r

(
2ω − 1

2
κ

)
e4ψ −

1

2
rκe3ψ + 2rηeθψ

= −e3e4(rψ) + r4/ψ +

(
e4r −

1

2
rκ

)
e3ψ +

(
e3r −

1

2
rκ+ 2rω

)
e4ψ + 2rηeθψ

= −e3e4(rψ) + r4/ψ +
r

2
Ae3ψ +

r

2
(A+ 4ω) e4ψ + 2rηeθψ

i.e.,

e3e4(rψ) = −r�2ψ + r4/ 2ψ +
r

2
Ae3ψ +

r

2
(A+ 4ω) e4ψ + 2rηeθψ.

or, schematically, in view of the definition of dψ and the estimate |ω|+ r|Γg|+ |Γb| . r−1,

e3e4(rψ) = −r�2ψ + r4/ 2ψ +
(
rΓg + Γb + r−1

)
e3ψ

= −r�2ψ + r4/ 2ψ + r−1dψ

which is (5.3.23).

To derive the identity for higher derivatives we write, schematically,

dke3e4(rψ) = −dk(r�2ψ) + dk(r4/ 2ψ) + dk(rΓgdψ).

We write,

dke3e4(rψ) = e3e4(rdkψ) + [dk, e3e4r]ψ = e3e4(rdkψ) + [dk, e3]dψ + e3[dk, e4r]ψ,

dk(r4/ 2ψ) = r4/ 2d
kψ + [dk, r4/ ]ψ = r4/ 2d

kψ + [dk, r−1]d2ψ + r−1[dk, r24/ ]ψ.
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In view of the identities for [e3, d/] and [e4, d/] of Lemma 2.2.13, the identities of Proposition
2.1.25 for commutation formulas involving d/k and d?/k derivatives, and the commutator
formula for [e3, e4], we have schematically

[e3, e3] = 0, [ d/, r24/ ] = d/+ 1, [e3, e4r] = (r−1 + Γg)d

[e3, d/] = Γbd + Γb, [e4r, d/] = (r2ξ + rΓg)d + rΓg

In view of the estimates for Γg, Γb, and the fact that ξ = 0 for r ≥ 4m0, we infer

[dk, e3] = r−1d≤k, [dk, r24/ ] = d≤k+1, [dk, r−1] = r−1d≤k−1

and hence

dke3e4(rψ) = e3e4(rdkψ) + e3[dk, e4r]ψ + r−1d≤k+1ψ,

dk(r4/ 2ψ) = r4/ 2d
kψ + r−1d≤k+1ψ.

Also, we have

[re4, e4r] = [re4, e4]r + e4[re4, r] = −e4(r)e4r − e4re4(r) = −2e4r + r−1d

and we infer by induction, schematically,

[(re4)j, e4r] = e4r(re4)≤j−1 + r−1d≤j

so that, together with

[dk−j↘ , e4r] = r−1d≤k−j,

we infer

[dk, e4r] = [(re4)jdk−j↘ , e4r] = e4r(re4)≤j−1dk−j↘ + r−1d≤k.

We deduce

e3e4(r(re4)jdk−j↘ ψ) = −(re4)jdk−j↘ (r�2ψ) + r4/ 2(dkψ) + r−1d≤k+1ψ + e4r(re4)≤j−1dk−j↘ ψ.

We infer by induction on j

e3e4(r(re4)jdk−j↘ ψ) = −(re4)≤jdk−j↘ (r�2ψ) + r4/ 2(d≤kψ) + r−1d≤k+1ψ

and hence

e3e4(rdkψ) = −d≤k(r�2ψ) + r4/ 2(d≤kψ) + r−1d≤k+1ψ

which is (5.3.24). This concludes the proof of Lemma 5.3.7.
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We now are in position to prove Proposition 5.3.6.

Proof of Proposition 5.3.6. We integrate by parts,

Jp,4m0 [q(k), φ0 d
k(rNg)](τ1, τ2) .

∣∣∣∣∫
M(τ1,τ2)

e3

(
φ0(r)rpě4q

(k)
)
dk(rNg)

∣∣∣∣+ |Bk
p (τ1)|+ |Bk

p (τ2)|

+

∣∣∣∣∫
M(τ1,τ2)

Div(e3)φ0(r)rpě4q
(k)dk(rNg)

∣∣∣∣ (5.3.25)

where Div(e3) denotes the spacetime divergence of e3, and where the boundary terms are
bounded by

|Bk
p (τ1)| .

∫
Σ(τ1)

rp|ě4q
(k)| |dk(rNg)|,

|Bk
p (τ2)| .

∫
Σ(τ2)

rp|ě4q
(k)| |dk(rNg)|.

We estimate,

|Bk
p (τ)| .

∫
Σ(τ)

rp|ě4q
(k)| |dk(rNg)| .

(∫
Σ(τ)

rp|ě4q
(k)|2

)1/2(∫
Σ(τ)

rp|dk(rNg)|2
)1/2

.
(
Ek
p [q](τ)

)1/2(∫
Σ(τ)

rp+2|dkNg|2
)1/2

.

We deduce, with δ1 > 0 a sufficiently small constant, for any τ ∈ [τ1, τ2],

∣∣Bk
p (τ1)

∣∣ . δ1 sup
τ1≤τ≤τ2

Ek
p [q](τ) + δ−1

1 sup
τ1≤τ≤τ2

∫
Σ(τ)

rp+2|N≤kg |2,∣∣Bk
p (τ2)

∣∣ . δ1 sup
τ1≤τ≤τ2

Ek
p [q](τ) + δ−1

1 sup
τ1≤τ≤τ2

∫
Σ(τ)

rp+2|N≤kg |2.
(5.3.26)

Next, notice that Div(e3) = κ− 2ω so that

|Div(e3)| . r−1.

Together with the fact that e3(Φ0(r)) is supported in 4m0 ≤ r ≤ 8m0, the fact that
|e3(r)| . 1 and

rě4q
(k) = e4(rq(k)) +O(r−1)e4(q(k)),
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we infer

∣∣∣∣∫
M(τ1,τ2)

e3

(
φ0(r)rpě4q

(k)
)
dk(rNg)

∣∣∣∣+

∣∣∣∣∫
M(τ1,τ2)

Div(e3)φ0(r)rpě4q
(k)dk(rNg)

∣∣∣∣
.

∣∣∣∣∫
M(τ1,τ2)

φ0(r)rp−1e3e4(rq(k))dk(rNg)

∣∣∣∣+

∫
M≥4m0

(τ1,τ2)

rp−1|ě4(q(k))||dk(rNg)|

+

∫
M4m0≤r≤8m0

(τ1,τ2)

|ě4(q(k))||dk(rNg)|

.

∣∣∣∣∫
M(τ1,τ2)

φ0(r)rp−1e3e4(rq(k))dk(rNg)

∣∣∣∣
+

(∫
M≥4m0

(τ1,τ2)

rp−1|ě4(q(k))|2
) 1

2
(∫
M≥4m0

(τ1,τ2)

rp+1|d≤kNg|2
) 1

2

and hence

∣∣∣∣∫
M(τ1,τ2)

e3

(
φ0(r)rpě4q

(k)
)
dk(rNg)

∣∣∣∣+

∣∣∣∣∫
M(τ1,τ2)

Div(e3)φ0(r)rpě4q
(k)dk(rNg)

∣∣∣∣
.

∣∣∣∣∫
M(τ1,τ2)

φ0(r)rp−1e3e4(rq(k))dk(rNg)

∣∣∣∣+
(
Bs
p[q](τ1, τ2)

)1/2 (
Isp [Ng](τ1, τ2)

) 1
2

which yields

∣∣∣∣∫
M(τ1,τ2)

e3

(
φ0(r)rpě4q

(k)
)
dk(rNg)

∣∣∣∣+

∣∣∣∣∫
M(τ1,τ2)

Div(e3)φ0(r)rpě4q
(k)dk(rNg)

∣∣∣∣
.

∣∣Lk∣∣+ δ1B
s
p[q](τ1, τ2) + δ−1

1 Isp [Ng](τ1, τ2) (5.3.27)

where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
p[q](τ1, τ2)

by the left hand side of our main estimate, and where we have introduced the notation

Lk : =

∫
M(τ1,τ2)

φ0(r)rp−1e3e4

(
rq(k)

)
dk(rNg). (5.3.28)
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It remains to estimate the term Lk. Making use of Lemma 5.3.7, we deduce

Lk =

∫
M(τ1,τ2)

φ0(r)rp−1e3e4(rq(k))dk(rNg)

= −
∫
M(τ1,τ2)

φ0(r)rp−1d≤k(r�2q)dk(rNg)

+

∫
M(τ1,τ2)

φ0(r)rp4/ 2(d≤kq)dk(rNg)

+

∫
M(τ1,τ2)

φ0(r)rp−2d≤k+1q dk(rNg)

= Lk1 + Lk2 + Lk3.

We first estimate Lk3 as follows∣∣Lk3∣∣ . ∫
M≥4m0

(τ1,τ2)

rp−2|d≤k+1q| |dk(rNg)|

.
(∫
M≥4m0

(τ1,τ2)

rp−3
∣∣d≤k+1q

∣∣2)1/2(∫
M≥4m0

(τ1,τ2)

rp+1|d≤kNg|2
)1/2

In view of Remark 5.1.8 we thus deduce,∣∣Lk3∣∣ . (
Bk
p [q]
)1/2

(∫
M≥4m0

(τ1,τ2)

rp+1|d≤kNg|2
)1/2

.
(
Bk
p [q](τ1, τ2)

)1/2 (
Ikp [Ng](τ1, τ2)

)1/2

and hence ∣∣Lk3∣∣ . δ1B
s
p[q](τ1, τ2) + δ−1

1 Isp [Ng](τ1, τ2) (5.3.29)

where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
p[q](τ1, τ2)

by the left hand side of our main estimate.

We now estimate the term

Lk2 =

∫
M(τ1,τ2)

φ0(r)rp4/ 2(dkq)dk(rNg)

by first performing another integration by parts in the angular directions∣∣Lk2∣∣ . ∫
M≥4m0

(τ1,τ2)

rp−2
∣∣dk+1q

∣∣∣∣dk+1(rNg)
∣∣

.

(∫
M≥4m0

(τ1,τ2)

rp−3
∣∣dk+1q

∣∣2)1/2(∫
M≥4m0

(τ1,τ2)

rp+1
∣∣d≤k+1Ng

∣∣2)1/2

.
(
Bk
p [q](τ1, τ2)

)1/2 (
Ik+1
p [Ng](τ1, τ2)

)1/2
.
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Hence, ∣∣Lk2∣∣ . δ1B
s
p[q](τ1, τ2) + δ−1

1 Is+1
p [Ng](τ1, τ2) (5.3.30)

where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
p[q](τ1, τ2)

by the left hand side of our main estimate.

It remains to estimate the term,

Lk1 = −
∫
M(τ1,τ2)

φ0(r)rp−1d≤k(r�2q)dk(rNg).

Making use of the equation verified by q, i.e., �2q = −κκq +N , we deduce,

dk(r�2q) = −dk(rκκq) + dk(rN).

Recall (5.1.9)

dkN = d≤kNg + e3(dk(rNg)) + dkNm[q].

We infer

d≤k(rN) = rd≤kN + d≤k−1N

= rd≤kNg + re3(d≤k(rNg)) + rd≤kNm[q]

and hence

|dk(r�2q)| . r−1
∣∣d≤kq∣∣+ r

∣∣d≤kNg|+ r2
∣∣d≤ke3(Ng)|+ r

∣∣dkNm[q]|
. r−1

∣∣d≤k+1q
∣∣+ r

∣∣d≤kNg|+ r2
∣∣d≤ke3(Ng)|. (5.3.31)

Note that we have used in the last inequality the form of Nm[q] = d≤1(Γgq) and the fact
that |Γg| ≤ εr−2. We deduce, using (5.3.31),

∣∣Lk1∣∣ . ∫
M≥4m0

(τ1,τ2)

rp−1|d≤k+1q
∣∣|d≤kNg|+

∫
M≥4m0

(τ1,τ2)

rp+1|d≤kNg|2

+

∫
M≥4m0

(τ1,τ2)

rp+2|d≤ke3(Ng)||d≤kNg|

.
(
Bk
p [q](τ1, τ2)

)1/2 (
Ikp [Ng](τ1, τ2)

)1/2
+ Ikp [Ng](τ1, τ2).

We deduce ∣∣Lk1∣∣ . δ1B
s
p[q](τ1, τ2) + δ−1

1 Isp [Ng](τ1, τ2) (5.3.32)
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where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
p[q](τ1, τ2)

by the left hand side of our main estimate.

Together with (5.3.29) and (5.3.30) we deduce,∣∣Lk∣∣ . δ1B
k
p [q](τ1, τ2) + δ−1

1 Ikp [Ng](τ1, τ2). (5.3.33)

Together with (5.3.25), (5.3.26) and (5.3.28), we infer,∑
k≤s

Jp,4m0 [q(k), φ0 d
k(rNg)](τ1, τ2) . δ1B

s
p[q](τ1, τ2) + δ−1

1 Is+1
p [Ng](τ1, τ2)

which concludes the proof of Proposition 5.3.6.

5.3.3 Proof of Theorem 5.3.2

We apply Theorem 5.3.5 to the case when ψ = q. Hence,

E s
q[q̌](τ2) +Bs

q [q̌](τ1, τ2) . E s
q[q̌](τ1) + J̌sq [q̌, N ](τ1, τ2)

+ E s+1
max(q,δ)[q](τ1) + Js+1

max(q,δ)[q, N ](τ1, τ2).
(5.3.34)

Also, recall that

q̌ = f2ě4q,

where f2 is a fixed smooth function of r defined as follows,

f2(r) =

{
r2 for r ≥ 6m0,

0 for r ≤ 4m0.
(5.3.35)

In particular, q̌ is supported in r ≥ 4m0, and hence, in view of Remark 5.1.5,

Bq[q̌](τ1, τ2) '
∫
M≥4m0

(τ1,τ2)

rq−3|dq̌|2, (5.3.36)

where we have used the fact that −1 + δ ≤ q ≤ 1− δ.

First, notice that the proof of Theorem 5.3.1 yields

Js+1
max(q,δ)[q, N ](τ1, τ2) . sup

τ1≤τ≤τ2
Es+1[q](τ) +Bs+1

max(q,δ)[q](τ1, τ2) + Is+2
max(q,δ)[Ng](τ1, τ2).
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Hence, using Theorem 5.3.1, together with the fact that max(q, δ) ≤ 1− δ, we infer

Js+1
max(q,δ)[q, N ](τ1, τ2) . Es+1

max(q,δ)[q](τ1) + Is+2
max(q,δ)[Ng](τ1, τ2).

Since q ≥ −1 + δ, we have max(q, δ) ≤ δ ≤ q + 1 and thus

Js+1
max(q,δ)[q, N ](τ1, τ2) . Es+1

q+1 [q](τ1) + Is+2
q+1 [Ng](τ1, τ2). (5.3.37)

It only remains to estimate the term

J̌sq [q̌, N ](τ1, τ2) =
∑
k≤s

J̌q[d
kq̌, dkN ](τ1, τ2)

with,

J̌q[q̌, N ](τ1, τ2) = Jq,4m0

[
q̌, r2

(
e4N +

3

r
N

)]
(τ1, τ2)

=

∫
M≥4m0

(τ1,τ2)

rq+2
(
ě4q̌
)
·
(
e4N +

3

r
N

)
.

We rewrite in the equivalent form,

J̌q[d
kq̌, dkN ](τ1, τ2) =

∣∣∣∣∣
∫
M≥4m0

(τ1,τ2)

rq
(
rě4d

kq̌
) (

dk+1N
)∣∣∣∣∣ . (5.3.38)

Using the identity (5.1.9), we have

dk+1N = d≤k+1Ng + e3(d≤k+1rNg) + dk+1Nm[q].

The integral due to d≤k+1Ng is treated as follows

J̌q[d
kq̌, dkNg](τ1, τ2) .

∫
M≥4m0

(τ1,τ2)

rq
∣∣rě4d

kq̌
∣∣ ∣∣d≤k+1Ng

∣∣
.

(∫
M≥4m0

(τ1,τ2)

rq−3
∣∣rě4d

kq̌
∣∣2)1/2(∫

M≥4m0
(τ1,τ2)

rq+3
∣∣d≤k+1Ng

∣∣2)1/2

Therefore,

J̌sq [q̌, Ng](τ1, τ2) .
(
Bs
q [q̌](τ1, τ2)

)1/2 (
Is+1
q+2 [Ng](τ1, τ2)

)1/2

. δ1B
s
q [q̌](τ1, τ2) + δ−1

1 Is+1
q+2 [Ng](τ1, τ2) (5.3.39)
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where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
q [q](τ1, τ2)

by the left hand side of our main estimate.

The integral due to dk+1Nm[q] is treated as follows

J̌q[d
kq̌, dkNm[q]](τ1, τ2)

.
∫
M≥4m0

(τ1,τ2)

rq
∣∣rě4d

kq̌
∣∣ ∣∣dk+1Nm[q]

∣∣
.

∫
M≥4m0

(τ1,τ2)

rq+1
∣∣ě4d

kq̌
∣∣ ∣∣d≤k+2q

∣∣ ∣∣d≤k+2Γg
∣∣

. ε

∫
M≥4m0

(τ1,τ2)

rq−1τ−
1
2
−δdec+2δ0

∣∣ě4d
kq̌
∣∣ ∣∣d≤k+2q

∣∣
. ε

(∫
M≥4m0

(τ1,τ2)

rqτ−1−2δdec+4δ0
∣∣ě4d

kq̌
∣∣2) 1

2
(∫
M≥4m0

τ1,τ2)

rq−2
∣∣d≤k+2q

∣∣2) 1
2

. ε

(
sup

τ1≤τ≤τ2
Es
q [q̌](τ)

) 1
2 (
Bs+1
q+1[q](τ1, τ2)

) 1
2

where we have used |Γg| . εr−2τ−1/2−δdec+2δ0 and 2δ0 < δdec. Since δ ≤ q + 1 ≤ 2− δ and
s ≤ ksmall + 29, we have in view of Theorem 5.3.1

Bs+1
q+1[q](τ1, τ2) . Es+1

q+1 [q](τ1) + Is+2
q+1 [Ng](τ1, τ2).

We infer∑
k≤s

J̌q[d
kq̌, dkNm[q]](τ1, τ2) . ε2 sup

τ1≤τ≤τ2
Es
q [q̌](τ) + Es+1

q+1 [q](τ1) + Is+2
q+1 [Ng](τ1, τ2). (5.3.40)

It remains to estimate the integral due to e3(d≤k+1rNg). We proceed as in Proposition
5.3.6 by integration by parts, and obtain in particular the following analog of (5.3.27)

J̌q[d
kq̌, dke3(rNg)](τ1, τ2) .

∣∣P k
∣∣+ δ1B

s
q [q̌](τ1, τ2) + δ−1

1 Is+1
q+2 [Ng](τ1, τ2) (5.3.41)

where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
q [q̌](τ1, τ2)

by the left hand side of our main estimate, and where we have introduced the notation
P k for the analog of Lk in (5.3.28), i.e.6

P k :=

∫
M(τ1,τ2)

rqe3e4

(
rdkq̌

)
d≤k+1(rNg). (5.3.42)

6Recall that q̌ is localized in r ≥ 4m0 so that we don’t need in (5.3.42) the cutoff function φ0(r)
introduced in Proposition 5.3.6.
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As in Lemma 5.3.7,

e3e4(rdkq̌) = −d≤k(r�2q̌) + r4/ 2(d≤kq̌) + r−1d≤k+1q̌. (5.3.43)

We infer

P k =

∫
M(τ1,τ2)

rqe3e4

(
rdkq̌

)
d≤k+1(rNg)

= −
∫
M(τ1,τ2)

rqd≤k(r�2q̌)d≤k+1(rNg)

+

∫
M(τ1,τ2)

rq+14/ 2(d≤kq̌)d≤k+1(rNg)

+

∫
M(τ1,τ2)

rq−1d≤k+1q̌ d≤k+1(rNg)

= P k
1 + P k

2 + P k
3 .

The last two terms on the right can be treated exactly as the the corresponding terms in
the treatment of Lk. This yields to the following analog of (5.3.29) and (5.3.30)∣∣P k

3

∣∣ . δ1B
s
q [q̌](τ1, τ2) + δ−1

1 Is+1
q+2 [Ng](τ1, τ2),∣∣P k

2

∣∣ . δ1B
s
q [q̌](τ1, τ2) + δ−1

1 Is+2
q+2 [Ng](τ1, τ2),

(5.3.44)

where δ1 > 0 is chosen sufficiently small so that we can later absorb the term δ1B
s
p[q̌](τ1, τ2)

by the left hand side of our main estimate.

It thus only remains to consider the analogous of the term Lk1, i.e.

P k
1 =

∫
M(τ1,τ2)

rqdk(r�2q̌)d≤k+1(rNg).

Now, in view of Proposition 10.3.1, q verifies, schematically,

�2q̌ = r−2d≤1q̌ + r−2d≤2q + rd≤1N

so that

dk(r�2q̌) = r−1d≤k+1q̌ + r−1d≤k+2q + r2d≤k+1N

= r−1d≤k+1q̌ + r−1d≤k+2q + r2d≤k+1Ng + r2d≤k+1Nm[q] + r2d≤k+1e3(rNg).
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We infer the following decomposition of P k
1

P k
1 =

∫
M(τ1,τ2)

rq−1
(
d≤k+1q̌ + d≤k+2q

)
d≤k+1(rNg)

+

∫
M(τ1,τ2)

rq+2d≤k+1Nm[q]d≤k+1(rNg)

+

∫
M(τ1,τ2)

rq+2
(
d≤k+1Ng + d≤k+1e3(rNg)

)
d≤k+1(rNg)

= P k
11 + P k

12 + P k
13.

P k
11 is estimated as J̌sq [q̌, Ng](τ1, τ2), see (5.3.39), and hence

|P k
11| .

(
Bs
q [q̌](τ1, τ2)

)1/2 (
Is+1
q+2 [Ng](τ1, τ2)

)1/2

. δ1B
s
q [q̌](τ1, τ2) +Bs

max(q,δ)[q](τ1, τ2) + δ−1
1 Is+1

q+2 [Ng](τ1, τ2)

which in view of Theorem 5.3.1 yields

|P k
11| . δ1B

s
q [q̌](τ1, τ2) + Es+1

max(q,δ)[q](τ1) + δ−1
1 Is+1

q+2 [Ng](τ1, τ2). (5.3.45)

Next, P k
12 is estimated as follows

|P k
12| .

∫
M≥4m0

(τ1,τ2)

rq+3|d≤k+1Nm[q]||d≤k+1Ng|

.
∫
M≥4m0

(τ1,τ2)

rq+3|d≤k+2Γg||d≤k+2q||d≤k+1Ng|

. ε

∫
M≥4m0

(τ1,τ2)

rq+1τ−
1
2
−δdec+2δ0|d≤k+2q||d≤k+1Ng|

. ε

(∫
M≥4m0

(τ1,τ2)

rq−2|d≤k+2q|2
) 1

2
(∫
M≥4m0

(τ1,τ2)

rq+4τ−1−2δdec+4δ0 |d≤k+1Ng|2
) 1

2

. ε
(
Bs+1
q+1[q](τ1, τ2)

) 1
2

(
sup

τ∈[τ1,τ2]

∫
Σ(τ)

rq+4|d≤k+1Ng|2
) 1

2

where we have used |Γg| . εr−2τ−1/2−δdec+2δ0 and 2δ0 < δdec. We infer

|P k
12| . Bs+1

q+1[q](τ1, τ2) + Is+1
q+2 [Ng](τ1, τ2). (5.3.46)
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Finally, P k
13 is estimated as follows

|P k
13| .

∫
M≥4m0

(τ1,τ2)

rq+3
(
|d≤k+1Ng|+ |d≤k+1e3(rNg)|

)
|d≤k+1Ng|

.
∫
M≥4m0

(τ1,τ2)

rq+3|d≤k+1Ng|2 +

∫
M≥4m0

(τ1,τ2)

rq+4|d≤k+1e3(Ng)||d≤k+1Ng|

. Is+1
q+2 [Ng](τ1, τ2).

Together with (5.3.45) and (5.3.46), we infer

|P k
1 | ≤ |P k

11|+ |P k
12|+ |P k

13|
. δ1B

s
q [q̌](τ1, τ2) + Es+1

max(q,δ)[q](τ1) + δ−1
1 Is+1

q+2 [Ng](τ1, τ2) +Bs+1
q+1[q](τ1, τ2).

Together with (5.3.44), we deduce

|P k| ≤ |P k
1 |+ |P k

2 |+ |P k
3 |

. δ1B
s
q [q̌](τ1, τ2) + Es+1

max(q,δ)[q](τ1) + δ−1
1 Is+2

q+2 [Ng](τ1, τ2) +Bs+1
q+1[q](τ1, τ2).

Together with (5.3.34), (5.3.37), (5.3.39), (5.3.40) and (5.3.41), this concludes the proof
of Theorem 5.3.2.

5.4 Decay estimates

In this section we prove the decay estimates. In particular

• In section 5.4.1, we prove first flux decay estimates for q.

• In section 5.4.2, we prove flux decay estimates for q̌.

• In section 5.4.3, we prove Theorem 5.2.1.

• In section 5.4.4, we prove Proposition 5.2.4 on pointwise decay estimates for q.

• In section 5.4.5, we prove Proposition 5.2.5 on flux estimates on Σ∗ and on improved
pointwise estimates for e3(q).
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The decay estimates rely on the norms (5.1.27) which we recall below.

Esp,d[ψ] = sup
0≤τ≤τ∗

(1 + τ)dEs
p[ψ](τ),

Bsp,d[ψ] = sup
0≤τ≤τ∗

(1 + τ)d
∫ τ∗

τ

M s
p−1[ψ](τ)dτ,

F sp,d[ψ] = sup
0≤τ≤τ∗

(1 + τ)dF s
p [ψ](τ),

Isp,d[Ng] = sup
0≤τ≤τ∗

(1 + τ)dIsp [Ng](τ, τ∗).

5.4.1 First flux decay estimates

The goal of this section is to prove the following flux decay estimates for q.

Theorem 5.4.1. Assume q verifies all the estimates of Theorem 5.3.1. Then the following
estimates hold true for all s ≤ ksmall + 30 and for all δ ≤ p ≤ 2− δ

Es−[2−δ−p]
p,2−δ−p [q] +Bs−[2−δ−p]

p,2−δ−p [q] +F s−[2−δ−p]
p,2−δ−p [q] . Es2−δ[q](0) + Is+1

2−δ,0[Ng] + Is+1
δ,2−2δ[Ng]. (5.4.1)

Here, [x] denotes the least integer greater or equal to x.

Proof. We make use of Theorem 5.3.1 according to which we have, for δ ≤ p ≤ 2− δ, and
0 ≤ k ≤ ksmall + 30,

Es
p[q](τ2) +Bs

p[q](τ1, τ2) + F s
p [q](τ1, τ2) . Es

p[q](τ1) + Is+1
p [Ng](τ1, τ2)

which we write in the form,

Es
p(τ2) +

∫ τ2

τ1

M s
p−1(τ)dτ . Es

p(τ1) + Is+1
p [Ng](τ1, τ2), δ ≤ p ≤ 2− δ. (5.4.2)

In particular,

Es
2−δ(τ) +

∫ τ

τ/2

M s
1−δ(λ)dλ . Es

2−δ(τ/2) + Is+1
2−δ, 0[Ng].

By the mean value theorem there exists τ0 ∈ [τ/2, τ ] such that,

M s
1−δ(τ0) .

1

τ

(
Es

2−δ(τ/2) + Is+1
2−δ, 0[Ng]

)
.
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Since7

Es−1
1−δ (τ) . M s

1−δ(τ),

we deduce,

Es−1
1−δ (τ0) .

1

τ

(
Es

2−δ(τ/2) + Is+1
2−δ, 0[Ng]

)
.

Moreover, applying (5.4.2) again for p = 1− δ, we deduce,

Es−1
1−δ (τ) +

∫ τ

τ0

M s−1
−δ (λ)dλ . Es−1

1−δ (τ0) + (1 + τ)−1Is1−δ,1[Ng]

. (1 + τ)−1
(
Es

2−δ(τ/2) + Is+1
2−δ, 0[Ng] + Is1−δ,1[Ng]

)
.

In particular,

Es−1
1−δ (τ) . (1 + τ)−1

(
Es

2−δ(τ/2) + Is+1
2−δ, 0[Ng] + Is1−δ,1[Ng]

)
. (5.4.3)

Interpolating with

Es
2−δ(τ) . Es

2−δ(τ/2) + Is+1
2−δ, 0[Ng]

by using,

Es
p . (Es

p1
)
p2−p
p2−p1 (Es

p2
)
p−p1
p2−p1 , p1 ≤ p ≤ p2,

we deduce

Es−1
1 (τ) . (Es−1

1−δ (τ))1−δ(Es−1
2−δ (τ))δ . (1 + τ)−1+δ

(
Es

2−δ(τ/2) + Is+1
2−δ, 0[Ng] + Is1−δ,1[Ng]

)
.

The same inequality hods for τ replaced by τ/2 i.e.,

Es−1
1 (τ/2) . (1 + τ)−1+δ

(
Es

2−δ(τ/4) + Is+1
2−δ, 0[Ng] + Is1−δ,1[Ng]

)
. (5.4.4)

We now repeat the procedure starting this time with the inequality (5.4.2) for p = 1,

Es−1
1 (τ) +

∫ τ

τ/2

M s−1
0 (λ)dλ . Es−1

1 (τ/2) + Is1 [Ng](τ/2, τ)

. Es−1
1 (τ/2) + (1 + τ)−1+δIs1,1−δ[Ng].

7Note that the loss of derivative is due to the degeneracy of the bulk integral in the trapping region.
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Thus, in view of (5.4.4),∫ τ

τ/2

M s−1
0 (λ)dλ . (1 + τ)−1+δ

(
Es

2−δ(τ/4) + Is+1
2−δ, 0[Ng] + Is1−δ,1[Ng] + Is1,1−δ[Ng]

)
or, since

Es
2−δ(τ/4) . Es2−δ(0) + Is+1

2−δ,0[Ng],

we infer that, ∫ τ

τ/2

M s−1
0 (λ)dλ . B(1 + τ)−1+δ

where,

B : = Es2−δ(0) + Is+1
2−δ, 0[Ng] + Is1−δ,1[Ng] + Is1,1−δ[Ng]. (5.4.5)

Repeating the mean value argument, we can find τ1 ∈ [τ/2, τ ] such that,

M s−1
0 (τ1) .

1

τ

∫ τ

τ/2

M s−1
0 (λ)dλ . B(1 + τ)−2+δ.

We now make use of the fact that the energy norm Es−1 is comparable with M s−1
0 every-

where except in the trapping region where we lose a derivative. Thus

Es−2(τ1) .M s−1
0 (τ1)

and therefore,

Es−2(τ1) . B(1 + τ)−2+δ. (5.4.6)

We would like now to compare Es−2(τ) with Es−2(τ1) using the usual version of the energy
inequality and thus derive a similar estimate for the former. Unfortunately8, we don’t
have a closed energy inequality for E and we therefore have instead to rely on Eδ for
which we have the inequality,

Es−2
δ (τ) . Es−2

δ (τ1) + Is−1
δ [Ng](τ1, τ). (5.4.7)

We also have in view of (5.4.3)

Es−2
1−δ (τ1) . (1 + τ)−1

(
Es

2−δ(0) + Is+1
2−δ, 0[Ng] + Is1−δ,1[Ng]

)
.

8The loss of δ is due to the fact that we are on a perturbation of Schwarzschild rather than on
Schwarzschild.
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Interpolating this last inequality with (5.4.6) we deduce, for δ > 0 sufficiently small

Es−2
δ (τ1) .

(
Es−2(τ1)

) 1−2δ
1−δ
(
Es−2

1−δ (τ1)
) δ

1−δ

. (1 + τ)−2+2δ(B + Es−2
1−δ (0) + Is−1

1−δ,0[Ng])

. (1 + τ)−2+2δB.

Thus, in view of (5.4.7),

Es−2
δ (τ) . Es−2

δ (τ1) + Is−1
δ [Ng](τ1, τ) . (1 + τ)−2+2δ(B + Is−1

δ,2−2δ[Ng])

i.e.,

Es−2
δ (τ) . (1 + τ)−2+2δ

(
Es2−δ(0) + Is+1

2−δ, 0[Ng] + Is1−δ,1[Ng] + Is1,1−δ[Ng] + Is−1
δ,2−2δ[Ng]

)
.

We infer

Es−2
δ,2−2δ .

(
Es2−δ(0) + Is+1

2−δ, 0[Ng] + Is1−δ,1[Ng] + Is1,1−δ[Ng] + Is−1
δ,2−2δ[Ng]

)
which can be written in the shorter form (by interpolation of the middle terms),

Es−2
δ,2−2δ . Es2−δ(0) + Is+1

2−δ, 0[Ng] + Is+1
δ,2−2δ[Ng]. (5.4.8)

Also, (5.4.3) yields

Es−1
1−δ,1 . Es2−δ(0) + Is+1

2−δ, 0[Ng] + Is1−δ,1[Ng]

. Es2−δ(0) + Is+1
2−δ, 0[Ng] + Is+1

δ,2−2δ[Ng]. (5.4.9)

while from Theorem 5.3.1, we have

Es2−δ,0 . Es2−δ(0) + Is+1
2−δ, 0[Ng]. (5.4.10)

Interpolating (5.4.8) and (5.4.9), as well as (5.4.9) and (5.4.10), we infer for all s ≤
ksmall + 30 and for all δ ≤ p ≤ 2− δ

Es−[2−δ−p]
p,2−δ−p [q] . Es2−δ[q](0) + Is+1

2−δ,0[Ng] + Is+1
δ,2−2δ[Ng]. (5.4.11)

Finally, making use of Theorem 5.3.1 between τ and τ∗, we have in particular

Bs−[2−δ−p]
p [q](τ, τ∗) + F s−[2−δ−p]

p [q](τ, τ∗) . Es−[2−δ−p]
p [q](τ) + Is+1−[2−δ−p]

p [Ng](τ, τ∗)

. (1 + τ)−(2−δ−p)
(
Es−[2−δ−p]
p,2−δ−p [q] + Is+1

p,2−δ−p[Ng]
)

and hence, we infer for all s ≤ ksmall + 30 and for all δ ≤ p ≤ 2− δ
Bs−[2−δ−p]
p,2−δ−p [q] + F s−[2−δ−p]

p,2−δ−p [q] . Es−[2−δ−p]
p,2−δ−p [q] + Is+1

2−δ,0[Ng] + Is+1
δ,2−2δ[Ng].

Together with (5.4.11), this concludes the proof of Theorem 5.4.1.
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5.4.2 Flux decay estimates for q̌

The goal of this section is to prove the following flux decay estimates for q̌.

Theorem 5.4.2. The following estimates hold for all q0− 1 ≤ q ≤ q0, where q0 is a fixed
number δ < q0 ≤ 1− δ, and s ≤ ksmall + 28

Esq,q0−q[q̌] + Bsq,q0−q[q̌] . Esq0 [q̌](0) + Es+2
2−δ [q](0) + Is+3

q0+2,0[Ng] + Is+3
δ,2+q0−δ[Ng].

Proof. Since δ < q0 ≤ 1 − δ, according to Theorem 5.3.2, q̌ = f2ě4q verifies, for any
q0 − 1 ≤ q ≤ q0 and any s ≤ ksmall + 29,

Es
q [q̌](τ2) +Bs

q [q̌](τ1, τ2) . Es
q [q̌](τ1) + Es+1

q+1 [q](τ1) + Is+2
q+2 [Ng](τ1, τ2).

According to the definition of our decay norms above we have,

Is+2
q+2 [Ng](τ1, τ2) . (1 + τ1)q−q0Is+2

q+2,q0−q[Ng]. (5.4.12)

Also, according to the definition 5.1.27 for the decay norms for q we also have

Es+1
q+1 [q](τ1) . (1 + τ1)q−q0Es+2

q+1,q0−q[q].

We deduce9, for all q0 − 1 ≤ q ≤ q0,

Es
q [q̌](τ2) +

∫ τ2

τ1

M s
q [q̌](τ) . Es

q [q̌](τ1) + (1 + τ1)q−q0 Ẽsq,q0−q (5.4.13)

where,

Ẽsq,q0−q := Es+1
q+1,q0−q[q] + Is+2

q+2,q0−q[Ng]. (5.4.14)

In particular,

Es
q0

[q̌](τ2) +

∫ τ2

τ1

M s
q0−1[q̌](τ)dτ . Es

q0
[q̌](τ1) + Ẽsq0,0. (5.4.15)

By the mean value theorem we deduce that there exists τ0 ∈ [τ1, τ2] such that,

M s
q0−1[q̌](τ0) .

1

τ2 − τ1

(
Es
q0

[q̌](τ1) + Ẽsq0,0
)
.

1

τ2 − τ1

(
Esq0,0[q̌] + Ẽsq0,0

)
.

9Note that it is important in what follows that the rq weighted estimates hold also for negative values
of q.
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Thus also,

Es
q0−1[q̌](τ0) .

1

τ2 − τ1

(
Esq0,0[q̌] + Ẽsq0,0

)
. (5.4.16)

We now make use of (5.4.13) to compare the quantities Eq[q̌] for negative weights (q =
q0 − 1) at different values of τ .

Es
q0−1[q̌](τ2) . Es

q0−1[q̌](τ0) + (1 + τ0)−1Ẽsq0−1,1.

Combining this with (5.4.16) we deduce,

Es
q0−1[q̌](τ2) .

1

τ2 − τ1

(
Esq0,0[q̌] + Ẽsq0,0

)
+ (1 + τ0)−1Ẽsq0−1,1.

Applying this inequality for τ2 = τ ≤ τ∗, τ1 = 1
2
τ , τ0 ∈ [τ1, τ2] we deduce,

Es
q0−1[q̌](τ) . (1 + τ)−1

(
Esq0,0[q̌] + Ẽsq0,0 + Ẽsq0−1,1

)
. (5.4.17)

We now interpolate this last inequality with the following immediate consequence of
(5.4.15)

Es
q0

[q̌](τ) . Esq0,0[q̌] + Ẽsq0,0

to deduce, for all q0 − 1 ≤ q ≤ q0,

Es
q [q̌](τ) . (1 + τ)q−q0

(
Esq0,0[q̌] + Ẽsq0,0 + Ẽsq0−1,1

)
i.e.,

Esq,q0−q[q̌] . Esq0,0[q̌] + Ẽsq0,0 + Ẽsq0−1,1.

In view of the definition of Ẽsq,q0−q, this yields for all q0 − 1 ≤ q ≤ q0,

Esq,q0−q[q̌] . Esq0,0[q̌] + Es+1
q0+1,0[q] + Es+1

q0,1
[q] + Is+2

q0+2,0[Ng] + Is+2
q0+1,1[Ng].

On the other hand, we have in view of Theorem 5.3.2,

Esq0,0[q̌] . Esq0 [q̌](0) + Es+1
q0+1,0[q] + Is+2

q0+2,0[Ng]

and hence

Esq,q0−q[q̌] . Esq0 [q̌](0) + Es+1
q0+1,0[q] + Es+1

q0,1
[q] + Is+2

q0+2,0[Ng] + Is+2
q0+1,1[Ng].
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Now, since δ < q0 ≤ 1 − δ, we have δ < q0 < q0 + 1 ≤ 2 − δ and thus, we may apply
Theorem 5.4.1 to obtain for all q0 − 1 ≤ q ≤ q0

Es+1
q+1,q0−q[q] . Es+2

2−δ [q](0) + Is+3
2−δ,0[Ng] + Is+3

δ,2−2δ[Ng]. (5.4.18)

We thus infer

Esq,q0−q[q̌] . Esq0 [q̌](0) + Es+2
2−δ [q](0) + Is+3

q0+2,0[Ng] + Is+3
q0+1,1[Ng] + Is+3

2−δ,0[Ng] + Is+3
δ,2−2δ[Ng]

and hence, for all q0 − 1 ≤ q ≤ q0,

Esq,q0−q[q̌] . Esq0 [q̌](0) + Es+2
2−δ [q](0) + Is+3

q0+2,0[Ng] + Is+3
δ,2−2δ[Ng]. (5.4.19)

Finally, making use of Theorem 5.3.2 between τ and τ∗, we have in particular

Bs
q [q̌](τ, τ∗) . Es

q [q̌](τ) + Es+1
q+1 [q](τ) + Is+2

q+2 [Ng](τ, τ∗)

. (1 + τ)−(q0−q)
(
Esq,q0−q[q̌] + Es+1

q+1,q0−q[q] + Is+2
q+2,q0−q[Ng]

)
. (1 + τ)−(q0−q)

(
Esq,q0−q[q̌] + Es+2

2−δ [q](0) + Is+3
q0+2,0[Ng] + Is+3

δ,2−2δ[Ng]
)

where we used (5.4.18) in the last inequality. Hence, we infer for all s ≤ ksmall + 28 and
for all q0 − 1 ≤ q ≤ q0

Bsq,q0−q[q̌] . Esq,q0−q[q̌] + Es+2
2−δ [q](0) + Is+3

q0+2,0[Ng] + Is+3
δ,2−2δ[Ng].

Together with (5.4.19), this concludes the proof of Theorem 5.4.2.

5.4.3 Proof of Theorem 5.2.1

In this section, we prove Theorem 5.2.1 by making use of Theorem 5.4.1 and Theorem
5.4.2. We start with the main estimate of Theorem 5.4.2 with q = −δ which we write in
the form,

Es
−δ[q̌] . (1 + τ)−q0−δCs

q0

where,

Cs
q0

:= Esq0 [q̌](0) + Es+2
2−δ [q](0) + Is+3

q0,0
[Ng] + Is+3

δ,q0+2−δ[Ng].

In view of the definition (5.1.21) of Es
−δ[q̌] and since q̌ = f2ě4q,∫

Σ≥4m0
(τ)

r−δ
(
|ě4q̌|2 + r−2|q̌|2

)
. (1 + τ)−q0−δCs

q0
.
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Hence,

Ės
2−δ,4m0

[q] =

∫
Σ≥4m0

(τ)

r2−δ|ě4q|2 . (1 + τ)−q0−δCs
q0
. (5.4.20)

In view of the decay estimates (5.4.1) for q established in Theorem 5.4.1 we have,

Es(τ) . (1 + τ)−2+2δB2+s
2−δ ,

B2+s
2−δ : = Es+2

2−δ [q](0) + Is+3
2−δ,0[Ng] + Is+3

δ,2−2δ[Ng].

Thus, the quantity

Es
2−δ = Es

2−δ[q](τ) = Ės
2−δ,4m0

[q] + Es[q]

verifies,

Es
2−δ . (1 + τ)−q0−δ

(
Cs
q0

+B2+s
2−δ
)
. (5.4.21)

On the other hand, Es
2−δ verifies (5.4.2) for p = 2− δ, i.e.

Es
2−δ(τ2) +

∫ τ2

τ1

M s
1−δ(τ)dτ . Es

2−δ(τ1) + Is+1
2−δ [Ng](τ1, τ2).

Since

Is+1
2−δ [Ng](τ1, τ2) . (1 + τ1)−q0−δIs+1

2−δ,q0+δ[Ng],

we infer

Es
2−δ(τ) +

∫ τ

τ/2

M s
1−δ(τ

′)dτ ′ . Es
2−δ(τ/2) + Is+1

2−δ [Ng](τ/2, τ)

. (1 + τ)−q0−δ
(
Cs
q0

+B2+s
2−δ + Is+1

2−δ,q0+δ[Ng]
)
.(5.4.22)

Following the same arguments as in the proof of Theorem 5.4.1 we deduce, for a τ0 ∈
[τ/2, τ ],

Es−1
1−δ (τ0) . (1 + τ)−q0−1−δ (Cs

q0
+B2+s

2−δ + Is+1
2−δ,q0+δ[Ng]

)
and since,

Es
1−δ(τ) . Es

1−δ(τ0) + Is+1
1−δ (τ0, τ)[Ng],

we infer that,

Es
1−δ(τ) . (1 + τ)−q0−1−δ (Cs+1

q0
+B3+s

2−δ + Is+2
2−δ,q0+δ[Ng] + Is+1

1−δ,1+q0+δ[Ng]
)
. (5.4.23)
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Interpolating with (5.4.21), i.e.

Es
2−δ . (1 + τ)−q0−δ

(
Cs
q0

+B2+s
2−δ
)

we deduce,

Es
1 . (Es

1−δ)
1−δ(Es

2−δ)
δ . (1 + τ)−q0−1

(
Cs+1
q0

+B3+s
2−δ + Is+2

2−δ,q0+δ[Ng] + Is+1
1−δ,1+q0+δ[Ng]

)
.

Hence,

Es
1 . (1 + τ)−q0−1

(
Cs+1
q0

+B3+s
2−δ + Is+2

2−δ,q0+δ + Is+1
1−δ,1+q0+δ

)
. (5.4.24)

As in the proof of Theorem 5.4.1 we repeat the procedure starting with the inequality
(5.4.2) for p = 1,

Es
1(τ) +

∫ τ

τ/2

M s
0 (λ)dλ

. Es
1(τ/2) + Is+1

1 [Ng](τ/2, τ)

. (1 + τ)−q0−1
(
Cs+1
q0

+B3+s
2−δ + Is+2

2−δ,q0+δ[Ng] + Is+1
1−δ,1+q0+δ[Ng]

)
+ (1 + τ)−1−q0Is+1

1,1+q0
[Ng]

. (1 + τ)−q0−1
(
Cs+1
q0

+B3+s
2−δ + Is+s2−δ,q0+δ[Ng] + Is+1

1−δ,1+q0+δ[Ng] + Is+1
1,1+q0

[Ng]
)

from which we infer that, for a τ0 ∈ [τ/2, τ ],

Es(τ0) (5.4.25)

. (1 + τ)−q0−2
(
Cs+2
q0

+Bs+4
2−δ + Is+3

2−δ,q0+δ[Ng] + Is+2
1−δ,1+q0+δ[Ng] + Is+2

1,1+q0
[Ng]

)
.

Interpolating (5.4.23) and (5.4.25) we deduce, for δ > 0 sufficiently small

Es
δ (τ0) .

(
Es(τ0)

) 1−2δ
1−δ
(
Es

1−δ(τ0)
) δ

1−δ

. (1 + τ)−2−q0+δ
(
Cs+2
q0

+Bs+4
2−δ + Is+3

2−δ,q0+δ[Ng] + Is+2
1−δ,1+q0+δ[Ng] + Is+2

1,1+q0
[Ng]

)
.

Thus, since we have, as in (5.4.7),

Es
δ (τ) . Es

δ (τ0) + Is+1
δ [Ng](τ0, τ),

we deduce

Es
δ (τ) . (1 + τ)−2−q0+δ

(
Cs+2
q0

+Bs+4
2−δ + Is+3

2−δ,q0+δ[Ng] + Is+2
1−δ,1+q0+δ[Ng] + Is+2

1,1+q0
[Ng]

)
+ (1 + τ)−2−q0+δIs+1

δ,2+q0−δ[Ng]

i.e.,

Es
δ (τ) . (1 + τ)−2−q0+δ

(
Cs+2
q0

+Bs+4
2−δ + Is+3

2−δ,q0+δ[Ng] + Is+2
1−δ,1+q0+δ[Ng]

+Is+2
1,1+q0

[Ng] + Is+1
δ,2+q0−δ[Ng]

)
.
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By interpolating the middle terms we write,

Es
δ (τ) . (1 + τ)−2−q0+δ

(
Cs+2
q0

+Bs+4
2−δ + Is+3

2−δ,q0+δ[Ng] + Is+3
δ,2+q0−δ[Ng]

)
.

We now recall,

Cs
q0

:= Esq0 [q̌](0) + Es+2
2−δ [q](0) + Is+3

q0+2,0[Ng] + Is+3
δ,q0+2−δ[Ng]

B2+s
2−δ : = Es+2

2−δ [q](0) + Is+3
2−δ,0[Ng] + Is+3

δ,2−2δ[Ng].

Hence,

Cs+2
q0

+Bs+4
2−δ + Is+3

2−δ,q0+δ[Ng] + Is+3
δ,2+q0−δ[Ng]

= Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + Is+5

q0+2,0[Ng] + Is+5
δ,q0+2−δ[Ng]

+ Es+4
2−δ [q](0) + Is+5

2−δ,0[Ng] + Is+5
δ,2−2δ[Ng] + Is+3

2−δ,q0+δ[Ng] + Is+3
δ,2+q0−δ[Ng].

We deduce,

Esδ,2+q0−δ[q] . Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + Is+5

q0+2,0[Ng] + Is+5
δ,2+q0−δ[Ng]. (5.4.26)

We can also simplify the right hand side of (5.4.24),

Cs+1
q0

+B3+s
2−δ + Is+2

2−δ,q0+δ[Ng] + Is+1
1−δ,1+q0+δ[Ng]

. Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + Is+5

q0+2,0[Ng] + Is+5
δ,2+q0−δ[Ng].

Thus (5.4.23) becomes,

Es1−δ,1+q0+δ . Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + Is+5

q0+2,0[Ng] + Is+5
δ,2+q0−δ[Ng]. (5.4.27)

Similarly, (5.4.21) yields

Es2−δ,q0−δ . Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + Is+5

q0+2,0[Ng] + Is+5
δ,2+q0−δ[Ng]. (5.4.28)

Interpolating (5.4.26) and (5.4.27), as well as (5.4.27) and (5.4.28), we infer for all s ≤
ksmall + 25 and for all δ ≤ p ≤ 2− δ

Esp,2+q0−p[q] . Es+2
q0

[q̌](0) + Es+4
2−δ [q](0) + Is+5

q0+2,0[Ng] + Is+5
δ,2+q0−δ[Ng]. (5.4.29)

Finally, making use of Theorem 5.3.1 between τ and τ∗, we have in particular

Bs
p[q](τ, τ∗) + F s

p [q](τ, τ∗) . E s
p[q](τ) + Is+1

p [Ng](τ, τ∗)

. (1 + τ)−(2+q0−p)
(
Esp,2+q0−p[q] + Is+1

p,2+q0−p[Ng]
)

and hence, we infer for all s ≤ ksmall + 25 and for all δ ≤ p ≤ 2− δ
Bsp,2+q0−p[q] + F sp,2+q0−p[q] . Esp,2+q0−p[q] + Is+5

q0+2,0[Ng] + Is+5
δ,2+q0−δ[Ng].

Together with (5.4.29), this concludes the proof of Theorem 5.2.1.



306 CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)

5.4.4 Proof of Proposition 5.2.4

Let χ be a smooth cut-off function vanishing for r ≤ 4m0 and equal to 1 for r ≥ 6m0. To
prove estimate (5.2.6) we consider the identity,

e4

(∫
Sr

χ(q(s))2

)
=

∫
Sr

(
e4(χ(q(s))2) + κχ(q(s))2

)
=

∫
Sr

(
χ(2q(s)e4q

(s) + 2r−1(q(s))2) + χ′(q(s))2 + χ(κ− 2r−1)|q(s)|2
)

=

∫
Sr

(
2χq(s)ě4q

(s) + χ′(q(s))2 +O(r−2)|q(s)|2
)
.

Integrating between 4m0 and r for a fixed r ≥ 6m0, we deduce, in view of the definitions
of E[q(s)](τ) and of Ep[q

(s)](τ),∫
Sr

|q(s)|2 .
∫

Σ(τ)≥4m0

|q(s)||ě4q
(s)|+ E[q(s)](τ)

.

(∫
Σ(τ)≥4m0

r1+δ|ě4q
(s)|2

)1/2(∫
Σ(τ)≥4m0

r−1−δ|q(s)|2
)1/2

+ E[q(s)](τ)

.
(
E1+δ[q

(s)](τ)
)1/2(

E1−δ[q
(s)](τ)

)1/2
.

Clearly, this estimate also holds for r ≤ 6m0. Together with the definition (5.1.27) of
Esp,d[q(s)], we immediately infer

(1 + τ)1+q0

∫
Sr

|q(s)|2 .
(
Es1+δ,1+q0−δ[q]

) 1
2
(
Es1−δ,1+q0+δ[q]

) 1
2

which is the desired estimate (5.2.6).

To prove (5.2.7) we start instead with the identity,

e4

(
r−1

∫
Sr

χ(q(s))2

)
=

∫
Sr

r−1
(
e4(χ(q(s))2) + κχ(q(s))2

)
− e4(r)

r2

∫
Sr

χ(q(s))2

=

∫
Sr

r−1
(
χ(2q(s)e4q

(s) + r−1(q(s))2) + χ′(q(s))2 + χ(κ− 2r−1)|q(s)|2
)

−e4(r)− 1

r2

∫
Sr

χ(q(s))2

=

∫
Sr

(
2r−1χe4(q(s))q(s) + r−1χ′(q(s))2 +O(r−2)|q(s)|2

)
.
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Integrating between 4m0 and r for a fixed r ≥ 6m0, we deduce, in view of the definitions
of E[q(s)](τ) and of Ep[q

(s)](τ),

r−1

∫
Sr

|ψ|2 .
∫

Σ(τ)≥4m0

r−1|q(s)||e4(q(s))|+ E[q(s)](τ)

. 2

(∫
Σ(τ)≥4m0

|e4(q(s))|2
)1/2(∫

Σ(τ)≥4m0

r−2|q(s)|2
)1/2

+ E[q(s)](τ)

. E[q(s)](τ)

. Eδ[q
(s)](τ).

Clearly, this estimate also holds for r ≤ 6m0. Together with the definition (5.1.27) of
Esp,d[q(s)], we immediately infer

r−1(1 + τ)2+q0−δ
∫
Sr

|q(s)|2 . Esδ,2+q0−δ[q]

which is the desired estimate (5.2.7). This concludes the proof of Proposition 5.2.4.

5.4.5 Proof of Proposition 5.2.5

Recall the following definitions

F [ψ](τ1, τ2) =

∫
A(τ1,τ2)

(
δ−1
H |e4Ψ|2 + δH|e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+

∫
Σ∗(τ1,τ2)

(
|e4Ψ|2 + |e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
,

Ḟp[ψ](τ1, τ2) =

∫
Σ∗(τ1,τ2)

rp
(
|e4ψ|2 + |∇/ψ|2 + r−2|ψ|2

)
,

Fp[ψ](τ1, τ2) = F [ψ](τ1, τ2) + Ḟp[ψ](τ1, τ2),

F s[ψ](τ1, τ2) =
∑
k≤s

F [dkψ](τ1, τ2),

F s
p [ψ](τ1, τ2) =

∑
k≤s

Fp[d
kψ](τ1, τ2),

F sp,d[ψ] = sup
0≤τ≤τ∗

(1 + τ)dF s
p [ψ](τ, τ∗).

We deduce

F s[q](τ, τ∗) ≤ F s
δ [q](τ, τ∗) ≤ (1 + τ)−2−q0+δF sδ,2+q0−δ[q]
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and hence in particular

(1 + τ)2+q0−δ
∫

Σ∗(τ,τ∗)

(
|e3d

≤sq|2 + r−2|d≤sq|2
)
. F sδ,2+q0−δ[q] (5.4.30)

which yields the desired estimate (5.2.8).

Next, we focus on the proof of (5.2.9). We start with the following trace estimate

sup
Σ∗(τ,τ∗)

‖e3d
≤sq‖L2(S) . ‖νe3d

≤sq‖L2(Σ∗(τ,τ∗)) + ‖e3d
≤sq‖L2(Σ∗(τ,τ∗))

where we recall that ν is tangent to Σ∗, orthogonal to eθ and given by

ν = e3 + ae4, −2 ≤ a ≤ −1

2
.

We infer

sup
Σ∗(τ,τ∗)

‖e3d
≤sq‖L2(S) . ‖e3e3d

≤sq‖L2(Σ∗(τ,τ∗)) + ‖e4e3d
≤sq‖L2(Σ∗(τ,τ∗))

+‖e3d
≤sq‖L2(Σ∗(τ,τ∗))

. ‖e3d
≤s+1q‖L2(Σ∗(τ,τ∗)) + ‖r−1d≤s+1q‖L2(Σ∗(τ,τ∗))

+‖[e4, e3]d≤sq‖L2(Σ∗(τ,τ∗))

. ‖e3d
≤s+1q‖L2(Σ∗(τ,τ∗)) + ‖r−1d≤s+1q‖L2(Σ∗(τ,τ∗)).

In view of (5.4.30), we deduce

sup
Σ∗

{
(1 + τ)2+q0−δ‖e3d

≤sq‖2
L2(S)

}
. F s+1

δ,2+q0−δ[q]. (5.4.31)

Next, we extend (5.4.31) to r ≥ 4m0. In view of (5.3.24), we have schematically

e3e4(rdkq) = −d≤k(r�2q) + r4/ 2(d≤kq) + r−1d≤k+1q

= −d≤k(r�2q) + r−1d≤k+2q.

Also, we have

e4(re3(dkq)) = e3e4(rdkq) + [e4, e3](rdkq)− e4(e3(r)dkq)

and hence, we infer schematically

e4(re3(dkq)) = −d≤k(r�2q) + r−1d≤k+2q.
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Now, recall (5.3.31)

|dk(r�2q)| . r−1
∣∣d≤k+1q

∣∣+ r
∣∣d≤kNg|+ r2

∣∣d≤ke3(Ng)|.

We deduce

|e4(re3(dkq))| . r−1
∣∣d≤k+2q

∣∣+ r
∣∣d≤kNg|+ r2

∣∣d≤ke3(Ng)|

Now, we have

e4

(
r−2

∫
S

(re3(d≤sq))2

)
= r−2

∫
S

(
2e4(re3(d≤sq))re3(d≤sq) + κ(re3(d≤sq))2

)
−2e4(r)

r
r−2

∫
S

(re3(d≤sq))2

= r−2

∫
S

(
2e4(re3(d≤sq))re3(d≤sq) + (κ− 2r−1)(re3(d≤sq))2

)
−2

e4(r)− 1

r
r−2

∫
S

(re3(d≤sq))2

and hence∣∣∣∣e4

(
r−2

∫
S

(re3(d≤sq))2

)∣∣∣∣ . r−2

∫
S

{(
r−1
∣∣d≤s+2q

∣∣+ r
∣∣d≤sNg|+ r2

∣∣d≤se3(Ng)|
)
|re3(d≤sq)|

+r−2(re3(d≤sq))2

}
. r−2

∫
S

(
r−

1
2

∣∣d≤s+2q
∣∣2 + r2

∣∣d≤sNg|2 + r4
∣∣d≤se3(Ng)|2

)
+r−

7
2

∫
S

(re3(d≤sq))2

Together with (5.2.7), this yields∣∣∣∣e4

(
r−2

∫
S

(re3(d≤sq))2

)∣∣∣∣ . r−2

∫
S

(
r

7
2

∣∣d≤sNg|2 + r
11
2

∣∣d≤se3(Ng)|2
)

+r−4

∫
S

(re3(d≤sq))2 + r−
3
2 (1 + τ)−2−q0+δEs+2

δ,2+q0−δ[q].
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Now, recall from (5.2.12) that we have for s ≤ ksmall + 30

|dsNg| . ε2r−3τ−1−2δdec+2δ0

|dsNg| . ε2r−1τ−2−2δdec+2δ0 ,

|dse3(Ng)| . ε2r−3τ−
3
2
−2δdec+2δ0 ,

|dse3(Ng)| . ε2r−
7
2
− δB

2 τ−1−δdec+2δ0 .

By interpolation, we infer

r−2

∫
S

(
r

7
2

∣∣d≤sNg|2 + r
11
2

∣∣d≤se3(Ng)|2
)
. ε4r−

3
2 τ−

5
2
−4δdec+4δ0 + ε4r−1− δB

2 τ−
5
2
−3δdec+4δ0

. ε20r
−1− δB

2 τ−
5
2
−3δdec+4δ0

and hence∣∣∣∣e4

(
r−2

∫
S

(re3(d≤sq))2

)∣∣∣∣ . r−4

∫
S

(re3(d≤sq))2

+ε20r
−1− δB

2 τ−
5
2
−3δdec+4δ0 + r−

3
2 (1 + τ)−2−q0+δEs+2

δ,2+q0−δ[q].

We integrate from Σ∗. By Gronwall, and in view of (5.4.31), we deduce for r ≥ 4m0

(1 + τ)2+q0−δ
∫
Sr

(e3d
≤sq)2 . ε20 + F s+1

δ,2+q0−δ[q] + Es+2
δ,2+q0−δ[q].

On the other hand, we have by a trace estimate for r ≤ 4m0

(1 + τ)2+q0−δ
∫
Sr

(e3d
≤sq)2 . Es+2

0,2+q0−δ[q].

We finally deduce on M

(1 + τ)2+q0−δ
∫
Sr

(e3d
≤sq)2 . ε20 + F s+1

δ,2+q0−δ[q] + Es+2
δ,2+q0−δ[q]

which is the desired estimate (5.2.9). This concludes the proof of Proposition 5.2.5.



Chapter 6

DECAY ESTIMATES FOR α AND
α (Theorems M2, M3)

In this section, we rely on the decay of q to prove the decay estimates for α and α. More
precisely, we rely on the results of Theorem M1 to prove Theorem M2 and M3.

6.1 Proof of Theorem M2

6.1.1 A renormalized frame on (ext)M

In Theorem M1, decay estimates are derived for q defined with respect to the global frame
constructed in Proposition 3.5.5. We have the following control for the Ricci coefficients
in that frame.

Lemma 6.1.1. Consider the global null frame (e3, e4, eθ) constructed in Proposition 3.5.5.
Then, the Ricci coefficients satisfy the following estimates

max
0≤k≤ksmall+20

sup
(ext)M

u
1
2

(
r2

∣∣∣∣dk (ω +
m

r2
, κ− 2Υ

r
, ϑ, ζ, η, η

)∣∣∣∣+ r

∣∣∣∣dk (ξ, ω, κ+
2

r
, ϑ

)∣∣∣∣ ,
+
∣∣dk (e4(r)−Υ, e3(r) + 1)

∣∣) . ε.

Proof. This follows immediately from the stronger estimates of Lemma 5.1.1 with the

311
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choice kloss = 20.

6.1.2 A transport equation for α

To recover α from q, we derive below a transport equation for α where q is on the RHS.
We are careful to avoid terms of the type e3(ω) as they are anomalous w.r.t. decay in r.
Indeed, they only decay linearly in r−1 while all comparable term decay like r−2 in r.

Lemma 6.1.2. We have

κ2e3

{
e3

(
α

κ2

)
−
(

8ω − 2

κ

(
2 d/1ξ −

1

2
ϑ2

))
α

κ2

}
=

q

r4
+

{
10ω +

4

κ

(
− d/1ξ − 2(η − 3ζ)ξ +

1

4
ϑ2

)}
e3α

+

{
− 2 d/1ξ +

(
6κ− 24ω +

8

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ω +

1

2
ϑ2 − 4

κ
e3((η − 3ζ)ξ)

+

(
16 +

48

κ
ω − 24

κ2

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ζξ

}
α.

Proof. We compute

e3e3

(
α

κ2

)
= e3

(
e3α

κ2
− 2e3(κ)α

κ3

)
=

1

κ2

(
e3e3α− 4

e3(κ)

κ
e3α− 2κ2e3

(
e3(κ)

κ3

)
α

)
.

Now, recall the following null structure equation

e3(κ) +
1

2
κ2 + 2ω κ = 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2.

We infer

e3(κ)

κ
= −1

2
κ− 2ω +

1

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
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and

e3

(
e3(κ)

κ3

)
= e3

(
− 1

2κ
− 2

ω

κ2
+

1

κ3

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
=

e3(κ)

2κ2
+ e3

(
−2

ω

κ2
+

1

κ3

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
= −1

4
+

1

2κ

(
−2ω +

1

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
+e3

(
−2

ω

κ2
+

1

κ3

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))

and hence

κ2e3e3

(
α

κ2

)
= e3e3α− 4

e3(κ)

κ
e3α− 2κ2e3

(
e3(κ)

κ3

)
α

= e3e3α + 2κe3α +
1

2
κ2α +

(
8ω − 4

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
e3α

+

{
− κ

(
−2ω +

1

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))

−2κ2e3

(
−2

ω

κ2
+

1

κ3

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))}
α.

Next, recall from section 2.3.3 that q is defined with respect to a general null frame as
follows

q = r4

(
e3(e3(α)) + (2κ− 6ω)e3(α) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α

)
.

We infer

κ2e3e3

(
α

κ2

)
=

q

r4
+

(
14ω − 4

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
e3α

+

{
4e3(ω)− 8ω2 + 10ω κ−

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)

−2κ2e3

(
−2

ω

κ2
+

1

κ3

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))}
α.
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We rewrite the following terms

{
4e3(ω)− 2κ2e3

(
−2

ω

κ2
+

1

κ3

(
2 d/1ξ −

1

2
ϑ2

))}
α

= κ2e3

{(
8
ω

κ2
− 2

κ3

(
2 d/1ξ −

1

2
ϑ2

))
α

}
− 4κ2ωe3

(
α

κ2

)
+

2

κ

(
2 d/1ξ −

1

2
ϑ2

)
e3(α)

= κ2e3

{(
8
ω

κ2
− 2

κ3

(
2 d/1ξ −

1

2
ϑ2

))
α

}
+

(
−4ω +

2

κ

(
2 d/1ξ −

1

2
ϑ2

))
e3α− 4κ2ωe3

(
1

κ2

)
α

so that we obtain

κ2e3

{
e3

(
α

κ2

)
−
(

8
ω

κ2
− 2

κ3

(
2 d/1ξ −

1

2
ϑ2

))
α

}
=

q

r4
+

{
10ω − 4

κ

(
d/1ξ + 2(η − 3ζ)ξ − 1

4
ϑ2

)}
e3α +

{
− 8ω2 + 10ω κ

−
(

2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
− 4κ2e3

(
1

κ3
(η − 3ζ)ξ

)
− 4κ2ωe3

(
1

κ2

)}
α

which we rewrite as

κ2e3

{
e3

(
α

κ2

)
−
(

8ω − 2

κ

(
2 d/1ξ −

1

2
ϑ2

))
α

κ2

}
=

q

r4
+

{
10ω − 4

κ

(
d/1ξ + 2(η − 3ζ)ξ − 1

4
ϑ2

)}
e3α +

{
− 8ω2 + 10ω κ

−
(

2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
− 4

κ
e3((η − 3ζ)ξ) + 12

e3(κ)

κ2
(η − 3ζ)ξ + 8

e3(κ)

κ
ω

}
α.

Now, recall from above that we have

e3(κ)

κ
= −1

2
κ− 2ω +

1

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
.
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We finally deduce

κ2e3

{
e3

(
α

κ2

)
−
(

8ω − 2

κ

(
2 d/1ξ −

1

2
ϑ2

))
α

κ2

}
=

q

r4
+

{
10ω +

4

κ

(
− d/1ξ − 2(η − 3ζ)ξ +

1

4
ϑ2

)}
e3α

+

{
− 2 d/1ξ +

(
6κ− 24ω +

8

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ω +

1

2
ϑ2 − 4

κ
e3((η − 3ζ)ξ)

+

(
16 +

48

κ
ω − 24

κ2

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ζξ

}
α.

This concludes the proof of the lemma.

6.1.3 Estimates for transport equations in e3

The following lemma will be useful to integrate the transport equations in e3.

Lemma 6.1.3. Let p ∈ (ext)M. Let γ[p] the unique integral curve of e3 starting from a
point on C1 terminating at p. Then, we have for l ≥ 1∫

γ[p]

1

r′2+lu′
1
2

+δextra + r′1+lu′1+δextra
.

1

r1+l(2r + u)
1
2

+δextra + rl(2r + u)1+δextra

and ∫
γ[p]

1

r′2u′
1
2

+δextra + r′u′1+δextra
.

1

r(2r + u)
1
2

+δextra + 1
log(1+u)

(2r + u)1+δextra

where (u, r) correspond to p and (r′, u′) to a point on γ[p], and where the integration along
γ[p] relies on a parametrization of γ[p] normalized with respect to e3.

Proof. Note first from the construction of (ext)M that γ[p] exists for any p ∈ (ext)M (i.e.
any point p can be joined to C1 by an integral curve of e3), and γ[p] is included in (ext)M.

Next, recall that the integration along γ[p] relies on a parametrization of γ[p] normalized
with respect to e3. To parametrize the integration by u or r, we will thus have to derive
an upper bound for the corresponding Jacobian of the change of variable, i.e. for

1

|e3(u)| ,
1

|e3(r)| .
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To this end, note that we have on (ext)M

e3(u) =
2

ςΥ
≥ 2 +O(ε)

Υ
≥ 1

Υ
≥ 1

since Υ ≤ 1 by definition. Also, we have on (ext)M in view of Lemma 6.1.1

|e3(r)| ≥ 1− |e3(r) + 1|
= 1 +O(ε)

≥ 1

2
.

Hence, we have obtained on (ext)M

1

|e3(u)| ≤
1

2
,

1

|e3(r)| ≤ 1. (6.1.1)

Next, since e3(u) > 0 and e3(r) < 0 in (ext)M, we have r′ ≥ r and 1 ≤ u′ ≤ u. We start
with the proof of the first inequality. We consider two cases

• If r ≥ u, we have

∫
γ[p]

1

r′2+lu′
1
2

+δextra + r′1+lu′1+δextra
≤ 1

r2+l

∫ u

0

1

|e3(u′)|
du′

u′
1
2

+δextra

.
u

1
2
−δextra

r2+l

.
1

r1+l(2r + u)
1
2

+δextra + rl(2r + u)1+δextra
,

where we used (6.1.1).

• If r ≤ u, we separate the integral in r′ ≥ u, which coincides with 1 ≤ u′ ≤ u, and
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r ≤ r′ ≤ u and compute

∫
γ[p]

1

r′2+lu′
1
2

+δextra + r′1+lu′1+δextra

=

∫ u

0

1

r′2+lu′
1
2

+δextra + r′1+lu′1+δextra

du′

|e3(u′)|

+

∫ u

r

1

r′2+lu′
1
2

+δextra + r′1+lu′1+δextra

dr′

|e3(r′)|

.
1

u2+l

∫ u

0

1

|e3(u′)|
du′

u′
1
2

+δextra

+ min

(
1

u
1
2

+δextra

∫ u

r

1

|e3(r′)|
dr′

r′2+l
,

1

u1+δextra

∫ u

r

1

|e3(r′)|
dr′

r′1+l

)
.

1

u
5
2

+δextra
+ min

(
1

u
1
2

+δextra

1

r1+l
,

1

u1+δextra

1

rl

)
.

1

r1+l(2r + u)
1
2

+δextra + rl(2r + u)1+δextra
,

where we used (6.1.1).

This proves the first inequality.

The second inequality is obtained similarly as follows

• If r ≥ u, we have

∫
γ[p]

1

r′2u′
1
2

+δextra + r′u′1+δextra
≤ 1

r2

∫ u

0

1

|e3(u′)|
du′

u′
1
2

+δextra

.
u

1
2
−δextra

r2

.
1

r(2r + u)
1
2

+δextra + (2r + u)1+δextra
,

where we used (6.1.1).

• If r ≤ u, we separate the integral in r′ ≥ u, which coincides with 1 ≤ u′ ≤ u, and
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r ≤ r′ ≤ u and compute∫
γ[p]

1

r′2u′
1
2

+δextra + r′u′1+δextra

=

∫ u

0

1

r′2u′
1
2

+δextra + r′u′1+δextra

du′

|e3(u′)| +

∫ u

r

1

r′2u′
1
2

+δextra + r′u′1+δextra

dr′

|e3(r′)|

.
1

u3

∫ u

0

1

|e3(u′)|
du′

u′
1
2

+δextra

+ min

(
1

u
1
2

+δextra

∫ u

r

1

|e3(r′)|
dr′

r′2
,

1

u1+δextra

∫ u

r

1

|e3(r′)|
dr′

r′

)
.

1

u
5
2

+δextra
+ min

(
1

u
1
2

+δextra

1

r
,

1

u1+δextra

∫ 1

r
u

dr′′

r′′

)
.

1

r(2r + u)
1
2

+δextra + (2r+u)1+δextra

log(1+u)

,

where we used (6.1.1).

This concludes the proof of the lemma.

Corollary 6.1.4. Let ψ a solution of the following transport equation

e3(ψ) = h on (ext)M.

Let also 0 < u1 ≤ u∗. Then

• If h and ψ satisfy for l ≥ 1

|h| . ε0

r2+lu
1
2

+δextra + r1+lu1+δextra
on (ext)M(u ≤ u1) and |ψ| . ε0

rl+
3
2

+δextra
on C1,

we have

sup
(ext)M(u≤u1)

(
r1+l(2r + u)

1
2

+δextra + rl(2r + u)1+δextra
)
|ψ| . ε0.

• If h and ψ satisfy

|h| . ε0

r2u
1
2

+δextra + ru1+δextra
on (ext)M(u ≤ u1) and |ψ| . ε0

r
3
2

+δextra
on C1,

we have

sup
(ext)M(u≤u1)

(
r(2r + u)

1
2

+δextra +
(2r + u)1+δextra

log(1 + u)

)
|ψ| . ε0.

Proof. This follows immediately from Lemma 6.1.3.
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6.1.4 Decay estimates for α

We start with an estimate for α on C1.

Lemma 6.1.5. We have

max
0≤k≤ksmall+22

sup
C1
r

7
2

+δextra|dkα|+ max
0≤k≤ksmall+21

sup
C1
r

9
2

+δextra |dke3α| . ε0.

Proof. Recall that on C1, we have obtained in Theorem M0

max
0≤k≤klarge

{
sup
C1

[
r

7
2

+δB
(
|dk (ext)α|+ |dk (ext)β|

)
+ r

9
2

+δB |dk−1e3( (ext)α)|
]

+ sup
C1

[
r3

∣∣∣∣dk ( (ext)ρ+
2m0

r3

)∣∣∣∣+ r2|dk (ext)β|+ r|dk (ext)α|
]}
. ε0.

Since we have chosen δB ≥ δextra, we deduce

max
0≤k≤klarge

sup
C1

[
r

7
2

+δextra |dk (ext)α|+ r
9
2

+δextra |dk−1e3( (ext)α)|
]
. ε0.

Next, recall that q is defined with respect to the global frame constructed in Proposition
3.5.5. In view of Proposition 3.5.5 and Proposition 3.4.6, and the change of frame formula
for α in Proposition 2.3.4, we have

α = ( (ext)Υ)2

(
(ext)α + 2f (ext)β +

3

2
f 2 (ext)ρ+ l.o.t.

)
(6.1.2)

where f satisfies1, see (3.4.11),

|dkf | . ε

ru
1
2 + u

, for k ≤ ksmall + 22 on (ext)M,

|dk−1e3f | .
ε

ru
for k ≤ ksmall + 22 on (ext)M.

(6.1.3)

We easily infer

max
0≤k≤ksmall+22

sup
C1
r

7
2

+δextra|dkα|+ max
0≤k≤ksmall+21

sup
C1
r

9
2

+δextra |dke3α| . ε0.

This concludes the proof of the lemma.

1Here we use (3.4.11) with kloss = 20. Note also that the estimates we claim here for f are slightly
weaker that those in (3.4.11).
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Next, let 0 < u1 ≤ u∗. We introduce the following bootstrap assumption for α on
(ext)M(u ≤ u1)

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)(
|dkα|+ r|dke3α|

)
≤ ε.

(6.1.4)

The goal of this section will be the following proposition, i.e. the improvement of these
bootstrap assumptions.

Proposition 6.1.6. We have

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)(
|dkα|+ r|dke3α|

)
. ε0.

Proposition 6.1.6 will be proved at the end of this section.

Based on the bootstrap assumptions (6.1.4), we estimate the RHS of the transport equa-
tion for α.

Lemma 6.1.7. We have

e3

{
e3

(
α

κ2

)
− F1

}
= F2

where F1 and F2 satisfy

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r(2r + u)1+δextra + r2(2r + u)

1
2

+δextra
)
|dkF1|

+ max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r2u1+δextra + r3u

1
2

+δextra
)
|dkF2| . ε0.

Proof. Recall that we have

κ2e3

{
e3

(
α

κ2

)
−
(

8ω − 2

κ

(
2 d/1ξ −

1

2
ϑ2

))
α

κ2

}
=

q

r4
+

{
10ω +

4

κ

(
− d/1ξ − 2(η − 3ζ)ξ +

1

4
ϑ2

)}
e3α

+

{
− 2 d/1ξ +

(
6κ− 24ω +

8

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ω +

1

2
ϑ2 − 4

κ
e3((η − 3ζ)ξ)

+

(
16 +

48

κ
ω − 24

κ2

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ζξ

}
α
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which we rewrite as

e3

{
e3

(
α

κ2

)
− F1

}
= F2

where F1 and F2 are defined by

F1 :=

(
8ω − 2

κ

(
2 d/1ξ −

1

2
ϑ2

))
α

κ2

and

F2 :=
q

r4κ2
+

1

κ2

{
10ω +

4

κ

(
− d/1ξ − 2(η − 3ζ)ξ +

1

4
ϑ2

)}
e3α

+
1

κ2

{
− 2 d/1ξ +

(
6κ− 24ω +

8

κ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ω +

1

2
ϑ2 − 4

κ
e3((η − 3ζ)ξ)

+

(
16 +

48

κ
ω − 24

κ2

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

))
ζξ

}
α.

In view of the bootstrap assumptions (6.1.4) for α, the estimates of Lemma 6.1.1 for the
Ricci coefficients, and using Theorem M2 to estimate q, we easily infer

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r(2r + u)1+δextra + r2(2r + u)

1
2

+δextra
)
|dkF1|

. ε max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra

)(
|dkα|+ r|dke3α|

)
. ε2 . ε0.

and

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r2u1+δextra + r3u

1
2

+δextra
)
|dkF2|

. max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
u1+δextra + ru

1
2

+δextra
)
|dkq|

+ε max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra

)(
|dkα|+ r|dke3α|

)
. ε0 + ε2 . ε0.

This concludes the proof of the lemma.
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Lemma 6.1.8. For 0 ≤ k + j ≤ ksmall + 20, we have

e3

{
e3 d/

kej4

(
α

κ2

)
− F1, d/k,ej4

}
= F2, d/k,ej4

where

max
0≤l≤ksmall+20−k

sup
(ext)M(u≤u1)

(
r(2r + u)1+δextra + r2(2r + u)

1
2

+δextra
)
|dlF1, d/k |

+ max
0≤l≤ksmall+20−k

sup
(ext)M(u≤u1)

(
r2u1+δextra + r3u

1
2

+δextra
)
|dlF2, d/k | . ε0,

and for j ≥ 1

max
0≤l≤ksmall+20−k−j

sup
(ext)M(u≤u1)

(
r1+j(2r + u)1+δextra + r2+j(2r + u)

1
2

+δextra
)
|dlF1, d/k,ej4

|

+ max
0≤l≤ksmall+20−k−j

sup
(ext)M(u≤u1)

(
r2+ju1+δextra + r3+ju

1
2

+δextra
)
|dlF2, d/k,ej4

|

. ε0 + max
0≤j+k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)
r

×
(
| d/k(re4)j−1e3α|+ | d/k(re4)j−2e2

3α|
)
.

Proof. Recall from Lemma 6.1.7 that we have

e3

{
e3

(
α

κ2

)
− F1

}
= F2

where F1 and F2 satisfy

max
0≤k≤ksmall+20

sup
(ext)M

(
r(2r + u)1+δextra + r2(2r + u)

1
2

+δextra
)
|dkF1|

+ max
0≤k≤ksmall+20

sup
(ext)M

(
r2u1+δextra + r3u

1
2

+δextra
)
|dkF2| . ε0.

Differentiating with d/k, this yields

e3

{
e3 d/

k

(
α

κ2

)
+ [ d/k, e3]

(
α

κ2

)
− d/kF1

}
= d/kF2 − [ d/k, e3]

{
e3

(
α

κ2

)
− F1

}
and hence

e3

{
e3 d/

k

(
α

κ2

)
− F1, d/k

}
= F2, d/k
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where

F1, d/k := d/kF1 − [ d/k, e3]

(
α

κ2

)
, F2, d/k := d/kF2 − [ d/k, e3]

{
e3

(
α

κ2

)
− F1

}
.

In view of Lemma 2.2.13, we have schematically

[ d/, e4] = Γgd + Γg + rβ,

[ d/, e3] = Γbd + Γb + rβ.

Together with the estimates of Lemma 6.1.1 for the Ricci coefficients and curvature com-
ponents as well as the bootstrap assumptions (6.1.4) for α on (ext)M, we infer

max
0≤j≤ksmall+20−k

sup
(ext)M

(
r(2r + u)1+δextra + r2(2r + u)

1
2

+δextra
)
|djF1, d/k |

+ max
0≤j≤ksmall+20−k

sup
(ext)M

(
r2u1+δextra + r3u

1
2

+δextra
)
|djF2, d/k | . ε0.

Next, we consider the case j ≥ 1. We have the commutator

[e4, e3] = 2ωe3 − 2ωe4 − 4ζeθ.

In view of the estimates of Lemma 6.1.1 for the Ricci coefficients, and in view of the
bootstrap assumptions (6.1.4) for α, we infer after commutation by ej4 for 0 ≤ k + j ≤
ksmall + 20

e3

{
e3 d/

kej4

(
α

κ2

)
− F1, d/k,ej4

}
= F2, d/k,ej4

where

max
0≤l≤ksmall+20−k−j

sup
(ext)M(u≤u1)

(
r1+j(2r + u)1+δextra + r2+j(2r + u)

1
2

+δextra
)
|dlF1, d/k,ej4

|

+ max
0≤l≤ksmall+20−k−j

sup
(ext)M(u≤u1)

(
r2+ju1+δextra + r3+ju

1
2

+δextra
)
|dlF2, d/k,ej4

|

. ε0 + max
0≤j+k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)
r

×
(
| d/k(re4)j−1e3α|+ | d/k(re4)j−2e2

3α|
)
. ε0.

This concludes the proof of the lemma.
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We are now ready to prove Proposition 6.1.6.

Step 1. For 0 ≤ k ≤ ksmall + 20, recall from the above lemma with j = 0 that we have

e3

{
e3 d/

k

(
α

κ2

)
− F1, d/k

}
= F2, d/k

where

max
0≤j≤ksmall+20−k

sup
(ext)M(u≤u1)

(
r2u1+δextra + r3u

1
2

+δextra
)
|djF2, d/k | . ε0.

Also, we have in view of Lemma 6.1.5

max
0≤k≤klarge−4

sup
C1
r

5
2

+δextra

∣∣∣∣e3 d/
k

(
α

κ2

)
− F1, d/k

∣∣∣∣ . ε0.

In view of Corollary 6.1.4, we immediately infer for any 0 ≤ k ≤ ksmall + 20

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r2(2r + u)

1
2

+δextra + r(2r + u)1+δextra
) ∣∣∣∣e3 d/

k

(
α

κ2

)
− F1, d/k

∣∣∣∣ . ε0.

Since we have from the above lemma that

max
0≤j≤ksmall+20−k

sup
(ext)M(u≤u1)

(
r(2r + u)1+δextra + r2(2r + u)

1
2

+δextra
)
|djF1, d/k | . ε0,

we deduce that we have for any 0 ≤ k ≤ ksmall + 20

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r2(2r+u)

1
2

+δextra + r(2r+u)1+δextra
) ∣∣∣∣e3 d/

k

(
α

κ2

)∣∣∣∣ . ε0. (6.1.5)

Step 2. Next, note that we have in view of Lemma 6.1.5

max
0≤k≤klarge−3

sup
C1
r

3
2

+δextra

∣∣∣∣ d/k ( α

κ2

)∣∣∣∣ . ε0.

Together with the transport equation (6.1.5), and in view of Corollary 6.1.4, we infer

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r(2r + u)

1
2

+δextra +
(2r + u)1+δextra

log(1 + u)

) ∣∣∣∣ d/k ( α

κ2

)∣∣∣∣ . ε0.

In view of the control of κ provided by Lemma 6.1.1, we easily deduce

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r3(2r + u)

1
2

+δextra +
r2(2r + u)1+δextra

log(1 + u)

) ∣∣ d/kα∣∣ . ε0.
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Together with (6.1.5), we infer

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(
r3(2r + u)

1
2

+δextra +
r2(2r + u)1+δextra

log(1 + u)

)(
| d/kα|+ r| d/ke3α|

)
. ε0.

Step 3. Next, recall from section 2.3.3 that q is defined with respect to a general null
frame as follows

q = r4

(
e3(e3(α)) + (2κ− 6ω)e3(α) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α

)
.

We infer

e3(e3(α)) =
q

r4
− (2κ− 6ω)e3(α)−

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α.

Together with the above estimate for α and e3α, we infer by iteration

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)

×
(
|( d/, e3)kα|+ r|( d/, e3)ke3α|

)
. ε0.

Step 4. Arguing as for Step 1, but with j ≥ 1, we infer the following analog of (6.1.5)

max
0≤j+k≤ksmall+20

sup
(ext)M(u≤u1)

(
r2(2r + u)

1
2

+δextra + r(2r + u)1+δextra
) ∣∣∣∣e3 d/

k(re4)j
(
α

κ2

)∣∣∣∣
. ε0 + max

0≤j+k≤ksmall+20
sup

(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)
r

×
(
| d/k(re4)j−1e3α|+ | d/k(re4)j−2e2

3α|
)
.

Step 5. Arguing as for Step 2, but with j ≥ 1, we infer the following analog of the last
estimate of Step 2

max
0≤j≤ksmall+20

sup
(ext)M(u≤u1)

(
r3(2r + u)

1
2

+δextra +
r2(2r + u)1+δextra

log(1 + u)

)(
| d/k(re4)jα|+ r| d/k(re4)je3α|

)
. ε0 + max

0≤j+k≤ksmall+20
sup

(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)
r

×
(
| d/k(re4)j−1e3α|+ | d/k(re4)j−2e2

3α|
)
.
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Step 6. Arguing as for Step 3, but with j ≥ 1, we infer the following analog of the last
estimate of Step 3

max
0≤j+k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)

×
(
|( d/, e3)k(re4)jα|+ r|( d/, e3)k(re4)je3α|

)
. ε0 + max

0≤j+k≤ksmall+20
sup

(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)
r

×
(
|( d/, e3)k(re4)j−1e3α|+ r|( d/, e3)k(re4)j−2e2

3α|
)
.

Step 7. Arguing by iteration on j, noticing that the last estimate of Step 3 corresponds
to desired estimate for j = 0, and in view of the estimate derived in Step 6, we finally
obtain

max
0≤j+k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)

×
(
|( d/, e3)k(re4)jα|+ r|( d/, e3)k(re4)je3α|

)
. ε0

and hence

max
0≤k≤ksmall+20

sup
(ext)M(u≤u1)

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)(
|dkα|+ r|dke3α|

)
. ε0.

This concludes the proof of Proposition 6.1.6.

6.1.5 End of the proof of Theorem M2

First, note in view of the estimates for α on C1 provided by Lemma 6.1.5 that the bootstrap
assumptions (6.1.4) for α hold by continuity for some sufficiently small u1 > 0. Then, we
may in view of Proposition 6.1.6 choose u1 = u∗. We deduce therefore

max
0≤k≤ksmall+20

sup
(ext)M

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)(
|dkα|+ r|dke3α|

)
. ε0.

Next, recall from (6.1.2) and (6.1.3) that we have

α = ( (ext)Υ)2

(
(ext)α + 2f (ext)β +

3

2
f 2 (ext)ρ+ l.o.t.

)
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where f satisfies

|dkf | . ε

ru
1
2 + u

, for k ≤ ksmall + 22 on (ext)M,

|dk−1e3f | .
ε

ru
for k ≤ ksmall + 22 on (ext)M.

Together with bootstrap assumptions for (ext)β and (ext)ρ, we easily infer

max
0≤k≤ksmall+20

sup
(ext)M

(r2(2r + u)1+δextra

log(1 + u)
+ r3(2r + u)

1
2

+δextra
)(
|dk (ext)α|+ r|dke3

(ext)α|
)
. ε0.

This concludes the proof of Theorem M2.

6.2 Proof of Theorem M3

Theorem M3 contains decay estimates for α in (int)M and on Σ∗. We first proceed with
the estimate on (int)M before moving to (ext)M.

6.2.1 Estimate for α in (int)M

Recall that q, controlled in Theorem M1, is defined with respect to the global frame
of Proposition 3.5.5. Recall also that we may choose the global null frame to coincide
with the ingoing geodesic null frame of (int)M in (int)M (see property (b) in Proposition
3.5.5 together with property (d) ii. in Proposition 3.5.2). Thus, in this section, as we
only work on (int)M, the null frame (e4, e3, eθ) denotes both the frame of (int)M and the
global frame with respect to which q is defined. We start with the following definition.

Definition 6.2.1. In (int)M, we define with respect to the ingoing geodesic frame of
(int)M

T̃ := e4 −
1

κ

(
κ+ A

)
e3. (6.2.1)

The estimate for α in (int)M relies on the following proposition.

Proposition 6.2.2. Let 0 ≤ k ≤ ksmall + 17. Then, α satisfies in (int)M

6mT̃ (dkα) + r4 d?/2 d
?/1 d/1 d/2(dkα) = Fk
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where Fk satisfies

max
0≤k≤ksmall+17

∫
(int)M

u2+2δdec |d≤1Fk|2 . ε20.

Remark 6.2.3. In view of the definition of T̃ , we have

T̃ (r) = e4(r)− 1

κ

(
κ+ A

)
e3(r) = 0

so that T̃ is tangent to the hypersurfaces of constant r. In particular, (T̃ , eθ) spans the
tangent space of hypersurfaces of constant r. Therefore, in view of Proposition 6.2.2, α
and its derivatives satisfy on each hyper surface of contant r in (int)M, i.e. on {r = r0}
for 2m0(1 − δH) ≤ r ≤ rT , a forward parabolic equation. Furthermore, since we have

T̃ (u) = 2/ς = 2 +O(ε), u plays the role of time in this forward parabolic equation.

We also derive estimates for the control of the parabolic equation appearing in the state-
ment of Proposition 6.2.2.

Lemma 6.2.4. Let f and h reduced 2-scalars such that(
6mT̃ + r4 d?/2 d

?/1 d/1 d/2

)
f = h.

Then, for any real number n ≥ 0 and any r0 such that 2m0(1− δH) ≤ r0 ≤ rT , we have

sup
1≤u≤u∗

∫
S(r=r0,u)

(1 + un)f 2 .n

∫
S(r=r0,1)

f 2 + ε2
∫ u∗

1

∫
S(r=r0,u)

(1 + un−2)(df)2

+

∫
(int)M

(1 + un)(d≤1h)2.

We are now in position to control α in (int)M. Recall from Proposition 6.2.2 that α
satisfies in (int)M for 0 ≤ k ≤ ksmall + 17

6mT̃ (dkα) + r4 d?/2 d
?/1 d/1 d/2(dkα) = Fk.

Applying Lemma 6.2.4 with n = 2 + 2δdec, f = dkα and h = Fk, we infer for any r0 such
that 2m0(1− δH) ≤ r0 ≤ rT

sup
1≤u≤u∗

∫
S(r=r0,u)

(1 + u2+2δdec)(dkα)2 .
∫
S(r=r0,1)

(dkα)2 + ε2
∫ u∗

1

∫
S(r=r0,u)

(1 + u2δdec)(dk+1α)2

+

∫
(int)M

(1 + u2+2δdec)(d≤1Fk)
2.
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Together with the bounds for α on C1 provided by Theorem M0, the bootstrap assump-
tions on decay and energy for α in (int)M, and the bound for Fk provided by Proposition
6.2.2, we infer for 0 ≤ k ≤ ksmall + 17 in (int)M

sup
1≤u≤u∗

∫
S(r=r0,u)

(1 + u2+2δdec)(dkα)2 . ε20.

In particular, we have obtained

max
0≤k≤ksmall+17

sup
(int)M

u1+δdec‖dkα‖L2(S) . ε0.

Using the Sobolev embedding on 2-surface and the fact that r is bounded on (int)M, we
infer

max
0≤k≤ksmall+15

sup
(int)M

u1+δdec |dkα| . ε0

and hence

(int)Dksmall+15[α] . ε0 (6.2.2)

which is the desired estimate for α in (int)M.

The proof of Proposition 6.2.2 will be given in section 6.2.3, and the proof of Lemma
6.2.4 in section 6.2.4. But first we show, in the next section, how to conclude the proof
of Theorem M3 by controlling α on Σ∗.

6.2.2 Estimate for α on Σ∗

Recall that q, controlled in Theorem M1, is defined with respect to the global frame of
Proposition 3.5.5. We will first control α in this frame, before coming back to (ext)M at
the end of the argument. We start with the following definition.

Definition 6.2.5. In Σ∗, we define, with respect to the the global frame of Proposition
3.5.5,

ν̃ := e3 + ae4, (6.2.3)

where the scalar function a is uniquely defined so that ν̃ is tangent to Σ∗.

The estimate for α on Σ∗ relies on the following proposition.
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Proposition 6.2.6. Let 0 ≤ k ≤ ksmall + 18. Then, α satisfies on Σ∗

6mν̃(dkα) + r4 d?/2 d
?/1 d/1 d/2(dkα) = Fk

where Fk satisfies

max
0≤k≤ksmall+18

∫
Σ∗

u2+2δdec |Fk|2 . ε20.

Remark 6.2.7. Since ν̃ is tangent to Σ∗, and since (ν̃, eθ) spans the tangent space of
Σ∗, in view of Proposition 6.2.6, α and its derivatives satisfy on Σ∗ a forward parabolic
equation. Furthermore, since we have ν̃(u) = 2 + O(ε), u plays the role of time in this
forward parabolic equation.

We also derive estimates for the control of the parabolic equation appearing in the state-
ment of Proposition 6.2.2.

Lemma 6.2.8. Let f and h reduced 2-scalars such that(
6mν̃ + r4 d?/2 d

?/1 d/1 d/2

)
f = h.

Then, for any real number n ≥ 0, we have∫
Σ∗

(1 + un)f 2 .n

∫
Σ∗∩C1

f 2 + ε2
∫

Σ∗

(1 + un−2)(df)2 +

∫
Σ∗

(1 + un)h2.

Using the Lemma we are in position to control α on Σ∗. According to Proposition 6.2.6
α satisfies in Σ∗, for 0 ≤ k ≤ ksmall + 18,

6mν̃(dkα) + r4 d?/2 d
?/1 d/1 d/2(dkα) = Fk.

Applying Lemma 6.2.8 with n = 2 + 2δdec, f = dkα and h = Fk, we infer∫
Σ∗

(1 + u2+2δdec)(dkα)2 .
∫

Σ∗∩C1
(dkα)2 + ε2

∫
Σ∗

(1 + u2δdec)(dk+1α)2

+

∫
Σ∗

(1 + u2+2δdec)(Fk)
2.

Together with the bounds for α on C1 provided by Theorem M0, the bootstrap assump-
tions on decay and energy for α in (ext)M, and the bound for Fk provided by Proposition
6.2.6, we infer ∫

Σ∗

(1 + u2+2δdec)(dkα)2 . ε20.
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In particular, we have obtained

max
0≤k≤ksmall+18

∫
Σ∗

(1 + u2+2δdec)(dkα)2 . ε0.

Now, recall that α in the above estimate is defined with respect to the global frame of
Proposition 3.5.5. In view of Proposition 3.5.5 and Proposition 3.4.6, and the change of
frame formula for α in Proposition 2.3.4, we have

α = ( (ext)Υ)−2 (ext)α.

Hence, we immediately infer

max
0≤k≤ksmall+18

∫
Σ∗

(1 + u2+2δdec)(dk(ext)α)2 . ε0.

which is the desired estimate in Σ∗. Together with (6.2.2), this concludes the proof of
Theorem M3.

The proof of Proposition 6.2.6 will be given in section 6.2.5, and to the proof of Lemma
6.2.8 which will be given in section 6.2.6.

6.2.3 Proof of Proposition 6.2.2

In this section we derive as corollary of the Teukolsky-Starobinski identity, see Proposition
2.3.15, a parabolic equation for α.

Corollary 6.2.9. The quantity α satisfies in (int)M the following equation

6mT̃α + r4 d?/2 d
?/1 d/1 d/2α

=
1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
− r−3Err[TS]−

{
3

2
r4

(
ρ+

2m

r3

)
κ− 3mr

(
κ+

2

r

)}
e4α

−
{
−3

2
r4

(
ρ+

2m

r3

)
κ+

3mr

κ

(
κ+

2

r

)
κ+ 3mrκ̌+

6m

κ
A

}
e3α

where the vectorfield T̃ is defined by (6.2.1).

Proof. According to Proposition (2.3.15) that we have

e3(r2e3(rq)) + 2ωr2e3(rq) = r7

{
d?/2 d

?/1 d/1 d/2α +
3

2
ρ
(
κe4 − κe3

)
α

}
+ Err[TS].
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This yields

3

2
r4ρ
(
κe4 − κe3

)
α + r4 d?/2 d

?/1 d/1 d/2α =
1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
− r−3Err[TS].

Now, we have in view of the definition of T̃

3

2
r4ρ
(
κe4 − κe3

)
− 6mT̃

=

{
3

2
r4

(
ρ+

2m

r3

)
κ− 3mr

(
κ+

2

r

)}
e4

+

{
−3

2
r4

(
ρ+

2m

r3

)
κ+

3mr

κ

(
κ+

2

r

)
κ+ 3mrκ̌+

6m

κ
A

}
e3.

We infer

6mT̃α + r4 d?/2 d
?/1 d/1 d/2α

=
1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
− r−3Err[TS]−

{
3

2
r4

(
ρ+

2m

r3

)
κ− 3mr

(
κ+

2

r

)}
e4α

−
{
−3

2
r4

(
ρ+

2m

r3

)
κ+

3mr

κ

(
κ+

2

r

)
κ+ 3mrκ̌+

6m

κ
A

}
e3α.

This concludes the proof of the corollary.

Corollary 6.2.10. α satisfies in (int)M

6mT̃α + r4 d?/2 d
?/1 d/1 d/2α = F

where F satisfies

max
0≤k≤ksmall+18

∫
(int)M

u2+2δdec |dkF |2 . ε20.

Proof. In view of Corollary 6.2.9, α satisfies

6mT̃α + r4 d?/2 d
?/1 d/1 d/2α = F

with

F :=
1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
+ F1,

F1 := −r−3Err[TS]−
{

3

2
r4

(
ρ+

2m

r3

)
κ− 3mr

(
κ+

2

r

)}
e4α

−
{
−3

2
r4

(
ρ+

2m

r3

)
κ+

3mr

κ

(
κ+

2

r

)
κ+ 3mrκ̌+

6m

κ
A

}
e3α.
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Using the bootstrap assumptions in (int)M for decay and energies, and in view of the fact
that F1 contains only quadratic or higher order terms, we easily derive

max
0≤k≤ksmall+18

sup
(int)M

u
3
2

+ 3
2
δdec |dkF1| . ε2 . ε0.

In view of the definition of F , this yields

max
0≤k≤ksmall+18

∫
(int)M

u2+2δdec |dkF |2 . ε20 + max
0≤k≤ksmall+20

∫
(int)M

u2+2δdec |dkq|2.

Together with Theorem M1, and the fact that δextra > δdec, we infer

max
0≤k≤ksmall+18

∫
(int)M

u2+2δdec |dkF |2 . ε20.

This concludes the proof of the corollary.

We are now ready to prove Proposition 6.2.2. In view of Corollary 6.2.10, α satisfies

6mT̃α + r4 d?/2 d
?/1 d/1 d/2α = F.

Commuting with dk, we infer

6mT̃ (dkα) + r4 d?/2 d
?/1 d/1 d/2(dkα) = Fk

where Fk is defined by

Fk := −6m[dk, T̃ ]α− 6
k∑
j=1

dj(m)dk−jT̃α− [dk, r d?/2]r d?/1r d/1r d/2α− r d?/2[dk, r d?/1]r d/1r d/2α

−r d?/2r d
?/1[dk, r d/1]r d/2α− r d?/2r d

?/1r d/1[dk, r d/2]α + dkF.

Note that we have schematically

[d, d/] = Γ̌d, [T̃ , d/] =
(
dΓ̌ + Γ̌

)
d,
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as well as

[T̃ , re4] = e4(r)e4 −
1

κ

(
κ+ A

)
[e3, re4] + re4

(
1

κ

(
κ+ A

))
e3

=
r

2

(
κ+ A

)
e4 −

1

κ

(
κ+ A

)(r
2
κe4 + r

(
− 2ωe3 + 4ζeθ

))
+re4

(
κ

κ

)
e3 + re4

(
1

κ
A

)
e3

=

{
2r

κ

(
κ+ A

)
ω + re4

(
κ

κ

)
+ re4

(
1

κ
A

)}
e3

−4r

κ

(
κ+ A

)
ζeθ

=

{
− 2m

r

(
κ

κ
+ Υ

)
+

2r

κ
κ
(
ω +

m

r

)
− 2m(e4(r)−Υ)

r
+ 2e4(m) + re4

(
κ

κ
+ Υ

)

+
2r

κ
Aω + re4

(
1

κ
A

)}
e3 −

4r

κ

(
κ+ A

)
ζeθ

=
(
dΓ̌ + Γ̌

)
d,

and

[T̃ , e3] = [e4, e3] + e3

(
1

κ

(
κ+ A

))
e3

=

{
2ω + e3

(
κ

κ

)
+ e3

(
1

κ
A

)}
e3 − 4ζeθ

=

{
2
(
ω +

m

r2

)
− 2m(e3(r) + 1)

r2
+

2e3(m)

r
+ e3

(
κ

κ
+ Υ

)
+ e3

(
1

κ
A

)}
e3 − 4ζeθ

=
(
dΓ̌ + Γ̌

)
d.

Together with the bootstrap assumptions in (int)M for decay and energies, and in view
of the fact that F1 contains only quadratic or higher order terms, we easily derive

max
0≤k≤ksmall+18

sup
(int)M

u
3
2

+ 3
2
δdec

∣∣∣∣∣− 6m[dk, T̃ ]α− 6
k∑
j=1

dj(m)dk−jT̃α− [dk, r d?/2]r d?/1r d/1r d/2α

−r d?/2[dk, r d?/1]r d/1r d/2α− r d?/2r d
?/1[dk, r d/1]r d/2α

−r d?/2r d
?/1r d/1[dk, r d/2]α

∣∣∣∣∣ . ε2.
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In view of the definition of Fk, this yields

max
0≤k≤ksmall+18

∫
(int)M

u2+2δdec |Fk|2 . ε4 + max
0≤k≤ksmall+18

∫
(int)M

u2+2δdec |dkF |2.

Together with the estimate for F of Corollary 6.2.10, we infer

max
0≤k≤ksmall+18

∫
(int)M

u2+2δdec |Fk|2 . ε4 + ε20 . ε20.

This concludes the proof of Proposition 6.2.2.

6.2.4 Proof of Lemma 6.2.4

In this section we prove Lemma 6.2.4, i.e. we derive estimates for the control of the
parabolic equation appearing in the statement of Proposition 6.2.2. To this end, we first
start with a Poincaré inequality.

Lemma 6.2.11. We have∫
S

f d?/2 d
?/1 d/1 d/2f ≥ 24

∫
S

(1 +O(ε))K2f 2.

Proof. We have

d?/2 d
?/1 d/1 d/2 = d?/2(−4/ 1 +K) d/2

= − d?/24/ 1 d/2 +K d?/2 d/2 + d?/1(K) d/2

= −4/ 2 d
?/2 d/2 +

(
4/ 2 d

?/2 − d?/24/ 1

)
d/2 +K d?/2 d/2 + d?/1(K) d/2

= ( d?/2 d/2 − 2K) d?/2 d/2 +
(

3K d?/2 − d?/1(K)
)
d/2 +K d?/2 d/2 + d?/1(K) d/2

= ( d?/2 d/2)2 + 2K d?/2 d/2.

Recall also the Poincaré inequality for d/2 which holds for any reduced 2-scalar f∫
S

| d/2f |2 ≥ 4

∫
S

Kf 2.

Then, we easily infer∫
S

f d?/2 d
?/1 d/1 d/2f =

∫
S

f( d?/2 d/2)2f +

∫
S

2Kf d?/2 d/2f

≥ 42

∫
S

(1 +O(ε))K2f 2 + 8

∫
S

(1 +O(ε))K2f 2

≥ 24

∫
S

(1 +O(ε))K2f 2
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where we also used the estimates for the Gauss curvature

K =
1

r2
+O

( ε
r2

)
, reθ(K) = O

( ε
r2

)
,

which follow from the bootstrap assumptions.

The following identity will be useful.

Lemma 6.2.12. We have for any reduced scalar f

T̃

(∫
S

f 2

)
= 2

∫
S

fT̃ f +

∫
S

(
2

κ
Afe3(f) + κ̌f 2

)
− κ

κ

(∫
S

κ̌f 2

)
−1

κ
A

(∫
S

(2fe3(f) + κf 2)

)
+ Err

[
e4

(∫
S

f 2

)]
.

Proof. Recall from the definition of T̃ that

T̃ = e4 −
1

κ

(
κ+ A

)
e3.

We infer, in view of the analog of Proposition 2.2.9 for an ingoing geodesic foliation,

T̃

(∫
S

f 2

)
= e4

(∫
S

f 2

)
− 1

κ

(
κ+ A

)
e3

(∫
S

f 2

)
=

∫
S

(2fe4(f) + κf 2) + Err

[
e4

(∫
S

f 2

)]
− 1

κ

(
κ+ A

)(∫
S

(2fe3(f) + κf 2)

)
=

∫
S

(
2fT̃ f +

2

κ

(
κ+ A

)
fe3(f) + κf 2

)
+ Err

[
e4

(∫
S

f 2

)]
−1

κ

(
κ+ A

)(∫
S

(2fe3(f) + κf 2)

)
= 2

∫
S

fT̃ f +

∫
S

(
2

κ
Afe3(f) + κ̌f 2

)
− κ

κ

(∫
S

κ̌f 2

)
− 1

κ
A

(∫
S

(2fe3(f) + κf 2)

)
+Err

[
e4

(∫
S

f 2

)]
.

This concludes the proof of the lemma.
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We are now ready to prove Lemma 6.2.4. Recall from Lemma 6.2.12 that we have

T̃

(∫
S

f 2

)
= 2

∫
S

fT̃ f +

∫
S

(
2

κ
Afe3(f) + κ̌f 2

)
− κ

κ

(∫
S

κ̌f 2

)
−1

κ
A

(∫
S

(2fe3(f) + κf 2)

)
+ Err

[
e4

(∫
S

f 2

)]
.

In view of the equation satisfied by f , we infer

T̃

(∫
S

f 2

)
= − 1

3m

(∫
S

r4f d?/2 d
?/1 d/1 d/2f

)
+

1

3m

(∫
S

hf

)
+

∫
S

(
2

κ
Afe3(f) + κ̌f 2

)
− κ

κ

(∫
S

κ̌f 2

)
− 1

κ
A

(∫
S

(2fe3(f) + κf 2)

)
+Err

[
e4

(∫
S

f 2

)]
.

Now, from the definition of T̃ , we have T̃ (u) = 2/ς. We deduce

T̃

(
un
∫
S

f 2

)
+
un

3m

(∫
S

r4f d?/2 d
?/1 d/1 d/2f

)
=

un

3m

(∫
S

hf

)
+ un

∫
S

(
2

κ
Afe3(f) + κ̌f 2

)
− unκ

κ

(∫
S

κ̌f 2

)
−u

n

κ
A

(∫
S

(2fe3(f) + κf 2)

)
+ unErr

[
e4

(∫
S

f 2

)]
+

2

ς
nun−1

∫
S

f 2.

This yields in view of the bootstrap assumptions

T̃

(
un
∫
S

f 2

)
+
un

3m

(∫
S

r4f d?/2 d
?/1 d/1 d/2f

)
.

un

3m
‖h‖L2(S)‖f‖L2(S) + εun−1

∫
S

|f ||d≤1f |+ nun−1

∫
S

f 2.

Next, we rely on the Poincaré inequality of Lemma 6.2.11 to deduce

T̃

(
un
∫
S

f 2

)
+ un

∫
S

f 2 . un
∫
S

h2 + ε2un−2

∫
S

(df)2 + nun−1

∫
S

f 2.

Integrating in u between 1 and u∗, and recalling that T̃ (u) = 2/ς, we infer for any r0 such
that 2m0(1− δH) ≤ r0 ≤ rT∫

S(r=r0,u)

unf 2 +

∫ u

1

(∫
S(r=r0,u′)

u′
n
f 2

)
du′

.
∫
S(r=r0,1)

f 2 +

∫ u

1

(∫
S(r=r0,u′)

u′
n
h2

)
du′ + ε2

∫ u

1

(∫
S(r=r0,u′)

u′
n−2

(df)2

)
du′

+n

∫ u

0

(∫
S(r=r0,u′)

u′
n−1

f 2

)
du′.
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In particular, we have for n = 0

sup
1≤u≤u∗

∫
S(r=r0,u)

f 2 +

∫ u∗

1

(∫
S(r=r0,u)

f 2

)
du .

∫
S(r=r0,1)

f 2 +

∫ u∗

1

(∫
S(r=r0,u)

h2

)
du

+ε2
∫ u∗

1

(∫
S(r=r0,u)

u−2(df)2

)
du.

Then, starting from the case n = 0 and arguing by iteration on the largest integer below
n, one immediately deduces for any real n ≥ 0

sup
1≤u≤u∗

∫
S(r=r0,u)

(1 + un)f 2 +

∫ u∗

1

(∫
S(r=r0,u)

(1 + un)f 2

)
du

.
∫
S(r=r0,1)

f 2 +

∫ u∗

1

(∫
S(r=r0,u)

(1 + un)h2

)
du+ ε2

∫ u∗

1

(∫
S(r=r0,u)

(1 + un−2)(df)2

)
du.

Now, a simple trace estimate yields∫
S(r=r0,u)

(1 + un)h2 .
∫
Cu

(1 + un)
(
|h|2 + |e3(h)|2

)
so that ∫ u∗

1

(∫
S(r=r0,u)

(1 + un)h2

)
du .

∫ u∗

1

∫
Cu

(1 + un)
(
|h|2 + |e3(h)|2

)
du

.
∫

(int)M
(1 + un)(d≤1h)2.

We deduce

sup
1≤u≤u∗

∫
S(r=r0,u)

(1 + un)f 2 +

∫ u∗

1

(∫
S(r=r0,u)

(1 + un)f 2

)
du

.
∫
S(r=r0,1)

f 2 +

∫
(int)M

(1 + un)(d≤1h)2 + ε2
∫ u∗

1

(∫
S(r=r0,u)

(1 + un−2)(df)2

)
du

which concludes the proof of Lemma 6.2.4.

6.2.5 Proof of Proposition 6.2.6

In this section, we infer from the Teukolsky-Starobinski identity, see Proposition 2.3.15,
a parabolic equation for α.
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Corollary 6.2.13. α satisfies on Σ∗ the following equation

6mν̃α + r4 d?/2 d
?/1 d/1 d/2α

=
1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
− r−3Err[TS]−

{
3

2
r4ρκ− 6am

}
e4α

−
{
−3

2
r4

(
ρ+

2m

r3

)
κ+ 3mr

(
κ− 2Υ

r

)
− 12m

r

}
e3α.

where the vectorfield ν̃ is defined by (6.2.3).

Proof. Recall from (2.3.15) that we have

e3(r2e3(rq)) + 2ωr2e3(rq) = r7

{
d?/2 d

?/1 d/1 d/2α +
3

2
ρ
(
κe4 − κe3

)
α

}
+ Err[TS].

This yields

3

2
r4ρ
(
κe4 − κe3

)
α + r4 d?/2 d

?/1 d/1 d/2α =
1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
− r−3Err[TS].

Now, we have in view of the definition of ν̃

3

2
r4ρ
(
κe4 − κe3

)
− 6mν̃

=

{
3

2
r4ρκ− 6am

}
e4 +

{
−3

2
r4

(
ρ+

2m

r3

)
κ+ 3mr

(
κ− 2Υ

r

)
− 12m

r

}
e3.

We infer

6mν̃α + r4 d?/2 d
?/1 d/1 d/2α

=
1

r3

(
e3(r2e3(rq)) + 2ωr2e3(rq)

)
− r−3Err[TS]−

{
3

2
r4ρκ− 6am

}
e4α

−
{
−3

2
r4

(
ρ+

2m

r3

)
κ+ 3mr

(
κ− 2Υ

r

)
− 12m

r

}
e3α.

This concludes the proof of the corollary.

Corollary 6.2.14. α satisfies on Σ∗

6mν̃α + r4 d?/2 d
?/1 d/1 d/2α = F

where F satisfies

max
0≤k≤ksmall+18

∫
Σ∗

u2+2δdec |dkF |2 . ε20.
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Proof. In view of Corollary 6.2.9, α satisfies

6mν̃α + r4 d?/2 d
?/1 d/1 d/2α = F

with

F := e3(e3(q)) + F1,

F1 :=
1

r3

(
e3(r2e3(r)q) + e3(r3)e3(q) + 2ωr2e3(rq)

)
− r−3Err[TS]

−
{

3

2
r4ρκ− 6am

}
e4α−

{
−3

2
r4

(
ρ+

2m

r3

)
κ+ 3mr

(
κ− 2Υ

r

)
− 12m

r

}
e3α.

Recall also that Err[TS] is given schematically by, see Proposition 2.3.15,

Err[TS] = r4
(
d/Γb + rΓb · Γb) · α + r2

(
Γbe3(rq) + (d≤1Γb)rq

)
+ r7d≤2

(
e3η · β

)
+ r5d≤3

(
Γb · Γg

)
.

We infer that F1 is given schematically by

F1 = r
(
d/Γb + rΓb · Γb) · α + r−1

(
Γbe3(rq) + (d≤1Γb)rq

)
+ r4d≤2

(
e3η · β

)
+ r2d≤3

(
Γb · Γg

)
+ r−1Γb

= r−1Γb + r2d≤3
(
Γb · Γg

)
+ r4d≤3

(
Γg · β

)
where we have used

• The fact we are working here with the global frame of Proposition 3.5.5 which has
the property that η ∈ Γg.

• The fact that Γb behave better that rΓg.

• The fact that q ∈ rΓg.

• The fact that α and e3(q) behaves at least as good as Γb.

• The fact that ρ+ 2m
r3 behaves as good as r−1Γg.

• The fact that e3(r) + 1 belongs to rΓb.

Now, recall from Lemma 5.1.1 that the global frame of Proposition satisfies in particular2

max
0≤k≤ksmall+22

sup
M

{
r

7
2

+δdec−2δ0|dkβ|+ r2u
1
2

+δdec−2δ0|dkΓg|+ ru1+δdec−2δ0 |dkΓb|
}
. ε.(6.2.4)

2Here we use (3.4.11) with kloss = 22.
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Together with the schematic for of F1 and the behavior (3.3.4) of r on Σ∗, and the fact
that δ0 can be chosen to satisfy3 8δ0 ≤ δdec, we infer

max
0≤k≤ksmall+18

sup
Σ∗

ru
3
2

+ 3
2
δdec |dkF1| . εu

1
2

+δdec
∗ sup

Σ∗

(r−1) + ε2 . ε0.

In view of the definition of F , this yields

max
0≤k≤ksmall+18

∫
Σ∗

u2+2δdec|dkF |2 . ε20 + max
0≤k≤ksmall+19

∫
Σ∗

u2+2δdec |dke3(q)|2.

Together with Theorem M1, and the fact that δextra > δdec, we infer

max
0≤k≤ksmall+18

∫
Σ∗

u2+2δdec |dkF |2 . ε20.

This concludes the proof of the corollary.

We are now ready to prove Proposition 6.2.6. In view of Corollary 6.2.14, α satisfies

6mν̃α + r4 d?/2 d
?/1 d/1 d/2α = F.

Commuting with dk, we infer

6mν̃(dkα) + r4 d?/2 d
?/1 d/1 d/2(dkα) = Fk

where Fk is defined by

Fk := −6m[dk, ν̃]α− 6
k∑
j=1

dj(m)dk−j ν̃α− [dk, r d?/2]r d?/1r d/1r d/2α− r d?/2[dk, r d?/1]r d/1r d/2α

−r d?/2r d
?/1[dk, r d/1]r d/2α− r d?/2r d

?/1r d/1[dk, r d/2]α + dkF.

Note that we have schematically

[d, d/] = rΓbd, [ν̃, d/] =
(
O(r−1) + rΓb

)
d, [ν̃, re4] = O(r−1)d, [ν̃, e3] = O(r−1)d.

3Recall from Lemma 5.1.1 that we have

δ0 =
kloss

klarge − ksmall
.

Since we have here kloss = 22, and since we have 2ksmall ≤ klarge + 1 and klargeδdec � 1, we deduce
δ0 � δdec and we have indeed 8δ0 ≤ δdec.
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Together with the fact that α behaves at least as good as Γb, we infer, schematically,

Fk = dkF + r−1d≤k+4Γb + rd≤k+4(Γ2
b).

In view of (6.2.4) and the behavior (3.3.4) of r on Σ∗, we have

max
0≤k≤ksmall+18

sup
Σ∗

ru
3
2

+ 3
2
δdec |r−1d≤k+4Γb + rd≤k+4(Γ2

b)| . εu
1
2

+δdec
∗ sup

Σ∗

r−1 + ε2 . ε0.

This yields

max
0≤k≤ksmall+18

∫
Σ∗

u2+2δdec |Fk|2 . ε20 + max
0≤k≤ksmall+18

sup
Σ∗

u2+2δdec|dkF |2.

Together with the estimate for F of Corollary 6.2.14, we infer

max
0≤k≤ksmall+18

∫
Σ∗

u2+2δdec |Fk|2 . ε4 + ε20 . ε20.

This concludes the proof of Proposition 6.2.6.

6.2.6 Proof of Lemma 6.2.8

In this section we prove Lemma 6.2.8, i.e. we derive estimates for the control of the
parabolic equation appearing in the statement of Proposition 6.2.6. The following identity
will be useful.

Lemma 6.2.15. We have for any reduced scalar f

ν̃

(∫
S

f 2

)
= 2

∫
S

fν̃(f) +

∫
S

(−2afe4(f) + κf 2) + a

∫
S

(2fe4(f) + κf 2) + Err

[
e3

(∫
S

f 2

)]
.

Proof. Recall from the definition of ν̃ that

ν̃ = e3 + ae4.
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We infer, in view of Proposition 2.2.9,

ν̃

(∫
S

f 2

)
= e3

(∫
S

f 2

)
+ ae4

(∫
S

f 2

)
=

∫
S

(2fe3(f) + κf 2) + Err

[
e3

(∫
S

f 2

)]
+ a

∫
S

(2fe4(f) + κf 2)

= 2

∫
S

fν̃(f) +

∫
S

(−2afe4(f) + κf 2) + a

∫
S

(2fe4(f) + κf 2) + Err

[
e3

(∫
S

f 2

)]
.

This concludes the proof of the lemma.

We are now ready to prove Lemma 6.2.8. Recall from Lemma 6.2.15 that we have

ν̃

(∫
S

f 2

)
= 2

∫
S

fν̃(f) +

∫
S

(−2afe4(f) + κf 2) + a

∫
S

(2fe4(f) + κf 2) + Err

[
e3

(∫
S

f 2

)]
.

In view of the equation satisfied by f , we infer

ν̃

(∫
S

f 2

)
= − 1

3m

(∫
S

r4f d?/2 d
?/1 d/1 d/2f

)
+

1

3m

(∫
S

hf

)
+

∫
S

(−2afe4(f) + κf 2) + a

∫
S

(2fe4(f) + κf 2) + Err

[
e3

(∫
S

f 2

)]
.

Now, from the definition of ν̃, we have ν̃(u) = 2/ς. We deduce

ν̃

(
un
∫
S

f 2

)
+
un

3m

(∫
S

r4f d?/2 d
?/1 d/1 d/2f

)
=

un

3m

(∫
S

hf

)
+ un

∫
S

(−2afe4(f) + κf 2) + aun
∫
S

(2fe4(f) + κf 2)

+unErr

[
e3

(∫
S

f 2

)]
+

2

ς
nun−1

∫
S

f 2.

This yields in view of the bootstrap assumptions

ν̃

(
un
∫
S

f 2

)
+
un

3m

(∫
S

r4f d?/2 d
?/1 d/1 d/2f

)
.

un

3m
‖h‖L2(S)‖f‖L2(S) +

(
1

r
+ εu−1

)
un
∫
S

|f ||d≤1f |+ nun−1

∫
S

f 2

.
un

3m
‖h‖L2(S)‖f‖L2(S) + εun−1

∫
S

|f ||d≤1f |+ nun−1

∫
S

f 2
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where we have used in the last inequality the behavior (3.3.4) of r on Σ∗. Next, we rely
on the Poincaré inequality of Lemma 6.2.11 to deduce

ν̃

(
un
∫
S

f 2

)
+ un

∫
S

f 2 . un
∫
S

h2 + ε2un−2

∫
S

(df)2 + nun−1

∫
S

f 2.

Integrating in u between 1 and u∗, and recalling that ν̃(u) = 2/ς, we infer∫
Σ∗

unf 2 .
∫

Σ∗∩C1
f 2 +

∫
Σ∗

unh2 + ε2
∫

Σ∗

un−2(df)2 + n

∫
Σ∗

un−1f 2.

In particular, we have for n = 0∫
Σ∗

f 2 .
∫

Σ∗∩C1
f 2 +

∫
Σ∗

h2 + ε2
∫

Σ∗

u−2(df)2.

Then, starting from the case n = 0 and arguing by iteration on the largest integer below
n, one immediately deduces for any real n ≥ 0∫

Σ∗

(1 + un)f 2 .
∫

Σ∗∩C1
f 2 +

∫
Σ∗

(1 + un)h2 + ε2
∫

Σ∗

(1 + un−2)(df)2

which concludes the proof of Lemma 6.2.8.



Chapter 7

DECAY ESTIMATES (Theorems
M4, M5)

In this chapter, we rely on the decay of q, α and α to prove the decay estimates for all
the other quantities. More precisely, we rely on the results of Theorem M1, M2 and M3
to prove Theorem M4 and M5.

7.1 Preliminaries to the proof of Theorem M4

In what follows we give a detailed proof of Theorem M4, which, we recall, provides the
main decay estimates in (ext)M. The proof makes use of the bootstrap assumptions
BA-D, BA-E, the results of Theorems M1, M2, M3 and Lemmas 3.4.1, 3.4.2. In this
section, we start with some preliminaries.

7.1.1 Geometric structure of Σ∗

The proof of Theorem M4 depends in a fundamental way on the geometric properties of
the GCM hypersuface Σ∗, the spacelike future boundary of (ext)M introduced in section
3.1.2. For the convenience of the reader, we recall below its main features.

1. The affine parameter s is initialized on Σ∗ such that s = r.

345
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2. There exists a constant c∗ such that

Σ∗ := {u+ r = c∗}.

3. Let ν∗ = e3 + a∗e4 be the unique vectorfield tangent to the hypersurface Σ∗, per-
pendicular to the foliation S(u) induced on Σ∗ and normalized by the condition
g(ν∗, e4) = −2. The following normalization condition holds true at the South Pole
SP of every sphere S,

a∗

∣∣∣
SP

= −1− 2m

r
. (7.1.1)

4. We have

r ≥ ε
− 2

3
0 u1+δdec

∗ on Σ∗. (7.1.2)

5. The following GCM conditions hold on Σ∗

κ =
2

r
, d?/2 d

?/1κ = 0, d?/2 d
?/1µ = 0, (7.1.3)∫

S

ηeΦ =

∫
S

ξeΦ = 0. (7.1.4)

Moreover on S∗ = Σ∗ ∩ C∗,∫
S∗

βeΦ = 0,

∫
S∗

eθ(κ)eΦ = 0. (7.1.5)

6. According to the definition of the Hawking mass, i.e. 1 − 2m
r

= − r2

4
κκ, and the

GCM assumption for κ we also have,

κ = −r
2

(
1− 2m

r

)
. (7.1.6)

Thus on Σ∗,

e3(r) =
r

2
(κ+ A) = −Υ +

r

2
A, e4(r) = 1. (7.1.7)

7. In view of the definition of ν∗ and and that of ς we we easily deduce1 the following
relation between a∗ and ς on Σ∗.

a∗ = −2

ς
+ Υ− r

2
A. (7.1.8)

8. Since on Σ∗ we have r = s we deduce,

Ω = e3(r) = −Υ +
r

2
A on Σ∗. (7.1.9)

1Indeed, since ν∗ is tangent to Σ∗ along which u = −r + c∗, using also (7.1.7), 2
ς = e3(u) = ν∗(u) =

−ν∗(r) = −e3(r)− a∗e4(r) = −a∗ + Υ− r
2A.
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7.1.2 Main assumptions

We reformulate below the main bootstrap assumption2 in the form needed in the proof
of Theorem M4.

Definition 7.1.1. We make use of the following norms on S = S(u, r) ⊂ (ext)M,

‖f‖∞(u, r) : = ‖f‖
L∞
(
S(u,r)

), ‖f‖2(u, r) := ‖f‖
L2
(
S(u,r)

),
‖f‖∞,k(u, r) :=

k∑
i=0

‖dif‖∞(u, r), ‖f‖2,k(u, r) :=
k∑
i=0

‖dif‖2(u, r).
(7.1.10)

To simplify the exposition it also helps to introduce the following schematic notation for
the connection coefficients (recall ω, ξ = 0 and ζ = −η),

Γg =
{
κ̌, ϑ, η, ζ, κ̌

}
∪
{
κ− 2

r
, κ+

2Υ

r

}
,

Γb =
{
ϑ, η, ω̌, ξ, A, r−1ς̌ , r−1Ω̌,

}
∪
{
ω − m

r2
, r−1(ς − 1), r−1(Ω + Υ)

}
.

(7.1.11)

Remark 7.1.2. It is important to note that η belongs to Γb rather than Γg as it may
have been expected. Note also that A ∈ Γb in view of Proposition 2.2.9 and the fact

that (ς̌ , Ω̌) ∈ rΓb. We also note that the averaged quantities
{
κ − 2

r
, κ + 2Υ

r

}
and

{
ω −

m
r2 , r

−1(ς − 1), r−1(Ω + Υ)
}

are actually better behaved in view of Lemmas 3.4.1, 3.4.2.

Ref 1. According to our bootstrap assumptions BA-D, and the pointwise estimates of
Proposition 3.4.5, which themselves follow from BA-E, as well as the control of averages
in Lemma 3.4.1 and the control of the Hawking mass in Lemma 3.4.2, we have on (ext)M,

1. For 0 ≤ k ≤ ksmall,

‖Γg‖∞,k . εmin
{
r−2u−

1
2
−δdec , r−1u−1−δdec

}
,

‖e3Γg‖∞,k−1 . εr−2u−1−δdec ,

‖Γb‖∞,k . εr−1u−1−δdec .

(7.1.12)

2. For k ≤ klarge − 5

‖Γg‖∞,k . εr−2, ‖Γb‖∞,k . εr−1. (7.1.13)

2Based on bootstrap assumptions BA-D, BA-E, Theorems M1, M2, M3 and Lemmas 3.4.1, 3.4.2.
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Ref 2. The quantity3 q satisfies on (ext)M, for all 0 ≤ k ≤ ksmall + 20,

‖q‖∞,k . ε0 min
{
u−1−δextra , r−1u−

1
2
−δextra

}
,

‖e3q‖∞,k−1 . ε0r
−1u−1−δextra .

(7.1.14)

In addition, on the last slice Σ∗, for all k ≤ ksmall + 20,

∫
Σ∗(τ,τ∗)

|e3d
kq|2 + |e4d

kq|2 + r−2|q|2 . ε20(1 + τ)−2−2δdec . (7.1.15)

According to Theorem M2 we have on (ext)M, for all 0 ≤ k ≤ ksmall + 20,

‖α‖∞,k . ε0 min
{
r−3(u+ 2r)−

1
2
−δextra , log(1 + u)r−2(u+ 2r)−1−δextra

}
,

‖e3α‖∞,k−1 . ε0 min
{
r−4(u+ 2r)−

1
2
−δextra , log(1 + u)r−3(u+ 2r)−1−δextra

}
.

(7.1.16)

According to Theorem M3, the component α verifies the following estimate4 holds on T ,
for 0 ≤ k ≤ ksmall + 16,

sup
T
u1+δdec |dkα| . ε0, (7.1.17)

and on the last slice Σ∗ for all k ≤ ksmall + 18

∫
Σ∗(τ,τ∗)

|dkα|2 . ε20(1 + τ)−2−2δdec . (7.1.18)

Ref 3. In view of the bootstrap assumptions BA-D and the pointwise estimates of
Proposition 3.4.5 for the curvature components, which themselves follow from BA-E , we
have in (ext)M,

3Recall (see Remark 2.4.9) that the quantity q we are working with is defined relative to the global
frame of Proposition 3.5.5.

4In fact, the corresponding estimate in Theorem M3 holds on (int)M, and hence in particular on T
since T ⊂ (int)M.
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i. For all 0 ≤ k ≤ ksmall,

‖β‖∞,k . εmin
{
r−3(u+ 2r)−

1
2
−δdec , r−2(u+ 2r)−1−δdec

}
,

‖e3β‖∞,k−1 . εmin
{
r−4(u+ 2r)−

1
2
−δdec , r−3(u+ 2r)−1−δdec

}
,∥∥∥∥(ρ̌, ρ+

2m

r3

)∥∥∥∥
∞,k
. εmin

{
r−3u−

1
2
−δdec , r−2u−1−δdec

}
,∥∥∥∥e3

(
ρ̌, ρ+

2m

r3

)∥∥∥∥
∞,k−1

. εr−3u−1−δdec ,∥∥∥∥µ̌, µ− 2m

r3

∥∥∥∥
∞,k
. εr−3u−1−δdec ,

‖β‖∞,k . εr−2u−1−δdec .

(7.1.19)

Since K = −ρ− 1
4
κκ+ 1

4
ϑϑ = 1

r2 − (ρ− ρ)− 1
4
(κκ− κκ) + l.o.t. we also deduce for

all 0 ≤ k ≤ ksmall,∥∥∥∥K − 1

r2

∥∥∥∥
∞,k

. εmin
{
r−3u−

1
2
−δdec , r−2u−1−δdec

}
.

ii. For all k ≤ klarge − 5,

r
7
2

+
δB
2

(
‖α‖∞,k + ‖β‖∞,k

)
. ε,

r3‖ρ̌‖∞,k + r2‖β‖∞,k + r‖α‖∞,k . ε.
(7.1.20)

Remark 7.1.3. In view of the control of averages Lemma 3.4.1 we have in fact better
estimates for the scalars,

κ− 2

r
, κ+

2Υ

r
, ω − m

r2
, ρ+

2m

r3
.

In particular they can be estimated by ε replaced by ε0 in Ref 1.

Remark 7.1.4. Note that r(ρ̌, ρ+ 2m
r3 ), r(K− 1

r2 ) behave as Γg. For convenience we shall
just simply add them to Γg. Similarly (rβ, α) behave as Γb. Thus, our extended Γg,Γb are

Γg =
{
κ̌, ϑ, η, ζ, κ̌, rρ̌

}
∪
{
κ− 2

r
, κ+

2Υ

r
, r

(
ρ+

2m

r3

)}
,

Γb =
{
ϑ, η, ω̌, ξ, A, r−1ς̌ , r−1Ω̌, rβ, α

}
∪
{
ω − m

r2
, r−1(ς − 1), r−1(Ω + Υ)

}
.

Note also that we can write e3(Γg) = r−1dΓb.
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7.1.3 Basic lemmas

Commutation identities

Lemma 7.1.5. We have, schematically,

[ d/, e4]ψ = Γgd↗ψ + l.o.t.,

[ d/, e3]ψ = rΓbe3ψ + Γ≤1
b d↗ψ + l.o.t.

(7.1.21)

Proof. Follows from Lemma 2.2.13 and the symbolic notation introduced in (7.1.11), see
also Remark 7.1.4.

Interpolation and product estimates

We estimate quadratic error terms with the help of the following lemma.

Lemma 7.1.6. Let kloss = 25. Then, the following interpolation estimates hold true for
all 0 ≤ k ≤ ksmall + kloss

‖Γg‖∞,k + r
∥∥∥(ρ̌, β, α)∥∥∥

∞,k
. εr−2u−

1
2
− δdec

2 ,

‖(Γb, α)‖∞,k + r‖β‖∞,k . εr−1u−1− δdec
2 .

(7.1.22)

Also, the following product estimates hold true for all 0 ≤ k ≤ ksmall + kloss

‖Γg · Γg‖∞,k + r
∥∥∥(ρ̌, β, α) · Γg∥∥∥

∞,k
. ε0r

−4u−1−δdec ,∥∥∥Γg ·
(

Γb, α
)∥∥∥
∞,k

+ r‖Γg · β‖∞,k + r
∥∥∥(ρ̌, β, α) · Γb∥∥∥

∞,k
. ε0r

−3u−
3
2
−δdec∥∥∥(β, α) · Γb∥∥∥

∞,k
. ε0r

− 9
2u−1−δdec ,∥∥∥(Γb, α

)
· Γb
∥∥∥
∞,k

+ r‖β · Γb‖∞,k . ε0r
−2u−2−δdec .

(7.1.23)

Proof. All estimates are easy to prove in the range 0 ≤ k ≤ ksmall. We shall thus assume
that ksmall ≤ k ≤ ksmall + kloss. Since kloss < ksmall we have k/2 < ksmall for all k in that
range.
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For simplicity of notation we write L := klarge−5, S := ksmall. By standard interpolation
inequalities, for all S ≤ k ≤ L,

‖Γg‖∞,k . ‖Γg‖
k−S
L−S
∞,L ‖Γg‖

L−k
L−S
∞,S . εr−2

[
u−

1
2
−δdec

] L−k
L−S
. εr−2u−

1
2
−δdec

[
u

1
2

+δdec
] k−S
L−S

,

‖Γb‖∞,k . ‖Γb‖
k−S
L−S
∞,L ‖Γb‖

L−k
L−S
∞,S . εr−1

[
u−1−δdec

] L−k
L−S
. εr−1u−1−δdec

[
u1+δdec

] k−S
L−S

.

Now, we may assume that kloss satisfies5

kloss ≤
δdec
3

(klarge − ksmall).

Thus, for ksmall ≤ k ≤ ksmall + kloss, we have

[
u

1
2

+δdec
] k−S
L−S

+
[
u1+δdec

] k−S
L−S
.
[
u1+δdec

] kloss
klarge−5−ksmall .

[
u1+δdec

] δdec
3
. u

δdec
2

and hence

‖Γg‖∞,k . εr−2u−
1
2
− δdec

2 ,

‖Γb‖∞,k . εr−1u−1− δdec
2 .

Since rρ̌ satisfies the same estimates as Γg and rβ and rα satisfy even better estimates,
and that α and rβ satisfy the same estimate as Γb, we infer

‖Γg‖∞,k + r
∥∥∥(ρ̌, β, α)∥∥∥

∞,k
. εr−2u−

1
2
− δdec

2 ,

‖(Γb, α)‖∞,k + r‖β‖∞,k . εr−1u−1− δdec
2 ,

which is the desired interpolation bound.

The first, second and last product estimates follow immediately from the above interpo-
lation bound. Finally, the third product estimate follows from the above interpolation

5Recall that we have

0 < δdec � 1, δdec klarge � 1, ksmall =

⌊
1

2
klarge

⌋
+ 1.

In particular, we have δdec(klarge−ksmall)� 1 and hence we may indeed assume that kloss = 25 satisfies
the required constraints.
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estimate for Γb and the following interpolation estimate for ksmall ≤ k ≤ ksmall + kloss

‖(β, α)‖∞,k . ‖(β, α)‖
k−S
L−S
∞,L ‖(β, α)‖

L−k
L−S
∞,S

. ε
[
r−

7
2
− δB

2

] k−S
L−S
[

min
(
r−

7
2
− δB

2 , r−3u−
1
2
−δdec

) ] L−k
L−S

. ε
[
r−

7
2
− δB

2

]1−δdec[
r−3u−

1
2
−δdec

]δdec
. εr−

7
2u−

δdec
2

where we have used in the last inequality the fact that δB > 2δdec.

Elliptic estimates

We shall often make use of the results of Proposition 2.1.30 and Lemma 2.1.35 which
we rewrite as follows with respect to the L2 based hk(S) spaces introduced in Definition
2.1.36.

Lemma 7.1.7. Under the assumptions Ref1−Ref3 the following elliptic estimates hold
true for the Hodge operators d/1, d/2, d

?/1, d
?/2, for all k ≤ ksmall + 20.

1. If f ∈ s1(S),

‖ d/f‖hk(S) + ‖f‖hk(S) . r‖ d/1f‖hk(S).

2. If f ∈ s2(S),

‖ d/f‖hk(S) + ‖f‖hk(S) . r‖ d/2f‖hk(S).

3. If f ∈ s0(S),

‖ d/f‖hk(S) . r‖ d?/1 f‖hk(S).

4. If f ∈ s1(S),

‖f‖hk+1(S) . r‖ d?/2 f‖hk(S) + r−2

∣∣∣∣∫
S

eΦf

∣∣∣∣ .
5. If f ∈ s1(S), ∥∥∥∥f −

∫
S
feΦ∫

S
e2Φ

eΦ

∥∥∥∥
hk+1(S)

. r‖ d?/2 f‖hk(S).
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7.1.4 Main equations

The proof of Theorem M4 relies heavily on the null structure and null Bianchi identities
derived in section 2.2.4, see Propositions 2.2.8. We also rely on Proposition 2.2.18 for
equations verified by the check quantities. We rewrite them below in a schematic form.

Proposition 7.1.8 (Transport equations for checked quantities). We have the following
transport equations in the e4 direction,

e4κ̌+ κ κ̌ = Γg · Γg,

e4κ̌+
1

2
κκ̌+

1

2
κ̌κ = −2 d/1ζ + 2ρ̌+ Γg · Γb,
e4ω̌ = ρ̌+ Γg · Γb,

e4ρ̌+
3

2
κρ̌+

3

2
ρκ̌ = d/1β + Γb · α + Γg · β + κ̌ · ρ̌,

e4µ̌+
3

2
κµ̌+

3

2
µκ̌ = r−1Γg · d/≤1Γg.

(7.1.24)

Also, we have in the e3 direction,

e3κ̌ = r−1 d/≤1Γb + Γb · d/≤1Γb,

e3ρ̌ = r−2 d/≤1Γb + r−1Γb · d/≤1Γb.
(7.1.25)

Proof. The statements follow from the precise formulas of Proposition 2.2.18 and the
symbolic notation in (7.1.11). We also use the convention made in Remark 7.1.4 according
to which we write rρ̌, rµ̌ ∈ Γg, (rβ, α) ∈ Γb and e3(Γg) = r−1(dΓb).

7.1.5 Equations involving q

Recall that our main quantity q has been introduced in Definition 2.3.12 with respect to
the global frame of Proposition 3.5.5 (see Remark 2.4.9). The passage from the geodesic
frame (e3, eθ, e4) of (ext)M to the global frame (e′3, e

′
θ, e
′
4) is given by

e′4 = Υ

(
e4 + feθ +

1

4
f 2e3

)
, e′θ = eθ +

1

2
fe3, e′3 = Υ−1e3. (7.1.26)

with a reduced scalar f which was constructed in Proposition 3.4.6. We recall below the
main relevant statements of Proposition 3.4.6 in connection to the construction of the
global frame.
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Proposition 7.1.9. Under assumptions Ref 1-2 on (ext)M there exists a frame trans-
formation of the form, (7.1.26) verifying the following properties6:

1. Everywhere in (ext)M we have ξ′ = 0.

2. The transition function f verifies, relative to the background frame (e3, eθ, e4), the
estimates7

|dkf | . ε

ru
1
2

+δdec−2δ0 + u1+δdec−2δ0
, for k ≤ ksmall + 20 on (ext)M,

|dk−1e′3f | .
ε

ru1+δdec−2δ0
for k ≤ ksmall + 20 on (ext)M.

(7.1.27)

3. The primed Ricci coefficients and curvature components verify8

max
0≤k≤ksmall+kloss

sup
(ext)M

{(
r2u

1
2

+δdec−2δ0 + ru1+δdec−2δ0
)
|dkΓ′g|+ ru1+δdec−2δ0|dkΓ′b|

+r2u1+δdec−2δ0

∣∣∣∣dk−1e′3

(
κ′ − 2Υ

r
, κ′ +

2

r
, ϑ′, ζ ′, η′, η′

)∣∣∣∣
+
(
r3(u+ 2r)

1
2

+δdec−2δ0 + r2(u+ 2r)1+δdec−2δ0
)(
|dkα′|+ |dkβ′|

)
+
(
r3(2r + u)1+δdec + r4(2r + u)

1
2

+δdec−2δ0
)
|dk−1e′3(α′)|

+
(
r3u1+δdec + r4u

1
2

+δdec−2δ0
)
|dk−1e′3(β′)|

+
(
r3u

1
2

+δdec−2δ0 + r2ru1+δdec−2δ0
)
|dkρ̌′|

+u1+δdec−2δ0
(
r2|dkβ′|+ r|dkα′|

)}
. ε.

We have the following analog of Proposition 2.3.13.

Proposition 7.1.10. We have, relative to the background frame of (ext)M,

r4

(
d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ

)
= q + Err (7.1.28)

with error term expressed schematically in the form

Err = r2 d/≤2(Γb · Γg). (7.1.29)

6We denote by primes the Ricci and curvature components w.r.t. to the primed frame.
7In fact, the estimates hold for ksmall + kloss, see Proposition 3.4.6, and we choose here kloss = 20.
8Note that u and r here are the outgoing optical function and area radius of the foliation of (ext)M.
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Proof. We make use of Proposition 2.3.13. Recall (see Remark 2.4.9) that the quantity q
we are working with is defined relative to the global frame of Proposition 3.5.5. We thus
write9,

q = r4

(
( d?/2)′( d?/1)′ρ′ +

3

4
κ′ρ′ϑ′ +

3

4
κ′ρ′ϑ

)
+ Err′,

Err′ = r4e′3η
′ · β′ + r2d≤1

(
Γb · Γg),

where the primes refer to the global frame in which q was defined. Since in that frame
e′3η
′ ∈ r−1dΓb and β′ ∈ r−1Γg we can simplify and write,

Err′ = r2d≤1
(
Γb · Γg).

We also have in view of Proposition 2.3.4

ρ′ = ρ+ fβ +O(f 2α),

β′ = β +
1

2
fα,

α′ = α,

κ′ = κ+ fξ,

κ′ = κ+ d/1
′(f) + f(ζ + η) +O(r−1f 2),

ϑ′ = ϑ− d?/2
′(f) + f(ζ + η) +O(r−1f 2),

ϑ′ = ϑ+ fξ.

Note that

( d?/1)′ρ = −e′θ(ρ) = −eθρ−
1

2
fe3ρ = d?/1ρ−

1

2
fe3ρ.

We deduce,

( d?/2)′( d?/1)′ρ′ = ( d?/2)′( d?/1)′ρ+ ( d?/2)′( d?/1)′(Γb · Γg) + l.o.t.

= ( d?/2)′
(
d?/1 −

1

2
fe3

)
ρ+ r−2 d/≤2(Γb · Γg)

= d?/2

(
d?/1 −

1

2
fe3

)
ρ+ r−2 d/≤2(Γb · Γg)

= d?/2 d
?/1ρ−

1

2
d?/2fe3ρ+ r−2 d/≤2(Γb · Γg).

9The values of r and r′ differ only by lower order terms which do not affect the result.
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Similarly,

κ′ρ′ϑ′ = ρκ
(
ϑ− d?/2f

)
+ r−3 d/≤1(Γg · Γg),

κ′ρ′ϑ′ = κρϑ+ r−3 d/≤1(Γb · Γg).

We deduce,

( d?/2)′( d?/1)′ρ′ +
3

4
κ′ρ′ϑ′ +

3

4
κ′ρ′ϑ′ = d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ− 1

2
d?/2f

(
e3ρ+

3

2
κρ

)
+ r−2 d/≤2(Γb · Γg).

Note that,

d?/2f

(
e3ρ+

3

2
κρ

)
= d?/2f

(
d/1β −

1

2
ϑα + l.o.t.

)
= r−2 d/≤2(Γg · Γb).

Hence

( d?/2)′( d?/1)′ρ′ +
3

4
κ′ρ′ϑ′ +

3

4
κ′ρ′ϑ′ = d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ+ r−2 d/≤2(Γb · Γg).

This concludes the proof of Proposition 7.1.10.

We shall also need the following analogue of Proposition 2.3.14.

Proposition 7.1.11. The following identity holds true in (ext)M, with respect to its
background frame

e3(rq) = r5

{
d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ −

3

2
κρα +

3

4
(2ρ2 − κκρ)ϑ

}
+ Err[e3(rq)],

(7.1.30)

where

Err[e3(rq)] = r3d≤3
(
Γb · Γg

)
. (7.1.31)

Proof. We start with the result of Proposition 2.3.14 which we write in the form,

(r′)−5e′3(r′q) = ( d?/2 d
?/1 d/1)′β′ − 3

2
κ′ρ′α′ − 3

2
ρ′( d?/2 d

?/1)′κ′ − 3

2
κ′ρ(′ d?/2)′ζ ′ +

3

4
(2(ρ′)2 − κ′κ′ρ′)ϑ′

+ (r′)−5Err[e′3(r′q)]

Err′[e′3(r′q)] = r′Γbq + r5d′≤1
(
e′3η
′ · β′

)
+ r′3d≤2

(
Γb · Γg

)
.
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Since e′3η
′ ∈ r−1Γb and q ∈ Γb, we deduce,

Err′[e′3(r′q)] = r3d≤2
(
Γb · Γg

)
.

Now, in view of Proposition 2.3.4,

( d?/2 d
?/1 d/1)′β′ = ( d?/2 d

?/1 d/1)′
(
β +

1

2
fα

)
= ( d?/2 d

?/1 d/1)′β + r−2 d/3(Γb · Γg).

Proceeding in the same manner with all other terms we find,

( d?/2 d
?/1 d/1)′β′ − 3

2
κ′ρ′α′ − 3

2
ρ′( d?/2 d

?/1)′κ′ − 3

2
κ′ρ(′ d?/2)′ζ ′ +

3

4
(2(ρ′)2 − κ′κ′ρ′)ϑ′

= d?/2 d
?/1 d/1β −

3

2
κρα− 3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ +

3

4
(2ρ2 − κκρ)ϑ+ r−2 d/≤3(Γb · Γg)

from which the result easily follows.

7.1.6 Additional equations

The following proposition is an immediate corollary of Proposition 2.2.19.

Proposition 7.1.12. We have, schematically,

2 d?/1ω =

(
1

2
κ+ 2ω

)
η + e3(ζ)− β − 1

2
κξ + r−1Γg + Γb · Γb,

2 d/2 d
?/2η = κ

(
−e3(ζ) + β

)
− e3(eθ(κ)) + r−2 d/≤1Γg + r−1 d/≤1(Γb · Γb),

2 d/2 d
?/2ξ = κ

(
e3(ζ)− β

)
− e3(eθ(κ)) + r−2 d/≤1Γg + r−1 d/≤1(Γb · Γb).

Remark 7.1.13. Note that in fact Γg = {κ̌, ϑ, ζ, κ̌, rρ̌} and Γb = {ϑ, η, ξ, ω̌, rβ, α} in
the derivation of this proposition. It is important to note also that the terms denoted
schematically by d/(Γb · Γb) do not contain derivatives of ω̌.

The following corollary of Proposition 7.1.12 which will be very useful later on.

Proposition 7.1.14. The following identities hold true on Σ∗.

2 d?/2 d
?/1 d/1 d/2 d

?/2η = κ
(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
− d?/2 d

?/1 d/1e3(eθ(κ))

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.
(7.1.32)

2 d?/2 d
?/1 d/1 d/2 d

?/2ξ = e3

(
( d?/2 d/2 + 2K) d?/2 d

?/1κ)
)
− κ
(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

(7.1.33)
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Remark 7.1.15. Here, as in the remark following Proposition 7.1.12, Γg = {κ̌, ϑ, ζ, κ̌, rρ̌}
and Γb = {ϑ, η, ξ, ω̌, rβ, α}. The quadratic terms denoted l.o.t. are lower order both in
terms of decay in r, u as well in terms of number of derivatives. They also contain only
angular derivatives d/ and not e3 nor e4.

Proof. We make use of Proposition 7.1.12 . We shall also make use of the conventions
mentioned in Remark 7.1.4, i.e. ρ̌, µ̌ ∈ r−1Γg, β ∈ r−1Γb, α ∈ Γb.

We start with,

2 d/2 d
?/2η = κ

(
−e3(ζ) + β

)
− e3(eθ(κ)) + r−2 d/≤1Γg + r−1 d/(Γb · Γb)

We apply d?/1 d/1 to derive,

2 d?/1 d/1 d/2 d
?/2η = κ

(
− d?/1 d/1e3(ζ) + d?/1 d/1β

)
− d?/1 d/1e3(eθ(κ)) + r−4 d/≤3Γg + r−3 d/3(Γb · Γb)

= κ
(
−e3( d?/1 d/1(ζ) + d?/1 d/1β

)
− d?/1 d/1e3(eθ(κ))

− κ[ d?/1 d/1, e3]ζ + r−4 d/≤3Γg + r−3 d/3(Γb · Γb)
Making use of the commutation formula, see Lemma 7.1.5, and the null structure equa-
tions for e3ζ, e4ζ,

[ d/1, e3]ζ = −ηe3ζ + r−2 d/ζ + Γbe4ζ + l.o.t. = r−1Γb · Γb + r−2 d/Γg + l.o.t.

we deduce, schematically,

[ d?/1 d/1, e3]ζ = d?/1[ d/1, e3]ζ + [ d?/1, e3] d/1ζ

= r−1 d/
(
r−1Γb · Γb + r−2 d/ζ + l.o.t.

)
+ Γbe3 d/1ζ + r−2 d/1ζ + l.o.t.

= r−2 d/(Γb · Γb) + r−3 d/2ζ + Γb
(
d/1e3ζ + Γbe3ζ + r−2 d/ζ

)
+ l.o.t.

= r−2 d/(Γb · Γb) + r−2Γb d/(dΓb) + r−1Γb · Γb · Γb + r−4 d/2Γg

= r−2 d/(Γbd
≤1Γb) + r−4 d/2Γg + l.o.t.

Hence,

2 d?/1 d/1 d/2 d
?/2η = κ

(
− e3( d?/1 d/1ζ) + d?/1 d/1β

)
− d?/1 d/1e3(eθ(κ))

+ r−4 d/≤3Γg + r−3 d/2(Γb · d/Γb)
(7.1.34)

Since µ = − d/1ζ − ρ+ 1
4
ϑϑ, we deduce,

d?/1µ = − d?/2 d/1ζ − d?/1ρ+
1

4
d?/1(ϑϑ),

e3 d
?/1µ = −e3( d?/2 d/1ζ)− e3 d

?/1ρ+
1

4
e3 d

?/1(ϑϑ)

= −e3( d?/2 d/1ζ)− d?/1e3ρ− [ d?/1, e3]ρ+
1

4
d?/1e3(ϑϑ) +

1

4
[e3, d

?/1](ϑ · ϑ).
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Making use of the equations for e3ρ = d/1β − 3
2
κρ + Γg · Γb and also the equations for10

e4ρ, e3ϑ, e3ϑ, e4ϑ, e4ϑ (and writing d/1β = r−1 d/β = r−2 d/Γb)

[e3, d
?/1]ρ = Γbe3ρ+ Γbe4ζ + r−2 d/ρ = r−2Γb d/Γb + r−3 d/Γg + l.o.t.,

[e3, d
?/1](ϑ · ϑ) = Γbe3(ϑ · ϑ) + Γbe4(ϑ · ϑ) + r−2 d/(ϑ · ϑ) = r−2 d/

(
Γb · Γg

)
+ l.o.t.

We deduce, ignoring the lower order terms,

e3 d
?/1µ = −e3( d?/2 d/1ζ)− d?/1

(
d/1β −

3

2
κρ+ Γg · Γb

)
+ r−2Γb d/Γb

)
+ r−2 d/

(
ΓbΓg

)
+ r−3 d/Γg

= −e3( d?/2 d/1ζ)− d?/1 d/1β +
3

2
κ d?/1ρ+ r−3 d/Γg + r−2 d/≤1(Γb · Γb).

Hence,

e3( d?/1 d/1ζ) = −e3( d?/1µ)− d?/1 d/1β + r−3 d/Γg + r−2 d/≤2(Γb · Γb) + l.o.t. (7.1.35)

and thus, back to (7.1.34),

2 d?/1 d/1 d/2 d
?/2η = κ

(
e3( d?/1µ) + 2 d?/1 d/1β

)
− d?/1 d/1e3

(
eθ(κ)

)
+ r−4 d/≤3Γg + r−3 d/≤3(Γb · Γb) + l.o.t.

(7.1.36)

Applying d?/2 and commuting once more with e3, i.e.,

2 d?/2 d
?/1 d/1 d/2 d

?/2η = κ
(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
− d?/2 d

?/1 d/1e3

(
eθ(κ)

)
+ κ[ d?/2, e3] d?/1µ+ r−1 d/Γg ·

(
e3( d?/1µ) + 2 d?/1 d/1β

)
+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb).

(7.1.37)

Note that, in view of (7.1.36) we can write,

e3( d?/1µ) = 2κ−1 d?/2 d
?/1 d/1e3

(
eθ(κ)

)
− 2 d?/1 d/1β + 2κ−1 d?/1 d/1 d/2 d

?/2η

= r−3 d/≤4Γb + l.o.t.
(7.1.38)

Hence,

r−1 d/Γg ·
(
e3( d?/1µ) + 2 d?/1 d/1β

)
= r−4 d/Γg · d/≤4Γb.

Similarly,

[ d?/2, e3] d?/1µ = Γb · e3 d
?/1µ+ Γbe4 d

?/1µ+ r−3 d/2µ+ l.o.t.

= r−3Γb · d/≤4Γb + Γb
(
d?/1e4µ+ [e4, d

?/1]µ
)

+ r−4 d/2Γg + l.o.t.

10This is to avoid the presence of e3, e4 derivatives in the error terms.
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Thus, making use of the equation for e4µ and combining with the estimate above,

κ[ d?/2, e3] d?/1µ+ r−1 d/Γg ·
(
e3( d?/1µ) + 2 d?/1 d/1β

)
= r−4Γb · d/≤4Γb + r−5 d/≤2Γg.

Back to (7.1.37) we deduce,

2 d?/2 d
?/1 d/1 d/2 d

?/2η = κ
(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
− d?/2 d

?/1 d/1e3

(
eθ(κ)

)
+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb)

as desired.

To prove the second part we start with the formula for d/2 d
?/2 ξ in Corollary 7.1.12

2 d/2 d
?/2 ξ = κ

(
e3(ζ)− β

)
− e3(eθ(κ)) + r−2 d/≤1Γg + r−1 d/(Γb · Γb).

Applying d?/1 d/1 and proceeding exactly as before in the derivation of (7.1.34) we derive,

2 d?/1 d/1 d/2 d
?/2ξ = −e3( d?/1 d/1eθ(κ)) + κ

(
e3( d?/1 d/1ζ)− d?/1 d/1β

)
+ r−4 d/≤3Γg + r−3 d/2(Γb · dΓb).

(7.1.39)

Making use of (7.1.35) we deduce, as in (7.1.36),

2 d?/1 d/1 d/2 d
?/2ξ = −e3( d?/1 d/1eθ(κ)) + κ

(
− e3( d?/1µ)− 2 d?/1 d/1β

)
+ r−4 d/3Γg + r−3 d/≤2(Γb · dΓb) + l.o.t.

(7.1.40)

Applying d?/2 and proceeding as in the derivation of (7.1.37), by making use of (7.1.39)
and (7.1.38) we obtain

2 d?/2 d
?/1 d/1 d/2 d

?/2ξ = −e3( d?/2 d
?/1 d/1eθ(κ))− κ

(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

The identity d?/1 d/1 = d/2 d
?/2 + 2K yields, together with the bootstrap assumptions,

2 d?/2 d
?/1 d/1 d/2 d

?/2ξ = −e3(( d?/2 d/2 + 2K) d?/2eθ(κ))− κ
(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

= e3(( d?/2 d/2 + 2K) d?/2 d
?/1(κ))− κ

(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

as desired.
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7.2 Structure of the proof of Theorem M4

We rephrase the statement of Theorem M4 as follows.

Theorem 7.2.1. Let M = (int)M∪ (ext)M be a GCM admissible spacetime11. Under
the basic bootstrap assumptions and the results of Theorems M1-M4 (all encoded in Ref
1–Ref 4) the following estimates12 hold true, for all k ≤ ksmall+8, everywhere on (ext)M,

‖Γg‖∞,k . ε0 min
{
r−2u−

1
2
−δdec , r−1u−1−δdec

}
,

‖e3Γg‖∞,k−1 . ε0r
−2u−1−δdec ,

‖Γb‖∞,k . ε0r
−1u−1−δdec ,

(7.2.1)

and,

‖β‖∞,k . ε0 min
{
r−2(u+ 2r)−1−δdec , r−3(u+ 2r)−

1
2
−δdec

}
,

‖e3β‖∞,k−1 . ε0r
−3(u+ 2r)−1−δdec ,

‖ρ̌‖∞,k . ε0 min
{
r−2u−1−δdec , r−3u−

1
2
−δdec

}
,

‖e3ρ̌‖∞,k . ε0r
−3u−1−δdec ,

‖µ̌‖∞,k . ε0r
−3u−1−δdec ,

‖β‖∞,k . ε0r
−2u−1−δdec .

(7.2.2)

Moreover, everywhere in (ext)M,

‖α‖∞,k . ε0r
−1u−1−δdec . (7.2.3)

Here is a short sketch of the proof of the theorem.

1. Estimates on Σ∗. To start with, we only have good13 estimates for q, α and α,
according to Ref 2. To proceed we make use in an essential way of all the GCM
conditions (7.1.3)–(7.1.5) on the spacelike boundary Σ∗ to estimate all the Ricci
and curvature coefficients along Σ∗. We also take full advantage of the dominance
condition r ≥ εε−1

0 u1+δ
∗ on Σ∗. The main result is stated in Proposition 7.3.12. The

proof is divided in the following intermediary steps.

11In particular the conditions (7.1.1)–(7.1.5) hold on the spacelike boundary Σ∗.
12See Remark 7.1.4 for the definition of Γg,Γb used here.
13i.e estimates in terms of ε0.
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(a) In Proposition 7.3.6, we derive flux type estimates along Σ∗ for the quantities
β and Γb. These estimates take advantage in an essential way of the improved
flux estimates for q and α, see (7.1.15) and (7.1.18). This step also makes use
of Proposition 7.1.11 and the identities of Proposition 7.3.5 for η, ξ. Moreover,
as a byproduct of the flux estimates, we obtain the desired estimates on Σ∗ for
β and Γb.

(b) We next estimate the ` = 1 modes of the Ricci and curvature coefficients
in Proposition 7.3.10. Besides the information provided by the estimates for
q, α, α and the GCM conditions, an important ingredient in the proof is
the vanishing of the ` = 1 mode of eθ(K), i.e.

∫
eθ(K)eΦ = 0. The flux

estimates derived in Proposition 7.3.6 play an essential role in deriving the
desired estimate for the ` = 1 mode of β.

(c) We make use of the previous steps to complete the proof for the remaining
desired estimates on Σ∗ in Proposition 7.3.12. This step also uses, in addition
to the GCM conditions, Proposition 7.1.10 relating q to d?/2 d

?/1ρ, the Codazzi
equations and elliptic estimates on 2 surfaces.

2. First Estimates in (ext)M. We make use of the propagation equations in e4 and
the estimates on Σ∗ to derive some of the desired estimates of Theorem 7.2.1, more
precisely the better estimates in powers of r for the Γg quantities. Note that these
estimates decay only like u−1/2−δdec in powers of u.

(a) We first prove the desired estimates for κ̌, µ̌ by simply integrating the cor-
responding e4 equations. Note that these estimates are also well behaved in
terms of powers of u. This is done in section 7.4.3.

(b) We derive spacetime estimates for all the ` = 1 modes in Lemma 7.4.6. This
is done by propagating them from the last slice in the e4 direction, combined
with Codazzi equations and the vanishing of the ` = 1 mode of eθ(K).

(c) We provide all the optimal estimates in terms of powers14 of r for the quan-
tities ϑ, ζ, η, κ̌, β, ρ̌. This is achieved in Proposition 7.4.5 with the help of the
estimates on the last slice, the propagation equation for these quantities and
the estimates for the ` = 1 modes derived in the previous step.

3. Optimal u-decay estimates in (ext)M. We derive all the remaining estimates of
Theorem 7.2.1 for all but the quantities ξ, ω̌, Ω̌, ς̌. The main remaining difficulty
is to get the top decay in powers of u for ϑ, ζ, η, κ̌, β, ρ̌, β. The result is stated in
Proposition 7.5.1. We proceed as follows.

14These estimates also provide weak decay in u, i.e. u−
1
2−δdec decay.
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(a) One would like to start with ϑ by using the equation e4ϑ + κϑ = −2α. This
unfortunately cannot work by integration15 starting from the last slice Σ∗.
Similar problems occur for ζ, β, ρ̌. On the other hand the quantities κ̌ and ϑ
could in principle be propagated using their corresponding e4 equations from
Σ∗, but unfortunately they are strongly coupled with the other quantities for
which we don’t yet have information. For example we have,

e4κ̌+
1

2
κκ̌+

1

2
κ̌κ = −2 d/1ζ + 2ρ̌+ Γg · Γb,

and therefore we cannot derive the estimate for κ̌, by integration, before es-
timating d/1ζ and ρ̌. To circumvent this difficulty we proceed by an indirect
method as follows.

(b) We can derive optimal decay information on various mixed quantity. For ex-
ample making use of the equation

e3α +

(
1

2
κ− 4ω

)
α = − d?/2β −

3

2
ϑρ+ 5ζβ,

we infer the desired decay in u for the quantity d?/2β− 3
2
ϑρ. Other such informa-

tions can be derived from the Codazzi equations for ϑ, ϑ, the Bianchi identity
for β and the identity (7.1.28) of Lemma 7.1.10.

(c) We combine the control we have for α, κ̌, µ̌ with the control for the mixed
quantities mentioned above with a propagation equation for an intermediary
quantity,

Ξ := r2
(
eθ(κ) + 4r d?/1 d/1ζ − 2r2 d?/1 d/1β

)
.

We show in the crucial Lemma 7.5.2 that Ξ is also a good mixed quantity, i.e.
it has optimal decay in u. It is important to note that this estimate does not
depend linearly on α for which we only have information on the last slice and
T .

(d) We can combine the control of Ξ with all other available information mentioned
above, to derive good estimates, simultaneously, for d?/2 d

?/1κ, d
?/2ζ and d?/2β. This

is achieved in a sequence of crucial Lemma in section 7.5.2. Unfortunately this
step is heavily dependent on the estimate of Ref 2 for α and therefore the
estimates we derive are only useful on T .

(e) We also show that we have good estimates for d?/2

(
ζ, d?/1κ̌, β, β, d

?/1ρ̌
)

. To es-

timate κ̌, ζ, β, β, ρ̌ from d?/2

(
ζ, d?/1κ̌, β, β, d

?/1ρ̌
)

we rely on the elliptic Hodge

15It would work however if instead we would integrate from the interior, but we don’t possess informa-
tion about optimal u decay in the interior, for example on the timelike boundary T of (ext)M.
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Lemma 7.1.7 and the control we have for the ` = 1 modes from Lemma 7.4.6
derived earlier. We obtain estimates for η, ϑ, ϑ as well. This establishes all the
estimates of Proposition 7.5.1 on T .

(f) The estimates mentioned above on T can now be propagated by integrating
forward the e4 null structure and null Bianchi equations. This ends the proof
of Proposition 7.5.1 in (ext)M.

4. In Proposition 7.6.1 we derive improved decay estimates for e3(β, ϑ, ζ, κ̌, ρ̌) and
estimates for ξ, ω̌, Ω̌, ς̌ in terms of u−1−δdec decay. The estimates for ω̌ and ξ are
propagated from the last slice using their e4 propagation equations. The estimate
for ω̌ can be easily derived by integrating e4(ω̌) = ρ̌ + Γg · Γb form the last slice
Σ∗. The estimate for ξ follows by integrating e4(ξ) = −e3(ζ) + β − κζ + Γb · Γb and

making use of the previously derived estimates for e3ζ, β, ζ. The estimates for Ω̌, ς̌
follow easily from the equations (2.2.19).

7.3 Decay estimates on the last slice Σ∗

7.3.1 Preliminaries

We shall make use of the following norms on Σ∗.

‖ψ‖∗∞,k(u, r) :=
∑
j≤k
‖dj∗ψ‖L∞(S(u,r)), dj∗ =

∑
j1+j2≤j

d/j1 (ν∗)
j2 . (7.3.1)

Recall that ν∗ = ν
∣∣∣
Σ∗

= e3 + a∗e4, is the tangent vector to Σ∗ and (see (7.1.8) (7.1.9)),

along Σ∗,

a∗ = −2

ς
+ Υ− r

2
A = −2

ς
− Ω. (7.3.2)

Since ς − 1 and Ω + Υ belong to rΓb in view of (7.1.11), we deduce

a∗ + 1 +
2m

r
∈ rΓb. (7.3.3)

As immediate consequence of the commutation Corollary 7.1.5 we derive the following,

Lemma 7.3.1. We have, schematically,

[ d/, ν∗]ψ = rΓb (ν∗ψ) + d≤1Γb · dψ. (7.3.4)
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Proof. Indeed, see Lemma 7.1.5,

[ d/, e4]ψ = Γgd↗ψ,

[ d/, e3]ψ = rΓbe3ψ + Γbd↗ψ + l.o.t.
(7.3.5)

Hence, since d/a∗ ∈ r d/Γb,

[ d/, ν∗]ψ = [ d/, e3 + a∗e4]ψ = rΓbe3ψ + Γbd↗ψ + a∗Γgd↗ψ + d/a∗e4ψ

= rΓb (ν∗ψ − a∗e4ψ) + a∗Γgd↗ψ + d/a∗e4ψ

= rΓb ν∗ψ − a∗ (Γbd↗ψ + Γgd↗ψ) + d/Γb · dψ
= rΓb ν∗ψ + d≤1Γb · dψ

as desired.

To estimate derivatives of the ` = 1 modes on Σ∗ we make use of the following.

Lemma 7.3.2. For every scalar function h we have the formula

ν∗

(∫
S

h

)
= (ς)−1

∫
S

ς (ν∗(h) + (κ+ a∗κ)h) . (7.3.6)

In particular

ν∗(r) =
r

2
(ς)−1ς(κ+ a∗κ). (7.3.7)

Proof. We consider the coordinates u, θ along Σ∗ with ν∗(θ) = 0. In these coordinates we
have,

ν∗ =
2

ς
∂u.

The lemma follows easily by expressing the volume element of the surfaces S ⊂ Σ∗ with
respect to the coordinates u, θ (see also the proof of Proposition 2.2.9).

Lemma 7.3.3. Given ψ ∈ s1, we have the formula,

ν∗

(∫
S

ψeΦ

)
=

∫
S

(ν∗ψ)eΦ +
3

2

(
κ− 2κ− Ωκ

) ∫
S

ψeΦ + Err[ψ, ν∗] (7.3.8)

with error term

Err[ψ, ν∗] = r4Γbν∗(ψ) + r3Γbψ.
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Proof. We have

ν∗

(∫
S

ψeΦ

)
= ς−1

∫
S

ς
(
ν∗(ψe

Φ) + (κ+ a∗κ)ψeΦ
)

= ς−1

∫
S

ς
(
ν∗ψe

Φ + e−Φν∗(e
Φ) + κ+ a∗κ

)
ψeΦ.

Recalling that e4(Φ) = 1
2
(κ− ϑ), e3(Φ) = 1

2
(κ− ϑ) we deduce

e−Φν∗(e
Φ) + κ+ a∗κ =

3

2
(κ+ a∗κ)− 1

2
(ϑ− a∗ϑ).

Hence, writing also ςa∗ = −2− ςΩ, ς = ς + ς̌, κ = κ+ κ̌, κ = κ+ κ̌, and Ω = Ω + Ω̌,

ν∗

(∫
S

ψeΦ

)
= ς−1

∫
S

ς

(
ν∗ψ +

3

2
(κ+ a∗κ)ψ

)
eΦ − 1

2
ς−1

∫
S

ς(ϑ− a∗ϑ)ψeΦ

= ς−1ς

∫
S

(
ν∗ψ +

3

2
(κ− Ωκ)ψ

)
eΦ + ς−1

∫
S

ς̌

(
ν∗ψ +

3

2
(κ− Ωκ)

)
eΦ

− 3ς−1

∫
S

κψeΦ − 1

2
ς−1

∫
S

ς(ϑ− a∗ϑ)ψeΦ

=

∫
S

(
ν∗ψ +

3

2
(κ− Ωκ)ψ

)
eΦ − 3ς−1

∫
S

κψeΦ

+ (ς−1ς − 1)

∫
S

(
ν∗ψ +

3

2
(κ− Ωκ)ψ

)
eΦ

+ ς−1

∫
S

ς̌

(
ν∗ψ +

3

2
(κ− Ωκ)ψ

)
eΦ − 1

2
ς−1

∫
S

ς(ϑ− a∗ϑ)ψeΦ

=

∫
S

(ν∗ψ)eΦ +
3

2

(
κ− 2κ− Ωκ

) ∫
S

ψeΦ + Err[ψ, ν∗]

where,

Err[ψ, ν∗] = r4Γbν∗(ψ) + r3Γbψ + r3Γbψ + r3Γgψ

and the conclusion follows from the fact that Γg behaves at least as good as Γb.

Corollary 7.3.4. Given ψ ∈ s1 and k ≥ 1, the following estimate holds true∣∣∣∣∫
S

(νk∗ψ)eΦ

∣∣∣∣ . k∑
j=0

∣∣∣∣νj∗ (∫
S

ψeΦ

)∣∣∣∣+
∣∣d≤k−1

(
r4Γbν∗(ψ) + r3Γbψ

)∣∣ . (7.3.9)



7.3. DECAY ESTIMATES ON THE LAST SLICE Σ∗ 367

Proof. We prove (7.3.9) by iteration. First, (7.3.9) holds true for k = 1 in view of Lemma
7.3.3. Also, assuming (7.3.9) for k ≥ 1, we apply it with ψ replaced by ν∗ψ which implies∣∣∣∣∫

S

(νk+1
∗ ψ)eΦ

∣∣∣∣ . k∑
j=0

∣∣∣∣νj∗ (∫
S

ν∗ψe
Φ

)∣∣∣∣+
∣∣d≤k−1

(
r4Γbν

2
∗(ψ) + r3Γbψ

)∣∣ .
Applying Lemma 7.3.3 with ψ replaced by ν∗ψ to all terms in the sum of the left hand
side, we infer (7.3.9) with k replaced by k + 1 which shows that (7.3.9) holds indeed for
all k by iteration.

7.3.2 Differential identities involving GCM conditions on Σ∗

Recall our our GCM conditions on Σ∗

κ =
2

r
, d?/2 d

?/1µ = 0, d?/2 d
?/1κ = 0,

∫
S

ηeΦ = 0,

∫
S

ξeΦ = 0. (7.3.10)

Also, on S∗, the last cut of Σ∗,∫
S∗

βeΦ = 0,

∫
S∗

eθ(κ)eΦ = 0. (7.3.11)

The goal of the section is to derive identities involving the GCM conditions which will be
used later, see Lemma 7.3.9.

Proposition 7.3.5. The following identities hold true on Σ∗.

2 d?/2 d
?/1 d/1 d/2 d

?/2η = κ
(
ν∗( d

?/2 d
?/1µ) + 2 d?/2 d

?/1 d/1β
)
− d?/2 d

?/1 d/1ν∗(eθ(κ))

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.,
(7.3.12)

2 d?/2 d
?/1 d/1 d/2 d

?/2ξ = ν∗
(

( d?/2 d/2 + 2K) d?/2 d
?/1κ)
)
− κ
(
ν∗( d

?/2 d
?/1µ) + 2 d?/2 d

?/1 d/1β
)

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.
(7.3.13)

The quadratic terms denoted l.o.t. are lower order both in terms of decay in r, u as well
in terms of number of derivatives.

In particular, if the GCM conditions (7.3.10) are verified, we deduce,

d?/2 d
?/1 d/1 d/2 d

?/2η = κ d?/2 d
?/1 d/1β + r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.,

d?/2 d
?/1 d/1 d/2 d

?/2ξ = −κ d?/2 d
?/1 d/1β + r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

(7.3.14)
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Proof. The proof is a straightforward application of Proposition 7.1.14. Indeed according
to (7.1.32) we have

2 d?/2 d
?/1 d/1 d/2 d

?/2η = κ
(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
− d?/2 d

?/1 d/1e3(eθ(κ))

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

On the other hand since ν∗ = e3 + a∗e4 with a∗ = 2
ς∗
−Υ + r

2
A, see (7.1.8),

e3( d?/2 d
?/1µ) = ν∗ ( d?/2 d

?/1µ)− a∗e4 ( d?/2 d
?/1µ)

= ν∗ ( d?/2 d
?/1µ)− a∗ ( d?/2 d

?/1e4µ+ [e4, d
?/2 d

?/1]µ̌) .

Also, in the same fashion16,

d?/2 d
?/1 d/1e3(eθ(κ)) = d?/2 d

?/1 d/1 [ν∗(eθ(κ))− a∗e4eθκ]

= d?/2 d
?/1 d/1 [(ν∗(eθ(κ))]− a∗ d?/2 d

?/1 d/1(e4eθκ) + r−3
∑
i+j=2

d/ia∗ d/
j(e4eθκ)

= d?/2 d
?/1 d/1 [ν∗(eθ(κ))− a∗eθe4κ− [e4, eθ]κ]

= r−2
∑
i+j=2

d/iΓb d/
j (eθ(e4κ) + [eθ, e4]κ) .

Thus, after using the transport equations for e4µ, e4κ and the commutator lemma applied
to [e4, eθ] we easily deduce,

2 d?/2 d
?/1 d/1 d/2 d

?/2η = κ
(
ν∗( d

?/2 d
?/1µ) + 2 d?/2 d

?/1 d/1β
)
− d?/2 d

?/1 d/1ν∗(eθ(κ))

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

which confirms the first identity of the proposition.

The second part of the proposition can be derived in the same manner starting with the
identity (7.1.33)

2 d?/2 d
?/1 d/1 d/2 d

?/2ξ = e3

(
( d?/2 d/2 + 2K) d?/2 d

?/1κ)
)
− κ
(
e3( d?/2 d

?/1µ) + 2 d?/2 d
?/1 d/1β

)
+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

This concludes the proof of the proposition.

7.3.3 Control of the flux of some quantities on Σ∗

The goal of this section is to establish the following.

16Note that in view of (7.3.3), we have d/a∗ ∈ rΓb.
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Proposition 7.3.6. The following estimate holds true for all k ≤ ksmall + 18∫
Σ∗(u,u∗)

(
r2
∣∣ d/≤3dk∗β

∣∣2 +
∣∣ d/≤4dk∗Γb

∣∣2) . ε20u
−2−2δdec . (7.3.15)

We also have for k ≤ ksmall + 17

r‖ d/≤1β‖∗∞,k + ‖ d/≤2Γb‖∗∞,k . ε0r
−1u−1−δdec . (7.3.16)

Remark 7.3.7. The flux estimates (7.3.15) will be used in the proof of Proposition 7.3.10
on the control of the ` = 1 mode of various quantities. They also improve the bootstrap
assumption on the flux estimate for η on Σ∗ which is part of the decay norm (ext)Dk[η].

Proof. Note that (7.3.16) follows immediately from (7.3.15) using the trace theorem and
Sobolev. We thus concentrate our attention on deriving (7.3.15).

Step 1. We first prove the corresponding estimates for β away from its ` = 1 mode.
More precisely we prove.

Lemma 7.3.8. The following estimates holds true for all k ≤ ksmall + 18∫
Σ∗(u,u∗)

r4
∣∣ d?/2( d/≤2dk∗β)

∣∣2 . ε20u
−2−2δdec . (7.3.17)

Proof. We make use of Proposition 7.1.11 according to which

e3(rq) = r5

{
d?/2 d

?/1 d/1β −
3

2
κρα− 3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ +

3

4
(2ρ2 − κκρ)ϑ

}
+ Err[e3(rq)]

where

Err[e3(rq)] = r3d≤3
(
Γb · Γg

)
.

In view of Lemma 7.1.6, we have for all k ≤ ksmall + 18,

‖Err[e3(rq)]‖∞,k(u, r) . ε0u
− 3

2
−δdec . (7.3.18)

We can also check, making use of the estimates (7.1.13), and Lemma 7.1.6 for ϑ,

‖ρ d?/2 d
?/1κ, κρ d

?/2ζ, κκρϑ, ρ
2ϑ‖∞,k . ε

(
r−7 + r−6u−1− δdec

2

)
.



370 CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)

In view of our assumption for r on Σ∗ we have r ≥ ε
ε0
u1+δdec , we thus deduce for all

k ≤ ksmall + 18∥∥∥∥e3(rq)− r5

(
d?/2 d

?/1 d/1β −
3

2
κρα

)∥∥∥∥
∞,k

. ε
(
r−2 + r−1u−1− δdec

2

)
+ ε0u

− 3
2
−δdec

. ε0u
− 3

2
−δdec .

We infer that,

r−1‖r4dk∗ d
?/2 d

?/1 d/1β‖L2(S) . r−1‖r−1dk∗e3(rq)‖L2(S) + r−1‖dk∗α‖L2(S) + ε0r
−1u−

3
2
−δdec

where dk∗ = νk1∗ d/k2 denote the tangential derivatives to Σ∗. Thus integrating on the last
slice Σ∗ and making use of the assumptions (7.1.15) and (7.1.18), i.e.∫

Σ∗(u,u∗)

|e3d
kq|2 + r−2|q|2 + |dkα|2 . ε20(1 + u)−2−2δdec , k ≤ ksmall + 18,

we deduce ∫
Σ∗(u,u∗)

r8
∣∣dk∗( d?/2 d

?/1 d/1β)
∣∣2 . ε20u

−2−2δdec .

Taking into account the commutator Lemma 7.3.1, as well as the product Lemma 7.1.6,
we deduce, for k ≤ ksmall + 18,∫

Σ∗(u,u∗)

r8
∣∣ d?/2 d

?/1 d/1(dk∗β)
∣∣2 . ε20u

−2−2δdec . (7.3.19)

Since

d?/1 d/1 = d/2 d
?/2 + 2K,

we infer that ∫
Σ∗(u,u∗)

r8
∣∣( d?/2 d/2 + 2K) d?/2(dk∗β)

∣∣2 . ε20u
−2−2δdec .

In view of the coercivity of d?/2 d/2 + 2K we deduce,∫
Σ∗(u,u∗)

r4
∣∣ d?/2( d/≤2dk∗β)

∣∣2 . ε20u
−2−2δdec , k ≤ ksmall + 18.

This concludes the proof of Lemma 7.3.8.
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Step 2. We make use of Lemma 7.3.8 to prove the desired estimate for ϑ, i.e.∫
Σ∗(u,u∗)

∣∣ d/≤4dk∗ϑ|2 . ε20u
−2−2δdec , k ≤ ksmall + 18. (7.3.20)

Proof of (7.3.20). One starts with the Codazzi equation

d/2ϑ = −2β − d?/1(κ)− ζκ+ Γg · Γb.

Differentiating w.r.t. d?/2 and then taking tangential derivatives d/≤2dk∗ we derive,

d/≤2dk∗ d
?/2 d/2ϑ = −2 d/≤2dk∗ d

?/2β − d/≤2dk∗ d
?/2 d

?/1(κ)− d/≤2dk∗
[
r−2 d/Γg + r−1 d/ (Γg · Γb)

]
.

Making use of the GCM condition d?/2 d
?/1κ = 0 along Σ∗ and the interpolation estimates of

Lemma 7.1.6, for all k ≤ ksmall + 18,

d/≤2dk∗ d
?/2 d/2ϑ = −2 d/≤2dk∗ d

?/2β + r−2 d/≤2dk+1Γg + r−1 d/≤2dk+1(Γg · Γb)
= −2 d/≤2dk∗ d

?/2β +O
(
εr−4u−

1
2
− δdec

2

)
or, since r ≥ ε

ε0
u1+δdec ,

d/≤2dk∗ d
?/2 d/2ϑ = −2 d/≤2dk∗ d

?/2β +O
(
ε0r
−3u−

3
2
−δdec

)
.

Moreover,

d?/2 d/2 d/
≤2dk∗ϑ = −2 d/≤2dk∗ d

?/2β +O
(
ε0r
−3u−

3
2
−δdec

)
+ [ d/≤2dk∗, d

?/2 d/2]ϑ.

Using the commutator estimates of Lemma 7.3.1 and the interpolation estimates of Lemma
7.1.6, we derive

d?/2 d/2d
k
∗ϑ = −2dk∗ d

?/2β +O
(
ε0r
−3u−

3
2
−δdec

)
.

Integrating and using the previously derived estimate for β we deduce,∫
Σ∗(u,u∗)

r4
∣∣ d?/2 d/2 d/

≤2dk∗ϑ
∣∣2 . ε20u

−2−2δdec , k ≤ ksmall + 18.

In view of the coercivity of d?/2 d/2 we infer that,∫
Σ∗(u,u∗)

∣∣ d/≤4dk∗ϑ
∣∣2 . ε20u

−2−2δdec , k ≤ ksmall + 18

as desired.
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Step 3. We next derive a non sharp, preliminary, estimate for the ` = 1 mode of β with
the help of the Codazzi equation for ϑ,

2β = − d/2ϑ+ eθ(κ)− κζ + Γg · Γb = − d/2ϑ+ r−1 d/≤1Γg + Γg · Γb.

Projecting on the ` = 1 mode, this yields

2

∫
S

βeΦ = r2 d/≤1Γg + r3Γg · Γb.

Differentiating, and using Lemma 7.1.6, we deduce∣∣∣∣νk∗ (∫
S

βeΦ

)∣∣∣∣ . εu−
1
2
− δdec

2 , k ≤ ksmall + 18. (7.3.21)

Together with Corollary 7.3.4, we infer∣∣∣∣∫
S

(νk∗β)eΦ

∣∣∣∣ . εu−
1
2
− δdec

2 + r4|dk(β · Γb)|.

Together with product estimates of Lemma 7.1.6, and since r ≥ (εε−1
0 )u1+δdec on Σ∗, we

deduce, for k ≤ ksmall + 18, ∣∣∣∣∫
S

(νk∗β)eΦ

∣∣∣∣ . ε0ru
− 3

2
−δdec . (7.3.22)

We combine the result of Lemma 7.3.8 with (7.3.22) to deduce∫
Σ∗(u,u∗)

r2
∣∣ d/≤3dk∗β

∣∣2 . ε20u
−2−2δdec , k ≤ ksmall + 18. (7.3.23)

Indeed, according the last elliptic estimate of Lemma 7.1.7 and (7.3.22), we have∫
S

r2
∣∣ d/≤3dk∗β

∣∣2 . r4

∫
S

∣∣ d?/2( d/≤2dk∗β)
∣∣2 + r−2

∣∣∣∣∫
S

(νk∗β)eΦ

∣∣∣∣2
. r4

∫
S

∣∣ d?/2( d/≤2dk∗β)
∣∣2 + ε20u

−3−2δdec .

Thus, integrating and making use of estimate (7.3.17), we infer∫
Σ(u,u∗)

r2
∣∣ d/≤3dk∗β

∣∣2 . ∫
Σ(u,u∗)

r4
∣∣ d?/2( d/≤2dk∗β)

∣∣2 + ε20u
−2−2δdec . ε20u

−2−2δdec

which concludes the proof of (7.3.23).

Step 4. Next, we establish the estimates for η and ξ. We first estimate d?/2(η, ξ).
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Lemma 7.3.9. We have for k ≤ ksmall + 18∫
Σ∗(u,u∗)

r2
(
| d?/2( d/≤5dk∗η)|2 + | d?/2( d/≤5dk∗ξ)|2

)
. ε20u

−2−2δdec . (7.3.24)

Proof. We prove Lemma 7.3.9 based on the identities of Proposition 7.3.5. To derive the
desired flux estimate for η we make use of the first part of Proposition 7.3.5 according to
which we have,

2 d?/2 d
?/1 d/1 d/2 d

?/2η = κ
(
ν∗( d

?/2 d
?/1µ) + 2 d?/2 d

?/1 d/1β
)
− d?/2 d

?/1 d/1ν∗(eθ(κ))

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

Since, d?/1 d/1 = d/2 d
?/2 + 2K, we deduce,

d?/2( d/2 d
?/2 + 2K) d/2 d

?/2η =
1

2

[
κν∗( d

?/2 d
?/1µ)− d?/2 d

?/1 d/1ν∗(eθ(κ))
]

+ κ d?/2( d/2 d
?/2 + 2K)β

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

or,

( d?/2 d/2 + 2K)
[
d?/2 d/2 d

?/2η − κ d?/2β
]

=
1

2

[
κν∗( d

?/2 d
?/1µ)− d?/2 d

?/1 d/1ν∗(eθ(κ))
]

+ r−5 d/≤4Γg + r−4 d/≤4(Γb · Γb) + l.o.t.

Taking higher tangential derivatives and using our GCM assumptions on Σ∗

dk∗( d/2 d
?/2 + 2K)

[
d?/2 d/2 d

?/2η − κ d?/2β
]

= dk∗

[
r−5 d/≤4Γg + r−4 d/≤3(Γb · dΓb)

]
+ l.o.t.

Making use of the commutation Lemma 7.3.1 we can rewrite,

r2( d/2 d
?/2 + 2K)

[
d?/2 d/2 d

?/2(dk∗η)− κ d?/2(dk∗β)
]

=
∑
j≤k

d/≤2
[
r−3 d/≤2dj∗Γg + r−2 d/≤1dj∗(Γb · dΓb)

]
.

Using the ellipticity of the operators ( d/2 d
?/2 + 2K) and d?/2 d/2, Lemma 7.1.6 and the domi-

nance condition r ≥ (εε−1
0 )u1+δdec on Σ∗, we derive, for k ≤ ksmall + 18,

‖ d?/2( d/≤4dk∗η)‖L2(S) . r‖ d?/2( d/≤2dk∗β)‖L2(S) + ε0r
−1u−

3
2
−δdec . (7.3.25)

Finally, squaring, integrating on Σ∗ and taking into account the flux estimate for β in
(7.3.23) we deduce, for k ≤ ksmall + 18,∫

Σ∗(u,u∗)

r2
∣∣ d?/2( d/≤4dk∗η)

∣∣2 . ∫
Σ∗(u,u∗)

r4
∣∣ d?/2( d/≤2dk∗β)

∣∣2 + ε0u
−2−2δdec . ε0u

−2−2δdec

as stated. This completes the proof of Lemma 7.3.9 for η. The proof for ξ is very similar
and left to the reader.
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Step 5. In this step, we derive the desired estimates for η and ξ, i.e. we show∫
Σ∗(u,u∗)

(
| d/≤5dk∗η|2 + | d/≤5dk∗ξ|2

)
. ε20u

−2−2δdec , k ≤ ksmall + 18. (7.3.26)

To this end, we prove the following estimates for the ` = 1 mode of ξ and η∣∣∣∣∫
S

(νk∗η)eΦ

∣∣∣∣+

∣∣∣∣∫
S

(νk∗ ξ)e
Φ

∣∣∣∣ . ε0r
2 u−2−δdec , k ≤ ksmall + 18. (7.3.27)

Then, (7.3.26) follows from (7.3.27) and Lemma 7.3.9 using a Poincaré inequality.

To prove (7.3.27), we apply Corollary 7.3.4 to η and ξ. This yields for k ≥ 1∣∣∣∣∫
S

(νk∗ ξ)e
Φ

∣∣∣∣+

∣∣∣∣∫
S

(νk∗η)eΦ

∣∣∣∣ . k∑
j=0

(∣∣∣∣νj∗ (∫
S

ξeΦ

)∣∣∣∣+

∣∣∣∣νj∗ (∫
S

ηeΦ

)∣∣∣∣)+ r4
∣∣dk(Γb · Γb)∣∣ .

In view of the GCM condition for the ` = 1 mode of η and ξ, we infer∣∣∣∣∫
S

(νk∗ ξ)e
Φ

∣∣∣∣+

∣∣∣∣∫
S

(νk∗η)eΦ

∣∣∣∣ . r4
∣∣dk(Γb · Γb)∣∣

For k ≤ ksmall + 18, we infer, using the product Lemma 7.1.6,∣∣∣∣∫
S

(νk∗ ξ)e
Φ

∣∣∣∣+

∣∣∣∣∫
S

(νk∗η)eΦ

∣∣∣∣ . ε20u
−2−2δdec

which concludes the proof of (7.3.27), and hence of (7.3.26).

Step 6. Next, we derive the flux estimates for ω̌, ς̌, Ω̌ and A. Adding κ times the first
equation to the second equation of Proposition 7.1.12, we obtain

2κ d?/1ω = −e3(eθ(κ))− 2 d/2 d
?/2η + κ

(
1

2
κ+ 2ω

)
η − 1

2
κ2ξ + r−2 d/≤1Γg + r−1 d/≤1(Γb · Γb).

In view of the GCM condition for κ, the fact that ν∗ = e3 + a∗e4, and Raychadhuri, we
have

−e3(eθ(κ)) = a∗e4(eθ(κ)) = r−1 d/(Γg · Γg)

and hence

r d?/1ω = −1

2
r2 d/2 d

?/2η +
r2

4
κ

(
1

2
κ+ 2ω

)
η − r2

8
κ2ξ + d/≤1Γg + r d/≤1(Γb · Γb).



7.3. DECAY ESTIMATES ON THE LAST SLICE Σ∗ 375

The flux estimate for ω̌ follows easily from the above identity, the flux estimates for η and
ξ derived in Step 4 and Step 5, the interpolation estimate of Lemma 7.1.6 for ζ, as well
the dominance property of r on Σ∗.

The flux estimates for ς̌ and Ω̌ follow easily from the equations

ς−1eθ(ς̌) = η − ζ,
eθ(Ω̌) = −ξ − (η − ζ)Ω,

the flux estimate for η and ξ derived in Step 4 and Step 5, the interpolation estimate of
Lemma 7.1.6 for ζ, as well the dominance property of r on Σ∗.

To estimate A, note first that the flux estimate for A − A follows immediately from
formula (7.1.9) and the above flux estimate for Ω̌. It they remains to control A. In view
of (2.2.22), we have

ςA = −κς̌ + κ
(
ςΩ̌ + Ως̌

)
+ ς̌ κ̌− Ω ς̌ κ̌− Ω̌ςκ

and hence, taking the average, we infer

A = −(ς − 1)A− ς̌Ǎ+ ς̌ κ̌− Ω ς̌ κ̌− Ω̌ςκ̌.

The flux estimate for A follows then from the product estimates of Lemma 7.1.6.

Step 7. It remains to derive the flux estimate for ω, Ω and ς. Recall (4.2.4)

ω − m

r2
=

r

4

{
e3

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
− 2ω

(
κ− 2

r

)
− 2

(
ρ+

2m

r3

)
+

1

2
κ

(
κ− 2

r

)
Ω̌− 2ω̌κ̌+

1

2
ϑϑ− 2ζ2 − 1

2
Ω̌
(
− ϑ2 + κ̌2

)
+Ω̌(e4(κ̌) + κκ̌)− 1

2
κ̌κ̌+

1

r
Ω̌κ̌

}
.

Using the GCM condition for κ, the fact that ν∗ = e3 + a∗e4, and Lemma 2.2.17 for
e4(κ− 2/r), the identity (2.2.12) for ρ, we infer

ω − m

r2
= rΓb · Γg.

which together with Lemma 7.1.6 yields the the flux estimate for ω.

Next, taking the average of (7.1.9), we have

Ω + Υ =
r

2
A.
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The flux estimate for Ω follows from the above identity and the flux estimate for A derived
in Step 6.

Finally, we derive the flux estimate for ς. Recall equation (7.1.8)

a∗ = −2

ς
+ Υ− r

2
A

and the GCM condition for a∗, see (7.1.1),

a∗

∣∣∣
SP

= −1− 2m

r
.

We deduce,

2

ς
∣∣
SP

= 2− r

2
A
∣∣∣
SP
.

Since

ς = ς
∣∣
SP

+ ς̌
∣∣
SP
,

we infer

ς − 1 = ς̌
∣∣
SP

+
1

1− r
4
A
∣∣∣
SP

r

4
A
∣∣∣
SP

and the flux estimate for ς follows from the above identity and the flux estimates for ς̌
and A of Step 6. This concludes the proof of Proposition 7.3.6.

7.3.4 Estimates for some ` = 1 modes on Σ∗

In this section, we control the ` = 1 modes of eθ(κ), eθ(ρ), eθ(µ) and of β. We summarize
the results in the following proposition.

Proposition 7.3.10. The following estimates hold true∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣+

∣∣∣∣∫
S

eθ(µ)eΦ

∣∣∣∣+ max
k≤ksmall+20

∣∣∣∣νk∗ (∫
S

βeΦ

)∣∣∣∣ . ε0r
−1u−1−δdec ,∣∣∣∣∫

S

eθ(κ)eΦ

∣∣∣∣ . ε0u
−2−δdec .

(7.3.28)
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Remark 7.3.11. We note that the estimates for the ` = 1 modes of eθ(κ) and β are
sharp17. During the proof we shall also need to derive sharp estimates for the ` = 1 modes
of ζ and β, see (7.3.30) and (7.3.32).

Proof. We will rely on the following auxiliary bootstrap assumptions∣∣∣∣∫
S

βeΦ

∣∣∣∣ . εr−1u−1−δdec ,

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . εu−2−δdec . (7.3.29)

Step 1. We start with proving an intermediary estimate for the ` = 1 mode of ζ. In view
of the Codazzi equations and the GCM condition on κ,

d/2ϑ = −2β + (eθ(κ) + ζκ) + Γg · Γg = −2β +
2

r
ζ + Γg · Γg

and hence ∫
S

ζeΦ = −r
∫
S

βeΦ + r4Γg · Γg.

Thus, using the product estimates of Lemma 7.1.6,∣∣∣∣∫
S

ζeΦ

∣∣∣∣ . r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+ ε0u
−1−δdec .

In particular, in view of (7.3.29), we infer∣∣∣∣∫
S

ζeΦ

∣∣∣∣ . εu−1−δdec . (7.3.30)

Step 2. Next, we establish an intermediary estimates for the ` = 1 mode of β. We start
with the Codazzi equation for ϑ,

2β = − d/2ϑ+ eθ(κ) +
2Υ

r
ζ + Γg · Γb

and project on the ` = 1 mode, i.e.

2

∫
S

βeΦ =
2Υ

r

∫
S

ζeΦ +

∫
S

eθ(κ)eΦ +

∫
S

Γg · ΓbeΦ. (7.3.31)

17Consistent in fact with strong peeling.
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We make use of the estimate (7.3.30) for ζ, the auxiliary estimate (7.3.29) for eθ(κ), the
dominance condition r ≥ εε−1

0 u1+δdec on Σ∗, and bootstrap assumptions for Γg to deduce

r−1

∣∣∣∣∫
S

βeΦ

∣∣∣∣ . r−2

∣∣∣∣∫
S

ζeΦ

∣∣∣∣+ r−1

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+

∫
S

∣∣Γg · Γb∣∣
. εr−2u−1−δdec + εr−1u−2−δdec + εr−2u−

1
2
−δdec

∫
S

|Γb|

. ε0u
−3−2δdec + ε0u

− 3
2
−2δdec‖Γb‖L2(S).

Thus, we infer∫ u∗

u

r−1

∣∣∣∣∫
S

βeΦ

∣∣∣∣ du . ε0u
−2−2δdec + ε0

(∫ u∗

u

u−3−4δdec

)1/2(∫ u∗

u

‖Γb‖2
L2(S)

)1/2

which together with the flux estimate of Proposition 7.3.6 implies∫ u∗

u

r−1

∣∣∣∣∫
S

βeΦ

∣∣∣∣ du . ε0u
−2−2δdec . (7.3.32)

Step 3. Next, we provide an intermediary estimate for the ` = 1 mode of ρ. We start by
differentiating the Gauss equation K = −ρ− 1

4
κκ + 1

4
ϑϑ. Using the GCM condition for

κ we derive,

eθ(ρ) = −eθ(K)− 1

2r
eθ(κ) +

1

4
eθ(ϑϑ).

We make use of the vanishing of the ` = 1 mode of eθ(K) (see Lemma 2.1.29) to derive∫
S

eθ(ρ)eΦ = − 1

2r

∫
S

eθ(κ)eΦ +
1

4

∫
S

eθ(ϑϑ)eΦ. (7.3.33)

Using the the auxiliary estimate (7.3.29) for the ` = 1 mode of eθ(κ)∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣ . εr−1u−2−δdec +

∫
S

| d/≤1(Γg · Γb)|.

Making use of r ≥ εε−1
0 u1+δdec and the bootstrap assumptions on Γg, we deduce∣∣∣∣∫

S

eθ(ρ)eΦ

∣∣∣∣ . ε0u
−3−2δdec + ε0u

− 3
2
−2δdec‖ d/≤1Γb‖L2(S).

Integrating in u we derive,∫ u∗

u

∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣ du . ε0u
−2−δdec + ε0

(∫ u∗

u

u−3−4δdec

) 1
2
(∫ u∗

u

‖ d/≤1Γb‖2
L2(S)

) 1
2

.
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Using the flux estimate in Proposition 7.3.6, we infer∫ u∗

u

∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣ du . ε0u
−2−δdec . (7.3.34)

Step 4. Next, we control the ` = 1 mode of eθ(κ) on Σ∗. To this end, we need the precise
identity18 of Proposition 2.2.19

e3(eθ(κ)) = −2 d/2 d
?/2ξ + κ

(
e3(ζ)− β

)
+ κ2ζ − 3

2
κeθκ+ 6ρξ − 2ωeθ(κ) + Err[ d/2 d

?/2ξ],

Err[ d/2 d
?/2ξ] =

(
2 d/1ξ +

1

2
κϑ+ 2ηξ − 1

2
ϑ2

)
η + 2eθ(ηξ)−

1

2
eθ(ϑ

2)

+κ

(
1

2
ϑζ − 1

2
ϑξ

)
− 1

2
ϑeθκ−

1

2
ϑϑξ − ζ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ ξ

(
− ϑϑ− 2 d/1ζ + 2ζ2

)
− 6ηζξ − 6eθ(ζξ).

The error term can be written schematically as,

Err[ d/2 d
?/2ξ] = r−1 d/≤1

(
Γb · Γb

)
+ r−1 d/≤1

(
Γg · Γb

)
.

Note also that we can write

κ

(
1

2
κζ − 2ωζ

)
− 3

2
κeθκ+ ζ

(
1

2
κ2 + 2ω κ

)
+ 6ρξ − 2ωeθ(κ)

=
4Υ2

r2
ζ +

1

r

(
3− 8m

r

)
eθ(κ)− 12m

r3
ξ + r−1 d/≤1(Γg · Γb).

Also, using the transport equation for e4(κ) and the GCM condition for κ, we have

e4(eθ(κ)) = eθe4κ+ [e4, eθ]κ

= eθ

[
−1

2
κκ− 2 d/1ζ + 2ρ+ Γg · Γb

]
+

1

2
κeθκ+ l.o.t.

= −1

r
eθκ+ 2 d?/1 d/1ζ + 2eθ(ρ) + r−1 d/(Γg · Γb)

= −1

r
eθκ+ 2( d/2 d

?/2 + 2K)ζ + 2eθ(ρ) + r−1 d/(Γg · Γb).

We can also write, since ν∗ = e3 + a∗e4

e3(ζ) = ν∗(ζ)− a∗e4(ζ) = ν∗(ζ)− a∗ (−κζ − β + Γg · Γg)

= ν∗(ζ)−
(

1 +
2m

r

)(
2

r
ζ + β

)
+ Γb · Γg.

18Note that the schematic form of Proposition 7.1.12 is not suitable here.



380 CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)

Combining, we deduce

ν∗(eθ(κ)) = −2 d/2 d
?/2ξ + κν∗(ζ) +

2Υ

r
β + E1 + E2,

E1 =
4

r2

(
1− 6m

r

)
ζ +

2

r

(
2− 3m

r

)
eθ(κ)− 12m

r3
ξ

− 2

(
1 +

2m

r

)
d/2 d

?/2ζ +
2Υ

r

(
1 +

2m

r

)
β − 2

(
1 +

2m

r

)
eθ(ρ),

E2 = r−1 d/≤1
(
Γb · Γb

)
+ r−1 d/≤1(Γg · Γb).

(7.3.35)

We introduce the following notation

f := eθ(κ)− κζ. (7.3.36)

Using the fact that ν∗ = e3 + a∗e4, and the transport equation for e3(κ) and e4(κ), we
have

ν∗(f) = ν∗(eθ(κ))− κν∗(ζ)− ν∗(κ)ζ

= ν∗(eθ(κ))− κν∗(ζ)−
(
e3(κ) + a∗e4(κ))ζ

= ν∗(eθ(κ))− κν∗(ζ) +
4

r2

(
1− 4m

r

)
ζ + r−1 d/≤1(Γg · Γb).

Together with (7.3.35), we deduce, with a similar E2,

ν∗(f) = −2 d/2 d
?/2ξ +

2Υ

r
β +

4

r2

(
1− 4m

r

)
ζ + E1 + E2. (7.3.37)

Projecting on the ` = 1 mode and integrating d/2 d
?/2ξ by parts, we derive∫

S

ν∗(f)eΦ =
2Υ

r

∫
S

βeΦ +
4

r2

(
1− 4m

r

)∫
S

ζeΦ +

∫
S

(E1 + E2)eΦ.

In view of Ref 1, we have schematically∫
S

E2e
Φ = O

(
‖ d/≤1Γb‖2

L2(S) + εr−1u−
1
2
−δdec‖ d/≤1Γb‖L2(S)

)
.

Also, using the GCM condition for the ` = 1 mode of ξ and integrating d?/2 d/2ζ by parts,
we infer∫

S

(
4

r2

(
1− 4m

r

)
ζ + E1

)
eΦ =

8

r2

(
1− 5m

r

)∫
S

ζeΦ +
2

r

(
2− 3m

r

)∫
S

eθ(κ)eΦ

+
2Υ

r

(
1 +

2m

r

)∫
S

βeΦ − 2

(
1 +

2m

r

)∫
S

eθ(ρ)eΦ.
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Hence, in view of the intermediate assumption 7.3.29 for the ` = 1 modes of β and eθ(κ)
as well as estimate (7.3.30) for the ` = 1 mode of ζ,∣∣∣∣∫

S

(
4

r2

(
1− 4m

r

)
ζ + E1

)
eΦ

∣∣∣∣ . εr−2u−1−δdec + εr−1u−2−2δdec +

∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣ .
We deduce,∣∣∣∣∫

S

(ν∗f)eΦ

∣∣∣∣ . r−1

∣∣∣∣∫
S

βeΦ

∣∣∣∣+

∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣+ ‖ d/≤1Γb‖2
L2(S) + εr−1u−

1
2
−δdec‖ d/≤1Γb‖L2(S)

+ εr−2u−1−δdec + εr−1u−2−2δdec ,

or, making use of the assumption r ≥ εε−1
0 u1+δdec ,∣∣∣∣∫

S

(ν∗f)eΦ

∣∣∣∣ . r−1

∣∣∣∣∫
S

βeΦ

∣∣∣∣+

∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣+ ‖ d/≤1Γb‖2
L2(S) + ε0u

−3−2δdec . (7.3.38)

On the other hand, according to Lemma 7.3.3,

ν∗

(∫
S

feΦ

)
=

∫
S

(ν∗f)eΦ +
3

2

(
κ− 2κ− Ωκ

) ∫
S

feΦ + Err[f, ν∗] (7.3.39)

with error term

Err[f, ν∗] = r4Γbν∗(f) + r3Γbf. (7.3.40)

Note that

r−1

∫
S

feΦ = r−1

∫
S

eθ(κ)eΦ − r−1

∫
S

κζeΦ

= r−1

∫
S

eθ(κ)eΦ + 2r−2Υ

∫
S

ζeΦ − r−1

∫
S

κ̌ζeΦ.

Thus in view of our auxiliary assumption (7.3.29) for eθ(κ), estimate (7.3.30) of Step 1,
and the dominance condition for r, we deduce∣∣∣∣r−1

∫
S

feΦ

∣∣∣∣ . εr−1u−2−2δdec + εr−2u−1−δdec . ε0u
−3−3δdec . (7.3.41)

Also, we have in view of the definition of f and (7.3.37)

f = r−1 d/≤1Γg, ν∗(f) = r−2 d/≤2Γb.

Together with (7.3.40), we infer

Err[f, ν∗] = r4Γbr
−2 d/≤2Γb + r2Γb · d/≤1Γg.



382 CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)

We deduce, together with (7.3.38), (7.3.39) and (7.3.41)∣∣∣∣ν∗(∫
S

feΦ

)∣∣∣∣ . r−1

∣∣∣∣∫
S

βeΦ

∣∣∣∣+

∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣+ ‖ d/≤4Γb‖2
L2(S) + ε0u

−3−2δdec

where we have also used the control of Γg and Sobolev.

Integrating in u, and making use of Proposition 7.3.6 on the flux estimates for Γb, as well
as the estimate (7.3.32) for the ` = 1 mode of β and the estimate (7.3.34) for the ` = 1
mode of eθ(ρ), we infer ∫ u∗

u

∣∣∣∣ν∗(∫
S

feΦ

)∣∣∣∣ du′ . ε0u
−2−δdec .

We deduce ∣∣∣∣∫
S(u)

feΦ

∣∣∣∣ . ∣∣∣∣∫
S∗

feΦ

∣∣∣∣+

∫ u∗

u

∣∣∣∣ν∗(∫
S

feΦ

)∣∣∣∣ du′
.

∣∣∣∣∫
S∗

feΦ

∣∣∣∣+ ε0u
−2−δdec .

Together with the definition of f and the GCM condition for the ` = 1 mode of eθ(κ) on
S∗, this yields∣∣∣∣∫

S(u)

eθ(κ)eΦ

∣∣∣∣ . ∣∣∣∣∫
S(u)

κζeΦ

∣∣∣∣+

∣∣∣∣∫
S∗

κζeΦ

∣∣∣∣+ ε0u
−2−δdec

. r−1

∣∣∣∣∫
S(u)

ζeΦ

∣∣∣∣+ r−1

∣∣∣∣∫
S∗

ζeΦ

∣∣∣∣+ r3|Γg · Γg|+ ε0u
−2−δdec .

Together with the estimate (7.3.30) for the ` = 1 mode of ζ, the control of Γg, and the
dominance condition of r on Σ∗, we obtain∣∣∣∣∫

S

eθ(κ)eΦ

∣∣∣∣ . εr−1u−1−δdec + ε0u
−2−δdec . ε0u

−2−δdec

which improves the estimate for the ` = 1 mode of eθ(κ) in (7.3.29) and establishes the
desired estimate for the ` = 1 mode of eθ(κ).

Step 5. We establish the desired estimate for the ` = 1 mode of eθ(ρ). In view of (7.3.33),
we have ∣∣∣∣∫

S

eθ(ρ)eΦ

∣∣∣∣ . r−1

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+

∫
S

| d/≤1(Γg · Γb)|. (7.3.42)
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Using the improved estimate of Step 4 for the ` = 1 mode of eθ(κ) and the control of Γb
and Γg, we infer∣∣∣∣∫

S

eθ(ρ)eΦ

∣∣∣∣ . ε0r
−1u−2−δdec + ε2r−1u−

3
2
−δdec . ε0r

−1u−1−δdec

which is the desired estimate for the ` = 1 mode of eθ(ρ).

Step 6. To estimate the ` = 1 mode of µ we differentiate the relation µ = −div ζ − ρ+
Γg · Γb by eθ and obtain

eθ(µ) = d?/1 d/1ζ − eθ(ρ) + r−1 d/(Γg · Γb)
= ( d/2 d

?/2 + 2K)ζ − eθ(ρ) + r−1 d/(Γg · Γb)
= d/2 d

?/2ζ +
2

r2
ζ − eθ(ρ) + r−1 d/(Γg · Γb) + l.o.t.

Hence, ∫
S

eθ(µ)eΦ = 2r−2

∫
S

ζeΦ −
∫
S

eθ(ρ)eΦ + r2 d/(Γg · Γb). (7.3.43)

Using the estimate (7.3.30) for the ` = 1 mode of ζ and the estimate of Step 5 for the
` = 1 mode of eθ(ρ), we deduce, using also the dominant condition for r on Σ∗,∣∣∣∣∫

S

eθ(µ)eΦ

∣∣∣∣ . εr−2u−1−δdec + ε0r
−1u−1−δdec . ε0r

−1u−1−δdec

which is the desired estimate for the ` = 1 mode of eθ(µ).

Step 7. It remains to estimate the ` = 1 mode of β. We start with the e3β equation

e3β + κβ = − d?/1ρ+ 2ωβ + 3ηρ− ϑβ + ξα.

Also, taking into account the e4 equation for β and recalling that a∗ = −
(
1 + 2m

r

)
+ rΓb,

ν∗(β) = e3(β) + a∗e4β

= −κβ − d?/1ρ+ 2ωβ + 3ηρ− ϑβ + ξα + a∗ (−2κβ + d/2α + ζα)

= − d?/1ρ−
6m

r3
η +

6

r

(
1− m

r

)
β −

(
1 +

2m

r

)
d/2α + r−1Γb · d/≤1Γg.

Projecting on the ` = 1 mode, and using the GCM condition for the ` = 1 mode of η,∫
S

ν∗(β)eΦ =

∫
S

eθ(ρ)eΦ +
6

r

(
1− m

r

)∫
S

βeΦ +

∫
S

Γb · d/≤1Γg. (7.3.44)
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On the other hand, making use of Lemma 7.3.3, the auxiliary assumption (7.3.29) for the
` = 1 mode of β and r ≥ εε−1

0 u1+δdec ,

ν∗

(∫
S

βeΦ

)
=

∫
S

(ν∗β)eΦ +
3

2

(
κ− 2κ− Ωκ

) ∫
S

βeΦ + r4Γbν∗(β) + r3Γbβ

=

∫
S

(ν∗β)eΦ − 6

r

∫
S

βeΦ + r2Γb · d≤1Γg

where we have used the fact that ν∗β = r−2Γg. Together with (7.3.44), we deduce∣∣∣∣ν∗(∫
S

βeΦ

)∣∣∣∣ . ∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣+
1

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+ r2Γb · d≤1Γg.

Using (7.3.29) and (7.3.42), we infer∣∣∣∣ν∗(∫
S

βeΦ

)∣∣∣∣ . 1

r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+ εr−2u−1−δdec + r2|Γb · d≤1Γg|+
∫
S

| d/≤1(Γg · Γb)|.

Using the control of the ` = 1 mode for eθ(κ) derived in Step 4, our control for Γg and
Sobolev, as well as the dominance condition in r on Σ∗, we infer∣∣∣∣ν∗(∫

S

βeΦ

)∣∣∣∣ . ε0r
−1u−2−δdec + εr−1u−

1
2
−δdec‖ d/≤2Γb‖L2(S). (7.3.45)

Integrating (7.3.45) in u, and making use of Proposition 7.3.6 on the flux estimates for
Γb, we infer∫ u∗

u

∣∣∣∣ν∗(∫
S

βeΦ

)∣∣∣∣ . ε0r
−1u−1−δdec + εr−1

(∫ u∗

u

u′
−1−2δdec

) 1
2
(∫

Σ∗(u,u∗)

|Γb|2
) 1

2

. ε0r
−1u−1−δdec .

In view of the GCM condition for the ` = 1 mode of β on S∗, we infer on Σ∗∣∣∣∣∫
S

βeΦ

∣∣∣∣ . ε0r
−1u−1−δdec

which is the desired estimate for k = 0. Also, coming back to (7.3.45), and using our
control for Γb, we have ∣∣∣∣ν∗(∫

S

βeΦ

)∣∣∣∣ . ε0r
−1u−1−δdec

which is our desired estimate for k = 1.
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It remains to consider the case 2 ≤ k ≤ ksmall + 20. In view of Corollary 7.3.4, we easily
derive the following estimate∣∣∣∣νk∗ (∫

S

βeΦ

)∣∣∣∣ . ∣∣∣∣ν≤k−2
∗

(∫
S

ν2
∗βe

Φ

)∣∣∣∣+

∣∣∣∣ν∗(∫
S

βeΦ

)∣∣∣∣+

∣∣∣∣∫
S

βeΦ

∣∣∣∣
+
∣∣∣d≤k−1(r4Γbν∗(β) + r3Γbβ)

∣∣∣.
Since ν∗β = r−2Γg, and using our product estimates, as well as the above improved
estimates for the ` = 1 mode of β for k = 0 and k = 1, we infer, for 2 ≤ k ≤ ksmall + 20,∣∣∣∣νk∗ (∫

S

βeΦ

)∣∣∣∣ . ∣∣∣∣ν≤k−2
∗

(∫
S

ν2
∗βe

Φ

)∣∣∣∣+ ε0r
−1u−1−δdec . (7.3.46)

In view of (7.3.46), we need to estimate ν2
∗β. Recall from above that

ν∗(β) = − d?/1ρ−
6m

r3
η +

6

r

(
1− m

r

)
β −

(
1 +

2m

r

)
d/2α + r−1Γb · d/≤1Γg.

Differentiating again, and relying on the Commutation formula of Lemma 7.3.1, we infer

ν2
∗(β) = − d?/1(ν∗ρ̌)− 6m

r3
ν∗η +

6

r

(
1− m

r

)
ν∗β −

(
1 +

2m

r

)
d/2(ν∗α)

+r−1d≤1(Γb · d/≤1Γg).

Also, using the Bianchi identity for e3(ρ̌) and e4(ρ̌), as well as ν∗ = e3 + a∗e4, we have

ν∗ρ̌ = d/1β + r−2d≤1Γg

and hence

ν2
∗(β) = − d?/1 d/1β −

6m

r3
ν∗η +

6

r

(
1− m

r

)
ν∗β −

(
1 +

2m

r

)
d/2(ν∗α)

+r−3d≤2Γg + r−1d≤1(Γb · d/≤1Γg).

This yields,∫
S

ν2
∗(β)eΦ = −

∫
S

d?/1 d/1βe
Φ − 6m

r3

∫
S

ν∗ηe
Φ +

6

r

(
1− m

r

)∫
S

ν∗βe
Φ

+d≤2Γg + r2d≤1(Γb · d/≤1Γg).

Since d?/1 d/1 = d/2 d
?/2 + 2K, we infer∫

S

ν2
∗(β)eΦ = − 2

r2

∫
S

βeΦ − 6m

r3

∫
S

ν∗ηe
Φ +

6

r

(
1− m

r

)∫
S

ν∗βe
Φ

+d≤2Γg + r2d≤1(Γb · d/≤1Γg).
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Also, applying Lemma 7.3.3 to the last two integrals of the RHS, and using again that
ν∗β = r−2Γg, we obtain∫

S

ν2
∗(β)eΦ = − 2

r2

∫
S

βeΦ − 6m

r3
ν∗

(∫
S

ηeΦ

)
+

6

r

(
1− m

r

)
ν∗

(∫
S

βeΦ

)
+d≤2Γg + r2d≤1(Γb · d/≤1Γg).

Together with (7.3.46), the control of Γb and Γg, and the dominance of r on Σ∗, and
arguing again by iteration for the β term, we deduce∣∣∣∣νk∗ (∫

S

βeΦ

)∣∣∣∣ . 1

r2

∣∣∣∣νk−2
∗

(∫
S

βeΦ

)∣∣∣∣+
1

r3

∣∣∣∣νk−1
∗

(∫
S

ηeΦ

)∣∣∣∣+ ε0r
−1u−1−δdec .

Together with the GCM condition for the ` = 1 mode for η and the estimate (7.3.21), we
infer for 2 ≤ k ≤ ksmall + 20∣∣∣∣νk∗ (∫

S

βeΦ

)∣∣∣∣ . ε0r
−1u−1−δdec

as desired. This completes the proof of Proposition 7.3.10.

7.3.5 Decay of Ricci and curvature components on Σ∗

Recall that

• we have already derived improved pointwise estimates for α and α, respectively in
Theorem M2 and Theorem M3,

• we have already derived improved pointwise estimates for β and Γb on Σ∗, see
(7.3.16) in Proposition 7.3.6,

• κ̌ = 0 on Σ∗ in view of the GCM condition for κ.

In the following proposition, we derive improved pointwise estimates on Σ∗ for the re-
maining quantities, i.e. κ̌, ρ̌, ζ, µ̌, ϑ and β.

Proposition 7.3.12. The following estimates hold true along Σ∗ for all k ≤ ksmall + 18

‖κ̌, rµ̌‖∗∞,k . ε0r
−2u−1−δdec ,

‖ϑ, ζ, rρ̌‖∗∞,k . ε0r
−2u−

1
2
−δdec ,

‖β‖∗∞,k . ε0r
−3(2r + u)−

1
2
−δdec .

(7.3.47)
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Also, for all k ≤ ksmall + 17∥∥ν∗(ϑ, ζ, rρ̌)∥∥∗∞,k . ε0r
−2u−1−δdec ,

‖ν∗β‖∗∞,k . ε0r
−4u−

1
2
−δdec .

(7.3.48)

Proof. We proceed in several steps.

Step 1. In this step we control κ̌. First, note from Proposition 2.2.18 that we have

e3(κ̌) = r−1 d/≤1Γb + r−1Γg + Γb · Γb, e4(κ̌) = r−1 d/≤1Γg,

and hence

ν∗(κ̌) = r−1 d/≤1Γb + r−1 d/≤1Γg + Γb · Γb.

Together with the improved control of Γb in (7.3.16), the control of Γg, and the dominance
in r condition, we infer, for all k ≤ ksmall + 17,

‖ν∗κ̌‖∗∞,k . ε0r
−2u−1−δdec + εr−3 . ε0r

−2u−1−δdec .

It then remains to control d/kκ̌. Since we have d?/2 d
?/1κ = 0 in view of our GCM condition,

we infer, using a Poincaré inequality

r−1‖ d/kκ̌‖L2(S) . r−2

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ε0r
−2u−1−δdec

where we have used Proposition 7.3.10 to estimate the ` = 1 mode of κ. Together with
the above estimate for ν∗κ̌, we infer, for all k ≤ ksmall + 18, the desired estimate

‖κ̌‖∗∞,k . ε0r
−2u−1−δdec .

Step 2. Next, we estimate ρ̌. First, note from Proposition 2.2.18 that we have

e3(ρ̌) = r−1 d/≤1β + r−2Γg + Γb · Γg, e4(ρ̌) = r−2 d/≤1Γg,

and hence

ν∗(ρ̌) = r−1 d/≤1β + r−2 d/≤1Γg + Γb · Γg.

Together with the improved control of β in (7.3.16), the control of Γg, and the dominance
in r condition, we infer, for all k ≤ ksmall + 17,

‖ν∗ρ̌‖∗∞,k . ε0r
−3u−1−δdec + εr−4 . ε0r

−3u−1−δdec .
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It then remains to control d/kρ̌. In view of Proposition 7.1.10, we have, relative to the
background frame of (ext)M,

r4

(
d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ

)
= q + r2 d/≤2(Γb · Γg) + l.o.t.

Using the improved control for q in Ref 2, the improved control for ϑ in (7.3.16), and
the product Lemma 7.1.6, we have, for all k ≤ ksmall + 17,

‖q‖∗∞,k + ‖ϑ‖∗∞,k + ‖r2 d/≤2(Γb · Γg)‖∗∞,k . ε0r
−1u−

1
2
−δdec .

Also, using our condition on r along Σ∗

‖ϑ‖∗∞,k . εr−2 . ε0r
−1u−1−δdec .

We deduce, for all k ≤ ksmall + 17,

‖ d?/2 d
?/1ρ̌‖∗∞,k . ε0r

−5u−
1
2
−δdec .

We infer, using a Poincaré inequality, for all k ≤ ksmall + 19,

r−1‖ d/kρ̌‖L2(S) . r−2

∣∣∣∣∫
S

eθ(ρ)eΦ

∣∣∣∣+ ε0r
−3u−

1
2
−δdec . ε0r

−3u−
1
2
−δdec

where we have used Proposition 7.3.10 to estimate the ` = 1 mode of ρ. Together with
the above estimate for ν∗κ̌, we infer, for all k ≤ ksmall + 18, the desired estimate

‖ρ̌‖∗∞,k . ε0r
−3u−

1
2
−δdec .

Step 3. Next, we control d/kµ̌ and d/kζ. Since we have d?/2 d
?/1µ = 0 in view of our GCM

condition, we infer, using a Poincaré inequality

r−1‖ d/kµ̌‖L2(S) . r−2

∣∣∣∣∫
S

eθ(µ)eΦ

∣∣∣∣ . ε0r
−3u−1−δdec

where we have used Proposition 7.3.10 to estimate the ` = 1 mode of µ.

Also, from the definition of µ = − d/1ζ − ρ+ 1
4
ϑϑ, we have,

d/1ζ = −µ̌− ρ̌+ Γg · Γb

and hence, using also the product Lemma 7.1.6, we infer

r−1‖ d/kζ‖L2(S) . ‖ d/kµ̌‖L2(S) + ‖ d/kρ̌‖L2(S) + ε0r
−2u−1−δdec .
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Together with the above improved estimates for µ̌, and the improved estimates for ρ̌ of
Step 2, we deduce

r−1‖ d/kζ‖L2(S) . ε0r
−2u−

1
2
−δdec , r−1‖ d/kµ̌‖L2(S) . ε0r

−3u−1−δdec .

Step 4. We conclude in this step the control of ζ and µ̌. From the null structure
equations, we have

e3(ζ) = r−1 d/≤1Γb + r−1Γg + Γb · Γb, e4(ζ) = r−1 d/≤1Γg,

and hence

ν∗(ζ) = r−1 d/≤1Γb + r−1 d/≤1Γg + Γb · Γb.

Together with the improved control of Γb in (7.3.16), the control of Γg, and the dominance
in r condition, we infer, for all k ≤ ksmall + 17,

‖ d/≤1ν∗ζ‖∗∞,k . ε0r
−2u−1−δdec + εr−3 . ε0r

−2u−1−δdec .

Using

µ̌ = − d/1ζ − ρ̌+ Γg · Γb,

we also have for all k ≤ ksmall + 17, in view of the above improved estimate for ν∗ζ, the
commutation formula of Lemma 7.3.1, and the improved estimate of ρ̌ of Step 2,

‖ν∗ρ̌‖∗∞,k . ε0r
−3u−1−δdec .

Together with the improved estimate for d/kζ and d/kρ̌ of Step 3, we infer, for all k ≤
ksmall + 18, the desired estimates

‖ζ‖∗∞,k . ε0r
−2u−

1
2
−δdec , ‖µ̌‖∗∞,k . ε0r

−3u−1−δdec .

Step 5. Next, we estimate ϑ. From the null structure equations, we have

e3(ϑ) = r−1 d/≤1Γb + r−1Γg + Γb · Γb, e4(ϑ) = r−1 d/≤1Γg,

and hence

ν∗(ϑ) = r−1 d/≤1Γb + r−1 d/≤1Γg + Γb · Γb.

Together with the improved control of Γb in (7.3.16), the control of Γg, and the dominance
in r condition, we infer, for all k ≤ ksmall + 17,

‖ν∗ϑ‖∗∞,k . ε0r
−2u−1−δdec + εr−3 . ε0r

−2u−1−δdec .
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It remains to control d/kϑ. We use Codazzi and the GCM equation for κ, which yields

d/2ϑ = −2β + (eθ(κ) + ζκ) + Γg · Γg,
= −2β +

2

r
ζ + Γg · Γg.

Making use of the bootstrap assumption for β and the estimate of Step 3 for ζ,

r−1
∥∥ d/k d/2ϑ

∥∥
L2(S)

.
∥∥β∥∥∞,k + r−1

∥∥ζ∥∥∗∞,k + ε0r
−3u−1−δdec

. εr−
7
2
−δdec + ε0r

−3u−1/2−δdec

from which we derive, using also the condition r ≥ εε−1
0 u1+δdec and a Poincaré inequality,

r−1
∥∥ d/kϑ∥∥

L2(S)
. ε0r

−2u−1/2−δdec .

Together with the above estimate for ν∗ϑ, we infer, for all k ≤ ksmall + 18,

‖ϑ‖∗∞,k . ε0r
−2u−1/2−δdec .

Step 6. Finally, we estimate β. From Bianchi, we have

e3β = r−1 d/ρ̌+ r−1β + r−3Γb + r−1Γb · Γg, e4(β) = r−1 d/α + r−1β + r−1Γg · Γg
and hence

ν∗(β) = r−1 d/ρ̌+ r−1 d/α + r−1β + r−3Γb + r−1Γb · Γg.
Together with the improved control of Γb in (7.3.16), the bootstrap assumptions for α
and β, the improved estimate for ρ̌ of Step 2, and the dominance in r condition, we infer,
for all k ≤ ksmall + 17,

‖ν∗β‖∗∞,k . ε0r
−4u−

1
2
−δdec + εr−

9
2 . ε0r

−4u−
1
2
−δdec .

It remains to control d/kβ. We have from Bianchi

d?/2β = e3α + r−1α + r−3ϑ+ Γb · (α, β) + r−1Γg · Γg.
Hence, using in particular the improved estimate for ϑ of Step 6, and the improved
estimate for α and e3α of Ref 2, we infer∥∥ d/k d?/2β‖L2(S) . ε0r

−4(2r + u)−
1
2
−δdec .

This yields, using a Poincaré inequality

r−1‖ d/kβ‖L2(S) . r−3

∣∣∣∣∫
S

βeΦ

∣∣∣∣+ ε0r
−3(2r + u)−

1
2
−δdec . ε0r

−3(2r + u)−
1
2
−δdec

where we have used Proposition 7.3.10 to estimate the ` = 1 mode of β. Together with
the above estimate for ν∗β, we infer, for all k ≤ ksmall + 18, the desired estimate

‖β‖∗∞,k . ε0r
−4u−

1
2
−δdec .

This concludes the proof of Proposition 7.3.12.
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7.4 Control in (ext)M, Part I

7.4.1 Preliminaries

Commutation lemmas

Here and below we write schematically

d/ = r d/, d↗ = {re4, d/}, d = (e3, re4, r d/), T =
1

2
(e3 + Υe4) .

Lemma 7.4.1. We have, schematically,

[T, e4] = r−1Γbd↗ , [ d/, e4] = Γ̌gd↗ + Γg. (7.4.1)

Also,

T(r) =
1

2r
A = r−1Γb.

Proof. The identity for [ d/, e4] has already been discussed in Corollary 7.1.5. According
to lemma 2.2.14 we have,

[T, e4] =

((
ω − m

r2

)
− m

2r

(
κ− 2

r

)
+
e4(m)

r

)
e4 + (η + ζ)eθ,

In view of Ref 4 and bootstrap assumptions Ref 2 the factors of e4 and eθ, on the right
hand side behave at worst like Γb. Thus schematically [T, e4] = r−1Γbd↗ .

Transport lemmas

The following lemma will be used repeatedly in what follows.

Lemma 7.4.2. If f verifies the transport equation

e4(f) +
p

2
κf = F,

we have for fixed u and any r0 ≤ r ≤ r∗,

rp‖f‖∞(u, r) . rp0‖f‖∞(u, rH) +

∫ r

r0

λp‖F‖∞(u, λ)dλ,

rp‖f‖∞(u, r) . rp∗‖f‖∞(u, r∗) +

∫ r∗

r

λp‖F‖∞(u, λ)dλ,

(7.4.2)

where r is the area radius at fixed u.
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Proof. According to Corollary 2.2.12 we have e4(rpf) = rpF The desired estimates follow
easily by integration with respect to the affine parameter s, recall that e4(s) = 1.

Proposition 7.4.3. The following inequalities hold true for all k ≤ klarge−5, r0 ≤ r ≤ r∗

rp‖f‖∞,k(u, r) . rp∗‖f‖∞,k(u, r∗) +

∫ r∗

r

λp‖F‖∞,k(u, λ)dλ,

rp‖f‖∞,k(u, r) . rp0‖f‖∞,k(u, r0) +

∫ r

r0

λp‖F‖∞,k(u, λ)dλ.

(7.4.3)

Proof. Commuting the equation e4(rpf) = rpF with d/, applying the commutation Lemma
7.4.1and our bootstrap assumptions on Γg we derive,

e4(rp| d/f |) . rp| d/F |+ rp| d/F |+ εr−2rp
(
| d/f |+ re4(rpf)

)
. rp(| d/F |+ |F |) + εr−2rp(| d/f |+ |f |).

Similarly, commuting with T,

e4

(
T(rpf)

)
= T(rpF )− [T, e4](rpf) = rpF − prp−1T(r)F − r−1Γbd↗ r

pf.

Hence,

e4

(
rpTf

)
= rpT(F )− prp−1T(r)F − r−1Γbd↗ r

pf − pe4

(
rp−1T(r)f

)
i.e.,

e4

(
rp|Tf |

)
. rp

(
|TF |+ |F |

)
+O(εr−2)

(
rp|F |+ | d/f |+ |f |

)
.

Similarly, commuting the equation with re4 we derive,

e4

(
rp|rf |

)
. rp

(
|re4F |+ |F |

)
+O(εr−2)

(
rp|F |+ | d/f |+ |f |

)
.

Integrating the inequalities,

e4(rp| d/f |) . rp(| d/F |+ |F |) + εr−2rp(| d/f |+ |f |)
e4

(
rp|Tf |

)
. rp

(
|TF |+ |F |

)
+ εr−2rp

(
| d/f |+ |f |

)
e4

(
rp|rf |

)
. rp

(
|re4F |+ |F |

)
+ εr−2

(
rp|F |+ | d/f |+ |f |

)
and applying Gronwall we derive the desired estimates in (7.4.3) for k = 1.

Repeating the procedure for d̃k, any combination of derivatives of the form d̃k = Tk1 d/k2

with k1 + k2 = k, estimating the corresponding commutators using our assumptions Ref
1, we deduce for all 0 ≤ k ≤ klarge − 5,

e4(rp|d̃≤kf |) . rp|d̃≤kF |+ εr−2rp|d̃≤kf |
and the desired estimates follow by integration.



7.4. CONTROL IN (EXT )M, PART I 393

Transport equations for ` = 1 modes

To estimate ` = 1 modes we make use of the following.

Lemma 7.4.4. The following equation holds true for reduced scalars ψ ∈ s1( (ext)M).

e4

(∫
S

ψeΦ

)
=

∫
S

e4(ψ)eΦ +
3

2
κ

∫
S

ψeΦ +

∫
S

1

2
(3κ̌− ϑ)ψ) eΦ. (7.4.4)

Proof. This is an immediate consequence of Proposition (2.2.9). Indeed according to it
and e4Φ = 1

2
(κ− ϑ),

e4

(∫
S

ψeΦ

)
=

∫
S

(e4(ψeΦ) + κψeΦ) =

∫
S

(
e4(ψ) +

1

2
(3κ− ϑ)ψ

)
eΦ

=

∫
S

(
e4(ψ) +

3

2
κψ

)
eΦ +

∫
S

1

2
(3κ̌− ϑ)ψ) eΦ

=

∫
S

e4(ψ)eΦ +
3

2
κ

∫
S

ψeΦ +

∫
S

1

2
(3κ̌− ϑ)ψ) eΦ

as desired.

7.4.2 Proposition 7.4.5

In what follows we prove the stronger estimates in terms of powers of r for the quantities
κ̌, µ̌, ϑ, ζ, κ̌, β, ρ̌. More precisely we establish the following.

Proposition 7.4.5. The following estimates hold true in (ext)M for all k ≤ ksmall + 20∥∥κ̌‖∞,k . ε0r
−2u−1−δdec ,∥∥µ̌‖∞,k−2 . ε0r
−3u−1−δdec .

(7.4.5)

Also, for all k ≤ ksmall + 18∥∥ϑ, ζ, κ̌, rρ̌∥∥∞,k . ε0r
−2u−1/2−δdec ,∥∥β∥∥∞,k . ε0r
−3(2r + u)−1/2−δdec ,∥∥e3β

∥∥
∞,k−1

. ε0r
−4u−1/2−δdec ,∥∥eθK∥∥∞,k−1

. ε0r
−4u−1/2−δdec .

(7.4.6)
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7.4.3 Estimates for κ̌, µ̌ in (ext)M

Step 1. We prove the following estimates for κ̌ in (ext)M.∥∥κ̌‖∞,k . ε0r
−5/2u−1−δdec , k ≤ ksmall + 20. (7.4.7)

We make use of the equation

e4(κ̌) + κ κ̌ = F := −1

2
κ̌2 − 1

2
κ̌2 − 1

2

(
ϑ2 − ϑ2

)
.

In view of our assumptions Ref 1-2 and Lemma 7.1.6∥∥∥F∥∥∞,k(u, λ) . ε0λ
−7/2u−1−δdec .

Applying Proposition 7.4.3 we deduce,

r2‖κ̌‖∞,k(u, r) . r2
∗‖κ̌‖∞,k(u, r∗) + ε0u

−1−δdec
∫ r∗

r

λ2λ−7/2dλ

. r2
∗‖κ̌‖∞(u, r∗) + ε0r

−1/2u−1−δdec .

In view of the control on the last slice we infer that, everywhere in (ext)M,

‖κ̌‖∞,k(u, r) . ε0r
−5/2u−1−δdec .

Step 2. We prove the estimate,∥∥µ̌‖∞,k . ε0r
−3u−1−δdec , k ≤ ksmall + 18. (7.4.8)

Recall that we have

e4(µ̌) +
3

2
κµ̌ = −3

2
µκ̌+ F,

F : = −3

2
µ̌κ̌+

1

2
µ̌κ̌+ Err[e4µ̌]− Err[e4µ̌],

Err[e4µ̌] = −1

8
κϑ2 − ϑ d?/2ζ − ϑζ2 +

(
2eθ(κ)− 2β +

3

2
κζ

)
ζ.

In view of Lemma 7.1.6 we check,

‖F‖∞,k(u, λ) . ε0λ
−9/2u−1−δdec .

Applying Proposition 7.4.3 and the estimates on the last slice for µ̌ we deduce

r3‖d̃kµ̌‖∞,k(u, λ) . r3
∗‖d̃kµ̌‖∞,k(u, r∗) + ε0u

−1−δdec
∫ r∗

r

λ3λ−9/2

. r3
∗‖d̃kµ̌‖∞,k(u, r∗) + ε0u

−1−δdecr−1/2

. ε0u
−1−δdec

from which the desired estimate (7.4.8) follows.
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7.4.4 Estimates for the ` = 1 modes in (ext)M

We extend the validity of Lemma 7.3.10 to the entire region (ext)M.

Lemma 7.4.6. The following estimates hold true on (ext)M or all k ≤ ksmall + 19,∥∥∥∥∫
S

βeΦ

∥∥∥∥
∞,k

(u, r) . ε0r
−1u−1−δdec ,∥∥∥∥∫

S

ζeΦ

∥∥∥∥
∞,k

(u, r) . ε0ru
−1−δdec ,∥∥∥∥∫

S

eθ(ρ)eΦ

∥∥∥∥
∞,k

(u, r) . ε0r
−1u−1−δdec ,∥∥∥∥∫

S

eθ(κ)eΦ

∥∥∥∥
∞,k

(u, r) . ε0u
−1−δdec ,∥∥∥∥∫

S

βeΦ

∥∥∥∥
∞,k

(u, r) . ε0u
−1−δdec .

(7.4.9)

Proof. We first note that the estimate for the ` = 1 mode of µ̌ is an immediate consequence
of the estimate (7.4.8). To prove the remaining estimates we proceed in steps as follows.

Step 1. Observe that the estimates of Lemma 7.3.10 remain valid when we replaces the
norms ‖ ‖∗∞,k by ‖ ‖∞,k. To show this it suffices to prove estimates for re4 of all ` = 1
modes. This can easily be achieved with the help of Lemma 7.4.4 and our e4 transport
equations for ζ, ρ̌, µ̌, κ̌, β.

Step 2. We establish the estimate,∥∥∥∥∫
S

βeΦ

∥∥∥∥
∞,k

. ε0r
−1u−1−δdec , k ≤ ksmall + 20. (7.4.10)

In view of (7.4.4) and the Bianchi identity for e4(β)

e4

(∫
S

βeΦ

)
=

∫
S

e4βe
Φ +

3

2
κ

∫
S

βeΦ +

∫
S

1

2
(3κ̌− ϑ)β) eΦ

=

∫
S

(−2κβ + d?/2α + ζα)eΦ +
3

2
κ

∫
S

βeΦ +

∫
S

1

2
(3κ̌− ϑ)β) eΦ

= −κ
2

∫
S

βeΦ +

∫
S

(
ζα +

1

2
(−κ̌+ ϑ)β

)
eΦ,
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and hence

e4

(∫
S

βeΦ

)
+
κ

2

∫
S

βeΦ =

∫
S

(
ζα +

1

2
(−κ̌+ ϑ)β

)
eΦ. (7.4.11)

Recall that ∣∣(α, β)
∣∣ . εr−3(2r + u)−1/2−δdec .

We deduce, ∣∣∣e4

(
r

∫
S

βeΦ

) ∣∣∣ . rε0r
−2u−1/2−δdecr−3(2r + u)−1/2−δdec

∫
S

|eΦ|

. ε0r
−1u−1/2−δdec(2r + u)−1/2−δdec

. ε0r
−1−δu−1−δdec

i.e., in view of the estimate on Σ∗, everywhere on (ext)M,∣∣∣∣∫
S

βeΦ

∣∣∣∣ . εr−1u−1−δdec . (7.4.12)

Commuting with T, d/ and re4 we also easily deduce,∥∥∥d̃k2(re4)k1

∫
S

βeΦ
∥∥∥
∞
. εr−1u−1−δdec , ∀ k1 + k2 ≤ ksmall + 20

from which (7.4.10) follows.

Step 3. We prove the estimate,∥∥∥∥∫
S

ζeΦ

∥∥∥∥
∞,k

. ε0r
1/2u−1−δdec , k ≤ ksmall + 19 (7.4.13)

which is better than the desired estimate in Lemma 7.4.6. This follows, as for the corre-
sponding estimate on Σ∗, by projecting the Codazzi equation for ϑ on the ` = 1 mode∫

S

ζeΦ =
r

2Υ

(
2

∫
S

βeΦ −
∫
S

eθ(κ)eΦ −
∫
S

ϑζeΦ −
∫
S

(
κ− 2Υ

r

)
ζeΦ

)
.

Note that in view of the estimates for κ̌ in (7.4.7) already established19 we have,∥∥∥∥∫
S

eθ(κ)eΦ

∥∥∥∥
∞,k

. ε0r
−1/2u−1−δdec , k ≤ ksmall + 19.

19Note that the estimate for κ̌ is stronger in powers of r than the corresponding bootstrap assumption.
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Also, making use of (7.4.10),∥∥∥∥∫
S

βeΦ

∥∥∥∥
∞,k

. ε0r
−1u−1−δdec , k ≤ ksmall + 19.

Thus, since Υ is bounded away from zero in (ext)M, we easily deduce∥∥∥∥∫
S

ζeΦ

∥∥∥∥
∞,k

. ε0r
1/2u−1−δdec , k ≤ ksmall + 19.

Step 4. We prove the estimate,∥∥∥∥∫
S

eθ(ρ)eΦ

∥∥∥∥
∞,k

. ε0r
−1u−1−δdec , k ≤ ksmall + 19. (7.4.14)

We proceed as in Step 4 of the proof of Lemma 7.3.10. In view of the definition of µ and
the identity d?/1 d/1 = d/2 d

?/2 + 2Kwe write,∫
S

eθ(ρ)eΦ = −
∫
S

eθ(µ)eΦ +

∫
S

d?/1 d/1ζe
Φ +

1

4

∫
S

eθ(ϑϑ)eΦ

= −
∫
S

eθ(µ)eΦ +

∫
S

( d/2 d
?/2 + 2K)ζeΦ +

1

4

∫
S

eθ(ϑϑ)eΦ

= −
∫
S

eθ(µ)eΦ +
2

r2

∫
S

ζeΦ + 2

∫
S

(
K − 1

r2

)
ζeΦ +

1

4

∫
S

eθ(ϑϑ)eΦ.

Together with the above estimate for the ` = 1 mode of ζ, the estimate (7.4.8) for µ̌ and
the bootstrap assumptions, we infer that∥∥∥∥∫

S

eθ(ρ)eΦ

∥∥∥∥
∞,k

. ε0r
−1u−1−δdec .

Step 5. We prove the estimate,∥∥∥∥∫
S

eθ(κ)eΦ

∥∥∥∥
∞,k

. ε0u
−1−δdec , k ≤ ksmall + 19. (7.4.15)

As in the corresponding estimate on the last slice we make use of the remarkable identity
for the ` = 1 mode of eθ(K), i.e.∫

S

eθ(ρ)eΦ +
1

4

∫
S

eθ(κκ)eΦ − 1

4

∫
S

eθ(ϑϑ)eΦ = 0.
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We infer∫
S

eθ(κ)eΦ = −2r

∫
S

eθ(ρ)eΦ − r

2

∫
S

κeθ(κ)eΦ +
r

2

∫
S

eθ(ϑϑ)eΦ − r

2

∫
S

(
κ− 2

r

)
eθ(κ)eΦ.

The estimate (7.4.15) follows easily from with the above estimate for the ` = 1 mode of
eθ(ρ), the estimate for κ̌ in (7.4.7) and the bootstrap assumptions.

Step 6. We prove the estimate,∥∥∥∥∫
S

βeΦ

∥∥∥∥
∞,k

. ε0u
−1−δdec , k ≤ ksmall + 19. (7.4.16)

Projecting the Codazzi for ϑ on the ` = 1 mode, we have

−2

∫
S

βeΦ +

∫
S

eθ(κ)eΦ −
∫
S

κζeΦ +

∫
S

ϑζeΦ = 0

and hence∫
S

βeΦ =
1

2

∫
S

eθ(κ)eΦ +
Υ

r

∫
S

ζeΦ − 1

2

∫
S

(
κ+

2Υ

r

)
ζeΦ +

1

2

∫
S

ϑζeΦ.

The desired estimate follows easily in view of the above estimates for the ` = 1 mode of
eθ(κ), the ` = 1 mode of ζ and the bootstrap assumptions.

7.4.5 Completion of the proof of Proposition 7.4.5

We prove the second part of Proposition 7.4.5, i.e. we prove for all k ≤ ksmall + 18∥∥ϑ, ζ, κ̌, rρ̌∥∥∞,k . ε0r
−2u−1/2−δdec ,∥∥β∥∥∞,k . ε0r
−3(2r + u)−1/2−δdec ,∥∥e3β

∥∥
∞,k−1

. ε0r
−4u−1/2−δdec ,∥∥eθK∥∥∞,k−1

. ε0r
−4u−1/2−δdec .

(7.4.17)

We also prove the stronger estimate for β∥∥β‖∞,k . ε0 log(1 + u)r−3(2r + u)−1/2−δextra . (7.4.18)
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Proof. We proceed in steps as follows.

Step 1. We derive the estimate,∥∥ϑ∥∥∞,k . ε0r
−2u−1/2−δdec , ∀ k ≤ ksmall + 19, (7.4.19)

with the help of the equation e4ϑ+ κϑ = F := −2α− κ̌ϑ and the corresponding estimate
on the last slice.

Note that, ∥∥α∥∥∞,k . ε0r
−3−δ(2r + u)−1/2−δdec

where δ > 0 is a small constant, δ < δextra − δdec. Thus, using also the product estimates
of Lemma 7.1.6, we easily check that,

‖F‖∞,k . ε0r
−3−δu−1/2−δdec + ε0r

−7/2u−1−δdec , k ≤ ksmall + 20.

Making use of Proposition 7.4.3 we deduce, for all k ≤ ksmall + 19,

r2‖dkϑ‖∞,k(u, r) . r2
∗‖dkϑ‖∞,k(u, r∗) + ε0u

−1/2−δdec
∫ r∗

r

λ−1−δdλ.

Thus, in view of the results on the last slice Σ∗, we deduce,

‖dkϑ‖∞(u, r) . r−2u−1/2−δdec .

Step 2. We derive the estimate,∥∥β∥∥∞,k . ε0r
−3(2r + u)−1/2−δdec , ∀ k ≤ ksmall + 19. (7.4.20)

We proceed exactly as in the estimates for β on the last slice Σ∗ by making use of the
Bianchi identity e3α +

(
1
2
κ− 4ω

)
α = − d?/2β − 3

2
ϑρ+ 5ζβ, from which we deduce,

‖ d?/2β‖∞,k−1 .
∥∥e3α

∥∥
∞,k−1

+ r−1
∥∥α∥∥∞,k−1

+ r−3
∥∥ϑ‖∞,k−1 + ε0r

−5u−1−δdec .

Thus, in view of the above estimate for ϑ and Ref 2 for α,

‖ d?/2β‖∞,k−1 . ε0r
−4(2r + u)−1/2−δdec + ε0r

−5u−1/2−δdec .

On the other hand we have, according to (7.4.10),∥∥∥∥∫
S

βeΦ

∥∥∥∥
∞,k

. ε0r
−1u−1−δdec , k ≤ ksmall + 20.
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Estimate (7.4.20) follows then easily, according to the part 4 of the elliptic Hodge Lemma
7.1.7.

We can prove a stronger estimate for β. Indeed we have, in view of Ref 2.

|α| . log(1 + u)r−3(2r + u)−1/2−δextra ,

|e3α| . r−4(2r + u)−1/2−δextra .

Hence, using the equation e3α +
(

1
2
κ− 4ω

)
α = − d?/2β − 3

2
ϑρ+ 5ζβ,∥∥ d?/2β‖∞,k . ε0 log(1 + u)r−4(2r + u)−1/2−δextra + ε0r

−5u−1/2−δdec .

According to Lemma 7.1.7

‖β‖hk+1(S) . r‖ d?/2 β‖hk(S) + r−2

∣∣∣∣∫
S

eΦβ

∣∣∣∣
and thus, in view of the estimate (7.4.10) for the ` = 1 mode of β,

‖β‖hk+1(S) . ε0 log(1 + u)r−2(2r + u)−1/2−δextra + ε0r
−3u−1−δdec

. ε0 log(1 + u)r−2(2r + u)−1/2−δextra .

The estimates for the T and e4 derivatives are derived in the same manner. and hence,∥∥β‖∞,k . ε0 log(1 + u)r−3(2r + u)−1/2−δextra , ∀ k ≤ ksmall + 19. (7.4.21)

This improvement is needed in the next step.

Step 3. We derive the estimate∥∥ζ∥∥∞,k . ε0r
−2u−1/2−δdec , ∀ k ≤ ksmall + 19. (7.4.22)

For this we make use of the transport equation for ζ,

e4ζ + κζ = F := −β + Γg · Γg

and the improved estimate for β in the previous step. Thus, making use of the product
Lemma 7.1.6,∥∥F∥∥∞,k . ∥∥β∥∥∞,k + ε0r

−7/2u−1−δdec

. ε0 log(1 + u)r−3(2r + u)−1/2−δextra + ε0r
−7/2u−1−δdec

. ε0r
−3−δu−1/2−δdec + ε0r

−7/2u−1−δdec .
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Making use of Proposition 7.4.3 we deduce

r2‖dkζ‖∞,k(u, r) . r2
∗‖dkζ‖∞,k(u, r∗) + ε0u

−1/2−δdec
∫ r∗

r

λ−1−δdλ.

Thus, in view of the estimates on the last slice,

r2‖dkζ‖∞(u, r) . ε0u
−1/2−δdec , k ≤ ksmall + 19

as desired.

Step 4. We derive the estimate∥∥ρ̌∥∥∞,k . ε0r
−3u−1/2−δdec , ∀ k ≤ ksmall + 18. (7.4.23)

We make use of the definition of µ from which we infer that,

µ̌ = − d/1ζ − ρ̌+ Γg · Γb.
Hence, in view of the product Lemma and the estimates already derived, for all k ≤
ksmall + 18, ∥∥ρ̌∥∥∞,k . r−1

∥∥ζ∥∥∞,k+1
+
∥∥µ̌∥∥∞,k + ε0r

−3u−1−δdec

. ε0r
−3u−1/2−δdec

as desired.

Step 5. We derive the estimate∥∥κ̌∥∥∞,k . ε0r
−2u−1/2−δdec , ∀ k ≤ ksmall + 18. (7.4.24)

We make use of the equation

e4κ̌+
1

2
κκ̌ = F := −2 d/1ζ −

1

2
κ̌κ+ 2ρ̌+ Γg · Γb.

In view of the previously derived estimates,∥∥F∥∥∞,k . ε0r
−3u−1/2−δdec , k ≤ ksmall + 18.

Making use of Proposition 7.4.3 we deduce, for all k ≤ ksmall + 18,

r‖dkκ̌‖∞,k(u, r) . r∗‖dkκ̌‖∞,k(u, r∗) + ε0u
−1/2−δdec

∫ r∗

r

λ−2dλ

. r∗‖dkκ̌‖∞,k(u, r∗) + ε0r
−1u−1/2−δdec .

Thus, in view of the estimates on the last slice,

r‖dkκ̌‖∞(u, r) . ε0(r∗)
−1u−1/2−δdec + ε0r

−1u−1/2−δdec

from which the desired estimate easily follows.
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Step 6. We derive the estimate∥∥e3β
∥∥
∞,k . ε0r

−4u−1/2−δdec , ∀ k ≤ ksmall + 17. (7.4.25)

making use of the equation e3β+ (κ− 2ω)β = − d?/1ρ+ 3ζρ+ Γgβ+ Γbα and the estimates
derived above for β, d?/1ρ, ζ. Hence,∥∥e3β

∥∥
∞,k . r−1

∥∥β∥∥∞,k +
∥∥ d?/1ρ

∥∥
∞,k + r−3

∥∥ζ∥∥∞,k + ε0r
−4u−1−δdec

. ε0r
−4u−1/2−δdec .

Step 7. As a corollary of the above estimates (see also Ref 4) we also derive, in (ext)M,∥∥K −K∥∥∞,k−1
. ε0r

−3u−1/2−δdec , k ≤ ksmall + 18,∥∥∥∥K − 1

r2

∥∥∥∥
∞,k−1

. ε0r
−3u−1/2−δdec , k ≤ ksmall + 18.

(7.4.26)

In view of the definition of K we have,

eθ(K) = −eθ
(
ρ̌− 1

4
κκ̌− 1

4
κκ̌+

1

4
ϑϑ

)
.

Thus, in view of the above estimates, for all k ≤ ksmall + 17,∥∥eθK∥∥∞,k . ε0r
−4u−1/2−δdec

from which the desired estimate easily follows.

7.5 Control in (ext)M, Part II

We derive the crucial decay estimates which imply, in particular, decay of order u−1−δdec

for all quantities in Γ and Ř (except ξ, ω̌, Ω̌ which will be treated separately) in the
interior. More precisely we prove the following,

Proposition 7.5.1. The following estimates hold true in (ext)M, for all k ≤ ksmall + 8.∥∥ϑ, ζ, η, κ̌, ϑ, rβ, rρ̌, rβ, α‖∞,k . ε0r
−1u−1−δdec . (7.5.1)

To prove the proposition we make use of the fact that we already have good decay esti-
mates in terms of powers of u for κ̌, µ̌. We also derive below decay estimates for various
renormalized quantities.
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7.5.1 Estimate for η

We start with the following simple estimate for η in terms of ζ.

‖η‖∞,k . ‖ζ‖∞,k + ε0r
−1u−1−δdec , k ≤ ksmall + 17. (7.5.2)

This can be derived by propagation from the last slice with the help of the equation,

e4(η − ζ) +
1

2
κ(η − ζ) = −1

2
ϑ(η − ζ) = Γg · Γb.

Note that

‖Γg · Γb‖∞,k . ε0r
−3u−1−δdec .

Thus making use of Proposition 7.4.3 we deduce

r‖η − ζ‖∞,k(u, r) . r∗‖η − ζ‖∞,k(u, r∗) +

∫ r∗

r

λ‖Γg · Γb‖∞,k(u, λ)

. r∗‖η − ζ‖∞,k(u, r∗) + ε0u
−1−δdec

with r∗ the value of r on C(u) ∩ Σ∗. On the last slice we have derived the estimates,
recorded in Proposition 7.3.6 and Proposition 7.4.5

‖η‖∗∞,k . ε0r
−1u−1−δdec ,

‖ζ‖∗∞,k . ε0r
−2u−1/2−δdec .

In view of the dominance condition on r on Σ∗ we deduce,

‖η − ζ‖∗∞,k(u, r) . ε0r
−1u−1−δdec

and therefore also,

r∗‖η − ζ‖∞,k(u, r∗) . ε0u
−1−δdec .

Therefore,

r‖η‖∞,k(u, r) . r‖ζ‖∞,k(u, r) + ε0u
−1−δdec

as desired.
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7.5.2 Crucial lemmas

We start with the following lemma.

Lemma 7.5.2. The s1(M) reduced tensor

Ξ : = r2
(
eθ(κ) + 4r d?/1 d/1ζ − 2r2 d?/1 d/1β

)
(7.5.3)

verifies in (ext)M the estimate,∥∥Ξ
∥∥
∞,k . ε0u

−1−δdec , ∀ k ≤ ksmall + 13. (7.5.4)

Proof. To calculate e4Ξ we make use of the equations,

e4(κ) +
1

2
κκ = −2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2,

e4ζ + κζ = −β − ϑζ,
e4β + 2κβ = d/2α + ζα.

Since we already have an estimate for µ̌ we re-express ρ = −µ− d/1ζ + 1
4
ϑϑ and derive,

e4(κ) +
1

2
κκ = −2µ− 4 d/1ζ + 2ζ2.

Commuting with d?/1 and making use of [ d?/1, e4] = 1
2
(κ+ ϑ) d?/1 we derive,

e4( d?/1κ) + κ d?/1κ+
1

2
κ d?/1κ = − d?/1µ̌− 4 d?/1 d/1ζ + 2 d?/1(ζ2) + ϑ d?/1κ. (7.5.5)

Hence, since e4(r) = r
2
κ,

e4(r2 d?/1κ) = r2(κ− κ) d?/1κ−
1

2
r2κ d?/1κ̌− 4r2 d?/1 d/1ζ − r2 d?/1µ̌+ r2( d?/1(ζ2) + ϑ d?/1κ)

= −1

2
r2κ d?/1κ̌− 4r2 d?/1 d/1ζ + Err1

where,

Err1 : = −1

2
r2κ d?/1κ̌− r2 d?/1µ̌+ r2

(
κ̌ d?/1κ+ d?/1(ζ2) + ϑ d?/1κ

)
.

In view of the estimate already established for , κ̌, µ̌ and the product Lemma 7.1.6 we
check, ∥∥Err1‖∞,k . ε0r

−2u−1−δdec , k ≤ ksmall + 17.

To simplify notation we introduce the following.
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Definition 7.5.3. We say that a quantity ψ ∈ sk(M) is r−pGooda provided that it verifies
the estimate, everywhere in (ext)M,∥∥ψ∥∥∞,k . ε0r

−pu−1−δdec , ∀k ≤ ksmall + a. (7.5.6)

Using this notation we write,

e4(r2 d?/1κ) = −4r2 d?/1 d/1ζ + r−2Good17. (7.5.7)

Using the same notation the transport equation for ζ can be written in the form,

e4ζ + κζ = −β − ϑζ − κ̌ζ = −β + r−7/2Good20.

Commuting with (r d?/1)(r d/1) (making us of Lemma 7.4.1) we derive

e4(r2 d?/1 d/1ζ) + κ(r2 d?/1 d/1ζ) = −r2 d?/1 d/1β + r−7/2Good18.

Since e4(r) = 1
2
rκ we deduce,

e4(r3 d?/1 d/1ζ) = −1

2
κr3 d?/1 d/1ζ − r3 d?/1 d/1β + r−5/2Good18. (7.5.8)

Similarly the transport equation for β takes the form

e4β + 2κβ = d/2α + ζα− 2κ̌β = d/2α + r−9/2Good20

and,

e4(r2 d?/1 d/1β) + 2κr2 d?/1 d/1β = r2 d?/1 d/1 d/2α + r−9/2Good18.

As before, since e4(r) = 1
2
rκ, we deduce,

e4(r4 d?/1 d/1β) = −κr4 d?/1 d/1β + r4 d?/1 d/1 d/2α + r−5/2Good18. (7.5.9)

Combining (7.5.7)–(7.5.9) we deduce,

e4Ξ = e4

[
r2
(
− d?/1κ+ 4r d?/1 d/1ζ − 2r2 d?/1 d/1β

) ]
= 4r2 d?/1 d/1ζ + 4

(
−1

2
κr3 d?/1 d/1ζ − r3 d?/1 d/1β

)
− 2

(
−κr4 d?/1 d/1β + r4 d?/1 d/1 d/2α

)
+ r−2Good17

= −2

(
κ− 2

r

)
r3 d?/1 d/1ζ + 2r4

(
κ− 2

r

)
d?/1 d/1β − 2r4 d?/1 d/1 d/2α + r−2Good17.
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Making use of Ref 4 estimates for κ− 2
r

and the estimates for α in Ref 2 , i.e.,

r4| d?/1 d/1 d/2α| . ε0r
−1(2r + u)−1−δextra . ε0r

−1−δu−1−δextra+δ, 0 < δ < δextra

i.e.,

r4 d?/1 d/1 d/2α = r−1−δGood13

we thus deduce,

e4Ξ = r−1−δGood13.

We deduce,

‖Ξ‖∞,k(u, r) . ‖Ξ‖∞,k(u, r∗) + ε0u
−1−δdec

∫ r∗

r

λ−1−δdλ, ∀k ≤ ksmall + 13.

In view of the estimates on the last slice it is easy to check that

‖Ξ‖∞,k(u, r∗) . ε0u
−1−δdec , ∀k ≤ ksmall + 13.

Indeed, on the last slice,

‖ d?/1κ‖∞,k . ε0r
−3u−1/2−δdec ,

‖ d?/1 d/1ζ‖∞,k . ε0r
−4u−1/2−δdec ,

‖ d?/1 d/1β‖∞,k . ε0r
−5u−1/2−δdec .

Hence, since r � u on Σ∗,

‖Ξ‖∞,k(u, r∗) . ε0r
−1u−1/2−δdec . ε0u

−1−δdec .

Thus everywhere on (ext)M,

‖Ξ‖∞,k . ε0u
−1−δdec , ∀k ≤ ksmall + 13

as desired.

In the following lemma, we make use of the control we have already established for
q, α, α, κ̌, µ̌ in (ext)M to derive two nontrivial relations between angular derivatives of
ζ, κ̌ and β.

Remark 7.5.4. According to Theorem M3 we only have good estimates for α along T and
on the last slice Σ∗. To keep track of this fact we denote by r−pGooda(α) those r−pGooda
terms which depend linearly on α and their derivatives.
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Lemma 7.5.5. Let A,B be the operators A := d?/2 d/2−3ρ, B = d?/2 d/2 +2K. The following
identities hold true,

AB d?/2ζ −
3

4
κ ρ d?/2eθ(κ) ∈ r−6Good14(α)

A2B d?/2β +
9

8

(
κ ρ
)2
d?/2eθ(κ) ∈ r−9Good9(α)

(7.5.10)

Proof. In view of the improved control for α in Theorem M2, α in Theorem M3, and q
in Theorem M1, the bootstrap assumptions and product lemma, and the control we have
already derived for κ̌ and µ̌ in (ext)M, we obtain

d/2ϑ+ 2β − κζ ∈ r−3Good20, Codazzi and control of κ̌,

d/2ϑ+ 2β − eθ(κ) + κζ ∈ r−3Good20, Codazzi,

d?/2β +
3

2
ρϑ ∈ r−3Good15, Bianchi and control of α,

d?/2β +
3

2
ρϑ ∈ r−2Good15(α), Bianchi and control of α,

d?/2 d
?/1ρ+

3

4
κ ρϑ+

3

4
κ ρϑ ∈ r−4Good18, (7.1.28) and control of q,

(7.5.11)

where we used Codazzi for the two first inequalities, Bianchi for the third and fourth
inequalities, the definition of µ for the fifth one, and the identity relating q and d?/2 d

?/1ρ for
the last one.

Combining the first statement with the third and the second with the fourth we infer
that,

( d?/2 d/2 − 3ρ)ϑ− κ d?/2ζ ∈ r−3Good14,

( d?/2 d/2 − 3ρ)ϑ− d?/2eθ(κ) + κ d?/2ζ ∈ r−2Good14(α),

or, setting

A := d?/2 d/2 − 3ρ,

Aϑ− κ d?/2ζ ∈ r−3Good14,

Aϑ− d?/2eθ(κ) + κ d?/2ζ ∈ r−2Good14(α).
(7.5.12)

From the fifth equations we deduce,

A

(
d?/2 d

?/1ρ+
3

4
κ ρϑ+

3

4
κ ρϑ

)
∈ r−6Good18
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i.e.,

Ad?/2 d
?/1ρ+

3

4
κ ρAϑ+

3

4
κ ρAϑ ∈ r−6Good18.

Making use of (7.5.12) we deduce,

Ad?/2 d
?/1ρ+

3

4
κ ρ
(
κ d?/2ζ

)
+

3

4
κ ρ
(
d?/2eθ(κ)− κ d?/2ζ

)
∈ r−6Good14(α).

Hence, simplifying,

Ad?/2 d
?/1ρ+

3

4
κ ρ d?/2eθ(κ) ∈ r−6Good14(α). (7.5.13)

Next, in view of the identity d?/1 d/1 = d/2 d
?/2 + 2K,

( d?/2 d/2 + 2K) d?/2ζ = d?/2 d/2 d
?/2ζ + 2K d?/2ζ

= d?/2 ( d/2 d
?/2ζ + 2Kζ)− 2 d?/2Kζ

= d?/2 d
?/1 d/1ζ + r−9/2Good19.

Recalling the definition of µ = − d/1ζ − ρ+ 1
4
ϑϑ and the product lemma we write

d?/1 d/1ζ = − d?/1µ− d?/1ρ+
1

4
d?/1(ϑϑ) = − d?/1µ− d?/1ρ+ r−4Good19.

In view of the estimates for µ̌ we have already established we deduce,

d?/1 d/1ζ = − d?/1ρ+ r−4Good17.

Thus,

( d?/2 d/2 + 2K) d?/2ζ = − d?/2 d
?/1ρ+ r−5Good16. (7.5.14)

Therefore, making use of (7.5.13)

A( d?/2 d/2 + 2K) d?/2ζ = −Ad?/2 d
?/1ρ+ r−6Good14

=
3

4
κ ρ d?/2eθ(κ) + r−6Good14(α)

i.e.,

A( d?/2 d/2 + 2K) d?/2ζ −
3

4
κ ρ d?/2eθ(κ) = r−6Good14(α) (7.5.15)

as desired.
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To prove the second statement of the lemma we write, using (7.5.12)

( d?/2 d/2 + 2K)Aϑ = κ ( d?/2 d/2 + 2K) d?/2ζ + r−5Good12(α).

Hence applying A and making use of (7.5.15),

A( d?/2 d/2 + 2K)Aϑ = κA( d?/2 d/2 + 2K) d?/2ζ + r−7Good10(α)

=
3

4
κ2 ρ d?/2eθ(κ) + r−7Good10(α).

Finally, making use of the relation d?/2β + 3
2
ρ ϑ ∈ r−3Good15, we have

A2( d?/2 d/2 + 2K) d?/2β = A( d?/2 d/2 + 2K)Ad?/2β + r−9Good9(α)

= −3

2
ρA( d?/2 d/2 + 2K)Aϑ+ r−9Good9(α)

= −3

2
ρ

(
3

4
κ2 ρ d?/2eθ(κ) + r−8Good10(α)

)
+ r−9Good9

= −9

8
κ2ρ2 d?/2eθ(κ) + r−9Good9(α)

as desired. This concludes the proof of the lemma.

Corollary 7.5.6. The s1(M) tensor eθ(κ) = − d?/1κ̌ verifies the following fifth order elliptic
equation in (ext)M

A2 d?/2 (eθκ)− 12m

r3
Ad?/2eθ(κ) +

36m2

r6
d?/2eθ(κ) ∈ r−7Good8(α). (7.5.16)

Proof. According to Lemma 7.5.5

AB d?/2ζ −
3

4
κ ρ d?/2eθ(κ) ∈ r−6Good14(α),

A2B d?/2β +
9

8

(
κ ρ
)2
d?/2eθ(κ) ∈ r−9Good9(α),

we have

A2B d?/2ζ =
3

4
κ ρAd?/2eθ(κ) + r−8Good12(α),

A2B d?/2β = −9

8

(
κ ρ
)2
d?/2eθ(κ) + r−9Good9(α).

(7.5.17)

In view of Lemma 7.5.2 we have on (ext)M,

eθ(κ) + 4r d?/1 d/1ζ − 2r2 d?/1 d/1β ∈ r−2Good13. (7.5.18)
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Thus,

A2 d?/2

(
eθ(κ) + 4r d?/1 d/1ζ − 2r2 d?/1 d/1β

)
∈ r−7Good8.

Making use of

d?/2 d
?/1 d/1 = d?/2

(
d/2 d

?/2 + 2K
)

= ( d?/2 d/2 + 2K) d?/2 − eθ(K),

we deduce,

A2 d?/2 (eθκ) = −4rA2 d?/2 d
?/1 d/1ζ + 2r2A2 d?/2 d

?/1 d/1β + r−7Good8

= −4rA2( d?/2 d/2 + 2K) d?/2ζ + 2r2A2( d?/2 d/2 + 2K) d?/2β + r−7Good8

= −4rA2B d?/2ζ + 2r2A2B d?/2β + r−7Good8.

Thus, in view of the lemma,

A2 d?/2 (eθκ) = −3r
(
κ ρAd?/2eθ(κ) + r−8Good12

)
− 9

4
r2
((
κ ρ
)2
d?/2eθ(κ) + r−9Good9(α)

)
+ r−7Good8.

We deduce,

A2 d?/2eθκ+ 3r (κ ρ)Ad?/2eθ(κ) +
9

4
r2 (κ ρ)2 d?/2eθ(κ) ∈ r−7Good8(α).

Finally,

A2 d?/2eθκ−
12m

r3
Ad?/2eθ(κ) +

36m2

r6
d?/2eθ(κ) ∈ r−7Good8(α)

as desired.

Lemma 7.5.7. We have the following Poincaré inequality on (ext)M for f ∈ s2(M) with
A = ( d?/2 d/2 − 3ρ)∫

S

f

(
A2 − 12m

r3
A+

36m2

r6

)
f ≥ 1

4r2

∫
S

( d/2f)2 +
9

r4

∫
S

f 2.

Proof. Recall that we have the following Poincaré inequality for d/2∫
S

( d/2f)2 ≥ 4

∫
S

Kf 2.
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Since
∣∣K − r−2

∣∣ . εr−2,∫
S

fAf =

∫
S

f( d?/2 d/2 − 3ρ)f ≥
∫
S

(4K − 3ρ)f 2

=

(
4

r2
+

6m

r3
+O(r−2ε)

)∫
S

f 2.

Since A is positive self-adjoint,∫
S

fA2f =

∫
S

(A1/2f)A(A1/2f) =

(
4

r2
+

6m

r3
+O(r−2ε)

)∫
S

|A1/2f |2

=

(
4

r2
+

6m

r3
+O(r−2ε)

)∫
S

fAf

This yields∫
S

f

(
A2f − 12m

r3
Af

)
=

(
4

r2
+

6m

r3
− 12m

r3
+O(r−2ε)

)∫
S

fAf

=

(
4

r2
− 6m

r3
+O(r−2ε)

)∫
S

fAf,

and therefore,∫
S

f

(
A2 − 12m

r3
A+

36m2

r6

)
≥

(
4

r2
− 6m

r3
+O(r−2ε)

)∫
S

fAf +
36m2

r6

∫
S

f 2

=

(
4

r2

(
1− 3m

2r

)
+O(r−2ε)

)∫
S

fAf +
36m2

r6

∫
S

f 2.

Note that for r > 2m we have,

1− 3m

2r
>

1

4
.

We deduce, for sufficiently small ε, everywhere in (ext)M,∫
S

f

(
A2 − 12m

r3
A+

36m2

r6

)
>

1

r2

(∫
S

fAf +
36m2

r4

∫
S

f 2

)
.

Now, since
∣∣∣ρ+ 2m

r3

∣∣∣ . ε0r
−3

∫
S

fAf =

∫
S

f( d?/2 d/2 − 3ρ)f =

∫
S

(
| d/2f |2 +

(
6m

r3
+O(r−3ε0)

)
|f |2
)
.
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Hence, ∫
S

fAf +
36m2

r4

∫
S

f 2 >

∫
S

(
| d/2f |2 +

(6m

r3
+

36m2

r6

)
|f |2
)
>

∫
S

| d/2f |2

or, since
∫
S
( d/2f)2 ≥ 4

∫
S

1
r2

∫
S
|f |2 +O(ε0r

−3)
∫
S
|f |2. We deduce,∫

S

f

(
A2 − 12m

r3
A+

36m2

r6

)
≥ 1

4r2

∫
S

( d/2f)2 +
9

r4

∫
S

f 2

as desired. This concludes the proof of the lemma.

Applying the lemma to f = d?/2eθκ in (7.5.16), i.e.

A2 d?/2 (eθκ)− 12m

r3
Ad?/2eθ(κ) +

36m2

r6
d?/2eθ(κ) ∈ r−7Good8(α)

or, in any region where

‖α‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 16,

we have∥∥∥A2 d?/2 (eθκ)− 12m

r3
Ad?/2eθ(κ) +

36m2

r6
d?/2eθ(κ)

∥∥∥
2,k
. ε0r

−6u−1−δdec , k ≤ ksmall + 8.

We deduce, by L2-elliptic estimates,

‖ d?/2eθκ̌‖2,k . ε0r
−2u−1−δdec , k ≤ ksmall + 12. (7.5.19)

Since we control the ` = 1 mode of eθκ̌ we infer that,

‖eθκ̌‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 13

i.e.,

‖κ̌‖2,k . ε0u
−1−δdec , k ≤ ksmall + 14.

Therefore, using the Sobolev embedding,

‖κ̌‖∞,k . ε0r
−1u−1−δdec k ≤ ksmall + 12.

This proves the following,

Proposition 7.5.8. In any region of (ext)M where,

‖α‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 16,

we also have,

‖κ̌‖∞,k . ε0r
−1u−1−δdec k ≤ ksmall + 12. (7.5.20)
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7.5.3 Proof of Proposition 7.5.1, Part I

We first prove Proposition 7.5.1 in the region where the estimate

‖α‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 16, (7.5.21)

holds true.

Step 1. We prove the estimates,

‖ζ‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall + 15,

‖β‖∞,k . ε0r
−2u−1−δdec , k ≤ ksmall + 12.

(7.5.22)

According to (7.5.17)

A2B d?/2ζ =
3

4
κ ρAd?/2eθ(κ) + r−8Good12(α),

A2B d?/2β = −9

8

(
κ ρ
)2
d?/2eθ(κ) + r−9Good9(α).

In view of (7.5.19) we deduce, in L2 norms,

‖A2B d?/2ζ‖2,k . r−4‖Ad?/2eθκ‖2,k + ε0r
−7u−1−δdec , k ≤ ksmall + 12,

‖A2B d?/2β‖2,k . r−8‖ d?/2eθκ‖2,k + ε0r
−8u−1−δdec , k ≤ ksmall + 9.

Thus, in view of the estimates for κ̌ derived above,

‖A2B d?/2ζ‖2,k . ε0r
−7u−1−δdec , k ≤ ksmall + 12,

‖A2B d?/2β‖2,k . ε0r
−8u−1−δdec , k ≤ ksmall + 9.

Thus, by elliptic estimates,

‖ d?/2ζ‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 16,

‖ d?/2β‖2,k . ε0r
−2u−1−δdec , k ≤ ksmall + 13.

In view of the estimates for the ` = 1 modes of ζ, β we deduce,

‖ζ‖2,k . ε0u
−1−δdec , k ≤ ksmall + 17,

‖β‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 14.

Passing to L∞ norms we derive

‖ζ‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall + 15,

‖β‖∞,k . ε0r
−2u−1−δdec , k ≤ ksmall + 13.

(7.5.23)
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Step 2. We prove the estimate

‖η‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall + 15.

This follows immediately from the estimate from ζ and the previously derived estimate
(7.5.2). Indeed,

‖η‖∞,k . ‖ζ‖∞,k + ε0r
−1u−1−δdec . ε0r

−1u−1−δdec .

Step 3. We derive the estimate,

‖ϑ‖∞,k . r−1u−1−δdec , k ≤ ksmall + 11. (7.5.24)

This follows easily in view of the equation (see (7.5.11))

d/2ϑ+ 2β − κζ ∈ r−3Good20

from which, in view of Step 1,

‖ d/2ϑ‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 12.

The desired estimate follows by elliptic estimates and Sobolev.

Step 4. We derive the intermediate estimate for ϑ,

‖ϑ‖∞,k . ε0u
−1−δdec , k ≤ ksmall + 12. (7.5.25)

To show this we combine the equations (see (7.5.11))

d/2ϑ+ 2β − eθ(κ) + κζ ∈ r−3Good20,

d?/2β +
3

2
ρϑ ∈ r−2Good15,

to deduce,

d?/2 d/2ϑ− 3ρϑ = d?/2eθκ+ κ d?/2ζ + r−2Good15,

and hence,

‖Aϑ‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 12.

Thus,

‖ϑ‖2,k . ε0ru
−1−δdec , k ≤ ksmall + 14
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and hence,

‖ϑ‖∞,k . ε0u
−1−δdec , k ≤ ksmall + 12

as desired.

Step 5. We derive the estimate,

‖ρ̌‖∞,k . ε0r
−2u−1−δdec , k ≤ ksmall + 14. (7.5.26)

From,

d?/2 d
?/1ρ+

3

4
κ ρϑ+

3

4
κ ρϑ ∈ r−4Good20,

we deduce,

‖ d?/2 d
?/1ρ‖2,k . r−4 (‖θ‖2,k + ‖θ‖2,k) + ε0r

−3u−1−δdec , k ≤ ksmall + 14

. ε0r
−3u−1−δdec , k ≤ ksmall + 14.

Since we control the ` = 1 mode of d?/1ρ (see Lemma 7.4.6) we infer that,

‖ρ̌‖2,k . ε0r
−1u−1−δdec , k ≤ ksmall + 16

i.e.,

‖ρ̌‖∞,k . ε0r
−2u−1−δdec , k ≤ ksmall + 14

as desired.

Step 6. We derive the estimate,∥∥β∥∥∞,k . ε0r
−2u−1−δdec , ∀ k ≤ ksmall + 9 (7.5.27)

with the help of the identity

e3(rq) = r5

{
d?/2 d

?/1 d/1β −
3

2
κρα− 3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ +

3

4
(2ρ2 − κκρ)ϑ

}
+ Err[e3(rq)],

Err[e3(rq)] = r4(e3Γb) · d/≤1β + rΓb · q + r2 d/3(Γg · Γb),

of Proposition 7.1.11. In view of (7.3.18) we have,

‖Err[e3(rq)]‖∞,k(u, r) . ε0u
−1−δdec , k ≤ ksmall + 16.
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We can now make use of the estimates for κ̌, , ζ, ϑ, ϑ already derived and the Ref 2
estimate for e3(q) and α to deduce, for all k ≤ ksmall + 10,

‖ρ d?/2 d
?/1κ‖∞,k . ε0r

−6u−1−δdec ,

‖κρ d?/2ζ‖∞,k . ε0r
−6u−1−δdec ,

‖ρ2ϑ‖∞,k . ε0r
−6u−1−δdec ,

‖κκϑ‖∞,k . ε0r
−5u−1−δdec ,

‖κρα‖∞,k . ε0r
−5u−1−δdec ,

‖e3(rq)‖∞,k . ε0u
−1−δdec .

Therefore,

‖ d?/2 d
?/1 d/1β‖∞,k . ε0r

−5u−1−δdec , k ≤ ksmall + 10,

i.e.,

‖ d?/2 d
?/1 d/1β‖2,k . ε0r

−4u−1−δdec , k ≤ ksmall + 10.

Making use of the identity,

d?/1 d/1 = d/2 d
?/2 + 2K,

we deduce ∥∥( d?/2 d/2 +K) d?/2β
∥∥

2,k
. ε0r

−4u−1−δdec .

Since d?/2 d/2 +K is coercive we deduce,∥∥ d?/2β
∥∥

2,k
. ε0r

−2u−1−δdec , ∀ k ≤ ksmall + 10.

Since we control the ` = 1 mode of β (see Lemma 7.4.6 ) according to Lemma 7.3.10,∥∥β∥∥
2,k
. ε0r

−1u−1−δdec , ∀ k ≤ ksmall + 11.

Hence, ∥∥β∥∥∞,k . ε0r
−2u−1−δdec , ∀ k ≤ ksmall + 9. (7.5.28)

Step 7. Using the above estimate for β we can improve the estimate for ϑ derived in
Step 4. We show, in the region where the estimate (7.5.21) for α holds,

‖ϑ‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall + 9. (7.5.29)
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Indeed in view of the Codazzi equation

d/2ϑ+ 2β − eθ(κ) + κζ ∈ r−3Good20,

we infer that, for all k ≤ ksmall + 11,

‖ d/2ϑ‖2,k . ‖β‖2,k + r−1‖κ̌‖2,k+1 + r−1‖ζ‖2,k + ε0r
−2u−1−δdec

. ε0r
−2u−1−δdec .

Thus, for all k ≤ ksmall + 12

‖ϑ‖2,k . ε0r
−1u−1−δdec

and hence,

‖ϑ‖∞,k . ε0r
−2u−1−δdec , k ≤ ksmall + 10. (7.5.30)

This ends the proof of Proposition 7.5.1 in the region for which the desired estimate
(7.5.21) for α holds true.

Since (7.5.21) for α holds true on T in view of20 Theorem M3, this ends the proof of
Proposition 7.5.1 on T .

7.5.4 Proof of Proposition 7.5.1, Part II

We extend the validity of Proposition 7.5.1 to all of (ext)M propagating the estimates
derived in the first part on T . We also recall that we have good decay estimates for κ̌
and µ̌ everywhere on (ext)M.

Step 1. We first derive estimates for ϑ in Mext making use of the transport equation

e4(ϑ) + κϑ = −2α− (κ− κ)ϑ = −2α + Γg · Γg.

Making use of Proposition 7.4.3 we derive, for all r ≥ r0 = rT ,

r2‖ϑ‖∞,k(u, r) . r2
0‖ϑ‖∞,k(u, r0) +

∫ r

r0

λ2‖α‖∞,k(u, λ)dλ+ ε0u
−1−δdec .

We now make use of the estimate,

‖α‖∞,k(u, r) . ε0r
−2u−1−δdec , k ≤ ksmall + 20

20Recall that r is bounded on T and that T ⊂ (int)M so that (7.5.21) holds true for (int)α on T in
view of Theorem M3. Then, since we have (ext)α = ((ext)Υ)2 (int)α on T , (7.5.21) holds indeed true for
(ext)α on T .
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and,

‖ϑ‖∞,k(u, r0) . ε0u
−1−δdec

derived above in (7.5.24), to derive

r2‖ϑ‖∞,k(u, r) . ε0u
−1−δdec + ε0ru

−1−δdec .

Therefore, everywhere on (ext)M,

‖ϑ‖∞,k(u, r) . ε0r
−1u−1−δdec . (7.5.31)

Step 2. Next, we estimate β from the equation,

e4β + 2κβ = d/2α− (κ− κ)β + Γg · α = d/2α + Γg · (α, β)

to deduce in the same manner

r4‖β‖∞,k(u, r) . r2
0‖β‖∞,k(u, r0) +

∫ r

r0

λ4‖ d/2α‖∞,k(u, λ)dλ+ ε0ru
−1−δdec .

Thus, in view of the estimates for α in (7.5.23) and the estimates for α in Ref2, i.e., for
0 ≤ k ≤ ksmall + 20,

‖α‖∞,k . ε0 min{r−2 log(1 + u)(u+ 2r)−1−δextra , r−3(u+ 2r)−
1
2
−δextra}.

Thus we have with I(u, r) :=
∫ r
r0
λ4‖ d/2α‖∞,k(u, λ)dλ

I(u, r) . ε0 min
{

log(1 + u)

∫ r

r0

λ(u+ 2λ)−1−δextradλ,

∫ r

r0

(u+ 2λ)−1/2−δextradλ
}
.

If r ≤ 2u we have,∫ r

r0

λ(u+ 2λ)−1−δextradλ . r2u−1−δextra . r2(u+ 2r)−1−δextra

and

r−4I(u, r) . ε0r
−2 log(1 + u)(u+ 2r)−1−δextra .

If r ≥ 2u we have, ∫ r

r0

(u+ 2λ)−1/2−δextra . (u+ 2r)1/2+δextra



7.5. CONTROL IN (EXT )M, PART II 419

and

r−4I(u, r) . r−4(u+ 2r)1/2+δextra . r−2(u+ 2r)−1−δextra .

We deduce,

‖β‖∞,k . r−4‖β‖∞,k(u, r0) + ε0r
−2 log(1 + u)(u+ 2r)−1−δextra .

Thus in view of (7.5.23),

‖β‖∞,k . ε0r
−2 log(1 + u)(u+ 2r)−1−δextra . (7.5.32)

Step 3. We now estimate ζ using the equation

e4(ζ) + κζ = −β + Γg · Γg.

This can be done exactly as in Step 1 making use of the estimates already derived for β
and the estimate (7.5.23) for ζ along T . We thus derive,

‖ζ‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall+15.

Step 4. We estimate ρ̌ using equation

ρ̌ = − d/1ζ − µ̌+ Γg · Γb,

the previous estimate for ζ and µ̌ in (ext)M. We deduce,

‖ρ̌‖∞,k . ε0r
−2u−1−δdec , k ≤ ksmall + 14. (7.5.33)

Step 5. We estimate κ̌ using the equation,

e4κ̌+
1

2
κκ̌+

1

2
κ̌κ = −2 d/1ζ + 2ρ̌+ Γg · Γb.

Making use of the estimates in (ext)M for κ̌, ζ and ρ̌ as well as the estimates for κ̌ on T
in Proposition 7.5.8 we derive, everywhere on (ext)M,

‖κ̌‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall + 12. (7.5.34)

Alternatively we can make use of the estimate for Ξ = r2 (eθ(κ) + 4r d?/1 d/1ζ − 2r2 d?/1 d/1β)
in Lemma 7.5.2, which holds everywhere on (ext)M, and the above estimates for ζ, β.
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Step 6. We estimate β everywhere on (ext)M with the help of the equation

e4β + κβ = − d/1ρ− 3ζρ− ϑβ − (κ− κ)β

together with the estimate (7.5.28) for β on T and the above derived estimates for ρ̌, ζ in
(ext)M to infer that, ∥∥β∥∥∞,k . ε0r

−2u−1−δdec , ∀ k ≤ ksmall + 9. (7.5.35)

Step 7. We extend the for ϑ everywhere on (ext)M by making use of the Codazzi equation
for ϑ in (7.5.11),

d/2ϑ+ 2β − eθ(κ) + κζ ∈ r−3Good20.

Using the estimates already derived above, we infer that, for all k ≤ ksmall + 11,

‖ d/2ϑ‖2,k . ‖β‖2,k + r−1‖κ̌‖2,k+1 + r−1‖ζ‖2,k + ε0r
−2u−1−δdec

. ε0r
−2u−1−δdec .

Hence, everywhere in (ext)M,

‖ϑ‖2,k . ε0r
−1u−1−δdec , for all k ≤ ksmall + 12,

and therefore,

‖ϑ‖∞,k . ε0r
−2u−1−δdec , for all k ≤ ksmall + 10.

Step 7. We estimate α everywhere on (ext)M by making use of the equation

e4α +
1

2
κα = − d?/2β −

3

2
ϑρ− 5ζβ − 1

2
(κ− κ)α

as well as the estimate (7.5.21) for α on T and the above estimates in all (ext)M for β
and ϑ. Proceeding as before we derive,

‖α‖∞,k . ε0r
−1u−1−δdec , for all k ≤ ksmall + 8. (7.5.36)

This concludes the proof of Proposition 7.5.1.
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7.6 Conclusion of the proof of Theorem M4

So far we have established the following estimates, for all k ≤ ksmall + 8∥∥κ̌, rµ̌‖∞,k . ε0r
−2u−1−δdec ,∥∥ϑ, ζ, κ̌, rρ̌∥∥∞,k . ε0r
−2u−1/2−δdec ,∥∥ϑ, ζ, η, κ̌, ϑ, rβ, rρ̌, rβ, α‖∞,k . ε0r
−1u−1−δdec ,∥∥β, re3β

∥∥
∞,k . ε0r

−3(2r + u)−1/2−δdec .

(7.6.1)

It only remains to derive improved decay estimates for e3(β, ϑ, ζ, κ̌, ρ̌) and the estimates
for ξ, ω̌, ς̌ , Ω̌ as well as ς + 1 and Ω + Υ in terms of u−1−δdec decay. More precisely it
remains to prove the following.

Proposition 7.6.1. The following estimates hold true on (ext)M for all k ≤ ksmall + 7.∥∥e3(ϑ, ζ , κ̌), re3β, re3ρ̌
∥∥
∞,k . ε0r

−2u−1−δdec ,∥∥ξ, ω̌∥∥∞,k . ε0r
−1u−1−δdec ,∥∥ς̌ , Ω̌, ς + 1, Ω + Υ

∥∥
∞,k . ε0u

−1−δdec .

Proof. We proceed in steps as follows.

Step 1. We make use of the equation e3ϑ = −1
2
κϑ + 2ωϑ − 2 d?/2η − 1

2
κϑ + 2η2 and the

previously derived estimates to derive,∥∥e3ϑ
∥∥
∞,k . ε0r

−2u−1−δdec , k ≤ ksmall + 9. (7.6.2)

Step 2. We make use of the equation e3β + (κ − 2ω)β = − d?/1ρ + 3ηρ + Γgβ + Γbα and
the previously derived estimates for β, ρ̌, β to derive,∥∥e3β

∥∥
∞,k . ε0r

−3u−1−δdec , k ≤ ksmall + 9.

Step 3. To estimate e3ζ in the next step we actually need a stronger estimate for e3β
than the one derived above. At the same time we derive an improved estimate for β. We
show in fact, for some 0 < δ,∥∥β∥∥∞,k . ε0r

−2−δu−1−δdec , k ≤ ksmall + 10,∥∥e3β
∥∥
∞,k−1

. ε0r
−3−δu−1−δdec , k ≤ ksmall + 10.

(7.6.3)
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This makes use of the equation

e4β + 2κβ = d/2α + Γg · α = F := d/2α + Γg · α− 2κ̌β

and the estimates for α in Ref 2. Thus, for some 0 < δ < δextra − δdec,

‖F‖∞,k . log(1 + u)r−3(2r + u)−1−δextra + ε0r
−4u−1−δdec

. ε0u
−1−δdecr−3−δ.

Integrating from T , where r = rT = r0 . 1, we deduce with the help of Proposition 7.4.3

r4‖β‖∞,k(u, r) . r0
4‖β‖∞,k(u, r0) +

∫ r

r0

λ4‖F‖∞,k(u, λ)dλ

. ‖β‖∞,k(u, r0) + ε0

∫ r

r0

λ1−δdλ.

Based on the previously derived estimate for β we have ‖β‖∞,k(u, rH) . ε0u
−1−δdec . Hence,

‖β‖∞,k(u, r) . ε0r
−4u−1−δdec + ε0r

−4r2−δu−1−δdec . ε0r
−2−δu−1−δdec

as desired.

To prove the second estimate in (7.6.3) we commute the transport equation for β with T
and make use of the corresponding estimate for Tα (which follows from Ref 2.

‖Tα‖∞,k . ε0 log(1 + u)r−4(2r + u)−1−δextra . ε0u
−1−δdecr−4−δ

as well as the fact that we control Tβ on T , i.e. ‖Tβ‖∞,k−1(u, r0) . ε0u
−1−δdec .

Step 4. We make use of the equation e4ζ + κζ = −β + Γg · Γg to derive,

‖e3ζ‖k,∞ . ε0r
−2u−1−δdec , k ≤ ksmall + 9. (7.6.4)

Indeed commuting the equation with T we derive,

e4Tζ + κTζ = F := −Tβ + [T, e4]ζ + ζTκ+ T(Γg · Γg).

It is easy to check, in view of the commutation Lemma 7.4.1,

‖F‖∞,k−1 . ‖Tβ‖∞,k−1 + ε0r
−4u−1−δdec .

Thus, in view of the estimate for e3ζ derived in Step 3 and the estimate for e4ζ we infer
that,

‖F‖∞,k−1 . ε0r
−3−δu−1−δdec .
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Integrating from T and using the previously derived estimate ‖ζ‖k,∞ . ε0r
−1u−1−δdec

r2‖Tζ‖∞,k−1 . r0
2‖Tζ‖∞,k−1(u, r0) + ε0u

−1−δdec
∫ r

r0

λ−1−δdλ

. ‖Tζ‖∞,k−1(u, r0) + ε0r
−δu−1−δdec . ε0u

−1−δdec .

Hence

‖Tζ‖∞,k−1 . ε0r
−2u−1−δdec

from which the desired estimate easily follows.

Step 5. We make use of the equation e4(ω̌) = ρ̌ + Γg · Γb and the previously derived
estimates for ρ̌ as well as the estimates of ω̌ on the last slice (see Proposition 7.3.12) to
derive the estimate

‖ω̌‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall + 9. (7.6.5)

Indeed,

‖e4ω̌‖∞,k . ‖ρ̌‖∞,k + ε0r
−3u−1−δdec . ε0r

−2u−1−δdec .

Thus, applying Proposition 7.4.3, integrating from Σ∗ and using the previously derived
estimate for ω̌ on Σ∗,

‖ω̌‖∞,k(u, r) . ‖ω̌‖∞,k(u, r∗) + ε0u
−1−δdec

∫ r∗

r

λ−2dλ

. ε0r
−1u−1−δdec

as desired.

Step 6. We derive the estimate,

‖ξ‖∞,k . ε0r
−1u−1−δdec , k ≤ ksmall + 9 (7.6.6)

by making use of the transport equation e4(ξ) = F := −e3(ζ) + β − 1
2
κ(ζ + η) + Γb · Γb.

In view of the previously derived estimates for e3ζ, β, ζ, η we derive,

‖F‖∞,k . ε0r
−2u−1−δdec .

Integrating from Σ∗ and making use of the estimate for ξ on Σ∗ (see Proposition 7.3.12)
we derive,

‖ξ‖∞,k(u, r) . ‖ξ‖∞,k(u, r∗) + ε0r
−1u−1−δdec . ε0r

−1u−1−δdec .
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Step 7. We derive the estimate

‖Ω̌‖∞,k . ε0u
−1−δdec , k ≤ ksmall + 8. (7.6.7)

This follows immediately from the the equation eθ(Ω) = −ξ − (η − ζ)Ω, see (2.2.19), and

the previous estimate for ξ. Note that Ω has been estimated in Lemma 3.4.1.

Step 8. We derive the estimate

‖ς − 1‖∞,k . ε0u
−1−δdec , k ≤ ksmall + 8. (7.6.8)

The estimate follows from the propagation equation e4(ς) = 0 and the estimate for ς − 1
on the last slice Σ∗.

Step 9. We derive the estimate,

‖e3ρ̌‖∞,k . ε0r
−3u−1−δdec , k ≤ ksmall + 8 (7.6.9)

with the help of the equation (see Proposition 7.1.8)

e3ρ̌ = r−2 d/≤1Γb + r−1Γb · Γb
and the previously derived estimates for β, κ̌, ρ̌, Ω̌, ς̌.

Step 10. We derive the estimate,

‖e3κ̌‖∞,k . ε0r
−2u−1−δdec , k ≤ ksmall + 8 (7.6.10)

using the equation (see Proposition 7.1.8)

e3κ̌ = r−1 d/≤1Γb + Γb · Γb
and the previously derived estimates for κ̌, ξ, ω̌, Ω̌, ς̌. This ends the proof of Proposition
7.6.1 and Theorem M4.

7.7 Proof of Theorem M5

Recall from Theorem M3 that we have obtained the following estimate for (int)α in (int)M

max
0≤k≤ksmall+16

sup
(int)M

u1+δdec |dkα| . ε0. (7.7.1)

Step 1. We consider the control of the other curvature components, as well as the Ricci
components on T . Recall that the (u, (int)s) foliation is initialized on T as follows
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• u and (int)s are defined on T by

u = u and (int)s = (ext)s on T .

In particular, the 2-spheres S(u, (int)s) coincide on T with the 2-sphere S(u, (ext)s).

• In view of the above initialization, and the fact that T = {r = rT }, we infer that

(int)r = (ext)r = rT ,
(int)m = (ext)m.

• The null frame ( (int)e3,
(int)e4,

(int)eθ) is defined on T by

(int)e4 = (ext)λ (ext)e4,
(int)e3 = ( (ext)λ)−1 (ext)e3,

(int)eθ = (ext)eθ on T

where

(ext)λ = 1− 2 (ext)m
(ext)r

.

In particular, we deduce the following identities for the curvature components and Ricci
coefficients on T .

Lemma 7.7.1. We have on T

(int)ς = −
(ext)κ+ (ext)A

(ext)κ
λ−1 (ext)ς,

(int)Ω = λ− λ2
(ext)κ

(ext)κ+ (ext)A
− λ

(ext)κ

(ext)κ+ (ext)A

(ext)Ω.

where

λ = (ext)λ = 1− 2 (ext)m
(ext)r

.

Moreover, we have on T
(int)α = λ2 (ext)α, (int)β = λ (ext)β, (int)ρ = (ext)ρ, (int)β = λ−1 (ext)β, (int)α = λ−2 (ext)α,

(int)ξ = 0, (int)ω = 0, (int)ζ = (ext)ζ, (int)η = − (ext)ζ,
(int)κ = λ (ext)κ, (int)ϑ = λ (ext)ϑ, (int)κ = λ−1 (ext)κ, (int)ϑ = λ−1 (ext)ϑ,
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and

(int)ξ =
λ2 (ext)κ

(ext)κ+ (ext)A
( (ext)ζ − (ext)η),

(int)ω =
λ (ext)κ

(ext)κ+ (ext)A

(ext)ω,

(int)η = (ext)ζ −
(ext)κ

(ext)κ+ (ext)A

(ext)ξ.

Proof. The following vectorfield is tangent to T

νT := (ext)e3 −
(ext)κ+ (ext)A

(ext)κ

(ext)e4,

which can also be written as

νT = λ (int)e3 −
(ext)κ+ (ext)A

(ext)κ
λ−1 (int)e4.

Since νT is tangent to T , and in view of the definition of u and (int)s, we immediately
infer

νT (u) = νT (u) and νT ( (int)s) = νT ( (ext)s) on T

and hence, using the identities

(ext)e4(u) = (int)e3(u) = 0, (ext)e4( (ext)s) = 1, (int)e3( (int)s) = −1,

we deduce on T

−
(ext)κ+ (ext)A

(ext)κ
λ−1 (int)e4(u) = (ext)e3(u),

−λ−
(ext)κ+ (ext)A

(ext)κ
λ−1 (int)e4( (int)s) = (ext)e3( (ext)s)−

(ext)κ+ (ext)A

(ext)κ
.

In view of the definition of (ext)ς, (int)ς, (ext)Ω and (int)Ω, this yields

(int)ς = −
(ext)κ+ (ext)A

(ext)κ
λ−1 (ext)ς,

(int)Ω = λ− λ2
(ext)κ

(ext)κ+ (ext)A
− λ

(ext)κ

(ext)κ+ (ext)A

(ext)Ω.
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Next, we consider the Ricci coefficients of (int)M on T . From

(int)e4 = λ (ext) e4,
(int)e3 = λ−1 (ext)e3,

(int)eθ = (ext)eθ on T ,
the fact that λ is constant on T , and the fact that (ext)eθ is tangent to T , we infer on T
(int)α = λ2 (ext)α, (int)β = λ (ext)β, (int)ρ = (ext)ρ, (int)β = λ−1 (ext)β, (int)α = λ−2 (ext)α,

and

(int)ζ = (ext)ζ, (int)κ = λ (ext)κ, (int)ϑ = λ (ext)ϑ, (int)κ = λ−1 (ext)κ, (int)ϑ = λ−1 (ext)ϑ.

Also, since the foliation of (int)M is ingoing geodesic, we have

(int)ξ = 0, (int)ω = 0, (int)η = − (int)ζ.

It remains to find identities for (int)ξ, (int)ω and (int)η. Since λ is constant on T and νT
tangent to T , we have on T

DνT
(int) e4 = λDνT

(ext) e4, DνT
(int) e3 = λ−1DνT

(ext) e3

and hence

g(DνT
(int) e4,

(int) eθ) = λg(DνT
(ext) e4,

(ext) eθ),

g(DνT
(int) e4,

(int) e3) = g(DνT
(ext) e4,

(ext) e3),

g(DνT
(int) e3,

(int) eθ) = λ−1g(DνT
(ext) e3,

(ext) eθ).

We deduce

2λ (int)η − 2
(ext)κ+ (ext)A

(ext)κ
λ−1 (int)ξ = λ

(
2 (ext)η − 2

(ext)κ+ (ext)A

(ext)κ

(ext)ξ

)
,

−4λ (int)ω − 4
(ext)κ+ (ext)A

(ext)κ
λ−1 (int)ω = −4 (ext)ω − 4

(ext)κ+ (ext)A

(ext)κ

(ext)ω,

2λ (int)ξ − 2
(ext)κ+ (ext)A

(ext)κ
λ−1 (int)η = λ−1

(
2 (ext)ξ − 2

(ext)κ+ (ext)A

(ext)κ

(ext)η

)
,

and thus

(int)ξ =
λ2 (ext)κ

(ext)κ+ (ext)A
( (ext)ζ − (ext)η),

(int)ω =
λ (ext)κ

(ext)κ+ (ext)A

(ext)ω,

(int)η = (ext)ζ −
(ext)κ

(ext)κ+ (ext)A

(ext)ξ.

This concludes the proof of the lemma.
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Remark 7.7.2. Since the 2-spheres S(u, (int)s) coincide on T with the 2-sphere S(u, (ext)s),
the above lemma immediately yields

(int)ρ̌ = (ext)ρ̌, (int)κ̌ = λ (ext)κ̌, (int)κ̌ = λ−1 (ext)κ̌

(int)µ̌ = − (ext)µ̌− 2 (ext)ρ̌+
1

2
(ext)ϑ (ext)ϑ− 1

2
(ext)ϑ (ext)ϑ,

(int)ω̌ = λ (ext)κ

(
(ext)ω

(ext)κ+ (ext)A
−

(ext)ω

(ext)κ+ (ext)A

)
,

and

(int)ς̌ = − 1

λ (ext)κ

(
( (ext)κ+ (ext)A) (ext)ς − ( (ext)κ+ (ext)A) (ext)ς

)
,

(int)Ω̌ = −λ2 (ext)κ

(
1

(ext)κ+ (ext)A
− 1

(ext)κ+ (ext)A

)
−λ (ext)κ

(
(ext)Ω

(ext)κ+ (ext)A
−

(ext)Ω

(ext)κ+ (ext)A

)
.

Together with the estimates on T for the outgoing geodesic foliation of (ext)M derived in
Theorem M4, we infer the control of tangential derivatives to T , i.e. (eθ, TT ) derivatives.
Recovering the traversal derivative thanks to the transport equations in the direction e3,
we infer for the ingoing geodesic foliation of (int)M on T

max
0≤k≤ksmall+8

sup
T
u1+δdec

∥∥∥dk( (int)α, (int)β, (int)ρ̌, (int)β, (int)µ̌, (int)κ̌, (int)ϑ, (int)ζ,

(int)η, (int)κ̌, (int)ϑ, (int)ξ, (int)ω̌, (int)ς̌ , (int)Ω̌
)∥∥∥

L2(S)
. ε0.

Step 2. Relying on the estimates of the ingoing geodesic foliation of (int)M on T derived
in Step 1, we propagate these estimates to (int)M thanks to transport equations in the
e3 direction given by the null structure equations and Bianchi identities. Recalling that
α has already been estimated in Theorem M3, see (7.7.1), quantities are recovered in the
following order

1. We recover κ̌, with a control of ksmall + 8 derivatives, from

e3κ̌+ κ κ̌ = Err[e3κ̌].

2. We recover ϑ, with a control of ksmall + 8 derivatives, from

e3(ϑ) + κϑ = −2α.
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3. We recover β, with a control of ksmall + 8 derivatives, from

e3β + 2κβ = d/2α− ζα.

4. We recover ζ, with a control of ksmall + 8 derivatives, from

e3(ζ) + κζ = β − ϑζ.

5. We recover η, with a control of ksmall + 8 derivatives, from

e3(η + ζ) +
1

2
κ(η + ζ) = −1

2
ϑ(η + ζ).

6. We recover µ̌, with a control of ksmall + 8 derivatives, from

e3µ̌+
3

2
κµ̌+

3

2
µκ̌ = Err[e3µ̌].

7. We recover ρ̌, with a control of ksmall + 7 derivatives, from

e3ρ̌+
3

2
κρ̌+

3

2
ρκ̌ = d/1β + Err[e3ρ̌].

8. We recover κ̌, with a control of ksmall + 7 derivatives, from

e3κ̌+
1

2
κκ̌+

1

2
κ̌κ = 2 d/1ζ + 2ρ̌+ Err[e3κ̌].

9. We recover ϑ, with a control of ksmall + 7 derivatives, from

e3ϑ+
1

2
κϑ = −2 d?/2ζ −

1

2
κϑ+ 2ζ2.

10. We recover β, with a control of ksmall + 6 derivatives, from

e3β + κβ = eθ(ρ) + 3ζρ− ϑβ.

11. We recover α, with a control of ksmall + 5 derivatives, from

e3α +
1

2
κα = − d?/2β −

3

2
ϑρ+ 5ζβ.

12. We recover ω̌, with a control of ksmall + 7 derivatives, from

e3ω̌ = ρ̌+ Err[e3ω̌].
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13. We recover Ω̌, with a control of ksmall + 7 derivatives, from

e3(Ω̌) = −2ω̌ + κ̌Ω̌.

14. We recover ξ, with a control of ksmall + 6 derivatives, from

e3(ξ) = e4(ζ) + β +
1

2
κ(ζ − η) +

1

2
ϑ(ζ − η).

15. We recover ς, with a control of ksmall + 8 derivatives, from

e3(ς − 1) = 0.

As the estimates are significantly simpler to derive21 and in the same spirit than the
corresponding ones in Theorem M4, we leave the details to the reader. This concludes
the proof of Theorem M5.

21Note that r is bounded on (int)M and that all quantities behave the same in (int)M.



Chapter 8

INITIALIZATION AND
EXTENSION (Theorems M6, M7,
M8)

In this chapter, we prove M6 concerning initialization, Theorem M7 concerning extension,
and Theorem M8 concerning the improvement of higher order weighted energies.

8.1 Proof of Theorem M6

Step 1. Let r0 such that

r0 := d0ε
− 2

3
0 , (8.1.1)

where the constant d0 satisfies

1

2
≤ d0 ≤ 2

and will be suitably chosen in Step 3. Also, let δ0 > 0 sufficiently small. Consider the

unique sphere
◦
S of the initial data layer on C(1+δ0,L0) with area radius r0. Then, denoting

S(uL0 ,
(ext)sL0) the spheres of the outgoing portion of the initial data layer, we have

◦
S = S(

◦
u,
◦
s),

◦
u = 1 + δ0, |◦s− r0| . ε0.

431
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Relying on the control of the initial data layer given by (3.3.5), i.e.

Iklarge+5 ≤ ε
5
3
0 ,

we then invoke Theorem GCMS-II of section 3.7.4 with the choices

◦
δ =

◦
ε = ε0, smax = klarge + 5,

to produce a unique GCM sphere S∗, which is a deformation of
◦
S, satisfying

κS∗ =
2

rS∗
, d?/ S∗

2 d?/ S∗
1 κS∗ = d?/ S∗

2 d?/ S∗
1 µS∗ = 0,

∫
S∗

βS∗eΦ = 0,

∫
S∗

eS∗θ (κS∗)eΦ = 0 on S∗.

Remark 8.1.1. In order to apply Theorem GCMS-II to the above setting, one needs to
check that the initial data foliation layer satisfies the assumptions of the theorem, and in
particular

|d≤smaxΓb| . (
◦
ε)

1
3 r−2

0 , r0

∣∣∣∣∫
S

βeΦ

∣∣∣∣ . ◦δ, r0

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ◦δ, r0

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ◦δ.
Now, in view of the above choice for smax,

◦
δ,
◦
ε and r0, this follows from

r|d≤klarge+5Γb| . ε0, r3|β|+ r2| d/κ̌|+ r2| d/κ̌| . ε
5
3
0

and hence from

Iklarge+5 ≤ ε
5
3
0

which is (3.3.5).

Step 2. Starting from S∗ constructed in Step 1, and relying on the control of the initial
data layer, we then invoke Theorem GCMH of section 3.7.4 to produce a smooth spacelike
hypersurface Σ∗ included in the initial data layer, passing through the sphere S∗, and a
scalar function u defined on Σ∗ such that

• The following GCM conditions holds

κ =
2

r
, d?/2 d

?/1κ = d?/2 d
?/1µ = 0,

∫
S

ηeΦ =

∫
S

ξeΦ = 0 on Σ∗.

• We have, for some constant cΣ∗ ,

u+ r = cΣ∗ , along Σ∗.
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• The following normalization condition holds true at the South Pole SP of every
sphere S,

a
∣∣∣
SP

= −1− 2m

r

where a is such that we have

ν = e3 + ae4,

with ν the unique vectorfield tangent to the hypersurface Σ∗, normal to S, and
normalized by g(ν, e4) = −2.

Furthermore, we have1

max
k≤klarge+4

sup
Σ∗

r
(
|dkf |+ |dkf |+ |dk log(λ)|

)
. ε0, (8.1.2)

and

sup
Σ∗

(
|m−m0|+ |r − r0|

)
. ε0, (8.1.3)

where (f, f , λ) are the transition function from the frame of the initial data layer to the
frame of Σ∗.

Step 3. Provided δ0 > 0 has been chosen sufficiently small, the spacelike hypersurface
Σ∗ of Step 2 intersects the curve of the south poles of the spheres foliating the outgoing
cone C(1,L0) of the initial data layer. We then call S1 the unique sphere of Σ∗ such that
its south pole coincides with the south pole of a sphere of C(1,L0), and we calibrate u such

that u = 1 on S1. We then can compare
◦
u = 1 + δ0 to u(S∗) and obtain

|u(S∗)− 1− δ0| . ε0δ0,

so that

1 ≤ u ≤ u(S∗) on Σ∗ where 1 < u(S∗) < 1 + 2δ0.

1We have in fact

max
k≤klarge+6

sup
Σ∗

(
‖dkf‖L2(S) + ‖dkf‖L2(S) + ‖dk log(λ)‖L2(S)

)
. ε0,

and then use the Sobolev embedding on the 2-spheres S foliating Σ∗ to deduce (8.1.2).
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Together with the estimate (8.1.3), and in view of the choice (8.1.1) for r0, we have

inf
Σ∗
r = r(S∗) = r0 +O(ε0) = d0ε

− 2
3

0 +O(ε0)

= ε
− 2

3
0 (u(S∗))

1+δdec
(
d0 +O(δ0) +O

(
ε

5
3
0

))
.

Thus, we may choose the constant d0 in the range 1
2
≤ d0 ≤ 2 such that

inf
Σ∗
r = ε

− 2
3

0 (u(S∗))
1+δdec

so that the dominant condition (3.3.4) for r is satisfied.

Step 4. In view of Step 1 to Step 3, Σ∗ satisfies all the required properties for the future
spacelike boundary of a GCM admissible spacetime, see item 3 of definition 3.1.2. We
now control the outgoing geodesic foliation initialized on Σ∗ and covering the region we
denote by (ext)M, which is included in the initial data layer. Let (f, f , λ) the transition
functions from the frame of the outgoing part of the initial data layer to the frame of
(ext)M. Since both frames are outgoing geodesic, we may apply Corollary 2.3.7 which
yields for (f, f, log(λ)) the following transport equations

λ−1e′4(rf) = E ′1(f,Γ),

λ−1e′4(log(λ)) = E ′2(f,Γ),

λ−1e′4

(
rf − 2r2e′θ(log(λ)) + rfΩ

)
= E ′3(f, f , λ,Γ),

where

E ′1(f,Γ) = −r
2
κ̌f − r

2
ϑf + l.o.t.,

E ′2(f,Γ) = fζ − 1

2
f 2ω − ηf − 1

4
f 2κ+ l.o.t.,

E ′3(f, f , λ,Γ) = −r
2
κ̌f + r2

(
κ̌−

(
κ− 2

r

))
e′θ(log(λ)) + r2

(
d/′1(f) + λ−1ϑ′

)
e′θ(log(λ))

−r
2
κ̌Ωf + rE3(f, f ,Γ)− 2r2e′θ(E2(f,Γ)) + rΩE1(f,Γ),

and where E1, E2 and E3 are given in Lemma 2.3.6. Integrating these transport equations
from Σ∗, using the control (8.1.2) of (f, f , λ) on Σ∗, and together with the assumption
(3.3.5) for the Ricci coefficients of the foliation of the initial data layer, we obtain

sup
(ext)M(r≥2m0(1+δH))

r
(
|d≤klarge+4(f, log(λ))|+ |d≤klarge+3f |

)
. ε0. (8.1.4)
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Then, let T = {r = 2m0(1 + δH)}, i.e. we choose rT = 2m0(1 + δH). We initialize the
ingoing geodesic foliation of (int)M on T using the outgoing geodesic foliation of (ext)M
as in item 4 of definition 3.1.2. Using the control of (f, f , λ) induced on T by (8.1.4), and
using the analog of Corollary 2.3.7 in the e3 direction for ingoing foliations, we obtain
similarly,

sup
(int)M

(
|d≤klarge+3(f, log(λ))|+ |d≤klarge+2f |

)
. ε0. (8.1.5)

Then, in view of (8.1.4) (8.1.5), and the assumption (3.3.5) for the Ricci coefficients and
curvature components of the foliation of the initial data layer, and using the transforma-
tion formulas of Proposition 2.3.4, we deduce

max
k≤klarge

{
sup

(ext)M

(
r

7
2

+δB(|dkα|+ |dkβ|) + r3|dkρ̌|+ r2|dkβ|+ r|dkα|
)

+ sup
(ext)M

r2(|dkκ̌|+ |dkϑ|+ |dkζ|+ |dkκ̌|)

+ sup
(ext)M

r(|dkη|+ |dkϑ|+ |dkω̌|+ |dkξ|)
)}
. ε0,

and

max
k≤klarge

sup
(int)M

(
|dkŘ|+ |dkΓ̌|

)
. ε0.

In particular, we infer that

N
(En)
klarge

+ N
(Dec)
ksmall

. ε0

which concludes the proof of Theorem M6.

8.2 Proof of Theorem M7

In view of the assumptions of Theorem M7, we are given a GCM admissible spacetime
M = M(u∗) ∈ ℵ(u∗) verifying the following improved bounds, for a universal constant
C > 0,

N
(Dec)
ksmall+5(M) ≤ Cε0 (8.2.1)

provided by Theorems M1-M5. We then proceed as follows.
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Step 1. We extend M by a local existence argument, to a strictly larger spacetime
M(extend), with a naturally extended foliation and the following slightly increased bounds

N
(Dec)
ksmall+5(M(extend)) ≤ 2Cε0,

but which may not verify our admissibility criteria.

Step 2. We then invoke Theorem GCMH of section 3.7.4 to extend Σ∗ inM(extend) \M
as a smooth spacelike hypersurface Σ

(extend)
∗ , together with a scalar function u(extend),

satisfying the same GCM conditions than Σ∗.

Step 3. We consider the outgoing geodesic foliation (u(extend), s(extend)) initialized on

Σ
(extend)
∗ to the future of Σ

(extend)
∗ in M(extend). Note in particular that we have from the

definition of Σ∗ and Σ
(extend)
∗

u(extend) + s(extend) = cΣ∗ .

We define the following spacetime region to the future of Σ
(extend)
∗

R̃ :=
{
u∗ ≤ u(extend) ≤ u∗ + δext, cΣ∗ ≤ u(extend) + s(extend) ≤ cΣ∗ + ∆ext

}
,

where

∆ext :=
d0r∗
u∗

δext, r∗ := r(S∗), S∗ := Σ∗ ∩ C∗,

with δext > 0 chosen sufficiently small so that R̃ ⊂ M(extend), and with d0 a constant
satisfying

1

2
≤ d0 ≤ 1

which will be suitably chosen in Step 11 below. From now on, for convenience, we drop
the index (extend) and simply denote u(extend) and s(extend) by u and s.

Step 4. Since we have on Σ
(extend)
∗ the GCM conditions d?/2 d

?/1κ = d?/2 d
?/1µ = 0, and since

eΦ generates the kernel of d?/2, we infer

d?/1κ = −
∫
S
eθ(κ)eΦ∫
S
e2Φ

eΦ, d?/1µ = −
∫
S
eθ(µ)eΦ∫
S
e2Φ

eΦ, on Σ(extend)
∗ .

Thus, introducing the following two scalar functions

C(u) := −
∫
S
eθ(κ)eΦ∫
S
e2Φ

, M(u) := −
∫
S
eθ(µ)eΦ∫
S
e2Φ

, on Σ(extend)
∗ ,
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we rewrite the GCM conditions on Σ
(extend)
∗ as follows

κ =
2

r
, d?/1κ = C(u)eΦ, d?/1µ = M(u)eΦ,

∫
S

ηeΦ =

∫
S

ξeΦ = 0.

Propagating these GCM quantities in the e4 direction from Σ
(extend)
∗ , and propagating the

scalar functions C and M by e4(r4C) = 0 and e4(r5M) = 0 so that we have2 C = C(u, s)

and M = M(u, s) in R̃, we obtain for all k ≤ ksmall + 4

sup
R̃

(
r2

∣∣∣∣dk (κ− 2

r

)∣∣∣∣+ r3
∣∣dk−1

(
d?/1κ− CeΦ

)∣∣+ r4
∣∣dk−1

(
d?/1µ−MeΦ

)∣∣) . ε0
r

∆ext

and

sup
R̃
r−2

(∣∣∣∣∫
S

ξeΦ

∣∣∣∣+

∣∣∣∣∫
S

ηeΦ

∣∣∣∣) .
ε0
r

∆ext.

Next, in view of (4.1.2) and the fact that ν = e3 + ae4, we have on Σ
(extend)
∗∣∣∣∣ν (∫

S

βeΦ

)∣∣∣∣ . ε0
ru1+δdec

,

∣∣∣∣ν (∫
S

eθ(κ)eΦ

)∣∣∣∣ . ε0
ru1+δdec

+
ε20

u2+2δdec
.

In particular, since r(S∗) = ε
− 2

3
0 (u(S∗))1+δdec in view of (3.3.4) and u(S∗) = u∗, we infer

r ∼ ε
− 2

3
0 u1+δdec on Σ

(extend)
∗ (u∗ ≤ u ≤ u∗ + δext) and hence∣∣∣∣ν (∫

S

βeΦ

)∣∣∣∣+

∣∣∣∣ν (∫
S

eθ(κ)eΦ

)∣∣∣∣ . ε0
ru1+δdec

on Σ(extend)
∗ (u∗ ≤ u ≤ u∗ + δext).

We integrate from S∗ where we have∫
S∗

βeΦ =

∫
S∗

eθ(κ)eΦ = 0

and obtain

sup
Σ

(extend)
∗ (u∗≤u≤u∗+δext)

(
r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+ r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣) .
ε0
u∗
δext.

We now integrate in the e4 direction from Σ
(extend)
∗ (u∗ ≤ u ≤ u∗+ δext) where we have the

above estimate as well as eθ(κ) = 0. We obtain

sup
R̃∩{u≥u∗}

(
r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+ r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+ r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣) .
ε0
u∗
δext +

ε0
r

∆ext

.
ε0
r

∆ext.

2More precisely, we have C = r−4C̃ and M = r−5M̃ , with C̃ and M̃ given by the restriction of r4C

and r5M to Σ
(extend)
∗ so that C̃ = C̃(u) and M̃ = M̃(u). Note also that r = r(u, s).
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Also, recall that ν = e3 + a∗e4 denotes the unique tangent vectorfield to Σ∗ which is
orthogonal to eθ and normalized by g(ν, e4) = −2. Then, one has, since u+ r is constant
on Σ∗ and s = r on Σ∗

0 = ν(u+ s) = e3(u) + ae4(u) + e3(s) + ae4(s) =
2

ς
+ Ω + a

and hence

a = −2

ς
− Ω on Σ∗.

Together with the GCM condition on a, we infer(
2

ς
+ Ω

) ∣∣∣
SP

= 1 +
2m

r
on Σ∗.

As above, propagating forward in e4, we infer

sup
R̃

∣∣∣∣(2

ς
+ Ω

) ∣∣∣
SP
−
(

1 +
2m

r

)∣∣∣∣ . ε0
r

∆ext.

Finally, arguing as we did above on Σ
(extend)
∗ (u∗ ≤ u ≤ u∗ + δext), we have r ∼ ε

− 2
3

0 u1+δdec

on R̃ ∩ {u ≥ u∗} and hence

sup
R̃∩{u≥u∗}

r2|Γb| . sup
R̃∩{u≥u∗}

( rε0
u1+δdec

)
. ε

1
3
0 .

Step 5. We fix the following sphere of the (u(extend), s(extend)) foliation in R̃ ∩ {u ≥ u∗}
◦
S := S(

◦
u,
◦
s),

◦
u := u∗ +

δext
2
,

◦
s := r∗ +

3d0r∗
4u∗

δext. (8.2.2)

Define

◦
δ :=

ε0
r

∆ext =
d0ε0δext
u∗

,
◦
ε := ε0,

and the small spacetime neighborhood of
◦
S

R(
◦
ε,
◦
δ) :=

{
|u− ◦u| ≤ δR, |s− ◦s| ≤ δR

}
, δR =

◦
δ
(◦
ε
)− 1

2 .

Note that R(
◦
ε,
◦
δ) ⊂ R̃. In view of the estimates in Step 4, we are in position to apply

Theorem GCMS II of section 3.7.4, with smax = ksmall + 4, which yields the existence of
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a unique sphere S̃∗, which is a deformation of
◦
S, is included in R(

◦
ε,
◦
δ), and is such that

the following GCM conditions hold on it

d̃?/2 d̃
?/1 κ̃ = d̃?/2 d̃

?/1 µ̃ = 0, κ̃ =
2

r̃
,

∫
S̃∗

β̃eΦ =

∫
S̃∗

ẽθ(κ̃)eΦ = 0,

where the tilde refer to the quantities and tangential operators on S̃∗.

Step 6. Starting from S̃∗ constructed in Step 5, and in view of the estimates in Step 4,
we may apply Theorem GCMH of section 3.7.4, with smax = ksmall + 4, which yields the
existence of a smooth small piece of spacelike hypersurface Σ̃∗ starting from S̃∗ towards
the initial data layer, together with a scalar function ũ defined on Σ̃∗, whose level surfaces
are topological spheres denoted by S̃, so that

• The following GCM conditions are verified on Σ̃∗

d̃?/2 d̃
?/1 κ̃ = d̃?/2 d̃

?/1 µ̃ = 0, κ̃ =
2

r̃
,

∫
S̃

η̃eΦ =

∫
S̃

ξ̃eΦ = 0,

where the tilde refer to the quantities and tangential operators on Σ̃∗.

• We have, for some constant cΣ̃∗
,

ũ+ r̃ = cΣ̃∗
, along Σ̃∗.

• The following normalization condition holds true at the South Pole SP of every
sphere S̃,

ã
∣∣∣
SP

= −1− 2m̃

r̃

where ã is such that we have

ν̃ = ẽ3 + ãẽ4,

with ν̃ the unique vectorfield tangent to the hypersurface Σ̃∗, normal to S̃, and
normalized by g(ν̃, ẽ4) = −2.

• The transition functions (f, f , λ) from the frame of M(extend) to the frame of Σ̃∗

‖(f, f , log(λ))‖hksmall+5
.

◦
δ.
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Step 7. The spacelike GCM hypersurface Σ̃∗ has been constructed in Step 6 in a small
neighborhood of S̃∗. We now focus on proving that it in fact extends all the way to the
initial data layer. To this end, we denote by u1 with

1 ≤ u1 <
◦
u,

the minimal value of u such that

• We have

Σ̃∗ ∩ Cu 6= ∅ for any u1 ≤ u ≤ ◦
u. (8.2.3)

• There exists a large constant D ≥ 1 such that we have for any sphere S̃ of Σ̃∗(u ≥ u1)

‖(f, f , log(λ))‖hksmall+5(S̃) ≤ Du∗
◦
δ. (8.2.4)

• For the same large constant D ≥ 1 as above, we have along Σ̃∗(u ≥ u1)

|ψ(s)| ≤ Du∗
◦
δ, (8.2.5)

where the function ψ(s) is such that the curve(
u = −s+ cΣ̃∗

+ ψ(s), s, θ = 0
)

with ψ(
◦
s) = 0, (8.2.6)

coincides with the south poles of the sphere S̃ of Σ̃∗ and the constant cΣ̃∗
is fixed

by the condition ψ(
◦
s) = 0.

The fact that ψ(
◦
s) = 0 together with the bounds of Step 6 implies that (8.2.3) (8.2.4)

(8.2.5) hold for u1 <
◦
u with u1 close enough to

◦
u. By a continuity argument based on

reapplying Theorem GCMH, it suffices to show that we may improve the bounds (8.2.4)
(8.2.5) independently of the value of u1.

Step 8. We now focus on improving the bounds (8.2.4) (8.2.5). We first prove that

Σ̃∗(u ≥ u1) is included in R̃. Indeed, (8.2.4) (8.2.5) imply

sup
Σ̃∗(u≥u1)

|u+ s− cΣ̃∗
| . sup

Σ̃∗(u≥u1)

(
|ψ|+ r|f |+ r|f |

)
. Du∗

◦
δ

.
Du∗
r
ε0∆ext

. ε
2
3
0Dε0∆ext

. ε0∆ext.



8.2. PROOF OF THEOREM M7 441

On the other hand, by construction, ψ(
◦
s) = 0 and the south pole of

◦
S and S̃∗ coincide,

so that we have

cΣ̃∗
=

◦
u+

◦
s = u∗ + r∗ +

δext
2

+
3d0r∗
4u∗

δext

= cΣ∗ +
3

4

(
1 +

2u∗
3d0r∗

)
∆ext

and hence

sup
Σ̃∗(u≥u1)

∣∣∣∣u+ s− cΣ∗ −
3

4
∆ext

∣∣∣∣ . (
u∗

2d0r∗
+ ε0

)
∆ext

. ε
2
3
0 ∆ext.

In view of the definition of R̃, we infer

Σ̃∗(u ≥ u1) ⊂ R̃ (8.2.7)

as claimed.

Step 9. Since Σ̃∗(u ≥ u1) ⊂ R̃, the bound of Step 4 apply, and hence we have

sup
R̃

∣∣∣∣(2

ς
+ Ω

) ∣∣∣
SP
−
(

1 +
2m

r

)∣∣∣∣ . ε0
r

∆ext .
◦
δ,

and for all k ≤ ksmall + 4

sup
R̃

(
r2

∣∣∣∣dk (κ− 2

r

)∣∣∣∣+ r2|dk−2(r2 d?/2 d
?/1κ)|+ r3|dk−2(r2 d?/2 d

?/1µ)|
)
.

ε0
r

∆ext .
◦
δ,

as well as

sup
R̃∩{u≥u∗}

(
r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+ r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+ r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣) .
ε0
r

∆ext .
◦
δ.

Together with the a priori estimates of Chapter 9 on the GCM construction, this yields

|ψ′(s)| .
∣∣∣∣1 +

2m̃

r̃
+

(
Ω +

2

ς

) ∣∣∣
SP

∣∣∣∣+ |λ− 1|

.

∣∣∣∣m̃r̃ − m

r

∣∣∣∣+ |λ− 1|+ ε0
r

∆ext.

In view of (8.2.4), we have

|r̃ − r|+ |m̃−m| . sup
S̃

r(|f |+ |f |) . Du∗
◦
δ (8.2.8)
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and we infer

|ψ′(s)| . Du∗
r

◦
δ +

◦
δ

.
(

1 + ε
2
3
0D
) ◦
δ

.
◦
δ.

Integrating from
◦
s where ψ(

◦
s) = 0, we infer

|ψ(s)| . |s− ◦s|
◦
δ

. u∗
◦
δ

which improves (8.2.5) for D ≥ 1 large enough.

Similarly, we obtain

‖(f, f , log(λ))‖hksmall+5(S̃) . r−2

(∣∣∣∣∫
S

feΦ

∣∣∣∣+

∣∣∣∣∫
S

feΦ

∣∣∣∣)+
◦
δ

and ∣∣∣∣ν̃ (∫
S

feΦ

)∣∣∣∣+

∣∣∣∣ν̃ (∫
S

feΦ

)∣∣∣∣ . r2
◦
δ +

1

r

(∣∣∣∣∫
S

feΦ

∣∣∣∣+

∣∣∣∣∫
S

feΦ

∣∣∣∣) .
In view of (8.2.4), we infer∣∣∣∣ν̃ (∫

S

feΦ

)∣∣∣∣+

∣∣∣∣ν̃ (∫
S

feΦ

)∣∣∣∣ . r2
◦
δ + rDu∗

◦
δ

and integrating from S̃∗, we infer

r−2

(∣∣∣∣∫
S

feΦ

∣∣∣∣+

∣∣∣∣∫
S

feΦ

∣∣∣∣) . u∗
◦
δ +

D(u∗)2

r

◦
δ

.
(

1 + ε
2
3
0D
)
u∗
◦
δ

. u∗
◦
δ.

This yields

‖(f, f , log(λ))‖hksmall+5(S̃) . u∗
◦
δ
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which improves (8.2.4) for D ≥ 1 large enough. We thus conclude that u1 = 1, Σ̃∗ extends

all the way to the initial data layer, Σ̃∗ ⊂ R̃, and we have the bounds

‖(f, f , log(λ))‖hksmall+5(S̃) . u∗
◦
δ, |ψ(s)| . u∗

◦
δ.

In view of the definition of
◦
δ, we infer in particular for any sphere S̃ of Σ̃∗

‖(f, f , log(λ))‖hksmall+5(S̃) . ε0δext, |ψ(s)| . ε0δext. (8.2.9)

Step 10. As Σ̃∗ extends all the way to the initial data layer, this allows us to calibrate
ũ along Σ̃∗ by fixing the value ũ = 1 as in (3.1.5):

S̃1 = Σ̃∗ ∩ {ũ = 1} is such that S̃1 ∩ C(1,L0) ∩ SP 6= ∅, (8.2.10)

i.e. S̃1 is the unique sphere of Σ̃∗ such that its south pole intersects the south pole of one
of the sphere of the outgoing null cone C(1,L0) of the initial data layer.

Now that ũ is calibrated, we define

ũ∗ := ũ(S̃∗). (8.2.11)

For the proof of Theorem M7, we need in particular to prove that ũ∗ > u∗. First, note
that, since ũ+ r̃ is constant along Σ̃∗, we have

Σ̃∗ =
{
ũ+ r̃ = 1 + r̃(S̃1)

}
. (8.2.12)

Since S̃∗ ⊂ Σ̃∗, and in view of (8.2.12), (8.2.2), (8.2.6), we infer,∣∣∣∣ũ(S̃∗)−
(
u∗ +

δext
2

)∣∣∣∣ =

∣∣∣∣ũ(S̃∗)− u(
◦
S)

∣∣∣∣
=

∣∣∣∣1 + r̃(S̃1)− r̃(S̃∗)−
(
−s(

◦
S) + cΣ̃∗

)∣∣∣∣ .
Next, note from

s = r on Σ∗, e4(r − s) =
r

2

(
κ− 2

r

)
that we have

sup
R̃
|r − s| . ε0

r
∆ext . ε0δext. (8.2.13)
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Together with (8.2.8), this yields∣∣∣∣ũ(S̃∗)−
(
u∗ +

δext
2

)∣∣∣∣ . ∣∣∣1 + r̃(S̃1)− cΣ̃∗

∣∣∣+ ε0δext.

Since cΣ̃∗
in (8.2.6) is a constant, we have in particular

cΣ̃∗
= u(S̃1) + r(S̃1)− ψ(s(S̃1))

and thus∣∣∣∣ũ(S̃∗)−
(
u∗ +

δext
2

)∣∣∣∣ . ∣∣∣1 + r̃(S̃1)− u(S̃1)− r(S̃1) + ψ(s(S̃1))
∣∣∣+ ε0δext

.
∣∣∣1− u(S̃1)

∣∣∣+
∣∣∣r̃(S̃1)− r(S̃1)

∣∣∣+
∣∣∣ψ(s(S̃1))

∣∣∣+ ε0δext.

In view of (8.2.9) and (8.2.8), we infer∣∣∣∣ũ(S̃∗)−
(
u∗ +

δext
2

)∣∣∣∣ . ∣∣∣1− u(S̃1)
∣∣∣+ ε0δext.

Also, since (recall in particular (3.1.5))

u = 1 on S1 ∩ SP, eL0
4 (u) = O

( ε0
r2

)
,

and since the south pole of S1 coincides with the one of the corresponding sphere of CL0,1,
we infer

sup
R̃∩CL0,1

∩SP
|u− 1| . ∆ext

ε0
r2
. ε0δext.

This yields ∣∣∣∣ũ(S̃∗)−
(
u∗ +

δext
2

)∣∣∣∣ . ε0δext. (8.2.14)

In particular, we deduce, for ε0 small enough,

ũ(S̃∗) > u∗ (8.2.15)

as desired.

Step 11. We would like to check that the dominant condition (3.3.4) for r holds on Σ̃∗,
i.e. we need to prove that there exists a choice of constant d0 satisfying 1

2
≤ d0 ≤ 1 such

that

r̃(S̃∗) = ε
− 2

3
0 (ũ(S̃∗))

1+δdec .
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To this end, note that we have in view of (8.2.8), (8.2.13) and (8.2.14)

r̃(S̃∗)− ε−
2
3

0 (ũ(S̃∗))
1+δdec = s(

◦
S) +O (ε0δext)− ε−

2
3

0

(
u∗ +

δext
2

+O (ε0δext)

)1+δdec

= s(
◦
S)− ε−

2
3

0 (u∗)
1+δdec − 1 + δdec

2
ε
− 2

3
0 (u∗)

δdecδext

+ε
− 2

3
0 (u∗)

δdecδextO

(
δext
u∗

+ ε0

)
+O (ε0δext) .

Together with (8.2.2), we infer

r̃(S̃∗)− ε−
2
3

0 (ũ(S̃∗))
1+δdec = r∗ +

3d0r∗
4u∗

δext − ε−
2
3

0 (u∗)
1+δdec − 1 + δdec

2
ε
− 2

3
0 (u∗)

δdecδext

+ε
− 2

3
0 (u∗)

δdecδextO

(
δext
u∗

+ ε0

)
+O (ε0δext)

= r∗ − ε−
2
3

0 (u∗)
1+δdec +

(
3d0r∗

4
− 1 + δdec

2
ε
− 2

3
0 (u∗)

1+δdec

)
δext
u∗

+ε
− 2

3
0 (u∗)

δdecδextO

(
δext
u∗

+ ε0

)
+O (ε0δext) .

Since we have by the condition (3.3.4) of r on Σ∗

r∗ = ε
− 2

3
0 u1+δdec

∗ ,

we deduce

r̃(S̃∗)− ε−
2
3

0 (ũ(S̃∗))
1+δdec =

(
3d0

4
− 1 + δdec

2

)
r∗δext
u∗

+ ε
− 2

3
0 (u∗)

δdecδextO

(
δext
u∗

+ ε0

)
+O (ε0δext)

=
3r∗δext

4u∗

(
d0 −

2 + 2δdec
3

+O

(
ε0 +

δext
u∗

))
.

Thus, we may choose the contant d0 such that 1
2
≤ d0 ≤ 1 and

r̃(S̃∗) = ε
− 2

3
0 (ũ(S̃∗))

1+δdec

as desired.

Step 12. We summarize the properties of Σ̃∗ obtained so far:

• Σ̃∗ is a spacelike hypersurface included in the spacetime region R̃.
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• The scalar function ũ is defined on Σ̃∗ and it level sets are topological 2-spheres
denoted by S̃.

• The following GCM conditions holds on Σ̃∗

d̃?/2 d̃
?/1 κ̃ = d̃?/2 d̃

?/1 µ̃ = 0, κ̃ =
2

r̃
,

∫
S̃

η̃eΦ =

∫
S̃

ξ̃eΦ = 0.

• In addition, the following GCM conditions holds on the sphere S̃∗ of Σ̃∗∫
S̃∗

β̃eΦ =

∫
S̃∗

ẽθ(κ̃)eΦ = 0,

• We have, for some constant cΣ̃∗
,

ũ+ r̃ = cΣ̃∗
, along Σ̃∗.

• The following normalization condition holds true at the South Pole SP of every
sphere S̃,

ã
∣∣∣
SP

= −1− 2m̃

r̃

where ã is such that we have

ν̃ = ẽ3 + ãẽ4,

with ν̃ the unique vectorfield tangent to the hypersurface Σ̃∗, normal to S̃, and
normalized by g(ν̃, ẽ4) = −2.

• The dominant condition (3.3.4) for r holds on Σ̃∗, i.e. we have

r̃(S̃∗) = ε
− 2

3
0 (ũ(S̃∗))

1+δdec .

• ũ is calibrated along Σ̃∗ by fixing the value ũ = 1:

S̃1 = Σ̃∗ ∩ {ũ = 1} is such that S̃1 ∩ C(1,L0) ∩ SP 6= ∅, (8.2.16)

i.e. S̃1 is the unique sphere of Σ̃∗ such that its south pole intersects the south pole
of one of the sphere of the outgoing null cone C(1,L0) of the initial data layer.
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Thus Σ̃∗ satisfies all the required properties for the future spacelike boundary of a GCM
admissible spacetime, see item 3 of definition 3.1.2. Furthermore, we have on Σ̃∗

ũ(S̃∗) > u∗, (8.2.17)

and (f, f , λ) satisfy in view of (8.2.9) and Corollary 9.8.2

sup
Σ̃∗

‖d≤ksmall+5(f, f , log(λ))‖L2(S̃) . ε0δext.

Together with the Sobolev embedding on the spheres S̃, we find

sup
Σ̃∗

r̃ |d≤ksmall+3(f, f , log(λ))| . ε0δext.

Possibly reducing the size of δext > 0, we deduce

sup
Σ̃∗

r̃ ũ
1
2

+δdec |d≤ksmall+3(f, f , log(λ))| . ε0. (8.2.18)

Step 13. We now control the outgoing geodesic foliation initialized on Σ̃∗. We denote
by (ext)M̃ the region covered by this outgoing geodesic foliation. Let (e4, e3, eθ) of (ext)M
extended to the spacetime M(extend), and satisfying, as discussed in Step 1 to Step 3

N
(Dec)
ksmall+5(M(extend)) . ε0. (8.2.19)

Let (f, f , λ) the transition functions from the frame (e4, e3, eθ) to the frame (ẽ4, ẽ3, ẽθ)

of (ext)M̃. Since both frames are outgoing geodesic, we may apply Corollary 2.3.7 which
yields for (f, f, log(λ)) the following transport equations

λ−1e′4(rf) = E ′1(f,Γ),

λ−1e′4(log(λ)) = E ′2(f,Γ),

λ−1e′4

(
rf − 2r2e′θ(log(λ)) + rfΩ

)
= E ′3(f, f , λ,Γ),

where

E ′1(f,Γ) = −r
2
κ̌f − r

2
ϑf + l.o.t.,

E ′2(f,Γ) = fζ − 1

2
f 2ω − ηf − 1

4
f 2κ+ l.o.t.,

E ′3(f, f , λ,Γ) = −r
2
κ̌f + r2

(
κ̌−

(
κ− 2

r

))
e′θ(log(λ)) + r2

(
d/′1(f) + λ−1ϑ′

)
e′θ(log(λ))

−r
2
κ̌Ωf + rE3(f, f ,Γ)− 2r2e′θ(E2(f,Γ)) + rΩE1(f,Γ),
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and where E1, E2 and E3 are given in Lemma 2.3.6. Integrating these transport equations
from Σ̃∗, using the control (8.2.18) of (f, f , λ) on Σ̃∗, and together with the control (8.2.19)

for the Ricci coefficients of the foliation of M(extend), we obtain

sup
(ext)M̃

(
r̃≥2m0(1+

δH
2

)
)
(
r̃ ũ

1
2

+δdec + ũ1+δdec
)(
|d≤ksmall+3(f, log(λ))|+ |d≤ksmall+2f |

)
. ε0.

(8.2.20)
Then, for any rT in the interval

2m0

(
1 +

δH
2

)
≤ rT ≤ 2m0

(
1 +

3δH
2

)
, (8.2.21)

we initialize the ingoing geodesic foliation of (int)M̃[rT ] on r̃ = rT using the outgoing

geodesic foliation of (ext)M̃ as in item 4 of definition 3.1.2. Using the control of (f, f , λ)
induced on r̃ = rT by (8.2.20), and using the analog of Corollary 2.3.7 in the e3 direction
for ingoing foliations, we obtain similarly, for any rT in the interval (8.2.21),

sup
(int)M̃[rT ]

ũ1+δdec
(
|d≤ksmall+2(f, log(λ))|+ |d≤ksmall+1f |

)
. ε0. (8.2.22)

Let now, for any rT in the interval (8.2.21),

M[rT ] := (ext)M̃(r̃ ≥ rT ) ∪ (int)M̃[rT ].

Then, in view of (8.2.20) (8.2.22), and (8.2.19), and using the transformation formulas of
Proposition 2.3.4, we deduce

N
(Dec)
ksmall

(M[rT ]) . ε0

which concludes the proof of Theorem M7.

8.3 Proof of Theorem M8

So far, we have only improved our bootstrap assumptions on decay estimates. We now
improve our bootstrap assumptions on energies and weighted energies for Ř and Γ̌ relying
on an iterative procedure which recovers derivatives one by one3.

Let Im0,δH the interval of R defined by

Im0,δH :=

[
2m0

(
1 +

δH
2

)
, 2m0

(
1 +

3δH
2

)]
. (8.3.1)

3See also [33] for a related strategy to recover higher order derivatives from the control of lower order
ones.
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Remark 8.3.1. Recall that the results of Theorems M0–M7 hold for any rT ∈ Im0,δH, see
Remark 3.6.3. More precisely

• they hold on (ext)M(r ≥ 2m0(1 + δH
2

)), and hence on (ext)M(r ≥ rT ) for any
rT ∈ Im0,δH,

• they hold on (int)M[rT ] for any rT ∈ Im0,δH, where (int)M[rT ] is initialized on
T = {r = rT } using (ext)M(r ≥ rT ) as in section 3.1.2.

It is at this stage that we need to make a specific choice of rT in the context of a Lebesgue
point argument. More precisely, we choose rT such that we have∫

{r=rT }
|d≤klargeŘ|2 = inf

r0∈Im0,δH

∫
{r=r0}

|d≤klargeŘ|2. (8.3.2)

Remark 8.3.2. In case the above infimum is achieved for several values of r, we choose
rT to be the largest of such values, so that rT is uniquely defined. Note also that the
infimum could a priori be infinite, and will only be shown to be finite - and more precisely
O(ε0) -, at the end of the proof of Theorem M8, see section 8.3.4. This could be made
rigorous in the context of a continuity argument.

In view of the definition of rT , and since T = {r = rT }, we have∫
T
|d≤klargeŘ|2 ≤ 1

2m0δH

∫
Im0,δH

(∫
{r=r0}

|d≤klargeŘ|2
)
dr0

and hence4 ∫
T
|d≤klargeŘ|2 .

∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2. (8.3.3)

From now on, we may thus assume that the spacetime M satisfies

• the conclusions of Theorem M0, i.e.

max
0≤k≤klarge

{
sup
C1

[
r

7
2

+δB
(
|dk (ext)α|+ |dk (ext)β|

)
+ r

9
2

+δB |dk−1e3( (ext)α)|
]

(8.3.4)

+ sup
C1

[
r3

∣∣∣∣dk ( (ext)ρ+
2m0

r3

)∣∣∣∣+ r2|dk (ext)β|+ r|dk (ext)α|
]}
. ε0

4We use the coarea formula, dM = 1√
g(Dr,Dr)

d{r = r0}dr0 and the fact that, for r ∈ Im0,δH ,

g(Dr,Dr) = −e3(r)e4(r) = Υ +O(ε) ≥ δH
2 +O(ε+ δ2

H) ≥ δH
4 . Note that . here depends on δ−1

H , see the
convention for . made at the end of section 3.3.1.
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and

max
0≤k≤klarge

sup
C1

[
|dk (int)α|+ |dk (int)β|+

∣∣∣∣dk ( (int)ρ+
2m0

r3

)∣∣∣∣
+|dk (int)β|+ |dk (int)α|

]
. ε0, (8.3.5)

• the conclusions of Theorem M7, i.e.

N
(Dec)
ksmall

. ε0, (8.3.6)

see section 3.2.3 for the definition of the combined norm on decay N
(Dec)
k ,

• the estimate ∫
T
|d≤klargeŘ|2 .

∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2. (8.3.7)

The goal of this section is to prove Theorem M8, i.e. to prove that the following bound
holds on M for the weighted energies

N
(En)
klarge

. ε0,

see section 3.2.3 for the definition of the combined norm on weighted energies N
(En)
k .

8.3.1 Main norms

We recall below our norms for measuring weighted energies for curvature components and
Ricci coefficients, see sections 3.2.1 and 3.2.2. Let r0 ≥ 4m0. Then, we have for (ext)M(

(ext)R≥r00 [Ř]
)2

= sup
0≤u≤u∗

∫
Cu(r≥r0)

(
r4+δBα2 + r4β2

)
+

∫
Σ∗

(
r4+δB(α2 + β2) + r4(ρ̌)2 + r2β2 + α2

)
+

∫
(ext)M(r≥r0)

(
r3+δB(α2 + β2) + r3−δB(ρ̌)2 + r1−δBβ2 + r−1−δBα2

)
,

(
(ext)R≤r00 [Ř]

)2

=

∫
(ext)M(r≤r0)

(
1− 3m

r

)2

|Ř|2,
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(ext)R0[Ř] = (ext)R≥4m0
0 [Ř] + (ext)R≤4m0

0 [Ř],

(
(ext)Rk[Ř]

)2

=
(

(ext)R0[d≤kŘ]
)2

+

∫
(ext)M(r≤4m0)

(
|d≤k−1NŘ|2 + |d≤k−1Ř|2

)
, for k ≥ 1,

and(
(ext)G≥r0k

[
Γ̌
] )2

=

∫
Σ∗

[
r2
(

(d≤kϑ)2 + (d≤kκ̌)2 + (d≤kζ)2 + (d≤kκ̌)2
)

+ (d≤kϑ)2

+ (d≤kη)2 + (d≤kω̌)2 + (d≤kξ)2

]

+ sup
λ≥4m0

(∫
{r=λ}

[
λ2
(

(d≤kϑ)2 + (d≤kκ̌)2 + (d≤kζ)2
)

+ λ2−δB(d≤kκ̌)2 + (d≤kϑ)2 + (d≤kη)2 + (d≤kω̌)2 + λ−δB(d≤kξ)2

])
,(

(ext)G≤r0k

[
Γ̌
] )2

=

∫
(ext)M(≤4m0)

∣∣d≤k (Γ̌)∣∣2 ,
(ext)Gk

[
Γ̌
]

= (ext)G≤4m0

k

[
Γ̌
]

+ (ext)G≥4m0

k

[
Γ̌
]
.

Also, we have for (int)M (
(int)Rk[Ř]

)2

=

∫
(int)M

|d≤kŘ|2,

and (
(int)Gk[Γ̌]

)2

=

∫
(int)M

|d≤kΓ̌|2.

Finally, we recall the following Morawetz type norms, see section 5.1.4. For δ > 0, we
have

Bδ[ψ](τ1, τ2) =

∫
(trap)M(τ1,τ2)

|Rψ|2 + r−2|ψ|2 +

(
1− 3m

r

)2(
|∇/ψ|2 +

1

r2
|Tψ|2

)
+

∫
(trap

/
)M(τ1,τ2)

rδ−3
(
|dψ|2 + |ψ|2

)
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where the scalar function τ and the spacetime region (trap)M have beed introduced in

section 5.1.1, and where (trap
/

)M denotes the complement of (trap)M. Also, we have

Eδ[ψ](τ) =

∫
Σ(τ)

(
1

2
(NΣ, e3)2 |e4ψ|2 +

1

2
(NΣ, e4)2 |e3ψ|2 + |∇/ψ|2 + r−2|ψ|2

)
+

∫
Σ≥4m0

(τ)

rδ
(
|e4ψ|2 + r−2|ψ|2

)
.

Here Σ(τ) denotes the level set of τ , see section 5.1.1, NΣ denotes a choice for the normal
to Σ, and recall that we have

NΣ =

{
NΣ = e3 on (int)Σ,

NΣ = e4 on (ext)Σ,

with (int)Σ and (ext)Σ defined in section 5.1.1, and

(NΣ, e3) ≤ −1 and (NΣ, e4) ≤ −1 on (trap)Σ.

Moreover, we have

Fδ[ψ](τ1, τ2) =

∫
A(τ1,τ2)

(
δ−1
H |e4Ψ|2 + δH|e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+

∫
Σ∗(τ1,τ2)

(
|e3Ψ|2 + rδ

(
|e4ψ|2 + |∇/ψ|2 + r−2|ψ|2

))
with A(τ1, τ2) = A ∩M(τ1, τ2) and Σ∗(τ1, τ2) = Σ∗ ∩M(τ1, τ2).

8.3.2 Control of the global frame

Some quantities will be controlled based on the wave equation they satisfy, and will thus
need to be defined w.r.t. a global frame, i.e. a smooth frame on M. To this end, we
will rely on the global frame of section 3.5.2. We recall below the main properties of that
global frame.

From definition 3.5.1, the region where the frame of (int)M and a conformal renormaliza-
tion of the frame of (ext)M are matched is given by

Match :=

(
(ext)M∩

{
(int)r ≤ 2m0

(
1 +

3

2
δH

)})
∪
(

(int)M∩
{

(int)r ≥ 2m0

(
1 +

1

2
δH

)})
,
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where (int)r denotes the area radius of the ingoing geodesic foliation of (int)M and its
extension to (ext)M.

The following proposition concerning the global frame is an immediate consequence of
Proposition 3.5.2 and the decay estimates (8.3.6).

Proposition 8.3.3. Assume (8.3.6). Then, there exists a global null frame defined on
(int)M∪ (ext)M and denoted by ((glo)e4,

(glo)e3,
(glo)eθ) such that

(a) In (ext)M\Match, we have

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(ext)Υ (ext)e4,
(ext)Υ−1(ext)e3,

(ext)eθ
)
.

(b) In (int)M\Match, we have

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(int)e4,
(int)e3,

(int)eθ
)
.

(c) In the matching region, we have

max
0≤k≤ksmall−2

sup
Match∩ (int)M

u1+δdec
∣∣dk((glo)Γ̌, (glo)Ř)

∣∣ . ε0,

max
0≤k≤ksmall−2

sup
Match∩ (ext)M

u1+δdec
∣∣dk((glo)Γ̌, (glo)Ř)

∣∣ . ε0,

where (glo)Ř and (glo)Γ̌ are given by

(glo)Ř =

{
α, β, ρ+

2m

r3
, β, α

}
,

(glo)Γ̌ =

{
ξ, ω +

m

r2
, κ− 2Υ

r
, ϑ, ζ, η, η, κ+

2

r
, ϑ, ω, ξ

}
.

(d) Furthermore, we may also choose the global frame such that, in addition, one of the
following two possibilities hold,

i. We have on all (ext)M

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(ext)Υ (ext)e4,
(ext)Υ−1(ext)e3,

(ext)eθ
)
.

ii. We have on all (int)M

((glo)e4,
(glo)e3,

(glo)eθ) =
(

(int)e4,
(int)e3,

(int)eθ
)
.
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8.3.3 Iterative procedure

Recall our norms for measuring energies for curvature components and Ricci coefficients
which are given respectively by (int)Rk[Ř], (ext)Rk[Ř] and (int)Gk[Γ̌], (ext)Gk[Γ̌], see sec-
tions 3.2.1 and 3.2.2. Recall also our combined weighted energy norm

N
(En)
k = (ext)Rk[Ř] + (ext)Gk[Γ̌] + (int)Rk[Ř] + (int)Gk[Γ̌].

We also introduce the following norm controlling on the matching region the Ricci coeffi-
cients and curvature components of the global frame of Proposition 8.3.3

N (match)
k :=

(∫
Match

∣∣d≤k((glo)Γ̌, (glo)Ř)
∣∣2) 1

2

. (8.3.8)

To initiate the iterative procedure, we rely on the following lemma.

Lemma 8.3.4. We have

N
(En)
ksmall

+N (match)
ksmall−2 . ε0. (8.3.9)

Proof. The estimate (8.3.6) and Proposition 8.3.3 imply in particular

(ext)R̂≥4m0

ksmall
[Ř] + (ext)R≤4m0

ksmall
[Ř] + (ext)Gksmall [Γ̌] + (int)Rksmall [Ř]

+ (int)Gksmall [Γ̌] +N (match)
ksmall−2 . ε0 (8.3.10)

where the first term of the right-hand side is defined by(
(ext)R̂≥4m0

k [Ř]
)2

:= sup
0≤u≤u∗

∫
Cu(r≥4m0)

r4|d≤kβ|2 +

∫
Σ∗

(
r4|d≤kρ̌|2 + r2|d≤kβ|2 + |d≤kα|2

)
+

∫
(ext)M(r≥4m0)

(
r3−δB |d≤kρ̌|2 + r1−δB |d≤kβ|2 + r−1−δB |d≤kα|2

)
.

In view of the definition of the combined weighted energy norm N
(En)
k , we infer

N
(En)
ksmall

+N (match)
ksmall−2

. ε0 +

[
sup

1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB |d≤ksmallα|2 +

∫
Σ∗

r4+δB(|d≤ksmallα|2 + |d≤ksmallβ|2)

+

∫
(ext)M(r≥4m0)

r3+δB(|d≤ksmallα|2 + |d≤ksmallβ|2)

] 1
2

. (8.3.11)
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Note that the terms on the RHS of the above estimate can not be estimated directly by
(8.3.6) since δdec < δB.

Next we claim the estimate

sup
1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB |d≤ksmallα|2 +

∫
Σ∗

r4+δB(|d≤ksmallα|2 + |d≤ksmallβ|2)

+

∫
(ext)M(r≥4m0)

r3+δB(|d≤ksmallα|2 + |d≤ksmallβ|2)

.
(

(ext)R≤4m0

ksmall
[Ř]
)2

+
(

(ext)Gksmall [Γ̌]
)2

+ ε20 + ε20(N
(En)
ksmall

)2. (8.3.12)

The proof of (8.3.12) relies on rp-weighted estimates for the Bianchi pair (α, β) and is
postponed to section 8.7.3. Then (8.3.9) follows immediately from (8.3.10), (8.3.11) and
(8.3.12) for ε0 > 0 small enough.

Next, for J such that ksmall − 2 ≤ J ≤ klarge − 1, consider the iteration assumption

N
(En)
J +N (match)

J . εB[J ], (8.3.13)

where

εB[J ] :=
J∑

j=ksmall−2

(ε0)`(j) B1−`(j) + ε
`(J)
0 B, `(j) := 2ksmall−2−j, (8.3.14)

B :=

∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2
 1

2

. (8.3.15)

Lemma 8.3.5. The following estimate holds true for εB[J ] as defined above

εB[J ] + B 1
2 (εB[J ])

1
2 + ε0B . εB[J + 1]. (8.3.16)

Proof. We clearly have

εB[J ] + ε0B . εB[J + 1]. (8.3.17)
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Also, we have, using `(j) = 2`(j + 1),

BεB[J ] .
J∑

j=ksmall−2

(ε0)`(j) B2−`(j) + ε
`(J)
0 B2

.
J+1∑

j=ksmall−1

(ε0)2`(j) B2−2`(j) + ε
2`(J+1)
0 B2

.

(
J+1∑

j=ksmall−2

(ε0)`(j) B1−`(j) + ε
`(J+1)
0 B

)2

= (εB[J + 1])2

which concludes the proof of the lemma.

In view of (8.3.9), (8.3.13) holds for J = ksmall − 2. The propositions below will allow us
to prove Theorem M8 in the next section.

Proposition 8.3.6. Let J such that ksmall−2 ≤ J ≤ klarge−1. Consider the global frame
constructed in Proposition 8.3.3. In that frame, let

ρ̃ := r2ρ+ 2mr−1. (8.3.18)

Then, under the iteration assumption (8.3.13), we have

sup
τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗) + F J
δ [ρ̃](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Proposition 8.3.7. Let J such that ksmall−2 ≤ J ≤ klarge−1. Consider the global frame
constructed in Proposition 8.3.3. In that frame, under the iteration assumption (8.3.13),
we have

sup
τ∈[1,τ∗]

EJ
δ [α + Υ2α](τ) +BJ

δ [α + Υ2α](1, τ∗) + F J
δ [α + Υ2α](1, τ∗)

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Proposition 8.3.8. Let J such that ksmall−2 ≤ J ≤ klarge−1. Consider the global frame
constructed in Proposition 8.3.3. In that frame, under the iteration assumption (8.3.13),
we have

BJ
−2

[
ρ̌, α, α, β, β

]
(1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.
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Proposition 8.3.9. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Under the iteration
assumption (8.3.13), we have for r0 ≥ 4m0

(int)RJ+1[Ř] + (ext)RJ+1[Ř] ≤ (ext)R≥r0J+1[Ř] +O
(
r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)))
and

(ext)R≥r0J+1[Ř] . r−δB0
(ext)G≥r0J+1[Γ̌] + r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))
.

Proposition 8.3.10. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Under the iteration
assumption (8.3.13), we have

(ext)GJ+1[Γ̌] + (int)RJ+1[Ř] + (ext)RJ+1[Ř] . εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)
.

Proposition 8.3.11. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Under the iteration
assumption (8.3.13), we have

(int)GJ+1[Γ̌] . εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)
+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

Proposition 8.3.12. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Under the iteration
assumption (8.3.13), we have

N (match)
J+1 . N

(En)
J+1 +

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

The proof of Propositions 8.3.6, 8.3.7, 8.3.8, 8.3.9, 8.3.10, 8.3.11 and 8.3.12 are postponed
respectively to sections 8.4, 8.5, 8.6, 8.7, 8.8, 8.9 and 8.10.

8.3.4 End of the proof of Theorem M8

To prove Theorem M8, we rely on Propositions 8.3.10, 8.3.11 and 8.3.12. Note that among

them only the second two involve the dangerous boundary term
(∫
T |dJ+1((ext)Ř)|2

) 1
2 . We

proceed as follows.

Step 1. As mentioned earlier, the estimate (8.3.9) trivially implies the iteration assump-
tion (8.3.13) with J = ksmall− 2. We assume that the iteration assumption (8.3.13) holds
for any fixed J such that ksmall − 2 ≤ J ≤ klarge − 2. In view of Proposition 8.3.11, we
have

(int)GJ+1[Γ̌] . εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)
+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

. (8.3.19)
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We need to deal with the last term in the RHS of (8.3.19). Relying on a trace theorem
in the spacetime region (ext)M(r ∈ Im0,δH), and the fact that J + 2 ≤ klarge, we obtain

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4

( (ext)RJ+1[Ř])
1
2

+ (ext)RJ+1[Ř]. (8.3.20)

Proposition 8.3.10, (8.3.19) and (8.3.20) yield, for ε0 > 0 small enough so that we can
absorb some of the terms to the left,

N
(En)
J+1 . εB[J ] +

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4 (
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)) 1
2

+ε0N (match)
J+1 ,

and using also Proposition 8.3.12,

N (match)
J+1 . N

(En)
J+1 +

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

. εB[J ] +

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4 (
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)) 1
2

+ε0N (match)
J+1 .

For ε0 > 0 small enough, we infer, by absorbing the appropriate terms to the left,

N
(En)
J+1 +N (match)

J+1

. εB[J ] +

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4 (
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)) 1
2

. εB[J ] +

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4 (
εB[J ]

) 1
2

+

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4 (
ε0

(
N

(En)
J+1 +N (match)

J+1

)) 1
2
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and hence

N
(En)
J+1 +N (match)

J+1 . εB[J ] +

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

4 (
εB[J ]

) 1
2

+ε0

∫
(ext)M

(
r∈Im0,δH

) |dklargeŘ|2
 1

2

.

In view of Lemma 8.3.5, we deduce

N
(En)
J+1 +N (match)

J+1 . εB[J + 1]

which is (8.3.13) for J+1 derivatives. We deduce that (8.3.13) holds for all J ≤ klarge−1,
and hence

N
(En)
klarge−1 +N (match)

klarge−1 . εB[klarge − 1]. (8.3.21)

Step 2. Next, Proposition 8.3.10 implies in view of (8.3.21)

(ext)Gklarge [Γ̌] + (int)Rklarge [Ř] + (ext)Rklarge [Ř] . εB[klarge − 1] (8.3.22)

+ε0

(
N

(En)
klarge

+N (match)
klarge

)
.

In particular, we have∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2
 1

2

≤ (ext)Rklarge [Ř] . εB[klarge − 1] + ε0

(
N

(En)
klarge

+N (match)
klarge

)
.

In view of the definition of εB[klarge − 1], we infer for ε0 > 0 small enough∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2
 1

2

. ε0 + ε0

(
N

(En)
klarge

+N (match)
klarge

)
and hence

εB[klarge − 1] . ε0 + ε0

(
N

(En)
klarge

+N (match)
klarge

)
which yields, together with (8.3.22),

(ext)Gklarge [Γ̌] + (int)Rklarge [Ř] + (ext)Rklarge [Ř] . ε0 + ε0

(
N

(En)
klarge

+N (match)
klarge

)
. (8.3.23)
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Step 3. Next, Proposition 8.3.11 implies in view of (8.3.23),

(int)Gklarge [Γ̌] . ε0 + ε0

(
N

(En)
klarge

+N (match)
klarge

)
+

(∫
T
|dklarge((ext)Ř)|2

) 1
2

and hence, for ε0 > 0 small enough, using again (8.3.23),

N
(En)
klarge

. ε0 + ε0N (match)
klarge

+

(∫
T
|dklarge((ext)Ř)|2

) 1
2

.

Together with Proposition 8.3.12, we infer for ε0 > 0 small enough

N
(En)
klarge

+N (match)
klarge

. ε0 +

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

Step 4. It remains to estimate the last term of the RHS of the previous inequality. Now,
in view of (8.3.7) and (8.3.23), we have

(∫
T
|dklarge((ext)Ř)|2

) 1
2

.

∫
(ext)M

(
r∈Im0,δH

) |d≤klargeŘ|2
 1

2

. (ext)Rklarge [Ř]

. ε0 + ε0N
(En)
klarge

so that we finally obtain, for ε0 > 0 small enough,

N
(En)
klarge

. ε0.

This concludes the proof of Theorem M8.

8.4 Proof of Proposition 8.3.6

8.4.1 A wave equation for ρ̃

Proposition 8.4.1. The following wave equations hold true.

1. The curvature component ρ verifies the identity

�gρ = κe4ρ+ κe3ρ+
3

2

(
κκ+ 2ρ

)
ρ+ Err[�gρ],
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where

Err[�gρ] :=
3

2
ρ

(
−1

2
ϑϑ+ 2(ξ ξ + η η)

)
+

(
3

2
κ− 2ω

)(
1

2
ϑα− ζ β − 2(η β + ξ β)

)
−1

2
ϑ d?/2β + (ζ − η)e3β − ηe3(Φ)β − ξ(e4β + e4(Φ)β)− ββ

−e3

(
−1

2
ϑα + ζ β + 2(η β + ξ β)

)
− d?/1(κ)β + 2 d?/1(ω)β + 3η d?/1(ρ)− d/1

(
− ϑβ + ξα

)
− 2ηeθρ.

2. The small curvature quantity,

ρ̃ := r2

(
ρ+

2m

r3

)
verifies the wave equation,

�g(ρ̃) +
8m

r3
ρ̃ = −6m

�g(r)−
(

2
r
− 2m

r2

)
r2

− 3m

r

(
κκ+

4Υ

r2

)
−3m

r
(Aκ+ Aκ) + Err[�gρ̃],

where

Err[�gρ̃] := −6m

r
AA+

3

r2
ρ̃2 +

3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r

)
ρ̃

+

(
3

2

(
κκ− 8m

r3
+

2

3r2
�g(r2)

)
+

8m

r3

)
ρ̃

−Ae3(ρ̃)− Ae4(ρ̃) +
2

r
Ae3(m) +

2

r
Ae4(m)

+4Da(m)Da

(
1

r

)
+

2

r
�g(m) + 4r d?/1(r) d?/1(ρ) + r2Err[�gρ],

and where we recall that,

A =
2

r
e4(r)− κ, A =

2

r
e3(r)− κ.

Proof. See appendix B.1.
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8.4.2 Control of �g(r)

Lemma 8.4.2. Let r the function on M associated to the global frame constructed in
Proposition 8.3.3, see definition 4.6.4. Let J such that ksmall− 2 ≤ J ≤ klarge− 1. Under
the iteration assumption (8.3.13), we have∫

(int)M∪ (ext)M(r≤4m0)

(
dJ
(
�g(r)−

(
2

r
− 2m

r2

)))2

+ sup
r0≥4m0

∫
{r=r0}

(
dJ
(
�g(r)−

(
2

r
− 2m

r2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

and∫
(trap)M

(
dJe4

(
�g( (ext)r)−

(
2

(ext)r
− 2 (ext)m

( (ext)r)2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Proof. Recall that, according to definition 4.6.4, r is defined on (ext)M∪ (int)M as follows

• on (ext)M\Match, we have

(glo)r = (ext)r,

• on (int)M\Match, we have

(glo)r = (int)r,

• on the matching region, we have

(glo)r = (1− ψm0,δH( (int)r)) (int)r + ψm0,δH( (int)r) (ext)r,

where the matching region of Proposition 8.3.3 is given by

Match :=

(
(ext)M∩

{
(int)r ≤ 2m0

(
1 +

3

2
δH

)})
∪
(

(int)M∩
{

(int)r ≥ 2m0

(
1 +

1

2
δH

)})
,

and where ψm0,δH is given by

ψm0,δH(r) = ψ

(
r − 2m0

(
1 + 1

2
δH
)

2m0δH

)
on 2m0

(
1 +

1

2
δH

)
≤ r ≤ 2m0

(
1 +

3

2
δH

)
.
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with ψ : R → R a smooth cut-off function such that 0 ≤ ψ ≤ 1, ψ = 0 on (−∞, 0] and
ψ = 1 on [1,+∞).

We have on (ext)M

�g( (ext)r) = −e3e4( (ext)r) +4/ ( (ext)r) +

(
2ω − 1

2
κ

)
e4( (ext)r)− 1

2
κe3( (ext)r) + 2ηeθ(

(ext)r).

Here, (e4, e3, eθ) denotes the frame of (ext)M and the Ricci coefficients are computed w.r.t.
frame, so we have

e4( (ext)r) =
(ext)r

2
κ, e3( (ext)r) =

(ext)r

2
(κ+ A), eθ(

(ext)r) = 0

and hence

�g( (ext)r) = −e3

(
(ext)r

2
κ

)
+

(
2ω − 1

2
κ

)
(ext)r

2
κ− 1

2
κ

(ext)r

2
(κ+ A)

= −
(ext)r

2
e3(κ)− e3( (ext)r)

2
κ+

(
2ω − 1

2
κ

)
(ext)r

2
κ−

(ext)r

4
κκ−

(ext)r

4
κA

= −
(ext)r

2
e3(κ)− 1

2
κ

(ext)r

2
(κ+ A) +

(
2ω − 1

2
κ

)
(ext)r

2
κ−

(ext)r

4
κκ−

(ext)r

4
κA.

Now, we have

e3(κ) = e3(κ) + Err[e3κ]

= −1

2
κκ+ 2ωκ+ 2ρ+ 2 d/1η −

1

2
ϑϑ+ 2η2 + Err[e3κ]

= −1

2
κκ+ 2ωκ+ 2ρ− 1

2
ϑϑ+ 2η2 + Err[e3κ]

and hence

�g( (ext)r) = −
(ext)r

2

(
−1

2
κκ+ 2ωκ+ 2ρ− 1

2
ϑϑ+ 2η2 + Err[e3κ]

)
−1

2
κ

(ext)r

2
(κ+ A) +

(
2ω − 1

2
κ

)
(ext)r

2
κ−

(ext)r

4
κκ−

(ext)r

4
κA.
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Together with (8.3.4) and the iteration assumption (8.3.13), we easily infer5

∫
(ext)M(r≤4m0)

(
dJ
(
�g( (ext)r)−

(
2

(ext)r
− 2 (ext)m

( (ext)r)2

)))2

+ sup
r0≥4m0

∫
{r=r0}

(
dJ
(
�g( (ext)r)−

(
2

(ext)r
− 2 (ext)m

( (ext)r)2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

. (8.4.1)

Also, using again (8.3.4) and the iteration assumption (8.3.13), we have∫
(trap)M

(
dJe4

(
�g( (ext)r)−

(
2

(ext)r
− 2 (ext)m

( (ext)r)2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

, (8.4.2)

where we have used the null structure equations for e4(κ), e4(κ), e4(ω), e4(ϑ), e4(ϑ), e4(η),
the equations for e4(Ω),e4(ς), e4(r), and the Bianchi identity for e4(ρ).

Remark 8.4.3. Note that we have used in the last estimate the following observations to
avoid a potential loss of one derivative

e4(κ) = −2 d/1ζ + · · · = 2

(
ρ+ µ− 1

4
ϑϑ

)
+ · · · ,

e4(ρ) = d/1β + · · · = · · · ,
e4(Err[e3κ]) = 2e4(ς−1ς̌ d/1η) + · · · = 2ς−1ς̌ d/1e4η + · · · = −2ς−1eθ(ς)e4η + · · ·

Note also that there is no term involving dJρ (without average) as such a term appears
only in the null structure equations for e4(κ), as well as e4(ω) and vanishes due to the
cancellation

e4

(
2ω − 1

2
κ

)
= 2e4(ω)− 1

2
e4(κ)

= 2ρ+ · · · − 1

2
(−2 d/1ζ + 2ρ) + · · ·

= 2µ+ · · ·

This is important as such a term would otherwise violate (8.4.2) at r = 3m.

Remark 8.4.4. Recall that the global frame constructed in Proposition 8.3.3

5Recall in particular that ρ is under control in view of Lemma 3.4.1.
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• coincides with the frame of (int)M in (int)M\Match,

• coincides with a conformal renormalization of the frame of (ext)M in (ext)M\Match.

Thus, J + 1 derivatives of its Ricci coefficients and curvature components are controlled

• by N (match)
J+1 in Match,

• by N
(En)
J+1 in M\Match,

and hence by N
(En)
J+1 +N (match)

J+1 on M. This explains the occurrence of N
(En)
J+1 +N (match)

J+1

on the right-hand side of numerous estimates, see for example (8.4.1) (8.4.2).

Arguing similarly for (int)r, we obtain the following analog of (8.4.1)∫
(int)M

(
dJ
(
�g( (int)r)−

(
2

(int)r
− 2 (int)m

( (int)r)2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

(8.4.3)

Then, since

• on (ext)M\Match, we have

�g(r) = �g( (ext)r), m = (ext)m,

• on (int)M\Match, we have

�g(r) = �g( (int)r), m = (int)m,

we immediately infer from (8.4.1), (8.4.2) and (8.4.3)∫(
(int)M∪ (ext)M(r≤4m0)

)
\Match

(
dJ
(
�g(r)−

(
2

r
− 2m

r2

)))2

+ sup
r0≥4m0

∫
{r=r0}

(
dJ
(
�g(r)−

(
2

r
− 2m

r2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2
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and ∫
(trap)M

(
dJe4

(
�g(r)−

(
2

r
− 2m

r2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

which are the desired estimates outside of the matching region. Note that we have used
the fact that (trap)M∩Match = ∅.

It remains to derive the desired estimates in the matching region. To this end, we need
to estimate (ext)r− (int)r and (int)m− (ext)m in the matching region. Step 7 or the proof
of Lemma 4.6.6 in section 4.6.2 yields6∫

(int)M

(
dJ+1

(
(ext)r − (int)r, (ext)m− (int)m

))2
. (N

(En)
J )2 + (N (match)

J )2.

We infer, in view of the iteration assumption (8.3.13),∫
(int)M

(
dJ+1

(
(ext)r − (int)r, (ext)m− (int)m

))2
. (εB[J ])2. (8.4.4)

Then, since we have on the matching region,

r = (1− ψm0,δH( (int)r)) (int)r + ψm0,δH( (int)r) (ext)r,

m = (1− ψm0,δH( (int)r)) (int)m+ ψm0,δH( (int)r) (ext)m,

�g(r) = (1− ψm0,δH( (int)r))�g( (int)r) + ψm0,δH( (int)r)�g( (ext)r)

+2ψ′m0,δH
( (int)r)Dα( (int)r)Dα( (ext)r − (int)r)

+( (ext)r − (int)r)�g(ψm0,δH),

we deduce there

�g(r)−
(

2

r
− 2m

r2

)
= (1− ψm0,δH( (int)r))

(
�g( (int)r)−

(
2

(int)r
− 2 (int)m

( (int)r)2

))
+ψm0,δH( (int)r)

(
�g( (ext)r)−

(
2

(ext)r
− 2 (ext)m

( (ext)r)2

))
+(1− ψm0,δH( (int)r))

(
2

(int)r
− 2

r
− 2 (int)m

( (int)r)2
+

2m

r2

)
+ψm0,δH( (int)r)

(
2

(ext)r
− 2

r
− 2 (ext)m

( (ext)r)2
+

2m

r2

)
+2ψ′m0,δH

( (int)r)Dα( (int)r)Dα( (ext)r − (int)r) + ( (ext)r − (int)r)�g(ψm0,δH)

6The proof of Lemma 4.6.6 in section 4.6.2 is done in the particular case J = klarge − 1 but extends
immediately to the case ksmall − 2 ≤ J ≤ klarge − 1.
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and thus, in view of (8.4.1), (8.4.3) and (8.4.4), we have on the matching region∫
Match

(
dJ
(
�g(r)−

(
2

r
− 2m

r2

)))2

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

as desired. This concludes the proof of the lemma.

Corollary 8.4.5. Let N0 the RHS of the wave equation for ρ̃ provided by Proposition
8.4.1, i.e.

N0 = −6m
�g(r)−

(
2
r
− 2m

r2

)
r2

− 3m

r

(
κκ+

4Υ

r2

)
− 3m

r
(Aκ+ Aκ) + Err[�gρ̃].

Then, N0 − Err[�gρ̃] satisfies∫
(int)M∪ (ext)M(r≤4m0)

(
dJ (N0 − Err[�gρ̃])

)2

+ sup
r0≥4m0

∫
{r=r0}

(
dJ (N0 − Err[�gρ̃])

)2
. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

and

dJe4

(
N0 − Err[�gρ̃]

)
= −12mκ

r
dJρ+ aJ on (trap)M

where aJ satisfies∫
(trap)M

(
dJe4a

J
)2
. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Proof. The first estimate is an immediate consequence of Lemma 8.4.2, (8.3.4) and the
iteration assumption (8.3.13).

Concerning the second estimate, note that the term dJρ is due to the null structure
equations for e4(κ), i.e.

e4(κ) = −2 d/1ζ + 2ρ+ · · ·
= 4ρ+ · · ·

Then, the estimate for aJ follows from Lemma 8.4.2, (8.3.4) and the iteration assumption
(8.3.13).
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8.4.3 End of the proof of Proposition 8.3.6

In view of Proposition 8.4.1, ρ̃ satisfies

(�0 + V0)ρ̃ = N0, V0 =
8m

r3
,

where

N0 := −6m
�g(r)−

(
2
r
− 2m

r2

)
r2

− 3m

r

(
κκ+

4Υ

r2

)
− 3m

r
(Aκ+ Aκ) + Err[�gρ̃].

We may thus apply the estimate (10.5.2) of Theorem 10.5.2 with φ = ρ̃ and s = J to
obtain for any ksmall ≤ J ≤ klarge − 1

sup
τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗) + F J
δ [ρ̃](1, τ∗)

. EJ
δ [ρ̃](1) + sup

τ∈[1,τ∗]

EJ−1
δ [ρ̃](τ) +BJ−1

δ [ρ̃](1, τ∗) + F J−1
δ [ρ̃](1, τ∗)

+DJ [Γ]

(
sup
M

ru
1
2

+δdec
trap |d≤ksmall ρ̃|

)2

+

∫
Σ(τ∗)

(d≤J ρ̃)2

r3

+

∫
M
r1+δ|d≤JN0|2 +

∣∣∣∣∫
(trap)M

T (dJ ρ̃)dJN0

∣∣∣∣ ,
where DJ [Γ] is defined by

DJ [Γ] :=

∫
(int)M∪ (ext)M(r≤4m0)

(d≤J Γ̌)2

+ sup
r0≥4m0

(
r0

∫
{r=r0}

|d≤JΓg|2 + r−1
0

∫
{r=r0}

|d≤JΓb|2
)
.

Next we use the iteration assumption (8.3.13) which yields in particular

DJ [Γ] . (εB[J ])2.

Also, we have

ρ̃ = r2

(
ρ− 2m

r3

)
+ r2ρ̌

and hence, using again the iteration assumption (8.3.13), as well as the control on averages
provided by Lemma 3.4.1, we infer

sup
τ∈[1,τ∗]

EJ−1
δ [ρ̃](τ) +BJ−1

δ [ρ̃](1, τ∗) + F J−1
δ [ρ̃](1, τ∗) +

∫
Σ(τ∗)

(d≤J ρ̃)2

r3
. (εB[J ])2.
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Together with the control of d≤ksmall ρ̃ provided by the decay estimate (8.3.6), we infer
from the above estimates

sup
τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗) + F J
δ [ρ̃](1, τ∗)

. EJ
δ [ρ̃](1) + (εB[J ])2 +

∫
M
r1+δ|d≤JN0|2 +

∣∣∣∣∫
(trap)M

T (dJ ρ̃)dJN0

∣∣∣∣ .
Next, using the form of N0, as well as Corollary 8.4.5, we derive∫

M
r1+δ|d≤JN0|2 . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Also, decomposing T as a combination of R and e4, integrating e4 by parts, using again
the form of N0, as well as Corollary 8.4.5, we have∣∣∣∣∫

(trap)M
T (dJ ρ̃)dJN0

∣∣∣∣
.

∣∣∣∣∫
(trap)M

R(dJ ρ̃)dJ(N0 − Err[�gρ̃])

∣∣∣∣+

∣∣∣∣∫
(trap)M

e4(N0 − Err[�gρ̃])dJN0

∣∣∣∣
+

∫
(trap)M

|T (dJ ρ̃)||dJErr[�gρ̃]|

.

∣∣∣∣∫
(trap)M

dJ ρ̃e4(dJ(N0 − Err[�gρ̃]))

∣∣∣∣
+
(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))(
sup

τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗)

) 1
2

.
∫

(trap)M
(dJ ρ̃)2 +

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))(
sup

τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗)

) 1
2

.

In view of the above, we infer

sup
τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗) + F J
δ [ρ̃](1, τ∗)

.
∫

(trap)M
(dJ ρ̃)2 + (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Next, note that we have on

R(r − 3m) =
1

2
(e4(r)−Υe3(r))− 3

2
(e4(m)−Υe3(m)) = Υ +O(ε0) ≥ 1

6
on (trap)M,
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and hence, using also integration by parts,

∫
(trap)M

(dJ ρ̃)2 .
∫

(trap)M
R(r − 3m)(dJ ρ̃)2

.
∫

(trap)M

∣∣∣∣1− 3m

r

∣∣∣∣ |dJ ρ̃||RdJρ|
. εB[J ]

(
sup

τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗)

) 1
2

.

We deduce

sup
τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗) + F J
δ [ρ̃](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

as desired. This concludes the proof of Proposition 8.3.6.

8.5 Proof of Proposition 8.3.7

8.5.1 A wave equations for α + Υ2α

Lemma 8.5.1. We have

�2(α + Υ2α) =
4

r

(
1− 3m

r

)(
e3(α)−Υe4(α)

)
+

(
− 2

r2
+

16m

r3

)
α

−2Υ

r2

(
1− 2m

r
− 8m2

r2

)
α + Err

[
�2(α + Υ2α)

]
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where

Err
[
�2(α + Υ2α)

]
=

(
Υ2V +

4m

r2
Υ�g(r)−

8m

r3
ΥDα(r)Dα(r) +

8m2

r4
Dα(r)Dα(r)

)
α

+

(
4
(
ω +

m

r2

)
+ 2

(
κ− 2Υ

r

))
e3(α)− 4ωe4(α)

−4Υ

(
Υ
(
ω +

m

r2

)
+
m

r2
(e4(r)− 1)− e4(m)

r

)
e3(α)

+

(
4Υ2ω + 2Υ2

(
κ+

2

r

)
− 4mΥ

(e3(r) + 1)

r2
+ 4Υ

e3(m)

r

)
e4(α)

+

((
−4ρ− 8m

r3

)
+ 2

(
ω κ− 2m

r3

)
+

1

2

(
κκ+

4Υ

r2

)
− 4e4(ω)− 8ωω − 10κω

)
α

+

(
8Υ

r2
Dα(m)Dα(r)− 4Υ

r
�g(m)− 8m

r3
Dα(r)Dα(m) +

8m

r
Dα(m)Dα

(m
r

))
α

+Υ2

((
−4ρ− 8m

r3

)
− 4

(
e3(ω)− 2m

r3

)
− 10

(
κω − 2m

r3

)
+

1

2

(
κκ+

4Υ

r2

)
− 8ωω + 2κω

)
α

+
4m

r2
Υ

(
�g(r)−

(
2

r
− 2m

r2

))
α− 8m

r3

(
1− 3m

r

)(
− e4(r)e3(r)−Υ + (eθ(r))

2
)
α

+4Υeθ(Υ)eθ(α) + Err[�gα] + Υ2Err[�gα].

Proof. Recall from Proposition 2.4.6 that the curvature components α and α verify the
following Teukolsky equations

�2α = −4ωe4(α) + (4ω + 2κ)e3(α) + V α + Err[�gα],

V = −4ρ− 4e4(ω)− 8ωω + 2ω κ− 10κω +
1

2
κκ,

where

Err(�gα) =
1

2
ϑe3(α) +

3

4
ϑ2ρ+ eθ(Φ)ϑβ − 1

2
κ(ζ + 4η)β − (ζ + η)e4(β)− ξe3(β)

+eθ(Φ)(2ζ + η)α + β2 + e4(Φ)ηβ + e3(Φ)ξβ − (ζ + 4η)e4(β)

−(e4(ζ) + 4e4(η))β − 2(κ+ ω)(ζ + 4η)β + 2eθ(κ+ ω)β − eθ((2ζ + η)α)

−3ξeθ(ρ) + 2ηeθ(α) +
3

2
ϑ d/1β + 3ρ(η + η + 2ζ)ξ + d/1ηα +

1

4
κϑα− 2ωϑα

−1

2
ϑϑα + ξξα + η2α +

3

2
ϑζβ + 3ϑ(ηβ + ξβ)− 1

2
ϑ(ζ + 4η)β,
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and

�2α = −4ωe3(α) + (4ω + 2κ)e4(α) + V α + Err[�gα],

V = −4ρ− 4e3(ω)− 8ωω + 2ωκ− 10κω +
1

2
κκ,

where

Err(�gα) =
1

2
ϑe4(α) +

3

4
ϑ2ρ+ eθ(Φ)ϑβ − 1

2
κ(−ζ + 4η)β − (−ζ + η)e3(β)− ξe4(β)

+eθ(Φ)(−2ζ + η)α + β2 + e3(Φ)ηβ + e4(Φ)ξ β − (−ζ + 4η)e3(β)

−(−e3(ζ) + 4e3(η))β − 2(κ+ ω)(−ζ + 4η)β + 2eθ(κ+ ω)β − eθ((−2ζ + η)α)

−3ξeθ(ρ) + 2ηeθ(α) +
3

2
ϑ d/1β + 3ρ(η + η − 2ζ)ξ + d/1ηα +

1

4
κϑα− 2ωϑα

−1

2
ϑϑα + ξξα + η2α− 3

2
ϑζβ + 3ϑ(ηβ + ξβ)− 1

2
ϑ(−ζ + 4η)β.

We infer from the above wave equations

�2(α + Υ2α) = �2(α) + Υ2�2(α) + 2Dµ(Υ2)Dµ(α) +�0(Υ2)α

= −4ωe4(α) + (4ω + 2κ)e3(α)

+Υ2
(
− 4ωe3(α) + (4ω + 2κ)e4(α)

)
− 2Υe3(Υ)e4(α)− 2Υe4(Υ)e3(α)

+V α +
(

Υ2V +�0(Υ2)
)
α + 4Υeθ(Υ)eθ(α) + Err[�gα] + Υ2Err[�gα]

and hence

�2(α + Υ2α) =
4

r

(
1− 3m

r

)(
e3(α)−Υe4(α)

)
+V α +

(
Υ2V +

4m

r2
Υ�g(r)−

8m

r3
ΥDα(r)Dα(r) +

8m2

r4
Dα(r)Dα(r)

)
α

+

(
4
(
ω +

m

r2

)
+ 2

(
κ− 2Υ

r

))
e3(α)− 4ωe4(α)

−4Υ

(
Υ
(
ω +

m

r2

)
+
m

r2
(e4(r)− 1)− e4(m)

r

)
e3(α)

+

(
4Υ2ω + 2Υ2

(
κ+

2

r

)
− 4mΥ

(e3(r) + 1)

r2
+ 4Υ

e3(m)

r

)
e4(α)

+

(
8Υ

r2
Dα(m)Dα(r)− 4Υ

r
�g(m)− 8m

r3
Dα(r)Dα(m) +

8m

r
Dα(m)Dα

(m
r

))
α

+4Υeθ(Υ)eθ(α) + Err[�gα] + Υ2Err[�gα].
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Next, we have in view of the formula for V

V = −4ρ− 4e4(ω)− 8ωω + 2ω κ− 10κω +
1

2
κκ

= − 2

r2
+

16m

r3
+

(
−4ρ− 8m

r3

)
+ 2

(
ω κ− 2m

r3

)
+

1

2

(
κκ+

4Υ

r2

)
−4e4(ω)− 8ωω − 10κω.

Also, we have in view of the formula for V

V = −4ρ− 4e3(ω)− 8ωω + 2ωκ− 10κω +
1

2
κκ

= − 2

r2
+

(
−4ρ− 8m

r3

)
− 4

(
e3(ω) +

2m

r3

)
− 10

(
κω − 2m

r3

)
+

1

2

(
κκ+

4Υ

r2

)
− 8ωω + 2κω.

Moreover, we have

4m

r2
Υ�g(r)−

8m

r3
ΥDα(r)Dα(r) +

8m2

r4
Dα(r)Dα(r)

=
4mΥ

r2

(
2

r
− 2m

r2

)
+

4m

r2
Υ

(
�g(r)−

(
2

r
− 2m

r2

))
−8m

r3

(
1− 3m

r

)
(−e4(r)e3(r) + (eθ(r))

2)

=
16m2Υ

r4
+

4m

r2
Υ

(
�g(r)−

(
2

r
− 2m

r2

))
− 8m

r3

(
1− 3m

r

)(
− e4(r)e3(r)−Υ + (eθ(r))

2
)

and hence

Υ2V +
4m

r2
Υ�g(r)−

8m

r3
ΥDα(r)Dα(r) +

8m2

r4
Dα(r)Dα(r)

= −2Υ

r2

(
1− 2m

r
− 8m2

r2

)
+Υ2

((
−4ρ− 8m

r3

)
− 4

(
e3(ω) +

2m

r3

)
− 10

(
κω − 2m

r3

)
+

1

2

(
κκ+

4Υ

r2

)
− 8ωω + 2κω

)
+

4m

r2
Υ

(
�g(r)−

(
2

r
− 2m

r2

))
− 8m

r3

(
1− 3m

r

)(
− e4(r)e3(r)−Υ + (eθ(r))

2
)
.

We deduce

�2(α + Υ2α) =
4

r

(
1− 3m

r

)(
e3(α)−Υe4(α)

)
+

(
− 2

r2
+

16m

r3

)
α

−2Υ

r2

(
1− 2m

r
− 8m2

r2

)
α + Err

[
�2(α + Υ2α)

]
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where

Err
[
�2(α + Υ2α)

]
=

(
Υ2V +

4m

r2
Υ�g(r)−

8m

r3
ΥDα(r)Dα(r) +

8m2

r4
Dα(r)Dα(r)

)
α

+

(
4
(
ω +

m

r2

)
+ 2

(
κ− 2Υ

r

))
e3(α)− 4ωe4(α)

−4Υ

(
Υ
(
ω +

m

r2

)
+
m

r2
(e4(r)− 1)− e4(m)

r

)
e3(α)

+

(
4Υ2ω + 2Υ2

(
κ+

2

r

)
− 4mΥ

(e3(r) + 1)

r2
+ 4Υ

e3(m)

r

)
e4(α)

+

((
−4ρ− 8m

r3

)
+ 2

(
ω κ− 2m

r3

)
+

1

2

(
κκ+

4Υ

r2

)
− 4e4(ω)− 8ωω − 10κω

)
α

+

(
8Υ

r2
Dα(m)Dα(r)− 4Υ

r
�g(m)− 8m

r3
Dα(r)Dα(m) +

8m

r
Dα(m)Dα

(m
r

))
α

+Υ2

((
−4ρ− 8m

r3

)
− 4

(
e3(ω) +

2m

r3

)
− 10

(
κω − 2m

r3

)
+

1

2

(
κκ+

4Υ

r2

)
− 8ωω + 2κω

)
α

+
4m

r2
Υ

(
�g(r)−

(
2

r
− 2m

r2

))
α− 8m

r3

(
1− 3m

r

)(
− e4(r)e3(r)−Υ + (eθ(r))

2
)
α

+4Υeθ(Υ)eθ(α) + Err[�gα] + Υ2Err
[
�gα

]
as desired. This concludes the proof of the lemma.

Lemma 8.5.2. We have

e3(α) = −1

2
κα− d?/2 d/

−1
1

{
e4

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4
− 2e4(m)

r3

+
1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (ζ + 4η)β.

and

e4(α) = −1

2
κα− d?/2 d/

−1
1

{
e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (−ζ + 4η)β.
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Proof. Recall that we have

�2(α + Υ2α) =
4

r

(
1− 3m

r

)(
e3(α)−Υe4(α)

)
+

(
− 2

r2
+

16m

r3

)
α

−2Υ

r2

(
1− 2m

r
− 8m2

r2

)
α + Err

[
�2(α + Υ2α)

]
.

We first express e3(α)− Υe4(α) in terms of ρ̃, where we recall that ρ̃ = r2ρ + 2m
r

. Using
Bianchi, we have

e3(α) = −1

2
κα− d?/2β + 4ωα− 3

2
ϑρ+ (ζ + 4η)β,

d/1β = e4(ρ) +
3

2
κρ+

1

2
ϑα− ζβ − 2(ηβ + ξβ)

= e4

(
ρ̃

r2
− 2m

r3

)
+

3

2
κρ+

1

2
ϑα− ζβ − 2(ηβ + ξβ)

= e4

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4
− 2e4(m)

r3

+
1

2
ϑα− ζβ − 2(ηβ + ξβ)

and hence

e3(α) = −1

2
κα− d?/2 d/

−1
1

{
e4

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4
− 2e4(m)

r3

+
1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (ζ + 4η)β.

Similarly, we have

e4(α) = −1

2
κα− d?/2β + 4ωα− 3

2
ϑρ+ (−ζ + 4η)β,

d/1β = e3(ρ) +
3

2
κρ+

1

2
ϑα + ζβ − 2(ηβ + ξβ)

= e3

(
ρ̃

r2
− 2m

r3

)
+

3

2
κρ+

1

2
ϑα + ζβ − 2(ηβ + ξβ)

= e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)
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and hence

e4(α) = −1

2
κα− d?/2 d/

−1
1

{
e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (−ζ + 4η)β.

This concludes the proof of the lemma.

Corollary 8.5.3. We have

�2(α + Υ2α)− 2

r2

(
1 +

2m

r

)
(α + Υ2α)

= −8

r

(
1− 3m

r

)
d?/2 d/

−1
1 R

(
ρ̃

r2

)
− 6

r

(
1− 3m

r

)
(ϑ−Υϑ)ρ

−4

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4

}
+

4Υ

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4

}
+ Err1,

where

Err1 :=
4

r

(
1− 3m

r

)[
4ωα + (ζ + 4η)β −Υ(−ζ + 4η)β + [Υ, d?/2 d/

−1
1 ]e3

(
ρ̃

r2

)
− d?/2 d/

−1
1

{
−2e4(m)

r3
+

1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
+Υ d?/2 d/

−1
1

{
−2e3(m)

r3
+

1

2
ϑα + ζβ − 2(ηβ + ξβ)

}]

−2

r

(
1− 3m

r

)(
κ+

2

r

)
α +

4Υ

r

(
1− 3m

r

)(
1

2

(
κ− 2Υ

r

)
− 4

(
ω +

m

r2

))
α

+Err
[
�2(α + Υ2α)

]
.

Proof. Recall from Lemma 8.5.1 that we have

�2(α + Υ2α) =
4

r

(
1− 3m

r

)(
e3(α)−Υe4(α)

)
+

(
− 2

r2
+

16m

r3

)
α

−2Υ

r2

(
1− 2m

r
− 8m2

r2

)
α + Err

[
�2(α + Υ2α)

]
.
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In view of Lemma 8.5.2, we have

e3(α)−Υe4(α) = −2 d?/2 d/
−1
1 R

(
ρ̃

r2

)
− 1

2
κα + Υ

(
1

2
κ− 4ω

)
α− 3

2
(ϑ−Υϑ)ρ

− d?/2 d/
−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4

}
+Υ d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4

}
+4ωα + (ζ + 4η)β −Υ(−ζ + 4η)β + [Υ, d?/2 d/

−1
1 ]e3

(
ρ̃

r2

)
− d?/2 d/

−1
1

{
−2e4(m)

r3
+

1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
+Υ d?/2 d/

−1
1

{
−2e3(m)

r3
+

1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
.

We infer

�2(α + Υ2α) = −8

r

(
1− 3m

r

)
d?/2 d/

−1
1 R

(
ρ̃

r2

)
− 2

r

(
1− 3m

r

)
κα +

(
− 2

r2
+

16m

r3

)
α

+
4Υ

r

(
1− 3m

r

)(
1

2
κ− 4ω

)
α− 2Υ

r2

(
1− 2m

r
− 8m2

r2

)
α

−6

r

(
1− 3m

r

)
(ϑ−Υϑ)ρ

−4

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4

}
+

4Υ

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4

}
+

4

r

(
1− 3m

r

)[
4ωα + (ζ + 4η)β −Υ(−ζ + 4η)β + [Υ, d?/2 d/

−1
1 ]e3

(
ρ̃

r2

)
− d?/2 d/

−1
1

{
−2e4(m)

r3
+

1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
+Υ d?/2 d/

−1
1

{
−2e3(m)

r3
+

1

2
ϑα + ζβ − 2(ηβ + ξβ)

}]
+Err

[
�2(α + Υ2α)

]
.
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Since we have

−2

r

(
1− 3m

r

)
κα +

4Υ

r

(
1− 3m

r

)(
1

2
κ− 4ω

)
α

=
4

r2

(
1− 3m

r

)
α +

4Υ

r2

(
1− 3m

r

)(
1 +

2m

r

)
α− 2

r

(
1− 3m

r

)(
κ+

2

r

)
α

+
4Υ

r

(
1− 3m

r

)(
1

2

(
κ− 2Υ

r

)
− 4

(
ω +

m

r2

))
α,

this yields

�2(α + Υ2α) = −8

r

(
1− 3m

r

)
d?/2 d/

−1
1 R

(
ρ̃

r2

)
+

2

r2

(
1 +

2m

r

)
α +

2Υ

r2

(
1− 4m2

r2

)
α

−6

r

(
1− 3m

r

)
(ϑ−Υϑ)ρ

−4

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4

}
+

4Υ

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4

}
+ Err1,

where

Err1 =
4

r

(
1− 3m

r

)[
4ωα + (ζ + 4η)β −Υ(−ζ + 4η)β + [Υ, d?/2 d/

−1
1 ]e3

(
ρ̃

r2

)
− d?/2 d/

−1
1

{
−2e4(m)

r3
+

1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
+Υ d?/2 d/

−1
1

{
−2e3(m)

r3
+

1

2
ϑα + ζβ − 2(ηβ + ξβ)

}]

−2

r

(
1− 3m

r

)(
κ+

2

r

)
α +

4Υ

r

(
1− 3m

r

)(
1

2

(
κ− 2Υ

r

)
− 4

(
ω +

m

r2

))
α

+Err
[
�2(α + Υ2α)

]
.

Now, since we have

2

r2

(
1 +

2m

r

)
α +

2Υ

r2

(
1− 4m2

r2

)
α =

2

r2

(
1 +

2m

r

)
(α + Υ2α),
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we infer

�2(α + Υ2α)− 2

r2

(
1 +

2m

r

)
(α + Υ2α)

= −8

r

(
1− 3m

r

)
d?/2 d/

−1
1 R

(
ρ̃

r2

)
− 6

r

(
1− 3m

r

)
(ϑ−Υϑ)ρ

−4

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4

}
+

4Υ

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4

}
+ Err1,

as desired. This concludes the proof of the corollary.

8.5.2 End of the proof of Proposition 8.3.7

In view of Corollary 8.5.3, α + Υ2α satisfies

(�2 + V2)(α + Υ2α) = N2, V2 = − 2

r2

(
1 +

2m

r

)
,

where

N2 := −8

r

(
1− 3m

r

)
d?/2 d/

−1
1 R

(
ρ̃

r2

)
− 6

r

(
1− 3m

r

)
(ϑ−Υϑ)ρ

−4

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4

}
+

4Υ

r

(
1− 3m

r

)
d?/2 d/

−1
1

{
3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4

}
+ Err1.

We may thus apply the estimate (10.5.1) of Theorem 10.5.2 with ψ = α+ Υ2α and s = J
to obtain for any ksmall ≤ J ≤ klarge − 1

sup
τ∈[1,τ∗]

EJ
δ [α + Υ2α](τ) +BJ

δ [α + Υ2α](1, τ∗) + F J
δ [α + Υ2α](1, τ∗)

. EJ
δ [α + Υ2α](1) + sup

τ∈[1,τ∗]

EJ−1
δ [α + Υ2α](τ) +BJ−1

δ [α + Υ2α](1, τ∗)

+F J−1
δ [α + Υ2α](1, τ∗) +DJ [Γ]

(
sup
M

ru
1
2

+δdec
trap |d≤ksmall(α + Υ2α)|

)2

+

∫
M
r1+δ|d≤JN2|2 +

∣∣∣∣∫
(trap)M

T (dJ(α + Υ2α))dJN2

∣∣∣∣ ,
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where DJ [Γ] is defined by

DJ [Γ] :=

∫
(int)M∪ (ext)M(r≤4m0)

(d≤J Γ̌)2

+ sup
r0≥4m0

(
r0

∫
{r=r0}

|d≤JΓg|2 + r−1
0

∫
{r=r0}

|d≤JΓb|2
)
.

Next we use the iteration assumption (8.3.13) which yields in particular

DJ [Γ] . (εB[J ])2

and

sup
τ∈[1,τ∗]

EJ−1
δ [α + Υ2α](τ) +BJ−1

δ [α + Υ2α](1, τ∗) + F J−1
δ [α + Υ2α](1, τ∗) . (εB[J ])2.

Together with the control of d≤ksmall(α+ Υ2α) provided by the decay estimate (8.3.6), we
infer from the above estimates

sup
τ∈[1,τ∗]

EJ
δ [α + Υ2α](τ) +BJ

δ [α + Υ2α](1, τ∗) + F J
δ [α + Υ2α](1, τ∗)

. EJ
δ [α + Υ2α](1) + (εB[J ])2 +

∫
M
r1+δ|d≤JN2|2 +

∣∣∣∣∫
(trap)M

T (dJ(α + Υ2α))dJN2

∣∣∣∣ .
Next, using the form of N2, as well as the control of ρ̃ provided by Proposition 8.3.6, we
derive ∫

M
r1+δ|d≤JN2|2 . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

and ∣∣∣∣∫
(trap)M

T (dJ(α + Υ2α))dJN2

∣∣∣∣
.

∫
(trap)M

∣∣∣∣1− 3m

r

∣∣∣∣ |T (dJ(α + Υ2α))|
(
|R(dJ ρ̃)|+ |dJ ρ̃|+ |dJ Γ̌|

)
+

∫
(trap)M

|T (dJ(α + Υ2α))||Err1|

.
(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))(
sup

τ∈[1,τ∗]

EJ
δ [ρ̃](τ) +BJ

δ [ρ̃](1, τ∗)

) 1
2

.
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In view of the above, we infer

sup
τ∈[1,τ∗]

EJ
δ [α + Υ2α](τ) +BJ

δ [α + Υ2α)](1, τ∗) + F J
δ [α + Υ2α)](1, τ∗)

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

as desired. This concludes the proof of Proposition 8.3.7.

8.6 Proof of Proposition 8.3.8

8.6.1 Control of α and Υ2α

We initiate the proof of Proposition 8.3.8 by deriving a suitable control for α and Υ2α.
Recall from Lemma 8.5.2 that we have

e4(α) = −1

2
κα− d?/2 d/

−1
1

{
e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (−ζ + 4η)β.

We infer

e4(α−Υ2α)

= e4(α + Υ2α)− 2e4(Υ2α)

= e4(α + Υ2α)− 2Υ2e4(α)− 2e4(Υ2)α

= e4(α + Υ2α) + 2Υ2 d?/2 d/
−1
1

{
e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
+ Υ2κα− 8Υ2ωα + 3Υ2ϑρ− 2Υ2(−ζ + 4η)β

−8mΥe4(r)

r2
α +

8Υe4(m)

r
α.

Also, recall from Lemma 8.5.2 that we have

e3(α) = −1

2
κα− d?/2 d/

−1
1

{
e4

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4
− 2e4(m)

r3

+
1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (ζ + 4η)β.
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We infer

e3(α−Υ2α)

= −e3(α + Υ2α) + 2e3(α)

= −e3(α + Υ2α)− 2 d?/2 d/
−1
1

{
e4

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4
− 2e4(m)

r3

+
1

2
ϑα− ζβ − 2(ηβ + ξβ)

}
− κα + 8ωα− 3ϑρ+ 2(ζ + 4η)β.

In view of the above identities for e4(α−Υ2α) and e3(α−Υ2α), and using the control for
ρ̃ provided by Proposition 8.3.6 as well as the control for α+Υ2α provided by Proposition
8.3.7, and the iteration assumption (8.3.13), we obtain

BJ−1
δ [e3(α−Υ2α)](1, τ∗) +BJ−1

δ [re4(α−Υ2α)](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Also, using the Bianchi identity for d/2α and d/1β, we have

d/1 d/2α = d/1

(
e4β + 2(κ+ ω)β − (2ζ + η)α− 3ξρ)

)
= e4( d/1β) + [ d/1, e4]β + d/1

(
2(κ+ ω)β − (2ζ + η)α− 3ξρ)

)
= e4

(
e4ρ+

3

2
ρ+

1

2
ϑα− ζβ − 2(ηβ + ξβ)

)
+ [ d/1, e4]β

+ d/1

(
2(κ+ ω)β − (2ζ + η)α− 3ξρ)

)
= e4

[
e4

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ− 2Υ

r

)
+

6m(e4(r)−Υ)

r4
− 2e4(m)

r3

+
1

2
ϑα− ζβ − 2(ηβ + ξβ)

]
+ [ d/1, e4]β + d/1

(
2(κ+ ω)β − (2ζ + η)α− 3ξρ)

)
.

Using the control for ρ̃ provided by Proposition 8.3.6 as well as the iteration assumption
(8.3.13), we obtain

BJ−2
δ [r2 d/1 d/2α](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Using the control for α + Υ2α provided by Proposition 8.3.7, we infer

BJ−2
δ [r2 d/1 d/2(α−Υ2α)](1, τ∗) . BJ−2

δ [r2 d/1 d/2α](1, τ∗) +BJ−2
δ [r2 d/1 d/2(α + Υ2α)](1, τ∗)

. (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.
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Using a Poincaré inequality for d/1 and for d/2, we deduce

BJ−2
δ [ d/2(α−Υ2α)](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Together with the above estimate for e3(α−Υ2α) and re4(α−Υ2α), we deduce

BJ
δ [α−Υ2α](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Together with the control for α + Υ2α provided by Proposition 8.3.7, we finally obtain

BJ
δ [α](1, τ∗) +BJ

δ [Υ2α](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

. (8.6.1)

8.6.2 Control of α

(8.6.1) provides in particular the control of Υ2α. In this section, we infer a suitable control
for α using the wave equation satisfied by α and the redshift vectorfield.

Let Y(0) the vectorfield given by

Y(0) :=

(
1 +

5

4m
(r − 2m) + Υ

)
e3 +

(
1 +

5

4m
(r − 2m)

)
e4,

where Y(0) has been introduced in Proposition 10.1.29 in connection with the redshift
vectorfield.

Lemma 8.6.1. We have

�2α =
4m

r2
(
1 + 5

4m
(r − 2m) + Υ

)Y(0)α + Ñ2

where Ñ2 is given by

Ñ2 := −4

r

(
1 +

m
(
1 + 5

4m
(r − 2m)

)
r
(
1 + 5

4m
(r − 2m) + Υ

))[− 1

2
κα

− d?/2 d/
−1
1

{
e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (−ζ + 4η)β

]

+V α− 4
(
ω +

m

r2

)
e3(α) +

(
4ω + 2

(
κ+

2

r

))
e4(α) + Err[�gα].
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Proof. Recall from Proposition 2.4.6 that α verifies the following Teukolsky equation

�2α = −4ωe3(α) + (4ω + 2κ)e4(α) + V α + Err[�gα],

V = −4ρ− 4e3(ω)− 8ωω + 2ωκ− 10κω +
1

2
κκ,

where

Err(�gα) =
1

2
ϑe4(α) +

3

4
ϑ2ρ+ eθ(Φ)ϑβ − 1

2
κ(−ζ + 4η)β − (−ζ + η)e3(β)− ξe4(β)

+eθ(Φ)(−2ζ + η)α + β2 + e3(Φ)ηβ + e4(Φ)ξ β − (−ζ + 4η)e3(β)

−(−e3(ζ) + 4e3(η))β − 2(κ+ ω)(−ζ + 4η)β + 2eθ(κ+ ω)β − eθ((−2ζ + η)α)

−3ξeθ(ρ) + 2ηeθ(α) +
3

2
ϑ d/1β + 3ρ(η + η − 2ζ)ξ + d/1ηα +

1

4
κϑα− 2ωϑα

−1

2
ϑϑα + ξξα + η2α− 3

2
ϑζβ + 3ϑ(ηβ + ξβ)− 1

2
ϑ(−ζ + 4η)β.

We deduce

�2α =
4m

r2
e3(α)− 4

r
e4(α) + V α− 4

(
ω +

m

r2

)
e3(α) +

(
4ω + 2

(
κ+

2

r

))
e4(α)

+Err[�gα].

In view of the definition of Y(0), we infer

�2α =
4m

r2
(
1 + 5

4m
(r − 2m) + Υ

)Y(0)α−
4

r

(
1 +

m
(
1 + 5

4m
(r − 2m)

)
r
(
1 + 5

4m
(r − 2m) + Υ

)) e4(α)

+V α− 4
(
ω +

m

r2

)
e3(α) +

(
4ω + 2

(
κ+

2

r

))
e4(α) + Err[�gα].

Next, recall from Lemma 8.5.2 that we have

e4(α) = −1

2
κα− d?/2 d/

−1
1

{
e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (−ζ + 4η)β.

We infer

�2α =
4m

r2
(
1 + 5

4m
(r − 2m) + Υ

)Y(0)α + Ñ2
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where Ñ2 is given by

Ñ2 = −4

r

(
1 +

m
(
1 + 5

4m
(r − 2m)

)
r
(
1 + 5

4m
(r − 2m) + Υ

))[− 1

2
κα

− d?/2 d/
−1
1

{
e3

(
ρ̃

r2

)
+

3

2r2
κρ̃− 3m

r3

(
κ+

2

r

)
+

6m(e3(r) + 1)

r4
− 2e3(m)

r3

+
1

2
ϑα + ζβ − 2(ηβ + ξβ)

}
+ 4ωα− 3

2
ϑρ+ (−ζ + 4η)β

]

+V α− 4
(
ω +

m

r2

)
e3(α) +

(
4ω + 2

(
κ+

2

r

))
e4(α) + Err[�gα].

This concludes the proof of the lemma.

Lemma 8.6.2. Ñ2, in the RHS of the wave equation for α introduced in Lemma 8.6.1,
satisfies ∫

(int)M
|dJÑ2|2 . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Proof. The proof of the lemma follows immediately from the form of Ñ2, see Lemma
8.6.1, as well as the control for ρ̃ provided by Proposition 8.3.6, (8.3.6), and the iteration
assumption (8.3.13).

In view of Lemma 8.6.1, we may apply Proposition 10.5.4 with

ψ = α, f2(r,m) =
4m

r2
(
1 + 5

4m
(r − 2m) + Υ

) .
We infer∫

(int)M(1,τ∗)

(dJ+1α)2 . EJ
δ [α](τ = 1) +

∫
(ext)M

r≤ 5
2m0

(1,τ∗)

(dJ+1α)2

+DJ [Γ]

 sup
(int)M(1,τ∗)∪ (ext)M

r≤ 5
2m0

r|d≤ksmallα|

2

+

∫
(int)M(1,τ∗)∪ (ext)M

r≤ 5
2m0

(
(d≤sα)2 + (d≤J+1Ñ2)2

)
.
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Next we use the iteration assumption (8.3.13) which yields in particular

DJ [Γ] . (εB[J ])2

together with the control of d≤ksmallα provided by the decay estimate (8.3.6), as well as

the iteration assumption and the control for Ñ2 provided by Lemma 8.6.2 to deduce∫
(int)M(1,τ∗)

(dJ+1α)2 . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

+

∫
(ext)M

r≤ 5
2m0

(1,τ∗)

(dJ+1α)2.

Note that Υ2 & δ2
H > 0 on (ext)M and hence∫

(ext)M
r≤ 5

2m0
(1,τ∗)

(dJ+1α)2 .
∫

(ext)M
r≤ 5

2m0
(1,τ∗)

(dJ+1(Υ2α))2

which together with the control of Υ2α provided by (8.6.1) yields∫
(ext)M

r≤ 5
2m0

(1,τ∗)

(dJ+1α)2 . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

and hence ∫
(int)M(1,τ∗)

(dJ+1α)2 . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Since

BJ
δ [α](1, τ∗) .

∫
(int)M(1,τ∗)

(d≤J+1α)2 +BJ
δ [Υ2α](1, τ∗),

using again (8.6.1), we finally obtain

BJ
δ [α](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

. (8.6.2)

8.6.3 End of the proof of Proposition 8.3.8

We have

ρ̌ =
ρ̃

r2
−
(
ρ− 2m

r3

)
.
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Together with the control for ρ̃ provided by Proposition 8.3.6, as well as the control on
averages provided by Lemma 3.4.1, we infer

BJ
δ [ρ̌](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Together with the control for α provided by (8.6.1) and the control for α provided by
(8.6.2), we infer

BJ
δ [α, ρ̌, α](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

.

Together with the Bianchi identities for e4(β), e3(β), d/1β, e4(β), e3(β), d/1β, as well as
the iteration assumption (8.3.13), we infer

BJ
δ−2[β, β](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

and hence

BJ
−2[α, β, ρ̌, β, α](1, τ∗) . (εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2

as desired. This concludes the proof of Proposition 8.3.8.

8.7 Proof of Proposition 8.3.9

First, note that, by definition of the norms BJ
−2, (int)RJ+1[Ř] and (ext)RJ+1[Ř], we have

for any r0 ≥ 4m0

(int)RJ+1[Ř] + (ext)R≤r0J+1[Ř] . r10BJ
−2[α, β, ρ̌, β, α](1, τ∗).

Together with Proposition 8.3.8, this implies

(int)RJ+1[Ř] + (ext)R≤r0J+1[Ř] . r10
0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
.

Since we have

(int)RJ+1[Ř] + (ext)RJ+1[Ř] = (int)RJ+1[Ř] + (ext)R≤r0J+1[Ř] + (ext)R≥r0J+1[Ř],

we deduce for any r0 ≥ 4m0

(int)RJ+1[Ř] + (ext)RJ+1[Ř] ≤ (ext)R≥r0J+1[Ř] +O
(
r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)))
.

Thus, to prove Proposition 8.3.9, it suffices to establish the following inequality

(ext)R≥r0J+1[Ř] . r−δB0
(ext)G≥r0k [Γ̌] + r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))
.

This will follow from rp weighted estimates for the curvature components.



488 CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M6, M7, M8)

8.7.1 r-weighted divergence identities for Bianchi pairs

Lemma 8.7.1. Let k ≥ 1, let a(1) and a(2) real numbers. We consider the following
equations.

• If ψ(1), h(1) ∈ sk, ψ(2), h(2) ∈ sk−1, let (ψ(1), ψ(2)) such that{
e3(ψ(1)) + a(1)κψ(1) = − d?/kψ(2) + h(1),

e4(ψ(2)) + a(2)κψ(2) = d/kψ(1) + h(2),
(8.7.1)

• If ψ(1), h(1) ∈ sk−1, ψ(2), h(2) ∈ sk, let (ψ(1), ψ(2)) such that{
e3(ψ(1)) + a(1)κψ(1) = d/kψ(2) + h(1),

e4(ψ(2)) + a(2)κψ(2) = − d?/kψ(1) + h(2).
(8.7.2)

Then, the pair (ψ(1), ψ(2)) satisfies for any real number b

Div
(
rbψ2

(1)e3

)
+ Div

(
rbψ2

(2)e4

)
− 1

2
rbκ
(
− 4a(1) + b+ 2

)
ψ2

(1) +
1

2
rbκ
(

4a(2) − b− 2
)
ψ2

(2)

= 2rb d/1(ψ(1)ψ(2))− 2rbωψ2
(1) − 2rbωψ2

(2) + 2rbψ(1)h(1) + 2rbψ(2)h(2)

+brb−1
(
e3(r)− r

2
κ
)
ψ2

(1) + brb−1
(
e4(r)− r

2
κ
)
ψ2

(2). (8.7.3)

Remark 8.7.2. Note that the Bianchi identities can be written as systems of equations
of the type (8.7.1) (8.7.2). In particular

• the Bianchi pair (α, β) satisfies (8.7.1) with k = 2, a(1) = 1
2
, a(2) = 2,

• the Bianchi pair (β, ρ) satisfies (8.7.1) with k = 1, a(1) = 1, a(2) = 3
2
,

• the Bianchi pair (ρ, β) satisfies (8.7.2) with k = 1, a(1) = 3
2
, a(2) = 1,

• the Bianchi pair (β, α) satisfies (8.7.2) with k = 2, a(1) = 2, a(2) = 1
2
.

Proof of Lemma 8.7.1. The proof being identical for (8.7.1) and (8.7.2), it suffices to prove
it in the case where (ψ(1), ψ(2)) satisfies (8.7.1).

We compute

Dγe
γ
4 = −1

2
g(D4e4, e3)− 1

2
g(D3e4, e4) + g(Dθe4, eθ) + g(Dϕe4, eϕ)

= κ− 2ω
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and

Dγe
γ
3 = −1

2
g(D4e3, e3)− 1

2
g(D3e3, e4) + g(Dθe3, eθ) + g(Dϕe3, eϕ)

= κ− 2ω.

We infer in view of (8.7.1)

Dγ

(
rbψ2

(1)e
γ
3

)
= 2rbψ(1)e3(ψ(1)) + brb−1e3(r)ψ2

(1) + rbψ2
(1)Dγe

γ
3

= 2rbψ(1)

(
− a(1)κψ(1) − d?/kψ(2) + h(1)

)
+ brb−1e3(r)ψ2

(1) + rbψ2
(1)(κ− 2ω)

= −2rbψ(1) d
?/kψ(2) + rb

(
− 2a(1) +

b

2
+ 1
)
κψ2

(1) + brb−1
(
e3(r)− r

2
κ
)
ψ2

(1) − 2ωrbψ2
(1) + 2rbψ(1)h(1)

and

Dγ

(
rbψ2

(2)e
γ
4

)
= 2rbψ(2)e4(ψ(2)) + brb−1e4(r)ψ2

(2) + rbψ2
(2)Dγe

γ
4

= 2rbψ(2)

(
− a(2)κψ(2) + d/kψ(1) + h(2)

)
+ brb−1e4(r)ψ2

(2) + rbψ2
(2)(κ− 2ω)

= 2rbψ(2) d/kψ(1) + rb
(
− 2a(2) +

b

2
+ 1
)
κψ2

(2) + brb−1
(
e4(r)− r

2
κ
)
ψ2

(2) − 2rbωψ2
(2) + 2rbψ(2)h(2).

We sum the two identities

Dγ

(
rbψ2

(1)e
γ
3

)
+ Dγ

(
rbψ2

(2)e
γ
4

)
= −2rbψ(1) d

?/kψ(2) + 2rbψ(2) d/kψ(1) + rb
(
− 2a(1) +

b

2
+ 1
)
κψ2

(1) + rb
(
− 2a(2) +

b

2
+ 1
)
κψ2

(2)

+brb−1
(
e3(r)− r

2
κ
)
ψ2

(1) + brb−1
(
e4(r)− r

2
κ
)
ψ2

(2) − 2rbωψ2
(1) − 2rbωψ2

(2)

+2rbψ(2)h(2) + 2rbψ(1)h(1)

and hence

Dγ

(
rbψ2

(1)e
γ
3

)
+ Dγ

(
rbψ2

(2)e
γ
4

)
− rbκ

(
− 2a(1) +

b

2
+ 1
)
ψ2

(1) + rbκ
(

2a(2) −
b

2
− 1
)
ψ2

(2)

= 2rb d/1(ψ(1)ψ(2)) + brb−1
(
e3(r)− r

2
κ
)
ψ2

(1) + brb−1
(
e4(r)− r

2
κ
)
ψ2

(2) − 2rbωψ2
(1) − 2rbωψ2

(2)

+2rbψ(1)h(1) + 2rbψ(2)h(2).

This concludes the proof of Lemma 8.7.1.
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To obtain rp weighted estimates for higher order derivatives of the curvature components,
we will need several lemmas.

Lemma 8.7.3. Let k ≥ 1 and s ≥ 1 two integers. Let ψ(1) ∈ sk and ψ(2) ∈ sk−1. Then,
we have

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1) = d/1

(
d/sψ(1) d/

sψ(2)

)
+ E[ d/, s, k, ψ(1), ψ(2)]

where

|E[ d/, s, k, ψ(1), ψ(2)]| . r| d/sψ(1)|
s−1∑
j=0

| d/s−1−j(ψ(2))|| d/j(K)|

+r| d/sψ(2)|
s−1∑
j=0

| d/s−1−j(ψ(1))|| d/j(K)|.

Proof. Recall our definition d/s for higher angular derivatives. Given f a k-reduced scalar
and s a positive integer we define,

d/sf =

{
r2p4/ pkf, if s = 2p,

r2p+1 d/k4/ pkf, if s = 2p+ 1.

We start with the case s = 2p, i.e. s is even. Since ψ(1) ∈ sk and ψ(2) ∈ sk−1, we have

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1)

= r4p
(
−4/ pkψ(1)4/ pk d?/kψ(2) +4/ pk−1ψ(2)4/ pk−1 d/kψ(1)

)
.

Next, recall the commutation formulas

− d/k4/ k +4/ k−1 d/k = −(2k − 1)K d/k − keθ(K),

− d?/k4/ k−1 +4/ k d?/k = (2k − 1)K d?/k + (k − 1)eθ(K).

We infer

4/ pk−1 d/k = d/k4/ pk +

p∑
j=1

4/ p−jk−1

(
4/ k−1 d/k − d/k4/ k

)
4/ j−1
k

= d/k4/ pk +

p∑
j=1

4/ p−jk−1

(
− (2k − 1)K d/k − keθ(K)

)
4/ j−1
k
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and

4/ pk d?/k = d?/k4/ pk−1 +

p∑
j=1

4/ p−jk

(
4/ k d?/k − d?/k4/ k−1

)
4/ j−1
k−1

= d?/k4/ pk−1 +

p∑
j=1

4/ p−jk

(
(2k − 1)K d?/k + (k − 1)eθ(K)

)
4/ j−1
k−1

This yields

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1)

= r4p

{
−4/ pkψ(1) d

?/k4/ pk−1ψ(2) −
p∑
j=1

4/ pkψ(1)4/ p−jk

(
(2k − 1)K d?/k + (k − 1)eθ(K)

)
4/ j−1
k−1ψ(2)

+4/ pk−1ψ(2) d/k4/ pkψ(1) +

p∑
j=1

4/ pk−1ψ(2)4/ p−jk−1

(
− (2k − 1)K d/k − keθ(K)

)
4/ j−1
k ψ(1)

}
= d/1

(
d/sψ(1) d/

sψ(2)

)
−

p∑
j=1

d/sψ(1) d/
s−2j

(
(2k − 1)r2K d?/k + (k − 1)r2eθ(K)

)
d/2j−2ψ(2)

+

p∑
j=1

d/sψ(2) d/
s−2j

(
− (2k − 1)r2K d/k − kr2eθ(K)

)
d/2j−2ψ(1).

Hence, we infer

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1) = d/1

(
d/sψ(1) d/

sψ(2)

)
+ E[ d/, s, k, ψ(1), ψ(2)]

where

|E[ d/, s, k, ψ(1), ψ(2)]| . r2| d/sψ(1)|
s−1∑
j=0

| d/s−1−j(ψ(2))|| d/j(K)|

+r2| d/sψ(2)|
s−1∑
j=0

| d/s−1−j(ψ(1))|| d/j(K)|.

Next, we deal with the case s = 2p + 1, i.e. s odd. Since ψ(1) ∈ sk and ψ(2) ∈ sk−1, we
have

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1)

= r4p+2
(
− d/k4/ pkψ(1) d/k4/ pk d?/kψ(2) + d/k−14/ pk−1ψ(2) d/k−14/ pk−1 d/kψ(1)

)
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In view of the case s = 2p above, we infer

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1)

= r4p+2

{
− d/k4/ pkψ(1) d/k d

?/k4/ pk−1ψ(2) −
p∑
j=1

d/k4/ pkψ(1) d/k4/ p−jk

(
(2k − 1)K d?/k + (k − 1)eθ(K)

)
4/ j−1
k−1ψ(2)

+ d/k−14/ pk−1ψ(2) d/k−1 d/k4/ pkψ(1) +

p∑
j=1

d/k−14/ pk−1ψ(2) d/k−14/ p−jk−1

(
− (2k − 1)K d/k − keθ(K)

)
4/ j−1
k ψ(1)

}
.

Next, recall the commutation formula

d/k d
?/k − d?/k−1 d/k−1 = −2(k − 1)K.

We infer

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1)

= r4p+2

{
− d/k4/ pkψ(1)

(
d?/k−1 d/k−1 − 2(k − 1)K

)
4/ pk−1ψ(2)

−
p∑
j=1

d/k4/ pkψ(1) d/k4/ p−jk

(
(2k − 1)K d?/k + (k − 1)eθ(K)

)
4/ j−1
k−1ψ(2)

+ d/k−14/ pk−1ψ(2) d/k−1 d/k4/ pkψ(1) +

p∑
j=1

d/k−14/ pk−1ψ(2) d/k−14/ p−jk−1

(
− (2k − 1)K d/k − keθ(K)

)
4/ j−1
k ψ(1)

}
= d/1

(
d/sψ(1) d/

sψ(2)

)
+2(k − 1)r2K d/sψ(1) d/

s−1ψ(2) −
p∑
j=1

d/sψ(1) d/
s−2j

(
(2k − 1)r2K d?/k + (k − 1)r2eθ(K)

)
d/2j−2ψ(2)

+

p∑
j=1

d/sψ(2) d/
s−2j

(
− (2k − 1)r2K d/k − kr2eθ(K)

)
d/2j−2ψ(1).

Hence, we obtain

− d/sψ(1) d/
s d?/kψ(2) + d/sψ(2) d/

s d/kψ(1) = d/1

(
d/sψ(1) d/

sψ(2)

)
+ E[ d/, s, k, ψ(1), ψ(2)]

where

|E[ d/, s, k, ψ(1), ψ(2)]| . r2| d/sψ(1)|
s−1∑
j=0

| d/s−1−j(ψ(2))|| d/j(K)|

+r2| d/sψ(2)|
s−1∑
j=0

| d/s−1−j(ψ(1))|| d/j(K)|.
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This concludes the proof of the lemma.

Corollary 8.7.4. Let k ≥ 1, let a(1) and a(2) real numbers and let 0 ≤ s ≤ klarge. Consider
the outgoing geodesic foliation of (ext)M. We consider the following equations.

• If ψ(1) ∈ sk, ψ(2) ∈ sk−1, let (ψ(1), ψ(2,s)) such that{
e3( d/sψ(1)) + a(1)κ d/

sψ(1) = − d/s d?/kψ(2) + h(1,s),

e4( d/sψ(2)) + a(2)κ d/
sψ(2) = d/s d/kψ(1) + h(2,s),

• If ψ(1) ∈ sk−1, ψ(2), h(2) ∈ sk, let (ψ(1), ψ(2)) such that{
e3( d/sψ(1)) + a(1)κ d/

sψ(1) = d/s d/kψ(2) + h(1,s),

e4( d/sψ(2)) + a(2)κ d/
sψ(2) = − d/s d?/kψ(1) + h(2,s).

Then, the pair (ψ(1), ψ(2)) satisfies for any real number b

Div
(
rb( d/sψ(1))

2e3

)
+ Div

(
rb( d/sψ(2))

2e4

)
−1

2
rbκ
(
− 4a(1) + b+ 2

)
( d/sψ(1))

2 +
1

2
rbκ
(

4a(2) − b− 2
)

( d/sψ(2))
2

= 2rb d/1

(
d/sψ(1) d/

sψ(2)

)
+ 2rbE[ d/, s, k, ψ(1), ψ(2)]− 2rbω( d/sψ(1))

2

+2rb d/sψ(1)h(1,s) + 2rb d/sψ(2)h(2,s) + brb−1
(
e3(r)− r

2
κ
)

( d/sψ(1))
2

+brb−1
(
e4(r)− r

2
κ
)

( d/sψ(2))
2.

where E[ d/, s, k, ψ(1), ψ(2)] has been introduced in Lemma 8.7.3.

Proof. The proof follows immediately from combining Lemma 8.7.1 and Lemma 8.7.3.

Lemma 8.7.5. Let j, k, l three integers. Consider a Bianchi (ψ(1), ψ(2)) satisfying (8.7.1)
or (8.7.2). Then, the pair (ψ(1), ψ(2)) satisfies for any real number b

Div
(
rb( d/j(re4)kTlψ(1))

2e3

)
+ Div

(
rb( d/j(re4)kTlψ(2))

2e4

)
−1

2
rbκ
(
− 4a(1) + 2k + b+ 2

)
( d/j(re4)kTlψ(1))

2

+
1

2
rbκ
(

4a(2) − 2k − b− 2
)

( d/j(re4)kTlψ(2))
2

= 2rb d/1

(
d/j(re4)kTlψ(1) d/

j(re4)kTlψ(2)

)
+ 2rbE[ d/, j, k, (re4)kTlψ(1), (re4)kTlψ(2)]

−2rbω( d/j(re4)kTlψ(1))
2 + 2rb d/j(re4)kTlψ(1)h(1),j,k,l + 2rb d/j(re4)kTlψ(2)h(2),j,k,l

+brb−1
(
e3(r)− r

2
κ
)

( d/j(re4)kTlψ(1))
2 + brb−1

(
e4(r)− r

2
κ
)

( d/j(re4)kTlψ(2))
2.
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where E[ d/, s, k, (re4)kTlψ(1), (re4)kTlψ(2)] has been introduced in Lemma 8.7.3, and where
h(1),j,k,l and h(2),j,k,l are given, schematically, by

h(1),j,k,l = d/≤j+k+l(h(1)) + kr−1 d/j+1(re4)k−1Tlψ(2)

+rdj+k+l
(

Γg
(
ψ(1), ψ(2)

))
+O(r−1)d≤j+k+l−1

(
ψ(1), ψ(2)

)
and

h(2),j,k,l = d/≤j+k+l(h(2)) + kr−1 d/j+1(re4)k−1Tlψ(1) + rdj+k+l
(

Γg
(
ψ(1), ψ(2)

))
+O(r−1)d≤j+k+l−1

(
ψ(1), ψ(2)

)
.

Proof. We have the following simple schematic consequences of the commutator identities

[T, e4], [T, e3] = r−1Γbd, [T, d/k] = −ηe3 + Γgd,

[ d/, e4] = Γgd + Γg, [ d/, e3] = −rηe3 + rΓgd,

[re4, e4] = −r
2
κe4 + Γgd, [re4, e3] = −r

2
κe4 + Γbd, [re4, d/k] = r−1 d/+ Γgd + Γg.

Then, differentiating with d/j(re4)kTl the equations{
e3(ψ(1)) + a(1)κψ(1) = − d?/kψ(2) + h(1),

e4(ψ(2)) + a(2)κψ(2) = d/kψ(1) + h(2),

and using the above commutator identities we infer{
e3( d/j(re4)kTlψ(1)) +

(
a(1) − k

2

)
κ d/j(re4)kTlψ(1) = − d/j d?/k((re4)kTlψ(2)) + h(1),j,k,l,

e4( d/j(re4)kTlψ(2)) +
(
a(2) − k

2

)
κ d/j(re4)kTlψ(2) = d/j d/k((re4)kTlψ(1)) + h(2),j,k,l,

were

h(1),j,k,l = d/j(re4)kTl(h(1)) + kr−1 d/j+1(re4)k−1Tlψ(2) + jrηdj+k+l−1e3ψ(1)

+rdj+k+l
(

Γg
(
ψ(1), ψ(2)

))
+O(r−1)d≤j+k+l−1

(
ψ(1), ψ(2)

)
and

h(2),j,k,l = d/j(re4)kTl(h(2)) + kr−1 d/j+1(re4)k−1Tlψ(1) + rdj+k+l
(

Γg
(
ψ(1), ψ(2)

))
+O(r−1)d≤j+k+l−1

(
ψ(1), ψ(2)

)
.

Also, using the equation

e3(ψ(1)) = −a(1)κψ(1) − d?/kψ(2) + h(1),
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we obtain

jrηdj+k+l−1e3ψ(1) = rdj+k+l
(

Γg
(
ψ(1), ψ(2)

))
+O(r−1)d≤j+k+l−1

(
ψ(1), ψ(2)

)
+ rηdk+j+l−1(h(1))

and hence,

h(1),j,k,l = d/≤j+k+l(h(1)) + kr−1 d/j+1(re4)k−1Tlψ(2)

+rdj+k+l
(

Γg
(
ψ(1), ψ(2)

))
+O(r−1)d≤j+k+l−1

(
ψ(1), ψ(2)

)
.

We have thus obtained the desired form for h(1),j,k,l and h(2),j,k,l.

The divergence identity now follows from the equations{
e3( d/j(re4)kTlψ(1)) +

(
a(1) − k

2

)
κ d/j(re4)kTlψ(1) = − d/j d?/k((re4)kTlψ(2)) + h(1),j,k,l,

e4( d/j(re4)kTlψ(2)) +
(
a(2) − k

2

)
κ d/j(re4)kTlψ(2) = d/j d/k((re4)kTlψ(1)) + h(2),j,k,l,

together with Corollary 8.7.4. This concludes the proof of the lemma.

Corollary 8.7.6. Let r0 ≥ 4m0 and 1 ≤ u0 ≤ u∗. We introduce the spacetime region

Ru0 = (ext)M∩ {r ≥ 4m0} ∩ {1 ≤ u ≤ u0}, .

Let j, k, l three integers. Assume that the frame of (ext)M satisfies

sup
(ext)M

(∣∣∣e3(r)− r

2
κ
∣∣∣+ r

(
|ω|+

∣∣∣e4(r)− r

2
κ
∣∣∣)) . ε0.

Consider a pair (ψ(1), ψ(2)) satisfying (8.7.1) or (8.7.2). Then, (ψ(1), ψ(2)) satisfies for any
real number b

(a) If

−4a(1) + 2k + b+ 2 > 0 and 4a(2) − 2k − b− 2 > 0,

then, we have∫
Cu0 (r≥r0)

rb( d/j(re4)kTlψ(1))
2 +

∫
Σ∗(≤u0)

rb
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

+

∫
Ru0 (r≥r0)

rb−1
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

.
∫

(ext)M(
r0
2
≤r≤r0)

rb−1
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

+

∫
Ru0 (r≥r0)

rb+1
(

(h(1),j,k,l)
2 + (h(2),j,k,l)

2
)

+

∫
Ru0 (r≥r0)

rbE[ d/, j, k, (re4)kTlψ(1), (re4)kTlψ(2)].
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(b) If

−4a(1) + 2k + b+ 2 ≤ 0 and 4a(2) − 2k − b− 2 > 0,

then, we have∫
Cu0 (r≥r0)

rb( d/j(re4)kTlψ(1))
2 +

∫
Σ∗(≤u0)

rb
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

+

∫
Ru0 (r≥r0)

rb−1( d/j(re4)kTlψ(2))
2

.
∫

(ext)M(
r0
2
≤r≤r0)

rb−1
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

+

∫
Ru0 (r≥r0)

rb+1
(

(h(1),j,k,l)
2 + (h(2),j,k,l)

2
)

+

∫
Ru0 (r≥r0)

rb−1( d/j(re4)kTlψ(1))
2

+

∫
Ru0 (r≥r0)

rbE[ d/, j, k, (re4)kTlψ(1), (re4)kTlψ(2)].

(c) If

4a(2) − 2k − b− 2 = 0,

then, we have∫
Cu0 (r≥r0)

rb( d/j(re4)kTlψ(1))
2 +

∫
Σ∗(≤u0)

rb
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

.
∫

(ext)M(
r0
2
≤r≤r0)

rb−1
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

+

∫
Ru0 (r≥r0)

rb+1−δB(h(1),j,k,l)
2 +

∫
Ru0 (r≥r0)

rb+1+δB(h(2),j,k,l)
2

+

∫
Ru0 (r≥r0)

rb−1+δB( d/j(re4)kTlψ(1))
2 +

∫
Ru0 (r≥r0)

rb−1−δB( d/j(re4)kTlψ(2))
2

+

∫
Ru0 (r≥r0)

rbE[ d/, j, k, (re4)kTlψ(1), (re4)kTlψ(2)].

(d) If

−4a(1) + 2k + b+ 2 > 0,



8.7. PROOF OF PROPOSITION 8.3.9 497

then, we have∫
Cu0 (r≥r0)

rb( d/j(re4)kTlψ(1))
2 +

∫
Σ∗(≤u0)

rb
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

+

∫
Ru0 (r≥r0)

rb−1( d/j(re4)kTlψ(1))
2

.
∫

(ext)M(
r0
2
≤r≤r0)

rb−1
(

( d/j(re4)kTlψ(1))
2 + ( d/j(re4)kTlψ(2))

2
)

+

∫
Ru0 (r≥r0)

rb+1(h(1),j,k,l)
2 +

∫
Ru0 (r≥r0)

rb+1(h(2),j,k,l)
2

+

∫
Ru0 (r≥r0)

rb−1(( d/j(re4)kTlψ(2))
2

+

∫
Ru0 (r≥r0)

rbE[ d/, j, k, (re4)kTlψ(1), (re4)kTlψ(2)].

Proof. We multiply the pair (ψ(1), ψ(2)) by a smooth cut-off function in r supported in
r ≥ r0

2
and identically one for r ≥ r0. We obtain again a solution to (8.7.1) or (8.7.2)

up to error terms that are supported in the region r0
2
≤ r ≤ r0. We then integrate the

divergence identities of Lemma 8.7.5 on the region Ru0 and the corollary follows.

8.7.2 End of the proof of Proposition 8.3.9

Let r0 ≥ 4m0. Recall that, to prove Proposition 8.3.9, it suffices to establish the following
inequality

(ext)R≥r0J+1[Ř] . r−δB0
(ext)G≥r0k [Γ̌] + r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))
.

To this end, we will rely on the rp-weighted estimates derived in Corollary 8.7.6 applied
to the Bianchi pairs, where we recall Remark 8.7.2.

Remark 8.7.7. For the Bianchi pair (β, ρ), we replace the Bianchi identities for e4(ρ)
by its analog for e4(ρ̌), i.e.

e4ρ̌+
3

2
κρ̌ = d/1β −

3

2
ρκ̌+ Err[e4ρ̌],

while for the Bianchi pair (ρ, β), we replace the Bianchi identities for e3(ρ) by its analog
for e3(ρ̌), i.e.

e3ρ̌+
3

2
κρ̌ = d/1β −

3

2
ρκ̌− 3

2
κ ρς−1ς̌ +

3

2
κ ρ
(
Ω̌ + ς−1Ως̌

)
+ Err[e3ρ̌],
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see Proposition 2.2.18 for the derivation of these equations.

Let j, k, l three integers such that

j + k + l = J + 1.

To derive rp weighted curvature estimates for d/j(re4)kTl derivatives in the region r ≥ r0,
we proceed as follows.

Step 1. We start with the case k = 0, i.e. we derive rp weighted curvature estimates for
d/jTl derivatives with j + l = J + 1. First, we apply Corollary 8.7.6

• to the Bianchi pair (α, β) with the choice b = 4 + δB,

• to the Bianchi pair (β, ρ) with the choice b = 4− δB,

• to the Bianchi pair (ρ, β) with the choice b = 2− δB,

• to the Bianchi pair (β, α) with the choice b = −δB.

The above choices are such that we are in case (a) of Corollary 8.7.6 for the Bianchi pairs
(α, β) and (β, ρ), and in case (b) of Corollary 8.7.6 for the last two Bianchi pairs. In
particular, we obtain

∑
j+l=J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4+δB( d/jTlα)2 + r4−δB( d/jTlβ)2 + r2−δB( d/jTlρ̌)2

+r−δB( d/jTlβ)2
)

+

∫
Σ∗

(
r4+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+ r4−δB( d/jTlρ̌)2

+r2−δB( d/jTlβ)2 + r−δB( d/jTlα)2
)

+

∫
(ext)M(r≥r0)

(
r3+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+r3−δB( d/jTlρ̌)2 + r1−δB( d/jTlβ)2 + r−1−δB( d/jTlα)2

)}

. r8+δB
0

∫
(ext)M(

r0
2
≤r≤r0)

(dJ+1Ř)2

r5
+

∫
(ext)M(r≥r0)

{
r−1+δB( d/jTlϑ)2

+r−1−δB
(

( d/jTlη)2 + ( d/jTlκ̌)2
)

+ r−3−δB
(

( d/jTlκ̌)2 + ( d/jTlζ)2
)

+r−5−δB
(

( d/jTlξ)2 + ( d/jTlϑ)2 + ( d/jTlς̌)2 + ( d/jTlΩ̌)2
)}

+ (εB[J ])2 + ε20(N
(En)
J+1 )2.
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Using Proposition 8.3.8 to bound the first term on the right-hand side, and using also the
definition of the norm (ext)G≥r0k [Γ̌], we infer that

∑
j+l=J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4+δB( d/jTlα)2 + r4−δB( d/jTlβ)2 + r2−δB( d/jTlρ̌)2

+r−δB( d/jTlβ)2
)

+

∫
Σ∗

(
r4+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+ r4−δB( d/jTlρ̌)2

+r2−δB( d/jTlβ)2 + r−δB( d/jTlα)2
)

+

∫
(ext)M(r≥r0)

(
r3+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+r3−δB( d/jTlρ̌)2 + r1−δB( d/jTlβ)2 + r−1−δB( d/jTlα)2

)}

.

(∫ +∞

r0

dr

r1+δB

)
( (ext)G≥r0J+1[Γ̌])2 + r10

0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
and hence

∑
j+l=J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4+δB( d/jTlα)2 + r4−δB( d/jTlβ)2 + r2−δB( d/jTlρ̌)2

+r−δB( d/jTlβ)2
)

+

∫
Σ∗

(
r4+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+ r4−δB( d/jTlρ̌)2

+r2−δB( d/jTlβ)2 + r−δB( d/jTlα)2
)

+

∫
(ext)M(r≥r0)

(
r3+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+r3−δB( d/jTlρ̌)2 + r1−δB( d/jTlβ)2 + r−1−δB( d/jTlα)2

)}
. r−δB0 ( (ext)G≥r0J+1[Γ̌])2 + r10

0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
. (8.7.4)

Step 2. We derive additional rp weighted curvature estimates for d/jTl derivatives with
j + l = J + 1. To this end, we apply Corollary 8.7.6

• to the Bianchi pair (β, ρ) with the choice b = 4,

• to the Bianchi pair (ρ, β) with the choice b = 2,

• to the Bianchi pair (β, α) with the choice b = 0.
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All the above choices are such that we have in case (c) of Corollary 8.7.6. In particular,
we obtain

∑
j+l=J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4( d/jTlβ)2 + r2( d/jTlρ̌)2 + ( d/jTlβ)2

)
+

∫
Σ∗

(
r4
(

( d/jTlβ)2 + ( d/jTlρ̌)2
)

+ r2( d/jTlβ)2 + ( d/jTlα)2
)}

. r8
0

∫
(ext)M(

r0
2
≤r≤r0)

(dJ+1Ř)2

r5

+
∑

j+l=J+1

{∫
(ext)M(r≥r0)

(
r3+δB( d/jTlβ)2 + r3−δB( d/jTlρ̌)2 + r1−δB( d/jTlβ)2

+r−1−δB( d/jTlα)2
)}

+

∫
(ext)M(r≥r0)

{
r−1−δB( d/jTlη)2 + r−1+δB( d/jTlκ̌)2

+r−3+δB
(

( d/jTlκ̌)2 + ( d/jTlζ)2
)

+r−5+δB
(

( d/jTlξ)2 + ( d/jTlϑ)2 + ( d/jTlς̌)2 + ( d/jTlΩ̌)2
)}

+ (εB[J ])2 + ε20(N
(En)
J+1 )2.

Using Proposition 8.3.8 to bound the first term on the right-hand side, and using also the
definition of the norm (ext)G≥r0k [Γ̌], we infer that

∑
j+l=J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4( d/jTlβ)2 + r2( d/jTlρ̌)2 + ( d/jTlβ)2

)
+

∫
Σ∗

(
r4
(

( d/jTlβ)2 + ( d/jTlρ̌)2
)

+ r2( d/jTlβ)2 + ( d/jTlα)2
)}

.

(∫ +∞

r0

dr

r1+δB

)
( (ext)G≥r0J+1[Γ̌])2 + r10

0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
+

∑
j+l=J+1

{∫
(ext)M(r≥r0)

(
r3+δB( d/jTlβ)2 + r3−δB( d/jTlρ̌)2 + r1−δB( d/jTlβ)2

+r−1−δB( d/jTlα)2
)}
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and hence

∑
j+l=J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4( d/jTlβ)2 + r2( d/jTlρ̌)2 + ( d/jTlβ)2

)
+

∫
Σ∗

(
r4
(

( d/jTlβ)2 + ( d/jTlρ̌)2
)

+ r2( d/jTlβ)2 + ( d/jTlα)2
)}

. r−δB0 ( (ext)G≥r0J+1[Γ̌])2 + r10
0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
+

∑
j+l=J+1

{∫
(ext)M(r≥r0)

(
r3+δB( d/jTlβ)2 + r3−δB( d/jTlρ̌)2 + r1−δB( d/jTlβ)2

+r−1−δB( d/jTlα)2
)}

.

Together with (8.7.4), we deduce

∑
j+l=J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4+δB( d/jTlα)2 + r4( d/jTlβ)2 + r2( d/jTlρ̌)2

+( d/jTlβ)2
)

+

∫
Σ∗

(
r4+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+ r4( d/jTlρ̌)2

+r2( d/jTlβ)2 + ( d/jTlα)2
)

+

∫
(ext)M(r≥r0)

(
r3+δB

(
( d/jTlα)2 + ( d/jTlβ)2

)
+r3−δB( d/jTlρ̌)2 + r1−δB( d/jTlβ)2 + r−1−δB( d/jTlα)2

)}
. r−δB0 ( (ext)G≥r0J+1[Γ̌])2 + r10

0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
. (8.7.5)

Step 3. We now argue by iteration on k. For 0 ≤ k ≤ J , we consider the following
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iteration assumption

∑
j+l=J+1−k

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4+δB( d/j(re4)kTlα)2 + r4( d/j(re4)kTlβ)2 + r2( d/j(re4)kTlρ̌)2

+( d/j(re4)kTlβ)2
)

+

∫
Σ∗

(
r4+δB

(
( d/j(re4)kTlα)2 + ( d/j(re4)kTlβ)2

)
+ r4( d/j(re4)kTlρ̌)2

+r2( d/j(re4)kTlβ)2 + ( d/j(re4)kTlα)2
)

+

∫
(ext)M(r≥r0)

(
r3+δB

(
( d/j(re4)kTlα)2 + ( d/j(re4)kTlβ)2

)
+r3−δB( d/j(re4)kTlρ̌)2 + r1−δB( d/j(re4)kTlβ)2 + r−1−δB( d/j(re4)kTlα)2

)}
. r−δB0 ( (ext)G≥r0J+1[Γ̌])2 + r10

0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
. (8.7.6)

(8.7.6) holds true for k = 0 in view of (8.7.5). We now assume that (8.7.6) holds true for
k such that 0 ≤ k ≤ J , and our goal is to prove that it also holds for k + 1.

First, note that the Bianchi identities for e4(β), e4(ρ̌), e4(β) and e4(α), together with
(8.7.6), yields

∑
j+l=J+1−(k+1)

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4( d/j(re4)k+1Tlβ)2 + r2( d/j(re4)k+1Tlρ̌)2

+( d/j(re4)k+1Tlβ)2
)

+

∫
Σ∗

(
r4+δB( d/j(re4)k+1Tlβ)2 + r4( d/j(re4)k+1Tlρ̌)2

+r2( d/j(re4)k+1Tlβ)2 + ( d/j(re4)k+1Tlα)2
)

+

∫
(ext)M(r≥r0)

(
r3+δB( d/j(re4)k+1Tlβ)2

+r3−δB( d/j(re4)k+1Tlρ̌)2 + r1−δB( d/j(re4)k+1Tlβ)2 + r−1−δB( d/j(re4)k+1Tlα)2
)}

. r−δB0 ( (ext)G≥r0J+1[Γ̌])2 + r10
0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
. (8.7.7)

We still need to estimate d/j(re4)k+1Tlα. To this end, we apply Corollary 8.7.6 to the
Bianchi pair (α, β) with the choice b = 4 + δB. Since k + 1 ≥ 1, we are in case (d) of
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Corollary 8.7.6. In particular, we obtain, arguing similarly as above,

∑
j+l=J+1−(k+1)

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

r4+δB( d/j(re4)k+1Tlα)2 +

∫
Σ∗

r4+δB( d/j(re4)k+1Tlα)2

+

∫
(ext)M(r≥r0)

r3+δB( d/j(re4)k+1Tlα)2

}

.
∑

j+l=J+1−(k+1)

{∫
(ext)M(r≥r0)

r3+δB( d/j(re4)k+1Tlβ)2

}
+ r−δB0 ( (ext)G≥r0J+1[Γ̌])2

+r10
0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
.

Together with (8.7.7), this implies (8.7.6) for k + 1. Hence, by iteration, (8.7.6) holds for
any 0 ≤ k ≤ J + 1. This implies

∑
k≤J+1

{
sup

1≤u≤u∗

∫
Cu(r≥r0)

(
r4+δB(dkα)2 + r4(dkβ)2 + r2(dkρ̌)2 + (dkβ)2

)
+

∫
Σ∗

(
r4+δB

(
(dkα)2 + (dkβ)2

)
+ r4(dkρ̌)2 + r2(dkβ)2 + (dkα)2

)
+

∫
(ext)M(r≥r0)

(
r3+δB

(
(dkα)2 + (dkβ)2

)
+ r3−δB(dkρ̌)2 + r1−δB(dkβ)2 + r−1−δB(dkα)2

)}
. r−δB0 ( (ext)G≥r0J+1[Γ̌])2 + r10

0

(
(εB[J ])2 + ε20

(
N

(En)
J+1 +N (match)

J+1

)2)
.

Hence, we have obtained

(ext)R≥r0J+1[Ř] . r−δB0
(ext)G≥r0J+1[Γ̌] + r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))
which concludes the proof of Proposition 8.3.9.

8.7.3 Proof of (8.3.12)

To prove (8.3.12), we argue as in the proof of Proposition 8.3.9. Let j, k, l three integers
such that

j + k + l ≤ ksmall.

To derive rp weighted curvature estimates for d/j(re4)kTl derivatives of (α, β) in the region
r ≥ 4m0, we proceed as follows.
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Step 1. We start with the case k = 0, i.e. we derive rp weighted curvature estimates
for d/jTl derivatives of (α, β) with j + l ≤ ksmall. First, we apply Corollary 8.7.6 to the
Bianchi pair (α, β) with the choice b = 4 + δB. This choice such that we have in case (a)
of Corollary 8.7.6. In particular, we obtain

∑
j+l≤ksmall

{
sup

1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB( d/jTlα)2 +

∫
Σ∗

r4+δB
(

( d/jTlα)2 + ( d/jTlβ)2
)

+

∫
(ext)M(r≥4m0)

r3+δB
(

( d/jTlα)2 + ( d/jTlβ)2
)}

.
∫

(ext)M(
7m0

2
≤r≤4m0)

(dJ+1Ř)2

r5
+

∫
(ext)M(r≥4m0)

{
r−1+δB( d/jTlϑ)2

}
+ ε20 + ε20(N

(En)
ksmall

)2.

We infer that

∑
j+l≤ksmall

{
sup

1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB( d/jTlα)2 +

∫
Σ∗

r4+δB
(

( d/jTlα)2 + ( d/jTlβ)2
)

+

∫
(ext)M(r≥4m0)

r3+δB
(

( d/jTlα)2 + ( d/jTlβ)2
)}

.
(

(ext)R≤4m0

ksmall
[Ř]
)2

+
(

(ext)Gksmall [Γ̌]
)2

+ ε20 + ε20(N
(En)
ksmall

)2. (8.7.8)

Step 2. We now argue by iteration on k. For 0 ≤ k ≤ ksmall−1, we consider the following
iteration assumption

∑
j+l≤ksmall−k

{
sup

1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB( d/j(re4)kTlα)2

+

∫
Σ∗

r4+δB
(

( d/j(re4)kTlα)2 + ( d/j(re4)kTlβ)2
)

+

∫
(ext)M(r≥4m0)

r3+δB
(

( d/j(re4)kTlα)2 + ( d/j(re4)kTlβ)2
)}

.
(

(ext)R≤4m0

ksmall
[Ř]
)2

+
(

(ext)Gksmall [Γ̌]
)2

+ ε20 + ε20(N
(En)
ksmall

)2. (8.7.9)

(8.7.9) holds true for k = 0 in view of (8.7.8). We now assume that (8.7.9) holds true for
k such that 0 ≤ k ≤ ksmall − 1, and our goal is to prove that it also holds for k + 1.
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First, note that the Bianchi identity for e4(β) together with (8.7.9), yields∑
j+l≤ksmall−(k+1)

{∫
Σ∗

r4+δB( d/j(re4)k+1Tlβ)2 +

∫
(ext)M(r≥4m0)

r3+δB( d/j(re4)k+1Tlβ)2

}
.

(
(ext)R≤4m0

ksmall
[Ř]
)2

+
(

(ext)Gksmall [Γ̌]
)2

+ ε20 + ε20(N
(En)
ksmall

)2. (8.7.10)

We still need to estimate d/j(re4)k+1Tlα. To this end, we apply Corollary 8.7.6 to the
Bianchi pair (α, β) with the choice b = 4 + δB. Since k + 1 ≥ 1, we are in case (c) of
Corollary 8.7.6. In particular, we obtain, arguing similarly as above,∑

j+l≤ksmall−(k+1)

{
sup

1≤u≤u∗

∫
Cu(r≥4m0)

r4+δB( d/j(re4)k+1Tlα)2 +

∫
Σ∗

r4+δB( d/j(re4)k+1Tlα)2

+

∫
(ext)M(r≥4m0)

r3+δB( d/j(re4)k+1Tlα)2

}

.
∑

j+l≤ksmall−(k+1)

{∫
(ext)M(r≥4m0)

r3+δB( d/j(re4)k+1Tlβ)2

}
+
(

(ext)R≤4m0

ksmall
[Ř]
)2

+
(

(ext)Gksmall [Γ̌]
)2

+ ε20 + ε20(N
(En)
ksmall

)2.

Together with (8.7.10), this implies (8.7.9) for k + 1. Hence, by iteration, (8.7.9) holds
for any 0 ≤ k ≤ ksmall. Now, (8.7.9) for any 0 ≤ k ≤ ksmall is equivalent to (8.3.12) which
is the desired estimate.

8.8 Proof of Proposition 8.3.10

To prove Proposition 8.3.10, we rely on the following three propositions.

Proposition 8.8.1. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Then, we have

(Σ∗)GJ+1[Γ̌] + (Σ∗)G′J+1[Γ̌] . (Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌],

where we have introduced the notations

(Σ∗)Gk[Γ̌] :=

∫
Σ∗

[
r2
(

(d≤kϑ)2 + (d≤kκ̌)2 + (d≤kζ)2 + (d≤kκ̌)2
)

+ (d≤kϑ)2

+(d≤kη)2 + (d≤kω̌)2 + (d≤kξ)2

]
,
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(Σ∗)G′k[Γ̌] :=

∫
Σ∗

[
r2
(

(dk+1 d/κ̌)2 + (dk+1κ̌)2 + (d≤k+1µ̌)2 + (dk+1κ̌)2 + (dk+1ζ)2
]
,

and

(Σ∗)Rk[Ř] :=

∫
Σ∗

(
r4+δB

(
(d≤kα)2 + (d≤kβ)2

)
+ r4(d≤kρ̌)2 + r2(d≤kβ)2 + (d≤kα)2

)
.

Proposition 8.8.2. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Then, we have

(ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌] . (Σ∗)GJ+1[Γ̌] + (Σ∗)G′J+1[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌],

where we have introduced the notation

(ext)G≥4m0

k

′
[Γ̌] := sup

λ≥4m0

(∫
{r=λ}

[
λ6
(
dk
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
))2

+λ2(dk+1κ̌)2 + λ6
(
dk
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

+λ4(d≤kµ̌)2 + λ2
(
dk
(
eθ(κ)− 4β

))2
+ λ2

(
dk
(
e3(ζ) + β

))2

])
.

Proposition 8.8.3. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Then, we have

(ext)G≤4m0

J+1 [Γ̌] + (ext)G≤4m0

J+1

′
[Γ̌] . (ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌],

where we have introduced the notation

(ext)G≤4m0

k

′
[Γ̌] := sup

rT ≤λ≤4m0

(∫
{r=λ}

[
λ6
(
dk
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
))2

+λ2(dk+1κ̌)2 + λ6
(
dk
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

+λ4(d≤kµ̌)2 + λ2
(
dk
(
eθ(κ)− 4β

))2
+ λ2

(
dk−1N

(
e3(ζ) + β

))2

])
.

The proof of Proposition 8.8.1 is postponed to section 8.8.1, the proof of Proposition 8.8.2
is postponed to section 8.8.4, and the proof of Proposition 8.8.3 is postponed to section
8.8.5. The proof of the two latter propositions will rely in particular on basic weighted
estimates for transport equations along e4 in (ext)M derived in section 8.8.2, as well as
several renormalized identities derived in section 8.8.3

We now conclude the proof of Proposition 8.3.10. In view of Propositions 8.8.1, 8.8.2 and
8.8.3, we have, for J such that ksmall − 2 ≤ J ≤ klarge − 1,

(ext)GJ+1[Γ̌] . (ext)RJ+1[Ř] + (ext)GJ [Γ̌],
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where we have used the fact that

(Σ∗)RJ+1[Ř] ≤ (ext)RJ+1[Ř], (Σ∗)GJ [Γ̌] ≤ (ext)GJ [Γ̌].

In view of the iteration assumption (8.3.13), we infer

(ext)GJ+1[Γ̌] . (ext)RJ+1[Ř] + εB[J ].

Since the estimates in Proposition 8.8.2 are integrated from Σ∗, we obtain similarly, for
any r0 ≥ 4m0,

(ext)G≥r0J+1[Γ̌] . (ext)R≥r0J+1[Ř] + εB[J ].

On the other hand, we have in view of Proposition 8.3.9, for any r0 ≥ 4m0,

(ext)R≥r0J+1[Ř] . r−δB0
(ext)G≥r0J+1[Γ̌] + r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

))
.

and

(int)RJ+1[Ř] + (ext)RJ+1[Ř] ≤ (ext)R≥r0J+1[Ř] +O
(
r10

0

(
εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)))
.

Choosing r0 ≥ 4m0 large enough, we infer from the above estimates

(ext)GJ+1[Γ̌] + (int)RJ+1[Ř] + (ext)RJ+1[Ř] . εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)
.

This concludes the proof of Proposition 8.3.10.

8.8.1 Proof of Proposition 8.8.1

Step 1. We control κ on Σ∗. Recall the GCM conditions κ = 2/r on Σ∗. Since νΣ∗ and
eθ are tangent, we infer

( d/, νΣ∗)
k

(
κ− 2

r

)
= 0.

Together with Raychadhuri, we infer

max
k≤J+2

∫
Σ∗

(
r2

(
dk
(
κ− 2

r

))2

+ r4
(
dkeθ(κ)

)2

)
.

(
(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0

(Σ∗)GJ+1[Γ̌]
)2

,
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where we have used the fact that e3 is in the span of e4 and νΣ∗ . Note that we have used
Codazzi for ϑ to control the term dJ+1e4(eθ(κ)).

Step 2. We control the ` = 1 modes on Σ∗. In view of the GCM conditions for κ, and
projecting the Codazzi for ϑ on the ` = 1 mode, we infer on Σ∗∫

S

ζeΦ = r

∫
S

βeΦ +
r

2

∫
S

ϑζeΦ.

Since the vectorfield ν is tangent to Σ∗, we infer

νJ+2

(∫
S

ζeΦ

)
= r

∫
S

νJ+2βeΦ +
r

2

∫
S

νJ+2(ϑζ)eΦ + l.o.t.

= r

∫
S

νJ+2βeΦ +
r

2

∫
S

ζνJ+2(ϑ)eΦ +
r

2

∫
S

ϑνJ+2(ζ)eΦ + l.o.t.

where l.o.t. denote, here and below, terms that

• either are linear and contain at most J + 1 derivatives of curvature components and
J derivatives of Ricci coefficients,

• or are quadratic and contain at most J + 1 derivatives of Ricci coefficients and
curvature components.

Using Bianchi identities and the null structure equations, we deduce

νJ+2

(∫
S

ζeΦ

)
= r

∫
S

νJ+1( d/2α, d
?/1ρ− 3ρη)eΦ +

r

2

∫
S

ζνJ+1 d?/2ηe
Φ +

r

2

∫
S

ϑνJ+1 d?/1ωe
Φ + l.o.t.

= r

∫
S

( d/2ν
J+1α, νJ d?/1 d/1(β, β))eΦ − 3ρ

∫
S

νJ+1ηeΦ +
r

2

∫
S

ζ d?/2ν
J+1ηeΦ

+
r

2

∫
S

ϑ d?/1ν
J+1ωeΦ + l.o.t.

= r

∫
S

( d/2ν
J+1α, d?/1 d/1ν

J(β, β))eΦ +
r

2

∫
S

ζ d?/2ν
J+1ηeΦ +

r

2

∫
S

ϑ d?/1ν
J+1ωeΦ + l.o.t.,

where we have used, in the last equality, a cancellation due to the fact that ν is tangent
to Σ∗ and

∫
S
ηeΦ = 0 on Σ∗. Using the identity d?/1 d/1 = d/2 d

?/2 + 2K, integration by parts
for all terms, and the fact that d?/2(eΦ) = 0 so that the top order linear term vanish, we
infer

νJ+2

(∫
S

ζeΦ

)
= l.o.t.
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with the above convention for the lower order terms. Also, relying on the null equation
for e4(ζ), i.e.

e4(ζ) = −κζ − β − ϑζ
we obtain, with more ease since this estimate is at one lower level of derivatives

(re4, ν)J+2

(∫
S

ζeΦ

)
= l.o.t.

We infer

max
k≤J+2

∫ u∗

1

r−2

(
dk
(∫

S

ζeΦ

))2

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Next, we have in view of the definition of µ and the identity d?/1 d/1 = d/2 d
?/2 + 2K∫

S

eθ(µ)eΦ =

∫
S

d?/1 d/1ζe
Φ −

∫
S

eθ(ρ)eΦ +
1

4

∫
S

eθ(ϑϑ)eΦ

= 2

∫
S

KζeΦ −
∫
S

eθ(ρ)eΦ +
1

4

∫
S

eθ(ϑϑ)eΦ

=
2

r2

∫
S

ζeΦ −
∫
S

eθ(ρ)eΦ +

∫
S

(
K − 2

r2

)
ζeΦ +

1

4

∫
S

eθ(ϑϑ)eΦ.

To estimate the RHS, we use in particular

• for the second term, in view of Bianchi

(e3, re4)J+2eθ(ρ)

= (e3, re4)J+1 d?/1 d/1(rβ, β)− 3

2
(e3, re4)J+1 d?/1(rκρ, κρ)

+(e3, re4)J+1 d?/1

(
rϑα, (rζ, ξ)β, (ζ, η)β, ϑα

)
+ l.o.t.

= (e3, re4)J+1 d/2 d
?/2(rβ, β) +

3

2
ρ(e3, re4)J+1(reθ(κ), eθ(κ))

+
(
rϑ(e3, re4)J+1 d?/1α, (rζ, ξ)(e3, re4)J+1 d?/1β, (ζ, η)(e3, re4)J+1 d?/1β, ϑ(e3, re4)J+1 d?/1α

)
+
(
rα(e3, re4)J+1 d?/1ϑ, β(e3, re4)J+1 d?/1(rζ, ξ), β(e3, re4)J+1 d?/1(ζ, η), α(e3, re4)J+1 d?/1ϑ

)
+ l.o.t.

= d/2(e3, re4)J+1 d?/2(rβ, β) + [(e3, re4)J+1, d/2] d?/2(rβ, β) +
3

2
ρ(e3, re4)J+1(reθ(κ), eθ(κ))

−3

2
ρ̌ d?/1(e3, re4)J+1(rκ̌, κ̌)

+
(
rϑ d?/1(e3, re4)J+1α, (rζ, ξ) d?/1(e3, re4)J+1β, (ζ, η) d?/1(e3, re4)J+1β, ϑ d?/1(e3, re4)J+1α

)
+
(
rα d?/1(e3, re4)J+1ϑ, β d?/1(e3, re4)J+1(rζ, ξ), β d?/1(e3, re4)J+1(ζ, η), α d?/1(e3, re4)J+1ϑ

)
+ l.o.t.
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• for the third term

(e3, re4)J+2
((

K − 2

r2

)
ζ
)

= ζ(e3, re4)J+2

(
K − 2

r2

)
+

(
K − 2

r2

)
(e3, re4)J+2ζ + l.o.t.

= ζ(e3, re4)J+1
(
d/1(rβ, β, η, r−1ξ)

)
+

(
K − 2

r2

)
(e3, re4)J+1eθ(ω) + l.o.t.

= ζ(e3, re4)J+1 d/1

(
rβ, β, η, r−1ξ

)
+

(
K − 2

r2

)
(e3, re4)J+1eθ(ω) + l.o.t.

= ζ d/1(e3, re4)J+1
(
rβ, β, η, r−1ξ

)
+

(
K − 2

r2

)
d?/1(e3, re4)J+1ω̌ + l.o.t.,

• for the fourth term

(e3, re4)J+2eθ(ϑϑ) = (e3, re4)J+1eθ(ϑ d
?/2(ξ, rζ)) + (e3, re4)J+1eθ(ϑ d

?/2η) + l.o.t.

= ϑ d?/1 d
?/2(e3, re4)J+1(ξ, rζ) + ϑ d?/1 d

?/2(e3, re4)J+1η + l.o.t.

We infer

(e3, re4)J+2

(∫
S

eθ(µ)eΦ

)
=

2

r2
(e3, re4)J+2

(∫
S

ζeΦ

)
+

∫
S

d/2(e3, re4)J+1 d?/2(rβ, β)eΦ

+

∫
S

[(e3, re4)J+1, d/2] d?/2(rβ, β)eΦ +
3

2
ρ

∫
S

(e3, re4)J+1(reθ(κ), eθ(κ))eΦ

−3

2

∫
S

ρ̌ d?/1(e3, re4)J+1(rκ̌, κ̌)eΦ

+

∫
S

(
rϑ d?/1(e3, re4)J+1α, (rζ, ξ) d?/1(e3, re4)J+1β, (ζ, η) d?/1(e3, re4)J+1β, ϑ d?/1(e3, re4)J+1α

)
eΦ

+

∫
S

(
rα d?/1(e3, re4)J+1ϑ, β d?/1(e3, re4)J+1(rζ, ξ), β d?/1(e3, re4)J+1(ζ, η), α d?/1(e3, re4)J+1ϑ

)
eΦ

+

∫
S

ζ d/1(e3, re4)J+1
(
rβ, β, ζ, r−1ξ

)
eΦ +

∫
S

(
K − 2

r2

)
d?/1(e3, re4)J+1ω̌eΦ

+

∫
S

ϑ d?/1 d
?/2(e3, re4)J+1(ξ, rζ)eΦ +

∫
S

ϑ d?/1 d
?/2(e3, re4)J+1ζeΦ + l.o.t.

and after integrations by parts and the fact that

d/k(Fe
Φ) = d/k+1(F )eΦ, d?/k(Fe

Φ) = d?/k−1(F )eΦ,
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we obtain

(e3, re4)J+2

(∫
S

eθ(µ)eΦ

)
=

2

r2
(e3, re4)J+2

(∫
S

ζeΦ

)
+

∫
S

d?/1

(
[(e3, re4)J+1, d/2]

)
(rβ, β)eΦ

+
3

2
ρ

∫
S

(e3, re4)J+1(reθ(κ), eθ(κ))eΦ +
3

2

∫
S

d/2ρ(e3, re4)J+1(rκ̌, κ̌)eΦ

+

∫
S

(
r d/2ϑ(e3, re4)J+1α, d/2(rζ, ξ)(e3, re4)J+1β, d/2(ζ, η)(e3, re4)J+1β, d/2ϑ(e3, re4)J+1α

)
eΦ

+

∫
S

(
r d/2α(e3, re4)J+1ϑ, d/2β(e3, re4)J+1(rζ, ξ), d/2β(e3, re4)J+1(ζ, η), d/2α(e3, re4)J+1ϑ

)
eΦ

+

∫
S

d/1ζ(e3, re4)J+1
(
rβ, β, ζ, r−1ξ

)
eΦ +

∫
S

d/2

(
K − 2

r2

)
(e3, re4)J+1ω̌eΦ

+

∫
S

d/3 d/2ϑ(e3, re4)J+1(ξ, rζ)eΦ +

∫
S

d/3 d/2ϑ(e3, re4)J+1ζeΦ + l.o.t.

Together with the above estimate for the ` = 1 mode of ζ and the estimate of Step 1 for
κ, we infer

max
k≤J+2

∫ u∗

1

r2

(
dk
(∫

S

eθ(µ)eΦ

))2

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

+ max
k≤J+1

∫ u∗

1

r−4

(
dk
(∫

S

eθ(κ)eΦ

))2

.

In view of the dominant condition (3.3.4) for r on Σ∗, we infer

max
k≤J+2

∫ u∗

1

r2

(
dk
(∫

S

eθ(µ)eΦ

))2

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

+ε0 max
k≤J+1

∫ u∗

1

(
dk
(∫

S

eθ(κ)eΦ

))2

.

Next, in view of the remarkable identity for the ` = 1 mode of eθ(K), we have

−
∫
S

eθ(ρ)eΦ − 1

4

∫
S

eθ(κκ)eΦ +
1

4

∫
S

eθ(ϑϑ)eΦ = 0

and hence∫
S

eθ(κ)eΦ = −2r

∫
S

eθ(ρ)eΦ − r

2

∫
S

(
κ− 2

r

)
eθ(κ)eΦ − r

2

∫
S

κeθ(κ)eΦ +
r

2

∫
S

eθ(ϑϑ)eΦ.
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Arguing as for the estimate of the ` = 1 mode of eθ(µ), and using the smallness of ε0, we
infer

max
k≤J+2

∫ u∗

1

r2

(
dk
(∫

S

eθ(µ)eΦ

))2

+ max
k≤J+2

∫ u∗

1

(
dk
(∫

S

eθ(κ)eΦ

))2

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

We have thus obtained

max
k≤J+2

∫ u∗

1

(
r−2

(
dk
(∫

S

ζeΦ

))2

+ r2

(
dk
(∫

S

eθ(µ)eΦ

))2

+

(
dk
(∫

S

eθ(κ)eΦ

))2
)

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Step 3. Recall the GCM conditions d?/2 d
?/1κ = d?/2 d

?/1µ = 0 on Σ∗. This yields on Σ∗

eθ(µ) =

∫
S
eθ(µ)eΦ∫
S
e2Φ

eΦ, eθ(κ) =

∫
S
eθ(κ)eΦ∫
S
e2Φ

eΦ.

Together with Step 2, we infer

max
k≤J+2

∫
Σ∗

(
r4
(
( d/, νΣ∗)

kµ̌
)2

+ r2
(
( d/, νΣ∗)

kκ̌
)2
)

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Then, in view of the null structure equations for e4(µ̌) and e4(κ̌),

e4(µ̌) = −3

2
κµ̌− 3

2
µκ̌+ Err[e4µ̌]

e4(κ̌) = −1

2
κκ̌− 1

2
κκ̌+ 2µ̌+ 4ρ̌+ Err[e4κ̌],

we infer, together with the control of κ̌ provided by Step 1,

max
k≤J+2

∫
Σ∗

(
r4
(
dkµ̌
)2

+ r2
(
dkκ̌
)2
)

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Step 4. Recall that we have

d/1ζ = −µ̌− ρ̌+
1

4
ϑϑ.
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Differentiating, and using the Bianchi identities for e4(ρ̌) and e3(ρ̌), and the null structure
equations for e4(ϑ), e3(ϑ), e4(ϑ) and e3(ϑ), we infer

d/1d
kζ = −dkµ̌− dk−1 d/

(
ρ̌, β, r−1β

)
+

1

4
dk−1

(
d/(ϑϑ), r−1ϑ d/η, ϑ d/ζ, r−1ϑ d/ξ

)
+ l.o.t.

= −dkµ̌− d/dk−1
(
ρ̌, β, r−1β

)
+

1

4
d/
(
ϑdk−1(ϑ, r−1η)

)
+

1

4
d/
(
ϑdk−1(ϑ, ζ, r−1ξ)

)
+ l.o.t.

We infer, since d/1 is invertible in view of the corresponding Poincaré inequality,

dkζ = −r d/−1dkµ̌− dk−1
(
ρ̌, β, r−1β

)
+

1

4

(
ϑdk−1(ϑ, r−1η)

)
+

1

4

(
ϑdk−1(ϑ, ζ, r−1ξ)

)
+ l.o.t.

Together with the estimate for µ̌ of Step 3, this yields

max
k≤J+2

∫
Σ∗

r2(dkζ)2 .
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Step 5. Recall from the GCM condition that we have on Σ∗∫
S

ηeΦ = 0.

Together with the transport equation

e4(η − ζ) = −1

2
κ(η − ζ)− 1

2
ϑ(η − ζ),

we infer in view of the the estimates for ζ of Step 4,

max
k≤J+1

∫ u∗

1

r−4

(
dk
(∫

S

ηeΦ

))2

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Next, recall from Proposition 2.2.19 that η verifies

2 d/2 d
?/2η = κ

(
−e3(ζ) + β

)
− e3(eθ(κ))− κ

(
1

2
κζ − 2ωζ

)
+ 6ρη − κeθκ

− 1

2
κeθ(κ) + 2ωeθ(κ) + 2eθ(ρ) + Err[ d/2 d

?/2η],

Err[ d/2 d
?/2η] =

(
2 d/1η −

1

2
κϑ+ 2η2

)
η + 2eθ(η

2)− κ
(

1

2
ϑζ − 1

2
ϑξ

)
− 1

2
ϑeθ(κ)

−
(

2 d/1η −
1

2
ϑϑ+ 2η2

)
ζ − 1

2
eθ(ϑϑ)− 1

2
ϑ2ξ − 3

2
ϑϑη.



514 CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M6, M7, M8)

Together with the estimates for κ of Step 1, the estimates for κ of Step 3, and the estimates
for ζ of Step 4,

max
k≤J+1

∫
Σ∗

(
dk
(
r2 d/2 d

?/2η − r2eθ(ρ)− r2

2
d/2(η2)− r2eθ(η

2) + r2 d/1(ζη) +
1

4
r2eθ(ϑϑ)

))2

. max
k≤J+1

∫
Σ∗

r−2|dkη|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

In view of the dominant condition (3.3.4) for r on Σ∗, we infer

max
k≤J+1

∫
Σ∗

(
dk
(
r2 d/2 d

?/2η − r2eθ(ρ)− r2

2
d/2(η2)− r2eθ(η

2) + r2 d/1(ζη) +
1

4
r2eθ(ϑϑ)

))2

. ε
2
3
0 max
k≤J+1

∫
Σ∗

|dkη|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

This yields

max
k≤J+1

∫
Σ∗

(
r2 d/2 d

?/2d
kη + r d?/2[dk, r d/2]η + r d/2[dk, r d?/2]η

−r2eθ(d
kρ)− r2

2
d/2d

k(η2)− r2eθd
k(η2) + r2 d/1d

k(ζη) +
1

4
r2eθd

k(ϑϑ)

)2

. ε
2
3
0 max
k≤J+1

∫
Σ∗

|dkη|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

We deduce, using a Poincaré inequality for d/2,

max
k≤J+1

∫
Σ∗

(
r d?/2d

kη
)2
. ε

2
3
0 max
k≤J+1

∫
Σ∗

|dkη|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Together with a Poincaré inequality for r d?/2 and the above control of the ` = 1 mode of
η, we infer

max
k≤J+1

∫
Σ∗

(
dkη
)2
. ε

2
3
0 max
k≤J+1

∫
Σ∗

|dkη|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

,

and hence, for ε0 small enough,

max
k≤J+1

∫
Σ∗

(
dkη
)2
.

(
(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0

(Σ∗)GJ+1[Γ̌]
)2

.

Step 6. Recall from the GCM condition that we have on Σ∗∫
S

ξeΦ = 0.
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Together with the transport equation

e4(ξ) = −e3(ζ) + β − κζ − ζϑ,
we infer in view of the the estimates for ζ of Step 4, the estimates for β, and the bootstrap
assumptions

max
k≤J+1

∫ u∗

1

r−4

(
dk
(∫

S

ξeΦ

))2

.
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Next, from Proposition 2.2.19 that we have

2 d/2 d
?/2ξ = −e3(eθ(κ)) + κ

(
e3(ζ)− β

)
+ κ2ζ − 3

2
κeθκ+ 6ρξ − 2ωeθ(κ) + Err[ d/2 d

?/2ξ],

Err[ d/2 d
?/2ξ] =

(
2 d/1ξ +

1

2
κϑ+ 2ηξ − 1

2
ϑ2

)
η + 2eθ(ηξ)−

1

2
eθ(ϑ

2)

+ κ

(
1

2
ϑζ − 1

2
ϑξ

)
− 1

2
ϑeθκ−

1

2
ϑϑξ − ζ

(
2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ ξ

(
− ϑϑ− 2 d/1ζ + 2ζ2

)
− 6ηζξ − 6eθ(ζξ).

Together with the estimates for κ of Step 1, the estimates for κ of Step 3, and the estimates
for ζ of Step 4,

max
k≤J+1

∫
Σ∗

(
dk
(
r2 d/2 d

?/2ξ +
1

2
eθ(e3(κ̌))− η d/1ξ − eθ(ηξ) +

1

4
eθ(ϑ

2) + d/2(ζξ) + 3eθ(ζξ)

))2

. max
k≤J+1

∫
Σ∗

r−2|dkξ|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

In view of the dominant condition (3.3.4) for r on Σ∗, we infer

max
k≤J+1

∫
Σ∗

(
dk
(
r2 d/2 d

?/2ξ +
1

2
eθ(e3(κ̌))− η d/1ξ − eθ(ηξ) +

1

4
eθ(ϑ

2) + d/2(ζξ) + 3eθ(ζξ)

))2

. ε
2
3
0 max
k≤J+1

∫
Σ∗

|dkξ|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

This yields

max
k≤J+1

∫
Σ∗

(
r2 d/2 d

?/2d
kξ + r d?/2[dk, r d/2]ξ + r d/2[dk, r d?/2]ξ

+
1

2
eθ(d

ke3(κ̌))− d/1(ηdkξ)− eθdk(ηξ) +
1

4
eθd

k(ϑ2) + d/2d
k(ζξ) + 3eθd

k(ζξ)

)2

. ε
2
3
0 max
k≤J+1

∫
Σ∗

|dkξ|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.
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We deduce, using a Poincaré inequality for d/2 and the estimates for κ of Step 3,

max
k≤J+1

∫
Σ∗

(
r d?/2d

kξ
)2
. ε

2
3
0 max
k≤J+1

∫
Σ∗

|dkξ|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

.

Together with a Poincaré inequality for r d?/2 and the above control of the ` = 1 mode of
ξ, we infer

max
k≤J+1

∫
Σ∗

(
dkξ
)2
. ε

2
3
0 max
k≤J+1

∫
Σ∗

|dkξ|2 +
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0
(Σ∗)GJ+1[Γ̌]

)2

,

and hence, for ε0 small enough,

max
k≤J+1

∫
Σ∗

(
dkξ
)2
.

(
(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε0

(Σ∗)GJ+1[Γ̌]
)2

.

Step 7. Using the Codazzi for ϑ and ϑ, the transport equation for ϑ and ϑ in the e4 and
e3 direction, the control of κ̌ of Step 1, the control of κ̌ of Step 3, the control of ζ of Step
4, the control of η of Step 5, the control of ξ of Step 6, and a Poincaré inequality for d/2,
we infer

max
k≤J+1

∫
Σ∗

(
r2(dkϑ)2 + (dkϑ)2

)
.

(
(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε

2
3
0

(Σ∗)GJ+1[Γ̌]
)2

.

Step 8. Recall form Proposition 2.2.19 that ω verifies

2 d?/1ω = −1

2
κξ +

(
1

2
κ+ 2ω +

1

2
ϑ

)
η + e3(ζ)− β

+
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ.

Together with a Poincaré inequality for d?/1, the control of ξ from Step 6, the control of η
from Step 5, and the control of ζ from Step 4, we infer

max
k≤J+1

∫
Σ∗

|dkω̌|2 .
(

(Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε
2
3
0

(Σ∗)GJ+1[Γ̌]
)2

.

Finally, gathering the estimates of Step 1 to Step 8, we infer

(Σ∗)GJ+1[Γ̌] + (Σ∗)G′J+1[Γ̌] . (Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌] + ε
2
3
0

(Σ∗)GJ+1[Γ̌].

and hence, for ε0 small enough,

(Σ∗)GJ+1[Γ̌] + (Σ∗)G′J+1[Γ̌] . (Σ∗)RJ+1[Ř] + (Σ∗)GJ [Γ̌]

as desired. This concludes the proof of Proposition 8.8.1.
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8.8.2 Weighted estimates for transport equations along e4 in
(ext)M

Lemma 8.8.4. Let the following transport equation in (ext)M

e4(f) +
a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Also, let and δB > 0.
Then, f satisfies

sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

f 2

)
.

∫
Σ∗

r2a−2f 2 +

∫
(ext)M(≥4m0)

r2a−1+δBh2.

Proof. Multiply by f to obtain

1

2
e4(f 2) +

a

2
κf 2 = hf.

Next, integrate over Su,r to obtain

1

2
e4

(∫
Su,r

f 2

)
=

∫
Su,r

1

2
(e4(f 2) + κf 2)

= −
∫
Su,r

a− 1

2
κf 2 +

∫
Su,r

hf

= −a− 1

2
κ

∫
Su,r

f 2 − a− 1

2

∫
Su,r

κ̌f 2 +

∫
Su,r

hf

and hence

1

2
e4

(∫
Su,r

f 2

)
+
a− 1

2
κ

∫
Su,r

f 2 = −a− 1

2

∫
Su,r

κ̌f 2 +

∫
Su,r

hf.

Also, we multiply by r2a−2 which yields

1

2
e4

(
r2a−2

∫
Su,r

f 2

)
= −a− 1

2
r2a−2

∫
Su,r

κ̌f 2 + r2a−2

∫
Su,r

hf

where we used the fact that 2e4(r) = rκ. This yields

−e4

(
r2a−2

∫
Su,r

f 2

)
≤ r2a−3−δB

∫
Su,r

f 2 +
1

4
r2a−1+δB

∫
Su,r

h2
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and hence

−e4

(
e−δ

−1
B r−δB r2a−2

∫
Su,r

f 2

)
. e−δ

−1
B r−δB r2a−1+δB

∫
Su,r

h2

where we used the fact that 2e4(r) = rκ = 2 + O(ε0). Integrating between r = r0 and
r = r∗(u), where r∗(u) is such that Su,r∗(u) ⊂ Σ∗, we infer

r2a−2
0

∫
Su,r0

f 2 . r∗(u)2a−2

∫
Su,r∗(u)

f 2 +

∫ r∗(u)

r0

r2a−1+δB

∫
Su,r

h2. (8.8.1)

Remark 8.8.5. Note that we have the following consequences of the coarea formula

dΣ∗ = ς

√
2

ς
−Υ +

r

2
A dµu,Σ∗du, d{r = r0} =

ς
√−κ− A√

κ
dµu,r0du,

where we used in particular that Σ∗ = {u+ r = cΣ∗}. Also, we have in (ext)M

dM =
4ς2

r2κ2dµu,rdudr.

We infer, in (ext)M, using in particular the dominant condition of r on Σ∗,

dΣ∗ =
(

1 +O
(
ε

2
3
0

))
dµu,Σ∗du, d{r = r0} =

√
1− 2m0

r0

(1 +O(ε0)) dµu,r0du,

and

dM = (1 +O(ε0))dµu,rdudr.

Integrating (8.8.1) in u ∈ [1, u∗], and relying on Remark 8.8.5 we deduce for r0 ≥ 4m0

r2a−2
0

∫
{r=r0}

f 2 .
∫

Σ∗

r2a−2f 2 +

∫
(ext)M(r≥4m0)

r2a− 1
2h2

as desired. This concludes the proof of the lemma.

Corollary 8.8.6. Let the following transport equation in (ext)M
e4(f) +

a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Also, let and δB > 0.
Then, f satisfies for 5 ≤ k ≤ klarge + 1

sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(dkf)2

)
.

∫
Σ∗

r2a−2(d≤kf)2 + sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(d≤k−1f)2

)
+

∫
(ext)M(≥4m0)

r2a−1+δB(d≤kh)2

+

(
sup

(ext)M(≥4m0)

(
ra|d≤k−5f |

))2 (
(ext)G≥4m0

k−1 [Γ̌] + (ext)G≥4m0

k [κ̌]
)2

.
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Proof. We commute first differentiate the equation for f with ( d/,T)l and obtain

e4(( d/,T)lf) +
a

2
κ( d/,T)lf = hl,

hl := ( d/,T)lh− [( d/,T)l, e4]f − a

2
[( d/,T)l, κ]f.

In view of Lemma 8.8.4, we deduce

sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(( d/,T)lf)2

)
.

∫
Σ∗

r2a−2(dlf)2 +

∫
(ext)M(≥4m0)

r2a−1+δBh2
l .

Now, we have the following schematic commutation formulas

[ d/, e4] = Γgd + Γg, [T, e4] = r−1Γbd,

Together with the definition of hl and for 5 ≤ l ≤ klarge + 1, we deduce∫
(ext)M(≥4m0)

r2a−1+δBh2
l .

∫
(ext)M(≥4m0)

r2a−1+δB(dlh)2 + ε20

∫
(ext)M

r2a−5+δB(d≤lf)2

+

(
sup

(ext)M

(
ra|d≤l−5f |

))2 (
(ext)Gl−1[Γ̌] + (ext)Gl[κ̌]

)2

and hence

sup
r0≥rT

(
r2a−2

0

∫
{r=r0}

(( d/,T)lf)2

)
.

∫
Σ∗

r2a−2(dlf)2 +

∫
(ext)M

r2a−1+δB(dlh)2 + ε20

∫
(ext)M(≥4m0)

r2a−5+δB(d≤lf)2

+

(
sup

(ext)M(≥4m0)

(
ra|d≤l−5f |

))2 (
(ext)G≥4m0

l−1 [Γ̌] + (ext)G≥4m0

l [κ̌]
)2

or,

sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(( d/,T)lf)2

)
.

∫
Σ∗

r2a−2(dlf)2 +

∫
(ext)M(≥4m0)

r2a−1+δB(dlh)2 + ε20 sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(d≤lf)2

)

+

(
sup

(ext)M(≥4m0)

(
ra|d≤l−5f |

))2 (
(ext)G≥4m0

l−1 [Γ̌] + (ext)G≥4m0

l [κ̌]
)2

.

Together with the first equation which yields

re4(( d/,T)lf) +
a

2
rκ( d/,T)lf = rhl,
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and hence

(re4)j(( d/,T)lf) +
a

2
(re4)j−1

(
rκ( d/,T)lf

)
= (re4)j−1(rhl),

we infer, for ε0 > 0 small enough, and for 5 ≤ k ≤ klarge + 1,

sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(dkf)2

)
.

∫
Σ∗

r2a−2(d≤kf)2 +

∫
(ext)M(≥4m0)

r2a−1+δB(d≤kh)2 + sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(d≤k−1h)2

)
+ sup

r0≥4m0

(
r2a−2

0

∫
{r=r0}

(d≤k−1f)2

)

+

(
sup

(ext)M(≥4m0)

(
ra|d≤k−5f |

))2 (
(ext)G≥4m0

k−1 [Γ̌] + (ext)G≥4m0

k [κ̌]
)2

.

Using a trace estimate, we infer

sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(dkf)2

)
.

∫
Σ∗

r2a−2(d≤kf)2 +

∫
(ext)M(≥4m0)

r2a−1+δB(d≤kh)2 + sup
r0≥4m0

(
r2a−2

0

∫
{r=r0}

(d≤k−1f)2

)

+

(
sup

(ext)M(≥4m0)

(
ra|d≤k−5f |

))2 (
(ext)G≥4m0

k−1 [Γ̌] + (ext)G≥4m0

k [κ̌]
)2

as desired. This concludes the proof of the corollary.

Lemma 8.8.7. Let the following transport equation in (ext)M

e4(f) +
a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Let b > 2a− 2. Then,
f satisfies

sup
r0≥4m0

(
rb0

∫
{r=r0}

f 2

)
+

∫
(ext)M(≥4m0)

rb−1f 2 .
∫

Σ∗

rbf 2 +

∫
(ext)M(≥4m0)

rb+1h2.

Proof. Recall from Lemma 8.8.4 the following identity

1

2
e4

(∫
Su,r

f 2

)
+
a− 1

2
κ

∫
Su,r

f 2 = −a− 1

2

∫
Su,r

κ̌f 2 +

∫
Su,r

hf.
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We multiply by rb which yields

1

2
e4

(
rb
∫
Su,r

f 2

)
+

1

2

(
a− 1− b

2

)
κ

∫
Su,r

rbf 2 = −a− 1

2
rb
∫
Su,r

κ̌f 2 + rb
∫
Su,r

hf

where we used the fact that 2e4(r) = rκ. We choose b > 2a − 2 and integrate between
r = r0 and r = r∗(u), where r∗(u) is such that Su,r∗(u) ⊂ Σ∗, which yields∫

Su,r0

rbf 2 +

∫ r∗

r0

∫
Su,r

rb−1f 2 .
∫
Su,r∗

rbf 2 +

∫ r∗

r0

∫
Su,r

rb+1h2.

Then, integrating in u in u ∈ [1, u∗], and relying on Remark 8.8.5 we deduce for r0 ≥ 4m0,

rb0

∫
{r=r0}

f 2 +

∫
(ext)M∩{r≥r0}

rb−1f 2 .
∫

Σ∗

rbf 2 +

∫
(ext)M(≥4m0)

rb+1h2.

This concludes the proof of the lemma.

Corollary 8.8.8. Let the following transport equation in (ext)M

e4(f) +
a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Let b > 2a− 2. Then,
f satisfies for 5 ≤ l ≤ klarge + 1

sup
r0≥4m0

(
rb0

∫
{r=r0}

(dkf)2

)
+

∫
(ext)M(≥4m0)

rb−1(dkf)2

.
∫

Σ∗

rb(d≤kf)2 + sup
r0≥4m0

(
rb0

∫
{r=r0}

(d≤k−1f)2

)
+

∫
(ext)M(≥4m0)

rb−1(d≤kh)2

+

(
sup

(ext)M(≥4m0)

(
rb|d≤k−5f |

))2 (
(ext)G≥4m0

k−1 [Γ̌] + (ext)G≥4m0

k [κ̌]
)2

.

Proof. The proof is based on Lemma 8.8.7. It is similar to the one of Corollary 8.8.6 and
left to the reader.

Lemma 8.8.9. Let the following transport equation in (ext)M

e4(f) +
a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies

sup
rT ≤r0≤4m0

∫
{r=r0}

f 2 .
∫
{r=4m0}

f 2 +

∫
(ext)M(≤4m0)

h2.
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Proof. Let b > 2a− 2. Recall from Lemma 8.8.7 the following identity

1

2
e4

(
rb
∫
Su,r

f 2

)
+

1

2

(
a− 1− b

2

)
κ

∫
Su,r

rbf 2 = −a− 1

2
rb
∫
Su,r

κ̌f 2 + rb
∫
Su,r

hf.

Choosing b = 2a, we obtain

1

2
e4

(
rb
∫
Su,r

f 2

)
− 1

2
κ

∫
Su,r

rbf 2 = −a− 1

2
rb
∫
Su,r

κ̌f 2 + rb
∫
Su,r

hf.

Next, let 1 ≤ u ≤ u∗ and rT ≤ r0 ≤ 4m0. We now integrate in r0 ≤ r ≤ 4m0 and along
Cu in (ext)M. Since r is bounded on (ext)M(r ≤ 4m0) from above and below, we obtain,
for ε0 > 0 small enough, ∫

Su,r0

f 2 .
∫
Su,4m0

f 2 +

∫ 4m0

rT

∫
Su,r

h2.

We may now integrate in u to deduce∫ u∗

1

∫
Su,r0

f 2 .
∫ u∗

1

∫
Su,4m0

f 2 +

∫ u∗

1

∫ 4m0

rT

∫
Su,r

h2.

Relying on Remark 8.8.5 we deduce

sup
rT ≤r0≤4m0

∫
{r=r0}

f 2 .
∫
{r=4m0}

f 2 +

∫
(ext)M(≤4m0)

h2.

as desired. This concludes the proof of the lemma.

Corollary 8.8.10. Let the following transport equation in (ext)M

e4(f) +
a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies for
5 ≤ l ≤ klarge + 1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkf)2

.
∫
{r=4m0}

(d≤kf)2 + sup
rT ≤r0≤4m0

∫
{r=r0}

(d≤k−1f)2 +

∫
(ext)M(≤4m0)

(d≤kh)2

+

(
sup

(ext)M(r≤4m0)

(
|d≤k−5f |

))2 (
(ext)G≤4m0

k−1 [Γ̌] + (ext)G≤4m0

k [κ̌]
)2

.

Proof. The proof is based on Lemma 8.8.9. It is similar to the one of Corollary 8.8.6 and
left to the reader.
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8.8.3 Several identities

The goal of this section is to prove the identities below that will be used to avoid loosing
derivatives when controlling the weighted energies of the Ricci coefficients.

Lemma 8.8.11. We have

e4

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ 2κ
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

= −
(
−1

2
ϑ d?/2 + ζe4(Φ)− β

)
d?/1κ−

1

2
ϑ d/1 d

?/1κ+
1

2
d?/1(κ+ ϑ) d?/1κ+ ( d?/1κ)2

−2κϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌+ (κϑ+ 2α)
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌

+ϑ
[(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 , e4

]
ρ̌+ ϑ

(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
−1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ)− 1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

+
1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ+

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ,

e4

(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 2κ
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

= −3

2
µeθ(κ)− 1

2
ϑeθ(µ)− (κϑ+ 2α) d/2 d

?/2( d?/1 d/1)−1β

−ϑ
[
d/2 d

?/2( d?/1 d/1)−1, e4

]
β − ϑ d/2 d

?/2( d?/1 d/1)−1
(
κβ + 3ρζ + ϑβ

)
+ d?/3ϑ d

?/2 d/
−1
1 ρ̌− eθ

(
ϑ d?/2 d/

−1
1

(
−µ̌+

1

4
ϑϑ

))
− eθ

(
ϑ

(
1

8
κϑ+ ζ2

))
−2ζ d/1 d

?/1κ− 2eθ(κ) d?/2ζ − 2(κζ + β + ϑζ)ρ̌− 2ζ

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+2β d?/2ζ +

3

2
eθ
(
κζ2
)

+ 2κ
(
ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)
,

and

e4(eθ(κ)− 4β) + κ(eθ(κ)− 4β)

= 2eθ(µ) + 12ρζ − 1

2
κeθ(κ) + 4ϑβ − 1

2
ϑeθ(κ)− eθ(ϑϑ) + 2eθ(ζ

2)

= 2
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 12ρζ − 1

2
κeθ(κ)

−2ϑ d/2 d
?/2( d?/1 d/1)−1β + 2ζρ̌+ 4ϑβ − 1

2
ϑ(eθ(κ)− 4β)− 2ϑβ − eθ(ϑϑ) + 2eθ(ζ

2).
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Proof. Recall Raychadhuri

e4(κ) +
1

2
κ2 = −1

2
ϑ2.

We commute with d/1 d
?/1 which yields

e4( d/1 d
?/1κ) + 2κ d/1 d

?/1κ

= −
(
−1

2
ϑ d?/2 + ζe4(Φ)− β

)
d?/1κ−

1

2
ϑ d/1 d

?/1κ+
1

2
d?/1(κ+ ϑ) d?/1κ+ ( d?/1κ)2 − 1

2
d/1 d

?/1(ϑ2).

We have in view of Codazzi for ϑ

1

2
d/1 d

?/1(ϑ2) = d/1(ϑ d?/1ϑ)

=
1

2
d/1(ϑ d?/3ϑ− ϑ d/2ϑ)

=
1

2
d/1

(
ϑ d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ)− ϑ(−2β − d?/1κ+ κζ − ϑζ)

)
=

1

2
ϑ d/4 d

?/3 d/
−1
2 (−2β − d?/1κ+ κζ − ϑζ) +

1

2
ϑ d?/2(−2β − d?/1κ+ κζ − ϑζ)

−1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ−

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ

= −ϑ d/4 d
?/3 d/
−1
2 β − ϑ d?/2β +

1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ) +

1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

−1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ−

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ.

Together with Bianchi for e4(ρ̌), we infer

1

2
d/1 d

?/1(ϑ2) = −ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1

(
e4(ρ̌) +

3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+

1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ) +

1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

−1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ−

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ

= −ϑe4

((
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)
− ϑ

[(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 , e4

]
ρ̌

−ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+

1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ) +

1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

−1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ−

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ.
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In view of the null structure equation for e4(ϑ), we infer

1

2
d/1 d

?/1(ϑ2) = −e4

(
ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)
− (κϑ+ 2α)

(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌

−ϑ
[(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 , e4

]
ρ̌− ϑ

(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+

1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ) +

1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

−1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ−

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ.

This yields

e4

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ 2κ
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

= −
(
−1

2
ϑ d?/2 + ζe4(Φ)− β

)
d?/1κ−

1

2
ϑ d/1 d

?/1κ+
1

2
d?/1(κ+ ϑ) d?/1κ+ ( d?/1κ)2

−2κϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌+ (κϑ+ 2α)
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌

+ϑ
[(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 , e4

]
ρ̌+ ϑ

(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
−1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ)− 1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

+
1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ+

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ.

Next, recall that we have

e4µ+
3

2
κµ = −ϑ d?/2ζ − ϑ

(
1

8
κϑ+ ζ2

)
+

(
2eθ(κ)− 2β +

3

2
κζ

)
ζ

We commute with eθ which yields

e4(eθ(µ)) + 2κeθ(µ)

= −3

2
µeθ(κ)− 1

2
ϑeθ(µ)− eθ

(
ϑ d?/2 d/

−1
1

(
−µ̌− ρ̌+

1

4
ϑϑ

))
− eθ

(
ϑ

(
1

8
κϑ+ ζ2

))
+eθ

((
2eθ(κ)− 2β +

3

2
κζ

)
ζ

)
= −3

2
µeθ(κ)− 1

2
ϑeθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1 d?/1ρ+ d?/3ϑ d
?/2 d/
−1
1 ρ̌

−eθ
(
ϑ d?/2 d/

−1
1

(
−µ̌+

1

4
ϑϑ

))
− eθ

(
ϑ

(
1

8
κϑ+ ζ2

))
−2ζ d/1 d

?/1κ− 2eθ(κ) d?/2ζ − 2ζ d/1β + 2β d?/2ζ +
3

2
eθ
(
κζ2
)
.
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Now, using the Bianchi identities for e4(β) and e4(ρ̌), we have

ϑ d/2 d
?/2( d?/1 d/1)−1 d?/1ρ = −ϑ d/2 d

?/2( d?/1 d/1)−1
(
e4β + κβ + 3ρζ + ϑβ

)
= −e4

(
ϑ d/2 d

?/2( d?/1 d/1)−1β
)

+ e4(ϑ) d/2 d
?/2( d?/1 d/1)−1β − ϑ

[
d/2 d

?/2( d?/1 d/1)−1, e4

]
β

−ϑ d/2 d
?/2( d?/1 d/1)−1

(
κβ + 3ρζ + ϑβ

)
= −e4

(
ϑ d/2 d

?/2( d?/1 d/1)−1β
)
− (κϑ+ 2α) d/2 d

?/2( d?/1 d/1)−1β

−ϑ
[
d/2 d

?/2( d?/1 d/1)−1, e4

]
β − ϑ d/2 d

?/2( d?/1 d/1)−1
(
κβ + 3ρζ + ϑβ

)

and

ζ d/1β = ζ

(
e4(ρ̌) +

3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
= e4(ζρ̌)− e4(ζ)ρ̌+ ζ

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
= e4(ζρ̌) + (κζ + β + ϑζ)ρ̌+ ζ

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
.

We infer

e4

(
eθ(µ)) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 2κeθ(µ)

= −3

2
µeθ(κ)− 1

2
ϑeθ(µ)− (κϑ+ 2α) d/2 d

?/2( d?/1 d/1)−1β

−ϑ
[
d/2 d

?/2( d?/1 d/1)−1, e4

]
β − ϑ d/2 d

?/2( d?/1 d/1)−1
(
κβ + 3ρζ + ϑβ

)
+ d?/3ϑ d

?/2 d/
−1
1 ρ̌− eθ

(
ϑ d?/2 d/

−1
1

(
−µ̌+

1

4
ϑϑ

))
− eθ

(
ϑ

(
1

8
κϑ+ ζ2

))
−2ζ d/1 d

?/1κ− 2eθ(κ) d?/2ζ − 2(κζ + β + ϑζ)ρ̌− 2ζ

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+2β d?/2ζ +

3

2
eθ
(
κζ2
)
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and hence

e4

(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 2κ
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

= −3

2
µeθ(κ)− 1

2
ϑeθ(µ)− (κϑ+ 2α) d/2 d

?/2( d?/1 d/1)−1β

−ϑ
[
d/2 d

?/2( d?/1 d/1)−1, e4

]
β − ϑ d/2 d

?/2( d?/1 d/1)−1
(
κβ + 3ρζ + ϑβ

)
+ d?/3ϑ d

?/2 d/
−1
1 ρ̌− eθ

(
ϑ d?/2 d/

−1
1

(
−µ̌+

1

4
ϑϑ

))
− eθ

(
ϑ

(
1

8
κϑ+ ζ2

))
−2ζ d/1 d

?/1κ− 2eθ(κ) d?/2ζ − 2(κζ + β + ϑζ)ρ̌− 2ζ

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+2β d?/2ζ +

3

2
eθ
(
κζ2
)

+ 2κ
(
ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)
.

Finally, recall that we have

e4(κ) +
1

2
κκ = −2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

= 2µ+ 4ρ− ϑϑ+ 2ζ2.

We commute with eθ which yields

e4(eθ(κ)) + κeθ(κ) = 2eθ(µ) + 4eθ(ρ)− 1

2
κeθ(κ)− 1

2
ϑeθ(κ)− eθ(ϑϑ) + 2eθ(ζ

2).

Together with Bianchi for e4(β), we infer

e4(eθ(κ)− 4β) + κ(eθ(κ)− 4β)

= 2eθ(µ) + 12ρζ − 1

2
κeθ(κ) + 4ϑβ − 1

2
ϑeθ(κ)− eθ(ϑϑ) + 2eθ(ζ

2)

= 2
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 12ρζ − 1

2
κeθ(κ)

−2ϑ d/2 d
?/2( d?/1 d/1)−1β + 2ζρ̌+ 4ϑβ − 1

2
ϑ(eθ(κ)− 4β)− 2ϑβ − eθ(ϑϑ) + 2eθ(ζ

2).

This concludes the proof of the lemma.

8.8.4 Proof of Proposition 8.8.2

We introduce the following notation which will constantly appear on the RHS of the
equalities below

N≥4m0 [J, Γ̌, Ř] := (Σ∗)GJ+1[Γ̌] + (Σ∗)G′J+1[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌]

+ε0

(
(ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌]
)
. (8.8.2)
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Step 1. Recall that

e4(ϑ) + κϑ = −2α.

In view of Corollary 8.8.6 with a = 2, we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

r2
0

∫
{r=r0}

(dkϑ)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

.

Step 2. Next, recall that

e4(κ̌) + κ κ̌ = −1

4
ϑ2 +

1

4
ϑ

2 − κ̌2.

In view of Corollary 8.8.6 with a = 2, we have for any r0 ≥ 4m0

max
k≤J+2

sup
r0≥4m0

r2
0

∫
{r=r0}

(dkκ̌)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

where we have used the null structure equations for e4(ϑ), e3(ϑ) and d/2ϑ to avoid a loss
of one derivative for the RHS.

Step 3. Next, recall that

e4(ζ) + κζ = −β − ϑζ.

In view of Corollary 8.8.6 with a = 2, we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

r2
0

∫
{r=r0}

(dkζ)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

.

Step 4. Next, recall that

e4 (µ̌) +
3

2
κµ̌ = −3

2
µκ̌+ Err[e4µ̌].

In view of Corollary 8.8.6 with a = 3, commuting with d/ and T, we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

r4
0

∫
{r=r0}

(dkµ̌)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

where we used the estimates for κ̌ on (ext)M derived in Step 2.

Step 5. Next, recall that

e4(κ̌) +
1

2
κκ̌ = −1

2
κκ̌+ 2ρ̌− 2 d/1ζ + Err[e4κ̌].
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In view of Corollary 8.8.8 with a = 1 and b = 2−δB which satisfy the constraint b > 2a−2,
we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

(
r2−δB

0

∫
{r=r0}

(dkκ̌)2

)
+

∫
(ext)M(r≥4m0)

r1−δB(dkκ̌)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

where we used the estimates for κ̌ and µ̌ on (ext)M derived respectively in Step 2 and
Step 4.

Step 6. Next, recall that

e4(ϑ) +
1

2
κϑ = 2 d?/2ζ −

1

2
κϑ+ 2ζ2

= 2 d?/2 d/
−1
1

(
−µ− ρ+

1

4
ϑϑ

)
− 1

2
κϑ+ 2ζ2.

In view of Corollary 8.8.6 with a = 1, we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

∫
{r=r0}

(dkϑ)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

where we used the estimates for ϑ and µ̌ on (ext)M derived respectively in Step 1 and
Step 4.

Step 7. Next, recall that

e4(ω̌) = ρ̌+ 3ζ2 − 3ζ2 − κ̌ω̌.

In view of Corollary 8.8.8 with a = 0 and b = 0 which satisfy the constraint b > 2a − 2,
we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

(∫
{r=r0}

(dkω̌)2

)
+

∫
(ext)M(≥4m0)

r−1(dkω̌)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

.

Step 8. In order to estimate ξ in Step 9, we derive an estimate for e3(ζ) +β. Recall that
we have

e4(ζ) + κζ = −β − ϑζ.

Commuting with e3, we infer

e4(e3(ζ)) + [e3, e4]ζ + κe3(ζ) + e3(κ)ζ = −e3(β)− ϑζ.
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In view of the null structure equation for e3(κ), the Bianchi identity for e3(β) and the
commutator identity for [e3, e4], we infer

e4(e3(ζ)) +
(

2ωe4 + 4ζeθ

)
ζ + κe3(ζ) +

(
−1

2
κκ+ 2ωκ+ 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
ζ

= (κ− 2ω)β + d?/1ρ− 3ζρ+ ϑβ − ξα− ϑζ.

Together with the null structure equation for e4(ζ), the Bianchi identity for e4(β) to get
rid of the term d?/1ρ, and the definition of µ, we infer

e4(e3(ζ)) + 2ω (−κζ − β − ϑζ) + 4ζ d?/1 d/
−1
1

(
µ̌+ ρ̌− 1

4
ϑϑ+

1

4
ϑϑ

)
+κe3(ζ) +

(
−1

2
κκ+ 2ωκ− 2µ+ 2ζ2

)
ζ

= (κ− 2ω)β − e4(β)− κβ − 3ζρ− ϑβ − 3ζρ+ ϑβ − ξα− ϑζ.

and hence

e4(e3(ζ) + β) + κ(e3(ζ) + β)

= κβ +

(
1

2
κκ+ 2µ− 6ρ

)
ζ

−ϑβ + ϑβ − ξα− ϑζ + 2ωϑζ − 4ζ d?/1 d/
−1
1

(
µ̌+ ρ̌− 1

4
ϑϑ+

1

4
ϑϑ

)
− 2ζ3

In view of Corollary 8.8.6 with a = 2, we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

r2
0

∫
{r=r0}

(dk(e3(ζ) + β))2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

where we used the estimates for ζ derived in Step 3.

Step 9. Next, recall that we have

e4(ξ) = −e3(ζ) + β − κζ − ζϑ
= −(e3(ζ) + β) + 2β − κζ − ζϑ.

In view of Corollary 8.8.8 with a = 0 and b = −δB which satisfy the constraint b > 2a−2,
we have for any r0 ≥ 4m0

max
k≤J+1

sup
r0≥4m0

r−δB0

(∫
{r=r0}

(dkξ)2

)
+

∫
(ext)M(r≥4m0)

r−1−δB(dkξ)2 .
(
N≥4m0 [J, Γ̌, Ř]

)2

where we used the estimates for ζ and e3(ζ) + β on (ext)M derived respectively in Step 3
and Step 8.
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Step 10. Recall that we have

e4

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ 2κ
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

= −
(
−1

2
ϑ d?/2 + ζe4(Φ)− β

)
d?/1κ−

1

2
ϑ d/1 d

?/1κ+
1

2
d?/1(κ+ ϑ) d?/1κ+ ( d?/1κ)2

−2κϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌+ (κϑ+ 2α)
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌

+ϑ
[(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 , e4

]
ρ̌+ ϑ

(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
−1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ)− 1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

+
1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ+

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ.

In view of Corollary 8.8.6 with a = 4, we have

max
k≤J+1

sup
r0≥4m0

∫
{r=r0}

r6
0

(
dk
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
))2

.
(
N≥4m0 [J, Γ̌, Ř]

)2

where we have used

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the estimates of Step 2 to estimate the terms of the RHS with one derivative of κ̌,

• the fact that d/ζ = d/ d/−1
1 d/1ζ and the definition of µ to estimate terms of the RHS

with one angular derivative of ζ,

• the identity

d/ d?/1κ = d/ d/−1
1

(
ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ d/ d/−1
1

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

to estimate the terms of the RHS with two angular derivatives of κ̌.
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Step 11. Recall that we have

e4

(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 2κ
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

= −3

2
µeθ(κ)− 1

2
ϑeθ(µ)− (κϑ+ 2α) d/2 d

?/2( d?/1 d/1)−1β

−ϑ
[
d/2 d

?/2( d?/1 d/1)−1, e4

]
β − ϑ d/2 d

?/2( d?/1 d/1)−1
(
κβ + 3ρζ + ϑβ

)
+ d?/3ϑ d

?/2 d/
−1
1 ρ̌− eθ

(
ϑ d?/2 d/

−1
1

(
−µ̌+

1

4
ϑϑ

))
− eθ

(
ϑ

(
1

8
κϑ+ ζ2

))
−2ζ d/1 d

?/1κ− 2eθ(κ) d?/2ζ − 2(κζ + β + ϑζ)ρ̌− 2ζ

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+2β d?/2ζ +

3

2
eθ
(
κζ2
)

+ 2κ
(
ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)
.

In view of Corollary 8.8.6 with a = 4, we have

max
k≤J+1

sup
r0≥4m0

r6
0

∫
{r=r0}

(
dk
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

.
(
N≥4m0 [J, Γ̌, Ř]

)2

+ ε2
∫

(ext)M(≥4m0)

(
d≤J+1

(
eθ(κ)− 4β

))2
,

where we have used

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the estimates of Step 2 to estimate the terms of the RHS with one derivative of κ̌,

• the fact that d/ζ = d/ d/−1
1 d/1ζ and the definition of µ to estimate terms of the RHS

with one angular derivative of ζ,

• the fact that eθ(κ) = (eθ(κ) − 4β) + 4β to estimate the term with one angular
derivative of κ,

• the identity

d/ d?/1κ = d/ d/−1
1

(
ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ d/ d/−1
1

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

and the estimates of Step 10 to estimate the terms of the RHS with two angular
derivatives of κ̌.
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Step 12. Recall that we have

e4(eθ(κ)− 4β) + κ(eθ(κ)− 4β)

= 2eθ(µ) + 12ρζ − 1

2
κeθ(κ) + 4ϑβ − 1

2
ϑeθ(κ)− eθ(ϑϑ) + 2eθ(ζ

2)

= 2
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 12ρζ − 1

2
κeθ(κ)

−2ϑ d/2 d
?/2( d?/1 d/1)−1β + 2ζρ̌+ 4ϑβ − 1

2
ϑ(eθ(κ)− 4β)− 2ϑβ − eθ(ϑϑ) + 2eθ(ζ

2).

In view of Corollary 8.8.6 with a = 2, we have

max
k≤J+1

sup
r0≥4m0

r2
0

∫
{r=r0}

(
dk
(
eθ(κ)− 4β

))2

.
(
N≥4m0 [J, Γ̌, Ř]

)2

+

∫
(ext)M(≥4m0)

r4
(
d≤J+1

(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

,

where we have used

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the estimates of Step 2 to estimate the terms of the RHS with one derivative of κ̌,

• the fact that d/ζ = d/ d/−1
1 d/1ζ and the definition of µ to estimate terms of the RHS

with one angular derivative of ζ,

• the estimate for ζ of Step 3.

Together with the estimate of Step 11, we infer

max
k≤J+1

sup
r0≥4m0

r6
0

∫
{r=r0}

(
dk
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

+ max
k≤J+1

sup
r0≥4m0

r2
0

∫
{r=r0}

(
dk
(
eθ(κ)− 4β

))2
.

(
N≥4m0 [J, Γ̌, Ř]

)2

.

Finally, we have obtained

max
k≤J+1

sup
r0≥4m0

(∫
{r=r0}

(
r4

0(dkµ̌)2 + r2
0(dkϑ)2 + r2

0(dkζ)2 + r2
0(dk(e3(ζ) + β))2

+r2−δB
0 (dkκ̌)2 + (dkϑ)2 + (dkω̌)2 + r−δB0 (dkξ)2

))
.

(
N≥4m0 [J, Γ̌, Ř]

)2

,
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max
k≤J+2

sup
r0≥4m0

(
r2

0

∫
{r=r0}

(
dk
(
κ− 2

r

))2
)
.

(
N≥4m0 [J, Γ̌, Ř]

)2

,

and

max
k≤J+1

sup
rT ≤r0≤4m0

(∫
{r=r0}

{
r6

0

(
dk
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
))2

+r6
0

(
dk
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

+r2
0

(
dk
(
eθ(κ)− 4β

))2

})
.

(
N≥4m0 [J, Γ̌, Ř]

)2

.

In view of the definition (8.8.2) of N≥4m0 [J, Γ̌, Ř], and of the various norms, we infer

(ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌] . (Σ∗)GJ+1[Γ̌] + (Σ∗)G′J+1[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌]

+ε0

(
(ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌]
)

and hence, for ε0 small enough,

(ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌] . (Σ∗)GJ+1[Γ̌] + (Σ∗)G′J+1[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌].

This concludes the proof of Proposition 8.8.2.

8.8.5 Proof of Proposition 8.8.3

In the proof below, we will repeatedly use the following estimate

max
k≤J+1

∫
(ext)M(r≤4m0)

(dkf)2

. max
k≤J

∫
(ext)M(r≤4m0)

(
(dkf)2 + (dkNf)2 + (dke4f)2 + (dk d/f)2

)
(8.8.3)

which follows from the fact that d = ( d/, re4, e3) and e3 = Υe4− 2N, where we recall that

N =
1

2

(
Υe4 − e3

)
.

Also, we introduce the following notation which will constantly appear on the RHS of the
equalities below

N≤4m0 [J, Γ̌, Ř] := (ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌]

+ε0

(
(ext)G≤4m0

J+1 [Γ̌] + (ext)G≤4m0

J+1

′
[Γ̌]
)
. (8.8.4)
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Step 1. Recall that

e4(κ̌) + κκ̌ = Err[e4κ̌].

In view of Corollary 8.8.10, we have

max
k≤J+2

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkκ̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the null structure equations for e4(ϑ), e3(ϑ) and d/2ϑ to avoid loosing
one derivative.

Step 2. Next, recall that

e4 (µ̌) +
3

2
κµ̌ = −3

2
µκ̌+ Err[e4µ̌].

In view of Corollary 8.8.10, we have

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkµ̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for κ̌ of Step 1.

Step 3. Next, recall that

e4(ζ) + κζ = −β − ϑζ.

In view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(
(dke4ζ)2 + (dkζ)2

)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

.

Also, commuting first with N, and proceeding analogously, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkNζ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

Furthermore, in view of the definition of µ and a Poincaré inequality for d/1, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dk d/ζ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used a trace estimate and the estimate for µ̌ of Step 2. The above estimates,
together with (8.8.3), imply

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkζ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

.



536 CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M6, M7, M8)

Step 4. Recall that

e4(ϑ) + κϑ = −2α.

In view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(
(dke4ϑ)2 + (dkϑ)2

)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

.

Also, commuting first one time with N, and proceeding analogously, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkNϑ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

.

Furthermore, in view of Codazzi for ϑ, and a Poincaré inequality for d/2, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dk d/ϑ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used a trace estimate, and the estimate for κ̌ and ζ respectively in Step 1
and Step 3. The above estimates, together with (8.8.3), imply

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkϑ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

.

Step 5. Recall that we have

e4(κ̌) +
1

2
κκ̌ = −1

2
κκ̌− 2 d/1ζ + 2ρ̌+ Err[e4κ̌]

= −1

2
κκ̌+ 2µ̌+ 4ρ̌− 1

2
ϑϑ+ Err[e4κ̌].

In view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(
(dke4κ̌)2 + (dkκ̌)2

)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for κ̌ and µ̌ derived respectively in Step 1 and Step 2.
Also, commuting first one time with N, and proceeding analogously, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkNκ̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for κ̌ and µ̌ derived respectively in Step 1 and Step 2.
Furthermore, commuting the equation for e4(κ) once with eθ, we have

e4(eθ(κ)) + κeθ(κ) = −1

2
κeθ(κ) + 2eθ(µ) + 4eθ(ρ)− eθ(ϑϑ) + 2eθ(ζ

2)− 1

2
ϑeθ(κ).
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Together with the Bianchi identity for e4(β), we infer

e4(eθ(κ)− 4β) + κ(eθ(κ)− 4β) = −1

2
κeθ(κ) + 2eθ(µ) + 12ρζ

+4ϑβ − eθ(ϑϑ) + 2eθ(ζ
2)− 1

2
ϑeθ(κ).

In view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(
(dk(e4(eθ(κ)− 4β))2 + (dk(eθ(κ)− 4β))2

)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for κ̌, µ̌ and ζ derived respectively in Step 1, Step 2
and Step 3.

The above estimates, together with (8.8.3), imply

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkκ̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

+ max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkβ)2

.
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used a trace estimate on {r = r0} for rT ≤ r0 ≤ 4m0.

Step 6. Recall that we have

e4(ω̌) = ρ̌+ Err[e4ω̌].

In view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(
(dke4ω̌)2 + (dkω̌)2

)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

.

Also, commuting first one time with N, and proceeding analogously, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkNω̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

.

Step 7. Recall that we have

e4(e3(ζ) + β) + κ(e3(ζ) + β)

= κβ +

(
1

2
κκ+ 2µ− 6ρ

)
ζ

−ϑβ + ϑβ − ξα− ϑζ + 2ωϑζ − 4ζ d?/1 d/
−1
1

(
µ̌+ ρ̌− 1

4
ϑϑ+

1

4
ϑϑ

)
− 2ζ3
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Commuting first one time with N, and in view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkN(e3(ζ) + β))2
)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimate for ζ in Step 3.

Step 8. Recall that we have

e4(ξ) = −e3(ζ) + β − κζ − ζϑ.

In view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(
(dke4ξ)

2 + (dkξ)2
)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for ζ derived in Step 3. Also, commuting first one time
with N, and proceeding analogously, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkNξ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for e3(ζ) + β derived in Step 7.

Step 9. Recall

2 d?/1ω = e3ζ + κζ − β − 1

2
κξ + ϑζ − 1

2
ϑξ.

Using a Poincaré inequality for d?/1, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dk d/ω̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used a trace estimate and the estimate for ζ and ξ respectively in Step 3
and Step 8. The above estimates, together with the estimates for ω̌ of Step 6 and (8.8.3),
imply

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkω̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

.

Step 10. Recall that we have

e4(Ω̌) = −2ω̌ + κ̌Ω̌.
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In view of Corollary 8.8.10, we have

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkΩ̌)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for ω̌ derived in Step 9.

Step 11. Recall

2 d/1ξ = e3(κ̌) + κ κ̌+ 2ω κ̌+ 2κ ω̌ −
(

1

2
κκ− 2ρ

)
Ω̌− Err[e3κ̌].

Using a Poincaré inequality for d/1, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dk d/ξ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimates for κ̌, ω̌ and Ω̌ respectively in Step 5, Step 9 and Step
10. The above estimates, together with the estimates for ξ of Step 8 and (8.8.3), imply

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkξ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

.

Step 12. Recall that

e4(ϑ) +
1

2
κϑ = 2 d?/2ζ −

1

2
κϑ+ 2ζ2

= 2 d?/2 d/
−1
1

(
−µ̌− ρ̌+

1

4
ϑϑ− 1

4
ϑϑ

)
− 1

2
κϑ+ 2ζ2.

In view of Corollary 8.8.10, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(
(dke4ϑ)2 + (dkϑ)2

)
.

(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimate for µ̌ and ϑ respectively in Step 2 and Step 4. Also,
commuting first one time with N, and proceeding analogously, we infer

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkNϑ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used the estimate for µ̌ and ϑ respectively in Step 2 and Step 4. Further-
more, in view of Codazzi for ϑ, and a Poincaré inequality for d/2, we have

max
k≤J

sup
rT ≤r0≤4m0

∫
{r=r0}

(dk d/ϑ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2
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where we have used a trace estimate and the estimate for κ̌ and ζ respectively in Step 5
and Step 3. The above estimates, together with (8.8.3), imply

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(dkϑ)2 .
(
N≤4m0 [J, Γ̌, Ř]

)2

.

Step 13. Recall that we have

e4

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ 2κ
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

= −
(
−1

2
ϑ d?/2 + ζe4(Φ)− β

)
d?/1κ−

1

2
ϑ d/1 d

?/1κ+
1

2
d?/1(κ+ ϑ) d?/1κ+ ( d?/1κ)2

−2κϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌+ (κϑ+ 2α)
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌

+ϑ
[(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 , e4

]
ρ̌+ ϑ

(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
−1

2
ϑ d/4 d

?/3 d/
−1
2 (− d?/1κ+ κζ − ϑζ)− 1

2
ϑ d?/2(− d?/1κ+ κζ − ϑζ)

+
1

2
d?/3 d/

−1
2 (−2β − d?/1κ+ κζ − ϑζ) d?/3ϑ+

1

2
(−2β − d?/1κ+ κζ − ϑζ) d/2ϑ.

In view of Corollary 8.8.10, we have

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(
dk
(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
))2

.
(
N≤4m0 [J, Γ̌, Ř]

)2

where we have used

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the estimates of Step 1 to estimate the terms of the RHS with one derivative of κ̌,

• the fact that d/ζ = d/ d/−1
1 d/1ζ and the definition of µ to estimate terms of the RHS

with one angular derivative of ζ,

• the identity

d/ d?/1κ = d/ d/−1
1

(
ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ d/ d/−1
1

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

to estimate the terms of the RHS with two angular derivatives of κ̌.
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Step 14. Recall that we have

e4

(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 2κ
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

= −3

2
µeθ(κ)− 1

2
ϑeθ(µ)− (κϑ+ 2α) d/2 d

?/2( d?/1 d/1)−1β

−ϑ
[
d/2 d

?/2( d?/1 d/1)−1, e4

]
β − ϑ d/2 d

?/2( d?/1 d/1)−1
(
κβ + 3ρζ + ϑβ

)
+ d?/3ϑ d

?/2 d/
−1
1 ρ̌− eθ

(
ϑ d?/2 d/

−1
1

(
−µ̌+

1

4
ϑϑ

))
− eθ

(
ϑ

(
1

8
κϑ+ ζ2

))
−2ζ d/1 d

?/1κ− 2eθ(κ) d?/2ζ − 2(κζ + β + ϑζ)ρ̌− 2ζ

(
3

2
κρ̌+

3

2
ρκ̌− Err[e4ρ̌]

)
+2β d?/2ζ +

3

2
eθ
(
κζ2
)

+ 2κ
(
ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)
.

In view of Corollary 8.8.10, we have

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(
dk
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

.
(
N≤4m0 [J, Γ̌, Ř]

)2

+ ε2
∫

(ext)M(≤4m0)

(
d≤J+1

(
eθ(κ)− 4β

))2
,

where we have used

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the estimates of Step 1 to estimate the terms of the RHS with one derivative of κ̌,

• the fact that d/ζ = d/ d/−1
1 d/1ζ and the definition of µ to estimate terms of the RHS

with one angular derivative of ζ,

• the fact that eθ(κ) = (eθ(κ) − 4β) + 4β to estimate the term with one angular
derivative of κ,

• the identity

d/ d?/1κ = d/ d/−1
1

(
ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

+ d/ d/−1
1

(
d/1 d

?/1κ− ϑ
(
d/4 d

?/3 d/
−1
2 + d?/2

)
d/−1

1 ρ̌
)

and the estimates of Step13 to estimate the terms of the RHS with two angular
derivatives of κ̌.
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Step 15. Recall that we have

e4(eθ(κ)− 4β) + κ(eθ(κ)− 4β)

= 2eθ(µ) + 12ρζ − 1

2
κeθ(κ) + 4ϑβ − 1

2
ϑeθ(κ)− eθ(ϑϑ) + 2eθ(ζ

2)

= 2
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
)

+ 12ρζ − 1

2
κeθ(κ)

−2ϑ d/2 d
?/2( d?/1 d/1)−1β + 2ζρ̌+ 4ϑβ − 1

2
ϑ(eθ(κ)− 4β)− 2ϑβ − eθ(ϑϑ) + 2eθ(ζ

2).

In view of Corollary 8.8.10, we have

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(
dk
(
eθ(κ)− 4β

))2

.
(
N≤4m0 [J, Γ̌, Ř]

)2

+

∫
(ext)M(≤4m0)

(
d≤J+1

(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

.

where we have used

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the fact that d/ϑ = d/ d/−1
2 d/2ϑ and Codazzi for ϑ to estimate the terms of the RHS

with one angular derivative of ϑ,

• the estimates of Step 1 to estimate the terms of the RHS with one derivative of κ̌,

• the fact that d/ζ = d/ d/−1
1 d/1ζ and the definition of µ to estimate terms of the RHS

with one angular derivative of ζ,

• the estimate for ζ of Step 3.

Together with the estimate of Step 14, we infer

max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(
dk
(
eθ(µ) + ϑ d/2 d

?/2( d?/1 d/1)−1β + 2ζρ̌
))2

+ max
k≤J+1

sup
rT ≤r0≤4m0

∫
{r=r0}

(
dk
(
eθ(κ)− 4β

))2
.

(
N≤4m0 [J, Γ̌, Ř]

)2

.

In view of Step 1 to Step 15, of the definition (8.8.4) of N≤4m0 [J, Γ̌, Ř], and of the various
norms, we infer

(ext)G≤4m0

J+1 [Γ̌] + (ext)G≤4m0

J+1

′
[Γ̌] . (ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌]

+ε0

(
(ext)G≤4m0

J+1 [Γ̌] + (ext)G≤4m0

J+1

′
[Γ̌]
)
.
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and hence, for ε0 small enough,

(ext)G≤4m0

J+1 [Γ̌] + (ext)G≤4m0

J+1

′
[Γ̌] . (ext)G≥4m0

J+1 [Γ̌] + (ext)G≥4m0

J+1

′
[Γ̌] + (ext)RJ+1[Ř] + (ext)GJ [Γ̌].

This concludes the proof of Proposition 8.8.3.

8.9 Proof of Proposition 8.3.11

To prove Proposition 8.3.11, we rely on the following proposition.

Proposition 8.9.1. Let J such that ksmall − 2 ≤ J ≤ klarge − 1. Then, we have

(int)GJ+1[Γ̌] + (int)G′J+1[Γ̌] . (ext)GJ+1[Γ̌] + (ext)G′J+1[Γ̌] + (int)RJ+1[Ř]

+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

,

where the notation (ext)G′J+1[Γ̌] has been introduced in Proposition 8.8.2, and where we
have introduced the notation

(int)G′k[Γ̌] :=

∫
(int)M

[ (
dkeθ(κ)

)2
+ (d≤kµ̌)2 +

(
dk (e4(ζ)− β)

)2
]
.

The proof of Proposition 8.9.1 is postponed to section 8.9.2. It will rely in particular on
basic weighted estimates for transport equations along e3 in (int)M derived in section 8.9.1.

We now conclude the proof of Proposition 8.3.11. In view of Proposition 8.9.1, we have

(int)GJ+1[Γ̌] . (ext)GJ+1[Γ̌] + (ext)G′J+1[Γ̌] + (int)RJ+1[Ř]

+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

Also, we have in view of Proposition 8.8.1, Proposition 8.8.2 and the iteration assumption
(8.3.13)

(ext)GJ+1[Γ̌] + (ext)G′J+1[Γ̌] . (ext)RJ+1[Ř] + εB[J ].

We infer

(int)GJ+1[Γ̌] . (int)RJ+1[Ř] + (ext)RJ+1[Ř] + εB[J ] +

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.
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Together with Proposition 8.3.10, we deduce

(int)GJ+1[Γ̌] . εB[J ] + ε0

(
N

(En)
J+1 +N (match)

J+1

)
+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

which concludes the proof of Proposition 8.3.11.

The rest of this section is dedicated to the proof of Proposition 8.9.1.

8.9.1 Weighted estimates for transport equations along e3 in
(int)M

Lemma 8.9.2. Let the following transport equation in (int)M

e3(f) +
a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies∫
(int)M

f 2 .
∫
T
f 2 +

∫
(int)M

h2.

Proof. Multiply by f to obtain

1

2
e3(f 2) +

a

r
f 2 = hf.

Next, integrate over Su,r to obtain

1

2
e3

(∫
Su,r

f 2

)
=

∫
Su,r

1

2
(e3(f 2) + κf 2)

= −
∫
Su,r

a− 1

2
κf 2 +

∫
Su,r

hf

= −a− 1

2
κ

∫
Su,r

f 2 − a− 1

2

∫
Su,r

κ̌f 2 +

∫
Su,r

hf

and hence

1

2
e3

(
rb
∫
Su,r

f 2

)
+

1

2

(
a+ 1 +

b

2

)
κrb
∫
Su,r

f 2 = −a− 1

2
rb
∫
Su,r

κ̌f 2 + rb
∫
Su,r

hf
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where we used the fact that 2e3(r) = rκ. Also, choosing b = −2a, we obtain

1

2
e3

(
r−2a

∫
Su,r

f 2

)
+

1

2
κr−2a

∫
Su,r

f 2 = −a− 1

2
r−2a

∫
Su,r

κ̌f 2 + r−2a

∫
Su,r

hf.

Next, let 1 ≤ u ≤ u∗. We now integrate in r and along Cu in (int)M. Since r is bounded

on (int)M from above and below, we obtain, for ε0 > 0 small enough,∫ rT

2m0−2m0δ0

∫
Su,r

f 2 .
∫
Su,rT

f 2 +

∫ rT

2m0−2m0δ0

∫
Su,r

h2.

We may now integrate in u to deduce∫ u∗

1

∫ rT

2m0−2m0δ0

∫
Su,r

f 2 .
∫ u∗

1

∫
Su,rT

f 2 +

∫ u∗

1

∫ rT

2m0−2m0δ0

∫
Su,r

h2. (8.9.1)

Remark 8.9.3. Note that we have the following consequence of the coarea formula

dT =
ς
√
κ+ A√−κ dµurT du,

where we used that T = {r = rT }. Also, we have in (int)M

dM =
4ς2

r2κ2dµu,rdudr.

We infer, in (int)M,

dT =

√
1− 2m0

rT
(1 +O(ε0)) dµu,r0du,

and

dM = (1 +O(ε0))dµu,rdudr.

Relying on Remark 8.9.3 we deduce from (8.9.1)∫
(int)M

f 2 .
∫
T
f 2 +

∫
(int)M

h2

as desired. This concludes the proof of the lemma.
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Corollary 8.9.4. Let the following transport equation in (int)M
e3(f) +

a

2
κf = h

where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies for
5 ≤ l ≤ klarge + 1∫

(int)M
(dkf)2 .

∫
T

(d≤kf)2 +

∫
(int)M

(d≤k−1f)2

+

∫
(int)M

(d≤kh)2 +

(
sup

(int)M
|d≤k−5f |

)2 (
(int)Gk−1[Γ̌] + (int)Gk[κ̌]

)2

.

Proof. The proof is based on Lemma 8.9.2. It is similar to the one of Corollary 8.8.6 and
left to the reader.

8.9.2 Proof of Proposition 8.9.1

We introduce the following notation which will constantly appear on the RHS of the
equalities below

N (int)[J, Γ̌, Ř] := (ext)GJ+1[Γ̌] + (ext)G′J+1[Γ̌] + (int)RJ+1[Ř]

+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

+ ε0

(
(int)GJ+1[Γ̌] + (int)G′J+1[Γ̌]

)
.(8.9.2)

Step 1. In view of Lemma 7.7.1 relating the Ricci coefficients and curvature components
of (int)M to the ones of (ext)M on the timelike hypersurface T , we have∫

T

∣∣dJ+1((int)Γ̌)
∣∣2 . ∫

T
|dJ+1((ext)Γ̌)|2.

Also, using again Lemma 7.7.1, we have∫
T

∣∣∣dJ+1
(

(int)eθ(
(int)κ), (int)µ̌, (int)e4((int)ζ − (int)β)

)∣∣∣2
.

∫
T

∣∣∣dJ+1
(

(ext)eθ(
(int)κ)− 4(ext)β, (int)µ̌, (int)e3((int)ζ) + (int)β

)∣∣∣2 +

∫
T
|dJ+1((ext)Ř)|2

We deduce, using that T = {r = rT } and the definitions of the various norms on (ext)M,∫
T

∣∣dJ+1((int)Γ̌)
∣∣2 +

∫
T

∣∣∣dJ+1
(

(int)eθ(
(int)κ), (int)µ̌, (int)e4((int)ζ − (int)β)

)∣∣∣2
. (ext)GJ+1[Γ̌] + (ext)G′J+1[Γ̌] +

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.
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and hence, in view of (8.9.2),∫
T

∣∣dJ+1((int)Γ̌)
∣∣2 +

∫
T

∣∣∣dJ+1
(

(int)eθ(
(int)κ), (int)µ̌, (int)e4((int)ζ − (int)β)

)∣∣∣2
.

(
N (int)[J, Γ̌, Ř]

)2

.

From now on, we only consider the frame of (int)M. The previous estimate can be written
as

max
k≤J+1

(∫
T

(
(dkµ̌)2 + (dkζ)2 + (dkκ̌)2 + (dkϑ)2 + (dkκ̌)2 + (dkϑ)2

+(dk(e4(ζ)− β))2 + (dkξ)2 + (dkω̌)2 + (dkΩ̌)2
))

.
(
N (int)[J, Γ̌, Ř]

)2

and

max
k≤J+1

∫
T

(dkeθ(κ))2 .
(
N (int)[J, Γ̌, Ř]

)2

.

Step 2. We have obtained all the desired estimates on T for the foliation of (int)M in
Step 1. We now derive the desired estimates on (int)M. To this end, we rely on the
transport equations in the e3 directions which we estimate thanks to Corollary 8.9.4. The
initial data on T is estimated thanks to Step 1. In particular, we proceed in the following
order

• From

e3(κ̌) + κ κ̌ = Err[e3κ̌]

and the bootstrap assumptions, we infer

max
k≤J+1

∫
(int)M

(dkκ̌)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(eθ(κ)) +
3

2
κeθ(κ) = −1

2
ϑeθ(κ)− 1

2
eθ(ϑ

2)

and the bootstrap assumptions, we infer

max
k≤J+1

∫
(int)M

(dkeθ(κ))2 .
(
N (int)[J, Γ̌, Ř]

)2

.
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• From

e3(µ̌) +
3

2
κ µ̌ = −3

2
µ κ̌+ Err[e3µ̌],

the above control of κ̌ and eθ(κ) (the control of eθ(κ) is needed to estimate Err[e3µ̌]),
and the bootstrap assumptions, we infer

max
k≤J+1

∫
(int)M

(dkµ̌)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(ϑ) + κϑ = −2α

and the control of α, we infer

max
k≤J+1

∫
(int)M

(dkϑ)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(ζ) + κζ = β − ϑζ

the control of β, and the bootstrap assumptions, we infer

max
k≤J+1

∫
(int)M

(dkζ)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(κ̌) +
1

2
κκ̌ = −1

2
κκ̌+ 2 d/1ζ + 2ρ̌+ Err[e3κ̌]

= −1

2
κκ̌+ 2µ̌+ 4ρ̌− 1

2
ϑϑ+

1

2
ϑϑ+ Err[e3κ̌],

the control of ρ̌, the above control of κ̌ and µ̌, and the bootstrap assumptions, we
infer

max
k≤J+1

∫
(int)M

(dkκ̌)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(ϑ) +
1

2
κϑ = 2 d?/2ζ −

1

2
κϑ+ 2ζ2

= 2 d?/2 d/
−1
1

(
µ̌+ ρ̌− 1

4
ϑϑ+

1

4
ϑϑ

)
− 1

2
κϑ+ 2ζ2,
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the control of ρ̌, the above control of ϑ and µ̌, and the bootstrap assumptions, we
infer

max
k≤J+1

∫
(int)M

(dkϑ)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(ω̌) = ρ̌+ Err[e3ω̌],

the control of ρ̌, and the bootstrap assumptions, we infer

max
k≤J+1

∫
(int)M

(dkω̌)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(e4(ζ)− β) + κ(e4(ζ)− β)

= −κβ +

(
1

2
κκ+ 2µ− 6ρ

)
ζ

+ϑβ − ϑβ + ξα− ϑζ + 2ωϑζ − 4ζ d?/1 d/
−1
1

(
µ̌+ ρ̌− 1

4
ϑϑ+

1

4
ϑϑ

)
− 2ζ3,

the control of β, the above control of ζ, and the bootstrap assumptions, we infer

max
k≤J+1

∫
(int)M

(dk(e4(ζ)− β))2 .
(
N (int)[J, Γ̌, Ř]

)2

.

• From

e3(ξ) = (e4(ζ)− β) + 2β + κζ + ϑζ,

the control of β, the above control of e4(ζ)−β and ζ, and the bootstrap assumptions,
we infer

max
k≤J+1

∫
(int)M

(dkξ)2 .
(
N (int)[J, Γ̌, Ř]

)2

.

In view of the above estimates, of the definition (8.9.2) of N≤4m0 [J, Γ̌, Ř], and of the
various norms, we infer

(int)GJ+1[Γ̌] + (int)G′J+1[Γ̌] . (ext)GJ+1[Γ̌] + (ext)G′J+1[Γ̌] + (int)RJ+1[Ř]

+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

+ ε0

(
(int)GJ+1[Γ̌] + (int)G′J+1[Γ̌]

)
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and hence, for ε0 small enough,

(int)GJ+1[Γ̌] + (int)G′J+1[Γ̌] . (ext)GJ+1[Γ̌] + (ext)G′J+1[Γ̌] + (int)RJ+1[Ř]

+

(∫
T
|dJ+1((ext)Ř)|2

) 1
2

.

This concludes the proof of Proposition 8.9.1.

8.10 Proof of Proposition 8.3.12

Lemma 4.6.6 corresponds to the particular case J = klarge − 1 of Proposition 8.3.12. Its
proof in section 4.6.2 extends immediately to the case ksmall − 2 ≤ J ≤ klarge − 1 which
thus yields the proof of Proposition 8.3.12.



Chapter 9

GCM PROCEDURE

9.1 Preliminaries

We consider an axially symmetric polarized spacetime regions R foliated by two functions
(u, s) such that

• On R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4.

• We denote by (e3, e4, eθ) the null frame adapted to the outgoing geodesic foliation
(u, s) on R.

• Let

◦
S := S(

◦
u,
◦
s) (9.1.1)

and
◦
r the area radius of

◦
S, where S(u, s) denote the 2-spheres of the outgoing

geodesic foliation (u, s) on R.

• In adapted coordinates (u, s, θ, ϕ) with b = 0, see Proposition 2.2.20, the spacetime
metric g in R takes the form, with Ω = e3(s), b = e3(θ),

g = −2ςduds+ ς2Ωdu2 + γ

(
dθ − 1

2
ςbdu

)2

+ e2Φdϕ2, (9.1.2)

where θ is chosen such that b = e4(θ) = 0.

551



552 CHAPTER 9. GCM PROCEDURE

• The spacetime metric induced on S(u, s) is given by,

g/ = γdθ2 + e2Φdϕ2. (9.1.3)

• The relation between the null frame and coordinate system is given by

e4 = ∂s, e3 =
2

ς
∂u + Ω∂s + b∂θ, eθ = γ−1/2∂θ. (9.1.4)

• We denote the induced metric on
◦
S by

◦
g/ =

◦
γ dθ2 + e2Φdϕ2.

Definition 9.1.1. Let 0 <
◦
δ ≤ ◦ε two sufficiently small constants. Let (

◦
u,
◦
s) real numbers

so that

1 ≤ ◦
u < +∞, 4m0 ≤

◦
s < +∞. (9.1.5)

We define R = R(
◦
δ,
◦
ε) to be the region

R :=
{
|u− ◦u| ≤ δR, |s− ◦s| ≤ δR

}
, δR :=

◦
δ
(◦
ε
)− 1

2 , (9.1.6)

such that assumption A1-A3 below with constant
◦
ε on the background foliation of R, are

verified. The smaller constant
◦
δ controls the size of the GCMS quantities as it will be

made precise below.

In this section we define the renormalized Ricci and curvature components,

Γ̌ : =

{
κ̌, ϑ, ζ, η, κ− 2

r
, κ+

2Υ

r
, κ̌, ϑ, ξ, ω̌, ω − m

r2
, Ω̌,

(
Ω + Υ

)
,
(
ς + 1

)}
,

Ř : =

{
α, β, ρ̌, ρ+

2m

r3
, β, α

}
.

Since our foliation is outgoing geodesic we also have,

ξ = ω = 0, η + ζ = 0. (9.1.7)

We decompose Γ̌ = Γg ∪ Γb where,

Γg =

{
κ̌, ϑ, ζ, κ̌, κ− 2

r
, κ+

2Υ

r
,

}
,

Γb =
{
η, ϑ, ξ, ω̌, ω − m

r2
, r−1Ω̌, r−1ς̌ , r−1

(
Ω + Υ

)
, r−1

(
ς − 1

)}
.

(9.1.8)
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Given a p-reduced scalar f ∈ sp(M), with respect to the given geodesic foliation on R,
we consider the following norms on spheres S = S(u, r) ⊂ R,

‖f‖∞(u, r) : = ‖f‖
L∞
(
S(u,r)

), ‖f‖2(u, r) := ‖f‖
L2
(
S(u,r)

),
‖f‖∞,k(u, r) =

k∑
i=0

‖dif‖∞(u, r), ‖f‖2,k(u, r) =
k∑
i=0

‖dif‖2(u, r).
(9.1.9)

where, we recall, that di stands for any combination of length i of operators of the from
e3, re4, d/. Recall that,

d/sf =

{
r2p4/ pk, if s = 2p,

r2p+1 d/k4/ pk, if s = 2p+ 1.
(9.1.10)

On a given polarized surface S ⊂ R, not necessarily a leaf S of the given foliation, we
define

‖f‖hqs(S) : =
s∑
i=0

‖
(
d/S
)i
f‖Lq(S). (9.1.11)

where d/S is defined as above with respect to the intrinsic metric on S. In the particular
case when q = 2 we omit the upper index i.e., hs(S) = h2

s(S).

9.1.1 Main assumptions

Given an integer smax, we assume the following1

A1. For all k ≤ smax, we have on R

‖Γg‖k,∞ .
◦
εr−2,

‖Γb‖k,∞ .
◦
εr−1,

(9.1.12)

and,

‖α, β, ρ̌, µ̌‖k,∞ .
◦
εr−3,

‖e3(α, β)‖k−1,∞ .
◦
εr−4,

‖β‖k,∞ .
◦
εr−2,

‖α‖k,∞ .
◦
εr−1.

(9.1.13)

1In applications, smax = ksmall + 4 in Theorem M7, and smax = klarge + 5 in Theorem M0 and
Theorem M6.



554 CHAPTER 9. GCM PROCEDURE

A2. We have, with m0 denoting the mass of the unperturbed spacetime,

sup
R

∣∣∣∣ mm0

− 1

∣∣∣∣ . ◦
ε. (9.1.14)

A3. The metric coefficients are assumed to satisfy the following assumptions in R, for
all k ≤ smax

r

∥∥∥∥( γr2
− 1, b,

eΦ

r sin θ
− 1

)∥∥∥∥
∞,k

+ ‖Ω + Υ‖∞,k + ‖ς − 1‖∞,k .
◦
ε. (9.1.15)

Remark 9.1.2. The above assumptions imply in particular the following

|e4(r)|, |e3(r)| . 1, e4(s) = 1 +O(
◦
ε), e3(u) = 2 +O(

◦
ε), e4(u) = 0.

Hence, since r =
◦
r at (

◦
u,
◦
s), we infer

|r − ◦r| . |s− ◦s|+ |u− ◦u|,

and thus, in view of the definition (9.1.6) of R,

sup
R
|r − ◦r| .

◦
δ
(◦
ε
)− 1

2 . (9.1.16)

We will make use of the following lemma, see Lemmas 4.3.3 and 4.3.4.

Lemma 9.1.3. Under the assumption A3 for the metric coefficients we have,

r
∣∣eθ(Φ)

∣∣ ≤ 2
sinθ

, 1
sin θ

≤ 2 (r|eθΦ|+ 1) . (9.1.17)

Moreover, for any reduced 1-scalar h, we have

sup
S

|h|
eΦ
. r−1 supS(|h|+ | d/h|),

∥∥ h
eΦ

∥∥
L2(S)

. r−1‖h‖h1(S). (9.1.18)

9.1.2 Elliptic Hodge lemma

We shall often make use of the results of Proposition 2.1.30 and Lemma 2.1.35 which we
rewrite as follows.

Lemma 9.1.4. Under the assumptions A1,A3 the following elliptic estimates hold true
for the Hodge operators d/1, d/2, d

?/1, d
?/2, for all k ≤ smax
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1. If f ∈ s1(S)

‖ d/f‖hk(S) + ‖f‖hk(S) . r‖ d/1f‖hk(S).

2. If f ∈ s2(S)

‖ d/f‖hk(S) + ‖f‖hk(S) . r‖ d/2f‖hk(S).

3. If f ∈ s0(S)

‖ d/f‖hk(S) . r‖ d?/1 f‖hk(S).

4. If f ∈ s1(S)

‖f‖hk+1(S) . r‖ d?/2 f‖hk(S) + r−2

∣∣∣∣∫
S

eΦf

∣∣∣∣ .
5. If f ∈ s1(S) ∥∥∥∥f −

∫
S
feΦ∫

S
e2Φ

eΦ

∥∥∥∥
hk+1(S)

. r‖ d?/2 f‖hk(S).

We shall often make use fo the following non-sharp product estimate on S, see Proposition
2.1.40.

Lemma 9.1.5. The following estimates hold true on a given polarized surface S ⊂ R,
for any contraction between two reduced scalars ψ1, ψ2, k ≥ 2,

‖ψ1 · ψ2‖hk(S) . r−1‖ψ1‖hk(S)‖ψ1‖hk(S).

9.2 Deformations of S surfaces

9.2.1 Deformations

Recall that
◦
S = S(

◦
u,
◦
s) is a fixed sphere of the (u, s) outgoing geodesic foliation of a fixed

spacetime region R = R(
◦
ε,
◦
δ).
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Definition 9.2.1. We say that S is an O(
◦
ε) Z-polarized deformation of

◦
S if there exists

a map Ψ :
◦
S −→ S of the form,

Ψ(
◦
u,
◦
s, θ, ϕ) =

(◦
u+ U(θ),

◦
s+ S(θ), θ, ϕ

)
(9.2.1)

where U, S are functions defined on the interval [0, π] of amplitude at most
◦
ε, leading to

a smooth surface S. We denote by ψ the reduce map defined on the interval [0, π],

ψ(θ) = (
◦
u+ U(θ),

◦
s+ S(θ), θ). (9.2.2)

We restrict ourselves to deformations which fix the South Pole, i.e.

U(0) = S(0) = 0. (9.2.3)

9.2.2 Pull-back map

We recall that given a scalar function f on S one defines its pull-back on
◦
S to be the

function,

f# := Ψ#f = f ◦Ψ.

On the other hand, given a vectorfield X on
◦
S one defines its push-forward Ψ#X to be

the vectorfield on S defined by,

Ψ#X(f) = X(Ψ#f) = X(f ◦Ψ).

Given a covariant tensor U on S, one defines its pull back to
◦
S to be the tensor

Ψ#U(X1, . . . , Xk) = U(Ψ#X1, . . . ,Ψ#Xk).

Lemma 9.2.2. Given a Z-invariant deformation Ψ :
◦
S −→ S, we have,

1. Let g/ S the induced metric on S and g/ S,# = γS,#dθ2 + e2Φ#
dϕ2 its pull-back to

◦
S.

The metric coefficients γS and γS,# are related by,

γS,#(θ) = γS (ψ(θ)) = γS (
◦
u+ U(θ),

◦
s+ S(θ), θ) (9.2.4)

where γS is defined implicitly by,

(γS )# = γ# +
(
ς#
)2
(

Ω +
1

4
b2γ

)#

(U ′)2 − 2ς#U ′S ′ − (γςb)#U ′, (9.2.5)
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that is,

γS (ψ(θ)) = γ(ψ(θ)) + ς2(ψ(θ))

(
Ω(ψ(θ)) +

1

4
(b(ψ(θ)))2γ(ψ(θ))

)
(U ′(θ))2

− 2ς(ψ(θ))U ′(θ)S ′(θ)− γ(ψ(θ))ς(ψ(θ))b(ψ(θ))U ′(θ).

2. The Z-invariant vectorfield ∂Sθ := Ψ#(∂θ) is tangent to S and

∂Sθ |Ψ(p) =
[ (
∂θS −

ς

2
Ω∂θU

)
e4 +

ς

2
∂θUe3 +

√
γ
(

1− ς

2
b∂θU

)
eθ

]∣∣∣
Ψ(p)

. (9.2.6)

3. If f ∈ sk(S) and PS is a geometric operator acting on f then,

(PS[f ])# = PS,#[f#] (9.2.7)

where, PS,# is the corresponding geometric operator on
◦
S with respect to the metric

g/ S,# and f# = ψ#f .

4. The L2 norm of f# = ψ#f with respect to the metric g/ S,# is the same as as the L2

norm of f with respect to the metric g/ S, i.e.,∫
◦
S

|f#|2dag/ S,# =

∫
S

|f |2dag/ S .

5. If f ∈ hk(S) and f# is its pull-back by ψ then,

‖f#‖
hk(
◦
S, g/ S,#)

= ‖f‖hk(S).

Proof. If ∂θ denotes the coordinate derivative ∂θ = ∂
∂θ

then, at every point p ∈
◦
S,

Ψ#(∂θ)|Ψ(p) = ∂θU∂u|Ψ(p) + ∂θS∂s|Ψ(p) + ∂θ|Ψ(p), Ψ#(∂ϕ) = ∂ϕ.

In view of (9.1.4) we have

∂s = e4, ∂u =
ς

2

(
e3 − Ωe4 − bγ1/2eθ

)
, ∂θ =

√
γeθ.

Hence, at a point Ψ(p) on S we have,

Ψ#(∂θ) =
(
∂θS −

ς

2
Ω∂θU

)
e4 +

ς

2
∂θUe3 +

√
γ
(

1− ς

2
b∂θU

)
eθ.
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We denote by g/# = Ψ#(g/ S) the pull back to
◦
S of the metric g/ S on S, i.e. at any point

p ∈
◦
S,

g/#(∂θ, ∂θ) = g/ S(Ψ#∂θ,Ψ#∂θ) = g(∂θU∂u + ∂θS∂s + ∂θ, ∂θU∂u + ∂θS∂s + ∂θ)

= (∂θU)2guu + 2∂θU∂θSgus + 2∂θUguθ + gθθ,

g/#(∂θ, ∂ϕ) = 0,

g/#(∂ϕ, ∂ϕ) = e2Φ#

,

where,

guu = ς2
(
Ω +

1

4
γb2
)
, gus = −ς, guθ = − ς

2
γb, gss = gsθ = 0, gθθ = γ.

Hence the pull-back metric Ψ#(g/ S) on
◦
S is given by,

γS,#dθ2 + e2Φ#

dϕ2

where

γS,# = (γS )#, (9.2.8)

with γS is defined by,

(γS )# = γ# + (ς#)2

(
Ω +

1

4
b2γ

)#

(U ′)2 − 2ς#U ′S ′ − (γςb)#U ′. (9.2.9)

Note that the vectorfield,

eSθ :=
1

(γS )1/2
ψ#(∂θ)

is tangent, Z invariant and forms together with eϕ an orthonormal frame on S. Note that
we can also write,

eSθ :=
(
◦
γ )1/2

(γS )1/2
Ψ#(eθ)

where
◦
γ is the coefficient in front of dθ2 of the metric induced by g on

◦
S,

◦
g/ =

◦
γ dθ2 + e2Φdϕ2.

In general, any geometric calculation on S can be reduced to a geometric calculation on
◦
S

with respect to the metric g/ S,#. Moreover the L2 norm on S with respect to the metric g/ S

is the same as the L2 norm of f# = ψ#f with respect to the norm g/ S,#. This concludes
the proof of the lemma.
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9.2.3 Comparison of norms between deformations

Lemma 9.2.3. Let Ψ :
◦
S −→ S a Z-invariant deformation in R(

◦
ε,
◦
δ) with U, V verifying

the bounds

sup
0≤θ≤π

(
|U ′(θ)|+ |S ′(θ)|

)
.

◦
δ, (9.2.10)

as well as the bound (9.1.15) for the coordinates system (u, s, θ, ϕ) of R. The following
hold true

1. We have, ∣∣γS,# − ◦γ ∣∣ . ◦δ◦r. (9.2.11)

2. For every f ∈ sk(S) we have,

‖f#‖
L2(
◦
S,g/ S,#)

= ‖f#‖
L2(
◦
S,
◦
g/ )

(
1 +O(r−1

◦
δ)
)
. (9.2.12)

3. As a corollary of (9.2.12) (choosing f = 1) we deduce2,

rS

◦
r

= 1 +O(
◦
r
−1◦
δ) (9.2.13)

where rS is the area radius of S and
◦
r that of

◦
S.

Proof. Recall,

γS,#(
◦
u,
◦
s, θ) = γ(ψ(θ)) + ς2(ψ(θ))

(
Ω(ψ(θ)) +

1

4
(b(ψ(θ)))2γ(ψ(θ))

)
(U ′(θ))2

− 2ς(ψ(θ))U ′(θ)S ′(θ)− γ(ψ(θ))ς(ψ(θ)b(ψ(θ))U ′(θ).

In view of our assumptions on U ′ and S ′ as well as our estimates (9.1.15) for γ, Ω and b
and ς, we infer

|γS,# − γ| . |γ# − γ|+ ◦
r
◦
ε

1/2◦
δ.

2Recall also from (9.1.16) that r − ◦r = O(
◦
δ
◦
ε
−1/2

).
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Also, we have

γ#(
◦
u,
◦
s, θ)− γ(

◦
u,
◦
s, θ) = γ(

◦
u+ U(θ),

◦
s+ S(θ), θ)− γ(

◦
u,
◦
s, θ)

=

∫ 1

0

d

dλ

[
γ(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)

]
dλ

= U(θ)

∫ 1

0

∂uγ(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ

+S(θ)

∫ 1

0

∂sγ(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ.

In view of our estimates (9.1.15) for γ, the assumption (9.2.10) on (U ′, V ′) and the fact
that

∂s = e4, ∂u =
ς

2

(
e3 − Ωe4 − bγ1/2eθ

)
,

we infer3

|γ# − γ| . ◦
r
◦
δ.

We have finally, obtained

|γS,# − γ| . |γ# − γ|+ ◦
r
◦
δ .

◦
r
◦
δ.

To prove the second part of the lemma we write,∫
◦
S

|f#|2dag/ S,# =

∫
◦
S

|f#|2
√
γS,#√
◦
γ

da◦
g/

=

∫
◦
S

|f#|2da◦
g/

+

∫
◦
S

|f#|2
√γS,#√

◦
γ

− 1

 da◦
g/

which yields, in view of the first part,∫
◦
S

|f#|2dag/ S,# =

∫
◦
S

|f#|2da◦
g/

(
1 +O(

◦
r
−1◦
δ)
)
.

This concludes the proof of the lemma.

Remark 9.2.4. In view of (9.2.13) and (9.1.16),
◦
r , rS and the value of r along S are all

comparable.

Corollary 9.2.5. Under the assumptions of Lemma 9.2.3 the following estimate4 holds
true for an arbitrary scalar f ∈ s0(R),∣∣∣∣∫

S

f −
∫
◦
S

f

∣∣∣∣ . ◦
δ
◦
r

(
sup
R
|d≤1
↗ f |+ sup

R
r|e3f |

)
.

3Note that we also use the assumption U(0) = S(0) = 0 to estimate (U, S) from (U ′, S′).
4Recall that R := {|u− ◦u| ≤ δR, |s− ◦s| ≤ δR}, see (9.1.6).
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Proof. We have,∫
S

f −
∫
◦
S

f =

∫
◦
S

f#

√
γS,#√
◦
γ

−
∫
◦
S

f =

∫
◦
S

f#

√γS,#√
◦
γ

− 1

+

∫
◦
S

(f# − f).

Hence, ∣∣∣∣∫
S

f −
∫
◦
S

f

∣∣∣∣ . ◦
δ
◦
r sup

S
|f |+

∫
◦
S

∣∣f# − f
∣∣.

Now, proceeding as in the proof of (9.2.11),

f(
◦
u+ U(θ),

◦
s+ S(θ))− f(

◦
u,
◦
s) .

∫ 1

0

d

dλ

[
f(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)

]
dλ

= U(θ)

∫ 1

0

∂uf(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ

+S(θ)

∫ 1

0

∂sf(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ.

Therefore , ∣∣∣∣∫
S

f −
∫
◦
S

f

∣∣∣∣ . ◦
r
◦
δ sup

S
|f |+

◦
δ
◦
r

(
sup
R
|d↗ f |+ sup

R
r|e3f |

)
.

◦
δ
◦
r

(
sup
R
|d≤1
↗ f |+ sup

R
r|e3f |

)
as stated.

To compare higher order Sobolev spaces, we will need the following lemma.

Lemma 9.2.6. Let
◦
S ⊂ R = R(

◦
ε,
◦
δ) as in Definition 9.1.1 verifying the assumptions

A1-A3. Let Ψ :
◦
S −→ S be Z-invariant deformation. Assume the bound

‖(U ′, S ′)‖
L∞(

◦
S)

+ (
◦
r )−1‖(U ′, S ′)‖

hsmax−1(
◦
S,
◦
g/ )
.

◦
δ. (9.2.14)

Then, we have for any reduced scalar h defined on R
‖h‖hs(S) . r sup

R
|d≤sh|, for 0 ≤ s ≤ smax.

Also, if f ∈ hs(S) and f# is its pull-back by ψ, we have

‖f‖hs(S) = ‖f#‖
hs(
◦
S, g/ S,#)

= ‖f#‖
hs(
◦
S,
◦
g/ )

(1 +O(r−1
◦
δ)) for 0 ≤ s ≤ smax − 1.
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Proof. See appendix C.1.

Corollary 9.2.7. Under the same assumptions as Lemma 9.2.6, we have, for all j, k ≥ 0
with 0 ≤ j + k ≤ smax,

‖d≤jΓg‖hk(S) .
◦
εr−1,

‖d≤jΓb‖hk(S) .
◦
ε,

(9.2.15)

‖d≤j (α, β, ρ̌, µ̌) ‖hk(S) .
◦
εr−2,

‖d≤jβ‖hk(S) .
◦
εr−1,

‖d≤jα‖hk(S) .
◦
ε,

(9.2.16)

∥∥∥∥d≤j ( γr2
− 1, b,

eΦ

r sin θ
− 1

)∥∥∥∥
hk(S)

.
◦
ε,∥∥d≤j (Ω + Υ)

∥∥
hk(S)

+
∥∥d≤j (ς − 1)

∥∥
hk(S)

.
◦
εr.

(9.2.17)

Proof. In view of Lemma 9.2.6 and assumptions A1-A3 we have, for j, k ≥ 0 with
0 ≤ j + k ≤ smax,∥∥d≤jΓg∥∥hk(S)

. r sup
R

∣∣d≤kd≤jΓg∣∣ . r sup
R

∣∣d≤smaxΓg∣∣ . r−1◦ε.

The other estimates are proved in the same manner.

9.2.4 Adapted frame transformations

We consider general null transformations introduced in Lemma 2.3.1,

e′4 = λ

(
e4 + feθ +

1

4
f 2e3

)
,

e′θ =

(
1 +

1

2
ff

)
eθ +

1

2
fe4 +

1

2
f

(
1 +

1

4
ff

)
e3,

e′3 = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
.

(9.2.18)
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Definition 9.2.8. Given a deformation Ψ :
◦
S −→ S we say that a new frame (e′3, e

′
4, e
′
θ),

obtained from the standard frame (e3, e4, eθ) via the transformation (9.2.18), is S-adapted
if we have,

e′θ = eSθ =
1

(γS)1/2
ψ#(∂θ). (9.2.19)

Proposition 9.2.9. Consider a deformation Ψ :
◦
S −→ S in R = R(

◦
ε,
◦
δ) verifying the

assumption A3. The following statements hold true.

1. A new frame e′3, e
′
θ, e
′
4 generated by (f, f , λ = ea) according to (9.2.18) is adapted to

S = S(
◦
u+ U,

◦
s+ S) provided that, at all points θ ∈ [0, π],

√
γ#
(

1− ς

2
b#U ′

)
=
(
(γS )#

)1/2
(

1 +
1

2
(ff)#

)
,

ςU ′ =
(
(γS )#

)1/2
f#

(
1 +

1

4
(ff)#

)
,

2
(
S ′ − ς

2
Ω#U ′

)
=
(
(γS )#

)1/2
f#,

(9.2.20)

where,

(γS)# = γ# + (ς#)2

(
Ω +

1

4
b2γ

)#

(∂θU)2 − 2ς#∂θU∂θS − (γςb)#∂θU

and # denotes the pull back by ψ of the corresponding reduced scalars, i.e. for

example, f#(θ) = f(
◦
u+ U(θ),

◦
s+ S(θ), θ).

2. There exists a small enough constant5 δ1 such that for given f, f on R satisfying

sup
R

(
|f |+ |f |

)
≤ r−1δ1,

we can uniquely solve the system (9.2.20) for U, S subject to the initial conditions,

U(0) = 0, S(0) = 0.

5In later applications, we will have

sup
R

(|f |+ |f |) . r−1
◦
δ.
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Thus, if (
◦
u,
◦
s, 0) corresponds to the south pole of

◦
S and f, f are given there exists a

unique deformation S ⊂ R, given by U, S : [0, π] −→ R, adapted to frames generated
by6 (f, f) which passes through the same south pole. Moreover,

sup
[0,π]

|(U ′, S ′)| . ◦
r sup

S

(
|f |+ |f |

)
(9.2.21)

and, for 2 ≤ s ≤ smax − 1,

‖(U ′, S ′)‖
L∞(

◦
S)

+ (
◦
r )−1‖(U ′, S ′)‖

hs(
◦
S,
◦
g/ )
. ‖f, f‖hs(S) (9.2.22)

with ‖f, f‖hs(S) = ‖f‖hs(S) + ‖f‖hs(S).

3. As a consequence of (9.2.22) the deformation thus obtained verifies the conclusions
of Lemmas 9.2.3-9.2.6 and Corollary 9.2.7. In particular,

(a) We have, ∣∣∣γS,# − ◦γ ∣∣∣ . δ1
◦
r .

(b) We have ∣∣∣∣rS◦
r
− 1

∣∣∣∣ . ◦r −1
δ1.

Proof. In view of Lemma 9.2.2, The Z-invariant vectorfield eSθ := 1
(γS )1/2 Ψ#(∂θ) can be

expressed by the formula,

eSθ =
1

(γS )1/2

[ (
∂θS −

ς

2
Ω∂θU

)
e4 +

ς

2
∂θUe3 +

√
γ
(

1− ς

2
b∂θU

)
eθ

]
.

where ψ(p) = (
◦
u + U(θ),

◦
s + S(θ), θ) and U ′ = ∂θU(θ), S ′ = ∂θS(θ). On the other hand,

according to (9.2.18), at Ψ(p) ∈ S,

e′θ =

(
1 +

1

2
ff

)
eθ +

1

2
f

(
1 +

1

4
ff

)
e3 +

1

2
fe4.

We deduce, at every θ ∈ [0, π],√
γ#

(
1− ς#

2
b#U ′

)
=

(
(γS )#

)1/2
(

1 +
1

2
(ff)#

)
,

ς#U ′ =
(
(γS )#

)1/2
f#

(
1 +

1

4
(ff)#

)
,

2

(
S ′ − ς#

2
Ω#U ′

)
=

(
(γS )#

)1/2
f#,

6Note that a is not restricted in this result.
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as desired.

To prove the second part of the lemma we first check for the compatibility of the three
equations in (9.2.20). Note that, if we denote,

A = 1 +
1

2
(ff)#, B = f#

(
1 +

1

4
(ff)#

)
, C = f#,

we have A2 −BC = 1. Hence, squaring the first equation and subtracting the product of
the other two we derive,

(γS)# =

(√
γ#

(
1− ς#

2
b#U ′

))2

− 2U ′ς#

(
S ′ − ς#

2
Ω#U ′

)
= γ#

(
1− (ςb)#U ′ +

1

4

(
(ςb)#U ′

)2
)
− 2ς#U ′S ′ + (ς#)2Ω#(U ′)2

= γ# + (ς#)2

(
Ω# +

1

4

(
b#
)2
γ#

)
(U ′)2 − 2ς#U ′S ′ − γ#ς#b#U ′ (9.2.23)

which coincides with the formula (9.2.5). It thus suffices to only consider the last two
equations in (9.2.20) which we write in the form,

U ′ = (ς#)−1((γS )#)1/2f#

(
1 +

1

4
(ff)#

)
,

S ′ =
1

2
((γS )#)1/2f# +

1

2
Ω#((γS )#)1/2f#

(
f# +

1

4
(ff)#

)
,

(9.2.24)

i.e.,

U ′(θ) =

[
(ς#)−1(γS )1/2f

(
1 +

1

4
(ff)

)]
(
◦
u+ U(θ),

◦
s+ S(θ), θ),

S ′(θ) =

[
1

2
(γS )1/2f +

1

2
Ω(γS )1/2f

(
1 +

1

4
ff

)]
(
◦
u+ U(θ),

◦
s+ S(θ), θ).

Thus under the assumption supR(|f | + |f |) ≤ ◦
r
−1
δ1, with δ1 sufficiently small, making

also use of the expression (9.2.23) of γS, and the estimates (9.1.15) for (γ, b, Ω), for
◦
ε

sufficiently small, we can uniquely solve for U, S subject to the initial conditions,

U(0) = 0, S(0) = 0.

Moreover the solution verifies,

sup
[0,π]

|(U ′, S ′)| . ◦r sup
S

(
|f |+ |f |

)
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according to the Definition 9.2.1. Estimate (9.2.22) can be easily derived by taking higher
derivatives and using Lemma 9.2.6 and A1-A3. This concludes the proof of the lemma.

We now provide a lemma analogous to Proposition 9.2.9 in the particular case when f is
only bounded in r, unlike the rest of the chapter where it decays like r−1. This lemma is
not needed for the construction of GCM spheres in this chapter. It is used in the proof of
Theorem M0 in the region (ext)L0 ∩ (ext)M of the initial data layer, see Step 8 in section
4.1.

Lemma 9.2.10. There exists a small enough constant δ1 such that for given f, f on R
satisfying

‖f‖hsmax−1(S) + (rS)−1‖f‖hsmax−1(S) ≤ δ1,

the following holds

1. We have

‖U ′‖
L∞(

◦
S)

+ (
◦
r )−1‖S ′‖

L∞(
◦
S)

+ (
◦
r )−1‖U ′‖

hsmax−1(
◦
S,
◦
g/ )

+ (
◦
r )−2‖S ′‖

hsmax−1(
◦
S,
◦
g/ )
. δ1.

In particular, we have

sup
S
|u− ◦u| . δ1, sup

S
|s− ◦s| . ◦rδ1.

2. We have, ∣∣∣γS,# − ◦γ ∣∣∣ . δ1(
◦
r )2.

3. We have ∣∣∣∣rS◦
r
− 1

∣∣∣∣+ sup
S

∣∣∣∣rSr − 1

∣∣∣∣ . δ1.

4. The following estimate holds true for an arbitrary scalar h ∈ s0(R),∣∣h# − h
∣∣ . δ1 sup

R
|d≤1h|.

5. The following estimate holds true for an arbitrary scalar h ∈ s0(R),∣∣∣∣∫
S

h−
∫
◦
S

h

∣∣∣∣ . δ1(
◦
r)2 sup

R
|d≤1h|.
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6. We have for any reduced scalar h defined on R

‖h‖hs(S) . r sup
R
|d≤sh|, for 0 ≤ s ≤ smax.

7. If h ∈ hs(S) and h# is its pull-back by ψ, we have

‖f‖hs(S) = ‖f#‖
hs(
◦
S, g/ S,#)

= ‖f#‖
hs(
◦
S,
◦
g/ )

(1 +O(δ1)) for 0 ≤ s ≤ smax − 1.

Proof. Recall from (9.2.20) that we have in particular

ςU ′ =
(
(γS )#

)1/2
f#

(
1 +

1

4
(ff)#

)
,

2
(
S ′ − ς

2
Ω#U ′

)
=
(
(γS )#

)1/2
f#.

In view of the assumptions on (f, f), and the control of the background foliation of R, we
immediately obtain the first claim of the lemma concerning the control of (U, S). Note

that the estimate for u− ◦u and s− ◦s follows then from

sup
S
|u− ◦u| . sup

◦
S

|U | . sup
◦
S

|U ′| . δ1,

sup
S
|s− ◦s| . sup

◦
S

|S| . sup
◦
S

|S ′| . ◦rδ1.

The first claim then yields the second and third claim by a straightforward adaptation of
the proof of Proposition 9.2.9. Also, the fifth claim follows from the second and the fourth
claim, by a simple adaptation of the proof of Corollary 9.2.5. The sixth and seventh claim
follow from the other claims by a simple adaptation of Lemma 9.2.6.

Finally, we focus on the fourth claim. We have for an arbitrary scalar h ∈ s0(R),

h#(
◦
u,
◦
s, θ)− h(

◦
u,
◦
s, θ) = h(

◦
u+ U(θ),

◦
s+ S(θ), θ)− h(

◦
u,
◦
s, θ)

=

∫ 1

0

d

dλ

[
h(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)

]
dλ

= U(θ)

∫ 1

0

∂uh(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ

+S(θ)

∫ 1

0

∂sh(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ.
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In view of our estimates (9.1.15) for γ, the assumption (9.2.10) on (U ′, V ′) and the fact
that

∂s = e4, ∂u =
ς

2

(
e3 − Ωe4 − bγ1/2eθ

)
,

we infer7 together with the first claim

|h# − h| . sup
◦
S

|U | sup
R
|dh|+ r−1 sup

◦
S

|S| sup
R
|re4(h)|

. δ1 sup
R
|dh|

as desired.

Lemma 9.2.10 yields the following corollaries.

Corollary 9.2.11. Assume that there exists a small enough constant δ1 such that we have

‖U ′‖
L∞(

◦
S)

+ (
◦
r )−1‖S ′‖

L∞(
◦
S)

+ (
◦
r )−1‖U ′‖

hsmax−1(
◦
S,
◦
g/ )

+ (
◦
r )−2‖S ′‖

hsmax−1(
◦
S,
◦
g/ )
≤ δ1.

Then, we have, for all j, k ≥ 0 with 0 ≤ j + k ≤ smax,

‖d≤jΓg‖hk(S) .
◦
εr−1,

‖d≤jΓb‖hk(S) .
◦
ε,

(9.2.25)

‖d≤j (α, β, ρ̌, µ̌) ‖hk(S) .
◦
εr−2,

‖d≤jβ‖hk(S) .
◦
εr−1,

‖d≤jα‖hk(S) .
◦
ε,

(9.2.26)

∥∥∥∥d≤j ( γr2
− 1, b,

eΦ

r sin θ
− 1

)∥∥∥∥
hk(S)

.
◦
ε,∥∥d≤j (Ω + Υ)

∥∥
hk(S)

+
∥∥d≤j (ς − 1)

∥∥
hk(S)

.
◦
εr.

(9.2.27)

Proof. First, in view of (9.2.20), the assumptions on (U, S) yield for (f, f)

‖f‖hsmax−1(S) + (rS)−1‖f‖hsmax−1(S) . δ1.

We may thus apply Lemma 9.2.10. The proof is then similar to the one of Corollary
9.2.7 and relies on property 6 of Lemma 9.2.10 and the control A1-A3 of the background
foliation.

7Note that we also use the assumption U(0) = S(0) = 0 to estimate (U, S) from (U ′, S′).
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Corollary 9.2.12. Let 3 ≤ s ≤ smax. There exists a small enough constant δ1 such that
given f, f on R satisfying

‖f‖hs(S) + (rS)−1‖f‖hs(S) ≤ δ1,

then

sup
S

∣∣∣∣KS − 1

(rS)2

∣∣∣∣ . δ1 +
◦
ε

(rS)2
,

∥∥∥∥KS − 1

(rS)2

∥∥∥∥
hs−1(S)

.
δ1 +

◦
ε

rS
,

and ∫
S

e2Φ =
4π

3
(rS)4(1 +O(δ1 +

◦
ε)).

Proof. Using

KS = −ρS − 1

4
κSκS +

1

4
ϑSϑS, K = −ρ− 1

4
κκ+

1

4
ϑϑ,

the change of frame formulas for ρS, κS, κS, ϑS and ϑS, and the assumptions (9.4.23) for8

(f, f), we infer

sup
S

∣∣KS −K
∣∣ . δ1

(rS)2
,

∥∥KS −K
∥∥
hs−1(S)

.
δ1

rS
.

Together with the control A1-A3 for the background foliation, we deduce

sup
S

∣∣∣∣KS − 1

r2

∣∣∣∣ . δ1

(rS)2
+

◦
ε

r2
,

∥∥∥∥KS − 1

r2

∥∥∥∥
hs−1(S)

.
δ1

rS
+

◦
ε

r
.

Also, in view of the assumptions (9.4.23) for (f, f), we may apply Lemma 9.2.10. Using

properties 3 of that lemma on the control of r − rS, we easily infer

sup
S

∣∣∣∣KS − 1

(rS)2

∣∣∣∣ . δ1 +
◦
ε

(rS)2
,

∥∥∥∥KS − 1

(rS)2

∥∥∥∥
hs−1(S)

.
δ1 +

◦
ε

rS
.

Also, using properties 5 of that lemma, we have∣∣∣∣∫
S

e2Φ −
∫
◦
S

e2Φ

∣∣∣∣ . δ1(rS)4

which together with the control A3 for the background foliation implies∫
S

e2Φ =
4π

3
(rS)4(1 +O(δ1 +

◦
ε)).

This concludes the proof of the corollary.

8Note that the change of frame formulas for ρS, κSκS and ϑSϑS do not involve λ, and involve at most
one tangential derivative to S of (f, f).
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Corollary 9.2.13. Let 2 ≤ s ≤ smax. There exists a small enough constant δ1 such that
given f, f on R satisfying

‖f‖hs(S) + (rS)−1‖f‖hs(S) ≤ δ1,

then, for any scalar function D = D(u, s) on R depending only on the coordinates (u, s)
of the background foliation, we have∥∥∥D −DS

∥∥∥
hs(S)

. r
(
‖f‖hs(S) + r−1‖f‖hs(S)

)
sup
R
|d≤sD|.

Proof. We have, using a Poincaré inequality,∥∥∥D −DS
∥∥∥
hs(S)

.
∥∥rSeSθ (D)

∥∥
hs−1(S)

, s ≥ 1.

Thus, we need to compute eSθ (D). Decomposing eSθ on the background frame, we have

eSθ (D) =

(
1 +

1

2
ff

)
eθ(D) +

1

2
fe4(D) +

1

2
f

(
1 +

1

4
ff

)
e3(D)

=
1

2
fe4(D) +

1

2
f

(
1 +

1

4
ff

)
e3(D)

where we have used in the last inequality D = D(u, s) and eθ(u) = eθ(s) = 0. We infer,
for 2 ≤ s ≤ smax,∥∥∥D −DS

∥∥∥
hs(S)

. rS
∥∥∥∥1

2
fe4(D) + f

(
1 +

1

4
ff

)
e3(D)

∥∥∥∥
hs−1(S)

. ‖f‖hs(S)‖e4(D)‖hs−1(S)

+‖f‖hs(S)

(
1 + r−2‖f‖hs(S)‖f‖hs(S)

)
‖e3(D)‖hs−1(S)

. r
(
‖f‖hs(S) + r−1‖f‖hs(S)

)
sup
R
|d≤sD|,

where we have used in the last inequality the control on (f, f), as well as property 6 of
Lemma 9.2.10 with h = e4(D) and h = e3(D).

Corollary 9.2.14. Assume that (f, f) given on R satisfy

‖f‖hsmax−1(S) + (rS)−1‖f‖hsmax−1(S) ≤
◦
ε.

Then, we have

|mS − ◦
m| . ◦ε.
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Proof. According to the identity (2.2.12), we have∫
S

ρS = −8πmS

rS
+

1

4

∫
S

ϑSϑS,∫
◦
S

ρ = −8π
◦
m
◦
r

+
1

4

∫
S

ϑϑ.

In view of the transformation formulas for ϑS and ϑS, and noticing that the product ϑSϑS

only involves (f, f) but not λ, we infer from the assumptions A1-A3 for the background
foliation of R, and the assumptions on (f, f) that

|ϑSϑS|+ |ϑϑ| .
◦
ε

2

r3
.

We infer ∫
S

ρS = −8πmS

rS
+O

( ◦
ε

r

)
,

∫
◦
S

ρ = −8π
◦
m
◦
r

+O

( ◦
ε

r

)
,

and hence ∣∣∣mS − ◦
m
∣∣∣ . ∣∣∣∣rS ∫

S

ρS − ◦r
∫
◦
S

ρ

∣∣∣∣+
◦
ε.

Next, provided
◦
ε has been chosen small enough, we may apply Lemma 9.2.10 with δ1 =

◦
ε

and infer in particular

|rS − ◦r| . ◦r◦ε,
∣∣∣∣∫

S

ρ−
∫
◦
S

ρ

∣∣∣∣ . ◦
ε
◦
r
.

We deduce ∣∣∣mS − ◦
m
∣∣∣ . r

∣∣∣∣∫
S

(
ρS − ρ

)∣∣∣∣+
◦
ε.

Together with the transformation formula for ρS, which only involves (f, f) but not λ, we
infer from the assumptions A1-A3 for the background foliation ofR, and the assumptions
on (f, f) that ∣∣∣mS − ◦

m
∣∣∣ . ◦

ε

as desired.



572 CHAPTER 9. GCM PROCEDURE

9.3 Frame transformations

For the convenience of the reader we start by recalling the transformation formulas
recorded in Proposition 2.3.4.

Proposition 9.3.1 (Transformation formulas-GCM). Under a general transformation of
type (9.2.18) with λ = ea the Ricci coefficients and curvature components transform as
follows:

ξ′ = λ2

(
ξ +

1

2
λ−1e′4(f) + ωf +

1

4
fκ

)
+ λ2Err(ξ, ξ′),

Err(ξ, ξ′) =
1

4
fϑ+ l.o.t.,

ξ′ = λ−2

(
ξ +

1

2
λe′3(f) + ω f +

1

4
f κ

)
+ λ−2Err(ξ, ξ′),

Err(ξ, ξ′) = −1

8
λf 2e′3(f) +

1

4
f ϑ+ l.o.t.,

(9.3.1)

ζ ′ = ζ − e′θ(log(λ)) +
1

4
(−fκ+ fκ) + fω − fω + Err(ζ, ζ ′),

Err(ζ, ζ ′) =
1

2
fe′θ(f) +

1

4
(−fϑ+ fϑ) + l.o.t.,

η′ = η +
1

2
λe′3(f) +

1

4
κf − fω + Err(η, η′),

Err(η, η′) =
1

4
fϑ+ l.o.t.,

η′ = η +
1

2
λ−1e′4(f) +

1

4
κf − fω + Err(η, η′),

Err(η, η′) = −1

8
f 2λ−1e′4(f) +

1

4
fϑ+ l.o.t.,

(9.3.2)

κ′ = λ (κ+ d/1
′(f)) + λErr(κ, κ′),

Err(κ, κ′) = f(ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.,

κ′ = λ−1
(
κ+ d/1

′(f)
)

+ λ−1Err(κ, κ′),

Err(κ, κ′) = −1

4
f 2e′θ(f) + f(−ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.,

(9.3.3)
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ϑ′ = λ (ϑ− d?/2
′(f)) + λErr(ϑ, ϑ′),

Err(ϑ, ϑ′) = f(ζ + η) + fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.

ϑ′ = λ−1
(
ϑ− d?/2

′(f)
)

+ λ−1Err(ϑ, ϑ′),

Err(ϑ, ϑ′) = −1

4
f 2e′θ(f) + f(−ζ + η) + fξ +

1

4
ffκ+ ffω − f 2ω + l.o.t.,

(9.3.4)

ω′ = λ

(
ω − 1

2
λ−1e′4(log(λ))

)
+ λErr(ω, ω′),

Err(ω, ω′) =
1

4
fe′4(f) +

1

2
ωff − 1

2
fη +

1

2
fξ +

1

2
fζ − 1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.,

ω′ = λ−1

(
ω +

1

2
λe′3(log(λ))

)
+ λ−1Err(ω, ω′),

Err(ω, ω′) = −1

4
fe′3(f) + ωff − 1

2
fη +

1

2
fξ − 1

2
fζ − 1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.

(9.3.5)

The lower order terms we denote by l.o.t. are linear with respect to
{
ξ, ξ, ϑ, κ, η, η, ζ, κ, ϑ

}
and quadratic or higher order in f, f , and do not contain derivatives of these latter.

Also,

α′ = λ2α + λ2Err(α, α′),

Err(α, α′) = 2fβ +
3

2
f 2ρ+ l.o.t.,

β′ = λ

(
β +

3

2
ρf

)
+ λErr(β, β′),

Err(β, β′) =
1

2
fα + l.o.t.,

ρ′ = ρ+ Err(ρ, ρ′),

Err(ρ, ρ′) =
3

2
ρff + fβ + fβ + l.o.t.,

β′ = λ−1

(
β +

3

2
ρf

)
+ λ−1Err(β, β′),

Err(β, β′) =
1

2
fα + l.o.t.,

α′ = λ−2α + λ−2Err(α, α′),

Err(α, α′) = 2f β +
3

2
f 2ρ+ l.o.t.

(9.3.6)

The lower order terms we denote by l.o.t. are linear with respect to the curvature quantities
α, β, ρ, β, α and quadratic or higher order in f, f , and do not contain derivatives of these
latter.
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In the following lemma we rewrite a subset of these transformations in a more useful form,

Lemma 9.3.2. Under a general transformation of type (9.2.18) with λ = ea we have, in
particular,

ζ ′ = ζ − e′θ(a)− fω + fω − 1

2
fχ+

1

2
fχ+ Err(ζ, ζ ′),

Err(ζ, ζ ′) =
1

2
f

(
1 +

1

4
ff

)
e′θ(f)− 1

16
f 2e′θ(f

2) +
1

4
(−fϑ+ fϑ) + l.o.t.

(9.3.7)

κ′ = ea (κ+ d/′1f) + eaErr(κ, κ′),

Err(κ, κ′) =
1

2
ffe′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.

(9.3.8)

κ′ = e−a
(
κ+ d/′1f

)
+ e−aErr(κ, κ′),

Err(κ, κ′) = −1

2
fe′θ

(
ff +

1

8
f 2f 2

)
+

(
3

4
ff +

1

8
(ff)2

)
e′θ(f)

+
1

4

(
1 +

1

2
ff

)
fe′θ

(
ff
)
− 1

4
f

(
1 +

1

4
ff

)
e′θ
(
f 2
)

+ f(−ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.

(9.3.9)

Also,

ϑ′ = λ (ϑ− d?/2
′(f)) + λErr(ϑ, ϑ′),

Err(ϑ, ϑ′) =
1

2
ffe′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.

ϑ′ = λ−1
(
ϑ− d?/2

′(f)
)

+ λ−1Err(ϑ, ϑ′),

Err(ϑ, ϑ′) = −1

2
fe′θ

(
ff +

1

8
f 2f 2

)
+

(
3

4
ff +

1

8
(ff)2

)
e′θ(f)

+
1

4

(
1 +

1

2
ff

)
fe′θ

(
ff
)
− 1

4
f

(
1 +

1

4
ff

)
e′θ
(
f 2
)

+ f(−ζ + η)

+ fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.,

(9.3.10)

The lower order terms we denote by l.o.t. are cubic or higher order in the small quantities
ξ, ξ, ϑ, η, η, ζ, ϑ as well as f, f , and do not contain derivatives of these quantities.
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We also have,

β′ = λ

(
β +

3

2
ρf

)
+ λErr(β, β′),

Err(β, β′) =
1

2
fα + l.o.t.,

ρ′ = ρ+ Err(ρ, ρ′),

Err(ρ, ρ′) =
3

2
ρff + fβ + fβ + l.o.t.

(9.3.11)

The lower order terms above denoted by l.o.t. are cubic or higher order in the small
quantities ξ, ξ, ϑ, η, η, ζ, ϑ as well as a, f, f .

Lemma 9.3.3. The following transformation formula holds true

µ′ = µ+ ( d/1)′
(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
+ Err(µ, µ′),

Err(µ, µ′) = − d/ ′1Err(ζ, ζ ′)− Err(ρ, ρ′) +
1

4

(
ϑ′ϑ′ − ϑϑ

)
.

The error term Err(µ, µ′) is quadratic or higher order with respect to (f, f , a, Γ̌, Ř) and
depends only on at most two angular derivatives e′θ of f and one angular derivative e′θ of
a, f .

Proof. Recall that

µ = − d/1ζ − ρ+
1

4
ϑϑ.

Therefore,

µ′ = − d/ ′1ζ ′ − ρ′ +
1

4
ϑ′ϑ′

= − d/ ′1
(
ζ − e′θ(a)− fω + fω − 1

4
fκ+

1

4
fκ+ Err(ζ, ζ ′)

)
− ρ− Err(ρ, ρ′) +

1

4
ϑ′ϑ′

= − d/ ′1ζ − ρ+
1

4
ϑϑ− d/′1

(
( d?/1)′a− fω + fω − 1

4
fκ+

1

4
fκ

)
− d/ ′1Err(ζ, ζ ′)− Err(ρ, ρ′) +

1

4

(
ϑ′ϑ′ − ϑϑ

)
.

Note that,

− d/ ′1ζ − ρ+
1

4
ϑϑ = − d/ 1ζ − ρ+

1

4
ϑϑ+ fe3ζ + fe4ζ + l.o.t.

= µ+ fe3ζ + fe4ζ + l.o.t.
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Hence,

µ′ = µ+ d/ ′1

(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
+ Err(µ, µ′)

where,

Err(µ, µ′) = − d/ ′1Err(ζ, ζ ′)− Err(ρ, ρ′) +
1

4

(
ϑ′ϑ′ − ϑϑ

)
+ fe3ζ + fe4ζ + l.o.t.

In view of the transformation formulas for ϑ, ϑ and the structure of the error terms
Err(ζ, ζ ′), Err(ρ, ρ′), Err(ϑ, ϑ′), Err(ϑ, ϑ′) in Lemma 9.3.2 we easily deduce that the error
term Err(µ, µ′) depends only on at most two angular derivatives e′θ of f and one angular
derivative e′θ of a, f .

We shall also make use of the following,

Lemma 9.3.4. We have the transformation equations,

e′θ(κ
′) = eθκ+ e′θ d/

′
1f + κe′θa−

1

4
κ(fκ+ fκ) + κ(fω − ωf) + fρ

+ Err(e′θκ
′, eθκ),

e′θ(κ
′) = eθκ+ e′θ d/

′
1f − κe′θa−

1

4
κ(fκ+ fκ) + κ(fω − ωf) + fρ

+ Err(e′θκ
′, eθκ),

e′θ(µ
′) = eθµ+ e′θ( d/1)′

(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
+

3

4
ρ(fκ+ fκ)

+ Err(e′θµ
′, eθµ),

(9.3.12)

where,

Err(e′θκ
′, eθκ) = (ea − 1)

(
eθκ+ e′θ d/

′
1f +

1

2
fe4κ+

1

2
fe3κ

)
+ ea

[
e′θ Err(κ, κ′) + e′θ(a)

(
d/ ′1f + Err(κ, κ′)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ

]
+

1

2
f

(
2 d/1η −

1

2
ϑϑ+ 2(ξξ + η2)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ+

1

2
f

(
2 d/1ξ −

1

2
ϑ2 + 2(η + η + 2ζ)ξ

)
,
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Err(e′θκ
′, eθκ) = (e−a − 1)

(
eθκ+ e′θ d/

′
1f +

1

2
fe3κ+

1

2
fe4κ

)
+ e−a

[
e′θ Err(κ, κ′) + e′θ(a)

(
d/ ′1f + Err(κ, κ′)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ

]
+

1

2
f

(
2 d/1η −

1

2
ϑϑ+ 2(ξξ + η2)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ+

1

2
f

(
2 d/1ξ −

1

2
ϑ2 + 2(η + η − 2ζ)ξ

)
,

and,

Err(e′θµ
′, eθµ) = e′θErr(µ, µ′) +

1

2
ffeθµ+

1

8
f 2fe3µ

− 1

2
f
(
d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

)
− 1

2
f
(
d/1β −

1

2
ϑα + ζ β + 2(η β + ξ β)

)
+

1

2
fe4

(
− d/1ζ +

1

4
ϑϑ

)
+

1

2
fe3

(
− d/1ζ +

1

4
ϑϑ

)
.

Proof. Applying the vectorfield e′θ to

κ′ = ea (κ+ d/ ′1f + Err(κ, κ′))

we deduce,

e′θ(κ
′) = ea

(
e′θκ+ e′θ d/

′
1f + e′θ(Err(κ, κ′)

)
+ eae′θ(a)

(
κ+ d/ ′1f + Err(κ, κ′)

)
.

Hence,

e−ae′θ(κ
′) = e′θκ+ e′θ d/

′
1f + e′θ(Err(κ, κ′) + e′θ(a)

(
κ+ d/ ′1f + Err(κ, κ′)

)
and thus

e′θ(κ
′) = eθκ+ e′θ(a)κ+ e′θ d/

′
1f +

1

2
fe4κ+

1

2
fe3κ+ Err1[eθ(κ), e′θ(κ

′)]

with error term,

Err1[eθ(κ), e′θ(κ
′)] = (ea − 1)

(
eθκ+ e′θ d/

′
1f +

1

2
fe4κ+

1

2
fe3κ

)
+ ea

[
e′θ(Err(κ, κ′) + e′θ(a)

(
d/ ′1f + Err(κ, κ′)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ

]
.
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Now, making use of

e′θκ =

(
1 +

1

2
ff

)
eθκ+

1

2
fe4κ+

1

2
f

(
1 +

1

4
ff

)
e3κ

= eθκ+
1

2
fe4κ+

1

2
fe3κ+

1

2
ffeθκ+

1

8
f 2fe3κ

and the null structure equations,

e3(κ) +
1

2
κκ− 2ωκ = 2 d/1η + 2ρ− 1

2
ϑϑ+ 2(ξξ + η2),

e4κ+
1

2
κ2 + 2ωκ = 2 d/1ξ −

1

2
ϑ2 + 2(η + η + 2ζ)ξ,

we deduce,

e′θκ = eθκ+
1

2
f

(
−1

2
κ2 − 2ωκ

)
+

1

2
f

(
−1

2
κκ+ 2ωκ+ 2ρ

)
+

1

2
ffeθκ+

1

8
f 2fe3κ+

1

2
f

(
2 d/1ξ −

1

2
ϑ2 + 2(η + η + 2ζ)ξ

)
+

1

2
f

(
2 d/1η −

1

2
ϑϑ+ 2(ξξ + η2)

)
.

Hence,

e′θ(κ
′) = eθκ+ e′θ(a)κ+ e′θ d/

′
1f + κe′θa−

1

4
κ(fκ+ fκ) + κ(fω − ωf) + fρ+ Err(e′θκ

′, eθκ)

where,

Err(e′θκ
′, eθκ) = Err1(e′θκ

′, eθκ) +
1

2
f

(
2 d/1η −

1

2
ϑϑ+ 2(ξξ + η2)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ+

1

2
f

(
2 d/1ξ −

1

2
ϑ2 + 2(η + η + 2ζ)ξ

)
as desired. The formula for e′θ(κ

′) is easily derived by symmetry from the one on e′θ(κ
′).

Note however that a becomes −a in the transformation.

Applying the operator e′θ =
(
1 + 1

2
ff
)
eθ + 1

2
fe4 + 1

2
f
(
1 + 1

4
ff
)
e3 to the transformation

formula for µ,

µ′ = µ+ ( d/1)′
(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
+ Err(µ, µ′)
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we derive,

e′θ(µ
′) = e′θ(µ) + e′θ( d/1)′

(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
+ e′θErr(µ, µ′)

= eθ(µ) +
1

2
fe4µ+

1

2
fe3µ+ e′θ( d/1)′

(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
+ e′θErr(µ, µ′) +

1

2
ffeθµ+

1

8
f 2fe3µ.

Recalling that µ = − d/1ζ − ρ+ 1
4
ϑϑ we find,

1

2
fe4µ+

1

2
fe3µ = −1

2
(fe3 + fe4)ρ+

1

2
fe4

(
− d/1ζ +

1

4
ϑϑ

)
+

1

2
fe3

(
− d/1ζ +

1

4
ϑϑ

)
.

Recalling the Bianchi equations for e3ρ, e4ρ

e4ρ+
3

2
κρ = d/1β − 1

2
ϑα + ζ β + 2(η β + ξ β),

e3ρ+
3

2
κρ = d/1β − 1

2
ϑα− ζ β + 2(η β + ξ β),

we further deduce,

1

2
fe4µ+

1

2
fe3µ =

3

4
ρ(fκ+ fκ)

− 1

2
f
(
d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

)
− 1

2
f
(
d/1β −

1

2
ϑα + ζ β + 2(η β + ξ β)

)
+

1

2
fe4

(
− d/1ζ +

1

4
ϑϑ

)
+

1

2
fe3

(
− d/1ζ +

1

4
ϑϑ

)
.

Therefore,

e′θ(µ
′) = eθ(µ) +

3

4
ρ(fκ+ fκ) + e′θ( d/1)′

(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
+ Err(eθµ, eθµ)

with,

Err(e′θµ
′, eθµ) = e′θErr(µ, µ′) +

1

2
ffeθµ+

1

8
f 2fe3µ

− 1

2
f
(
d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

)
− 1

2
f
(
d/1β −

1

2
ϑα + ζ β + 2(η β + ξ β)

)
+

1

2
fe4

(
− d/1ζ +

1

4
ϑϑ

)
+

1

2
fe3

(
− d/1ζ +

1

4
ϑϑ

)
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as desired.

Finally recalling the definition of the Hodge operators d/1, d
?/1, ( d/1)′, ( d?/1)′ and noticing that

( d?/1)′(κ′) = ( d?/1)′(κ̌′), ( d?/1)(κ) = ( d?/1)(κ̌),

( d?/1)′(κ′) = ( d?/1)′(κ̌′), ( d?/1)(κ) = ( d?/1)(κ̌),

( d?/1)′(µ′) = ( d?/1)′(µ̌′), ( d?/1)(µ) = ( d?/1)(µ̌),

( d?/1)′(µ′) = ( d?/1)′(µ̌′), ( d?/1)(µ) = ( d?/1)(µ̌),

we recast the results of Lemma 9.3.4 in the following form.

Lemma 9.3.5. We have the transformation equations,

( d?/1)′(κ̌′) = d?/1(κ̌) + ( d?/1)′( d/1)′f + κ( d?/1)′a− ρf +
1

4
κ(fκ+ fκ)

− κ(fω − fω)− Err1,

( d?/1)′(κ̌′) = d?/1(κ̌) + ( d?/1)′( d/1)′f − κ( d?/1)′a− ρf +
1

4
κ(fκ+ fκ)

− κ(fω − fω)− Err2,

( d?/1)′(µ̌′) = d?/1(µ̌) + ( d?/1)′( d/1)′
(
−( d?/1)′a+ fω − fω +

1

4
fκ− 1

4
fκ

)
− 3

4
ρ
(
fκ+ fκ

)
− Err3,

(9.3.13)

where,

Err1 = Err(e′θκ
′, eθκ) = e′θ Err(κ, κ′) + ae′θ d/

′
1f + e′θ(a) d/ ′1f

+ a

(
eθκ+

1

2

(
fe4κ+ fe3κ

))
+ f d/1η + f d/1ξ + l.o.t.,

Err2 = Err(e′θκ
′, eθκ) = e′θ Err(κ, κ′)− ae′θ d/ ′1f − e′θ(a) d/ ′1f

− a
(
eθκ+

1

2

(
fe4κ+ fe3κ

))
+ f d/1η + f d/1ξ + l.o.t.,

Err3 = Err(e′θµ
′, eθµ) = e′θErr(µ, µ′)− 1

2

(
f d/1β + f d/1β

)
− 1

2
(fe3 + fe4) d/1ζ + l.o.t.,

(9.3.14)

where the terms denoted by l.o.t. are cubic or higher order in a, f, f , Γ̌, Ř and contain no
derivatives of (a, f, f).
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9.3.1 Main GCM equations

Given a deformation Ψ :
◦
S −→ S and adapted frame (e′3, e

′
4, e
′
θ) with e′θ = eSθ we derive

an elliptic system for the transition parameters (a, f, f). The system will later be used in
the construction of GCM surfaces.

In what follows we denote by d/S
1 , d/

S
2 , d/

S,?
1 , d/S,?

2 the basic Hodge operators on S. Noting
that the transformation formulae in (9.3.13)–(9.3.14) contain only the operators ( d/1)′ =
d/S

1 , ( d
?/1)′ = d/S,?

1 applied to a, f, f we introduce the simplified notation,

d/S := ( d/1)′, d/S,? := ( d?/1)′, AS := d/S,? d/S, d?/ := d?/1. (9.3.15)

With these notation (9.3.13) takes the following form,

d/S,?κ̌S = d?/ κ̌+ ASf + κ d/S,?a− ρf +
1

4
κ(fκ+ fκ)− κ(fω − fω)− Err1,

d/S,?κ̌S = d?/ κ̌+ ASf − κ d/S,?a− ρf +
1

4
κ(fκ+ fκ)− κ(fω − fω)− Err2,

d/S,?µ̌S = d?/ µ̌+ AS

(
− d/S,?a+ fω − fω +

1

4
fκ− 1

4
fκ

)
− 3

4
ρ
(
fκ+ fκ

)
− Err3,

or,

AS

(
− d/S,?a+ fω − fω +

1

4
fκ− 1

4
fκ

)
− 3

4
ρ(κf + κf) = d/S,?µ̌S − d?/ µ̌+ Err3,

ASf + κ d/S,?a− ρf +
1

4
κ(fκ+ fκ)− κ(fω − fω) = d/S,?κ̌S − d?/ κ̌+ Err1,

ASf − κ d/S,?a− ρf +
1

4
κ(fκ+ fκ)− κ(fω − fω) = d/S,?κ̌S − d?/ κ̌+ Err2.

(9.3.16)

Since AS is invertible9 we can write, setting z := κf + κf ,

d/S,?a = fω − fω +
1

4
fκ− 1

4
fκ− 3

4
(AS)−1

(
ρz
)

+ (AS)−1
(
− d/S,?µ̌S + d?/ µ̌− Err3

)
.

9We have
∫
S
fASf =

∫
S
( d/Sf)2 which in view of the identity (2.1.22) for d/S

1 and the definition of d/S

implies that AS is invertible.
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We can thus eliminate d/S,?a from the last two equations,

ASf +

(
1

2
κκ− ρ

)
f − 3

4
κ(AS)−1

(
ρz
)

= d/S,?κ̌S − d?/ κ̌− κ(AS)−1
(
− d/S,?µ̌S + d?/ µ̌

)
+ Err4,

ASf +

(
1

2
κκ− ρ

)
f +

3

4
κ(AS)−1

(
ρz
)

= d/S,?κ̌S − d?/ κ̌+ κ(AS)−1
(
− d/S,?µ̌S + d?/ µ̌

)
+ Err5,

where,

Err4 = Err1 + κ(AS)−1Err3, Err5 = Err2 − κ(AS)−1Err3.

Therefore the system (9.3.16) is equivalent to the system,

ASf +

(
1

2
κκ− ρ

)
f − 3

4
κ(AS)−1

(
ρz
)

= d/S,?κ̌S − d?/ κ̌− κ(AS)−1
(
− d/S,?µ̌S + d?/ µ̌

)
+ Err4,

ASf +

(
1

2
κκ− ρ

)
f +

3

4
κ(AS)−1

(
ρz
)

= d/S,?κ̌S − d?/ κ̌+ κ(AS)−1
(
− d/S,?µ̌S + d?/ µ̌

)
+ Err5,

d/S,?a+
3

4
(AS)−1

(
ρz
)
− fω + fω − 1

4
fκ+

1

4
fκ = (AS)−1

(
− d/S,?µ̌S + d?/ µ̌

)
− (AS)−1Err3.

We summarize the results of the above calculation in the following lemma.

Lemma 9.3.6. The original system (9.3.13) in (a, f, f) associated to a deformation sphere
S is equivalent to the following(
AS + V

)
f =

3

4
κ(AS)−1

(
ρz
)

+ d/S,?κ̌S − d?/ κ̌− κ(AS)−1
(
− d/S,?µ̌S + d?/ µ̌

)
+ Err4,(

AS + V
)
f = −3

4
κ(AS)−1

(
ρz
)

+ d/S,?κ̌S − d?/ κ̌+ κ(AS)−1
(
− d/S,?µ̌S + d?/ µ̌

)
+ Err5,

d/S,?a = −3

4
(AS)−1

(
ρz
)

+ fω − fω +
1

4
fκ− 1

4
fκ+ (AS)−1

(
− d/S,?µ̌S + d?/ µ̌

)
− (AS)−1Err3,

(9.3.17)

where,

z := κf + κf, V :=
1

2
κκ− ρ. (9.3.18)
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The error terms are given by Err1,Err2,Err3, defined in Lemma 9.3.5, and

Err4 = Err1 + κ(AS)−1Err3, Err5 = Err2 − κ(AS)−1Err3. (9.3.19)

Remark 9.3.7. We note the following remarks concerning the system (9.3.17).

1. The right hand side of the equations is linear in the quantities,

d/S,?κ̌S, d/S,?κ̌S, d/S,?µ̌S, as well as d?/κ̌, d?/κ̌, d?/µ̌.

The first group is to be constrained by our GCM conditions in the next section while
the second group depends on assumptions regarding the background foliation of R.

2. The error terms contain only S-angular derivatives of (a, f, f) of order at most
equal to the order of the corresponding operators on the left hand sides, see Lemma
9.3.8 below. Thus the system is in a standard quasilinear elliptic system form.

3. In order to uniquely solve the equations for f and f , we need to the coercivity of

the operator AS + V . One can easily show that the potential V is positive for small
values of r, i.e. r near rH = 2m0(1+δH) but negative for large r. In fact AS+V has
a nontrivial kernel for large r as one can easily see from the following calculation.
Since,

AS = d?/1
S d/1

S = d/2
S d?/2

S + 2K, K = −ρ− 1

4
κκ+

1

4
ϑϑ

we deduce,

AS + V = AS +
1

2
κκ− ρ = d/2

S d?/2
S − 3ρ+

1

2
ϑϑ.

Thus for large enough r the operator AS + V behaves like d/S
2 d/S,?

2 which has a
nontrivial kernel.

4. To be able to correct for the lack of coercivity of the system, we need to prescribe the
` = 1 modes of (f, f).

5. The equations do not provide information on the average of a. For this we will need
yet another equation derived in section 9.3.2.

Lemma 9.3.8. The error terms Err1, . . . ,Err5 can be written schematically as follows,

r2Err1 = ( d/S)2
(
(f, f , a)2

)
+ d/S

(
(f, f , a)(rΓg)

)
+ l.o.t.,

rErr2 = r−1( d/S)2
(
(f, f , a)2

)
+ d/S

(
(f, f , a)(Γ̌)

)
+ l.o.t.,

r3Err3 = ( d/S)3
(
(f, f , a)2

)
+ ( d/S)2

(
(f, f , a)(rΓg)

)
+ l.o.t.,

Err4,Err5 = Err1 + r−1(AS)−1Err3,

(9.3.20)
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where the lower order terms denoted l.o.t. are cubic with respect to a, f, f , Γ̌, Ř and may
involve fewer angular (along S) derivatives of a, f, f .

Remark 9.3.9. Note that Err2 behaves worse in powers of r than Err1. The reason is
the presence of the terms feθξ, eθ(fξ) in the formula for eSθ (Err(κ′, κ)).

Proof. Note that in the spacetime region R of interest r and rS are comparable. Recall,
see (9.3.14),

Err1 = Err(e′θκ
′, eθκ) = e′θ Err(κ, κ′) + ae′θ d/

′
1f + e′θ(a) d/ ′1f

+ a

(
eθκ+

1

2

(
fe4κ+ fe3κ

))
+ f d/1η + f d/1ξ + l.o.t.,

Err2 = Err(e′θκ
′, eθκ) = e′θ Err(κ, κ′)− ae′θ d/ ′1f − e′θ(a) d/ ′1f

− a
(
eθκ+

1

2

(
fe4κ+ fe3κ

))
+ f d/1η + f d/1ξ + l.o.t.,

Err3 = Err(e′θµ
′, eθµ) = e′θErr(µ, µ′)− 1

2

(
f d/1β + f d/1β

)
− 1

2
(fe3 + fe4) d/1ζ + l.o.t.,

and10,

Err(κ, κ′) =
1

2
ffe′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.,

Err(κ, κ′) = −1

2
fe′θ

(
ff +

1

8
f 2f 2

)
+

(
3

4
ff +

1

8
(ff)2

)
e′θ(f)

+
1

4

(
1 +

1

2
ff

)
fe′θ

(
ff
)
− 1

4
f

(
1 +

1

4
ff

)
e′θ
(
f 2
)

+ f(−ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.

Also,

Err(µ, µ′) = −e′θErr(ζ, ζ ′)− Err(ρ, ρ′) +
1

4

(
ϑ′ϑ′ − ϑϑ

)
,

Err(ζ, ζ ′) =
1

2
f

(
1 +

1

4
ff

)
e′θ(f)− 1

16
f 2e′θ(f

2) +
1

4
(−fϑ+ fϑ) + l.o.t.,

Err(ρ, ρ′) =
3

2
ρff + fβ + fβ + l.o.t.

10Recall also the outgoing geodesic conditions i.e. ξ = 0, ζ + η = 0, ζ − η = 0, ω = 0.
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We write schematically11,

Err1 = (f, f , a)(r−2 d/S)2(f, f , a) + (r−1 d/S(f, f , a))2 + r−1 d/S
(
(f, f , a)Γg

)
+ r−2 d/S(f 2) +

1

2
a
(
fe4κ+ fe3κ

)
+ l.o.t.

Making use of

e3(κ) +
1

2
κκ− 2ωκ = 2 d/1η + 2ρ− 1

2
ϑϑ+ 2(ξξ + η2),

e4κ+
1

2
κ2 + 2ωκ = 2 d/1ξ −

1

2
ϑ2 + 2(η + η + 2ζ)ξ,

and treating the curvature terms that appear as Γg we easily derive,

r2Err1 = ( d/S)2
(
(f, f , a)2

)
+ d/S

(
(f, f , a)(rΓg)

)
.

We obtain a worse estimate for Err2 because of the presence e′θ(fξ), since ξ ∈ Γb. In fact,

rErr2 = r−1( d/S)2
(
(f, f , a)2

)
+ d/S

(
(f, f , a)Γ̌

)
.

For Err3 we write similarly, treating the curvature terms that appear as Γg,

eθ(µ, µ
′) = r−3( d/S)3

(
(f, f , a)2

)
+ r−3( d/S)2

(
(f, f , a)Γg

)
+ l.o.t.

Using the null structure equations for ζ we infer that,

Err3 = eθ(µ, µ
′)− 1

2

(
f d/1β + f d/1β

)
− 1

2
(fe3 + fe4) d/1ζ + l.o.t.

= r−3( d/S)3
(
(f, f , a)2

)
+ r−3( d/S)2

(
(f, f , a)Γg

)
+ l.o.t.

as stated.

Making use of the above lemma and the assumptions A1-A3 we can derive the following.

Lemma 9.3.10. Assume given a deformation Ψ :
◦
S −→ S in R and adapted frame

(e′3, e
′
4, e
′
θ) with e′θ = eSθ with transition parameters a, f, f defined on S. Assume that there

exists a small enough constat δ1 such that the following holds true

(
◦
r )−1‖U ′‖

hsmax−1(
◦
S,
◦
g/ )

+ (
◦
r )−2‖S ′‖

hsmax−1(
◦
S,
◦
g/ )
. δ1.

11The last term r−2 d/S(f2) on the right of the identity below is due to the term e′θ(f
2ω) in the expression

of e′θ Err(κ, κ′).
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Then, for 5 ≤ s ≤ smax + 1,

‖Err1,Err2‖hs−2(S) . r−2
∥∥∥(f, f , a)

∥∥∥
hs(S)

(
◦
ε+ r−1

∥∥∥f, f , a∥∥∥
hs−1(S)

)
,

‖Err3‖hs−3(S) . r−3
∥∥∥(f, f , a)

∥∥∥
hs(S)

(
◦
ε+ r−1

∥∥∥f, f , a∥∥∥
hs−1(S)

)
,

‖Err4,Err5‖hs−2(S) . r−2
∥∥∥(f, f , a)

∥∥∥
hs(S)

(
◦
ε+ r−1

∥∥∥f, f , a∥∥∥
hs−1(S)

)
.

(9.3.21)

Proof. The proof follows easily from Lemma 9.3.8, Corollary 9.2.11, coercivity of AS and
obvious product estimates on S. Consider for example the term

Err2 = r−2( d/S)2
(
(f, f , a)2

)
+ r−1 d/S

(
(f, f , a)(Γ̌)

)
.

We write,

( d/S)kErr2 = r−2( d/S)2+k
(
(f, f , a)2

)
+ r−1( d/S)1+k

(
(f, f , a)(Γ̌)

)
+ l.o.t.

and

( d/S)2+k
(
(f, f , a)2

)
=

∑
i+j=k+2

d/i(f, f , a) · d/j(f, f , a).

Thus, dividing the sum into terms with i ≥ [k+2
2

] and i < [k+2
2

] and using Sobolev
estimates for the terms involving fewer derivatives we derive, for [k+2

2
] + 2 ≤ k + 1,

‖( d/S)2+k
(
(f, f , a)2

)
‖L2(S) . r−1‖(a, f, f)‖hk+1(S)‖(a, f, f)‖hk+2(S).

Similarly, making use of our assumptions for Γ̌,

( d/S)1+k
(
(f, f , a)(Γ̌)

)
. r−1‖(a, f, f)‖hk+1(S)‖Γ̌‖hk+1(S)

.
◦
εr−1‖(a, f, f)‖hk+1(S).

Thus, for all 3 ≤ k ≤ smax − 1

‖( d/S)kErr2‖L2(S) . r−2 ‖(f, f , a)‖hk+2(S)

(
◦
ε+ r−1

∥∥∥(f, f , a)
∥∥∥
hk+1(S)

)
i.e., for 5 ≤ s ≤ smax + 1,

‖Err2‖hs−2(S) . r−2
∥∥∥(f, f , a)

∥∥∥
hs(S)

(
◦
ε+ r−1

∥∥∥f, f , a∥∥∥
hs−1(S)

)
.

All other terms can be treated similarly.
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9.3.2 Equation for the average of a

In the proof of existence and uniqueness of GCMS, see Theorem 9.4.1 we will need, in
addition of the equations derived so far, an equation for the average of a. To achieve this
we make use of the transformation formula for κ of Lemma 9.3.2

κ′ = ea (κ+ d/′1f) + eaErr(κ, κ′),

Err(κ, κ′) = f(ζ + η) + fξ +
1

2
fe4f +

1

2
fe3f +

1

4
ffκ+ ffω − ωf 2 + l.o.t.

which we rewrite in the form,

κS = ea
(

2

r
+ κ̌+

(
κ− 2

r

)
+ d/Sf + Err(κ, κ′)

)
.

We deduce,

(ea − 1)
2

r
= κS − 2

r
− ea

(
κ̌+ κ− 2

r
+ d/Sf

)
− eaErr(κ, κ′)

= κS − 2

rS
+

(
2

rS
− 2

r

)
−
(
κ̌+ κ− 2

r
+ d/Sf

)
− eaErr(κ, κ′)− (ea − 1)

(
κ̌+ κ− 2

r
+ d/Sf

)
or,

a
2

r
= κS − 2

rS
+

(
2

rS
− 2

r

)
−
(
κ̌+ κ− 2

r
+ d/Sf

)
− eaErr(κ, κ′)− (ea − 1)

(
κ̌+ κ− 2

r
+ d/Sf

)
− (ea − 1− a)

2

r
.

We deduce,

a =
rS

2

(
κS − 2

rS

)
+

(
1− rS

r

)
− rS

2

(
κ̌+ κ− 2

r
+ d/Sf

)
+ Err6

Err6 = −r
S

2

[
eaErr(κ, κ′)− (ea − 1)

(
κ̌+ κ− 2

r
+ d/Sf

)
− (ea − 1− a)

2

r

]
− a

(
rS

r
− 1

)
.

Taking the average on S we infer that,

aS =
rS

2

(
κS

S − 2

rS

)
+

(
1− rS

r

)S

− rS

2

(
κ̌+ κ− 2

r

)S

+ Err6
S

(9.3.22)

where h
S

denotes the average of h on S.
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9.3.3 Transversality conditions

Lemma 9.3.11. Assume given a deformed sphere S ⊂ R with adapted null frame eS3 , e
S
4 , e

S
θ

and transition functions (a, f, f). We can extend a, f, f , and thus the frame eS3 , e
S
4 , e

S
θ , in

a small neighborhood of S such that the following hold true

ξS = 0, ωS = 0, ηS + ζS = 0. (9.3.23)

Proof. According to Proposition 9.3.1 we have,

ξS = e2a

(
ξ +

1

2
e−aeS4 (f) +

1

4
fκ+ fω

)
+ e2aErr(ξ, ξS),

ζS = ζ − eSθ (a)− fω + fω − 1

4
fκ+

1

4
fκ+ Err(ζ, ζS),

ηS = η +
1

2
e−aeS4f − fω +

1

4
fκ+ Err(η, ηS),

ωS = ea
(
ω − 1

2
e−aeS4a

)
+ eaErr(ω, ωS).

Clearly the conditions ξS = 0, ωS = 0 allows us to determine eS4f and eS4a on S while the
condition ηS + ζS = 0 allows us to determine eS4f on S.

Remark 9.3.12. According to Proposition 9.3.1 we also have,

ξS = e−2a

(
ξ +

1

2
eaeS3 (f) +

1

4
f κ+ f ω

)
+ e−2aErr(ξ, ξS),

ωS = e−a
(
ω +

1

2
eaeS3a

)
+ e−aErr(ω, ωS),

so that we may impose, in addition, vanishing conditions on ξS and ωS along S. Indeed

these are determined by eS3f and eS3a.

9.4 Existence of GCM spheres

We now impose the GCM conditions on the deformed sphere S

d/S,?
2 d/S,?

1 κS = d/S,?
2 d/S,?

1 µS = 0, κS =
2

rS
,∫

S

feΦ = Λ,

∫
S

feΦ = Λ,
(9.4.1)
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where (f, f) belong to the triplet (f, f , λ = ea) which denote the change of frame coeffi-

cients from the frame of
◦
S to the one of S.

We are ready to state the first main result of this chapter.

Theorem 9.4.1 (Existence of GCM spheres). Let
◦
S = S(

◦
u,
◦
s) be a fixed sphere of the

(u, s) outgoing geodesic foliation of a fixed spacetime region R. Assume in addition to A1–
A3 that there exists scalar functions C = C(u, s), M = M(u, s), such that the following
estimates hold true on R, for all k ≤ smax, with smax ≥ 6,∣∣dk−1

(
d?/1κ− CeΦ

)∣∣ . ◦δr−3,∣∣dk−1
(
d?/1µ−MeΦ

)∣∣ . ◦δr−4,∣∣∣∣κ− 2

r

∣∣∣∣+
∣∣dkκ̌∣∣ . ◦δr−2.

(9.4.2)

For any fix Λ,Λ ∈ R verifying,

|Λ|, |Λ| .
◦
δr2 (9.4.3)

there exists a unique GCM sphere S = S(Λ,Λ), which is a deformation of
◦
S, such that the

GCM conditions (9.4.1) are verified. Moreover the following estimates hold true.

1. We have ∣∣∣∣rS◦
r
− 1

∣∣∣∣ . r−1
◦
δ. (9.4.4)

In particular r,
◦
r and rS are all comparable in R.

2. The unique functions (λ, f, f) on S, which relate the original frame e3, e4, eθ to the

new frame on eS3 , e
S
4 , e

S
θ according to (9.2.18), verify the estimates∥∥∥f, f , log λ

∥∥∥
hk(S)

.
◦
δ, k ≤ smax + 1. (9.4.5)

3. The parameters U, S of the deformation, see Definition 9.2.1, verify the estimate

‖(U ′, S ′)‖
L∞(

◦
S)

+ max
0≤s≤smax−1

r−1‖(U ′, S ′)‖
hs(
◦
S,
◦
g/ )
.

◦
δ. (9.4.6)
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4. The Hawking mass mS verifies the estimate,∣∣mS − ◦
m
∣∣ . ◦

δ. (9.4.7)

5. The curvature components (αS, βS, ρS, βS, αS), as well as µS and the Ricci coeffi-

cients12 (κS, ϑS, ζS, κS, ϑS) on S, verify, for all k ≤ smax,

‖κ̌S, ϑS, ζS, κ̌S‖hk(S) .
◦
εr−1,

‖ϑS‖hk(S) .
◦
ε,

‖αS, βS, ρ̌S, µ̌S‖hk(S) .
◦
εr−2,

‖βS‖hk(S) .
◦
εr−1,

‖αS‖hk(S) .
◦
ε.

(9.4.8)

6. The functions, (λ, f, f) uniquely defined above, can be smoothly extended to a small
neighborhood of S in such a way that the corresponding Ricci coefficients verify the
following transversality conditions

ξS = 0, ωS = 0, ηS + ζS = 0. (9.4.9)

In that case, the following estimates hold13 for all k ≤ smax − 1

‖eS4 (f, f , log λ)‖hk(S) . r−1
◦
δ + r−3 (|Λ|+ |Λ|) , (9.4.10)

and,

‖eS4 (κ̌S, ϑS, ζS, κ̌S)‖hk(S) .
◦
εr−2,

‖eS4 (ϑS)‖hk(S) .
◦
εr−1,

‖eS4
(
αS, βS, ρ̌S, µ̌S

)
‖hk(S) .

◦
εr−3,

‖eS4 (βS)‖hk(S) .
◦
εr−2,

‖eS4 (αS)‖hk(S) .
◦
εr−1.

(9.4.11)

To prove Theorem 9.4.1, it will be useful, using the fact that the kernel of d/S,?
2 is spanned

by eΦ, to rewrite the GCM conditions (9.4.1) in the following form

d/S,?
1 κS = CSeΦ, d/S,?

1 µS = MSeΦ, κS =
2

rS
,∫

S

feΦ = Λ,

∫
S

feΦ = Λ,
(9.4.12)

12All other Ricci coefficients involve the transversal derivatives eS3 , e
S
4 of the frame.

13To be more precise one should replace r by
◦
r in the estimates below. Of course r and

◦
r are comparable

in R, in particular on S.
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where CS and MS are constants.

Proposition 9.4.2. Assume that there exists constants CS, MS, such that the deformed
sphere S verifies the GCM conditions (9.4.12). Then, the deformation parameters (a, f, f)
verify the system

(
AS + V

)
f =

3

4
κ(AS)−1

(
ρz
)
− d?/ κ̌− κ(AS)−1

(
− MSeΦ + d?/ µ̌

)
+ Err4,(

AS + V
)
f = −3

4
κ(AS)−1

(
ρz
)

+ CSeΦ − d?/ κ̌+ κ(AS)−1
(
− MSeΦ + d?/ µ̌

)
+ Err5,

d/S,?a = −3

4
(AS)−1

(
ρz
)

+ fω − fω +
1

4
fκ− 1

4
fκ+ (AS)−1

(
− MSeΦ + d?/ µ̌

)
− (AS)−1Err3,

aS =

(
1− rS

r

)S

− rS

2

(
κ̌+ κ− 2

r

)S

+ Err6
S
,

(9.4.13)

and ∫
S

eΦf = Λ,

∫
S

eΦf = Λ, (9.4.14)

where we recall that

z = κf + κf, V =
1

2
κκ− ρ,

Err4 = Err1 + κ(AS)−1Err3, Err5 = Err2 − κ(AS)−1Err3,

Err6 = −r
S

2

[
eaErr(κ, κ′)− (ea − 1)

(
κ̌+ κ− 2

r
+ d/Sf

)
− (ea − 1− a)

2

r

]
− a

(
rS

r
− 1

)
.

with the error terms Err1, Err2, Err3, defined in Lemma 9.3.5.

Conversely, if there exists constants CS, MS, such that the deformation parameters
(a, f, f) verify the system (9.4.13) (9.4.14), then, the deformed sphere S verifies the GCM
conditions (9.4.12).
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Proof. The first statement is an immediate consequence of Lemma 9.3.6 and (9.3.22).
We then focus on the second statement, i.e. we assume that the deformation parameters
(a, f, f) verify the system (9.4.13) (9.4.14) for some constants CS, MS. Then, subtracting
the first three equations of (9.4.13) from (9.3.17) and the last equation of (9.4.13) from
(9.3.22), we obtain

d/S,?κ̌S − κ(AS)−1
(
− d/S,?µ̌S +MSeΦ

)
= 0,

d/S,?κ̌S − CSeΦ + κ(AS)−1
(
− d/S,?µ̌S +MSeΦ

)
= 0,

(AS)−1
(
− d/S,?µ̌S +MSeΦ

)
= 0,

rS

2

(
κS

S − 2

rS

)
= 0,

which, together with (9.4.14), immediately implies (9.4.12).

Remark 9.4.3. In view of Propositions 9.2.9 and 9.4.2, to find a GCM sphere amounts
to solve the following coupled system

ς#U ′ =
(
(γS )#

)1/2
f#

(
1 +

1

4
(ff)#

)
,

S ′ − ς#

2
Ω#U ′ =

1

2

(
(γS )#

)1/2
f#,

(γS)# = γ# + (ς#)2

(
Ω +

1

4
b2γ

)#

(∂θU)2 − 2ς#∂θU∂θS − (γςb)#∂θU,

U(0) = S(0) = 0,

(9.4.15)

where the inputs (a, f, f) verifies (9.4.13) (9.4.14). Recall that for a reduced scalar h
defined on S we write

h#(
◦
u,
◦
s, θ) = h(

◦
u+ U(θ),

◦
s+ S(θ), θ).

We will solve the coupled system of equations (9.4.13) (9.4.14) (9.4.15) by an iteration
argument which will be introduced below. Before doing this however it pays to observe
that the system (9.4.13) can be interpreted as an elliptic system on a fixed surface S
for (a, f, f). In the next section we state a result which establishes the coercivity of the
corresponding linearized system. The full proof of the theorem is detailed in section 9.4.3
to section 9.6.3.
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9.4.1 The linearized GCM system

We start with the following linearized version of the equations (9.4.13)

BSf = − 6mS

(rS)5
(AS)−1

(
f −ΥSf

)
+

2

rS

(
MS −MS

)
(AS)−1eΦ + F1,

BSf = −6mSΥS

(rS)5
(AS)−1

(
f −ΥSf

)
+
(
CS − CS

)
eΦ

+
2ΥS

rS

(
MS −MS

)
(AS)−1eΦ + F2,

d/S,?a = F3,

aS = b0,

(9.4.16)

where F1, F2, and F3 are given reduced scalar on S, b0 is a given constant, and where we
have introduced the notation

BS := d/S
2 d

?/ S
2 +

6mS

(rS)3
. (9.4.17)

Remark 9.4.4. Recalling that we have AS + V = d/S
2 d

?/ S
2 − 3ρ + 1

2
ϑϑ, the GCM system

(9.4.13) corresponds, in view of the definition of BS, to the linearized GCM system (9.4.16)
with the following choices for F1, F2, F3, b0,

F1 = − 3mS

(rS)4
(AS)−1

((
κ− 2

rS

)
f +

(
κ+

2ΥS

rS

)
f

)
+

3

4

(
κ− 2

rS

)
(AS)−1

(
ρz
)
− 3

2rS
(AS)−1

((
ρ+

2mS

(rS)3

)
z

)
− d?/ κ̌

−
(
κ− 2

rS

)
(AS)−1

(
− MSeΦ + d?/ µ̌

)
− 2

rS
(AS)−1

(
d?/ µ̌−MS

eΦ
)

+ Err4,

F2 = −3mSΥS

(rS)4
(AS)−1

((
κ− 2

rS

)
f +

(
κ+

2ΥS

rS

)
f

)
−3

4

(
κ+

2ΥS

rS

)
(AS)−1

(
ρz
)

+
3ΥS

2rS
(AS)−1

((
ρ+

2mS

(rS)3

)
z

)
−
(
d?/ κ̌− CS

eΦ
)

+

(
κ+

2ΥS

rS

)
(AS)−1

(
− MSeΦ + d?/ µ̌

)
−2ΥS

rS
(AS)−1

(
d?/ µ̌−MS

eΦ
)

+ Err5,
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F3 = −3

4
(AS)−1

(
ρz
)

+ fω − fω +
1

4
fκ− 1

4
fκ

+(AS)−1
(
− MSeΦ + d?/ µ̌

)
− (AS)−1Err3,

b0 =

(
1− rS

r

)S

− rS

2

(
κ̌+ κ− 2

r

)S

+ Err6
S
.

Remark 9.4.5. To motivate the introduction of the system (9.4.16), let us note that the
above particular choices for F1 and F2 in Remark 9.4.4 correspond to the terms in the
first two equations of (9.4.13) which14

• either depend on κ̌, d?/ κ̌− CeΦ, and d?/ µ̌−MeΦ,

• or are nonlinear.

The following result plays a main role in the proof of Theorem 9.4.1.

Proposition 9.4.6. Let a fixed spacetime region R verifying assumptions A1−A3 and
(9.4.2). Assume S is a given surface in R such that, for a small enough constant δ1 > 0
and for any 2 ≤ s ≤ smax + 1,

sup
S

∣∣∣∣KS − 1

(rS)2

∣∣∣∣ ≤ δ1

(rS)2
, ‖KS‖hs−2(S) .

1

rS
,

∫
S

e2Φ =
4π

3
(rS)4(1 +O(δ1)).

Then, for every Λ,Λ,

• Existence and uniqueness. There exists unique constants (CS,MS) and a unique
solution (f, f , λ) of the system (9.4.16) (9.4.14) verifying the estimates∣∣CS − CS∣∣+ rS

∣∣MS −MS∣∣ . (rS)−7
(
|Λ|+ |Λ|

)
+ (rS)−2‖F1‖L2(S)

+ (rS)−2‖F2‖L2(S),
(9.4.18)

‖(f, f)‖hs(S) . (rS)−2
(
|Λ|+ |Λ|

)
+ (rS)2‖F1‖hs−2(S) + (rS)2‖F2‖hs−2(S), (9.4.19)

‖ǎS‖hs(S) . rS‖F3‖hs−1(S) (9.4.20)

and

|aS| . |b0|. (9.4.21)

14Note that the terms d?/ κ̌− CS
eΦ and d?/ µ̌−MS

eΦ can be decomposed as follows

d?/ κ̌− CS
eΦ = d?/ κ̌− CeΦ + (C − CS

)eΦ, d?/ µ̌−MS
eΦ = d?/ µ̌−MeΦ + (M −MS

)eΦ,

where C − CS
and M −MS

are nonlinear in view of Corollary 9.2.13 applied to D = C and D = M .
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• A priori estimates. If (f, f , λ) verifies the system (9.4.16) (9.4.14) for some constant

(CS,MS), then (MS, CS) satisfies (9.4.18) and (f, f , λ) satisfies (9.4.19), (9.4.20),
and (9.4.21).

As a corollary, we derive the following rigidity result for GCM spheres.

Corollary 9.4.7. Let a fixed spacetime region R verifying assumptions A1−A3 and
(9.4.2). Assume that S is a deformed sphere in R which verifies the the GCM conditions

κS =
2

rS
, d?/2

S d?/1
SκS = d?/2

S d?/1
SµS = 0 (9.4.22)

and such that for a small enough constant δ1 > 0, the transition functions (f, f , λ) from
the background frame of R to that of S verifies, for some 4 ≤ s ≤ smax, the bound

‖f‖hs(S) + (rS)−1‖(f, a)‖hs(S) ≤ δ1. (9.4.23)

Then (f, f , λ) verify the estimates

‖(f, f , ǎS)‖hs+1(S) .
◦
δ + r−2

(∣∣∣∣∫
S

feΦ

∣∣∣∣+

∣∣∣∣∫
S

feΦ

∣∣∣∣)+
(◦
ε+ δ1

)
sup
S
|r − rS|

and

r|aS| .
◦
δ + r−2

(∣∣∣∣∫
S

feΦ

∣∣∣∣+

∣∣∣∣∫
S

feΦ

∣∣∣∣)+ sup
S
|r − rS|.

Remark 9.4.8. As mentioned before Lemma 9.3.10, the anomalous behavior for (f, a)
in the assumption (9.4.23) does not appear in the construction of GCM spheres in this
chapter. It appears however in the proof of Theorem M0 in the region (ext)L0 ∩ (ext)M of
the initial data layer, see Step 8 in section 4.1.

The proof of Proposition 9.4.6 will be given in section 9.5.1 while the proof of Corollary
9.4.7 will be given in section 9.5.2.

9.4.2 Comparison of the Hawking mass

We establish the estimate (9.4.7) concerning the Hawking mass mS. Recall that,

mS =
rS

2

(
1 +

1

16π

∫
S

κSκS
)
,

◦
m =

◦
r

2

(
1 +

1

16π

∫
◦
S

◦
κ
◦
κ

)
.
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We write

2

(
mS

rS
−
◦
m
◦
r

)
=

1

16π

[∫
S

(
κSκS − κκ

)
+

(∫
S

κκ−
∫
◦
S

κκ

)
−
∫
◦
S

(
κκ− ◦κ◦κ

)]
= I1 + I2 + I3.

In view of Proposition 9.2.9 we have |rS − ◦r | .
◦
δ and

∣∣γS,# − ◦γ ∣∣ . ◦
δ
◦
r . Making use of

Corollary 9.2.5 and the assumptions A1-A3 for κ, κ we deduce,∣∣I2

∣∣ =

∣∣∣∣∫
S

κκ−
∫
◦
S

κκ

∣∣∣∣ . ◦
δr−1.

Similarly, taking into account the definition of R :=

{
|u− ◦u| ≤

◦
δ, |s− ◦s| ≤

◦
δ

}
,

∣∣I3

∣∣ . ◦
δr−1.

Finally, making also use of the transformation formula from the original frame (e4, e3, eθ)
to the frame (eS4 , e

S
3 , e

S
θ ) of S

κSκS =
(
κ+ d/Sf + Err(κ, κS)

) (
κ+ d/Sf + Err(κ, κS)

)
and the estimates for (f, f , a = log λ) we deduce,∣∣κSκS − κκ∣∣ . r−3

◦
δ.

Hence, ∣∣∣I1

∣∣∣ . ◦
δr−1.

We infer that, ∣∣∣∣∣mS

rS
−
◦
m
◦
r

∣∣∣∣∣ . ◦
δr−1

from which the desired estimate (9.4.7) easily follows.

9.4.3 Iteration procedure for Theorem 9.4.1

We solve the coupled system of equations (9.4.13) (9.4.14) (9.4.15) by an iteration argu-
ment as follows.
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Starting with the septets

Q(0) := (U (0), S(0), a(0), f (0), f (0), C(0),M (0)) = (0, 0, 0, 0, 0, C(
◦
u,
◦
s),M(

◦
u,
◦
s)),

Q(1) := (U (1), S(1), a(1), f (1), f (1), C(1),M (1)) = (0, 0, 0, 0, 0, C(
◦
u,
◦
s),M(

◦
u,
◦
s)),

corresponding to the undeformed sphere
◦
S, we define iteratively the quintet

Q(n+1) = (U (n+1), S(n+1), a(n+1), f (n+1), f (n+1), C(n+1),M (n+1))

from

Q(n−1) = (U (n−1), S(n−1), a(n−1), f (n−1), f (n−1), C(n−1),M (n−1)),

Q(n) = (U (n), S(n), a(n), f (n), f (n), C(n),M (n)),

as follows.

1. The pair (U (n), S(n)) defines the deformation sphere S(n) and the corresponding pull

back map #n given by the map Ψ(n) :
◦
S −→ S(n),

(
◦
u,
◦
s, θ, ϕ) −→ (

◦
u+ U (n)(θ),

◦
s+ S(n)(θ), θ, ϕ). (9.4.24)

By induction we assume that the following estimates hold true:

r4|C(n) − CS(n−1)|+ r5|M (n) −MS(n−1)|
+
∥∥∥(a(n), f (n), f (n))

∥∥∥
hsmax−1(S(n−1))

.
◦
δ, (9.4.25)

and

‖∂θ
(
U (n−1), S(n−1)

)
‖
L∞(

◦
S)

+ max
0≤s≤smax−1

r−1‖∂θ
(
U (n−1), S(n−1)

)
‖
hs(
◦
S,
◦
g/ )

(9.4.26)

+‖∂θ
(
U (n), S(n)

)
‖
L∞(

◦
S)

+ max
0≤s≤smax−1

r−1‖∂θ
(
U (n), S(n)

)
‖
hs(
◦
S,
◦
g/ )
.

◦
δ.

2. We then define the quintet (a(n+1), f (n+1), f (n+1), C(n+1),M (n+1)) by solving the sys-
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tem on S(n) consisting of the equations (9.4.27), (9.4.34) and (9.4.35) below.

BS(n)f (n+1) = − 6mS(n)

(rS(n))5
(AS(n))−1

(
f (n+1) −ΥS(n)f (n+1)

)
+

2

rS(n)
(M (n+1) −MS(n)

)(AS(n))−1eΦ + E(n+1),

BS(n)f (n+1) = −6mS(n)ΥS(n)

(rS(n))5
(AS(n))−1

(
f (n+1) −ΥS(n)f (n+1)

)
+ (C(n+1) − CS(n)

)eΦ +
2ΥS(n)

rS
(M (n+1) −MS(n)

)(AS(n))−1eΦ + E(n+1),

d?/S(n)a(n+1) = Ẽ(n+1),

(9.4.27)

with,

E(n+1) : = − 3mS(n)

(rS(n))4
(AS(n))−1

((
κ− 2

rS(n)

)
f (n)

n−1
+

(
κ+

2ΥS(n)

rS(n)

)
f

(n)
n−1

)
+

3

4

(
κ− 2

rS(n)

)
(AS(n))−1

(
ρz

(n)
n−1

)
− 3

2rS(n)
(AS(n))−1

((
ρ+

2mS(n)

(rS(n))3

)
z

(n)
n−1

)
− d?/ κ̌

−
(
κ− 2

rS(n)

)
(AS(n))−1

(
− M (n)eΦ + d?/ µ̌

)
− 2

rS(n)
(AS(n))−1

(
d?/ µ̌−MS(n)

eΦ
)

+ Err
(n+1)
4 ,

(9.4.28)

E(n+1) : = −3mS(n)ΥS(n)

(rS(n))4
(AS(n))−1

((
κ− 2

rS(n)

)
f (n)

n−1
+

(
κ+

2ΥS(n)

rS(n)

)
f

(n)
n−1

)
− 3

4

(
κ+

2ΥS(n)

rS(n)

)
(AS(n))−1

(
ρz

(n)
n−1

)
+

3ΥS(n)

2rS(n)
(AS(n))−1

((
ρ+

2mS(n)

(rS(n))3

)
z

(n)
n−1

)
−
(
d?/ κ̌− CS(n)

eΦ
)

+

(
κ+

2ΥS(n)

rS(n)

)
(AS(n))−1

(
− M (n)eΦ + d?/ µ̌

)
− 2ΥS(n)

rS(n)
(AS(n))−1

(
d?/ µ̌−MS(n)

eΦ
)

+ Err
(n+1)
5 ,

(9.4.29)

Ẽ(n+1) : = −3

4
(AS(n))−1

(
ρz(n+1)

)
+ f (n+1)ω − f (n+1)ω +

1

4
f (n+1)κ

− 1

4
f (n+1)κ+ (AS(n))−1

(
− M (n+1)eΦ + d?/ µ̌

)
− (AS(n))−1

(
Err

(n+1)
3

)
,

(9.4.30)
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where

f
(n)
n−1 = f (n) ◦

(
Ψ(n−1) ◦ (Ψ(n))−1

)
, f (n)

n−1
= f (n) ◦

(
Ψ(n−1) ◦ (Ψ(n))−1

)
, (9.4.31)

z(n+1) := κf (n+1) + κf (n+1), z
(n)
n−1 := κf

(n)
n−1 + κf (n)

n−1
, (9.4.32)

and the error terms,

Err
(n+1)
1 ,Err

(n+1)
2 ,Err

(n+1)
3 ,Err

(n+1)
4 ,Err

(n+1)
5 , (9.4.33)

are obtained from the error terms Err1,Err2,Err3,Err4,Err5 by setting (a, f, f) =

(a(n), f (n), f (n)) and their derivatives by the corresponding ones on S(n − 1), and

then composing by Ψ(n−1) ◦ (Ψ(n))−1 so that the error terms in (9.4.33) are defined
on S(n).

We also set, ∫
S(n)

eΦf (n+1) = Λ,

∫
S(n)

eΦf (n+1) = Λ, (9.4.34)

and,

a(n+1)
S(n)

=

(
1− rS(n)

r

)S(n)

− rS(n)

2

(
κ̌+ κ− 2

r

)S(n)

+ Err
(n+1)
6

S(n)

, (9.4.35)

where Err
(n+1)
6 is obtained from the error terms Err6 as above in (9.4.33), by setting

(a, f, f) = (a(n), f (n), f (n)) and their derivatives by the corresponding ones on the

sphere S(n− 1), and then composing by Ψ(n−1) ◦ (Ψ(n))−1 so that Err
(n+1)
6 is defined

on S(n).

3. The system of equations (9.4.27), (9.4.34) and (9.4.35) admits a unique solution
(f (1+n), f (1+n), a(n+1), C(n+1),M (n+1)) according to Proposition 9.4.9 below.

4. We then use the new pair (f (n+1), f (n+1)) to solve the equations on
◦
S,

ς#n∂θU
(n+1) = (γ(n))1/2(f (n+1))#n

(
1 +

1

4

(
f (n+1)f (n+1)

)#n
)
,

∂θS
(n+1) − 1

2
ς#nΩ#n∂θU

(n+1) =
1

2
(γ(n))1/2(f (n+1))#n ,

γ(n) = γ#n +
(
ς#n
)2
(

Ω +
1

4
b2γ

)#n

(∂θU
(n))2

− 2ς#n∂θU
(n)∂θS

(n) −
(
γςb
)#n

∂θU
(n),

U (n+1)(0) = S(n+1)(0) = 0,

(9.4.36)
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where, we repeat, the pull back #n is defined with respect to the map

Ψ(n)(
◦
u,
◦
s, θ) = (

◦
u+ U (n)(θ),

◦
s+ S(n)(θ), θ),

and

γ(n) := γS(n),#n .

The equation (9.4.36) admits a unique solution (U (n+1), S(n+1)) according to Propo-
sition 9.4.10 below. The new pair (U (n+1), S(n+1)) defines the new polarized sphere
S(n+ 1) and we can proceed with the next step of the iteration.

9.4.4 Existence and boundedness of the iterates

Existence and boundedness of (f (n+1), f (n+1), a(n+1), C(n+1),M (n+1))

Proposition 9.4.9. The system of equations (9.4.27), (9.4.34) and (9.4.35) admits a
unique solution (f (1+n), f (1+n), a(n+1), C(n+1),M (n+1)) verifying the estimates

r4|C(n+1) − CS(n)|+ r5|M (n+1) −MS(n)|
+
∥∥∥(a(n+1) − a(n+1)

S(n)
, f (n+1), f (n+1))

∥∥∥
hsmax−1(S(n))

.
◦
δ

and

r
∣∣∣a(n+1)

S(n)
∣∣∣ . ◦

δ + ‖∂θ
(
U (n), S(n)

)
‖
L∞(

◦
S)

uniformly for all n ∈ N.

Proof. The system (9.4.27), (9.4.34) and (9.4.35) corresponds to the linearized GCM
system (9.4.16) (9.4.14) with the following choice for F1, F2, F3 and b0

F1 = E(n+1), F2 = E(n+1), F3 = Ẽ(n+1),

b0 =

(
1− rS(n)

r

)S(n)

− rS(n)

2

(
κ̌+ κ− 2

r

)S(n)

+ Err
(n+1)
6

S(n)

.

Also, the induction assumptions (9.4.26) for (U (n), S(n)) together with Corollary 9.2.12
implies that the sphere S(n) satisfies in particular the assumptions of Proposition 9.4.6.
We infer from that proposition the existence and uniqueness of the quintet solution
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(f (1+n), f (1+n), a(n+1), C(n+1),M (n+1)) to (9.4.27), (9.4.34) and (9.4.35), as well as the fol-
lowing a priori estimate

(rS(n))4|C(n+1) − CS(n)|+ (rS(n))5|M (n+1) −MS(n)|+
∥∥∥(f (n+1), f (n+1))

∥∥∥
hsmax−1(S(n))

. (rS(n))−2
(
|Λ|+ |Λ|

)
+ (rS(n))2‖E(n+1)‖hsmax−3(S(n))

+(rS(n))2‖E(n+1)‖hsmax−3(S(n)), (9.4.37)

∥∥∥a(n+1) − a(n+1)
S(n)
∥∥∥
hsmax−1(S(n))

. rS(n)‖Ẽ(n+1)‖hsmax−2(S(n)), (9.4.38)

and ∣∣∣a(n+1)
S(n)
∣∣∣ . ∣∣∣∣∣

(
1− rS(n)

r

)S(n)
∣∣∣∣∣+

∣∣∣∣∣rS(n)

2

(
κ̌+ κ− 2

r

)S(n)
∣∣∣∣∣+

∣∣∣∣Err
(n+1)
6

S(n)
∣∣∣∣ . (9.4.39)

We need to control the RHS of the inequalities (9.4.37) (9.4.38) (9.4.39). We start with the

control of the error terms Err
(n+1)
j , j = 3, 4, 5, 6. The induction assumptions (9.4.26) for

(U (n), S(n)) implies that the sphere S(n) satisfies in particular the assumptions of Lemma

9.3.10 with δ1 =
◦
δ. We deduce from that lemma

‖Err
(n+1)
1 ,Err

(n+1)
2 ‖hsmax−3(S(n)) .

◦
εr−2

∥∥∥(f (n), f (n), a(n))
∥∥∥
hsmax−1(S(n−1))

. r−2◦ε
◦
δ,∥∥∥Err

(n+1)
3

∥∥∥
hsmax−4(S(n))

.
◦
εr−3

∥∥∥(f (n), f (n), a(n))
∥∥∥
hsmax−1(S(n−1))

. r−3◦ε
◦
δ,

‖Err
(n+1)
4 ,Err

(n+1)
5 ‖hsmax−3(S(n)) .

◦
εr−2

∥∥∥(f (n), f (n), a(n))
∥∥∥
hsmax−1(S(n−1))

. r−2◦ε
◦
δ,

where we have also used the induction assumptions (9.4.25) for (f (n), f (n), a(n)), as well
as Lemma 9.2.6 which implies for a reduced scalar h on S(n− 1)

‖h ◦
(
Ψ(n−1) ◦ (Ψ(n))−1

)
‖hs(S(n)) = ‖h‖hs(S(n−1))(1 +O(r−1

◦
δ)), 0 ≤ s ≤ smax − 1.

Also, recall that Err
(n+1)
6 is given by

Err
(n+1)
6 =

[
− rS(n)

2

{
ea

(n)

Err(κ, κ′)− (ea
(n) − 1)

(
κ̌+ κ− 2

r
+ d/S(n−1)f (n)

)

−
(
ea

(n) − 1− a(n)
) 2

r

}
− a(n)

(
rS(n)

r
− 1

)]
◦
(
Ψ(n−1) ◦ (Ψ(n))−1

)
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which together with the control A1-A3 of the background foliation, the induction as-
sumptions (9.4.25) for (f (n), f (n), λ(n)), the control of r−rS(n) following from the induction

assumptions (9.4.26) for (U (n), S(n)) and Lemma 9.2.3, and Sobolev, yields

sup
S(n)

|Err
(n+1)
6 | . r−1◦ε

∥∥∥(f (n), f (n), a(n))
∥∥∥
h3(S(n−1))

. r−1◦ε
◦
δ.

In view of

• the definition (9.4.28) (9.4.29) (9.4.30) of E(n+1), E(n+1) and Ẽ(n+1),

• the control of the background foliation on S(n) provided by Corollary 9.2.7,

• the assumption (9.4.2) for κ̌, d?/1κ− CeΦ and d?/1µ−MeΦ,

• the control of C − CS(n)
and M −MS(n)

using Corollary 9.2.13, the control of the
background foliation, as well as the induction assumptions (9.4.26) for (U (n), S(n)),

• the control of r−rS(n) following from the induction assumptions (9.4.26) for (U (n), S(n))
and Lemma 9.2.3,

• the control of m − mS(n) thanks to section 9.4.2 which uses the control of S(n)
provided by the induction assumptions (9.4.26) for (U (n), S(n)), as well as the the
induction assumptions (9.4.25) for (f (n), f (n), λ(n)),

• the above estimates for Err
(n+1)
j , j = 3, 4, 5, 6,

we infer

‖E(n+1)‖hsmax−3(S(n)) + ‖E(n+1)‖hsmax−3(S(n))

. max
k≤smax−2

sup
R

( ∣∣dkκ̌∣∣+ r
∣∣dk−1

(
d?/1κ− CeΦ

)∣∣+ r2
∣∣dk−1

(
d?/1µ−MeΦ

)∣∣ )+ r−2◦ε
◦
δ,

‖Ẽ(n+1)‖hsmax−2(S(n)) . r3 max
k≤smax−3

sup
R

∣∣dk−1
(
d?/1µ−MeΦ

)∣∣+ r4|M (n) −MS(n−1)|

+r−1
∥∥∥(f (n), f (n))

∥∥∥
hsmax−1(S(n−1))

+ r−1◦ε
◦
δ,

and ∣∣∣∣∣
(

1− rS(n)

r

)S(n)
∣∣∣∣∣+

∣∣∣∣∣rS(n)

2

(
κ̌+ κ− 2

r

)S(n)
∣∣∣∣∣+

∣∣∣∣Err
(n+1)
6

S(n)
∣∣∣∣

. r sup
R

(∣∣∣∣κ− 2

r

∣∣∣∣+ |κ̌|
)

+ r−1 sup
S(n)

|r − rS(n)|+ r−1◦ε
◦
δ.
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Together with (9.4.37), (9.4.38) and (9.4.39), as well as the assumption (9.4.2) for κ̌, d?/1κ−
CeΦ and d?/1µ −MeΦ, the induction assumptions (9.4.25) for (f (n), f (n), λ(n),M (n)), and

the control of r − rS(n) following from the induction assumptions (9.4.26) for (U (n), S(n))
and Lemma 9.2.3, this implies, uniformly in n,

r4|C(n+1) − CS(n)|+ r5|M (n+1) −MS(n)|
+
∥∥∥(a(n+1) − a(n+1)

S(n)
, f (n+1), f (n+1))

∥∥∥
hsmax−1(S(n))

.
◦
δ

and

r
∣∣∣a(n+1)

S(n)
∣∣∣ . ◦

δ + ‖∂θ
(
U (n), S(n)

)
‖
L∞(

◦
S)
.

This concludes the proof of Proposition 9.4.9.

Existence and boundedness of (U (n+1), S(n+1))

Proposition 9.4.10. The equation (9.4.36) admits a unique solution U (1+n), S(1+n) ver-
ifying the estimate,

‖∂θ
(
U (n+1), S(n+1)

)
‖
L∞(

◦
S)

+ r−1‖∂θ
(
U (n+1), S(n+1)

)
‖
hsmax−1(

◦
S,
◦
g/ )
.

◦
δ

uniformly for all n ∈ N.

Proof. The existence and uniqueness part of the proposition is an immediate consequence
of the standard results for ODE’s.

To prove the desired estimate, we use the equations for (U (1+n), S(1+n)) and infer, for
s = smax − 1,

‖∂θU (n+1)‖
hs(
◦
S,
◦
g/ )
.

∥∥∥∥∥(γ(n))1/2
(
ς#n
)−1

(f (1+n))#n

(
1 +

1

4

(
f (1+n)f (1+n)

)#n
)∥∥∥∥∥

hs(
◦
S,
◦
g/ )

.

Together with the non sharp product estimate on (
◦
S,
◦
g/ ), see Lemma 9.1.5, we infer that,

for s = smax − 1,

‖∂θU (n+1)‖
hs(
◦
S,
◦
g/ )
. r−1

∥∥∥(f (n+1))#n , (f (n+1))#n

∥∥∥
hsmax−2(

◦
S,
◦
g/ )

∥∥∥(ς#n
)−1

(γ(n))1/2
∥∥∥
hs(
◦
S,
◦
g/ )

×
(

1 +
∥∥∥(f (1+n))#n , (f (1+n))#n

∥∥∥2

hs(
◦
S,
◦
g/ )

)
.
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In view of Lemma 9.2.6, Corollary 9.2.7, and the bound for (f (n+1), f (n+1)) provided by
Proposition 9.4.9, we deduce

‖∂θU (n+1)‖
hs(
◦
S,
◦
g/ )
.

◦
δr−1

∥∥∥(ς#n
)−1

(γ(n))1/2
∥∥∥
hs(
◦
S,
◦
g/ )
.

We recall that,

γ(n) = γ#n +
(
ς#n
)2 (

Ω + 1
4
b2γ
)#n

(∂θU
(n))2 − 2ς#n∂θU

(n) −
(
γςb
)#n

∂θU
(n).

In view of our assumptions on the Ricci coefficients and the non-sharp product estimates
of Lemma 9.1.5∥∥∥∥∥

(
ς
(
Ω +

1

4
b2γ
))#n

∥∥∥∥∥
hsmax−1(

◦
S,
◦
g/ )

+

∥∥∥∥(γb)#n

∥∥∥∥
hsmax−1(

◦
S,
◦
g/ )

.
◦
εr

we deduce, ∥∥∥(ς#n
)−1

γ(n)
∥∥∥
hsmax−1(

◦
S,
◦
g/ )
.

∥∥γ#n
∥∥
hsmax−1(

◦
S,
◦
g/ )

+
◦
δr2.

Together with Lemma 9.2.6 and Corollary 9.2.7, we deduce∥∥∥(ς#n
)−1(

γ(n)
)1/2
∥∥∥
hsmax−1(

◦
S,
◦
g/ )
. r2

and therefore,

‖∂θU (n+1)‖
hsmax−1(

◦
S,
◦
g/ )
.
◦
δr.

Proceeding in the same manner with equation

∂θS
(1+n) − 1

2
ς#nΩ#n∂θU

(1+n) =
1

2
(γ(n))1/2(f (1+n))#n

we infer that,

r−1‖∂θU (n+1), ∂θS
(n+1)‖

hsmax−1(
◦
S,
◦
g/ )
.

◦
δ.

This, together with the Sobolev inequality, concludes the proof of Proposition 9.4.10.
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9.4.5 Convergence of the iterates

To finish the proof of Theorem 9.4.1, it remains to prove convergence of the iterates.

Step 1. In order to prove the convergence of the iterative scheme, we introduce the
following septets P (n)

P (0) = (0, 0, 0, 0, 0,M(
◦
u,
◦
s), C(

◦
u,
◦
s)), P (1) = (0, 0, 0, 0, 0,M(

◦
u,
◦
s), C(

◦
u,
◦
s)),

P (n) =
(
U (n), S(n), (a(n))#n−1 , (f (n))#n−1 , (f (n))#n−1 , C(n),M (n)

)
, n ≥ 2.

Since (a(n), f (n), f (n)) are defined on S(n−1), their respective pullback by Ψ(n−1) is defined

on
◦
S so that P (n) consists of a quintet of functions on

◦
S, together with two constants, for

any n, and we may introduce the following norms to compare the elements of the sequence

‖P (n)‖k : = r−1‖∂θ
(
U (n), S(n)

)
‖
hk−1(

◦
S)

+ r4|C(n) − CS(n−1)|+ r5|M (n) −MS(n−1)|

+
∥∥∥((a(n))#n−1 , (f (n))#n−1 , (f (n))#n−1

)∥∥∥
hk−1(

◦
S)
.

(9.4.40)

Here are the steps needed to implement a convergence argument.

1. The quintets P (n) are bounded with respect to the norm (9.4.40) for the choice
k = smax.

2. The quintets P (n) are contractive with respect to the norm (9.4.40) for the choice
k = 2.

The precise statements are given in the following propositions.

Proposition 9.4.11. We have, uniformly for all n ∈ N,

‖P (n)‖smax .
◦
δ.

Proof. The proof is an immediate consequence of Propositions 9.4.6, 9.4.10 and the esti-
mate, ∥∥∥(Ψ(n−1))#

(
f (n), f (n), a(n)

)∥∥∥
hsmax−1(

◦
S)
.
∥∥∥(f (n), f (n), a(n)

)∥∥∥
hsmax−1(S(n−1))

(9.4.41)

which is a consequence of Lemma 9.2.6.



606 CHAPTER 9. GCM PROCEDURE

Proposition 9.4.12. We have, uniformly for all n ∈ N, the contraction estimate

‖P (n+1) − P (n)‖2 .
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2 + ‖P (n−2) − P (n−3)‖2

)
.

The proof of Proposition 9.4.12 is postponed to section 9.6.

Step 2. In view of Proposition 9.4.12, we have

‖P (n+1) − P (n)‖2 . (
◦
ε)bn−2

3 c
(
‖P (3) − P (2)‖2 + ‖P (2) − P (1)‖2 + ‖P (1) − P (0)‖2

)
, n ≥ 3,

which in view of Proposition 9.4.11 yields

‖P (n+1) − P (n)‖2 .
◦
δ (
◦
ε)bn3 c, n ≥ 3.

Together with a simple interpolation argument on
◦
S and Proposition 9.4.11, we infer

‖P (n+1) − P (n)‖k .
◦
δ
◦
ε
( smax−ksmax−2 )bn3 c

, 2 ≤ k ≤ smax, n ≥ 3.

We infer the existence of a septet P (∞) such that

‖P (∞)‖smax .
◦
δ (9.4.42)

and

lim
n→+∞

‖P (n) − P (∞)‖smax−1 = 0. (9.4.43)

Also, we have

P (∞) =
(
U (∞), S(∞), a

(∞)
0 , f

(∞)
0 , f (∞)

0
, C(∞),M (∞)

)
,

where the quintet of functions are defined on
◦
S and (C(∞),M (∞)) are two constants. The

functions (U (∞), S(∞)) defines a sphere S(∞) and we introduce the map

Ψ(∞)(
◦
u,
◦
s, θ, ϕ) =

(◦
u+ U (∞)(θ),

◦
s+ S(∞)(θ), θ, ϕ

)
so that Ψ(∞) is a map from

◦
S to S(∞). Then, let

a(∞) = a
(∞)
0 ◦ (Ψ(∞))−1, f (∞) = f

(∞)
0 ◦ (Ψ(∞))−1, f (∞) = f (∞)

0
◦ (Ψ(∞))−1
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so that a(∞), f (∞), f (∞) are defined on S(∞) and

a
(∞)
0 = (a(∞))#∞ , f

(∞)
0 = (f (∞))#∞ , f (∞)

0
= (f (∞))#∞ .

From these definitions, the above control of P (∞) and Lemma 9.2.6, we infer

r−1‖(∂θU (∞), ∂θS
(∞))‖

hsmax−1(
◦
S)

+ ‖(a(∞), f (∞), f (∞))‖hsmax−1(S(∞)) .
◦
δ.

In particular, applying Corollary 9.4.7 twice, first with s = smax − 1, and then with
s = smax, we deduce

‖(a(∞), f (∞), f (∞))‖hsmax+1(S(∞)) .
◦
δ.

Together with the above control for (U (∞), S(∞)), we finally obtain

r−1‖(U (∞)′, S(∞)′)‖
hsmax−1(

◦
S)

+ ‖(a(∞), f (∞), f (∞))‖hsmax+1(S(∞)) .
◦
δ. (9.4.44)

Step 3. We proceed to control the area radius rS(∞) and the Hawking mass mS(∞) of the

sphere S(∞). First, note from (9.4.44) and the Sobolev embedding on
◦
S that we have

‖(U (∞), S(∞))‖
L∞(

◦
S)
.

◦
δ. (9.4.45)

Together with Lemma 9.2.3, we infer that15∣∣∣∣rS(∞)

r
− 1

∣∣∣∣ . ◦
δ. (9.4.46)

Next, we denote by ΓS(∞) the connection coefficients of S(∞). We have in view of the

transformation formula from the original frame (e4, e3, eθ) to the frame (e
S(∞)
4 , e

S(∞)
3 , e

S(∞)
θ )

of S(∞)

κS(∞)κS(∞) =
(
κ+ d/S(∞)f (∞) + Err(κ, κS(∞))

) (
κ+ d/S(∞)f (∞) + Err(κ, κS(∞))

)
.

Together with the estimate (9.4.44) for f (∞) and f (∞) and the assumptions A1-A3 for Γ̌
corresponding to the original frame (e4, e3, eθ), we infer∣∣κS(∞)κS(∞) − κκ

∣∣ . ◦
δr−3.

15Here, we also use the fact that, on S(∞), we have

|r − ◦r| . ‖(U (∞), S(∞))‖
L∞(

◦
S)
.
◦
δ.
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Recall that (see (9.4.2))∣∣∣κ− 2

r

∣∣∣ . ◦δr−2,
∣∣∣κ+

2
(
1− 2m

r

)
r

∣∣∣ . ◦δ.
Thus, since κ = κ+ κ̌,

κκ = −4
(
1− 2m

r

)
r2

+
2

r
κ̌+O(

◦
δ)r−2.

We deduce, ∣∣∣∣∣κS(∞)κS(∞) +
4
(
1− 2m

r

)
r2

− 2

r
κ̌

∣∣∣∣∣ . ◦
δr−3.

Thus, in view of (9.4.46),∫
S(∞)

κS(∞)κS(∞) = −
∫
S(∞)

4
(
1− 2m

r

)
r2

+O(
◦
δ)r−1.

Making use of the definition of the Hawking massmS(∞) = rS(∞)

2

(
1 + 1

16π

∫
S(∞)

κS(∞)κS(∞)
)

we easily deduce16 ∣∣∣mS(∞) −m
∣∣∣ . ◦

δ. (9.4.47)

Step 4. We make use of Lemma 9.3.11 to extend (a(∞), f (∞), f (∞)) as well as the frame(
e
S(∞)
3 , e

S(∞)
4 , e

S(∞)
θ

)
in a small neighborhood of S(∞) such that we have,

ξS(∞) = 0, ωS(∞) = 0, ηS(∞) + ζS(∞) = 0, (9.4.48)

and then provide estimates for the corresponding Ricci coefficients and curvature com-
ponents Γ̌S(∞), ŘS(∞). More precisely we make use of the assumption A1, the estimates
in (9.4.44) for (a(∞), f (∞), f (∞)), and the transformation formulae to derive the desired
estimates (9.4.8) for smax derivative of the Ricci coefficients and curvature components of
S(∞).

Step 5. Thanks to (9.4.43), we can pass to the limit in (9.4.27) (9.4.34) (9.4.35). In view
of Remark 9.4.4, we deduce that equations (9.4.13) (9.4.14) hold true. Thus, we may
apply Proposition 9.4.2 which implies that (9.4.12) holds true. In particular, the desired
GCM conditions (9.4.1) hold true which concludes the proof of Theorem 9.4.1.

16See also section 9.4.2.
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9.5 Proof of Proposition 9.4.6 and of Corollary 9.4.7

9.5.1 Proof of Proposition 9.4.6

Step 1. We start with the proof of existence. Note first that the existence of aS and ǎS

is immediate in view of the last two equations of (9.4.16). We thus focus on the existence
of (f, f). In view of the first two equation of (9.4.16), we have

BSf = − 6mS

(rS)5
(AS)−1

(
f −ΥSf

)
+

2

rS
(MS −MS

)(AS)−1eΦ + F1,

BSf = −6mSΥS

(rS)5
(AS)−1

(
f −ΥSf

)
+ (CS − CS

)eΦ +
2ΥS

rS
(MS −MS

)(AS)−1eΦ + F2.

(9.5.1)

In particular, subtracting ΥS times the first equation to the second equation, we infer
that the existence of (f, f) is equivalent to the existence of

BS
(
f −ΥSf

)
= F2 −ΥSF1 + (CS − CS

)eΦ,

BSf = − 6mS

(rS)5
(AS)−1

(
f −ΥSf

)
+

2

rS
(MS −MS

)(AS)−1eΦ + F1.
(9.5.2)

Step 2. Next, we differentiate (9.5.2) w.r.t. d?/ S
2 which yields the system(

d?/ S
2 d/S

2 +
3mS

(rS)3

)
d?/ S

2

(
f −ΥSf

)
= d?/ S

2

{
F2 −ΥSF1

}
,(

d?/ S
2 d/S

2 +
3mS

(rS)3

)
d?/ S

2 f = d?/ S
2

{
− 6mS

(rS)5
(AS)−1

(
f −ΥSf

)
+

2

rS
(MS −MS

)(AS)−1eΦ + F1

}
,

(9.5.3)

where we have used the fact that d?/ S
2 eΦ = 0. Since the operator d?/ S

2 d/S
2 is coercive and

invertible, so is d?/ S
2 d/S

2 + 3mS

(rS)3 . Thus, using also the fact that eΦ generates the kernel of

d?/ S
2 and that d?/ S

2 is surjective, there exists f −ΥSf solution to

d?/ S
2

(
f −ΥSf

)
=

(
d?/ S

2 d/S
2 +

6mS

(rS)3

)−1

d?/ S
2

{
F2 −ΥSF1

}
,∫

S

(
f −ΥSf

)
eΦ = Λ−ΥSΛ.

(9.5.4)
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Step 3. Next, we have, using in particular the assumptions on KS,

AS(eΦ) = d?/ S
1 d/S

1 (eΦ) =
(
d/S

2 d
?/ S
2 + 2KS

)
eΦ = 2KSeΦ

=
2

(rS)2
eΦ +

(
KS − 2

(rS)2

)
eΦ

and hence

(AS)−1(eΦ) =
(rS)2

2
eΦ − (rS)2

2
(AS)−1

[(
KS − 2

(rS)2

)
eΦ

]
. (9.5.5)

In particular, we have, in view of the assumptions of the proposition,∫
S

e2Φ =
4π

3
(rS)4(1 +O(δ1)),

∫
S

eΦ(AS)−1(eΦ) =
2π

3
(rS)6(1 +O(δ1)) (9.5.6)

so that these quantities do note vanish. We may thus choose CS and MS as follows

CS = C
S

+

{
6mS

(rS)3
(Λ−ΥSΛ) +

∫
S

[
ΥSF1 − F2

]
eΦ

}(∫
S

e2Φ

)−1

, (9.5.7)

MS = M
S

+
rS

2

{
6mS

(rS)3
Λ +

∫
S

[
6mS

(rS)5
(AS)−1(f −ΥSf)− F1

]
eΦ

}(∫
S

eΦ(AS)−1(eΦ)

)−1

,

where f −ΥSf appearing on the RHS of the above choice of MS is the solution of (9.5.4).

Step 4. Next, with f − ΥSf is chosen as in (9.5.4) and MS chosen as in (9.5.7), and
arguing as in Step 2, there exists f solution to

d?/ S
2 f =

(
d?/ S

2 d/S
2 +

6mS

(rS)3

)−1

d?/ S
2

{
− 6mS

(rS)5
(AS)−1

(
f −ΥSf

)
+

2

rS
(MS −MS

)(AS)−1eΦ + F1

}
,∫

S

feΦ = Λ.

(9.5.8)

Now, in view of

1. the fact that (f, f) satisfies (9.5.3) in view of (9.5.4) (9.5.8),

2. the choice (9.5.7) for the constants CS and MS,

3. the fact that eΦ generates the kernel of d?/ S
2 ,
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we infer that (f, f) satisfies (9.5.2), and hence (9.5.1), which concludes the existence part
of the proof.

Step 5. Next, we focus on the proof of the a priori estimates. Note first that the last
two equations of (9.4.16) immediately yield the a priori estimates for aS and ǎS. We then
focus on the a priori control of (CS,MS) and (f, f). We multiply the first two equations

of (9.5.1) by eΦ and integrate on S. Using the fact that eΦ generates the kernel of d?/ S
2 ,

and that d?/ S
2 is the adjoint of d/S

2 , we deduce that the constants CS and MS are given by
(9.5.7). Together with (9.5.6), we infer the following control for the constants CS and MS

|CS − CS| . (rS)−7
(
|Λ|+ |Λ|

)
+ (rS)−2‖F1‖L2(S) + (rS)−2‖F2‖L2(S),

|MS −MS| . (rS)−8
(
|Λ|+ |Λ|

)
+ (rS)−6‖f −ΥSf‖L2(S) + (rS)−3‖F1‖L2(S).

(9.5.9)

Step 6. Next, we multiply the first equation of (9.5.2) by (f −ΥSf), integrate on S, and

integrate by parts the term BS(f −ΥSf). We obtain

‖rS d?/ S
2 (f −ΥSf)‖2

L2(S) .
(

(rS)2‖F1‖L2(S) + (rS)2‖F2‖L2(S)

)
‖f −ΥSf‖L2(S)

+(rS)2|CS − CS|(|Λ|+ |Λ|).

Together with a Poincaré inequality for d?/ S
2 and the estimate for CS − CS

in (9.5.9), we
deduce

‖f −ΥSf‖h1(S) . (rS)−2
(
|Λ|+ |Λ|

)
+ (rS)2‖F1‖L2(S) + (rS)2‖F2‖L2(S). (9.5.10)

In particular, together with (9.5.9), we infer

|CS−CS|+rS|MS−MS| . (rS)−7
(
|Λ|+|Λ|

)
+(rS)−2‖F1‖L2(S)+(rS)−2‖F2‖L2(S) (9.5.11)

which is the desired a priori estimate for (CS,MS).

Step 7. Next, we multiply the second equation of (9.5.2) by f , integrate on S, and
integrate by parts the term BSf . We obtain

‖rS d?/ S
2 f‖2

L2(S) .
(

(rS)−1‖f −ΥSf‖L2(S) + (rS)2‖F1‖L2(S) + (rS)5|MS −MS|
)
‖f‖L2(S)

which together with a Poincaré inequality for d?/ S
2 , (9.5.10), and (9.5.11) yields

‖f‖h1(S) . (rS)−3
(
|Λ|+ |Λ|

)
+ (rS)2‖F1‖L2(S) + (rS)2‖F2‖L2(S).

Together with (9.5.10), we obtain

‖f‖h1(S) + ‖f‖h1(S) . (rS)−2
(
|Λ|+ |Λ|

)
+ (rS)2‖F1‖L2(S) + (rS)2‖F2‖L2(S). (9.5.12)



612 CHAPTER 9. GCM PROCEDURE

Step 8. Finally, using the identity d/S
2 d

?/ S
2 = d?/ S

1 d/S
1 − 2KS, we rewrite (9.5.1) as follows

d?/ S
1 d/S

1 f =

(
2KS − 6mS

(rS)3

)
f − 6mS

(rS)5
(AS)−1

(
f −ΥSf

)
+

2

rS
(MS −MS

)(AS)−1eΦ + F1,

d?/ S
1 d/S

1 f =

(
2KS − 6mS

(rS)3

)
f − 6mSΥS

(rS)5
(AS)−1

(
f −ΥSf

)
+ (CS − CS

)eΦ

+
2ΥS

rS
(MS −MS

)(AS)−1eΦ + F2.

Together with (9.5.12), (9.5.11) and the asumptions for KS

sup
S
|KS| . 1

(rS)2
, ‖KS‖hs−2(S) .

1

rS
,

we deduce by iteration,

‖(f, f)‖hs(S) . (rS)2‖F1‖hs−2(S) + (rS)2‖F2‖hs−2(S) + (rS)−2(|Λ|+ |Λ|)

which concludes the part on a priori estimates. The part on uniqueness follows from the
linearity of the equations and the a priori estimates. This ends the proof of Proposition
9.4.6.

9.5.2 Proof of Corollary 9.4.7

Step 1. First, we introduce for convenience the notation

Λ :=

∫
S

feΦ, Λ :=

∫
S

feΦ.

Then, in view of the assumptions of Corollary 9.4.7, (f, f , λ) satisfies (9.4.1), and hence,

there exists constants (CS,MS) such that (f, f , λ) satisfies (9.4.12). In particular, from
Proposition 9.4.2, (f, f , λ) satisfies (9.4.13) (9.4.14). In view of Remark 9.4.4, we deduce
that (f, f , λ) satisfies the linearized GCM system (9.4.16) with the following choices for
F1, F2, F3, b0,

F1 = − 3mS

(rS)4
(AS)−1

((
κ− 2

rS

)
f +

(
κ+

2ΥS

rS

)
f

)
+

3

4

(
κ− 2

rS

)
(AS)−1

(
ρz
)
− 3

2rS
(AS)−1

((
ρ+

2mS

(rS)3

)
z

)
− d?/ κ̌

−
(
κ− 2

rS

)
(AS)−1

(
− MSeΦ + d?/ µ̌

)
− 2

rS
(AS)−1

(
d?/ µ̌−MS

eΦ
)

+ Err4,
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F2 = −3mSΥS

(rS)4
(AS)−1

((
κ− 2

rS

)
f +

(
κ+

2ΥS

rS

)
f

)
−3

4

(
κ+

2ΥS

rS

)
(AS)−1

(
ρz
)

+
3ΥS

2rS
(AS)−1

((
ρ+

2mS

(rS)3

)
z

)
−
(
d?/ κ̌− CS

eΦ
)

+

(
κ+

2ΥS

rS

)
(AS)−1

(
− MSeΦ + d?/ µ̌

)
−2ΥS

rS
(AS)−1

(
d?/ µ̌−MS

eΦ
)

+ Err5,

F3 = −3

4
(AS)−1

(
ρz
)

+ fω − fω +
1

4
fκ− 1

4
fκ

+(AS)−1
(
− MSeΦ + d?/ µ̌

)
− (AS)−1Err3,

b0 =

(
1− rS

r

)S

− rS

2

(
κ̌+ κ− 2

r

)S

+ Err6
S
.

Step 2. In view of Corollary 9.2.12, we may apply Proposition 9.4.6. In particular, the
following a priori estimates hold

|CS − CS|+ rS|MS −MS| . (rS)−7
(
|Λ|+ |Λ|

)
+ (rS)−2‖F1‖L2(S)

+ (rS)−2‖F2‖L2(S),
(9.5.13)

‖(f, f)‖hs+1(S) . (rS)−2
(
|Λ|+ |Λ|

)
+ (rS)2‖F1‖hs−1(S)

+ (rS)2‖F2‖hs−1(S),
(9.5.14)

‖ǎS‖hs+1(S) . rS‖F3‖hs(S) (9.5.15)

and

|aS| . |b0|, (9.5.16)

where F1, F2, F3 and b0 are given in Step 1.

Step 3. In view of the a priori estimates of Step 2, we need to estimate F1, F2, F3 and
b0. We start with the control of the error terms Errj, j = 3, 4, 5, 6. In view of Lemma
9.3.10, we have, since 4 ≤ s ≤ smax,

‖Err1,Err2‖hs−1(S) . r−2‖(f, f , a)‖hs+1(S)

(◦
ε+ r−1‖f, f , a‖hs(S)

)
,

‖Err3‖hs−2(S) . r−3‖(f, f , a)‖hs+1(S)

(◦
ε+ r−1‖f, f , a‖hs(S)

)
,

‖Err4,Err5‖hs−1(S) . r−2‖(f, f , a)‖hs+1(S)

(◦
ε+ r−1‖f, f , a‖hs(S)

)
.
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In particular, in view of the assumptions (9.4.23) for (f, f , λ), we deduce

‖Err1,Err2‖hs−1(S) . r−2‖(f, f , a)‖hs+1(S)

(◦
ε+ δ1

)
,

‖Err3‖hs−2(S) . r−3‖(f, f , a)‖hs+1(S)

(◦
ε+ δ1

)
,

‖Err4,Err5‖hs−1(S) . r−2‖(f, f , a)‖hs+1(S)

(◦
ε+ δ1

)
.

(9.5.17)

Also, recall that Err6 is given by

Err6 = −r
S

2

[
eaErr(κ, κ′)− (ea − 1)

(
κ̌+ κ− 2

r
+ d/Sf

)
− (ea − 1− a)

2

r

]
− a

(
rS

r
− 1

)
which together with the control A1-A3 of the background foliation, the assumptions
(9.4.23) for (f, f , λ), the control of r − rS, and Sobolev, yields

sup
S
|Err6| . r−1(

◦
ε+ δ1)‖(f, f , a)‖h3(S).

Step 4. We now estimate F1, F2, F3 and b0. In view of

• the definition of F1, F2, F3 and b0 in Step 1,

• the control A1-A3 for the background foliation,

• the assumption (9.4.2) for κ̌, d?/1κ− CeΦ and d?/1µ−MeΦ,

• the control of C − CS
and M −MS

using Corollary 9.2.13 and the control of the
background foliation,

• the control of r − rS in property 3 of Lemma 9.2.10,

• the control of m−mS thanks to Corollary 9.2.14 and property 4 of Lemma 9.2.10,

• property 6 of Lemma 9.2.10,

• the estimates for Errj, j = 3, 4, 5, 6 of Step 3,

we infer

‖F1‖hs−1(S) + ‖F2‖hs−1(S) . r−2
◦
δ +

[
r3|MS −MS|+ r−2‖(f, f , a)‖hs+1(S)

] (◦
ε+ δ1

)
,
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‖F3‖hs(S) . r−1
◦
δ + r4|MS −MS|+ r−1‖(f, f)‖hs+1(S) + r−1

(◦
ε+ δ1

)
‖a‖hs+1(S),

and

r|b0| .
◦
δ + sup

S
|r − rS|+ (

◦
ε+ δ1)‖(f, f , a)‖h3(S).

Step 5. In view of the estimates of Step 2 for (CS,MS) and (f, f , λ), and the estimate
for F1, F2, F3 and b0 in Step 4, we deduce

|CS − CS|+ rS|MS −MS| . (rS)−4
◦
δ + (rS)−7

(
|Λ|+ |Λ|

)
+
(◦
ε+ δ1

) [
rS|MS −MS|+ (rS)−4 ‖(f, f , a)‖hs+1(S)

]
,

‖(f, f)‖hs+1(S) .
◦
δ + (rS)−2

(
|Λ|+ |Λ|

)
+
(◦
ε+ δ1

) [
(rS)5|MS −MS|+ ‖(f, f , a)‖hs+1(S)

]
,

‖ǎS‖hs+1(S) .
◦
δ + (rS)5|MS −MS|+ ‖(f, f)‖hs+1(S) +

(◦
ε+ δ1

)
‖a‖hs+1(S)

and

r|aS| .
◦
δ + sup

S
|r − rS|+ (

◦
ε+ δ1)‖(f, f , a)‖h3(S).

The above estimates for (CS,MS) and (f, f) yields for δ1 and
◦
ε small enough

(rS)4|CS − CS|+ (rS)5|MS −MS|+ ‖(f, f)‖hs+1(S)

.
◦
δ + (rS)−2

(
|Λ|+ |Λ|

)
+
(◦
ε+ δ1

)∥∥∥a∥∥∥
hs+1(S)

.

Plugging in the above estimate for ǎS, we infer for δ1 and
◦
ε small enough

(rS)4|CS − CS|+ (rS)5|MS −MS|+ ‖(f, f , ǎS)‖hs+1(S)

.
◦
δ + (rS)−2

(
|Λ|+ |Λ|

)
+
(◦
ε+ δ1

)
r
∣∣∣aS∣∣∣.

Finally, plugging in the above estimate for aS, we infer for δ1 and
◦
ε small enough

(rS)4|CS − CS|+ (rS)5|MS −MS|+ ‖(f, f , ǎS)‖hs+1(S)

.
◦
δ + (rS)−2

(
|Λ|+ |Λ|

)
+
(◦
ε+ δ1

)
sup
S
|r − rS|

and

r|aS| .
◦
δ + (rS)−2

(
|Λ|+ |Λ|

)
+ sup

S
|r − rS|

which are the desired estimates. This concludes the proof of Corollary 9.4.7.
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9.6 Proof of Proposition 9.4.12

9.6.1 Pull-back of the main equations

According to Proposition 9.4.11 we may assume valid the uniform bounds for the quintets
P (n). To establish a contraction estimate we need to compare the quantities,

h(n) : = (Ψ(n−1))#f (n), h(n) := (Ψ(n−1))#f (n), w(n) := (Ψ(n−1))#z(n),

e(n) : = (Ψ(n−1))#a(n),

and,

h(n+1) : = (Ψ(n))#f (n+1), h(n+1) := (Ψ(n))#f (n+1), w(n+1) := (Ψ(n))#z(n+1),

e(n+1) : = (Ψ(n))#a(n+1).

According to Lemma 9.2.2 we have,

(Ψ(n))#
(
d/S(n)f (n+1)

)
= d/(n)h(n+1),

(Ψ(n))#
(
AS(n)f (n+1)

)
= A(n)h(n+1),

(Ψ(n))#
(
BS(n)f (n+1)

)
= B(n)h(n+1),

where d/(n), d?/ (n), A(n), B(n) are the corresponding Hodge operators on
◦
S defined with re-

spect to the metric g/ (n) := (Ψ(n))#(g/ S(n)) given by,

g/ (n) = γ(n)dθ2 + e2Φ#n
dϕ2.

Consequently the system (9.4.27) takes the form,

B(n)h(n+1) = − 6mS(n)

(rS(n))5
(A(n))−1

(
h(n+1) −ΥS(n)h(n+1)

)
+

2

rS(n)
(M (n+1) −MS(n)

)(A(n))−1eΦ#n
+ (Ψ(n))#E(n+1),

B(n)h(n+1) = −6mS(n)ΥS(n)

(rS(n))5
(A(n))−1

(
h(n+1) −ΥS(n)h(n+1)

)
+ (C(n+1) − CS(n)

)

× eΦ#n
+

2ΥS(n)

rS
(M (n+1) −MS(n)

)(A(n))−1eΦ#n
+ (Ψ(n))#E(n+1),

d?/ (n)e(n+1) = (Ψ(n))#Ẽ(n+1).

(9.6.1)

Equations (9.4.34) takes the form∫
(
◦
S,g/ (n))

eΦ#n
h(n+1) = Λ,

∫
(
◦
S,g/ (n))

eΦ#n
h(n+1) = Λ. (9.6.2)
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Equation (9.4.35) takes the form,

e(n+1)

◦
S,g/ (n)

=

(
1− rS(n)

r

)(n)

◦
S,g/ (n)

− rS(n)

2

(
κ̌+ κ− 2

r

)#n

◦
S,g/ (n)

+ Err
(n+1)
6

◦
S,g/ (n)

. (9.6.3)

Finally the system (9.4.36) takes the form,

ς#n∂θU
(1+n) = (γ(n))1/2h(1+n)

(
1 +

1

4
h(1+n)h(1+n)

)
,

∂θS
(1+n) − 1

2
ς#nΩ#n∂θU

(1+n) =
1

2
(γ(n))1/2h(1+n),

γ(n) = γ#n +
(
ς#n
)2
(

Ω#n +
1

4
(b#n)2γ#n

)
(∂θU

(n))2

− 2ς#n∂θU
(n)∂θS

(n) − γ#nς#nb#n∂θU
(n),

U (1+n)(0) = S(1+n)(0) = 0.

(9.6.4)

We recall, see (9.4.40), the definition of the norm for the quintets P (n) in the particular
case k = 2

‖P (n)‖2 : = r−1‖∂θ
(
U (n), S(n)

)
‖
h1(
◦
S)

+ r4|C(n) − CS(n)|

+ r5|M (n) −MS(n)|+
∥∥∥((a(n))#n−1 , (f (n))#n−1 , (f (n))#n−1

)∥∥∥
h1(
◦
S)
.

To prove the estimate

‖P (n+1) − P (n)‖2 .
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2 + ‖P (n−2) − P (n−3)‖2

)
,

we set,

δw(n+1) = w(n+1) − w(n), δh(n+1) = h(n+1) − h(n), δh(n+1) = h(n+1) − h(n),

δe(n+1) = e(n+1) − e(n), δU (n+1) = U (n+1) − U (n), δS(n+1) = S(n+1) − S(n),

δC(n+1) = C(n+1) − C(n), δM (n+1) = M (n+1) −M (n),

and,

δw(n) = w(n) − w(n−1), δh(n) = h(n) − h(n−1), δh(n) = h(n) − h(n−1),

δe(n) = e(n) − e(n−1), δU (n) = U (n) − U (n−1), δS(n) = S(n) − S(n−1),

δC(n) = C(n) − C(n−1), δM (n) = M (n) −M (n−1).
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We will derive in section 9.6.3 the following estimates

r4|δC(n+1)|+ r5|δM (n+1)|+
∥∥∥∥∥
(
δh(n+1), δh(n+1), δe(n+1) − δe(n+1)

◦
S,g/ (n)

)∥∥∥∥∥
h1(
◦
S)

.
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
, (9.6.5)

r

∣∣∣∣∣δe(n+1)

◦
S,g/ (n)

∣∣∣∣∣ . r−1‖∂θ
(
δU (n), δS(n)

)
‖
h1(
◦
S)

+
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
, (9.6.6)

and

r−1‖∂θ
(
δU (n+1), δS(n+1)

)
‖
h1(
◦
S)
. ‖δh(n+1), δh(n+1)‖

h1(
◦
S)

+
◦
ε‖P (n) − P (n−1)‖2. (9.6.7)

Proposition 9.4.12 is then an immediate consequence of (9.6.5) (9.6.6) (9.6.7). Thus, from
now on, we focus on the proof of (9.6.5) (9.6.6) (9.6.7). To this end, we will rely on the
following lemmas.

9.6.2 Basic lemmas

Lemma 9.6.1. Let F be a reduced scalar function defined in a neighborhood of
◦
S in R

and define its pull back F (n) = (Ψ(n))#F to
◦
S, i.e.,

F (n)(θ) = F (
◦
u+ U (n)(θ),

◦
s+ S(n)(θ), θ),

F (n−1)(θ) = F (
◦
u+ U (n−1)(θ),

◦
s+ S(n−1)(θ), θ).

Then17, for all 1 ≤ p ≤ ∞, with δnU = U (n+1) − U (n), δnS = S(n+1) − S(n)

‖δnF‖
Lp(
◦
S)
.

(
‖δnU‖

Lp(
◦
S)

+ ‖δnS‖
Lp(
◦
S)

)
sup
R

(∣∣∂sF ∣∣+
∣∣∂uF ∣∣) . (9.6.8)

Also,

‖δnF‖
h1(
◦
S)
.

(
‖δnU‖

h1(
◦
S)

+ ‖δnS‖
h1(
◦
S)

)
sup
R

(∣∣d≤1∂sF
∣∣+
∣∣d≤1∂uF

∣∣) (9.6.9)

where δnU = U (n+1) − U (n), δnS = S(n+1) − S(n).

17Recall ∂s = e4, ∂u = ς
2

(
e3 − Ωe4 − bγ1/2eθ

)
.
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Proof. We write,

δnF := F (u0 + U (n)(θ), s0 + S(n)(θ), θ)− F (u0 + U (n−1)(θ), s0 + S(n−1)(θ), θ)

=

∫ 1

0

d

dt
F
(
u0 + tU (n)(θ) + (1− t)U (n−1)(θ), s0 + tS(n)(θ) + (1− t)S(n−1)(θ), θ

)
,

i.e., denoting δnU = U (n) − U (n−1), δnS = S(n) − S(n−1),

|δnF | .
∣∣δnU ∣∣ ∫ 1

0

∣∣∂uF (u0 + tU (n)(θ) + (1− t)U (n−1)(θ), s0 + tS(n)(θ) + (1− t)S(n−1)(θ), θ
)∣∣

+
∣∣δnS∣∣ ∫ 1

0

∣∣∂sF (u0 + tU (n)(θ) + (1− t)U (n−1)(θ), s0 + tS(n)(θ) + (1− t)S(n−1)(θ), θ
)∣∣

i.e.,

|δnF | .
∣∣U (n)(θ)− U (n−1)(θ)

∣∣ sup
◦
S+
◦
δ
◦
S

|∂uF |+
∣∣S(n)(θ)− S(n−1)(θ)

∣∣ sup
◦
S+ε

◦
S

|∂sF |

from which (9.6.8) easily follows.

Similarly,

‖ d/δnF‖
L2(
◦
S)
.

(
‖δnU‖

h1(
◦
S)

+ ‖δnS‖
h1(
◦
S)

)
sup
R

(∣∣d≤1∂sF
∣∣+
∣∣d≤1∂uF

∣∣) .
Hence,

‖δnF‖
h1(
◦
S)
.

(
‖δnU‖

h1(
◦
S)

+ ‖δnS‖
h1(
◦
S)

)
sup
R

(∣∣d≤1∂sF
∣∣+
∣∣d≤1∂uF

∣∣)
as desired.

Lemma 9.6.2. Let ψ, h ∈ s1(
◦
S), and δB(n) = B(n)−B(n−1). The following formula holds

true. ∣∣∣∣∫
(
◦
S,g/ (n))

ψδB(n)h

∣∣∣∣ . r−3‖∂θ
(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)
‖ψ‖

h1(
◦
S)
‖h‖

h2(
◦
S)
.

Proof. Recall that the metric g/ (n) is given by

g/ (n) = γ(n)dθ2 + e2Φ#n
dϕ2

so that the operator B(n) = d/
(n)
2 d?/2

(n), applied to s1 tensors h on
◦
S is given by

B(n)h =
1√
γ(n)

(
∂θ + 2∂θ(Φ

#n)
)( 1√

γ(n)

(
−∂θh+ ∂θ(Φ

#n)h
))

.
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This yields

δB(n)h =

(
1√
γ(n)
− 1√

γ(n−1)

)(
∂θ + 2∂θ(Φ

#n)
)( 1√

γ(n)

(
−∂θh+ ∂θ(Φ

#n)h
))

+
1√
γ(n−1)

(
∂θ + 2∂θ(Φ

#n)
)(( 1√

γ(n)
− 1√

γ(n−1)

)(
−∂θh+ ∂θ(Φ

#n)h
))

+
1√
γ(n−1)

(
∂θ + 2∂θ(Φ

#n)
)( 1√

γ(n−1)
∂θ(Φ

#n − Φ#n−1)h

)
+

2

γ(n−1)
∂θ(Φ

#n − Φ#n−1)ψ∂θ(Φ
#n−1)h.

Using the previous formula to integrate ψδB(n)h on
◦
S with the volume of g/ (n), and after

integration by parts, we infer∫
(
◦
S,g/ (n))

ψδB(n)h

=

∫
(
◦
S,g/ (n))

1√
γ(n)

(
−∂θ + ∂θ(Φ

#n)
)((

1−
√
γ(n)√
γ(n−1)

)
ψ

)
1√
γ(n)

(
−∂θh+ ∂θ(Φ

#n)h
)

+

∫
(
◦
S,g/ (n))

1√
γ(n)

(
−∂θ + ∂θ(Φ

#n)
)( √

γ(n)√
γ(n−1)

ψ

)(
1√
γ(n)
− 1√

γ(n−1)

)(
∂θh+ ∂θ(Φ

#n)h
)

+

∫
(
◦
S,g/ (n))

1√
γ(n)

(
−∂θ + ∂θ(Φ

#n)
)( √

γ(n)√
γ(n−1)

ψ

)
1√
γ(n−1)

∂θ
(
Φ#n − Φ#n−1

)
h

+

∫
(
◦
S,g/ (n))

2

γ(n−1)
∂θ(Φ

#n − Φ#n−1)ψ∂θ(Φ
#n−1)h.

We now make us of the bounds (9.1.15) for (Ω, b, γ) involved in the definition of γ(n−1) and
γ(n), the uniform bound of P (n) provided by Proposition 9.4.11 and the Sobolev inequality
to deduce, ∣∣∣∣∫

(
◦
S,g/ (n))

ψδB(n)h

∣∣∣∣ . r−5‖γ(n) − γ(n−1)‖
h1(
◦
S)
‖ψ‖

h1(
◦
S)
‖h‖

h2(
◦
S)

+r−2
∥∥∂θ (Φ#n − Φ#n−1

)
h
∥∥
L2(
◦
S)
‖ψ‖

h1(
◦
S)
, (9.6.10)

where we have also used Lemma 9.1.3 to estimate∥∥∂θ(Φ#n−1)ψ
∥∥
L2(
◦
S,g/ (n))

. r

∥∥∥∥ ψeΦ

∥∥∥∥
L2(
◦
S,g/ (n))

. r

∥∥∥∥ ψeΦ

∥∥∥∥
L2(
◦
S)

. ‖ψ‖
h1(
◦
S)
.
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To estimate the term γ(n) − γ(n−1) we recall that,

γ(n) = γ#n +
(
ς#n
)2
(

Ω#n +
1

4
(b#n)2γ#n

)
(∂θU

(n))2

−2ς#n∂θU
(n)∂θS

(n) − γ#nς#nb#n∂θU
(n)

γ(n−1) = γ#n−1 +
(
ς#n−1

)2
(

Ω#n−1 +
1

4
(b#n−1)2γ#n−1

)
(∂θU

(n−1))2

−2ς#n−1∂θU
(n−1)∂θS

(n−1) − γ#n−1ς#n−1b#n−1∂θU
(n−1).

The principal term γ#n − γ#n−1 can be estimated with the help of Lemma 9.6.1, the
uniform bound of P (n) provided by Proposition 9.4.11, and the bounds provided18 by A3.
All other terms can be estimated in a similar fashion. We derive,

‖γ(n) − γ(n−1)‖
h1(
◦
S)
. r‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)

(9.6.11)

where,

‖∂θ
(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)

:= ‖∂θ(U (n) − U (n−1))‖
h1(
◦
S)

+ ‖∂θ(S(n) − S(n−1))‖
h1(
◦
S)
.

We deduce,

∣∣∣∣∫
(
◦
S,g/ (n))

ψδB(n)h

∣∣∣∣ . r−4‖∂θ
(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)
‖ψ‖

h1(
◦
S)
‖h‖

h2(
◦
S)

+r−2
∥∥∂θ (Φ#n − Φ#n−1

)
h
∥∥
L2(
◦
S)
‖ψ‖

h1(
◦
S)
. (9.6.12)

The proof of 9.6.2. is now an immediate consequence of the following.

Lemma 9.6.3. The following estimate holds true for a reduced scalar h ∈ s1(
◦
S)

∥∥∂θ (Φ#n − Φ#n−1
)
h
∥∥
L2(
◦
S)
. r−1‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)
‖h‖

h2(
◦
S)
. (9.6.13)

18Note in particular that A3 implies ∂u(γ) = ∂u(r2)+O(
◦
εr) = O(r) and ∂s(γ) = ∂s(r

2)+O(
◦
εr) = O(r).
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Proof. We write,

∂θ
(
Φ#n − Φ#n−1

)
=

{(
∂θS

(n) − 1

2
Ω∂θU

(n)

)
e4Φ +

1

2
∂θU

(n)e3Φ +
√
γ

(
1− 1

2
b∂θU

(n)

)
eθΦ

}#n

−
{(

∂θS
(n−1) − 1

2
Ω∂θU

(n−1)

)
e4Φ +

1

2
∂θU

(n−1)e3Φ +
√
γ

(
1− 1

2
b∂θU

(n−1)

)
eθΦ

}#n−1

=

(
∂θS

(n) − 1

2
Ω#n∂θU

(n)

)
(e4Φ)#n +

1

2
∂θU

(n)(e3Φ)#n +
√
γ#n

(
1− 1

2
b#n∂θU

(n)

)
(eθΦ)#n

−
(
∂θS

(n−1) − 1

2
Ω#n−1∂θU

(n−1)

)
(e4Φ)#n−1 − 1

2
∂θU

(n−1)(e3Φ)#n−1

−√γ#n−1

(
1− 1

2
b#n−1∂θU

(n−1)

)
(eθΦ)#n−1

i.e., grouping the terms appropriately,

∂θ
(
Φ#n − Φ#n−1

)
= J1 + J2 + J3,

J1 =

(
∂θS

(n) − 1

2
Ω#n∂θU

(n)

)
(e4Φ)#n −

(
∂θS

(n−1) − 1

2
Ω#n−1∂θU

(n−1)

)
(e4Φ)#n−1 ,

J2 =
1

2
∂θU

(n)(e3Φ)#n − 1

2
∂θU

(n−1)(e3Φ)#n−1 ,

J3 =
√
γ#n

(
1− 1

2
b#n ∂θU

(n)

)
(eθΦ)#n −√γ#n−1

(
1− 1

2
b#n−1∂θU

(n−1)

)
(eθΦ)#n−1 ,

and,

J3 = J31 + J32,

J31 = (eθΦ)#n−1

(√
γ#n

(
1− 1

2
b#n∂θU

(n)

)
−√γ#n−1

(
1− 1

2
b#n−1∂θU

(n−1)

))
,

J32 =
√
γ#n

(
1− 1

2
b#n ∂θU

(n)

)(
(eθΦ)#n − (eθΦ)#n−1

)
.

The contribution to the estimate of of Lemma 9.6.3 given by J1, J2, J31 can be easily
estimated by making use of the uniform bound of P (n) provided by Proposition 9.4.11,
the bound (9.1.15) for (Ω, b, γ), Lemma 9.2.6 as well as Lemma 9.6.1. We thus derive,

‖(J1, J2, J31)h‖
L2(
◦
S)
. r−1‖∂θΨ(n) − ∂θΨ(n−1)‖

h1(
◦
S)
‖h‖

h2(
◦
S)
.

It remains to estimate the term ‖J32h‖
L2(
◦
S)

which presents a difficulty at the axis of

symmetry where sin θ = 0. Clearly, ‖J32 h‖
L2(
◦
S)
. r

∥∥((eθΦ)#n − (eθΦ)#n−1
)
h
∥∥
L2(
◦
S)

. We
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are thus left to estimate the term
∥∥((eθΦ)#n − (eθΦ)#n−1

)
h
∥∥
L2(
◦
S)

. Proceeding as in the

proof of Lemma 9.6.1 we write, for F = eθΦ,

|δnF | .
∣∣δnU ∣∣ ∫ 1

0

∣∣∂uF (u0 + tU (n)(θ) + (1− t)U (n−1)(θ), s0 + tS(n)(θ) + (1− t)S(n−1)(θ), θ
)∣∣

+
∣∣δnS∣∣ ∫ 1

0

∣∣∂sF (u0 + tU (n)(θ) + (1− t)U (n−1)(θ), s0 + tS(n)(θ) + (1− t)S(n−1)(θ), θ
)∣∣ .

We need to pay special attention on the axis19, where sin θ = 0, to the integral term
involving

∂u(eθΦ) =
1

2

(
e3 − Ωe4 − bγ1/2eθ

)
eθΦ.

This leads us to consider the integral,∫ 1

0

[beθ(eθ(Φ))] (
◦
u+ tU (n)(θ) + (1− t)U (n−1)(θ),

◦
s, θ)dt

and the L2 norm of its product with h on
◦
S. We recall (see Lemma 2.1.13) that4/Φ = −K.

and Therefore,
∣∣eθ(eθΦ)

∣∣ . r−2 + |eθΦ|2 The contribution due to K does not present any
difficulties on the axis therefore we are led to consider the integral

I(θ) :=

∫ 1

0

[
b(eθ(Φ))2

]
(
◦
u+ tU (n)(θ) + (1− t)U (n−1)(θ),

◦
s, θ)dt

and the L2 norm of its product with h on
◦
S. Making use of (9.1.17) and then the first

estimate of (9.1.18) of Lemma 9.1.3 together with our assumption A3 we derive the
bound,

r2
∣∣I(θ)h(θ)

∣∣ . 1

sin2 θ

(∫ 1

0

∣∣∣b(◦u+ tU (n)(θ) + (1− t)U (n−1)(θ),
◦
s, θ)

∣∣∣ dt) |h(θ)|

.
∣∣∣h(θ)

sin θ

∣∣∣ sup
R

∣∣∣∣ b

sin θ

∣∣∣∣ . r2
∣∣∣h(θ)

eΦ

∣∣∣ sup
R

∣∣∣∣ beΦ

∣∣∣∣ . ◦ε∣∣∣h(θ)

eΦ

∣∣∣.
Making use of the second estimate in (9.1.17) we then derive,

‖I · h‖
L2(
◦
S)
.

◦
εr−2

∥∥∥∥ heΦ

∥∥∥∥
L2(S)

. r−3◦ε‖h‖h1(S).

This shows that the behavior along the axis in (9.6.13) is not an issue. This ends the
proof of both Lemma 9.6.3 and Lemma 9.6.2.

19Indeed the term eθ(eθΦ) is quite singular on the axis.
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Lemma 9.6.4. Let δh(n+1) and δh(n+1) reduced scalars on
◦
S satisfying

B(n)δh(n+1) = − 6mS(n)

(rS(n))5
(A(n))−1

(
δh(n+1) −ΥS(n)δh(n+1)

)
+

2

rS(n)
δM (n+1)(A(n))−1eΦ#n − (δB(n))h(n) +H(n+1),

B(n)δh(n+1) = −6mS(n)ΥS(n)

(rS(n))5
(A(n))−1

(
δh(n+1) −ΥS(n)δh(n+1)

)
+ δC(n+1)eΦ#n

+
2ΥS(n)

rS
δM (n+1)(A(n))−1eΦ#n − (δB(n))h(n) +H(n+1),

(9.6.14)

as well as ∫
◦
S,g/ (n)

δh(n+1)eΦ#n
= D(n+1),∫

◦
S,g/ (n)

δh(n+1)eΦ#n
= D(n+1).

Also, assume the bounds

‖(h(n), h(n))‖
h2(
◦
S)
.

◦
δ.

Then we have,

r4|δC(n+1)|+ r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖
h1(
◦
S)

.
◦
δr−1‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)

+ r2‖H(n+1)‖
L2(
◦
S)

+ r2‖H(n+1)‖
L2(
◦
S)

+ r−2
(∣∣∣D(n+1)

∣∣∣+
∣∣∣D(n+1)

∣∣∣) .
(9.6.15)

Proof. We proceed exactly as for the a priori estimates in Step 5 to Step 7 of the proof
of Proposition 9.4.6, see section 9.5.1, with the exception of the terms involving δB(n) for
which we do not use Cauchy Schwarz. We obtain the following analog of (9.5.12) (9.5.9)(

r4|δC(n+1)|+ r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖
h1(
◦
S)

)2

.
{
r2‖H(n+1)‖

L2(
◦
S)

+ r2‖H(n+1)‖
L2(
◦
S)

+ r−2
(∣∣∣D(n+1)

∣∣∣+
∣∣∣D(n+1)

∣∣∣)} ‖(δh(n+1), δh(n+1))‖
L2(
◦
S)

+r2

∣∣∣∣∫
(
◦
S,g/ (n))

(δh(n+1) −Υ(S(n)δh(n+1))δB(n)(h(n) −ΥS(n)h(n))

∣∣∣∣+ r2

∣∣∣∣∫
(
◦
S,g/ (n))

δh(n+1)δB(n)h(n)

∣∣∣∣
+

(∣∣∣∣∫
(
◦
S,g/ (n))

eΦ(δB(n)h(n))

∣∣∣∣+

∣∣∣∣∫
(
◦
S,g/ (n))

eΦ(δB(n)h(n))

∣∣∣∣)2

.
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Next, we estimate the terms involving δB(n). Using Lemma 9.6.2 with the choices

• ψ = δh(n+1) −Υ(S(n)δh(n+1) and h = h(n) −ΥS(n)h(n),

• ψ = δh(n+1) and h = h(n),

• ψ = eΦ and h = h(n),

• ψ = eΦ and h = h(n),

which yields, together with the assumption on the h2(
◦
S) norm of h(n) and h(n),∣∣∣∣∫

(
◦
S,g/ (n))

(δh(n+1) −Υ(S(n)δh(n+1))δB(n)(h(n) −ΥS(n)h(n))

∣∣∣∣+

∣∣∣∣∫
(
◦
S,g/ (n))

δh(n+1)δB(n)h(n)

∣∣∣∣
. r−3

◦
δ‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)
‖(δh(n+1), δh(n+1))‖

h1(
◦
S)

and(∣∣∣∣∫
(
◦
S,g/ (n))

eΦ(δB(n)h(n))

∣∣∣∣+

∣∣∣∣∫
(
◦
S,g/ (n))

eΦ(δB(n)h(n))

∣∣∣∣)2

.

(
r−1

◦
δ‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)

)2

.

Plugging in the above estimate, we infer(
r4|δC(n+1)|+ r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖

h1(
◦
S)

)2

.
{
r2‖H(n+1)‖

L2(
◦
S)

+ r2‖H(n+1)‖
L2(
◦
S)

+ r−2
(∣∣∣D(n+1)

∣∣∣+
∣∣∣D(n+1)

∣∣∣)} ‖(δh(n+1), δh(n+1))‖
L2(
◦
S)

+r−1
◦
δ‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)
‖(δh(n+1), δh(n+1))‖

h1(
◦
S)

+

(
r−1

◦
δ‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)

)2

and hence

r4|δC(n+1)|+ r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖
h1(
◦
S)

.
◦
δr−1‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)

+ r2‖H(n+1)‖
L2(
◦
S)

+ r2‖H(n+1)‖
L2(
◦
S)

+ r−2
(∣∣∣D(n+1)

∣∣∣+
∣∣∣D(n+1)

∣∣∣)
as desired.
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9.6.3 Proof of the estimates (9.6.5) (9.6.6) (9.6.7)

We are now in position to prove (9.6.5) (9.6.6) (9.6.7).

Step 1. With start by estimating δh(n+1), δh(n+1). To this end, we need to apply Lemma
9.6.4 to the equations for δh(n+1), δh(n+1), derived from the first two equations in (9.6.1)
and (9.6.2), and estimate the corresponding terms H(n+1), H(n+1), D(n+1) and D(n+1) on
the right-hand side. This is tedious but straightforward and one derives

r2‖H(n+1)‖
L2(
◦
S)

+ r2‖H(n+1)‖
L2(
◦
S)

+ r−2
(∣∣∣D(n+1)

∣∣∣+
∣∣∣D(n+1)

∣∣∣)
.

◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
.

Remark 9.6.5. Note that the presence of the inverse operators (A(n))−1 in the right-
hand side of the equations for δh(n+1), δh(n+1) do not create any difficulties when taking
differences. Indeed we can write,

(A(n))−1 − (A(n−1))−1 = (A(n))−1
(
A(n−1) − A(n)

)
(A(n−1))−1

and estimate the difference δA(n) = A(n) − A(n−1) similarly to the estimate for δB(n) in
the proof of Lemma 9.6.2.

We infer from Lemma 9.6.4 and the above estimates

r4|δC(n+1)|+ r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖
h1(
◦
S)

.
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
. (9.6.16)

Step 2. Next, we estimate d?/ δe(n+1). Recall (9.6.1)

d?/ (n)e(n+1) = (Ψ(n))#Ẽ(n+1),

where

Ẽ(n+1) = −3

4
(AS(n))−1

(
ρz(n+1)

)
+ f (n+1)ω − f (n+1)ω +

1

4
f (n+1)κ

−1

4
f (n+1)κ+ (AS(n))−1

(
− M (n+1)eΦ + d?/ µ̌

)
− (AS(n))−1

(
Err

(n+1)
3

)
.

This yields

d?/ (n)δe(n+1) = −
(

1−
√
γ(n)√
γ(n−1)

)
d?/ (n)e(n) + H̃(n+1).
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The control of H̃(n+1) is tedious but straightforward and one derives, using in particular
Remark 9.6.5,

r
∥∥∥H̃(n+1)

∥∥∥
L2(
◦
S)
. r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖

L2(
◦
S)

+
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
.

Also, in view of the boundedness of e(n) and γ(n), we have

r

∥∥∥∥∥
(

1−
√
γ(n)√
γ(n−1)

)
d?/ (n)e(n)

∥∥∥∥∥
L2(
◦
S)

. r−3
◦
δ‖γ(n) − γ(n−1)‖

L2(
◦
S)

. r−2
◦
δ‖∂θ

(
Ψ(n) −Ψ(n−1)

)
‖
h1(
◦
S)

where we have used (9.6.11) in the last inequality. We deduce

r
∥∥ d?/ (n)δe(n+1)

∥∥
L2(
◦
S)
. r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖

L2(
◦
S)

+
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
and hence, using a Poincaré inequality∥∥∥∥∥δe(n+1) − δe(n+1)

◦
S,g/ (n)

∥∥∥∥∥
h1(
◦
S)

. r5|δM (n+1)|+ ‖(δh(n+1), δh(n+1))‖
L2(
◦
S)

+
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
.

Together with (9.6.16), we deduce

r4|δC(n+1)|+ r5|δM (n+1)|+
∥∥∥∥∥
(
δh(n+1), δh(n+1), δe(n+1) − δe(n+1)

◦
S,g/ (n)

)∥∥∥∥∥
h1(
◦
S)

.
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
,

which is the desired estimate (9.6.5).

Step 3. Next, we estimate the average of δe(n+1). Recall from (9.6.3)

e(n+1)

◦
S,g/ (n)

=

(
1− rS(n)

r

)(n)

◦
S,g/ (n)

− rS(n)

2

(
κ̌+ κ− 2

r

)(n)

◦
S,g/ (n)

+ Err
(n+1)
6

◦
S,g/ (n)
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and

e(n)

◦
S,g/ (n)

=

(
1− rS(n−1)

r

)(n−1)

◦
S,g/ (n−1)

− rS(n−1)

2

(
κ̌+ κ− 2

r

)(n)

◦
S,g/ (n−1)

+ Err
(n)
6

◦
S,g/ (n−1)

.

Taking the difference, recalling that we have in the (θ, ϕ) coordinates system

dvolg/ (n) =
√
γ(n)eΦ#n

dθdϕ, 4π(rS(n))2 =

∫ 2π

0

∫ π

0

√
γ(n)eΦ#n

dθdϕ

and

dvolg/ (n−1) =
√
γ(n−1)eΦ#n−1

dθdϕ, 4π(rS(n−1))2 =

∫ 2π

0

∫ π

0

√
γ(n−1)eΦ#n−1

dθdϕ

and using the uniform bound of P (n) provided by Proposition 9.4.11 and the bounds A1
for Γ̌, we infer

r

∣∣∣∣∣δe(n+1)

◦
S

∣∣∣∣∣ . r−2‖γ(n) − γ(n−1)‖
L2(
◦
S)

+ r−1‖eΦ#n − eΦ#n−1‖
L2(
◦
S)

+ ‖δErr
(n+1)
6 ‖

L2(
◦
S)
.

Arguing as above, we deduce

r

∣∣∣∣∣δe(n+1)

◦
S,g/ (n)

∣∣∣∣∣ . r−1‖∂θ
(
δU (n), δS(n)

)
‖
h1(
◦
S)

+
◦
ε
(
‖P (n) − P (n−1)‖2 + ‖P (n−1) − P (n−2)‖2

)
which is the desired estimate (9.6.6).

Step 4. Finally, we focus on (9.6.7). Recall (9.6.4)

ς#n∂θU
(1+n) = (γ(n))1/2h(1+n)

(
1 +

1

4
h(1+n)h(1+n)

)
,

∂θS
(1+n) − 1

2
ς#nΩ#n∂θU

(1+n) =
1

2
(γ(n))1/2h(1+n),

γ(n) = γ#n +
(
ς#n
)2
(

Ω#n +
1

4
(b#n)2γ#n

)
(∂θU

(n))2

− 2ς#n∂θU
(n)∂θS

(n) − γ#nς#nb#n∂θU
(n),

U (1+n)(0) = S(1+n)(0) = 0.

Taking the difference and arguing as above, we derive

r−1‖∂θδU (1+n)‖
h1(
◦
S)
. ‖δh(n+1), δh(n+1)‖

h1(
◦
S)

+ r−3◦ε‖γ(n) − γ(n−1)‖
h1(
◦
S)

+
◦
ε‖P (n) − P (n−1)‖2,

r−1‖∂θδS(1+n)‖
h1(
◦
S)
. ‖∂θδU (1+n)‖

h1(
◦
S)

+ ‖δh(n+1), δh(n+1)‖
h1(
◦
S)

+r−3◦ε‖γ(n) − γ(n−1)‖
h1(
◦
S)

+
◦
ε‖P (n) − P (n−1)‖2.
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Estimating γ(n) − γ(n−1) as above, we infer

r−1‖∂θ
(
δU (n+1), δS(n+1)

)
‖
h1(
◦
S)
. ‖δh(n+1), δh(n+1)‖

h1(
◦
S)

+
◦
ε‖P (n) − P (n−1)‖2

which is the desired estimate (9.6.7). This concludes the proof of Proposition 9.4.12.

9.7 A corollary to Theorem 9.4.1

In what follows we prove an important corollary of Theorem 9.4.1 which makes use of the
arbitrariness of Λ,Λ to ensure the vanishing of the ` = 1 modes of β and κ̌. The result
requires stronger assumptions than those made in A1. Namely we assume that Γb has
the same behavior as Γg, i.e.

A1-Strong. For k ≤ smax,∥∥∥Γg

∥∥∥
k,∞
.
◦
εr−2,

∥∥∥Γb

∥∥∥
k,∞
.
◦
εr−1,

∥∥∥Γb

∥∥∥
k,∞
. (

◦
ε)

1
3 r−2. (9.7.1)

Theorem 9.7.1 (Existence of GCM spheres). In addition to the assumptions of Theorem
9.4.1, we assume that A1-Strong holds, and that, for any background sphere S in R,

r

∣∣∣∣∫
S

βeΦ

∣∣∣∣+ r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣+ r

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ◦
δ. (9.7.2)

Then there exists a unique GCM sphere S, which is a deformation of
◦
S, such that the

following GCM conditions hold true

d/S,?
2 d/S,?

1 κS = d/S,?
2 d/S,?

1 µS = 0, κS =
2

rS
,∫

S

βSeΦ = 0,

∫
S

eSθ (κS)eΦ = 0.
(9.7.3)

Moreover, all other estimates of Theorem 9.4.1 hold true.

Proof. The proof of the theorem follows easily in view of Theorem 9.4.1 and the following
lemma.

Lemma 9.7.2. Let S be a deformation of
◦
S as in Theorem 9.4.1 with Λ =

∫
S
feΦ,Λ =∫

S
feΦ. The following identities hold true

Λ =
r3

3m

(∫
◦
S

βeΦ −
∫
S

βSeΦ

)
+ F1(Λ,Λ),

Λ =
r3

6m

(∫
◦
S

eθ(κ)eΦ −
∫
S

(eSθκ
S)eΦ −Υ

∫
◦
S

eθ(κ)eΦ

)
+ ΥΛ + F2(Λ,Λ),

(9.7.4)
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where F1, F2 are continuous20 in Λ,Λ, verifying, provided A1-Strong holds, the estimates,∣∣F1|+
∣∣F2

∣∣ . (
◦
ε)

1
3

◦
δr2,∣∣∂Λ,ΛF1|+

∣∣∂Λ,ΛF2

∣∣ . (
◦
ε)

1
3 r2.

(9.7.5)

Proof. To prove (9.7.4), we start with the change of frame formula,

βS = ea
(
β +

3

2
ρf

)
+ eaErr(β, βS),

Err(β, βS) =
1

2
fα + l.o.t.

We write21

βS = β +
3

2
ρf + (ea − 1)

(
β +

3

2
ρf

)
+ eaErr(β, βS)

= β +
3

2

(
−2m

r3

)
f +

3

2

(
ρ+

2m

r3

)
f + (ea − 1)

(
β +

3

2
ρf

)
+ eaErr(β, βS)

and deduce,

βS +
3mS

(rS)3
f = β + Err′(β, βS)

with error term Err′(β, βS),

Err′(β, βS) =

(
3mS

(rS)3
− 3m

r3
f

)
+

3

2

(
ρ+

2m

r3

)
f + (ea − 1)

(
β +

3

2
ρf

)
+ eaErr(β, βS).

Making use of the assumptions A1-A3 , the estimates of Theorem 9.4.1 for (f, f , a) as

well as the bounds for
◦
r − rS,

◦
m −mS we deduce∣∣∣Err′(β, βS)

∣∣∣ . r−1
◦
δ
◦
ε.

Thus,

3mS

(rS)3

∫
S

feΦ =

∫
S

βeΦ −
∫
S

βSeΦ +

∫
S

Err′(β, βS)eΦ

=

∫
◦
S

βeΦ −
∫
S

βSeΦ +

∫
S

Err′(β, βS)eΦ +
(∫

S

βeΦ −
∫
◦
S

βeΦ
)

20In fact smooth.

21Here (r,m) represents the area radius and Hawking mass of
◦
S, while (rS,mS) represent the area

radius and Hawking mass of S. Since | rSr − 1| .
◦
δ and |mS −m| .

◦
δ, we can interchange freely rS with

r and mS with m.
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or,

3m

r3

∫
S

feΦ =

∫
◦
S

βeΦ −
∫
S

βSeΦ +

∫
S

Err′(β, βS)eΦ +
(∫

S

βeΦ −
∫
◦
S

βeΦ
)

+
(3m

r3
− 3mS

(rS)3

)∫
S

feΦ.

Clearly, ∣∣∣∣∫
S

Err′(β, βS)eΦ

∣∣∣∣ . r−1
◦
δ
◦
ε.

Also, proceeding exactly as in Corollary 9.2.5 we deduce,∣∣∣∣∫
S

βeΦ −
∫
◦
S

βeΦ

∣∣∣∣ . ◦
δ

(
sup
R

◦
r
∣∣d≤1
↗ (βeΦ)

∣∣+ sup
R

◦
r

2∣∣e3(βeΦ
)
|
)
.

Thus, in view of the assumptions A1-A3,∣∣∣∣∫
S

βeΦ −
∫
◦
S

βeΦ

∣∣∣∣ . ◦
δ
◦
εr−1. (9.7.6)

We deduce,

Λ =
r3

3m

(∫
◦
S

βeΦ −
∫
S

βSeΦ
)

+ F1(Λ,Λ)

where the error term F1(Λ,Λ) is a continuous function of Λ,Λ verifying the estimate,∣∣∣F1(Λ,Λ)
∣∣∣ . ◦

ε
◦
δr2.

We also recall, see Lemma 9.3.4,

eSθ (κS) = eθκ− d/S,?
1 d/S

1 f − κeSθ a−
1

4
κ(fκ+ fκ) + κ(fω − ωf) + fρ

+ Err(eSθκ
S, eθκ)

where,

Err(eSθκ
S, eθκ) = (e−a − 1)

(
eθκ− d/S,? d/S

1 f +
1

2
fe3κ+

1

2
fe4κ

)
+ e−a

[
eSθ Err(κ, κS) + eSθ (a)

(
d/S

1 f + Err(κ, κS)
)

+
1

2
ffeθκ+

1

8
f 2fe3κ

]
+

1

2
f

(
2 d/1η −

1

2
ϑϑ+ 2(ξξ + η2)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ+

1

2
f

(
2 d/1ξ −

1

2
ϑ2 + 2(η + η − 2ζ)ξ

)
.
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Making use of the identity d/S,?
1 d/S

1 = d/S
2 d/

S,?
2 + 2KS we deduce,

eSθ (κS) +

(
1

4
κκ− ρ+ 2K

)
f = eθκ− d/S

2 d/
S,?
2 f − κeSθ a−

1

4
κ2f − κωf

−2(KS −K)f + Err(eSθκ
S, eθκ).

Writing, κ = 2
r

+ (κ− 2
r
), κ = −2Υ

r
+ (κ+ 2Υ

r
), ρ = −2m

r3 + (ρ+ 2m
r3 ), K = 1

r2 + (K − 1
r2 )

1

4
κκ− ρ+ 2K =

1

r2
+

4m

r3
+

1

2r

(
κ+

2Υ

r

)
− Υ

2r

(
κ− 2

r

)
+

(
ρ+

2m

r3

)
+ 2

(
K − 1

r2

)
=

1

r2
+

4m

r3
+O(

◦
εr−3).

Also, using A1-Strong,

κ = −2Υ

r
+

(
κ+

2Υ

r

)
= −2Υ

r
+O(r−2◦ε),

κ ω = −2mΥ

r3
+O

(
r−3(

◦
ε)

1
3

)
,

and, in view of A1-Strong, and since a, f, f = O(r−1
◦
δ),

Err(eSθκ
S, eθκ) = O(r−4

◦
δ(
◦
ε)

1
3 ).

We deduce,

eSθ (κS) +

(
1

r2
+

4m

r3

)
f = eθκ− d/2 d

?/2f +
2Υ

r
eSθ a−

Υ
(
1− 4m

r

)
r2

f + Err1

with error term ∣∣∣Err1

∣∣∣ . (
◦
ε)

1
3

◦
δr−4.

Projecting on eΦ and proceeding as before,(
1

r2
+

4m

r3

)∫
S

feΦ =

∫
◦
S

(eθκ)eΦ −
∫
S

(eSθκ
S)eΦ − 2Υ

r

∫
S

(eSθ a)eΦ

− Υ
(
1− 4m

r

)
r2

∫
S

feΦ + I1(Λ,Λ)

(9.7.7)

where the error term I1 is continuous in Λ,Λ and verifies the estimate∣∣∣I1

∣∣∣ . r−1(
◦
ε)

1
3

◦
δ.
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We now calculate
∫
S
(eSθ a)eΦ. Recall from Lemma 9.3.4

eSθ (κS) = eθκ− d?/ S
1 d/S1f + κeSθ a−

1

4
κ(fκ+ fκ) + κ(fω − ωf) + fρ

+Err(eSθκ
S, eθκ),

where

Err(eSθκ
S, eθκ) = (ea − 1)

(
eθκ+ eSθ d/

S
1f +

1

2
fe4κ+

1

2
fe3κ

)
+ ea

[
eSθ Err(κ, κS) + eSθ (a)

(
d/ S

1f + Err(κ, κS)
)

+
1

2
ffeθκ+

1

8
f 2fe3κ

]
+

1

2
f

(
2 d/1η −

1

2
ϑϑ+ 2(ξξ + η2)

)
+

1

2
ffeθκ+

1

8
f 2fe3κ+

1

2
f

(
2 d/1ξ −

1

2
ϑ2 + 2(η + η + 2ζ)ξ

)
.

Using again the identity d/S,?
1 d/S

1 = d/S
2 d/

S,?
2 +2KS and proceeding as above, we infer, using

also the GCM condition for κS which yield eSθ (κS) = 0,

0 = eθκ− d/S2 d
?/ S
2 f +

2

rS
eSθ a−

1

4
κ2f +

(
1

4
κκ+ κω + 3ρ

)
f

+

(
κ− 2

rS

)
eSθ a− 2(KS −K)f − 1

2
ϑϑf + Err(eSθκ

S, eθκ).

Integrating over S, we deduce

2

rS

∫
S

eSθ (a)eΦ = −
∫
S

eθ(κ)eΦ +
1

4

∫
S

κ2feΦ −
∫
S

(
1

4
κκ+ κω + 3ρ

)
feΦ

+

∫
S

[(
κ− 2

rS

)
eSθ a− 2(KS −K)f − 1

2
ϑϑf + Err(eSθκ

S, eθκ)

]
eΦ

= −
∫
◦
S

eθ(κ)eΦ +
1

r2
Λ +

1

r2

(
1 +

2m

r

)
Λ + I2(Λ,Λ)

where, using in particular A1-Strong,∣∣∣I2(Λ,Λ)
∣∣∣ . r−1(

◦
ε)

1
3

◦
δ.

Indeed, using once more Corollary 9.2.5, we note that∣∣∣∣∫
S

eθ(κ)eΦ −
∫
◦
S

eθ(κ)eΦ

∣∣∣∣ . r−1◦ε
◦
δ

(
1 + r4 sup

R
|e3(eθ(κ))|

)
. r−1(

◦
ε)

1
3

◦
δ,
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where we used A1-Strong, the transport equation for e3(κ) and a commutator formula
for [e3, eθ] to estimate e3(eθ(κ)). All other error terms are easily estimated.

Back to (9.7.7) we deduce,(
1

r2
+

4m

r3

)
Λ =

∫
◦
S

(eθκ)eΦ −
∫
S

(eSθκ
S)eΦ +

2Υ

r

∫
S

(eSθ a)eΦ − Υ
(
1− 4m

r

)
r2

Λ + I1(Λ,Λ)

=

∫
◦
S

(eθκ)eΦ −
∫
S

(eSθκ
S)eΦ − Υ

(
1− 4m

r

)
r2

Λ + I1(Λ,Λ)

+ Υ

(
−
∫
◦
S

eθ(κ)eΦ +
1

r2
Λ +

1

r2

(
1 +

2m

r

)
Λ + I2(Λ,Λ)

)
=

∫
◦
S

(eθκ)eΦ −
∫
S

(eSθκ
S)eΦ −Υ

∫
◦
S

eθ(κ)eΦ +
Υ

r2
Λ +

6mΥ

r3
Λ

+ I1(Λ,Λ) + ΥI2(Λ,Λ).

Hence,

6m

r3
Λ =

∫
◦
S

(eθκ)eΦ −
∫
S

(eSθκ
S)eΦ −Υ

∫
◦
S

eθ(κ)eΦ +
6mΥ

r3
Λ

+ I1(Λ,Λ) + ΥI2(Λ,Λ).

Thus,

Λ =
r3

6m

(∫
◦
S

(eθκ)eΦ −
∫
S

(eSθκ
S)eΦ −Υ

∫
◦
S

eθ(κ)eΦ

)
+ ΥΛ + F2(Λ,Λ)

with error term F2(Λ,Λ) continuous in Λ,Λ and verifying the estimate,∣∣∣F2(Λ,Λ)
∣∣∣ . (

◦
ε)

1
3

◦
δr2.

To check the second part in (9.7.5) one needs to revisit the proof of Theorem 9.4.1 and
check the dependence of U, S, f, f , λ on the parameters Λ,Λ. It is tedious but standard
to check the following estimates for the derivatives with respect to Λ,Λ.∥∥∥∂Λ,Λ

(
f, f , log λ

)∥∥∥
hk(S)

. 1, k ≤ smax. (9.7.8)

‖∂Λ,Λ

(
U ′, S ′

)
‖
L∞(

◦
S)

+ max
0≤s≤smax−1

r−1‖∂Λ,Λ

(
U ′, S ′

)
‖
hs(
◦
S,
◦
g/ )
. 1. (9.7.9)

Using these estimates and taking into account the structure of the error terms F1, F2 we
derive the second inequality in (9.7.5). This ends the proof of the lemma.
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Under the assumptions of the theorem, the system

Λ =
r3

3m

∫
◦
S

βeΦ + F1(Λ,Λ),

Λ =
r3

6m

(∫
◦
S

eθ(κ)eΦ −Υ

∫
◦
S

eθ(κ)eΦ

)
+ ΥΛ + F2(Λ,Λ),

has a unique solution Λ0,Λ0 verifying the estimate

|Λ0|+ |Λ0| .
◦
δr2.

Taking Λ = Λ0,Λ = Λ0 in (9.7.4) we deduce,∫
S

βSeΦ = 0,

∫
S

eSθ (κS)eΦ = 0,

as stated.

Corollary 9.7.3. Let a fixed spacetime region R verifying assumptions A1−A3 and
(9.4.2), as well as, for any background sphere S in R,∣∣∣∣∫

S

βeΦ

∣∣∣∣+

∣∣∣∣∫
S

eθ(κ)eΦ

∣∣∣∣ . ◦
δ. (9.7.10)

Assume that S is a sphere in R which verifies the the GCM conditions

κS =
2

rS
, d?/2

S d?/1
SκS = d?/2

S d?/1
SµS = 0 (9.7.11)

and such that, for a small enough constant δ1 > 0, the transition functions (f, f , λ) from
the background frame of R to that of S verifies, for some 4 ≤ s ≤ smax, the bound

‖f‖hs(S) + (rS)−1‖(f, log λ)‖hs(S) ≤ δ1.

Assume in addition that we have∣∣∣∣∫
S

βSeΦ

∣∣∣∣+

∣∣∣∣∫
S

eSθ (κS)eΦ

∣∣∣∣ . ◦
δ. (9.7.12)

Then the transition functions (f, f , λ) from the background frame of R to that of S verify
the estimates

‖(f, f , λ̌S)‖hs+1(S) . r
◦
δ + rδ1(

◦
ε+ δ1)

and

r|λS − 1| . r
◦
δ + sup

S

∣∣r − rS∣∣ .
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Proof. Applying Corollary 9.4.7, we have

‖(f, f , λ̌S)‖hsmax+1(S) .
◦
δ + r−2 (|Λ|+ |Λ|) + (

◦
ε+ δ1) sup

S

∣∣r − rS∣∣ ,
r|λS − 1| .

◦
δ + r−2 (|Λ|+ |Λ|) + sup

S

∣∣r − rS∣∣ .
Furthermore, the assumptions on (f, f) imply in view of Lemma 9.2.10

sup
S

∣∣r − rS∣∣ . rδ1

and hence

‖(f, f , λ̌S)‖hsmax+1(S) .
◦
δ + r−2 (|Λ|+ |Λ|) + rδ1(

◦
ε+ δ1),

r|λS − 1| .
◦
δ + r−2 (|Λ|+ |Λ|) + sup

S

∣∣r − rS∣∣ .
Thus, to conclude, it suffices to prove the estimate

|Λ|+ |Λ| . r3
◦
δ.

Now, revisiting the proof of Lemma 9.7.2 without assuming that A1-Strong holds, we
obtain the following analog of (9.7.4)

Λ =
r3

3m

(∫
◦
S

βeΦ −
∫
S

βSeΦ

)
+O

(
◦
ε
◦
δr3

)
,

Λ =
r3

6m

(∫
◦
S

(eθκ)eΦ −
∫
S

(eSθκ
S)eΦ −Υ

∫
◦
S

eθ(κ)eΦ

)
+ ΥΛ +O

(
◦
ε
◦
δr3

)
.

The desired estimate for (Λ,Λ) follows then immediately.

9.8 Construction of GCM hypersurfaces

We are ready to state our main result concerning the construction of GCM hypersurfaces.

Theorem 9.8.1. Let a fixed spacetime region R verifying assumptions A1−A3 and
(9.4.2). In addition we assume that,∣∣∣∣∫

S(u,s)

ηeΦ

∣∣∣∣ . r2
◦
δ,

∣∣∣∣∫
S(u,s)

ξeΦ

∣∣∣∣ . r2
◦
δ, (9.8.1)
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and, everywhere on R, ∣∣∣∣(2

ς
+ Ω

) ∣∣∣
SP
− 1− 2m

r

∣∣∣∣ . ◦δ (9.8.2)

where SP denotes the South pole, i.e. θ = 0 relative to the adapted geodesic coordinates
u, s, θ.

Let S0 = S0[
◦
u,
◦
s,Λ0,Λ0] be a fixed GCMS provided by Theorem 9.4.1. Then, there exists

then a unique, local22, smooth, Z-invariant spacelike hypersurface Σ0 passing through S0,
a scalar function uS defined on Σ0, whose level surfaces are topological spheres denoted by
S, and a smooth collection of constants ΛS,ΛS verifying,

ΛS0 = Λ0, ΛS0 = Λ0,

such that the following conditions are verified:

1. The surfaces S of constant uS verifies all the properties stated in Theorem 9.4.1 for
the prescribed constants ΛS,ΛS. In particular they come endowed with null frames
(eS4 , e

S
θ , e

S
3 ) such that

i. For each S the GCM conditions (9.4.1) with Λ = ΛS,Λ = ΛS, are verified.

ii. The transition functions (f, f , a = log λ) verify the estimates (9.4.5).

iii. The transversality conditions (9.4.9) are verified.

iv. The corresponding Ricci and curvature coefficients verify the estimates (9.4.8)
and (9.4.11).

2. Denoting rS to be the area radius of the spheres S we have, for some constant c∗,

uS + rS = c∗, along Σ0. (9.8.3)

3. Let νS be the unique vectorfield tangent to the hypersurface Σ0, normal to S, and
normalized by g(νS, eS4 ) = −2. There exists a unique scalar function aS on Σ0 such
that νS is given by

νS = eS3 + aSeS4 .

The following normalization condition holds true at the South Pole SP of every
sphere S, i.e. at θ = 0,

aS
∣∣∣
SP

= −1− 2mS

rS
. (9.8.4)

22i.e. in a neighborhood of S0.
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4. We extend uS and rS in a small neighborhood of Σ0 such that the following transver-
sality conditions are verified23 on Σ0,

eS4 (uS) = 0, eS4 (rS) =
rS

2
κS = 1. (9.8.5)

5. In view of (9.8.5) the Ricci coefficients ηS, ξS are well defined for every S ⊂ Σ0 and
verify ∫

S

ηSeΦ =

∫
S

ξSeΦ = 0. (9.8.6)

6. The following estimates hold true for all k ≤ smax,

‖ηS‖hk(S) .
◦
ε, (9.8.7)

‖ξS‖hk(S) .
◦
ε, (9.8.8)∥∥∥∥aS + 1 +

2mS

rS

∥∥∥∥
hk(S)

.
◦
ε. (9.8.9)

The eS3 derivatives of κ̌S, ϑS, ζS, κ̌S, ϑS, αS, βS, ρ̌S, µS, βS are well defined on Σ0 and
we have, for all k ≤ smax − 1

‖eS3 (κ̌S, ϑS, ζS, κ̌S)‖hk(S) .
◦
εr−1,

‖eS3 (ϑS)‖hk(S) .
◦
ε,

‖eS3
(
αS, βS, ρ̌S, µS

)
‖hk(S) .

◦
εr−2,

‖eS3 (βS)‖hk(S) .
◦
εr−1,

‖eS3 (αS)‖hk(S) .
◦
ε.

(9.8.10)

7. The transition functions from the background foliation to that of Σ0 verify

‖d≤smax+1(f, f , log λ)‖L2(S) .
◦
δ. (9.8.11)

Corollary 9.8.2. Let a fixed spacetime region R verifying assumptions A1−A3 and the
small GCM conditions (9.4.2). Assume given a GCM hypersurface Σ0 ⊂ R foliated by
surfaces S such that

κS =
2

rS
, d?/2

S d?/1
SκS = d?/2

S d?/1
SµS = 0,

∫
S

ηSeΦ = 0,

∫
S

ξSeΦ = 0.

23Here the average of κS is taken on S. In view of the GCM conditions (9.8.14) we deduce eS4 (rS) = 1.
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1. If we assume in addition that for a specific sphere S0 on Σ0, the transition functions
f, f from the background foliation to S0 verify

‖(f, f , log(λ))‖hsmax+1(S0) .
◦
δ, (9.8.12)

then,

‖d≤smax+1(f, f , log(λ))‖L2(S0) .
◦
δ.

2. If we assume in addition that for a specific sphere S0 on Σ0, the transition functions
f, f from the background foliation to S0 verify

‖f‖hsmax+1(S0) + (rS0)−1‖(f, log λ)‖hsmax+1(S0) .
◦
δ, (9.8.13)

then,

‖d≤smax+1f‖L2(S0) + r−1‖d≤smax+1(f, log λ)‖L2(S0) + ‖d≤smaxeS3 (f, log λ)‖L2(S0) .
◦
δ.

We give below the proof of Theorem 9.8.1 and of Corollary 9.8.2.

9.8.1 Definition of Σ0

As stated in the theorem we assume given a spacetime region R = {|u− ◦u| ≤ δR, |s−
◦
s| ≤

δR} (see definition(9.1.6)) endowed with a background foliation such that the condition
A1-A3 hold true. We also assume given a deformation sphere

S0 := S[
◦
u,
◦
s,Λ0,Λ0]

of a given sphere
◦
S = S(

◦
u,
◦
s) of the background foliation which verify the conclusions of

Theorem 9.4.1. We then proceed to construct, in a small neighborhood of S0, a spacelike
hypersurface Σ0 initiating at S0 verifying all the desired properties mentioned above. In
what follows we outline the main steps in the construction.

Step 1. According to Theorem 9.4.1, for every value of the parameters (u, s) in R (i.e.
such that the background spheres S(u, s) ⊂ R) and every real numbers (Λ,Λ), there exists
a unique GCM sphere S[u, s,Λ,Λ], as a Z-polarized deformation of S(u, s). In particular
the following are verified:
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• S coincides with S(u, s) at their south poles (i.e. for θ = 0 in the adapted coordi-
nates).

• On S, the following GCMS conditions hold

κS =
2

rS
, d/S,?

2 d/S,?
1 κS = 0, d/S,?

2 d/S,?
1 µS = 0, (9.8.14)

∫
S

feΦ = ΛS,

∫
S

feΦ = ΛS, (9.8.15)

where (f, f , λ) are the transition parameters of the frame transformation from the

background frame (e3, eθ, e4) to the adapted frame (eS3 , e
S
θ , e

S
4 ). The constants ΛS,ΛS

depend smoothly on the surfaces S and

ΛS0 = Λ0, ΛS0 = Λ0.

• There is a map Ξ : S(u, s) −→ S given by

Ξ : (u, s, θ) =
(
u+ U(θ, u, s, Λ, Λ), s+ S(θ, u, s,Λ,Λ), θ

)
(9.8.16)

with U, S vanishing at θ = 0.

• The transversality conditions (9.4.9) hold, i.e. ξS = ωS = ζS + ηS = 0. Note that

these specify the eS4 derivatives of (f, f , λ) on S.

• The Ricci coefficients24 κS, κS, ϑS, ϑS, ζS are well defined on each sphere S of Σ0, and
hence on Σ0. The same holds true for all curvature coefficients αS, βS, ρS, βS, αS.
Taking into account our transversality condition we remark that the only ill defined
Ricci coefficients are ηS, ξS, ωS.

• Let νS be the unique vectorfield tangent to the hypersurface Σ0, normal to S, and
normalized by g(νS, eS4 ) = −2. There exists a unique scalar function aS on Σ0 such
that νS is given by

νS = eS3 + aSeS4 .

We deduce that the quantities

g(DνSe
S
4 , e

S
θ ) = 2ηS + 2aSξS = 2ηS,

g(DνSe
S
3 , e

S
θ ) = 2ξS + 2aSηS = 2(ξS − aSζS),

g(DνSe
S
3 , e

S
4 ) = 4ωS − 4aSωS = 4ωS,

are well defined on Σ0. Thus the scalar aS allows us to specify the remaining Ricci
coefficients, ηS, ξS, ωS along Σ0, which we do below.

24Consequently the Hawking mass mS is also well defined.
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9.8.2 Extrinsic properties of Σ0

We analyze the extrinsic properties of the hypersurfaces Σ0 defined in Step 1.

Step 2. We define the scalar function uS on Σ0 as

uS := c0 − rS, (9.8.17)

where rS is the area radius of S and the contant c0 is such that uS
∣∣
S0

=
◦
u, i.e. c0 =

◦
u+ rS

∣∣
S0

.

Step 3. We extend uS and rS in a small neighborhood of Σ0 such that the following
transversality conditions are verified.

eS4 (uS) = 0, eS4 (rS) =
rS

2
κS, (9.8.18)

where the average of κS is taken on S. In view of the GCM conditions (9.8.14) we deduce
eS4 (rS) = 1.

Step 4. Note that eS3 (uS, rS) remain undetermined. On the other hand, since eSθ (uS) =
eSθ (rS) = 0, we deduce in view of (9.8.18)

eSθ (eS3 (uS)) = [eSθ , e
S
3 ]uS =

[
1

2
(κS + ϑS)eSθ + (ζS − ηS)eS3 + ξSeS4

]
uS

= (ζS − ηS)eS3 (uS),

eSθ (eS3 (rS)) = [eSθ , e
S
3 ]rS =

[
1

2
(κS + ϑS)eSθ + (ζS − ηS)eS3 + ξSeS4

]
rS

= (ζS − ηS)eS3 (rS) + ξS.

Thus introducing the scalars

ςS :=
2

eS3 (uS)
, (9.8.19)

and,

AS :=
2

rS
(eS3 (rS) + ΥS), (9.8.20)

we deduce,

eSθ (log ςS) = (ηS − ζS), (9.8.21)

eSθ (AS) = −2ΥS

rS
(ζS − ηS)− 2

rS
ξS + (ζS − ηS)AS. (9.8.22)
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We infer that eSθ (log ςS) and eSθ (AS) are determined in terms of η, ξ.

Step 5. In view of the definition of νS and ςS we make use of (9.8.18) to deduce

νS(uS) = eS3 (uS) + aSeS4 (uS) =
2

ςS
.

On the other hand, since uS := c0 − rS along Σ0,

νS(uS) = −νS(rS) = −eS3 (rS)− aSeS4 (rS) = ΥS − rS

2
AS − aS

and therefore,

aS = − 2

ςS
+ ΥS − rS

2
AS = − 2

ςS
− ΩS (9.8.23)

where,

ΩS := eS3 (rS) = −ΥS − rS

2
AS. (9.8.24)

Step 6. The following lemma will be used, in particular25, to determine the AS.

Lemma 9.8.3. For every scalar function h we have the formula

νS
(∫

S

h

)
= (ςS)−1

∫
S

ςS
(
νS(h) + (κS + aSκS)h

)
. (9.8.25)

In particular

νS(rS) =
rS

2
(ςS)−1ςS(κS + aSκS)

where the average is with respect to S.

Proof. We consider the coordinates uS, θS along Σ0 with νS(θS) = 0. In these coordinates
we have,

νS =
2

ςS
∂uS .

The lemma follows easily by expressing the volume element of the surfaces S ⊂ Σ0 with
respect to the coordinates uS, θS (see also the proof of Proposition 2.2.9).

25It will also be used below to derive equations for Λ,Λ.
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Step 7. Note that the GCM condition κS = 2
rS

together with the definition of the
Hawking mass implies that,

κS = −2ΥS

rS
, ΥS = 1− 2mS

rS
,

where the average is taken with respect to S. Thus in view of Lemma 9.8.3 we deduce

eS3 (rS) + aS = νS(rS) =
rS

2
(ςS)−1ςS(κS + aSκS) =

rS

2
(ςS)−1

(
ςS κS + ς̌Sκ̌S

)
+ (ςS)−1ςSaS

= −ΥS(ςS)−1ςS +
rS

2
(ςS)−1ς̌Sκ̌S + (ςS)−1ςSaS.

Since according to (9.8.20) eS3 (rS) = −ΥS + rS

2
AS, we deduce

AS =
2

rS

(
ΥS − aS −ΥS(ςS)−1ςS +

rS

2
(ςS)−1ς̌Sκ̌S + (ςS)−1ςSaS

)
.

In particular, multiplying by ςS and taking the average, we infer

ςSAS = ς̌Sκ̌S,

and hence

AS =
1

ςS

(
ς̌Sκ̌S − ς̌SǍS

)
. (9.8.26)

Step 8. We summarize the results in Steps 1-7 in the following.

Proposition 9.8.4. Let Σ0 be a smooth spacelike hypersurface foliated by framed26 spheres
(S, eS4 , e

S
θ .e

S
3 ) whose Ricci coefficients verify the GCM condition κS = 2

rS
and transversality

condition (9.4.9). Define uS as in (9.8.17) such that uS + rS is constant on Σ0 with rS

the area radius of the spheres S. Extend uS and rS in a neighborhood of Σ0 such that
the transversality conditions (9.8.18) are verified. Then, defining the scalars ςS, AS as in
(9.8.19), (9.8.20) we establish the following relations between ηS, ξS and ςS, AS and aS,
where the latter scalar is defined in Step 1,

eSθ (log ςS) = (ηS − ζS),

eSθ (AS) = −2ΥS

rS
(ζS − ηS)− 2

rS
ξS + (ζS − ηS)AS,

AS =
1

ςS

(
ς̌Sκ̌S − ς̌SǍS

)
,

aS = − 2

ςS
+ ΥS − rS

2
AS.

(9.8.27)

26i.e. differentiable spheres S endowed with adapted null frames (eS4 , e
S
θ , e

S
3 ).
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Remark 9.8.5. Note that we lack equations for ηS, ξS and the average of aS. The latter

can be fixed by fixing the value of aS
∣∣
SP

and observing that

aS = aS
∣∣
SP
− ǎS

∣∣
SP
. (9.8.28)

In what follows we state a result which ties ηS, ξS to the other GCM conditions in (9.8.14)–
(9.8.15).

Step 9. To state the proposition below we split the Ricci coefficients into the following
groups.

ΓS
g =

{
κ̌S, ϑS, ζS, κ̌S, rρ̌S, κS − 2

rS
, ρS +

2mS

(rS)3

}
,

ΓS
b =

{
ηS, ξS, ω̌S, ωS − mS

(rS)2
, βS, αS

}
.

Proposition 9.8.6. The following statements hold true27,

1. Under the same assumptions as in Proposition 9.8.4, the Ricci coefficients ηS, ξS, ωS

verify the following identities.

2 d/S,?
2 d/S,?

1 d/S
1 d/

S
2 d/

S,?
2 ηS = κS

(
C1 + 2 d/S,?

2 d/S,?
1 d/S

1 β
S
)
− r−3

S d/3C2

+ r−5
S ( d/S)≤4ΓS

g + r−4
S ( d/S)≤4(ΓS

b · ΓS
b ) + l.o.t.,

2 d/S,?
2 d/S,?

1 d/S
1 d/

S
2 d/

S,?
2 ξ = C3 − κS

(
C1 + 2 d/S,?

2 d/S,?
1 d/S

1 β
S
)

+ r−5
S ( d/S)≤4ΓS

g + r−4
S ( d/S)≤4(ΓS

b · ΓS
b ) + l.o.t.,

d/S,?
1 ωS =

(
1

4
κS + ωS

)
ηS − (κS)−1 d/S

2 d/
S,?
2 ηS

+
1

4
κSξS − 1

2
(κS)−1C2 + r−1

S ( d/S)≤1ΓS
g + d/S(ΓS

b · ΓS
b ),

(9.8.29)

where,

C1 = eS3 ( d/S,?
2 d/S,?

1 µS),

C2 = eS3 (eSθκ
S),

C3 = e3

(
( d/S,?

2 d/S
2 + 2KS) d/S,?

2 d/S,?
1 κS)

)
.

(9.8.30)

The quadratic terms denoted l.o.t. are lower order both in terms of decay in as well
as in terms of number of derivatives. They also contain only angular derivatives d/S

27rS here denotes rS the area radius of S.
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and not eS3 or eS4 . We also note that the error terms r−5
S ( d/S)≤4ΓS

g +r−4
S ( d/S)≤4(ΓS

b ·ΓS
b )

does not in fact contain more than 3 derivatives of ω̌S.

2. If in addition (9.4.8) of Theorem 9.4.1 hold true then, for k ≤ smax − 7,

‖ d/S,?
2 ηS‖h4+k(S) . r3

S‖C1‖hk(S) + r‖C2‖h3+k(S) +
◦
εr−1

S

+ r−1
S ‖ΓS

g ‖h4+k(S) + ‖ΓS
b · ΓS

b ‖h4+k(S) + l.o.t.,

‖ d/S,?
2 ξS‖h4+k(S) . r4

S‖C3‖hk(S) + r3
S‖C1‖h3+k(S) +

◦
εr−1

S

+ r−1
S ‖ΓS

g ‖h4+k(S) + ‖ΓS
b · ΓS

b ‖h4+k(S) + l.o.t.,

‖ d/S,?
1 ωS‖h2+k(S) . r−1

S ‖ηS‖h4+k(S) + r−1
S ‖ξS‖h2+k(S) + r‖C2‖h2+k(S)

+ r−1
S ‖ΓS

g ‖h3+k(S) + ‖ΓS
b · ΓS

b ‖h3+k(S) + l.o.t.

(9.8.31)

3. If in addition the GCM conditions (9.8.14) hold true along Σ0 and the estimates
(9.4.11) are also verified then, for k ≤ smax − 7,

∥∥C1

∥∥
hk−2(S)

.
◦
εr−5

(∣∣aS + 1 +
2mS

rS
∣∣+ r−1

∥∥ǎS∥∥
hk−2(S)

)
,

∥∥C2

∥∥
hk−1(S)

.
◦
εr−3

(∣∣aS + 1 +
2mS

rS
∣∣+ r−1

∥∥ǎS∥∥
hk−1(S)

)
,

∥∥C3

∥∥
hk−4(S)

.
◦
εr−5

(∣∣aS + 1 +
2mS

rS
∣∣+ r−1

∥∥ǎS∥∥
hk−4(S)

)
,

(9.8.32)

where aS was defined in Step 1 and can be expressed in terms of ςS and AS by
formula (9.8.23).

Proof. The proof28 of the first two identities in (9.8.29) were derived in Proposition 7.3.5
in connection to the proof29 of Theorem M4, starting with the following30

2 d/S,?
1 ωS =

(
1

2
κS + 2ωS

)
ηS + eS3 (ζS)− βS +

1

2
κξS + r−1ΓS

g + ΓS
b · ΓS

b ,

2 d/S
2 d/

S,?
2 ηS = κS

(
−e3(ζS) + βS

)
− eS3 (eSθ (κS)) + r−2

S ( d/S)≤1ΓS
g + r−1

S d/(ΓS
b · ΓS

b ),

2 d/S
2 d/

S,?
2 ξS = κS

(
e3(ζS)− βS

)
− eS3 (eSθ (κS)) + r−2

S ( d/S)≤1ΓS
g + r−1

S d/S(ΓS
b · ΓS

b ).

(9.8.33)

28The equations used in the derivation of these identities only require the. transversality conditions
(9.4.9).

29Strictly speaking Proposition 7.3.5 requires the e3 Ricci and Bianchi identities of a geodesic foliation.
It is easy to justify the application of these equations in our context by using the transversality conditions
to generate a geodesic foliation in a neighborhood of Σ0.

30These identities were recorded in Proposition 7.1.12 which was itself a corollary Proposition
2.2.19.).Note also that d/(ΓS

b · ΓS
b ) does not contain derivatives of ω̌.
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The last identity in (9.8.29) follows by combining the first two identities in (9.8.33).

To prove the estimates for ηS in the second part of the proposition we make use of the
identity d/S,?

1 d/S
1 = d/S

2 d/
S,?
2 + 2KS to deduce,

d/S,?
2 ( d/S

2 d/
S,?
2 + 2KS) d/S

2 d/
S,?
2 ηS =

1

2
κSC1 + κS d/S,?

2 ( d/S
2 d/

S,?
2 + 2KS)βS − r−3

S ( d/S)3C2

+ r−5
S ( d/S)≤4ΓS

g + r−4
S ( d/S)≤4(ΓS

b · ΓS
b ) + l.o.t.

i.e.,

d/S,?
2 ( d/S

2 d/
S,?
2 + 2KS)

(
d/S

2 d/
S,?
2 ηS − κSβS

)
=

1

2
κSC1 −

1

2
r−3
S ( d/S)3C2

+ r−5
S ( d/S)≤4ΓS

g + r−4
S ( d/S)≤4(ΓS

b · ΓS
b ) + l.o.t.

Similarly for ξS

d/S,?
2 ( d/S

2 d/
S,?
2 + 2KS)

(
d/S

2 d/
S,?
2 ξS + κSβS

)
=

1

2
C3 −

1

2
κSC1

+ r−5
S ( d/S)≤4ΓS

g + r−4
S ( d/S)≤4(ΓS

b · ΓS
b ) + l.o.t.

The desired estimates for ηS and ξS follow then by making use of the coercivity of the

operator d/S,?
2 ( d/S

2 d/
S,?
2 + 2KS). and the estimate for β = βS in (9.4.11). The estimate for

d/S,?
1 ωS is straightforward from the last identity in (9.8.33).

To prove the last part of the proposition we make use of the GCM conditions (9.8.14) on
Σ0 to deduce that

νS( d/S,?
2 d/S,?

1 µS) = 0, νS(eSθκ
S) = 0, νS

(
( d/S,?

2 d/S
2 + 2KS) d/S,?

2 d/S,?
1 κS)

)
= 0.

Hence, the quantities C1, C2, C3 in (9.8.30) can be expressed in the form

C1 = −aSeS4
(
d/S,?

2 d/S,?
1 µS

)
,

C2 = −aSeS4 (eSθκ
S),

C3 = aSeS4

(
( d/S,?

2 d/S
2 + 2KS) d/S,?

2 d/S,?
1 κS)

)
.

Making use of our commutation formulas of Lemma 2.2.13 and the estimates (9.4.11) and
(9.4.8) we easily deduce,

‖eS4
(
d/S,?

2 d/S,?
1 µS

)
‖hk−2(S) .

◦
εr−5,

‖eS4 (eSθκ
S)‖hk−1(S) .

◦
εr−3.
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Similarly, ∥∥∥eS4(( d/S,?
2 d/S

2 + 2KS) d/S,?
2 d/S,?

1 κS)
) ∥∥∥

hk−4(S)
.
◦
εr−5.

Writing aS = aS + ǎS and making use of product estimates we deduce

∥∥C1

∥∥
hk−2(S)

.
◦
εr−5

(∣∣aS + 1 +
2mS

rS
∣∣+ r−1

∥∥ǎS∥∥
hk−2(S)

)
,

∥∥C2

∥∥
hk−1(S)

.
◦
εr−3

(∣∣aS + 1 +
2mS

rS
∣∣+ r−1

∥∥ǎS∥∥
hk−1(S)

)
,

∥∥C3

∥∥
hk−4(S)

.
◦
εr−5

(∣∣aS + 1 +
2mS

rS
∣∣+ r−1

∥∥ǎS∥∥
hk−4(S)

)
,

as stated.

Step 10. Propositions 9.8.4 and 9.8.6 provide us with potential31 estimates for d/S,?
2 ηS,

d/S,?
2 ξS, d/S,?

1 ωS, d/S,?
1 ςS. To close we also need to control the ` = 1 modes of ηS, ξS the

average of ωS and the average32 of aS. Note that the average of ωS can in fact be derived
form the equation,

eS3 (κS) +
1

2
κS κS − 2ωSκS = 2 d/S

1 η
S + 2ρS − 1

2
ϑS ϑS + 2(ηS)2

in terms of AS and ηS. Indeed, making use of the GCM condition κS = 2
rS

,

ωS =
1

2κS

[
eS3 (κS) +

1

2
κS κS − 2 d/S

1 η
S − 2ρS +

1

2
ϑS ϑS − 2(ηS)2

]
= −1

2
e3(rS)− ΥS

2rS
+
rS

4

[
−2 d/S

1 η
S − 2ρS +

1

2
ϑS ϑS − 2(ηS)2

]
= −1

4
AS +

rS

4

[
−2 d/S

1 η
S − 2ρS +

1

2
ϑS ϑS − 2(ηS)2

]
.

Thus, recalling the definition of µS,

ωS = −1

4
AS +

rS

2
µS − (ηS)2

31We cannot close the estimates without being also able to estimate the ` = 1 modes of ηS, ξS, ωS and

the average aS.
32The quantity ǎS can be determined using Proposition 9.8.4.
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or,

ωS − mS

(rS)2
= −1

4
AS +

rS

2

(
µS − mS

(rS)3
− ηS · ηS

)
. (9.8.34)

Step 11. In view of the above we can determine ηS, ξS, ωS, ςS, AS provided that we

control the ` = 1 modes of ηS, ξS and the average of ςS. For this reason we introduce33,
along Σ0,

BS =

∫
S

ηSeΦ, BS =

∫
S

ξSeΦ, DS = aS
∣∣∣
SP

+ 1 +
2mS

rS
. (9.8.35)

We are now ready to prove the following

Proposition 9.8.7. Let Σ0 be a smooth spacelike hypersurface foliated by framed spheres
(S, eS4 , e

S
θ .e

S
3 ) which verify the GCM conditions (9.8.14), transversality condition (9.4.9)

and the estimates (9.4.8)– (9.4.11) of Theorem 9.4.1. Let uS as in (9.8.17) such that
uS + rS is constant on Σ0. Extend uS and rS in a neighborhood of Σ0 such that the
transversality conditions (9.8.18) are verified. As shown above these allow us to define
ηS, ξS, ωS, ςS, AS, aS and the constants BS, BS, DS as in (9.8.35). Finally we assume that,

r−2
(
|BS|+ |BS|

)
+ |DS| ≤ ◦ε1/2. (9.8.36)

Under these assumptions the following estimates hold true for all k ≤ smax − 7,

1. The Ricci coefficients ηS, ξS, ωS verify∥∥ηS∥∥
h5+k(S)

.
◦
ε+ r−2

S |BS|,∥∥ξS∥∥
h5+k(S)

.
◦
ε+ r−2

S |BS|,∥∥ω̌S
∥∥
h3+k(S)

.
◦
ε+ r−2

S

(
|BS|+ |BS|

)
,∣∣∣ωS − mS

(rS)2

∣∣∣ . ◦ε+ r−2
S

(
|BS|+ |BS|

)
.

(9.8.37)

2. The scalar aS verifies,

r−1
S

∥∥ǎS∥∥
hk+1(S)

+
∣∣∣aS + 1 +

2mS

rS

∣∣∣ . ◦
ε+ r−2

S |BS|+ |DS|. (9.8.38)

33Note that to prove our main theorem we have to construct our hypersurface Σ0 such that in fact
B = B = D = 0.
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3. We also have ∥∥AS
∥∥
hk+1(S)

.
◦
ε+ r−2

S

(
|BS|+ |BS|

)
+ |DS|,

r−1
S ‖ς̌S‖hk+1(S) +

∣∣ςS − 1
∣∣ . ◦ε+ r−2

S

(
|BS|+ |BS|

)
+ |DS|.

(9.8.39)

4. We also have, for all k ≤ smax − 4

‖eS3 (κ̌S, ϑS, ζS, κ̌S)‖hk(S) .
◦
εr−1

S ,

‖eS3 (ϑS)‖hk(S) .
◦
ε,

‖eS3
(
αS, βS, ρ̌S, µS

)
‖hk(S) .

◦
εr−2

S ,

‖eS3 (βS)‖hk(S) .
◦
εr−1

S ,

‖eS3 (αS)‖hk(S) .
◦
ε.

Proof. To simplify the exposition below we make the auxiliary bootstrap assumptions,∥∥ηS∥∥
h5+k(S)

+
∥∥ξS∥∥

h5+k(S)
.
◦
ε

1/2
. (9.8.40)

We start with the following lemma.

Lemma 9.8.8. The following estimates hold true

r−1
S

∥∥ǎS∥∥
hk+1(S)

+
∣∣∣aS + 1 +

2mS

rS

∣∣∣ . ∣∣DS
∣∣+ ‖ηS‖hk(S) + ‖ξS‖hk(S) +

◦
ε. (9.8.41)

Proof. Since aS = aS + ǎS we deduce aS
∣∣
SP

= aS + ǎS
∣∣
SP

. Hence,

aS = DS − 1− 2mS

rS
− ǎS

∣∣
SP
. (9.8.42)

We also have (see Proposition 9.8.4)

aS = − 2

ςS
+ ΥS − rS

2
AS.

Hence,

aS = − 2

ςS + ς̌S
+ ΥS − rS

2
AS = − 2

ςS

(
1− ς̌S

ςS
+O

(
ς̌S

ςS

)2
)

+ ΥS − rS

2
AS.

Taking the average on S we deduce,

aS = − 2

ςS
+ ΥS − rS

2
A

S
+O

(
ς̌S

ςS

)2

. (9.8.43)
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Also, using (9.8.42),

ǎS = 2ς̌S − rS

2
ǍS + l.o.t. (9.8.44)

where l.o.t. denotes higher order terms in ς̌S and ςS − 1. Indeed

ǎS = aS − aS = − 2

ςS
+ ΥS − rS

2
AS −

(
− 2

ςS
+ ΥS − rS

2
A

S
)

= − 2

ςS
+

2

ςS
− rS

2
ǍS =

2ς̌S

ςSςS
− rS

2
ǍS = 2ς̌S − rS

2
ǍS + l.o.t.

Thus to estimate ǎS and aS we first need to estimate AS, ς̌S and ςS. Using the equations
(see Proposition 9.8.4 )

eSθ (AS) = −2ΥS

rS
(ζS − ηS)− 2

rS
ξS + (ζS − ηS)AS,

AS =
1

ςS

(
ς̌Sκ̌S − ς̌SǍS

)
,

and the auxiliary assumption we derive,∥∥AS
∥∥
hk+1(S)

. ‖ηS‖hk(S) + ‖ξS‖hk(S) +
◦
εr−1

(
1 + ‖ς̌S‖hk(S) +

∣∣ςS − 1
∣∣) . (9.8.45)

From the equation

eSθ (log ςS) = (ηS − ζS).

we also derive,

r−1
S ‖ς̌S‖hk+1(S) . ‖ηS‖hk(S) +

◦
ε+

◦
ε
∣∣ςS − 1

∣∣. (9.8.46)

To estimate ςS − 1 we derive from (9.8.43) and (9.8.44),

2

ςS
= −aS + ΥS − rS

2
A

S
= −

(
DS − 1− 2mS

rS
− ǎS

∣∣
SP

)
+ ΥS − rS

2
A

S
+ l.o.t.

= −DS + 2 + ǎS
∣∣
SP
− rS

2
A

S
+ l.o.t.

= −DS + 2 + 2ς̌S
∣∣
SP
− rS

2

(
A

S
+ ǍS

∣∣
SP

)
+ l.o.t.

and therefore,

2(1− ςS)

ςS
= −DS + 2ς̌S

∣∣
SP
− rS

2

(
A

S
+ ǍS

∣∣
SP

)
+ l.o.t.
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i.e.,

ςS − 1 =
1

2
DS − ς̌S

∣∣
SP

+
rS

4

(
A

S
+ ǍS

∣∣
SP

)
+ l.o.t.

where l.o.t. denote higher order terms in ς̌S and ςS − 1.Thus,∣∣ςS − 1
∣∣ . |DS|+ ‖ς̌S‖L∞(S) + rS‖AS‖L∞(S).

Hence, back to (9.8.46) we derive,

r−1
S ‖ς̌S‖hk+1(S) +

∣∣ςS − 1
∣∣ . |DS|+ rS‖AS‖L∞(S) + r‖ηS‖hk(S) +

◦
ε.

Combining with (9.8.45) we deduce,∥∥AS
∥∥
hk+1(S)

. ‖ηS‖hk(S) + ‖ξS‖hk(S) +
◦
ε,

r−1
S ‖ς̌S‖hk+1(S) +

∣∣ςS − 1
∣∣ . r‖ηS‖hk(S) +

◦
ε.

(9.8.47)

In view of (9.8.44) we also deduce,

r−1
S

∥∥ǎS∥∥
hk+1(S)

. r−1
S ‖ς̌S‖hk+1(S) +

∥∥AS
∥∥
hk+1(S)

. ‖ηS‖hk(S) + ‖ξS‖hk(S) +
◦
ε.

From (9.8.42) we further deduce∣∣∣aS + 1 +
2mS

rS

∣∣∣ . ∣∣DS
∣∣+ ‖ǎS‖L∞(S) .

∣∣DS
∣∣+ ‖ηS‖hk(S) + ‖ξS‖hk(S) +

◦
ε.

Hence,

r−1
S

∥∥ǎS∥∥
hk+1(S)

+
∣∣∣aS + 1 +

2mS

rS

∣∣∣ . ∣∣DS
∣∣+ ‖ηS‖hk(S) + ‖ξS‖hk(S) +

◦
ε (9.8.48)

as stated.

In view of the lemma above and the assumption |DS| . ◦ε1/2 the estimates (9.8.32) become,∥∥C1

∥∥
hk(S)

.
◦
εr−4

S

(
‖ηS‖hk(S) + ‖ξS‖hk(S) +

◦
ε

1/2
)
,

∥∥C2

∥∥
hk+3(S)

.
◦
εr−2

S

(
‖ηS‖hk+3(S) + ‖ξS‖hk+3(S) +

◦
ε

1/2
)
,

∥∥C3

∥∥
hk(S)

.
◦
εr−4

S

(
‖ηS‖hk(S) + ‖ξS‖hk(S) +

◦
ε

1/2
)
.

(9.8.49)

To prove the desired estimate for ηS, ξS, ωS we make use of (9.8.31) and the following
lemma.
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Lemma 9.8.9. The error term

Ek = r−1
S ‖ΓS

g ‖h4+k(S) + ‖ΓS
b · ΓS

b ‖h4+k(S), k ≤ smax − 7,

appearing in (9.8.31) verifies the estimate

Ek . r−1
S

◦
ε+ r−1

S

◦
ε

1/2
(∥∥(ηS, ξS)‖h4+k(S) + ‖ω̌S‖hk+3(S)

)
.

Proof. Since ΓS
g contains only terms estimated by (9.4.8),

‖ΓS
g ‖h4+k(S) . r−1

S

◦
ε

ΓS
b contains ϑS, which is estimated by (9.4.8), as well as ηS, ξS, ω̌S, ωS − mS

(rS)2 . Thus, in

view of the auxiliary estimates
∥∥ηS, ξS∥∥

h5+k(S)
.
◦
ε

1/2
and the fact that the quadratic error

terms contain one less derivative of ω̌S, we deduce,

‖ΓS
b · ΓS

b ‖h4+k(S) . r−1
S

◦
ε

1/2

(∥∥ηS, ξS‖h4+k(S) + ‖ω̌S‖hk+3(S) + rS
∣∣∣∣ωS − mS

(rS)2

∣∣∣∣
)
.

In view of equation (9.8.34), ωS − mS

(rS)2 = −1
4
AS + rS

2

(
µS − mS

(rS)3 − ηS · ηS
)

,∣∣∣∣ωS − mS

(rS)2

∣∣∣∣ . ∣∣AS
∣∣+ rS

∣∣∣∣µ− mS

(rS)3

∣∣∣∣+ |ηS|2

. r−1
S

◦
ε|DS|+ r−1◦ε

1/2 (‖ηS‖h2(S) + ‖ξS‖h2(S)

)
+
◦
εr−2

. r−1
S

◦
ε

1/2
(
‖ηS‖h2(S) + ‖ξS‖h2(S) +

◦
ε
)
.

Hence,

‖ΓS
b · ΓS

b ‖h4+k(S) . r−1
S

◦
ε

1/2

(∥∥ηS, ξS‖h4+k(S) + ‖ω̌S‖hk+3(S) +
◦
ε

)

and,

Ek = r−1
S ‖ΓS

g ‖h4+k(S) + ‖ΓS
b · ΓS

b ‖h4+k(S)

. r−1
S

◦
ε+ r−1

S

◦
ε

1/2

(∥∥ηS, ξS‖h4+k(S) + ‖ω̌S‖hk+3(S)

)

as stated.



9.8. CONSTRUCTION OF GCM HYPERSURFACES 653

In view of the lemma and estimates (9.8.49) for C1, C2, C3 the estimates (9.8.31) of Propo-
sition 9.8.6 become,

‖ d/S,?
2 ηS‖h4+k(S) . r−1

S

◦
ε+ r−1

S

◦
ε

1/2

(∥∥ηS, ξS‖h4+k(S) + ‖ω̌S‖hk+3(S)

)
,

‖ d/S,?
2 ξS‖h4+k(S) . r−1

S

◦
ε+ r−1

S

◦
ε

1/2

(∥∥ηS, ξS‖h4+k(S) + ‖ω̌S‖hk+3(S)

)
,

‖ d/S,?
1 ωS‖h2+k(S) . r−1

S ‖ηS‖h4+k(S) + r−1
S ‖ξS‖h2+k(S)

+ r−1
S

◦
ε+ r−1

S

◦
ε

1/2

(∥∥ηS, ξS‖h3+k(S) + ‖ω̌S‖h2+k(S)

)
.

(9.8.50)

From the last equation we derive,

‖ω̌S‖h3+k(S) . ‖ηS‖h4+k(S) + ‖ξS‖h2+k(S) +
◦
ε.

Thus the first two equations in (9.8.50) become

rS‖ d/S,?
2 ηS‖h4+k(S) .

◦
ε+

◦
ε

1/2(‖ηS‖h4+k(S) + ‖ξS‖h4+k(S)

)
,

rS‖ d/S,?
2 ξS‖h4+k(S) .

◦
ε+

◦
ε

1/2(‖ηS‖h4+k(S) + ‖ξS‖h4+k(S)

)
,

(9.8.51)

from which we deduce, ∥∥ηS∥∥
h5+k(S)

.
◦
ε+ r−2

S |BS|,∥∥ξS∥∥
h5+k(S)

.
◦
ε+ r−2

S |BS|,∥∥ω̌S
∥∥
h3+k(S)

.
◦
ε+ r−2

S

(
|BS|+ |BS|

)
,

as stated. We can then go back to the preliminary estimates obtained above for ςS, AS

and aS to derive the remaining statements (1-4) of Proposition 9.8.7. To prove the last
part of the Proposition we make use of the corresponding Ricci and Bianchi equations in
the eS3 direction.

Corollary 9.8.10. Under the same assumptions as in the proposition above we have the
more precise estimates, with d(S) =

∫
S
e2Φ,∥∥∥∥ηS − 1

d(S)
BSeΦ

∥∥∥∥
h5+k(S)

.
◦
ε,∥∥∥∥ξS − 1

d(S)
BSeΦ

∥∥∥∥
h5+k(S)

.
◦
ε.
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Note also that,

d(S) = (rS)4

(
8π

3
+O(

◦
ε)

)
.

Proof. In view of (9.8.51), (9.8.37) and auxiliary assumption (9.8.36) we deduce,∥∥∥∥ηS − (
∫
S
ηSeΦ∫
S
e2Φ

)
eΦ

∥∥∥∥
h5+k(S)

. r‖ d/S,?
2 ηS‖h4+k(S)

.
◦
ε+

◦
ε

1/2(‖ηS‖h4+k(S) + ‖ξS‖h4+k(S)

)
.

◦
ε+

◦
ε

1/2
(◦
ε+ r−2

(
|BS|+ |BS|

) )
.

◦
ε.

We deduce, ∥∥∥∥ηS −BS 1∫
S
e2Φ

eΦ

∥∥∥∥
h5+k(S)

.
◦
ε.

Similarly, ∥∥∥∥ξS −BS 1∫
S
e2Φ

eΦ

∥∥∥∥
h5+k(S)

.
◦
ε

as desired.

9.8.3 Construction of Σ0

To construct the spacelike hypersurface of Theorem 9.8.1 we proceed as follows.

Step 12. Let Ψ(s),Λ(s),Λ(s) real valued functions that will be carefully chosen later.
We look for the hypersurface Σ0 in the form,

Σ0 =
⋃
s≥◦s

S[P (s)] =
⋃
s≥◦s

S[Ψ(s), s,Λ(s),Λ(s)] (9.8.52)

where P (s) is a curve in the parameter space P given by,

P (s) = (Ψ(s), s,Λ(s),Λ(s)). (9.8.53)
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In order for Σ0 to start at S0 = S[
◦
u,
◦
s,Λ0,Λ0] we impose the conditions

Ψ(
◦
s) =

◦
u, Λ(

◦
s) = Λ0, Λ(

◦
s) = Λ0. (9.8.54)

Step 13. We expect Σ0 to be a perturbation of the spacelike hypersurface u+ s = c0 for
some constant c0. We thus introduce the notation

ψ(s) := Ψ(s) + s− c0, so that Ψ(s) = −s+ c0 + ψ(s)

and expect ψ(s) = O(
◦
δ).

Step 14. In view of (9.8.16) we can express the collection of spheres Σ0 in the form

Σ0 =
{

Ξ(s, θ), s ≥ ◦s, θ ∈ [0, π]
}

(9.8.55)

where the map Ξ(s, θ) = Ξ(Ψ(s), s, θ) is defined as

Ξ(s, θ) :=
(

Ψ(s) + U(θ, P (s)), s+ S(θ, P (s)), θ
)
. (9.8.56)

At the South Pole, i.e. θ = 0, where U(0, P ) = S(0, P ) = 0

Ξ(s, 0) =
(

Ψ(s), s, 0
)
. (9.8.57)

Clearly,

∂sΞ(s, θ) =
(

Ψ′(s) + ∂PU(θ, P (s))P ′(s), 1 + ∂PS(θ, P (s))P ′(s), 0
)
,

∂θΞ(s, θ) =
(
∂θU(θ, P (s)), ∂θS(θ, P (s)), 1

)
,

where,

∂PU(·)P ′(s) = Ψ′(s)∂uU(·) + ∂sU(·) + Λ′(s)∂ΛU(·) + Λ′(s)∂ΛU(·),
∂PS(·)P ′(s) = Ψ′(s)∂uS(·) + ∂sS(·) + Λ′(s)∂ΛS(·) + Λ′(s)∂ΛS(·).

Given f a function on Σ0 we have,

d

ds
f
(
Ξ(s, θ)

)
=

(
Ψ′(s) + ∂PU(θ, P (s))P ′(s)

)
∂uf +

(
1 + ∂PS(θ, P (s))P ′(s)

)
∂sf

= X∗f,
d

dθ
f
(
Ξ(s, θ)

)
= ∂θU(θ, P (s))∂sf + ∂θS(θ, P (s))∂s + ∂θf

= Y∗f,
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where X∗, Y∗ are the following tangent vectorfields along Σ0,

X∗(s, θ) : =
(

Ψ′(s) + ∂PU(θ, P (s))P ′(s)
)
∂u +

(
1 + ∂PS(θ, P (s))P ′(s)

)
∂s,

Y∗(s, θ) : = ∂θU(θ, P (s))∂s + ∂θS(θ, P (s))∂s + ∂θ,
(9.8.58)

or,

X∗(s, θ) : =
(

Ψ′(s) + Ă(s, θ)
)
∂u +

(
1 + B̆(s, θ)P ′(s)

)
∂s,

Y∗(s, θ) : = C̆(s, θ)∂u + D̆(s, θ)∂s + ∂θ,
(9.8.59)

where,

Ă(s, θ) : = ∂PU(θ, P (s))P ′(s)

= ∂uU(θ, P (s))Ψ′(s) + ∂sU(θ, P (s)) + ∂ΛU(θ, P (s))Λ′(s) + ∂ΛU(θ, P (s))Λ′(s),

B̆(s, θ) : = ∂PS(θ, P (s))P ′(s)

= ∂uS(θ, P (s))Ψ′(s) + ∂sS(θ, P (s)) + ∂ΛU(θ, P (s))Λ′(s) + ∂ΛS(θ, P (s))Λ′(s),

C̆(s, θ) : = ∂θU(θ, P (s)),

D̆(s, θ) : = ∂θS(θ, P (s)).

Step 15. Define the vectorfield, along the South Pole of each S ⊂ Σ0,

X∗

∣∣∣
SP
h =

d

ds
h
(
Ξ(s, 0)

)
. (9.8.60)

Lemma 9.8.11. At the South Pole we have the relations (recall νS = eS3 + aSeS4 )

X∗
∣∣
SP

=
1

2λ
ςΨ′ νS

∣∣∣
SP
, (9.8.61)

aS
∣∣
SP

=
2λ2

Ψ′(s)ς

(
1− 1

2
Ψ′(s)ςΩ

)
|SP , (9.8.62)

or, more precisely,

aS(Ψ(s), s, 0) =
1

Ψ′(s)

2λ2

ς

(
1− 1

2
Ψ′(s)ςΩ

)
(Ψ(s), s, 0).

Here f, f , λ are the transition functions and ς,Ω correspond to the background foliation.
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Proof. Note that

Ă(s, 0) = B̆(s, 0) = C̆(s, 0) = D̆(s, 0) = 0.

Thus, at the South Pole SP,

X∗(s, 0) = Ψ′(s)∂u + ∂s.

Recall that

∂s = e4, ∂u =
1

2
ς
(
e3 − Ωe4 − bγ1/2eθ

)
, ∂θ =

√
γeθ,

or, since b vanishes at the South Pole,

X∗(s, 0) = Ψ′
1

2
ς (e3 − Ωe4) + e4 = (1− 1

2
Ψ′(s)ςΩ)e4 +

1

2
Ψ′(s)ςe3.

On the other hand, since the transition functions f, f vanish at the South Pole,

eS4 = λe4, eS3 = λ−1e3.

Hence,

X∗(s, 0) = λ
(
1− 1

2
Ψ′(s)ςΩ

)
eS4 +

1

2
λ−1Ψ′(s)ςeS3

=
1

2
λ−1Ψ′(s)ς

(
eS3 +

2λ2

Ψ′(s)ς

(
1− 1

2
Ψ′(s)ςΩ

)
eS4

)
.

In view of the definition of νS we deduce,

X∗(s, 0) =
1

2
λ−1Ψ′(s)ς νS

∣∣
SP

and34,

aS(s, 0) =
2λ2

Ψ′(s)ς

(
1− 1

2
Ψ′(s)ςΩ

)
as stated.

Step 16. The transition functions (f, f , λ) are uniquely determined on S by the results
of Theorem 9.4.1 in terms of Λ,Λ. The same holds true for all curvature components
and the Ricci coefficients κS, ϑS, ζS, κS, ϑS. One can easily see from the transformation

34Note that aS(s, 0) = aS(Ξ(s, 0)).
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formulas that the values of the eS3 derivatives of (f, f , λ) are determined by the transversal

Ricci coefficients ηS, ξS, ωS . Indeed, schematically, from the transformation formulas for
η, ξ, ω in Proposition 9.3.1,

eS3f = 2(ηS − η)− 1

2
κf + fω + F · Γb + l.o.t.,

eS3f = 2(ξS − ξ)− 1

2
f
(
κ+ 4ω) + F · Γb + l.o.t.,

eS3 (log λ) = 2(ωS − ω) + Γb · F + l.o.t.,

(9.8.63)

where F = (f, f , log λ) and l.o.t. denotes terms which are linear in Γg,Γb and linear and

higher order in F . Recall also that the eS4 derivatives of F are fixed by our transversality
condition (9.4.9) More precisely we have,

eS4 (f) = −1

2
κf + l.o.t.,

eS4 (f) = 2eSθ (log λ)− fκ+ 2(ω +
1

4
κ)f + l.o.t.,

eS4 (log λ) = l.o.t.

It follows that ηS, ξS, ωS can be determined by νS(f, f , λ) and the scalar aS. More pre-
cisely,

νS(f) = 2(ηS − η)− 1

2
(κf + aSκf) + fω + F · Γb + l.o.t.,

νS(f) = 2(ξS − ξ)− 1

2

(
κ+ 4ω)(f − aSf) + aS

(
2eSθ (log λ)− fκ

)
+ F · Γb + l.o.t.

(9.8.64)

Step 17. We derive equations for Λ(s) = Λ(Ψ(s), s, 0)),Λ(s) = Λ(Ψ(s), s, 0) as follows.

Lemma 9.8.12. We have the following identities

c(s)
1

Ψ′(s)
Λ′(s) =

∫
S

νS(f)eΦ − 6

rS
Λ(s) + E(s),

c(s)
1

Ψ′(s)
Λ′(s) =

∫
S(s)

νS(f)eΦ − 6

rS
Λ(s) + E(s),

(9.8.65)

where,

c(s) =
(2λ

ς

)∣∣∣
SP

(s) =
(2λ

ς

)
(Ψ(s), s, 0)
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and error terms,

E(s) =
1

2

∫
S(s)

(
3κ̌S − ϑS − aSϑS +

3

rS
(aS + (1 +

2mS

rS
)

)
feΦ

+ (ςS)−1
∣∣∣
SP

∫
S(s)

(
ςS − ςS

∣∣∣
SP

)(
νS(f)− 6

rS
Λ(s)

)
eΦ + l.o.t.,

E(s) =
1

2

∫
S(s)

(
3κ̌S − ϑS − aSϑS +

3

rS
(aS + (1 +

2mS

rS
)

)
feΦ

+ (ςS)−1
∣∣∣
SP

∫
S(s)

(
ςS − ςS

∣∣∣
SP

)(
νS(f)− 6

rS
Λ(s)

)
eΦ + l.o.t.

Proof. According to Lemma 9.8.3 we have

νS
(∫

S

h

)
= (ςS)−1

∫
S

ςS
(
νS(h) + (κS + aSκS)h

)
.

Thus, applying the vectorfield νS
∣∣
SP

= 2λ
ςΨ′
X∗
∣∣
SP

to the formulas (9.8.15),

1

Ψ′(s)

(2λ

ς

)∣∣∣
SP

d

ds
Λ(s) = νS

∣∣∣
SP

(Λ) = νS(Λ)
∣∣
SP

= νS
(∫

S

feΦ
)∣∣∣

SP

= (ςS)−1
∣∣∣
SP

∫
S(s)

ςS
(
νS(feΦ) + (κS + aSκS)feΦ

)
.

Introducing

J(f) = e−ΦνS(feΦ) + (κS + aSκS)f (9.8.66)

we deduce,

c(s)
1

Ψ′(s)
= (ςS)−1

∣∣∣
SP

∫
S(s)

ςSJ(f)eΦ

=

∫
S(s)

J(f)eΦ + (ςS)−1
∣∣∣
SP

∫
S(s)

(
ςS − ςS

∣∣∣
SP

)
J(f).

On the other hand, since e3Φ = 1
2
(κ− ϑ), e4Φ = 1

2
(κ− ϑ)

J(f) = νS(f) +
(
eS3 Φ + aSeS4 Φ + κS + aSκS

)
f

= νS(f) +
1

2

(
3κS − ϑS + aS(3κS − ϑS)

)
f

= νS(f) +
3

2

(
κS + aSκS

)
− 1

2

(
ϑS + aSϑS

)
.
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Since κS = 2
rS

and κS = κS + κ̌S = −2ΥS

rS
+ κ̌S we deduce,

J(f) = νS(f) +
3

rS
(
−ΥS + aS

)
f +

1

2

(
3κ̌S − ϑS − aSϑS

)
f

= νS(f) +
3

rS

(
−ΥS − (1 +

2mS

rS
)

)
f +

1

2

(
3κ̌S − ϑS − aSϑS +

3

rS
(aS + (1 +

2mS

rS
)

)
f

= νS(f)− 6

rS
Λ(s) +

1

2

(
3κ̌S − ϑS − aSϑS +

3

rS
(aS + (1 +

2mS

rS
)

)
f.

We deduce,

c(s)
1

Ψ′(s)
=

∫
S

νS(f)eΦ − 6

rS
Λ(s) + E(s)

where,

E(s) =
1

2

∫
S(s)

(
3κ̌S − ϑS − aSϑS +

3

rS
(aS + (1 +

2mS

rS
)

)
feΦ

+ (ςS)−1
∣∣∣
SP

∫
S(s)

(
ςS − ςS

∣∣∣
SP

)
J(f)

=
1

2

∫
S(s)

(
3κ̌S − ϑS − aSϑS +

3

rS
(aS + (1 +

2mS

rS
)

)
feΦ

+ (ςS)−1
∣∣∣
SP

∫
S(s)

(
ςS − ςS

∣∣∣
SP

)(
νS(f)− 6

rS
Λ(s)

)
eΦ + l.o.t.

The proof for Λ is exactly the same.

Step 18. We make use of the estimates for F = (f, f , log λ) and eS4 (F ) derived in

Theorem 9.4.1 as well as the estimates for aS, ςS, ηS, ξS, ωS derived in Proposition 9.8.7 to
evaluate the right hand sides of (9.8.65). Recall that in Proposition 9.8.7 we have made
the auxiliary assumption (9.8.36) i.e.

r−2
S

(
|BS|+ |BS|

)
+ |DS| ≤ ◦ε1/2.

Proposition 9.8.13. The following equations hold true for the functions35

Λ(s) = Λ(Ψ(s), s, 0)), Λ(s) = Λ(Ψ(s), s, 0),

B(s) = Λ(Ψ(s), s, 0)), B(s) = Λ(Ψ(s), s, 0)), r(s) = r(Ψ(s), s, 0),

35Note also that rS(s) = rS(s) = r|SP (S(s)) = r(s).
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1

−1 + ψ′(s)
Λ′(s) = B(s)− 1

2
r(s)−1Λ(s)− 7

2
r(s)−1Λ(s) +O(r−1)Λ(s)

+N(B,B,D,Λ,Λ, ψ)(s),

1

−1 + ψ′(s)
Λ′(s) = B(s)− 7

2
r(s)−1Λ(s) +

1

2
r(s)−1Λ(s) +O(r−1)

(
Λ(s) + Λ(s)

)
+N(B,B,D,Λ,Λ, ψ)(s).

(9.8.67)

The expressions N,N verify the following properties.

• They depend on B,B,D,Λ,Λ, ψ, F = (f, f , λ− 1), the background Ricci coefficients

Γb,Γg and curvature Ř = {α, β, ρ̌, β, α}.

• N,N vanish at (B,B,D,Λ,Λ, ψ) = (0, 0, 0, 0, 0, 0). In fact,

|N,N | . r2
◦
δ.

• The linear part in B,B,D has O(
◦
ε) coefficients, i.e. coefficients which depend on

the quantities Γb,Γg, Ř, F and Λ,Λ, ψ.

• The linear part in Λ,Λ, ψ has O(
◦
ε) coefficients.

Proof. To prove the desired result we make use of (9.8.64) to check the following,∫
S(s)

νS(f)eΦ = 2B(s)− r−1Λ(s)− r−1Λ(s) +O(r−1)Λ(s) +O(r2
◦
δ),∫

S(s)

νS(f)eΦ = 2B(s)− r−1Λ(s) + r−1Λ(s) +O(r−1)
(
Λ(s) + Λ(s)

)
+O(r2

◦
δ).

(9.8.68)

Combining this with (9.8.65),

c(s)
1

Ψ′(s)
Λ′(s) =

∫
S

νS(f)eΦ − 6

rS
Λ(s) + E(s),

c(s)
1

Ψ′(s)
Λ′(s) =

∫
S(s)

νS(f)eΦ − 6

rS
Λ(s) + E(s),

and the following estimates for the error terms E,E,

|E(s)|+ |E(s)| . r2
◦
δ, (9.8.69)
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we deduce,

1

Ψ′(s)
Λ′(s) =

1

c(s)

(
2B(s)− r−1Λ(s)− 7r−1Λ(s) +O(r−1)Λ(s) +O(r2

◦
δ)

)
,

1

Ψ′(s)
Λ′(s) =

1

c(s)

(
2B(s)− 7r−1Λ(s) + r−1Λ(s) +O(r−1)

(
Λ(s) + Λ(s)

)
+O(r2

◦
δ)

)
.

According to our assumptions ς = 1 + O(
◦
ε). Also according to Theorem 9.4.1 λ =

1 +O(r−1◦ε). Thus,

c(s) =
(2λ

ς

)∣∣∣
SP

(s) =
2(1 +Or−1(

◦
ε)

1 +O(
◦
ε)

= 2 +O(
◦
ε).

Hence,

1

Ψ′(s)
Λ′(s) =

1

2

(
2B(s)− r−1Λ(s)− 7r−1Λ(s) +O(r−1)Λ(s) +O(r2

◦
δ)
)

= B(s)− 1

2
r−1Λ(s)− 7

2
r−1Λ(s) +O(r−1)Λ(s) +O(r2

◦
δ).

Setting Ψ(s) = −s + ψ(s) + c0 and recalling the structure of the error terms we have

denoted by O(r2
◦
δ)

1

−1 + ψ′(s)
Λ′(s) = B(s)− 1

2
r−1Λ(s)− 7

2
r−1Λ(s) +O(r−1)Λ(s) +N(B,B,D,Λ,Λ, ψ)(s)

where N verifies the properties mentioned in the proposition. In the same manner we
derive

1

−1 + ψ′(s))
Λ′(s) = B(s)− 7

2
r−1Λ(s) +

1

2
r−1Λ(s) +O(r−1)

(
Λ(s) + Λ(s)

)
+ N(B,B,D,Λ,Λ, ψ)(s)

as stated in the proposition.

It remains to check (9.8.68) and (9.8.69) According to (9.8.64) and our assumptions on
the Ricci coefficients κ, κ, ω, we have along the sphere S

νS(f) = 2(ηS − η)− 1

2

(
2

r
f − aS2Υ

r
f

)
+ f

m

r2
+ F · Γb + l.o.t.

= 2(ηS − η)− r−1f + r−1

(
m

r
+ aS(1− 2m

r

)
f + F · Γ.
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According to (9.8.41) and auxiliary assumption (9.8.36)∣∣∣∣aS +

(
1 +

2mS

rS

)∣∣∣∣ . ◦ε+ r−2
(
|BS|+ |BS|

)
+ |DS| . ◦ε1/2.

Thus,

νS(f) = 2(ηS − η)− r−1f − r−1

(
1− m

r
− m2

r2

)
f + r−2O

(◦
δ
◦
ε

1/2
)
.

Since r and rS are comparable along S, i.e. |r−rS| ≤
◦
δ, we deduce, recalling the definition

of B,∫
S(s)

νS(f)eΦ = 2B(s)− 2

∫
S(s)

ηeΦ − r−1Λ(s)− r−1

(
1− m

r
− m2

r2

)
Λ(s) + rO

(◦
δ
◦
ε

1/2
)
.

Making use of the assumption (9.8.1) for η as well as Corollary 9.2.5 we easily deduce,∣∣∣∣∫
S(s)

ηeΦ

∣∣∣∣ . r2
◦
δ. (9.8.70)

Hence, ∫
S(s)

νS(f)eΦ = 2B(s)− r−1Λ(s)− r−1
(
1 +O(r−1)

)
Λ(s) +O(r2

◦
δ)

= 2B(s)− r−1Λ(s)− r−1Λ(s) +O(r−1)Λ(s) +O(r2
◦
δ).

Similarly, starting with,

νS(f) = 2(ξS − ξ)− 1
2

(
κ+ 4ω)(f − aSf) + aS

(
2eSθ (log λ)− fκ

)
+ F · Γb + l.o.t.

we deduce,∫
S(s)

νS(f)eΦ = 2B(s)− 2

∫
S(s)

ξeΦ + r−1

(
1 +

8m

r

)
Λ(s) + r−1

(
1− 2m

r
− 8m2

r2

)
Λ(s)

− 2

(
1 +

2m

r

)∫
S(s)

eSθ (log λ)eΦ + rO

(◦
δ
◦
ε

1/2
)
.

Making use of the assumption (9.8.1) for ξ, as well as Corollary 9.2.5,∣∣∣∣∫
S(s)

ξeΦ

∣∣∣∣ . r2
◦
δ. (9.8.71)
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Also, in view of the estimates of Theorem 9.4.1,∣∣∣∣∫
S(s)

eSθ (log λ)eΦ

∣∣∣∣ . r2
◦
δ.

We deduce,∫
S(s)

νS(f)eΦ = 2B(s)− r−1(1 +O(r−1))Λ(s) + r−1
(
1 +O(r−1)

)
Λ(s) +O(r2

◦
δ)

as stated. The estimates for E,E in (9.8.69) can also be easily checked. This ends the
proof of Proposition 9.8.13.

Step 19. We derive an equation for ψ. The main result is stated in the proposition
below.

Proposition 9.8.14. The function ψ(s) = Ψ(s) + s − c0 defined in Step 13 verifies the
following equation

ψ′(s) = −1
2
D(s) +O(D(s)2) +M(s) (9.8.72)

where M(s) is a function which depends only on Γ, R of the background foliation, ψ and
(f, f , λ− 1) such that,

∣∣M(s)
∣∣ . ◦δr(s)−1.

Proof. In view of (9.8.62) and the definition of c(s) =
(

2λ
ς

)∣∣∣
SP

(s) we have,

Ψ′(s) =
1

aS
∣∣
SP

(s)
· 2λ2

ς

(
1− 1

2
Ψ′ςΩ

) ∣∣∣∣∣
SP

(s)

or

Ψ′(s) =

[
2λ2

ς

1

aS + λ2Ω

] ∣∣∣
SP
. (9.8.73)

Now, we have

2λ2

ς

1

aS + λ2Ω
=

2

ς

1

aS + Ω
+O(λ− 1)

= −1 +
aS + 2

ς
+ Ω

aS + Ω
+O(λ− 1).
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Hence,

ψ′(s) = Ψ′(s) + 1 =

[
aS + 2

ς
+ Ω

aS + Ω

] ∣∣∣
SP

+O(λ− 1) =

[
aS + 2

ς
+ Ω

aS + Ω

] ∣∣∣
SP

+O(r−1
◦
δ).

We have, see (9.8.35),

aS
∣∣
SP

(s) = D(s)− 1− 2mS

rS
.

Hence,(
aS + Ω

)∣∣
SP

(s) = D(s)− 1− 2mS

rS
+ Ω

∣∣
SP

(s) = D(s)− 1− 2mS

rS
− (1− 2m

r
) +O(

◦
ε)

= D(s)− 2 +O(
◦
ε).

In view of the assumption (9.8.2)∣∣∣∣(2

ς
+ Ω

) ∣∣∣
SP
− 1− 2m

r

∣∣∣∣ . r−1
◦
δ

we deduce (
aS +

2

ς
+ Ω

) ∣∣
SP

(s) = aS
∣∣
SP

+ 1 +
2m

r
+O(r−1

◦
δ)

= D(s) +
2m

r
− 2mS

rS
+O(r−1

◦
δ)

= D(s) +O(r−1
◦
δ).

Hence,

ψ′(s) =

[
aS + 2

ς
+ Ω

aS + Ω

] ∣∣∣
SP

+O(r−1
◦
δ) = −1

2
D(s) +O(D(s)2) +O(r−1

◦
δ)

as stated.

Step 20. We combine Propositions 9.8.13 and 9.8.14 to derive the closed system of
equations in Λ,Λ, ψ,

1

−1 + ψ′(s)
Λ′(s) = B(s)− 1

2
r(s)−1Λ(s)− 7

2
r(s)−1Λ(s) +O(r−1)Λ(s)

+N(B,B,D,Λ,Λ, ψ)(s),

1

−1 + ψ′(s)
Λ′(s) = B(s)− 7

2
r(s)−1Λ(s) +

1

2
r(s)−1Λ(s) +O(r−1)

(
Λ(s) + Λ(s)

)
+N(B,B,D,Λ,Λ, ψ)(s),

ψ′(s) = −1

2
D(s) +O(D(s)2) +M(s),

(9.8.74)



666 CHAPTER 9. GCM PROCEDURE

with initial conditions

ψ(
◦
s) = 0, Λ(

◦
s) = Λ0, Λ(

◦
s) = Λ0. (9.8.75)

Recall also that r(s) is a smooth function of ψ(s).

The system (9.8.74) is verified for all choices of (Λ,Λ,Ψ). We now make a suitable
particular choice for (Λ,Λ,Ψ) as follows.

Consider in particular the system obtained from(9.8.74) by setting B,B,D to zero

ψ′(s) = M(s),

1

−1 + ψ′(s))
Λ′(s) = −1

2
r(s)−1Λ(s)− 7

2
r(s)−1Λ(s) +O(r−1)Λ(s) + Ñ(Λ,Λ, ψ)(s),

1

−1 + ψ′(s))
Λ′(s) = −7

2
r(s)−1Λ(s) +

1

2
r(s)−1Λ(s) +O(r−1)

(
Λ(s) + Λ(s)

)
+ Ñ(Λ,Λ, ψ)(s),

(9.8.76)

where,

Ñ(Λ,Λ, ψ) = N(0, 0, 0,Λ,Λ, ψ),

Ñ(Λ,Λ, ψ) = N(0, 0, 0,Λ,Λ, ψ).

We initialize the system at s =
◦
s as in (9.8.75), i.e.,

Λ(
◦
s) = ψ(

◦
s) = 0, Λ0, Λ(

◦
s) = Λ0.

The system admits a unique solution ψ(s) defined in a small neighborhood
◦
I of

◦
s. The

function Ψ(s) = −s+ ψ(s) + c0 defines the desired hypersurface Σ0.

Step 21. It remain to show that the function B,B,D vanish on the hypersurface Σ0

defined above. Since the system (9.8.74) is verified for all functions Λ,Λ, ψ we deduce,
along Σ0,

D = 0,

B = N(B,B,D,Λ,Λ, ψ)(s)−N(0, 0, 0,Λ,Λ, ψ)(s),

B = N(B,B,D,Λ,Λ, ψ)(s)−N(0, 0, 0,Λ,Λ, ψ)(s).

In view of the properties of N,N we deduce,∣∣∣N(B,B,D,Λ,Λ, ψ)(s)−N(0, 0, 0,Λ,Λ, ψ)(s)
∣∣∣ . ◦

ε sup
◦
I

(
|B(s)|+ |B(s)|

)
,∣∣∣N(B,B,D,Λ,Λ, ψ)(s)−N(0, 0, 0,Λ,Λ, ψ)(s)

∣∣∣ . ◦
ε sup
◦
I

(
|B(s)|+ |B(s)|

)
.



9.8. CONSTRUCTION OF GCM HYPERSURFACES 667

Hence,

sup
◦
I

|B(s)|+ sup
◦
I

|B(s)| .
◦
δ
(

sup
◦
I

|B(s)|+ sup
◦
I

|B(s)|
)
.

Hence B,B,D vanish identically on Σ0.

Step 22. We have, ∣∣∣dr
ds
− 1
∣∣∣ . ◦ε. (9.8.77)

Indeed, according to Step 15 and Lemma 9.8.3 we have

d

ds
r(s) = X∗

∣∣∣
SP
rS =

1

2λ
ςΨ′ νS(rS)

∣∣∣
SP

= (−1 + ψ′(s))
1

2λ
ςνS(rS)

∣∣∣
SP

= (−1 + ψ′(s))

(
1

2λ
ς
rS

2
(ςS)−1ςS(κS + aSκS)

) ∣∣∣
SP
.

In view of Proposition 9.8.14, with D = 0,
∣∣ψ′∣∣ . r−1

◦
δ. We deduce,

d

ds
r(s) = −

(
1

2λ
ς
rS

2
(ςS)−1ςS(κS + aSκS)

) ∣∣∣
SP

+O(
◦
δ).

Step 23. Therefore the functions B,B,D vanish identically on the hypersurface Σ0

defined by the function Ψ(s) = −s + ψ(s) + c0 which accomplishes the main task of
Theorem 9.8.1. More precisely we have produced a local hypersurface Σ0, as defined in
Step 12, foliated by the function uS, defined in Step 2 and extended in Step 3, such that
the items 2-5 of the theorem are verified. The estimates in items 6-7 are an immediate
consequence of Proposition 9.8.7. It only remains to prove the smoothness of the function
Ξ(s, θ) in (9.8.55), Step 14 and the estimates for F = (f, f , log λ) in the last part of the
theorem. To check the differentiability properties recall that,

∂sΞ(s, θ) =
(

Ψ′(s) + ∂PU(θ, P (s))P ′(s), 1 + ∂PS(θ, P (s))P ′(s), 0
)
,

∂θΞ(s, θ) =
(
∂θU(θ, P (s)), ∂θS(θ, P (s)), 1

)
,

where,

∂PU(·)P ′(s) = Ψ′(s)∂uU(·) + ∂sU(·) + Λ′(s)∂ΛU(·) + Λ′(s)∂ΛU(·),
∂PS(·)P ′(s) = Ψ′(s)∂uS(·) + ∂sS(·) + Λ′(s)∂ΛS(·) + Λ′(s)∂ΛS(·).

Thus to prove the smoothness of Ξ we need to appeal to the smoothness of U, S with
respect to the parameters Λ,Λ and u, s. Though tedious, this can be easily done, by
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appealing to the coupled system of equations (9.4.13) (9.4.14) (9.4.15), as in the proof of
Theorem 9.4.1, and studying its dependence on these parameters.

Step 24. It only remains to derive the estimates (9.8.11) for the transition functions
F = (f, f , log λ). To start with we have, in view of the construction of Σ0 and the
estimates for F = (f, f , log λ) of Theorem 9.4.1, for every S ⊂ Σ0

‖F‖hsmax+1(S) .
◦
δ. (9.8.78)

To derive the remaining tangential derivatives of F along Σ0 we the commute the GCM
system (9.4.13) of Proposition 9.4.2 with respect to ν = νS = eS3 +aSeS4 and then proceed,
as in the proof of the apriori estimates of Theorem 9.4.6 to derive recursively the estimates,
for K = smax + 1,

‖νl(F )‖hK−l(S) .
◦
δ + r−2

(∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣+

∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣)
+
◦
δr−1

∥∥ν≤l−1aS
∥∥
hK−l+1(S)

+ ‖ν≤l−1F‖hK−l+1(S).

(9.8.79)

We already have estimates for the ` = 1 modes of F = (f, f). To estimate the ` = 1

modes of νl(f, f), l ≥ 1, we make use of the equations (9.8.64) and the vanishing of the

` = 1 modes of ηS, ξS along Σ0 to derive, recursively, for all 1 ≤ l ≤ K,

r−2

(∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣+

∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣) . ◦δ + r−1
◦
δ
∥∥∥ν≤l−1

(
a,ΩS, ςS

)∥∥∥
hK−l+1(S)

+
◦
δ
∥∥∥ν≤l−1

(
ξS, ηS, ω̌S

)∥∥∥
hK−l+1(S)

+ r−1‖ν≤l−1(F )‖hK−l+1(S).

(9.8.80)

We can then proceed as in the proof of Proposition 9.8.7 derive, recursively, the estimates

r−1
∥∥∥ν≤l−1

(
aS,ΩS, ςS

)∥∥∥
hK−l+1(S)

+
∥∥∥ν≤l−1

(
ξS, ηS, ω̌S

)∥∥∥
hK−l+1(S)

. 1 + r−1‖F‖hK(S) +
l∑

j=1

‖νj(F )‖hK−j(S). (9.8.81)

Combining (9.8.79) (9.8.80) (9.8.81), we obtain

‖νl(F )‖hK−l(S) .
◦
δ +

l−1∑
j=0

‖νj(F )‖hK−j(S),
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which, together with (9.8.78), yields the desired estimate for all tangential derivatives

K∑
j=0

‖νj(F )‖hK−j(S) .
◦
δ. (9.8.82)

To complete the desired estimate for all derivatives we make use of the equations for eS4 (F ),
due to the transversality conditions (9.4.9). The eS3 derivatives can then be derived from
νS = eS3 + aSeS4 and the estimates for aS. This concludes the proof of Theorem 9.8.1.

Step 25. We now prove Corollary 9.8.2. Consider first the simpler case where

‖(f, f , log(λ))‖hsmax+1(S0) .
◦
δ,

so that the estimate (9.8.78) holds true for S0. We then proceed exactly as in Step 24 to
derive the estimates (9.8.79) (9.8.80) (9.8.81) for our distinguished sphere S0. Note that
S0 can be viewed as a deformation of the unique background sphere sharing the same
south pole.

It remains to prove Corollary 9.8.2 in the more difficult case where

‖f‖hsmax+1(S0) + (rS0)−1‖(f, log λ)‖hsmax+1(S0) .
◦
δ.

In view of Lemma 9.2.10, with δ1 =
◦
δ, we infer∣∣∣∣rS0

◦
r
− 1

∣∣∣∣+ sup
S0

∣∣∣∣rS0

r
− 1

∣∣∣∣ . ◦δ
so that r and rS0 are comparable, and hence

‖f‖hsmax+1(S0) + r−1‖(f, log(λ))‖hsmax+1(S0) .
◦
δ. (9.8.83)

Next, we introduce as in Step 24 the notation K = smax + 1. We claim the following
analog of (9.8.82)

K∑
j=1

‖νj(F )‖hK−j(S0) .
◦
δ. (9.8.84)

To complete the desired estimate for all derivatives we then make use, as in Step 24, of
the equations for eS0

4 (F ), due to the transversality conditions (9.4.9), and recover the eS0
3

derivatives from νS0 = eS0
3 + aS0eS4 , which concludes the proof of Corollary 9.8.2.
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It thus remains to prove (9.8.84). Note that S0 can be viewed as a deformation of the
unique background sphere sharing the same south pole. We proceed exactly as in Step
24 to derive the estimates (9.8.80) (9.8.81) for our distinguished sphere S0, which yields,
for all 1 ≤ l ≤ K,

r−2

(∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣+

∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣) . ◦δ + r−1‖F‖hK(S) +
l∑

j=1

‖νj(F )‖hK−j(S) (9.8.85)

and

r−1
∥∥ν≤l−1aS

∥∥
hK−l+1(S)

. 1 + r−1‖F‖hK(S) +
l∑

j=1

‖νj(F )‖hK−j(S). (9.8.86)

We now claim the following sharpened version of (9.8.79)

‖νl(F )‖hK−l(S) .
◦
δ + r−2

(∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣+

∣∣∣∣∫
S

νl(f)eΦ

∣∣∣∣)+
◦
δr−1

∥∥ν≤l−1aS
∥∥
hK−l+1(S)

+ ‖f‖hK(S) + r−1‖(f, log(λ))‖hK(S) +
l−1∑
j=1

‖νj(F )‖hK−j(S).

(9.8.87)

Then, (9.8.85), (9.8.86) and (9.8.87) imply

‖νl(F )‖hK−l(S) .
◦
δ + ‖f‖hK(S) + r−1‖(f, log(λ))‖hK(S) +

l−1∑
j=1

‖νj(F )‖hK−j(S).

Together with (9.8.83), we deduce (9.8.84) by iteration.

Finally, it remains to prove (9.8.87). As for the proof of (9.8.79), we commute the GCM
system (9.4.13) of Proposition 9.4.2 with respect to νS = eS3 + aSeS4 and then proceed, as
in the proof of the apriori estimates of Theorem 9.4.6 to derive (9.8.87) recursively. To
obtain a stronger conclusion than (9.8.79), we need to analyze the differentiation w.r.t.
νS more carefully. First, note that the commutator [ d/S, νS]F satisfies, in view of Lemma
2.2.13,

‖[ d/S, νS]F‖hl(S) .
◦
εr−1‖F‖hl+1(S) +

◦
ε‖νSF‖hl(S)

where the important observation is that the first term on the right-hand side gains a
power of r−1 which is consistent with (9.8.87). It remains to analyze the differentiation
of the error terms Err1, . . . , Err6 of the GCM system w.r.t. νS. To this end, in what
follows, we single out all the terms that loose one power of r−1 in view of the anomalous
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behavior of (f, log(λ)) compared to the one in Step 24, and denote by · · · all terms that
behave as before. We have by direct check

Err(κ, κ′) = · · · , Err(κ, κ′) = −1

4
κf 2 + · · · ,

Err(ζ, ζ ′) = · · · , Err(ρ, ρ′) = · · · , Err(µ, µ′) = · · ·

Then, in view of the identities in Lemma 9.3.4

Err(e′θκ
′, eθκ) = (ea − 1)

1

2
fe4κ+ · · · ,

Err(e′θκ
′, eθκ) = (e−a − 1)

(
e′θ d/

′
1f +

1

2
fe4κ

)
+ e−a

[
e′θ

(
−1

4
κf 2

)
+ e′θ(a)

(
d/ ′1f +−1

4
κf 2

)]
+ · · · ,

Err(e′θµ
′, eθµ) = · · ·

In view of (9.3.14), we deduce

Err1 = − 1

r2
(ea − 1)f + · · · ,

Err2 =
1

r2

{
(e−a − 1)

(
( d/S)2f + f

)
+ e−a

[
d/S(f 2) + d/S(a)

(
d/Sf + f 2

)]}
+ · · · ,

Err3 = · · ·
We infer, in view of the expression of Err4 and Err5 in section 9.3.1,

Err4 = − 1

r2
(ea − 1)f + · · · ,

Err5 =
1

r2

{
(e−a − 1)

(
( d/S)2f + f

)
+ e−a

[
d/S(f 2) + d/S(a)

(
d/Sf + f 2

)]}
+ · · ·

Finally, in view of the expression of Err6 in section 9.3.2, we have

Err6 =
rS

r
(ea − 1− a)− a

(
rS

r
− 1

)
+ · · ·

Thus, to conclude the proof of (9.8.87), it suffices to show that all terms singled out in
the above expression of Err1, . . . , Err6 gain a power of r−1 when differentiated w.r.t. νS.
Now, they are all quadratic expressions involving a, f , r and rS. Since νS(a) and νS(f)
gain r−1 compared to a and f in view of (9.8.84), the conclusion then follows from the
straightforward estimate

|νS(rS)|
rS

+
|νS(r)|
r

. r−1.
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Chapter 10

REGGE-WHEELER TYPE
EQUATIONS

The goal of this chapter is to prove Theorem 5.3.4 and Theorem 5.3.5 concerning the
weighted estimates for the solution ψ to

�2ψ = V ψ +N, V = −κκ.

Recall that these theorems where used in Chapter 5 to prove Theorem M1.

The structure of the chapter is as follows.

• In section 10.1, we prove basic Morawetz estimates for ψ.

• In section 10.2, we prove rp-weighted estimates in the spirit of Dafermos-Rodnianski
[24] for ψ. In particular, we obtain as an immediate corollary the proof of Theorem
5.3.4 in the case s = 0 (i.e. without commutating the equation of ψ with derivatives).

• In section 10.3, we use a variation of the method of [5] to derive slightly stronger
weighted estimates and prove Theorem 5.3.5 in the case s = 0 (i.e. without com-
mutating the equation of ψ̌ with derivatives).

• In section 10.4, commuting the equation of ψ with derivatives, we complete the proof
of Theorem 5.3.4 by controlling higher order derivatives of ψ, i.e. for s ≤ ksmall+30.
Also, commuting the equation of ψ̌ with derivatives, we complete the proof of
Theorem 5.3.5 by controlling higher order derivatives of ψ̌, i.e. for s ≤ ksmall + 29.

673
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10.1 Basic Morawetz estimates

Recall

• the definitions in section 5.1.1 of (trap)M, (trap
/

)M, τ , Σ(τ) and (trap)Σ,

• the main quantities involved in the energy and Morawetz estimates, e.g. E[ψ](τ),
Mor[ψ](τ1, τ2), Morr[ψ](τ1, τ2), F [ψ](τ1, τ2), Jδ[ψ,N ](τ1, τ2) and Ḃs

p;R[ψ](τ1, τ2), in-
troduced in section 5.1.4.

The following theorem claims basic Morawetz estimates for the solution ψ of the wave
equation (5.3.5).

Theorem 10.1.1 (Morawetz). Let ψ a reduced 2-scalar solution to

�2ψ = V ψ +N, V = −κκ.

Let δ > 0 be a fixed small constant verifying 0 < ε� δ. The following estimates hold true
in M(τ1, τ2), 0 ≤ τ1 < τ2 ≤ τ∗,

E[ψ](τ2) + Mor[ψ](τ1, τ2) + F [ψ](τ1, τ2) . E[ψ](τ1) + Jδ[ψ,N ](τ1, τ2)

+O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2).
(10.1.1)

Also,

E[ψ](τ2) + Morr[ψ](τ1, τ2) + F [ψ](τ1, τ2) . E[ψ](τ1) + Jδ[ψ,N ](τ1, τ2)

+ Ḃδ ; 4m0 [ψ](τ1, τ2).
(10.1.2)

Remark 10.1.2. Note that the bulk term Ḃδ ; 4m0 [ψ](τ1, τ2) cannot yet be absorbed on the
left hand side of the inequality. To do that we will rely on the rp weighted estimates of
Theorem 10.2.1.

Remark 10.1.3. In addition to ε and δ, the proof of Theorem 10.1.1 will involve several
smallness constants: C−1, δ̂, δ1, δH, εH, Λ−1

H and Λ−1. These smallness constants will be
chosen such that

0 < ε� δ̂, δH, εH, Λ−1
H , Λ−1 � δ1 � C−1. (10.1.3)

In addition, δ̂, εH, Λ−1
H and Λ−1 will in fact be chosen towards the end of the proof as

explicit powers of δH, see (10.1.63), (10.1.65) and Proposition 10.1.30.

The goal of this section is to prove Theorem 10.1.1. This will be achieved in section
10.1.15.
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10.1.1 Structure of the proof of Theorem 10.1.1

To prove Theorem 10.1.1, we proceed as follows

• In section 10.1.2, we introduce a simplified set of assumptions of the Ricci coefficients
which is sufficient in order to prove Theorem 10.1.1.

• In section 10.1.3, we discuss notations concerning functions depending on m and r.

• In section 10.1.4, we compute the deformation tensor of the vectorfields R, T , and
X = f(r,m)R.

• In section 10.1.5, we introduce the basic integral identities for wave equations that
will be used repeatedly in the proof of Theorem 10.1.1.

• In section 10.1.6, we derive the main Morawetz identity.

• In section 10.1.7, we derive a first estimate. This estimate is insufficient due to

– a lack of positivity of the bulk in the region 3m ≤ r ≤ 4m,

– a log divergence of a suitable choice of vectorfield at r = 2m,

– a degeneracy at r = 2m.

• In section 10.1.8, we add a correction and rely on a Poincaré inequality to obtain a
positive estimate also on the region 3m ≤ r ≤ 4m.

• In section 10.1.9, we perform a cut-off to remove above mentioned log divergence at
r = 2m.

• In section 10.1.10, we introduce the red shift vectorfield to remove the above men-
tioned degeneracy at r = 2m.

• In section 10.1.11, we combine the previous estimates with the redshift vectorfield
to obtain a bulk term suitable on the whole spacetime M.

• In section 10.1.12, we prove the positivity of the boundary terms arising from adding
a large multiple of the energy estimate to the Morawetz estimate.

• In section 10.1.13, combining the good properties of the bulk and of the boundary
terms established so far, we obtain a first Morawetz estimate providing in particular
the control of the the quantity Mor[ψ].

• In section 10.1.14, we analyse an error term appearing in the right-hand side of the
above mentioned Morawetz estimate.
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• Finally, in section 10.1.15, we add a correction to upgrade the control of Mor[ψ] to
the control of the quantity Morr[ψ], hence concluding the proof of Theorem 10.1.1.

10.1.2 A simplified set of assumptions

To prove Theorem 10.1.1, it suffices to make a simplified set of assumptions. Define

utrap =

{
1 + τ for r ∈ [5m0

2
, 7m0

2
],

1 for r /∈ [5m0

2
, 7m0

2
].

(10.1.4)

For k = 0, 1, we assume the following.

Mor1. The renormalized Ricci coefficients Γ̌≤k verify on M = (int)M∪ (ext)M,

|Γ̌≤k| . εr−1u−1−δdec
trap ,∣∣∣d≤k(ω +

m

r2
, ξ
)∣∣∣ . εr−2u−1−δdec

trap .
(10.1.5)

Mor2. The Gauss curvature K of S and ρ verify,∣∣∣d≤k(ρ+
2m

r3

)∣∣∣ . εr−2 u−1−δdec
trap ,∣∣∣d≤k(K − 1

r2

)∣∣∣ . εr−2 u−1−δdec
trap .

(10.1.6)

Mor3. We also assume

|m−m0| . εm0,

|d≤k(e3m, r
2e4m)| . ε u−1−δdec

trap .
(10.1.7)

Remark 10.1.4. Note that in the case when the bootstrap constant ε = 0, i.e.in Schwarzschild,
the assumptions made above are consistent with the behavior relative to the regular frame
(near horizon)

e3 = Υ−1∂t − ∂r, e4 = ∂t + Υ∂r.
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10.1.3 Functions depending on m and r

In order to prove Theorem 10.1.1, we will adapt the derivation of the Morawetz estimate
for the wave equation in Schwarzschild. In particular, we will need to consider various
scalar functions, used to define suitable analogs of the vectorfields in Schwarzschild, which
depend on m and r. Now, m is now a scalar function unlike the Schwarzschild case where
it is constant. To take this into account, we will rely on the following lemma.

Lemma 10.1.5. Let f = f(r,m) a C1 function of r and m. Then, we have

e4

(
f(r,m)

)
= ∂rf(r,m)e4(r) +O(εr−2u−1−δdec

trap |∂mf |),
e3

(
f(r,m)

)
= ∂rf(r,m)e3(r) +O(εu−1−δdec

trap |∂mf |),
e4

(
e3

(
f(r,m)

))
= ∂2

rf(r,m)e4(r)e3(r) + ∂rf(r,m)e4(e3(r))

+O(εr−2u−1−δdec
trap (r|∂r∂mf |+ |∂2

mf |)),
e3

(
e4

(
f(r,m)

))
= ∂2

rf(r,m)e4(r)e3(r) + ∂rf(r,m)e3(e4(r))

+O(εr−2u−1−δdec
trap (r|∂r∂mf |+ |∂2

mf |)),
eθ
(
f(r,m)

)
= 0.

Proof. Straightforward verification using (10.1.7).

Remark 10.1.6. Note that in the sequel, ∂rf will not denote a spacetime coordinate
vectorfield applied to f , but instead the partial derivative with respect to the variable r of
the function f(r,m).

10.1.4 Deformation tensors of the vectorfields R, T,X

Recall the definition (5.1.10) of the regular vectorfields1,

T =
1

2
(e4 + Υe3) , R =

1

2
(e4 −Υe3) .

Note that,

−g(T, T ) = g(R,R) = Υ, g(T,R) = 0.

Note also that,

R(r) = 1− 2m

r
+O(εu−1−δdec

trap ), T (r) = O(εu−1−δdec
trap ).

1In Schwarzschild, in standard coordinates, we have T = ∂t, R = Υ∂r which are regular near the
horizon.
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Lemma 10.1.7. The following hold true.

1. The components of the deformation tensor of R = 1
2

(e4 −Υe3) are given by

∣∣∣ (R)π34 +
4m

r2

∣∣∣ . εr−1u−1−δdec
trap ,∣∣∣ (R)π(eA, eB)− 2

r
ΥδAB

∣∣∣ . εr−1u−1−δdec
trap ,∣∣∣ (R)π33

∣∣∣ . εr−1u−1−δdec
trap ,∣∣∣ (R)π3θ

∣∣∣ . εr−1u−1−δdec
trap ,∣∣∣ (R)π4θ

∣∣∣ . εr−1u−1−δdec
trap .

Moreover, ∣∣∣ (R)π44

∣∣∣ . εr−2u−1−δdec
trap .

2. If V := −κκ, we have

e3(V ) =
8

r3

(
1− 3m

r

)
+O(ε)r−3u−1−δdec

trap ,

e4(V ) = −8Υ

r3

(
1− 3m

r

)
+O(ε)r−3u−1−δdec

trap ,

(10.1.8)

and

R(V ) = −8Υ

r3

(
1− 3m

r

)
+O(ε)r−3u−1−δdec

trap ,

T (V ) = O(ε)r−3u−1−δdec
trap .

3. All components of the deformation tensor of T = 1
2

(e4 + Υe3) can be bounded by

O(εr−1u−1−δdec
trap ). Moreover,

∣∣∣ (T )π44

∣∣∣ . εr−2u−1−δdec
trap .
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Proof. Ve have

(R)π44 = g(D4(e4 −Υe3), e4) = 2e4(Υ) + 4Υω,

(R)π34 =
1

2
g(D3(e4 −Υe3), e4) +

1

2
g(D4(e4 −Υe3), e3)

= e3(Υ)− 2Υω + 2ω,
(R)π33 = g(D3(e4 −Υe3), e3) = −4ω,

(R)πAB =
1

2
g(DA(e4 −Υe3), eB) +

1

2
g(DB(e4 −Υe3), eA),

= (1+3)χAB −Υ (1+3)χ
AB

=
1

2
(κ−Υκ)δAB + (1+3)χ̂AB −Υ (1+3)χ̂

AB
.

Note that,

e3(Υ) = e3

(
1− 2m

r

)
=

2m

r2
e3(r)− 2e3m

r
=
m

r
(κ+ A) +O(εr−1u−1−δdec

trap )

=
m

r
κ+O(εr−1u−1−δdec

trap ) = −2m

r2
+O(εr−1u−1−δdec

trap ),

e4(Υ) = e4

(
1− 2m

r

)
=

2m

r2
e4(r)− 2e4m

r
=
m

r
(κ+ A) +O(εr−2u−1−δdec

trap )

=
m

r
κ+O(εr−2u−1−δdec

trap ) =
2m

r2
Υ +O(εr−2u−1−δdec

trap ).

Thus

(R)π44 = O(εr−2u−1−δdec
trap ),

(R)π33 = O(εr−1u−1−δdec
trap ),

(R)π34 = −4
m

r2
+O(εr−1u−1−δdec

trap ),

(R)πAB =
2Υ

r
δAB +O(εr−1u−1−δdec

trap ).

Also, in view of, ∣∣∣ξ, ξ, η, η, ζ∣∣∣ . εr−1u−1−δdec
trap ,

we deduce, ∣∣∣ (R)π3θ,
(R)π4θ

∣∣∣ . εr−1u−1−δdec
trap

as desired.
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To prove the second part of the lemma we write,

e3(V ) = −e3(κ)κ− κe3(κ)

= −
(
−1

2
κκ+ 2ωκ+ 2ρ+O(εr−2u−1−δdec

trap )

)
κ− κ

(
−1

2
κ2 − 2ω κ+O(εr−2u−1−δdec

trap )

)
= (κκ− 2ρ)κ+O(εr−3u−1−δdec

trap ).

On the other hand,

κκ− 2ρ = −
(

2Υ

r
+O(ε)r−1u−1−δdec

trap

)(
2

r
+O(ε)r−1u−1−δdec

trap

)
+

4m

r3
+O(εr−3u−1−δdec

trap )

= − 4

r2

(
1− 3m

r

)
+O(εr−2u−1−δdec

trap ).

Hence,

e3(V ) = (κκ− 2ρ)κ+O(εr−3u−1−δdec
trap )

=
8

r3

(
1− 3m

r

)
+O(εr−3u−1−δdec

trap )

and similarly for e4(V ). Thus,

R(V ) =
1

2
(e4 −Υe3)V = −8Υ

r3

(
1− 3m

r

)
+O(εr−3u−1−δdec

trap ),

T (V ) =
1

2
(e4 + Υe3)V = O(ε)r−3u−1−δdec

trap ,

as desired.

To prove the last part of the lemma we write,

(T )π44 = g (D4(e4 + Υe3), e4) = −2e4(Υ)− 4Υω,

(T )π34 =
1

2
g(D3(e4 + Υe3), e4) +

1

2
g(D4(e4 + Υe3), e3)

= −e3(Υ) + 2Υω + 2ω,
(T )π33 = g (D3(e4 + Υe3), e3) = −4ω,

(T )πAB =
1

2
g (DA(e4 + Υe3), eB) +

1

2
g (DB(e4 + Υe3), eA) ,

= (1+3)χAB + Υ (1+3)χ
AB

=
1

2
(κ+ Υκ)δAB + (1+3)χ̂AB + Υ (1+3)χ̂

AB
,

and the proof continues as above in view of our assumptions.
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Consider now X = f(r,m)R and (X)π its deformation tensor. Ve have the following
lemma.

Lemma 10.1.8. Let X = f(r,m)R and (X)π its deformation tensor. We have,

(X)π = (X)π̇ + ε (X)π̈

where2

• The only nonvanishing components of (X)π̇ are

(X)π̇33 = 2∂rf,
(X)π̇44 = 2∂rfΥ2,

(X)π̇34 = −4m

r2
f − 2∂rfΥ,

(X)π̇AB = f
2Υ

r
δAB.

• All components of (X)π̈ verify,∣∣∣ (X)π̈
∣∣∣ . r−1u−1−δdec

trap (|f |+ r|∂mf |+ r2|∂rf |).

Moreover, ∣∣∣ (X)π̈44

∣∣∣ . r−2u−1−δdec
trap (|f |+ r|∂mf |+ r2|∂rf |).

Proof. Clearly,

(X)πµν = f (R)πµν + eµfRν + eνfRµ.

Therefore, since g(R, e3) = −1, g(R, e4) = Υ and,∣∣∣e4(r)−Υ, e3(r) + 1
∣∣∣ . ε u−1−δdec

trap ,

2Recall from Remark 10.1.6 that ∂rf does no denote a spacetime coordinate vectorfield applied to f ,
but instead the partial derivative with respect to the variable r of the function f(r,m).
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and using Lemma 10.1.5, we deduce,

(X)π33 = f (R)π33 − 2e3(f) = f (R)π33 − 2∂rfe3(r)− 2∂mfe3(m)

= 2∂rf +O
(
εr−1u−1−δdec

trap (|f |+ r|∂mf |+ r2|∂rf |)
)

(X)π44 = f (R)π44 + 2Υe4(f) = f (R)π44 + 2Υ∂rfe4(r) + 2Υ∂mfe4(m)

= 2∂rfΥ2 +O
(

(εr−2u−1−δdec
trap (|f |+ r|∂mf |+ r2|∂rf |)

)
(X)π34 = f (R)π34 + e3(f)Υ− e4(f)

= f (R)π34 + (∂rfe3(r) + ∂mfe3(m))Υ− (∂rfe4(r) + ∂mfe4(m))

= −4m

r2
f − 2∂rfΥ +O

(
εr−1u−1−δdec

trap (|f |+ r|∂mf |+ r2|∂rf |)
)
.

This concludes the proof of the lemma.

10.1.5 Basic integral identities

We recall, see section 2.4.1, that wave equations for ψ ∈ s2(M) of the form

�2ψ = V ψ +N [ψ], V = −κκ, (10.1.9)

can be lifted to the spacetime version3

�̇Ψ = VΨ +N [Ψ] (10.1.10)

where Ψ ∈ S2(M) and N [Ψ] ∈ S2(M) are defined according to Proposition 2.4.5. In fact,

Ψθθ = −Ψϕϕ = ψ, Ψθϕ = 0.

Nθθ[Ψ] = Nϕϕ[Ψ] = N(ψ), N [Ψ]θϕ = 0.

All estimates for (10.1.10) derived in this section can be easily transferred to estimates
for (10.1.9) and vice versa.

Consider wave equations of the form,

�̇gΨ = VΨ +N (10.1.11)

with Ψ ∈ S2(M) and N a given symmetric traceless tensor, i.e. N ∈ S2(M).

Proposition 10.1.9. Assume Ψ ∈ S2(M) verifies (10.1.10). Then,

3See section 2.4.1 and Appendix D for the precise definition of the covariant derivative Ḋ and wave
operator �̇ on S2(M)
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1. The energy momentum tensor Q = Q[Ψ] given by,

Qµν : = ḊµΨ · ḊνΨ−
1

2
gµν

(
ḊλΨ · ḊλΨ + VΨ ·Ψ

)
= ḊµΨ · ḊνΨ−

1

2
gµνL(Ψ)

verifies,

DνQµν = ḊµΨ · N [Ψ] + ḊνΨARABνµΨB − 1

2
DµVΨ ·Ψ.

2. The null components of Q are given by,

Q33 = |e3Ψ|2,
Q44 = |e4Ψ|2,
Q34 = |∇/Ψ|2 + V |Ψ|2,

and,

gµνQµν = −L(Ψ)− V |Ψ|2.

Also,

|L(Ψ)| . |e3Ψ| |e4Ψ|+ |∇/Ψ|2 + V |Ψ|2

and

|QAB| ≤ |e3Ψ||e4Ψ|+ |∇/Ψ|2 + |V ||Ψ|2,
|QA3| ≤ |e3Ψ||∇/Ψ|,
|QA4| ≤ |e4Ψ||∇/Ψ|.

3. Introducing

Q̂34 := Q34 − V |Ψ|2 = |∇/Ψ|2

we have,

−Q̂34 +Qθθ +Qϕϕ = −L(Ψ).

4. Let X = ae3 + be4. Then, since RAB34 = 0 in an axially symmetric polarized
spacetime,

Dµ(QµνXν) =
1

2
Q · (X)π +X(Ψ) · N [Ψ]− 1

2
X(V )Ψ ·Ψ.
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5. Let X = ae3 + be4 as above, w a scalar function and M a one form. Define,

Pµ = Pµ[X,w,M ] = QµνXν +
1

2
wΨḊµΨ− 1

4
|Ψ|2∂µw +

1

4
|Ψ|2Mµ.

Then,

DµPµ[X,w,M ] =
1

2
Q · (X)π − 1

2
X(V )Ψ ·Ψ +

1

2
wL[Ψ]− 1

4
|Ψ|2�gw

+
1

4
Ḋµ(|Ψ|2Mµ) +

(
X(Ψ) +

1

2
wΨ

)
· N [Ψ].

(10.1.12)

Proof. See sections D.1.4 and D.2 in the appendix.

Notation. For convenience we introduce the notation,

E [X,w,M ](Ψ) := DµPµ[X,w,M ]−
(
X(Ψ) +

1

2
wΨ

)
· N [Ψ]. (10.1.13)

Thus equation (10.1.12) becomes,

E [X,w,M ](Ψ) =
1

2
Q · (X)π − 1

2
X(V )Ψ ·Ψ +

1

2
wL[Ψ]

−1

4
|Ψ|2�gw +

1

4
Ḋµ(|Ψ|2Mµ). (10.1.14)

When M = 0 we simply write E [X,w](Ψ).

10.1.6 Main Morawetz identity

Lemma 10.1.10. Let f(r,m) a function of r and m, and let X a vectorfield defined by
X = f(r,m)R. Then, we have4 ,

Q · (X)π̇ = f

(
−2m

r2
+

2Υ

r

)
|∇/Ψ|2 + 2∂rf |RΨ|2 −

(
2Υ

r
f + Υ∂rf

)
LΨ− 2m

r2
fV |Ψ|2.

where (X)π̇ has been defined in Lemma 10.1.8.

4Recall from Remark 10.1.6 that ∂rf does no denote a spacetime coordinate vectorfield applied to f ,
but instead the partial derivative with respect to the variable r of the function f(r,m).
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Proof. In view of Lemma 10.1.8, we have

Q · (X)π̇ =
1

2
Q34π̇34 +

1

4
Q44π̇33 +

1

4
Q33π̇44 +QABπ̇AB

= −2m

r2
fQ34 − ∂rfΥQ34 +

1

2
Q44∂rf +

1

2
Q33Υ2∂rf +

2Υ

r
fδABQAB

= −2m

r2
fQ34 +

2Υ

r
fδABQAB +

1

2
∂rf

(
Q44 − 2ΥQ34 + Υ2Q33

)
Note that, (

Q44 − 2ΥQ34 + Υ2Q33

)
= 4QRR

and, since gµνQµν = −L(Ψ)− V |Ψ|2,

δABQAB = Q34 − L− V |Ψ|2 = Q̂34 − L.
Hence,

Q · (X)π̇ = −2m

r2
fQ34 +

2Υ

r
f
(
Q̂34 − L

)
+ 2∂rfQRR

= −2m

r2
f
(
Q̂34 + V |Ψ|2

)
+

2Υ

r
f
(
Q̂34 − L

)
+ 2∂rfQRR

= f

(
−2m

r2
+

2Υ

r

)
Q̂34 + 2∂rfQRR −

2Υ

r
fL − 2m

r2
fV |Ψ|2.

Finally,

QRR = |RΨ|2 − 1

2
g(R,R)L = |RΨ|2 − 1

2
ΥL.

Hence,

Q · (X)π̇ = 2f

(
−m
r2

+
Υ

r

)
Q̂34 + 2∂rf

(
|RΨ|2 − 1

2
ΥL
)
− 2Υ

r
fL − 2m

r2
fV |Ψ|2

= 2f

(
−m
r2

+
Υ

r

)
|∇/Ψ|2 + 2∂rf |RΨ|2 −

(
2Υ

r
f + ∂rfΥ

)
L − 2m

r2
fV |Ψ|2.

This concludes the proof of the lemma.

We shall also make use of the following lemma.

Lemma 10.1.11. If f = f(r,m), then

�g(f(r,m)) = r−2∂r(r
2Υ∂rf) +O(εr−2 u−1−δdec

trap )
[
r2|∂2

rf(r,m)|+ r|∂rf(r,m)|

+r|∂r∂mf(r,m)|+ |∂2
mf(r,m)|

]
.
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Proof. Recall from Lemma 2.4.1 that, for a general scalar f ,

�gf = −1

2
(e3e4 + e4e3)f +4/ f +

(
(1+3)ω − 1

2
(1+3)trχ

)
e4f +

(
(1+3)ω − 1

2
(1+3)trχ

)
e3f.

Recall that,

(1+3)trχ = 2χ− ϑ, (1+3)trχ = 2χ− ϑ, (1+3)ω = ω, (1+3)ω = ω

and

4/ f = eθeθf + (eθΦ)2eθf.

Using Lemma 10.1.5, we deduce, for a function f = f(r,m),

�gf = −1

2
(e3e4 + e4e3)f +

(
ω − 1

2
κ

)
e4f +

(
ω − 1

2
κ

)
e3f

= −∂2
rf(r,m)e3(r)e4(r)− 1

2
∂rf(r,m) (e3e4(r) + e4e3(r))

− 1

2
κ∂rf(r,m)e4r +

(
ω − 1

2
κ

)
∂rf(r,m)e3(r) +O(εr−2 u−1−δdec

trap )
[
r2|∂2

rf(r,m)|

+r|∂rf(r,m)|+ r|∂r∂mf(r,m)|+ |∂2
mf(r,m)|

]
= −∂2

rf(r,m)
(
−Υ +O(εu−1−δdec

trap

)
+ ∂rf(r,m)

m

r2
+ ∂rf(r,m)

Υ

r
+
r −m
r2

∂rf(r,m)

+ O(εr−2 u−1−δdec
trap )

[
r2|∂2

rf(r,m)|+ r|∂rf(r,m)|+ r|∂r∂mf(r,m)|+ |∂2
mf(r,m)|

]
= Υ∂2

rf(r,m) + ∂rf(r,m)

(
2

r
− 2m

r2

)
+ O(εr−2 u−1−δdec

trap )
[
r2|∂2

rf(r,m)|+ r|∂rf(r,m)|+ r|∂r∂mf(r,m)|+ |∂2
mf(r,m)|

]
= r−2∂r(r

2Υ∂rf)

+ O(εr−2 u−1−δdec
trap )

[
r2|∂2

rf(r,m)|+ r|∂rf(r,m)|+ r|∂r∂mf(r,m)|+ |∂2
mf(r,m)|

]
as desired.

According to equation (10.1.14) we have,

E [X,w](Ψ) =
1

2
Q · (X)π − 1

2
X(V )|Ψ|2 +

1

2
wL(Ψ)− 1

4
|Ψ|2�gw.

In the next proposition we choose X to be of the form X = f(r,m)R and make a choice
of w as a function of f .
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Proposition 10.1.12. Assume

X = f(r,m)R and w(r,m) = r−2Υ∂r(r
2f).

Then,

E [X,w](Ψ) = Ė [X,w] + Eε[X,w]

where, with Q̂34 := Q34 − V |Ψ|2 = |∇/Ψ|2,

Ė [fR,w](Ψ) =
1

r

(
1− 3m

r

)
fQ̂34 + ∂rf |R(Ψ)|2 − 1

4
r−2∂r(r

2Υ∂rw)|Ψ|2

+ 4Υ
r − 4m

r4
f |Ψ|2,

Eε[fR,w](Ψ) = ε
1

2
Q · (X)π̈ +O

(
εr−3u−1−δdec

trap

(
|f |+ r2|∂rw|+ r3|∂2

rw|

+ r2|∂r∂mw|+ r|∂2
mw|

))
|Ψ|2.

(10.1.15)

Proof. According to Lemma 10.1.8 and equation (10.1.14) we have,

E [X,w](Ψ) =
1

2
Q · ( (X)π̇ + ε (X)π̈)− 1

2
X(V )|Ψ|2 +

1

2
wL(Ψ)− 1

4
|Ψ|2�gw.

Hence, in view of lemmas 10.1.8 and 10.1.10,

E [X,w](Ψ)− ε1
2
Q · (X)π̈ =

1

2
Q · (X)π̇ − 1

2
X(V )|Ψ|2 +

1

2
wL(Ψ)− 1

4
|Ψ|2�gw

= f

(
−m
r2

+
Υ

r

)
|∇/Ψ|2 + ∂rf |RΨ|2 −

(
Υ

r
f +

1

2
Υ∂rf

)
L(Ψ)

− m

r2
fV |Ψ|2 − 1

2
X(V )|Ψ|2 +

1

2
wL(Ψ)− 1

4
|Ψ|2�gw.

Thus, assuming w = r−2Υ∂r(r
2f) = 2Υ

r
f + ∂rfΥ,

E [X,w](Ψ)− ε1
2
Q · (X)π̈ = r−1f

(
1− 3m

r

)
|∇/Ψ|2 + ∂rf |RΨ|2

−
(
m

r2
fV +

1

2
X(V ) +

1

4
�gw

)
|Ψ|2.

Note that, in view of Lemma 10.1.7,

X(V ) = fR(V ) = −8Υf
r − 3m

r4
+O(εr−3u−1−δdec

trap |f |)
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and,

m

r2
fV +

1

2
X(V ) = f

(
4m

r4
Υ− 4Υ

r − 3m

r4

)
+O(εr−3u−1−δdec

trap |f |)

= −4fΥ
r − 4m

r4
+O(εr−3 u−1−δdec

trap |f |).

Note also that, in view of Lemma 10.1.11

�g(w) = r−2∂r(r
2Υ∂rw) +O(εr−2 u−1−δdec

trap )
[
r2|∂2

rw|+ r|∂rw|+ r|∂r∂mw|+ |∂2
mw|

]
.

Thus,

m

r2
fV +

1

2
X(V ) +

1

4
�gw = −4Υ

r − 4m

r4
f +

1

4
r−2∂r(r

2Υ∂rw)

+O(εr−3 u−1−δdec
trap )

[
|f |+ r3|∂2

rw|+ r2|∂rw|

+r2|∂r∂mw|+ r|∂2
mw|

]
and hence

E [X,w](Ψ)− ε1
2
Q · (X)π̈ = r−1f

(
1− 3m

r

)
|∇/Ψ|2 + ∂rf |RΨ|2 − 1

4
|Ψ|2r−2∂r(r

2Υ∂rw)

+ 4Υ
r − 4m

r4
f |Ψ|2

+ O
(
εr−3 u−1−δdec

trap

(
|f |+ r2|∂rw|+ r3|∂2

rw|

+r2|∂r∂mw|+ r|∂2
mw|

))
|Ψ|2

as desired.

10.1.7 A first estimate

We concentrate our attention on the principal term

Ė [fR,w](Ψ) =
1

r

(
1− 3m

r

)
fQ̂34 + ∂rf |R(Ψ)|2 − 1

4
r−2∂r(r

2Υ∂rw)|Ψ|2 + 4Υ
r − 4m

r4
f |Ψ|2

and choose f = f(r,m) such that the right hand side is positive definite.

Consider the quadratic forms,

Ė0(Ψ) : = AQ̂34 +B|RΨ|2 + r−2W |Ψ|2,

Ė(Ψ) : = Ė0(Ψ) + 4Υ
r − 4m

r4
f |Ψ|2,

(10.1.16)
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with the coefficients

A := r−1f

(
1− 3m

r

)
, B := ∂rf, W := −1

4
∂r(r

2Υ∂rw). (10.1.17)

The goal is to show that there exist choices of f, w verifying the condition of Proposition
10.1.12, i.e. w = r−2∂r(r

2f), which makes Ė(Ψ) positive definite, for all smooth S-
valued tensorfields Ψ defined in the region r ≥ 2m0(1− δH), which decay reasonable fast
at infinity. We look first for choices of f, w such that the coefficient A,B,W are non-
negative. Note in particular that f must be increasing as a function of r and f = 0 on
r = 3m. Following J. Stogin [63] we choose w first to ensure that W is non-negative and
then choose f , compatible with the equation,

∂r(r
2f) =

r2

Υ
w, f = 0 on r = 3m. (10.1.18)

To ensure that A = r−2f(r − 3m) is positive we need a non-negative w which verifies
(modulo error terms5) W = −1

4
∂r(r

2Υ∂rw) ≥ 0. It is more difficult to choose w such that
B = ∂rf is also non-negative.

Stogin defines w based on the following lemma.

Lemma 10.1.13. The scalar function w defined by

w(r,m) =

{
1

4m
, if r ≤ 4m,

2Υ
r
, if r ≥ 4m,

is C1, non-negative and such that W = −1
4
∂r(r

2Υ∂rw) verifies,

W (r,m) =

{
0, if r < 4m,
m
r2

(
3− 8m

r

)
, if r > 4m.

(10.1.19)

Proof. For r ≥ 4m, we have

w(r,m) =
2Υ

r
, ∂rw(r,m) = − 2

r2
+

8m

r3
, ∂2

rw(r,m) =
4

r3
− 24m

r4
.

In particular, we have

w =
1

4m
, ∂rw = 0 at r = 4m

5i.e. terms which vanish in Schwarzschild.



690 CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS

so that w is indeed C1. Furthermore, we also have

r−2∂r(r
2Υ∂rw) = Υ∂2

rw(r) + ∂rw(r)

(
2

r
− 2m

r2

)
= Υ

(
4

r3
− 24m

r4

)
+

(
− 2

r2
+

8m

r3

)(
2

r
− 2m

r2

)
= −4m

r4

(
3− 8m

r

)
so that, for r ≥ 4m,

W = −1

4
∂r(r

2Υ∂rw) =
m

r2

(
3− 8m

r

)
as desired.

Once w is defined we can evaluate f as follows.

Lemma 10.1.14. Let w(r,m) defined as in Lemma 10.1.13. Then, the function f(r,m)
given by,

r2f(r,m) :=

{
2m2 log

(
r−2m
m

)
+ (r − 3m) r

2+6mr+30m2

12m
, for r ≤ 4m,

C∗m2 + r2 − (4m)2, for r ≥ 4m,
(10.1.20)

with the constant C∗ given by6

C∗ := 2 log(2) +
35

6
, C∗ ∼ 7.22,

is C2 and satisfies (10.1.18), i.e. we have

∂r(r
2f) = r2Υ−1w, f = 0 on r = 3m.

Proof. By direct check7, we have for r ≤ 4m

∂r(r
2f)(r,m) =

2m2

(r − 2m)
+
r2 + 6mr + 30m2

12m
+ (r − 3m)

2r + 6m

12m

=
r3

4m(r − 2m)

=
r2

Υ

1

4m
6C∗ is chosen so that f is continuous across r = 4m.
7Recall from Remark 10.1.6 that ∂rf does no denote a spacetime coordinate vectorfield applied to f ,

but instead the partial derivative with respect to the variable r of the function f(r,m).
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and for r ≥ 4m

∂r(r
2f)(r,m) = 2r,

as well as f = 0 on r = 3m so that, in view of the definition of w(r) in Lemma 10.1.13,
we infer

∂r(r
2f) = r2Υ−1w, f = 0 on r = 3m

as desired. Note also that w being C1, f is thus indeed C2.

Next, we derive a lower bound on ∂rf for r ≤ 4m.

Lemma 10.1.15. We have for all r and m

r3∂rf ≥ 16m2.

Also, there exists a constant C > 0 such that for all r and m(
1− 3m

r

)
f ≥ C−1

(
1− 3m

r

)2

.

Proof. We have

∂r(r
3∂rf) = ∂r(r∂r(r

2f))− 2∂r(r
2f).

Using the identity ∂r(r
2f) = r2Υ−1w, we infer

∂r(r
3∂rf) = ∂r(r

3Υ−1w)− 2r2Υ−1w.

For r ≤ 4m, we have w = (4m)−1 and hence

∂r(r
3∂rf) =

1

4m

(
∂r(r

3Υ−1)− 2r2Υ−1
)

=
1

4m
r3∂r(Υ

−1)

= − r

2Υ2

In particular, r3∂rf is decreasing in r on r ≤ 4m and hence

r3∂rf ≥ (4m)3∂rf(r = 4m,m) on r ≤ 4m.
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On the other hand, we have, in view of the definition 10.1.20 of f

∂r(r
2f)(r = 4m,m) = (4m)2∂rf(r = 4m,m) + 8mf(r = 4m,m)

= (4m)2∂rf(r = 4m,m) +
m

2
C∗

and hence

(4m)2∂rf(r = 4m,m) =

(
8− C∗

2

)
m

so that

r3∂rf ≥ 2(16− C∗)m2 on r ≤ 4m.

Since C∗ ∼ 7.22 < 8, we deduce

r3∂rf ≥ 16m2 on r ≤ 4m.

Also, for r ≥ 4m, we have

f = 1− (16− C∗)m2

r2

so that

∂rf =
2(16− C∗)m2

r3
.

Since C∗ ∼ 7.22 < 8, we deduce

r3∂rf ≥ 16m2 on r ≥ 4m

which together with the case r ≤ 4m above yields for all r and m the desired estimate for
∂rf

r3∂rf ≥ 16m2.

In particular, ∂rf > 0 and hence is strictly increasing. On the other hand, f = 0 on r = 3
and converges to 1 as r → +∞. We deduce the existence of a constant C > 0 such that(

1− 3m

r

)
f ≥ C−1

(
1− 3m

r

)2

as desired.
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We summarize the results in the following.

Proposition 10.1.16. There exist functions f ∈ C2, w ∈ C1 verifying the relation w =
r−2Υ∂r(r

2f) and such that,

r2f =

{
2m2 log

(
r−2m
m

)
+ (r − 3m) r

2+6mr+30m2

12m
, for r ≤ 4m,

C∗m2 + r2 − (4m)2, for r ≥ 4m,
(10.1.21)

where C∗ is a constant satisfying 7 < C∗ < 8. In particular,

f =

{
2m2

r2 log
(
r−2m
m

)
+O( r−3m

m
), for r ≤ 4m,

1 +O(m
2

r2 ), for r ≥ 4m,
(10.1.22)

and, for some C > 0 and all r ≥ 2m(
1− 3m

r

)
f ≥ C−1

(
1− 3m

r

)2

, ∂rf ≥
16m2

r3
. (10.1.23)

Also, w is given by

w =

{
1

4m
, for r ≤ 4m,

2
r

(
1− 2m

r

)
, for r ≥ 4m.

(10.1.24)

Moreover W = −1
4
∂r(r

2Υ∂rw) verifies,

W =

{
0, if r < 4m,
m
r2

(
3− 8m

r

)
, if r > 4m,

(10.1.25)

and,

Ė0[fR,w](Ψ) = ∂rf |R(Ψ)|2 + r−2W |Ψ|2 + r−1

(
1− 3m

r

)
fQ̂34,

Ė [fR,w](Ψ) = E0[fR,w](Ψ) + 4Υ
r − 4m

r4
f |Ψ|2.

(10.1.26)

Recall also that,

Q̂34 = |∇/Ψ|2.
Remark 10.1.17. The estimates obtained so far have two major deficiencies

1. The quadratic form Ė0[fR,w](Ψ) + 4Υ r−4m
r4 f |Ψ|2 fails to be positive definite in the

region 3m ≤ r ≤ 4m because of the potential term Υ r−4m
r4 f |Ψ|2.

2. The function f blows up logarithmically at r = 2m in (int)M.

In the next section we deal with the first issue. We handle the second problem in the
following two sections.
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10.1.8 Improved lower bound in (ext)M

Note that the term 4fΥ r−4m
r4 is negative for 3m ≤ r ≤ 4m and positive everywhere else.

An improvement can be obtained by using the following Poincaré inequality.

Lemma 10.1.18. We have for Ψ ∈ S2(M),∫
S

|∇/Ψ|2 ≥ 2r−2
(

1−O(ε)
)∫

S

Ψ2daS. (10.1.27)

Proof. See Proposition 2.1.32.

According to Proposition 10.1.16 we deduce,∫
S

Ė [fR,w](Ψ) ≥
∫
S

Ė1 −O(εr−3)

∫
S

Ψ2daS,

Ė1 := ∂rf |R(Ψ)|2 + r−2W |Ψ|2 + 2r−3

(
1− 3m

r

)
f |Ψ|2 + 4Υ

r − 4m

r4
f |Ψ|2,

(10.1.28)

with W defined in (10.1.25). It is easy to see however that Ė1 still fails to be positive
for 3m < r < 4m. To achieve positivity we also need to modify the original energy
density E [fR,w](Ψ) by considering instead the modified energy density E [fR,w,M ](Ψ)
(see (10.1.12) and notation (10.1.13)) with M = 2hR for a function h = h(r,m) supported
for r ≥ 3m and constant for r ≥ 4m.

E [fR,w,M ](Ψ) = E [fR,w](Ψ) +
1

4
Ḋµ(|Ψ|2Mµ) = E [fR,w](Ψ) +

1

4
(DµMµ)|Ψ|2 +

1

2
ΨM(Ψ)

= E [fR,w](Ψ) +
1

2
Dµ(hRµ)|Ψ|2 + hΨR(Ψ).

To take into account the additional terms in the modified E [fR,w,M ](Ψ) we first derive
the following.

Lemma 10.1.19. Let h(r,m) a C1 function of r and m. We have,

Dµ(hRµ) = r−2∂r(Υr
2h) +O

(
ε r−1u−1−δdec

trap

(
r|∂rh|+ |h|+ r|∂mh|

))
. (10.1.29)

Proof. In view of Lemma 10.1.7, which computes the components of (R)π, as well as
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Lemma 10.1.5 to compute R(h), we calculate,

Dµ(hRµ) = R(h) + h(DµRµ) =
1

2
(e4(h)−Υe3(h)) + h

1

2
tr ( (R)π)

=
1

2
(e4(r)−Υe3(r))∂rh+O(ε u−1−δdec

trap |∂mh|) +
1

2
h
(
− (R)π34 + (R)πθθ + (R)πϕϕ

)
= Υ∂rh+

1

2

(
4m

r2
+ 4

Υ

r

)
h+O

(
ε u−1−δdec

trap

(
|∂rh|+ r−1|h|+ |∂mh|

))
= r−2∂r(Υr

2h) +O
(
ε u−1−δdec

trap

(
|∂rh|+ r−1|h|+ |∂mh|

))
as desired.

In view of the lemma we write,

E [fR,w, 2hR](Ψ) = Ė [fR,w, 2hR](Ψ) + Eε[fR,w, 2hR](Ψ),

Ė [fR,w, 2hR](Ψ) : = Ė [fR,w](Ψ) +
1

2
r−2∂r(Υr

2h)|Ψ|2 + hΨR(Ψ),

Eε[fR,w, 2hR](Ψ) : = Eε[fR,w](Ψ) +O
(
r−1ε u−1−δdec

trap

(
r|∂rh|+ |h|+ r|∂mh|

))
|Ψ|2.

(10.1.30)

The main result of this section is stated below.

Proposition 10.1.20. There exists a function h = h(r,m) with bounded derivative h′,
supported in r ≥ 3m such that h = O(r−2), h′ = O(r−3) for for r ≥ 4m such that,

E [fR,w, 2hR](Ψ) = Ė [fR,w, 2hR](Ψ) + Eε[fR,w, 2hR](Ψ),

Eε[fR,w, 2hR](Ψ) = ε
1

2
Q · (X)π̈ +O

(
εr−3u−1−δdec

trap (|f |+ 1)
)
|Ψ|2,

(10.1.31)

and, for sufficiently large universal constant C > 0, in the region r ≥ 5m
2

,

∫
S

Ė [fR,w, 2hR](Ψ) ≥ C−1

∫
S

(
m2

r3
|R(Ψ)|2 + r−1

(
1− 3m

r

)2

|∇/Ψ|2 +
m

r4
|Ψ|2

)
.

(10.1.32)

Proof. We first derive the weaker inequality,∫
S

Ė [fR,w, 2hR](Ψ) ≥ C−1

∫
S

(
m2

r3
|R(Ψ)|2 +

m

r4
|Ψ|2

)
on r ≥ 5m

2
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by making full use of the Poincaré inequality above, i.e.,∫
S

r−1

(
1− 3m

r

)
f(r,m)|∇/Ψ|2 ≥

∫
S

(2−O(ε))r−3

(
1− 3m

r

)
f(r,m)|Ψ|2.

The result will the easily follow by writing instead, with a sufficiently small µ > 0,∫
S

r−1

(
1− 3m

r

)
f(r,m)|∇/Ψ|2

= µ

∫
S

r−1

(
1− 3m

r

)
f(r,m)|∇/Ψ|2 + (1− µ)

∫
S

r−1

(
1− 3m

r

)
f(r,m)|∇/Ψ|2

≥ µ

∫
S

r−1

(
1− 3m

r

)
f(r,m)|∇/Ψ|2 + (1− µ)

∫
S

2r−3

(
1− 3m

r

)
f(r,m)|Ψ|2

and then proceeding exactly as below.

We start with,

Ė [fR,w, 2hR](Ψ) = Ė [fR,w](Ψ) +
1

2
r−2∂r(Υr

2h)|Ψ|2 + hΨR(Ψ).

Recalling the definition of Ė1 in (10.1.28),

Ė1 := ∂rf |R(Ψ)|2 + r−2W |Ψ|2 + 2r−3

(
1− 3m

r

)
f |Ψ|2 + 4Υ

r − 4m

r4
f |Ψ|2

and setting,

Ė2 := Ė1 +
1

2
r−2(Υr2h)′|Ψ|2 + hΨR(Ψ) (10.1.33)

= ∂rf |R(Ψ)|2 + 2r−3

(
1− 3m

r

)
f |Ψ|2 + 4Υ

r − 4m

r4
f |Ψ|2 + r−2W |Ψ|2

+
1

2
r−2(Υr2h)′|Ψ|2 + hΨR(Ψ)

we deduce, from (10.1.28)∫
S

Ė [fR,w, 2hR](Ψ) ≥
∫
S

Ė2 −O(εr−3)

∫
S

|Ψ|2.

We now substitute,

h = 4Υr−4h̃.
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Hence,

1

2
r−2∂r(Υr

2h)|Ψ|2 + hΨR(Ψ) =
1

2
r−2∂r(4Υ2r−2h̃)|Ψ|2 + 4Υr−4h̃ΨR(Ψ)

=
1

2
r−2∂r(4Υ2r−2)h̃|Ψ|2 + 2r−4Υ2∂rh̃|Ψ|2 + 4Υr−4h̃ΨR(Ψ)

or, since 1
2
r−2∂r(4Υ2r−2) = −4r−2Υ r−4m

r4 ,

1

2
r−2∂r(Υr

2h)|Ψ|2 + hΨR(Ψ) = −4r−2Υ
r − 4m

r4
h̃|Ψ|2 + 2r−4Υ2∂rh̃|Ψ|2 + 4Υr−4h̃ΨR(Ψ).

Thus we have,

Ė2 = ∂rf |R(Ψ)|2 + 2r−3

(
1− 3m

r

)
f |Ψ|2 + 4Υ

r − 4m

r4
(f − r−2h̃)|Ψ|2

+ 2r−4Υ2∂rh̃|Ψ|2 + 4Υr−4h̃ΨR(Ψ) + r−2W |Ψ|2.

We also express,

4Υr−4h̃ΨR(Ψ) =
2h̃

r3
(R(Ψ) + Υr−1Ψ)2 − 2h̃

r3
|R(Ψ)|2 − 2h̃

r5
Υ2|Ψ|2

and therefore,

Ė2 = (∂rf − 2r−3h̃)|R(Ψ)|2 +
2h̃

r3
(R(Ψ) + Υr−1Ψ)2 + r−2W |Ψ|2

+

[
2r−3

(
1− 3m

r

)
f + 4Υ

r − 4m

r4
(f − r−2h̃) + 2r−4Υ∂rh̃− 2r−5Υ2h̃

]
|Ψ|2.

We choose h̃(r,m) as the following continuous and piecewise C1 function,

h̃ =



0, r ≤ 5m
2
,

δh̃
(

5m
2
− r
)
, 5m

2
≤ r ≤ 11m

4
,

δh̃(r − 3m), 11m
4
≤ r ≤ 3m,

r2f, 3m ≤ r ≤ 4m,

(4m)2f(4m,m), r ≥ 4m.

where the constant δh̃ > 0 will be chosen small enough. We consider the following cases:
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Case 1 (5m
2
≤ r ≤ 3m). In view of the definition of h̃ and since W = 0, we deduce,

Ė2 = ∂rf |R(Ψ)|2 +

[
2r−3

(
1− 3m

r

)
f + 4Υ

r − 4m

r4
(f − r−2h̃)

+2δh̃r
−4Υ2

(
1 11m

4
≤r≤3m − 1 5m

2
≤r≤ 11m

4

)]
|Ψ|2 + δh̃O(1)ΨR(Ψ)1 5m

2
≤r≤3m.

In view of (10.1.23), we may assume, choosing for δh̃ > 0 small enough, that

f − h̃ ≤ −1

2
|f | on r ≤ 3m. (10.1.34)

We infer, using also that f < 0 on r ≤ 3m,

Ė2 ≥ ∂rf |R(Ψ)|2 +

[
2r−3

(
1− 3m

r

)
f + 2Υ

r − 4m

r4
f

+2δh̃r
−4Υ2

(
1 11m

4
≤r≤3m − 1 5m

2
≤r≤ 11m

4

)]
|Ψ|2 + δh̃O(1)ΨR(Ψ)1 5m

2
≤r≤3m.

Since we have

∂rf & 1, 2r−3

(
1− 3m

r

)
+ 4Υ

r − 4m

r4
. −1, f . −

∣∣∣∣1− 3m

r

∣∣∣∣ on r ≤ 3m,

where we have used in particular Lemma 10.1.15 and Proposition 10.1.16, we infer

Ė2 & |R(Ψ)|2 +

(∣∣∣∣1− 3m

r

∣∣∣∣+ δh̃1 11m
4
≤r≤3m −O(1)δh̃1 5m

2
≤r≤ 11m

4

)
|Ψ|2

−δh̃O(1)ΨR(Ψ)1 5m
2
≤r≤3m

≥ 1

2
|R(Ψ)|2 +

(∣∣∣∣1− 3m

r

∣∣∣∣+ δh̃

(
1−O(1)δh̃

)
1 11m

4
≤r≤3m −O(1)δh̃1 5m

2
≤r≤ 11m

4

)
|Ψ|2.

Thus, for δh̃ > 0 small enough, the exists some large C > 0 such that

E2 ≥ C−1
[
|R(Ψ)|2 + |Ψ|2

]
on

5m

2
≤ r ≤ 3m. (10.1.35)

Case 2 (3m ≤ r ≤ 4m). Since h̃ = r2f and W = 0, using in particular h̃ ≥ 0 on
3m ≤ r ≤ 4m, we deduce,

Ė2 ≥ (∂rf − 2r−3(r2f))|R(Ψ)|2 +

[
2r−3

(
1− 3m

r

)
f + 2r−4Υ∂r(r

2f)− 2r−5Υ2(r2f)

]
|Ψ|2

= (∂rf − 2r−1f)|R(Ψ)|2 +

[
2r−3

(
1− 3m

r

)
f + 2r−4Υ2(2rf + r2∂rf)− 2r−3Υ2f

]
|Ψ|2

= (∂rf − 2r−1f)|R(Ψ)|2 +

[
2r−3

(
1− 3m

r

)
f + 2r−2Υ2∂rf + 2r−3Υ2f

]
|Ψ|2.
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Note that the second term is strictly positive. It remains to analyze the first term.

Lemma 10.1.21. In the interval [3m, 4m] we have,

∂rf − 2r−1f > 0.

Proof. Recall from Proposition 10.1.16 that w = r−2Υ∂r(r
2f) = 1

4m
in the interval

[3m, 4m]. Using also f = 0 on r = 3m, we deduce

∂r(r
2f) =

r2

Υ

1

4m
.

We compute

∂r

(
r2f − (r − 3m)r2

4mΥ

)
= −(r − 3m)

4m
∂r

(
r2

Υ

)
= −(r − 3m)(r − 4m)

2mΥ2

≤ 0 on 3m ≤ r ≤ 4m,

so that the differentiated quantity decays in r on [3m, 4m]. Since it vanishes on r = 3m,
we infer

f ≤ (r − 3m)

4mΥ
on 3m ≤ r ≤ 4m.

Thus, we deduce, using again ∂r(r
2f) = r2

Υ
1

4m
,

∂rf −
2

r
f = r−2

(
∂r(r

2f)− 4rf
)

=
1

4mΥ
− 4

r
f

≥ 1

4mΥ
− (r − 3m)

rmΥ

≥ 1

4mΥ

(
1− 4

(
1− 3m

r

))
> 0 on 3m ≤ r < 4m.

On the other hand, we have by direct check at r = 4m, using (10.1.21),(
∂rf −

2

r
f

)
r=4m

=
1

2m
− 1

m
fr=4m =

1

2m

(
1− C∗

8

)
> 0

since C∗ < 8. Hence, we infer

∂rf − 2r−1f > 0 on 3m ≤ r ≤ 4m

as desired.
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We thus conclude, for some C > 0, in the interval [3m, 4m]

Ė2 ≥ C−1
[
|R(Ψ)|2 + |Ψ|2

]
. (10.1.36)

Case 3 (r ≥ 4m). Since h̃ is constant and positive on r ≥ 4m, we deduce,

Ė2 ≥ (∂rf − 2r−3h̃)|R(Ψ)|2

+

[
2r−3

(
1− 3m

r

)
f + 4Υ

r − 4m

r4
(f − r−2h̃)− 2r−5Υ2h̃+ r−2W

]
|Ψ|2.

We examine the first term. In view of the formula for f for r ≥ 4m, see (10.1.21),

∂rf =
2

r3
(16− C∗)m2, h̃ = (4m)2f(4m,m) = C∗m

2

and hence

∂rf − 2r−3h̃ =
2(16− 2C∗)m2

r3

and hence, since C∗ < 8, we have

∂rf − 2r−3h̃ &
m2

r3
for r ≥ 4m.

It remains to analyze the sign of

2r−3

(
1− 3m

r

)
f + 4Υ

r − 4m

r4
(f − r−2h̃)− 2r−5Υ2h̃

=

[
2r−3

(
1− 3m

r

)
+ 4Υ

r − 4m

r4

]
(f − r−2h̃) +

[
2r−3

(
1− 3m

r

)
− 2r−3Υ2

]
r−2h̃.

The first term, which can be written in the form,[
2r−3

(
1− 3m

r

)
+ 4Υ

r − 4m

r4

]
r−2
(
r2f(r,m)− (4m)2f(4m,m)

)
is manifestly positive for r ≥ 4m. To evaluate the sign of the second term we calculate,

2r−3

(
1− 3m

r

)
− 2r−3Υ2 = 2mr−5(r − 4m).

Thus, for r ≥ 4m,

2r−3

(
1− 3m

r

)
f + 4Υ

r − 4m

r4
(f − r−2h̃)− 2r−5Υ2h̃ ≥ 0.
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Also, since W = m
r2

(
3− 8m

r

)
, we have

r−2W &
1

r4
.

Thus, in view of the above, we have for some C > 0 and for r ≥ 4m,

Ė2 ≥ C−1
[

1
r3 |R(Ψ)|2 + 1

r4 |Ψ|2
]
. (10.1.37)

Gathering (10.1.35), (10.1.36) and (10.1.37), we infer for some C > 0,

Ė2 ≥ C−1
[

1
r3 |R(Ψ)|2 + 1

r4 |Ψ|2
]

on r ≥ 5m
2
.

Recalling ∫
S

Ė [fR,w, 2hR](Ψ) ≥
∫
S

Ė2 −O(εr−3)

∫
S

|Ψ|2,

we infer∫
S

Ė [fR,w, 2hR](Ψ) ≥ C−1

∫
S

[
1

r3
|R(Ψ)|2 +

1

r4
|Ψ|2

]
−O(εr−3)

∫
S

|Ψ|2

and hence, for ε > 0 small enough,∫
S

Ė [fR,w, 2hR](Ψ) ≥ 1

2
C−1

∫
S

[
1

r3
|R(Ψ)|2 +

1

r4
|Ψ|2

]
on r ≥ 5m

2

as desired.

It remains to analyze the error term,

Eε[fR,w, 2hR](Ψ) = Eε[fR,w](Ψ) +O
(
r−1ε u−1−δdec

trap (r|∂rh|+ |h|+ r|∂mh|)
)
|Ψ|2

= ε
1

2
Q (X)π̈ +O(εr−3u−1−δdec

trap (|f |+ r2|∂rw|+ r3|∂2
rw|

+r2|∂r∂mw|+ r|∂2
mw|))|Ψ|2

+O
(
r−3ε u−1−δdec

trap (r3|∂rh|+ r2|h|+ r3|∂mh|)
)
|Ψ|2.

Recall that,

w =

{
1

4m
, for r ≤ 4m,

2
r

(
1− 2m

r

)
, for r ≥ 4m,
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and h = 4Υr−4h̃, with

h̃ =



0, r ≤ 5m
2
,

δh̃
(

5m
2
− r
)
, 5m

2
≤ r ≤ 11m

4
,

δh̃(r − 3m), 11m
4
≤ r ≤ 3m,

r2f, 3m ≤ r ≤ 4m,

(4m)2f(4m,m), r ≥ 4m.

We deduce,

Eε[fR,w, 2hR](Ψ) = εQ (X)π̈ +O
(
εr−3u−1−δdec

trap (|f |+ 1)
)

which concludes the proof of Proposition 10.1.20.

10.1.9 Cut-off correction in (int)M

So far we have found a triplet (X = fR,w = r−2Υ∂r (r2f) ,M = 2hR) with f defined in
Proposition 10.1.16 and h in Proposition 10.1.20 allowing for the lower bound (10.1.32)
on
∫
S
Ė [fR,w,M ](Ψ). The main problem which remains to be addressed is that

1. f blows up logarithmically near r = 2m.

2. The lower bound for
∫
S
Ė [fR,w, 2hR](Ψ) does not control e3(Ψ) near r = 2m.

In this section, we deal with the first problem, while the second problem will be treated
in section 10.1.10. To correct for the first problem, i.e. the fact that f blows up logarith-
mically near r = 2m, we have to modify our choice of f and w there. Introducing

u := r2f,

we have,

f = r−2u, w = r−2Υ∂ru. (10.1.38)

Warning. The auxiliary function u introduced here, and used only in this section, has
of course nothing to do with our previously defined optical function on (ext)M.
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Definition 10.1.22. For a given δ̂ > 0 we define the following functions of (r,m)

uδ̂ := −m
2

δ̂
F

(
− δ̂

m2
u

)
, fδ̂ := r−2uδ̂,

wδ̂ := r−2Υ∂ruδ̂, Wδ̂ := −1

4
∂r
(
r2Υ∂rwδ̂

)
,

where F : R −→ R is is a fixed, increasing, smooth function such that

F (x) =

{
x for x ≤ 1,

2 for x ≥ 3.

We now derive useful properties satisfied by fδ̂, wδ̂ and Wδ̂.

Lemma 10.1.23. Let fδ̂, wδ̂ and Wδ̂ introduced in definition 10.1.22. Then, fδ̂ ∈ C2(r >

0), wδ̂ ∈ C1(r > 0), and we have for δ̂ > 0 sufficiently small

fδ̂ = f wδ̂ = w, Wδ̂ = W for r ≥ 5m

2
.

Also, we have for all r > 0

r−1fδ̂

(
1− 3m

r

)
≥ C−1r−1

(
1− 3m

r

)2

(10.1.39)

and

∂r(fδ̂) ≥
16m2

r3
. (10.1.40)

Proof. Note first that

wδ̂ = r−2Υ∂ruδ̂ = r−2ΥF ′
(
− δ̂

m2
u

)
∂ru = wF ′

(
− δ̂

m2
u

)
.

In view of the definition of uδ̂, fδ̂, wδ̂ and Wδ̂, we have

uδ̂ = u, fδ̂ = f, wδ̂ = w, Wδ̂ = W for u ≥ −m
2

δ̂
,

uδ̂ = −2m2

δ̂
, fδ̂ = −2m2

δ̂r2
, wδ̂ = 0, Wδ̂ = 0 for u ≤ −3m2

δ̂
.
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Also, according to (10.1.22)

u =

{
2m2 log r−2m

m
+O(m(r − 3m)), for r ≤ 4m,

r2 +O(m2), for r ≥ 4m,

and hence, for δ̂ > 0 sufficiently small{
r ≥ 2m+ e−

1

3δ̂

}
∪
{
u ≥ −m

2

δ̂

}
,

{
r ≤ 2m+ e−

2

δ̂

}
⊂
{
u ≤ −3m2

δ̂

}
.

This yields

fδ̂ = f wδ̂ = w, Wδ̂ = W for r ≥ 5m

2
.

Also, we have

fδ̂ =

{
−2m2

δ̂r2
, for r ≤ 2m+ e−

2

δ̂ ,

f, for r ≥ 2m+ e−
1

3δ̂ ,

and

fδ̂ &
1

δ̂
on 2m+ e−

2

δ̂ ≤ r ≤ 2m+ e−
1

3δ̂ ,

and thus, there exists C > 0 such that, for all r > 0,

r−1fδ̂

(
1− 3m

r

)
≥ C−1r−1

(
1− 3m

r

)2

which is (10.1.39).

For u ≤ −3m2

δ̂
,

∂r(fδ̂) = ∂r(r
−2uδ̂) = −2r−3uδ̂ + r−2∂r(uδ̂) =

4m2

δ̂
r−3.

For −3m2

δ̂
≤ u ≤ −m2

δ̂

∂r(fδ̂) = ∂r(r
−2uδ̂) = −2r−3uδ̂ + r−2∂r(uδ̂)

= −2r−3uδ̂ + r−2F ′
(
− δ̂

m2
u

)
∂ru

= −2r−3uδ̂ + r−2F ′
(
− δ̂

m2
u

)
r2Υ−1w,
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and since w ≥ 0 and F ′ ≥ 0, we deduce

∂r(fδ̂) ≥ −2r−3uδ̂ ≥ 2δ̂−1m2r−3.

For u ≥ −m2

δ̂
, using Lemma 10.1.15, we have

∂r(fδ̂) = ∂rf ≥
16m2

r3
.

Hence, for all r ≥ 2m, δ̂ > 0 sufficiently small,

∂r(fδ̂) ≥
16m2

r3

which is (10.1.40).

It remains to evaluate Wδ̂. This is done in the following lemma.

Lemma 10.1.24. Let

W δ̂(r,m) := 1r≤ 5m
2
|Wδ̂|. (10.1.41)

Then, W δ̂ is supported, for δ > 0 small enough, in the region

2m+ e−
2

δ̂ ≤ r ≤ 9m

4
.

Moreover its primitive,

W̃δ̂(r,m) :=

∫ r

2m

W δ̂(r
′,m)dr′ (10.1.42)

verifies the pointwise estimate

W̃δ̂(r,m) . δ̂. (10.1.43)

Proof. Recall that we have chosen w = 1
4m

to be constant in the region r ≤ 4m. Hence,
in that region,

wδ̂ =
1

4m
F ′
(
− δ̂

m2
u

)
, ∂rwδ̂ =

1

4m
∂r

(
F ′
(
− δ̂

m2
u

))
.

Hence,

Wδ̂ = −1

4
r−2∂r

(
1

4m
r2Υ∂r

(
F ′
(
− δ̂

m2
u

)))
= − 1

16m
r−2∂r

(
r2Υ∂r

(
F ′
(
− δ̂

m2
u

)))
.
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Now, setting δ0 = δ̂
m2 for convenience below,

r−2∂r
(
r2Υ∂r (F ′ (−δ0u))

)
= −δ0F

′′(−δ0u)r−2∂r
(
r2Υ∂ru

)
+ δ2

0F
′′′(−δ0u)Υ(∂ru)2.

Note that, since r−2Υ∂ru = w and w = (4m)−1 is constant in r in the region of interest

r−2∂r
(
r2Υ∂ru

)
= r−2∂r

(
r4r−2Υ∂ru

)
= r−2∂r

(
r4

4m

)
=

r

m
.

Hence,

r−2∂r
(
r2Υ∂r (F ′ (−δ0u))

)
= −δ0F

′′(−δ0u)r−2∂r
(
r2Υ∂ru

)
+ δ2

0F
′′′(−δ0u)Υ(∂ru)2

= −δ0F
′′(−δ0u)

r

m
+ δ2

0F
′′′(−δ0u)Υ(∂ru)2.

Hence, for r ≤ 4m, with δ0 = δ̂
m2 ,

|Wδ̂| . δ2
0|Υ||F ′′′(−δ0u)|(∂ru)2 + δ0|F ′′(−δ0u)|

or, since |∂ru| . 1
r−2m

, in the region of interest,

|Wδ̂| .
δ2

0

|r − 2m| |F
′′′(−δ0u)|+ δ0|F ′′(−δ0u)|.

Since F ′′(−δ0u), F ′′′(−δ0u) are supported in the region 1 ≤ −δ0u ≤ 3, i.e. − 3
δ0
≤ u ≤ − 1

δ0
,

for δ̂ > 0 sufficiently small

e−
2

δ̂ ≤ r − 2m ≤ e−
1

3δ̂ ≤ m

4
.

Hence,

W δ̂ = 1r≤ 5
2
m |Wδ̂| . δ̂

(
δ

r − 2m
+ 1

)
κδ̂ (r − 2m)

with κδ̂(x) the characteristic function of the interval [e−
2

δ̂ , e−
1

3δ̂ ]. Note that the primitive
of W δ̂, i.e.

W̃δ̂(r,m) =

∫ r

2m

W δ̂(r
′,m)dr′,

is a positive, increasing function. Moreover,

W̃δ̂(r) .
∫ 4m

2m

W δ̂(r)dr . δ + δ2

∫ e
− 1

3δ̂

e
− 2
δ̂

1

x
dx . δ

as desired.
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We now recall that, see (10.1.16),

Ė [fR,w](Ψ) = Ė0[fR,w](Ψ) + 4Υ
r − 4m

r4
f |Ψ|2,

Ė0[fR,w](Ψ) = ∂rf |R(Ψ)|2 + r−2W |Ψ|2 + r−1

(
1− 3m

r

)
fQ̂34.

Using the functions fδ̂, wδ̂ and Wδ̂ introduced in definition 10.1.22, we have

Ė0[fδ̂R,wδ̂](Ψ) =
1

r
fδ̂

(
1− 3m

r

)
Q̂34 + ∂r(fδ̂)|RΨ|2 +Wδ̂|Ψ|2.

Note that in view of the estimates (10.1.39) (10.1.40), and Lemma 10.1.24, we immediately

deduce the existence of a constant C > 0 independent of δ̂ such that

Ė [fδ̂R,wδ̂](Ψ) ≥ C−1
[
|RΨ|2 + |∇/Ψ|2 + Υ|Ψ|2

]
−W δ̂|Ψ|2 on r ≤ 5m

2
.(10.1.44)

where W δ̂ is a non-negative potential supported in the region 2m+ e−
2

δ̂ ≤ r ≤ 9m
4

, whose

primitive W̃δ̂(r) =
∫ r

2m
W δ̂(r

′m)dr′ verifies W̃δ̂ . δ̂. Combining this with estimates of the
previous section we derive the following.

Proposition 10.1.25. There exists a constant C > 0, and for any small enough δ̂ > 0,
there exists functions fδ̂ ∈ C2(r > 0), wδ̂ ∈ C1(r > 0) and h ∈ C2(r > 0) verifying, for
all r > 0,

|fδ̂(r)| . δ̂−1, wδ̂ . r−1, h . r−4,

such that

E [fδ̂R,wδ̂, 2hR](Ψ) = Ė [fδ̂R,wδ̂, 2hR] + Eε[fδ̂R,wδ̂, 2hR](Ψ)

satisfies∫
S

Ė [fδ̂R,wδ̂, 2hR] ≥ C−1

∫
S

(
m2

r3
|R(Ψ)|2 + r−1

(
1− 3m

r

)2(
|∇/Ψ|2 +

m2

r2
|TΨ|2

)
+
m

r4
|Ψ|2

)
−

∫
S

W δ̂|Ψ|2,

Eε[fδ̂R,wδ̂, 2hR] = ε
1

2
Q · (f

δ̂
R)π̈ +O(r−3u−1−δdec

trap (1 + |fδ̂|))|Ψ|2,

where W δ̂ is non-negative, supported in the region 2m+ e−
2

δ̂ ≤ r ≤ 9m
4

, and such that its

primitive W̃δ̂(r) =
∫ r

2m
W δ̂ verifies W̃δ̂ . δ̂.
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Proof. We choose h to be the function of (r,m) introduced in Proposition 10.1.20, fδ̂ to
be the function of (r,m) introduced in definition 10.1.22, and W δ̂, introduced in Lemma
10.1.24. Also, by an abuse of notation, we denote by wδ̂,0 the function denoted by wδ̂ in

definition 10.1.22. Then, combining Proposition 10.1.20 in the region r ≥ 5m
2

with the
estimate (10.1.44) in the region r ≤ 5m

2
, we immediately obtain∫

S

Ė [fδ̂R,wδ̂,0, 2hR] ≥ C−1

∫
S

(
m2

r3
|R(Ψ)|2 + r−1

(
1− 3m

r

)2

|∇/Ψ|2 +
m

r4
|Ψ|2

)
−
∫
S

W δ̂|Ψ|2. (10.1.45)

(10.1.45) corresponds to the desired estimate without the presence of the term |TΨ|2 on
the right hand side. To get the improved estimate of Proposition 10.1.25, we set

wδ̂ := wδ̂,0 − δ1w1, (10.1.46)

for a small parameter δ1 > 0 to be chosen later, where wδ̂,0 is our previous choice intro-
duced in definition 10.1.22, and where

w1(r,m) := r−1m
2

r2
Υ

(
1− 3m

r

)2

. (10.1.47)

We evaluate (modulo the same type of error terms as before which we include in Eε),

Ė [fδ̂R,wδ̂, 2hR](Ψ) = Ė [Xδ̂, wδ̂,0, 2hR]− 1

2
δ1w1L(Ψ) +

δ1

4
|Ψ|2r−2∂r(r

2Υ∂rw1).

Now, since

L(Ψ) = −e3Ψ · e4Ψ + |∇/Ψ|2 + V |Ψ|2
= Υ−1

(
−|TΨ|2 + |RΨ|2

)
+ |∇/Ψ|2 + V |Ψ|2,

we have,

−1

2
δ1w1L(Ψ) +

δ1

4
|Ψ|2r−2∂r(r

2Υ∂rw1)

= −1

2
δ1r
−1m

2

r2
Υ

(
1− 3m

r

)2

L(Ψ) +
δ1

4
|Ψ|2r−2∂r

(
r2Υ∂r

(
r−1m

2

r2
Υ

(
1− 3m

r

)2
))

=
1

2
δ1r
−1

(
1− 3m

r

)2
m2

r2
|TΨ|2 +O(δ1)

(
m2

r3
|R(Ψ)|2 + r−1

(
1− 3m

r

)2

|∇/Ψ|2 +
m

r4
|Ψ|2

)
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and hence

Ė [fδ̂R,wδ̂, 2hR](Ψ) = Ė [Xδ̂, wδ̂,0, 2hR] +
1

2
δ1r
−1

(
1− 3m

r

)2
m2

r2
|TΨ|2 (10.1.48)

+O(δ1)

(
m2

r3
|R(Ψ)|2 + r−1

(
1− 3m

r

)2

|∇/Ψ|2 +
m

r4
|Ψ|2

)
.

The desired estimate now follows from (10.1.45) and (10.1.48) provided δ1 > 0 is chosen
small enough compared to the constant C > 0 of (10.1.45) so that the last term O(δ1) in
the above identity can be absorbed.

10.1.10 The red shift vectorfield

Note that the vectorfields T and R become both proportional to e4 for Υ = 0 which means
that the estimate of Proposition 10.1.25 degenerates along Υ = 0, i.e. it does not control
e3(Ψ) there. In this section we make use of the Dafermos-Rodnianski red shift vectorfield
to compensate for this degeneracy. The crucial ingredient here is the favorable sign of ω
in a small neighborhood of r = 2m.

Lemma 10.1.26. Let π(3), π(4) denote the deformation tensors of e3, e4. In the region
r ≤ 3m all components are O(ε) with the exception of,

π
(3)
44 = −8ω =

8m

r2
+O(ε), π

(3)
θθ = κ+ ϑ = −2

r
+O(ε),

π(3)
ϕϕ = κ− ϑ = −2

r
+O(ε),

π
(4)
34 = 4ω = −4m

r2
+O(ε), π

(4)
θθ = κ+ ϑ =

2Υ

r
+O(ε),

π(4)
ϕϕ = κ− ϑ =

2Υ

r
+O(ε).

Proof. Immediate verification in view of our assumptions.

Lemma 10.1.27. Given the vectorfield,

Y = a(r,m)e3 + b(r,m)e4, (10.1.49)

and assuming

sup
r≤3m

(
|a|+ |∂ra|+ |∂ma|+ |b|+ |∂rb|+ |∂mb|

)
. 1,
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we have, for r ≤ 3m,

Qαβ (Y )παβ =

(
2m

r2
a−Υ∂ra

)
Q33 + ∂rbQ44 +

(
∂ra−

2m

r2
b−Υ∂rb

)
Q34

+
2

r
(bΥ− a)e3Ψ · e4Ψ + 8

Υ

r3
(a−Υb)|Ψ|2

+ O(ε)
(
|Q(Ψ)|+ r−2|Ψ|2

)
.

Moreover, with the notation (10.1.14),

E [Y, 0](Ψ) =
1

2
Qαβ (Y )παβ + 4

r − 3m

r4
(−a+ bΥ)|Ψ|2 +O(ε)r−2|Ψ|2. (10.1.50)

Proof. In view of

|e4(r)−Υ, e3(r) + 1| . ε

Lemma 10.1.5, and the assumptions on the derivatives of a and b w.r.t. (r,m), we have

e4(a) = Υ∂ra+O(ε), e3(a) = −∂ra+O(ε),

e4(b) = Υ∂rb+O(ε), e3(b) = −∂rb+O(ε), eθ(a) = eθ(b) = 0.

We infer,

Qαβ (Y )παβ = aQαβ π(3)
αβ − (Q33e4a+Q43e3a) + bQαβ π(4)

αβ − (Q34e4b+Q44e3b) +O(ε)|Q(Ψ)|
= aQαβ π(3)

αβ + bQαβ π(4)
αβ −Q33Υ∂ra−Q34 (−∂ra+ Υ∂rb) +Q44∂rb+O(ε)|Q(Ψ)|.

Note that,

Qθθ +Qϕϕ = e3Ψ · e4Ψ− V |Ψ|2 = e3Ψ · e4Ψ− 4
Υ

r2
|Ψ|2 +O(ε)r−2|Ψ|2. (10.1.51)

Hence,

Qαβ π(3)
αβ = Q44 π

(3)
44 +Qθθ π(3)

θθ +Qϕϕ π(3)
ϕϕ +O(ε)|Q(Ψ)|

=
1

4
Q33

8m

r2
− 2

r
(Qθθ +Qϕϕ) +O(ε)|Q(Ψ)|

=
2m

r2
Q33 −

2

r
e3Ψ · e4Ψ + 8

Υ

r3
|Ψ|2 +O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
,

Qαβ π(4)
αβ = 2Q34 π

(4)
34 +Qθθ π(4)

θθ +Qϕϕ π(4)
ϕϕ +O(ε)|Q(Ψ)|

=
1

2
Q34(−4

m

r2
) +

2Υ

r
(Qθθ +Qϕϕ) +O(ε)|Q(Ψ)|

= −2m

r2
Q34 +

2Υ

r
e3Ψ · e4Ψ− 8

Υ2

r3
|Ψ|2 +O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
.



10.1. BASIC MORAWETZ ESTIMATES 711

Therefore,

Qαβ (Y )παβ = a

[
2m

r2
Q33 −

2

r
e3Ψe4Ψ + 8

Υ

r3
|Ψ|2

]
+ b

[
−2m

r2
Q34 +

2Υ

r
e3Ψ · e4Ψ− 8

Υ2

r3
|Ψ|2

]
− Q33Υ∂ra−Q34 (−∂ra+ Υ∂rb) +Q44∂rb+O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
=

(
2m

r2
a−Υ∂ra

)
Q33 +Q44∂rb+

2

r
(bΥ− a)e3Ψe4Ψ +

(
∂ra−

2m

r2
b−Υ∂rb

)
Q34

+ 8
Υ

r3
(a−Υb)|Ψ|2 +O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
.

To prove the second part of the lemma we recall (see (10.1.14)),

E [Y, 0](Ψ) =
1

2
Qαβ (Y )παβ −

1

2
Y (V )|Ψ|2

and, relying on Lemma 10.1.5, we have on r ≤ 3m

Y (V ) = (−a+ bΥ)∂rV +O(ε) = (−a+ bΥ)

(
−8

r − 3m

r4

)
+O(ε)

which concludes the proof of the lemma.

Corollary 10.1.28. If we choose,

a(2m,m) = 1, b(2m,m) = 0, ∂ra(2m,m) ≥ 1

4m
, ∂rb(2m,m) ≥ 5

4m
,

then, at r = 2m, we have

Qαβ (Y )παβ ≥
1

4m
(|e3Ψ|2 + |e4Ψ|2 +Q34) +O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
(10.1.52)

and,

E [Y, 0](Ψ) ≥ 1

8m

(
|e3Ψ|2 + |e4Ψ|2 +Q34 +

1

m2
|Ψ|2

)
+O(ε)

(
|Q(Ψ)|+r−2|Ψ|2

)
. (10.1.53)

Moreover the estimates remain true if we add to Y a multiple of T = 1
2

(e4 + Υe3).

Proof. Recall from Lemma 10.1.27 that we have, for r ≤ 3m,

Qαβ (Y )παβ =

(
2m

r2
a−Υ∂ra

)
Q33 + ∂rbQ44 +

(
∂ra−

2m

r2
b−Υ∂rb

)
Q34

+
2

r
(bΥ− a)e3Ψ · e4Ψ + 8

Υ

r3
(a−Υb)|Ψ|2 +O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
.
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Hence, at r = 2m, using Υ = 0, a = 1, b = 0, ∂ra ≥ (4m)−1 and ∂rb ≥ 5(4m)−1, we
deduce

Qαβ (Y )παβ =
1

2m
Q33 + ∂rbQ44 + ∂raQ34 −

1

m
e3Ψ · e4Ψ +O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
≥ 1

2m
|e3(Ψ)|2 +

5

4m
|e4(Ψ)|2 +

1

4m
Q34 −

1

m
e3Ψ · e4Ψ +O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
from which the desired lower bound in (10.1.52) follows.

Also, at r = 2m, using (10.1.50), Υ = 0, a = 1, and b = 0, we have

E [Y, 0](Ψ) =
1

2
Qαβ (Y )παβ + 4

r − 3m

r4
(−a+ bΥ)|Ψ|2 +O(ε)r−2|Ψ|2

=
1

2
Qαβ (Y )παβ +

1

4m3
|Ψ|2

≥ 1

8m

(
|e3Ψ|2 + |e4Ψ|2 +Q34 +

1

m2
|Ψ|2

)
+O(ε)

(
|Q(Ψ)|+ r−2|Ψ|2

)
which yields (10.1.53).

We are now ready to prove the following result.

Proposition 10.1.29. Given a small parameter δH > 0 there exists a smooth vectorfield

YH supported in the region |Υ| ≤ 2δ
1
10
H such that the following estimate holds,

E [YH, 0](Ψ) ≥ 1

16m
1
|Υ|≤δ

1
10
H

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
− 1

m
δ
− 1

10
H 1

δ
1
10
H ≤Υ≤2δ

1
10
H

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
+ O(ε)1

|Υ|≤2δ
1
10
H

(
|Q(Ψ)|+m−2|Ψ|2

)
.

Moreover, for |Υ| ≤ δ
1
10
H , we have

YH = e3 + e4 +O(δ
1
10
H )(e3 + e4).

Proof. We introduce the vectorfield

Y(0) := ae3 + be4 + 2T, a(r,m) := 1 +
5

4m
(r − 2m), b(r,m) :=

5

4m
(r − 2m),
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with T = 1
2
(e4 + Υe3). Also, we pick positive bump function κ = κ(r), supported in the

region in [−2, 2] and equal to 1 for [−1, 1] and define, for sufficiently small δH > 0.

YH := κHY(0), κH := κ

(
Υ

δ
1
10
H

)
. (10.1.54)

We have

E [YH, 0](Ψ) = Q · (YH)π − YH(V )|Ψ|2
= κHQ · (Y0)π +Q(Y(0), dκH) + κHY(0)(V )|Ψ|2

= κHE [Y(0), 0](Ψ) +O(δ
− 1

10
H )1

δ
1
10
H ≤Υ≤2δ

1
10
H

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
.

Note from the definition of Y(0) and the choice of a and b that Corollary 10.1.28 applies
to Y(0). In particular, we deduce from (10.1.53) for δH > 0 small enough,

E [YH, 0](Ψ) ≥ 1

16m
1
|Υ|≤δ

1
10
H

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
− 1

m
δ
− 1

10
H 1

δ
1
10
H ≤Υ≤2δ

1
10
H

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
+ O(ε)1

|Υ|≤2δ
1
10
H

(
|Q(Ψ)|+m−2|Ψ|2

)
as desired.

10.1.11 Combined estimate

We consider the combined Morawetz triplet

(X,w,M) := (Xδ̂, wδ̂, 2hR) + εH(YH, 0, 0), (10.1.55)

with εH > 0 sufficiently small to be determined later. Here (Xδ̂ = fδ̂R,wδ̂, 2hR) is the
triplet given by Proposition 10.1.25 and YH the vectorfield of Proposition 10.1.29.

Recall, see Proposition 10.1.25, that Ėδ̂ := Ė [fδ̂R,wδ̂, 2hR](Ψ) verifies,∫
S

Ėδ̂ ≥ C−1

∫
S

(
m2

r3
|R(Ψ)|2 +

(
1− 3m

r

)2

r−1

(
Q̂34 +

m2

r2
|TΨ|2

)
+ Υ

m

r4
|Ψ|2

)
−

∫
S

W δ̂|Ψ|2.
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According to Proposition 10.1.29, we write for EH = E(YH, 0, 0)(Ψ),

EH = ĖH + EH,ε,
ĖH ≥ 1

8m
1
|Υ|≤δ

1
10
H

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
− 1

m
δ
− 1

10
H 1

δ
1
10
H ≤Υ≤2δ

1
10
H

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
,

EH,ε = O(ε)
(
|Q(Ψ)|+m−2|Ψ|2

)
1
|Υ|≤2δ

1
10
H

.

Note that, for |Υ| ≥ δ
1
10
H we have,

|RΨ|2 + |TΨ|2 =
1

2
(|e4Ψ|2 + Υ2|e3Ψ|2) ≥ 1

2
δ

1
5
H(|e4Ψ|2 + |e3Ψ|2).

We now proceed to find a lower bound for the expression Ėδ̂ + εHĖH. For brevity the S
integration is omitted below.

Region δ
1
10
H ≤ |Υ| ≤ 2δ

1
10
H .

Ėδ̂ + εHĖH ≥ m−1C−1
[
δ

1
5
H(|e4Ψ|2 + |e3Ψ|2) +m−2|Ψ|2 + |∇/Ψ|2

]
−W δ̂|Ψ|2

− εH
1

m
δ
− 1

10
H

(
|e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 +m−2|Ψ|2

)
.

Therefore, choosing εH ≤ (2C)−1δ
3
10
H , we deduce,

Ėδ̂ + εHĖH ≥ m−1δ
1
5
H(2C)−1

(
|e4Ψ|2 + |e3Ψ|2 + |∇/Ψ|2 +m−2|Ψ|2

)
−W δ̂|Ψ|2.

Region |Υ| ≤ δ
1
10
H .

εHĖH + Ėδ̂ ≥ εH
1

16m

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
−W δ̂|Ψ|2.

Region Υ ≥ 2δ
1
10
H . In this region Ėδ̂ + εHĖH = Ėδ̂. Hence (ignoring the S-integration),

Ėδ̂ + εHĖH ≥ C−1

(
m2

r3
|R(Ψ)|2 +

(
1− 3m

r

)2

r−1

(
Q̂34 +

m2

r2
|TΨ|2

)
+
m

r4
|Ψ|2

)
− W δ̂|Ψ|2.
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To combine these three cases together we modify the vectorfields R, T near r = 2m
according to (5.1.11), i.e.

R̆ := θ
1

2
(e4 − e3) + (1− θ)Υ−1R =

1

2

[
θ̆e4 − e3

]
,

T̆ := θ
1

2
(e4 + e3) + (1− θ)Υ−1T =

1

2

[
θ̆e4 + e3

]
,

where θ a smooth bump function equal 1 on |Υ| ≤ δ
1
10
H vanishing for |Υ| ≥ 2δ

1
10
H , and

where

θ̆ = θ + Υ−1(1− θ) =

{
1, for |Υ| ≤ δ

1
10
H ,

Υ−1, for |Υ| ≥ 2δ
1
10
H .

Note that

2(|R̆Ψ|2 + |T̆Ψ|2) = |e3Ψ|2 + θ̆2|e4Ψ|2.

Thus in the region |Υ| ≤ δ
1
10
H we have |e3Ψ|2 + |e4Ψ|2 = 2(|R̆Ψ|2 + |T̆Ψ|2) and therefore,

Ėδ̂ + εHĖH ≥ εH
1

16m

(
|e3Ψ|2 + |e4Ψ|2 + Q̂34 +m−2|Ψ|2

)
−W δ̂|Ψ|2

= εH
1

16m

(
|R̆Ψ|2 + |T̆Ψ|2 + Q̂34 +m−2|Ψ|2

)
−W δ̂|Ψ|2.

In the region δ
1
10
H ≤ |Υ| ≤ 2δ

1
10
H , we have |R̆Ψ|2 + |T̆Ψ|2 . |e3Ψ|2 + δ

− 1
5
H |e4Ψ|2. Hence, for

εH ≤ (2C)−1δ
3
10
H , we deduce,

Ėδ̂ + εHĖH ≥ m−1δ
1
5
H(2C)−1

(
|e4Ψ|2 + |e3Ψ|2 + |∇/Ψ|2 +m−2|Ψ|2

)
−W δ̂|Ψ|2

≥ m−1δ
1
5
H(2C)−1

(
δ

1
5
H

(
|R̆Ψ|2 + |T̆Ψ|2

)
+ |∇/Ψ|2 +m−2|Ψ|2

)
−W δ̂|Ψ|2.

Finally, for Υ ≥ 2δ
1
10
H we have R̆ = Υ−1R, T̆ = Υ−1T . Hence,

Ėδ̂ + εHĖH ≥ C−1

(
m2

r3
|R(Ψ)|2 +

(
1− 3m

r

)2

r−1

(
Q̂34 +

m2

r2
|TΨ|2

)
+ Υ

m

r4
|Ψ|2

)
− W δ̂|Ψ|2

≥ C−1

(
δ

1
5
H
m2

r3
|R̆(Ψ)|2 +

(
1− 3m

r

)2

r−1

(
Q̂34 + δ

2
10
H
m2

r2
|T̆Ψ|2

)
+ Υ

m

r4
|Ψ|2

)
− W δ̂|Ψ|2.

We deduce the following.
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Proposition 10.1.30. Let C > 0 the constant of Proposition 10.1.25. Consider the
combined Morawetz triplet

(X,w,M) := (Xδ̂, wδ̂, 2hR) + εH(YH, 0, 0), (10.1.56)

with C−1δ
2
5
H ≤ εH ≤ (2C)−1δ

3
10
H where, for given fixed δ̂ > 0, (Xδ̂, wδ̂, 2hR) is the triplet of

Proposition 10.1.25 and YH the vectorfield of Proposition 10.1.29, supported in |Υ| ≤ 2δ
1
10
H

with δH > 0 sufficiently small, independent of δ̂. Let Ėδ̂, ĖH be the principal parts of
E [fδ̂R,wδ̂, 2hR](Ψ) and respectively EH[YH, 0, 0](Ψ) and Eδ̂,ε, EH,ε the corresponding error
terms, i.e.,

E [fδ̂R,wδ̂, 2hR](Ψ) = Ėδ̂ + Eδ̂,ε, EH[YH, 0, 0](Ψ) = ĖH + EH,ε.

Then, provided δH > 0 is sufficiently small, we have

1. In the region −2δ
1
10
H ≤ Υ, r ≤ 5m

2
, we have with a constant Λ−1

H := C−1δ
2
5
H > 0∫

S

(Ėδ̂ + εHĖH) ≥ m−1Λ−1
H

∫
S

(
|R̆(Ψ)|2 + |T̆Ψ|2 + |∇/Ψ|2 +m−2|Ψ|2

)
−
∫
S

W δ̂|Ψ|2.

2. In the region r ≥ 5m
2

, where Ėδ̂+εHĖH = Ėδ̂ and W δ̂ = 0, we have the same estimate
as in Proposition 10.1.25, i.e.∫
S

(Ėδ̂ + εHĖH) ≥ C−1

∫
S

(
m2

r3
|R(Ψ)|2 + r−1

(
1− 3m

r

)2(
|∇/Ψ|2 +

m2

r2
|TΨ|2

)
+
m

r4
|Ψ|2

)
.

3. The ε-error terms verify the upper bound estimate,

Eδ̂,ε + εHEH,ε . Cεδ̂−1u−1−δdec
trap

[
r−2|e3Ψ|2 + r−1(|e4Ψ|2 + |∇/Ψ|2)

]
+ Cεδ̂−1u−1−δdec

trap r−1|e3Ψ| (|e4Ψ|+ |∇/Ψ|) + Cεδ̂−1u−1−δdec
trap r−3|Ψ|2.

Proof. It only remains to check the last part. In view of Proposition 10.1.20 we have,

Eδ̂,ε = Eε[fδ̂R,wδ̂, 2hR](Ψ) = ε
1

2
Q · (X

δ̂
)π̈ +O

(
εr−3u−1−δdec

trap (|fδ̂|+ 1)
)
|Ψ|2

and |fδ̂| . δ̂−1. Hence,

Eδ̂,ε = Eε[fδ̂R,wδ̂, 2hR](Ψ) = ε

(
1

2
Q · Xδ̂ π̈ +O(δ̂−1r−3u−1−δdec

trap )|Ψ|2
)
.
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We write with π̈ =(X
δ̂
) π̈ for simplicity,

Q · π̈ =
1

4
(Q33π̈44 + 2Q34π̈34 +Q44π̇33)− 1

2
(QA3π̈A4 +QA4π̈A3) +QABπ̈AB.

Thus, recalling part 1 and 2 of Proposition 10.1.9, and Lemma 10.1.8,

Q · π̈ . r−2u−1−δdec
trap |e3Ψ|2 + r−1u−1−δdec

trap

(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ r−1u−1−δdec

trap |e3Ψ| (|e4Ψ|+ |∇/Ψ|) .

Finally, since r ∼ 2m and utrap = 1 on |Υ| ≤ 2δ
1
10
H , the error terms generated by the red

shift vectorfield YH,

EH,ε = O(ε)1
|Υ|≤2δ

1
10
H

(
|Q(Ψ)|+m−2|Ψ|2

)
can easily be absorbed on the right hand side to derive the desired estimate.

Elimination of W δ̂

We now proceed to eliminate the potential W δ̂ by a procedure analogous to that used in
section 10.1.8. More precisely we set, in view of (10.1.14),

Eδ̂ = E [fδ̂R,wδ̂, 2hR](Ψ), E ′
δ̂

= E [fδ̂R,wδ̂, 2(hR + h2R̆)](Ψ),

and,

E ′
δ̂

= Eδ̂ + h2ΨR̆Ψ +
1

2
Dµ(h2R̆µ)|Ψ|2,

where h2 is a smooth, compactly supported function supported8 in the region r ≤ 9m
4

.

Thus, we have in view of Proposition 10.1.30, ignoring the integration on S,

Ė ′
δ̂

+ εHĖH = Ėδ̂ + εHĖH + h2ΨR̆Ψ +
1

2
Dµ(h2R̆µ)|Ψ|2

≥ I(Ψ) +m−1Λ−1
H

(
1

2
|R̆(Ψ)|2 + |T̆Ψ|2 + |∇/Ψ|2 +m−2|Ψ|2

)
(10.1.57)

where,

I(Ψ) : =
1

2
Λ−1
H m

−1|R̆(Ψ)|2 + Ψh2R̆Ψ +
1

2
Dµ(h2R̆µ)|Ψ|2 −W δ̂|Ψ|2

8Recall that W δ̂ is supported is supported in the region 2m < r ≤ 5m
2 .
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so that we have

I(Ψ) ≥ 1

2

[
Dµ(h2R̆µ)− 2W δ̂ −mΛHh

2
2

]
|Ψ|2. (10.1.58)

We focus on the coefficient in front of |Ψ|2 on the RHS of (10.1.58). Ignoring the error
terms in ε (which can easily be incorporated in the upper bound for Eδ̂,ε + εHEH,ε of the
previous proposition), we have,

DivR̆ =
1

2

(
Dµ(θ̆(e4)µ)−Dµ((e3)µ

)
=

1

4

(
θ̆trπ(4) − trπ(3)

)
+

1

2
e4(θ̆) = O(δ

− 1
10
H )

and, using in particular Lemma 10.1.5,

Dµ(h2R̆µ) = R̆h2 + h2DivR̆ =
1

2
∂rh2(θ̆e4r − e3r) + h2DivR̆

=
1

2
∂rh2(θ̆Υ + 1) + h2O(δ

− 1
10
H )

≥ 1

2
∂rh2 + h2O(δ

− 1
10
H ).

Together with (10.1.58), we infer

I(Ψ) ≥ 1

4

[
∂rh2 − 4W δ̂ − 4mΛHh

2
2 + h2O(δ

− 1
10
H )

]
|Ψ|2. (10.1.59)

We now consider the choice of the function h2 = h2(r,m). Recall (see Lemma 10.1.24) that

W δ̂ is supported in the region 2m+e−
2

δ̂ ≤ r ≤ 9m
4

and that its primitive W̃δ̂(r) :=
∫ r

2m
W δ̂

verifies W̃δ̂ . m−2δ̂. We choose

h2 =:

{
4W̃δ̂, for r ≤ 9m

4

0, for r ≥ 5m
2

(10.1.60)

and since W̃δ̂ . m−2δ̂, we may extend h2 in 9m
4
≤ r ≤ 5m

2
such that h2 is C1 and we have

for all r > 0

|h2| . m−2δ̂, |∂rh2| . m−3δ̂. (10.1.61)

In view of (10.1.59), this choice of h2 yields

I(Ψ) ≥ −1

4
O
(
m−1δ̂ + ΛHm

−1δ̂2 + δ̂(δH)−
1
10

)
|Ψ|2.
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Hence, for δ̂ � δ
1
10
H Λ−1

H , i.e. δ̂ � δ
1
2
H (recall that Λ−1

H = C−1δ
2
5
H) and h2 defined as above,

we infer

I(Ψ) ≥ −1

2
m−1Λ−1

H m
−2|Ψ|2

which together with (10.1.57) finally yields∫
S

(Ė ′
δ̂

+ εHĖH) ≥
∫
S

I(Ψ) +m−1Λ−1
H

∫
S

(
1

2
|R̆(Ψ)|2 + |T̆Ψ|2 + |∇/Ψ|2 +m−2|Ψ|2

)
≥ m−1Λ−1

H

∫
S

(
1

2
|R̆(Ψ)|2 + |T̆Ψ|2 + |∇/Ψ|2 +

1

2
m−2|Ψ|2

)
.

Summary of results so far

We summarize the result in the following,

Proposition 10.1.31. Consider the combined Morawetz triplet

(X,w,M) := (fδ̂R,wδ̂, 2hR) + εH(YH, 0, 0) + (0, 0, 2h2Ř) (10.1.62)

with (fδ̂R,wδ̂, 2hR) the triplet of Proposition 10.1.25, YH the red shift vectorfield of Propo-
sition 10.1.29 (corresponding to the small parameter δH) and h2 the C1 function above
satisfying (10.1.60) (10.1.61). Let Ė [X,w,M ] the principal part of E [X,w,M ] (indepen-
dent of ε) and Eε[X,w,M ] the error term in ε such that E = Ė + Eε.

We choose the small strictly positive parameters εH, δH, δ such that9,

εH = δ
7
20
H , δ̂ = δ

3
5
H. (10.1.63)

Then, there holds10

∫
S

E [X,w,M ](Ψ) ≥ δ
1
2
H

∫
S

[
m2

r3
|R̆Ψ|2 + r−1

(
1− 3m

r

)2(
Q̂34 +

m2

r2
|T̆Ψ|2

)
+
m

r4
|Ψ|2

]
,

Eε[X,w,M ](Ψ) ≤ δ−1
H εu−1−δdec

trap

[
r−2|e3Ψ|2 + r−1(|e4Ψ|2 + |∇/Ψ|2)

]
+ δ−1

H εu−1−δdec
trap r−1|e3Ψ| (|e4Ψ|+ |∇/Ψ|) + δ−1

H εu−1−δdec
trap r−3|Ψ|2.

(10.1.64)

9Note that (10.1.63) verifies all the restrictions we have encountered so far, i.e. δ
2
5

H � εH � δ
3
10

H and

0 < δ̂ � δ
1
2

H.
10Note that δ

1
2

H � Λ−1
H (recall that Λ−1

H = C−1δ
2
5

H) and δ−1
H � δ̂−1 in view of (10.1.63).
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10.1.12 Lower bounds for Q

In this section we prove lower bounds for for Q(X + 2ΛT, e3) and Q(X + 2ΛT, e4) in the
region rH ≤ r, for rH to be determined and Λ sufficiently large.

Proposition 10.1.32. Under the assumptions of Proposition 10.1.31, and with the choice

Λ :=
1

4
δ
− 13

20
H , (10.1.65)

the following inequalities hold true for r ≥ 2m0(1− δH).

1. For the region such that r ≥ 2m0(1− δH) and Υ ≤ δ
1
10
H , we have

Q(X + ΛT, e3) ≥ 1

4
εHQ33 +

1

2
ΛQ34,

Q(X + ΛT, e4) ≥ 1

4
εHQ34 +

1

2
ΛQ44.

2. For the region δ
1
10
H ≤ Υ ≤ 1

3
, we have

Q(X + ΛT, e3) ≥ δ
− 1

2
H (Q33 +Q34) ,

Q(X + ΛT, e4) ≥ δ
− 1

2
H (Q44 +Q34) .

3. For the region r ≥ 3m, we have

Q(X + ΛT, e3) ≥ 1

4
Λ (Q33 +Q34) ,

Q(X + ΛT, e4) ≥ 1

4
Λ (Q44 +Q34) .

4. The null components of Q are given by (recall Proposition 10.1.9),

Q33 = |e3Ψ|2, Q44 = |e4Ψ|2, Q34 = |∇/Ψ|2 +
4Υ

r2
(1 +O(ε))|Ψ|2.

Proof. Since X = fδ̂R + εHYH and T = 1
2
(e4 + Υe3), R = 1

2
(e4 −Υe3), we write,

Q(X + 2ΛT, e3) = Q(X, e3) + ΛQ(e4 + Υe3, e3) = Q(X, e3) + Λ (Q34 + ΥQ33)

= εHQ(YH, e3) + Λ (Q34 + ΥQ33) +
1

2
fδ̂ (Q34 −ΥQ33) .
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In the region 2m0(1− δH) ≤ r ≤ 2m we have YH = e3 + e4 + O(δH)(e3 + e4), Υ ≥ 0 and
fδ̂ < 0. Hence, in that region,

Q(X + 2ΛT, e3) ≥ 1

2
εH (Q33 +Q34) +

(
Λ− 1

2
|fδ̂|
)
Q34 − |Υ|

(
Λ +

1

2
|fδ̂|
)
Q33

≥
(

1

2
εH − |Υ|

(
Λ +

1

2
|fδ̂|
))
Q33 +

(
1

2
εH + Λ− 1

2
|fδ̂|
)
Q34.

Thus, we need to choose Λ such that

1

2
|fδ̂| ≤ Λ ≤ 1

4

εH
δH
− 1

2
|fδ̂|

Now, recall (10.1.63) as well as the fact that |fδ̂| is of size O((δ̂)−1). Thus it suffices to
choose Λ such that

O(δ
− 3

5
H ) ≤ Λ ≤ 1

2
δ
− 13

20
H −O(δ

− 3
5
H ),

i.e. it suffices to choose, for δH > 0 small enough,

Λ =
1

4
δ
− 13

20
H ,

to deduce the inequality,

Q(X + 2ΛT, e3) ≥ 1

4
εHQ33 +

1

2
ΛQ34.

Next, in the region 0 ≤ Υ ≤ δ
1
10
H , the sign of Υ is more favorable and we have

Q(X + 2ΛT, e3) ≥ 1

2
εH (Q33 +Q34) +

(
Λ− 1

2
|fδ̂|
)
Q34 + |Υ|

(
Λ +

1

2
|fδ̂|
)
Q33

≥
(

1

2
εH + |Υ|

(
Λ +

1

2
|fδ̂|
))
Q33 +

(
1

2
εH + Λ− 1

2
|fδ̂|
)
Q34.

In particular, we simply need Λ � δ̂−1, which is in particular satisfied by (10.1.65), to
deduce the same inequality,

Q(X + 2ΛT, e3) ≥ 1

4
εHQ33 +

1

2
ΛQ34.

In the region δ
1
10
H ≤ Υ ≤ 1

3
, where fδ̂ ≤ 0, and using the fact that |fδ̂| is of size O((δ̂)−1)

Q(X + 2ΛT, e3) = εHQ(YH, e3) + Λ (Q34 + ΥQ33) +
1

2
fδ̂ (Q34 −ΥQ33)

≥ Λ
(
Q34 + δ

1
10
H Q33

)
−O(δ̂−1)Q34.
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Hence, for the choice (10.1.65), and in view of (10.1.63), we infer

Q(X + 2ΛT, e3) ≥ δ
− 1

2
H (Q33 +Q34) .

Finally, for r ≥ 3m where we have 0 ≤ fδ̂ . 1, 1
3
≤ Υ ≤ 1 and YH = 0,

Q(X + 2ΛT, e3) = Λ (Q34 + ΥQ33) +
1

2
fδ̂ (Q34 −ΥQ33)

≥ Λ

(
Q34 +

1

3
Q33

)
−O(1)Q33

and hence, (10.1.65) implies

Q(X + 2ΛT, e3) ≥ 1

4
Λ (Q34 +Q33)

as desired. The proof for Q(X + ΛT, e4) is similar.

10.1.13 First Morawetz estimate

We are now ready to state our first Morawetz estimate which is simply obtained by
integrating the pointwise inequality in Proposition 10.1.30 on our domainM = (int)M∪
(ext)M described at the beginning of the section, with X replaced by X + ΛT for Λ > 0
sufficiently large. In view of the choice of τ , note that we have

NΣ = ae3 + be4, 0 ≤ a, b ≤ 1, a+ b ≥ 1, (10.1.66)

with

b = 0, a = 1 on (int)M, a = 0, b = 1 on Mr≥4m0 , a, b ≥ 1

4
on (trap)M.

We recall the following quantities for Ψ in regions M(τ1, τ2) ⊂ M in the past of Σ(τ2)
and future of Σ(τ1).

1. Morawetz bulk quantity

Mor[Ψ](τ1, τ2) =

∫
M(τ1,τ2)

m2

r3
|R̆ψ|2 +

m

r4
|Ψ|2 +

(
1− 3m

r

)2
1

r

(
|∇/ψ|2 +

m2

r2
|T̆ψ|2

)
.



10.1. BASIC MORAWETZ ESTIMATES 723

2. Basic energy quantity

E[Ψ](τ) =

∫
Σ(τ)

(
1

2
(NΣ, e3)2 |e4Ψ|2 +

1

2
(NΣ, e4)2 |e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
.

3. Flux through A and Σ∗

F [Ψ](τ1, τ2) =

∫
A(τ1,τ2)

(
δ−1
H |e4Ψ|2 + δH|e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+

∫
Σ∗(τ1,τ2)

(
|e4Ψ|2 + |e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
,

with A(τ1, τ2) = A ∩M(τ1, τ2) and Σ∗(τ1, τ2) = Σ∗ ∩M(τ1, τ2).

The following theorem is our first Morawetz estimate.

Theorem 10.1.33. Consider the equation (10.1.10), i.e. �̇Ψ = VΨ +N , with V = −κκ
and a domain M(τ1, τ2) ⊂M. Then, we have

E[Ψ](τ2) + Mor[Ψ](τ1, τ2) + F [Ψ](τ1, τ2) . (E[Ψ](τ1) + J [N,Ψ](τ1, τ2) + Errε(τ1, τ2)[Ψ]) ,

J [N,Ψ](τ1, τ2) : =

∫
M(τ1,τ2)

(|R̆Ψ|+ |T̆Ψ|+ r−1|Ψ|)|N |,

Errε[Ψ](τ1, τ2) =

∫
M(τ1,τ2)

Eε[Ψ],

(10.1.67)

where,

Eε[Ψ] . εu−1−δdec
trap

[
r−2|e3Ψ|2 + r−1(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2 + |e3Ψ| (|e4Ψ|+ |∇/Ψ|))

]
.

Proof. Recall that, see (10.1.13)

E [X,w,M ](Ψ) := DµPµ[X,w,M ]−
(
X(Ψ) +

1

2
wΨ

)
· N [Ψ]

where,

Pµ = Pµ[X,w,M ] = QµνXν +
1

2
wΨḊµΨ− 1

4
|Ψ|2∂µw +

1

4
|Ψ|2Mµ

with triplet,

(X,w,M) := (fδ̂R,wδ̂, 2hR) + εH(YH, 0, 0) + (0, 0, 2h2R̆)
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given in Proposition 10.1.30. Replacing X by X̌ = X + ΛT in the calculation above we
deduce,

P̌µ = Pµ[X̌, w,M ] = QµνX̌ν +
1

2
wΨḊµΨ− 1

4
|Ψ|2∂µw +

1

4
|Ψ|2Mµ.

By the divergence theorem we have,∫
A
P̌ ·NA +

∫
Σ2

P̌ ·NΣ +

∫
M(τ1,τ2)

E +

∫
Σ∗

P̌ ·NΣ∗ =

∫
Σ1

P̌ ·NΣ

−
∫
M(τ1,τ2)

(X̌(Ψ) +
1

2
wΨ)N [Ψ]

(10.1.68)

where E = E [X̌, w,M ](Ψ). Now,

E [X̌, w,M ](Ψ) = E [X,w,M ](Ψ) +
1

2
ΛQ · (T )π − 1

2
T (V )|Ψ|2.

According to Lemma 10.1.7 T (V ) = O(ε)r−3u−1−δdec
trap , and all components of (T )π are

O(εr−1u−1−δdec
trap ) except for (T )π44 which is O(εr−2u−1−δdec

trap ). We easily deduce,

Λ|Q · (T )π|+ |T (V )||Ψ|2 . ΛEε.

Thus in view of to Proposition 10.1.31, we have11,

∫
M(τ1,τ2)

E ≥ δ
1
2
H

∫
M(τ1,τ2)

[
m2

r3
|R̆Ψ|2 + r−1

(
1− 3m

r

)2(
|∇/Ψ|2 +

m2

r2
|T̆Ψ|2

)
+
m

r4
|Ψ|2

]
−O

(
δ−1
H
) ∫
M(τ1,τ2)

Eε

i.e., ∫
M(τ1,τ2)

E ≥ δ
1
2
HMor[Ψ](τ1, τ2)−O

(
δ−1
H
)
Errε(τ1, τ2). (10.1.69)

We now analyze the boundary terms in (10.1.68).

11Recall from (10.1.65) that we have Λ = 1
4δ
− 13

20

H � δ−1
H .
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Boundary term along A

Along the spacelike hypersurface A, i.e. r = 2m0(1− δH), the unit normal NA is given by

NA =
1

2
√

e4(r)
e3(r)

(
e4 +

e4(r)

e3(r)
e3

)

=
1

2
√
δH +O(ε)

(
e4 + (δH +O(ε))e3

)
,

and we have h, h2 = 0 as well as w = −δ1w1 where δ1 > 0 is a small constant and w1 is
given by (10.1.47)

w1(r,m) = r−1m
2

r2
Υ

(
1− 3m

r

)2

.

In particular, we have on A in view of the formula for w1 and for NA

|w1| . δH, |NA(w1)| .
√
δH.

Hence,

P ·NA = Q(X + ΛT,NA)− δ1

2
w1ΨNA(Ψ) +

δ1

4
|Ψ|2NA(w1)

=
2√

δH +O(ε)
Q(X + ΛT, e4) + 2

√
δH +O(ε)Q(X + ΛT, e3)

−O(
√
δH)Ψe4(Ψ)−O(δ

3
2
H)Ψe3(Ψ)−O(

√
δH)|Ψ|2.

Thus, in view of Proposition 10.1.32, we infer

P ·NA ≥ 2√
δH +O(ε)

(
1

4
εHQ34 +

1

2
ΛQ44

)
+ 2
√
δH +O(ε)

(
1

4
εHQ33 +

1

2
ΛQ34

)
−O(

√
δH)Ψe4(Ψ)−O(δ

3
2
H)Ψe3(Ψ)−O(

√
δH)|Ψ|2

Using in particular (10.1.63) and (10.1.65), we deduce

P ·NA ≥ 2√
δH +O(ε)

(
1

4
δ

7
20
H

(
|∇/Ψ|2 +O(δH)|Ψ|2

)
+

1

8
δ
− 13

20
H |e4Ψ|2

)
+2
√
δH +O(ε)

(
1

4
δ

7
20
H |e3Ψ|2 +

1

8
δ
− 13

20
H

(
|∇/Ψ|2 +O(δH)|Ψ|2

))
−O(

√
δH)Ψe4(Ψ)−O(δ

3
2
H)Ψe3(Ψ)−O(

√
δH)|Ψ|2

≥ 1

2
δ
− 3

20
H |∇/Ψ|2 +

1

8
δ
− 23

20
H |e4Ψ|2 +

1

4
δ

17
20
H |e3Ψ|2

−O(
√
δH)Ψe4(Ψ)−O(δ

3
2
H)Ψe3(Ψ)−O(

√
δH)|Ψ|2.
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Recalling the Poincaré inequality (10.1.27),∫
S

|∇/Ψ|2 ≥ 2r−2
(
1−O(ε)

) ∫
S

Ψ2daS,

we deduce, in this region,∫
A(τ1,τ2)

P ·NA ≥
1

8

∫
A(τ1,τ2)

(
δ−1
H |e4Ψ|2 + δH|e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
as desired in view of the definition of the flux along A.

Boundary terms along Σ(τ1),Σ(τ2)

Along a hypersurface Σ(τ) with timelike unit future normal NΣ(τ) = ae3 + be4, we have,

P ·NΣ = Q(X + ΛT,NΣ) +
1

2
wΨNΣ(Ψ)− 1

4
NΣ(w)|Ψ|2 +

1

2
NΣ · (hR + h2R̆)|Ψ|2

and

E[Ψ](τ) =

∫
Σ(τ)

(
2b2 |e4Ψ|2 + 2a2 |e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
.

1. In the region r ≥ 2m0(1− δH), Υ ≤ δ
1
10
H we have h = 0, h2 = O(δ̂) and NΣ = e3 (i.e.

a = 1, b = 0). Also, we have w = −δ1w1, where δ1 > 0 is a small constant and w1

is given by (10.1.47)

w1(r,m) = r−1m
2

r2
Υ

(
1− 3m

r

)2

.

In particular, we have in the region of interest, in view of the formula for w1 and
for NΣ

|w1| . δ
1
10
H , |NΣ(w1)| = |e3(w1)| . 1.

We infer

P ·NΣ = Q(X + ΛT, e3)− δ1

2
w1Ψe3(Ψ) +

δ1

4
e3(w1)|Ψ|2 +

1

2
h2e3 · R̆|Ψ|2

= Q(X + ΛT, e3)−O(δ
1
10
H )w1Ψe3(Ψ)−O(1)|Ψ|2.
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where we used the fact that R̆ = 1
2
(e4−e3) in the region of interest. Thus, according

to Proposition 10.1.32,

P ·NΣ ≥ 1

4
εHQ33 +

1

2
ΛQ34 −O(δ

1
10
H )|Ψ||e3(Ψ)| −O(1)|Ψ|2.

Using in particular (10.1.63) and (10.1.65), we deduce

P ·NΣ ≥ 1

4
δ

7
20
H |e3Ψ|2 +

1

8
δ
− 13

20
H (|∇/Ψ|2 +O(ε)|Ψ|2)−O(δ

1
10
H )|Ψ||e3Ψ| −O(1)|Ψ|2

Together with the Poincaré inequality (10.1.27), we deduce∫
Σ
r≥2m0(1−δH), Υ≤δ

1
10
H

(τ)

P ·NΣ ≥ 1

8
δ

7
20
H

∫
Σ
r≥2m0(1−δH), Υ≤δ

1
10
H

(τ)

(
|e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
≥ 1

8
δ

7
20
H E

r≥2m0(1−δH), Υ≤δ
1
10
H

[Ψ](τ).

2. In the region Υ ≥ δ
1
10
H , we have w = O(r−1), NΣ(w) = O(r−2), h = O(r−4) and

h2 = O(r−4). We infer

P ·NΣ = aQ(X + ΛT, e3) + bQ(X + ΛT, e4)−O(r−1)|Ψ|(a|e3Ψ|+ b|e4Ψ|)−O(r−2)|Ψ|2.

Thus, according to Proposition 10.1.32,

P ·NΣ ≥ δ
− 1

2
H (aQ33 + bQ44 + (a+ b)Q34)−O(1)(a2|e3Ψ|2 + b2|e4Ψ|2)−O(r−2)|Ψ|2

= δ
− 1

2
H

(
a|e3Ψ|2 + b|e4Ψ|3 + (a+ b)

(
|∇/Ψ|2 +

4Υ

r2
|Ψ|2

))
−O(1)

(
a2|e3Ψ|2 + b2|e4Ψ|2 + r−2|Ψ|2

)
≥ δ

− 1
2
H

(
a|e3Ψ|2 + b|e4Ψ|3 + (a+ b)

(
|∇/Ψ|2 +

4δ
1
10
H
r2
|Ψ|2

))
−O(1)

(
a2|e3Ψ|2 + b2|e4Ψ|2 + r−2|Ψ|2

)
.

Hence, for δH > 0 sufficiently small, and since a2 ≤ a, b2 ≤ b and a+ b ≥ 1, we infer
in this region

P ·NΣ ≥ δ
− 1

5
H

∫
Σ

Υ≥δ
1
10
H

(τ)

(
2b2 |e4Ψ|2 + 2a2 |e3Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
= δ

− 1
5
H E[Ψ]

Υ≥δ
1
10
H

(τ)
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In view of the above estimates in r ≥ 2m0(1− δH), Υ ≤ δ
1
10
H and in Υ ≥ δ

1
10
H , we deduce,

everywhere, ∫
Σ(τ)

P ·NΣ ≥
1

8
δ

7
20
H E[Ψ](τ). (10.1.70)

Boundary terms along Σ∗

On Σ∗, we have

NΣ∗ = T +O
(
ε+

m

r

)
(e3 + e4),

w = O(r−1), NΣ∗(w) = O(εr−2), h = O(r−4) and h2 = 0.

Proceeding as before, we have along Σ∗,

P ·NΣ =

(
1

2
+O

(
ε+

m

r

))
Q(X + ΛT, e3) +

(
1

2
+O

(
ε+

m

r

))
Q(X + ΛT, e4)

−O(r−1)|Ψ|(|e3Ψ|+ |e4Ψ|)−O(r−2)|Ψ|2

≥ 1

4
Q(X + ΛT, e3) +

1

4
Q(X + ΛT, e4)−O

(
|e3Ψ|2 + |e4Ψ|2 + r−2|Ψ|2

)
.

Thus, according to Proposition 10.1.32, we have

P ·NΣ ≥ 1

16
Λ (Q33 +Q44 + 2Q34)−O

(
|e3Ψ|2 + |e4Ψ|2 + r−2|Ψ|2

)
=

1

16
Λ

(
|e3Ψ|2 + |e4Ψ|2 + 2

(
|∇/Ψ|2 +

4Υ

r2
|Ψ|2

))
−O

(
|e3Ψ|2 + |e4Ψ|2 + r−2|Ψ|2

)
≥ 1

64
δ
− 13

20
H

(
|e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
−O

(
|e3Ψ|2 + |e4Ψ|2 + r−2|Ψ|2

)
≥ δ

− 1
2
H

(
|e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
and hence∫

Σ∗(τ1,τ2)

P ·NΣ∗ ≥ δ
− 1

2
H

∫
Σ∗(τ1,τ2)

(
|e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
. (10.1.71)
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The inhomogeneous term
∫
M(τ1,τ2)

(X̌(Ψ) + 1
2
wΨ)N [Ψ]

Recall that, X̌ = X + ΛT = fδ̂R+ YH + ΛT . We easily check, recalling the properties of
fδ̂, w and Λ and the definition of J [N,Ψ],∣∣∣∣ ∫

M(τ1,τ2)

(
X̌(Ψ) +

1

2
wΨ

)
N [Ψ]

∣∣∣∣ ≤ δ
− 3

4
H

∫
M(τ1,τ2)

(
|R̆Ψ|+ |T̆Ψ|+ r−2|Ψ|2

)
|N(Ψ)|

= δ
− 3

4
H J [N,Ψ](τ1, τ2). (10.1.72)

Going back to (10.1.68) we deduce,

E[Ψ](τ2) +

∫
M(τ1,τ2)

E + F [Ψ](τ1, τ2) ≤ δ
− 7

20
H (E[Ψ](τ1) + J [N,Ψ](τ1, τ2)) .

In view of (10.1.69) we obtain,

E[Ψ](τ2) + Mor[Ψ](τ1, τ2) + F [Ψ](τ1, τ2) ≤ δ−1
H
(
E[Ψ](τ1) + J [N,Ψ](τ1, τ2)

)
+O
(
δ
− 3

2
H

)
Errε(τ1, τ2).

This concludes the proof of Theorem 10.1.33.

10.1.14 Analysis of the error term Eε

Recall that Errε(τ1, τ2) =
∫
M(τ1,τ2)

Eε where,

Eε . εu−1−δdec
trap

[
r−2|e3Ψ|2 + r−1

(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2 + |e3Ψ| (|e4Ψ|+ |∇/Ψ|)

)]
.

• In the trapping region Mtrap, i.e. 5m
2
≤ r ≤ 7m

2
, where utrap = 1 + τ and Σ(τ) is

strictly spacelike, we have∫
Σtrap(τ)

Eε . ετ−1−δdec
trap

∫
Σtrap(τ)

(
|e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 + |Ψ|2

)
. ετ−1−δdec

trap E[Ψ](τ).
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Thus, ∫
Mtrap(τ1,τ2)

Eε . ε

∫ τ2

τ1

τ−1−δdec
trap E[Ψ](τ)

. ε

(∫ τ2

τ1

(1 + τ)−1−δ
)

sup
τ∈[τ1,τ2]

E [Ψ](τ)

. ε sup
τ∈[τ1,τ2]

E [Ψ](τ)

and therefore, for small ε > 0, the integral
∫
Mtrap(τ1,τ2)

Eε can be absorbed on the

left hand side of (10.1.67).

• In the non trapping region M
trap
/ we write, with a fixed δ > 0,

Eε . εr−1−δ|e3Ψ|2 + r−1+δ
(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
.

Hence,∫
M

trap

/ (τ1,τ2)

Eε . ε

∫
Mr≥4m0

(τ1,τ2)

r−1−δ|e3Ψ|2

+ ε

∫
Mr≥4m0

(τ1,τ2)

r−1+δ
(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ ε

∫
(trap

/
)Mr≤4m0

(τ1,τ2)

(
|e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 + |Ψ|2

)
.

Note that for ε > 0 sufficiently small, the last integral, on (trap
/

)Mr≤4m0 , can be
absorbed by the left hand side of (10.1.67).

As a consequence we deduce the following.

Corollary 10.1.34. The statement of Theorem 10.1.33 remains true if we replace Errε
in the statement of the theorem with

Errε =

∫
Mr≥4m0

(τ1,τ2)

Eε,

Eε . εr−1−δ|e3Ψ|2 + εr−1+δ
(
|e4Ψ|2 + |∇/Ψ|2 + |r−2|Ψ|2

)
,

for a fixed δ > 0.
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Remark 10.1.35. Note that the error terms Errε cannot yet be absorbed to the let hand
side of (10.1.67). In fact we need additional estimates. The Morawetz bulk quantity
(5.1.13),

Mor[Ψ](τ1, τ2) :=

∫
M(τ1,τ2)

m2

r3
|R̆Ψ|2 +

m

r4
|Ψ|2 +

(
1− 3m

r

)2
1

r

(
|∇/Ψ|2 +

m2

r2
|T̆Ψ|2

)

is quite weak for r large with regard to the terms |R̆Ψ|2 and |T̆Ψ|2, while, using the
Poincaré inequality, Mor[Ψ] controls the term

∫
Mr≥4m0

(τ1,τ2)
r−1 (|∇/Ψ|2 + r−2|Ψ|2). In the

next section we show how we can estimate
∫
M≥R0

(τ1,τ2)
r−1−δ|e3Ψ|2 by

∫
M≥R0

(τ1,τ2)
r−1−δ|e4Ψ|2

and then, we provide estimates for the remaining terms. Note also that the weight r−1−δ

is optimal in estimating e3Ψ in the wave zone region.

10.1.15 Proof of Theorem 10.1.1

We are now ready to prove Theorem 10.1.1. Note that it suffices to improve the previous
Morawetz estimate of Theorem 10.1.33 by replacing the quantity Mor[Ψ](τ1, τ2) with

Morr[Ψ](τ1, τ2) := Mor[Ψ](τ1, τ2) +

∫
Mfar(τ1,τ2)

r−1−δ|e3(Ψ)|2.

In view of the Morawetz estimate (10.1.67) and corollary 10.1.34 we have

E[Ψ](τ2) + Mor[Ψ](τ1, τ2) + F [Ψ](τ1, τ2) . E[Ψ](τ2) + J [N,Ψ](τ1, τ2) + Errε(τ1, τ2),

J [N,Ψ](τ1, τ2) : =

∫
M(τ1,τ2)

(|R̆Ψ|+ |T̆Ψ|+ r−1|Ψ|)|N |, (10.1.73)

with error term,

Errε . ε

∫
M≥4m0

(τ1,τ2)

r−1−δ|e3Ψ|2 + r−1+δ
(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
.

We divide J [N ] = J [N,Ψ] as follows:

J [N ] = J [N ]trap + J [N ]
trap
/

where,

J [N ]trap : =

∫
Mtrap

(|R̆Ψ|+ |T̆Ψ|+ r−1|Ψ|)|N |,

J [N ]
trap
/ : =

∫
(trap

/
)M

(|R̆Ψ|+ |T̆Ψ|+ r−1|Ψ|)|N |.
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For the trapping region, where the hypersurfaces Σ(τ) are strictly spacelike, we write,

J [N ]trap(τ1, τ2) =

∫ τ2

τ1

dτ

∫
Σtrap(τ)

(|R̆Ψ|+ |T̆Ψ|+ r−1|Ψ|)|N |

≤
∫ τ2

τ1

E[Ψ](τ)1/2

(∫
Σtrap(τ)

|N |2
)1/2

≤ sup
τ∈[τ1,τ2]

E[Ψ](τ)1/2

∫ τ2

τ1

(∫
Σtrap(τ)

|N |2
)1/2

. λ sup
τ∈[τ1,τ2]

E[Ψ](τ) + λ−1

(∫ τ2

τ1

‖N‖L2(Σtrap(τ))

)2

.

Hence, for λ > 0 sufficiently small, we deduce,

E[Ψ](τ2) + Mor[Ψ](τ1, τ2) + F [Ψ](τ1, τ2) . E[Ψ](τ2) + Errε(τ1, τ2)

+ J
trap
/ [N,Ψ](τ1, τ2) +

(∫ τ2

τ1

‖N‖L2(Σtrap(τ))

)2

.

On the other hand we have,

J [N ]
trap
/ (τ1, τ2) =

∫
M

trap

/ (τ1,τ2)

(|R̆Ψ|+ |T̆Ψ|+ r−1|Ψ|)|N |

≤ λ

∫
M

trap

/ r−1−δ(|R̆Ψ|2 + |T̆Ψ|2 + r−2|Ψ|2) + λ−1

∫
M

trap

/ r1+δ|N |2.

The first integral on the right can be divided further into integrals for r ≤ 4m0 and
r ≥ 4m0. The first integral can the be easily absorbed by the term Mor[Ψ](τ1, τ2), if
λ > 0 is sufficiently small. We are thus led to the estimate,

E[Ψ](τ2) + Mor[Ψ](τ1, τ2) + F [Ψ](τ1, τ2) . E[Ψ](τ2) + Errε(τ1, τ2) + Iδ[N ](τ1, τ2)

+

∫
Mr≥4m0

r−1−δ(|e3Ψ|2 + |e4Ψ|2 + r−2|Ψ|2)

where,

Iδ[N ](τ1, τ2) : =

∫
M

trap

/ (τ1,τ2)

r1+δ|N |2 +

(∫ τ2

τ1

dτ‖N‖L2(Σtrap(τ))

)2

.

Recalling the definition of Errε in Corollary 10.1.34, we deduce,

E[Ψ](τ2) + Mor[Ψ](τ1, τ2) + F [Ψ](τ1, τ2) . E[Ψ](τ2) + Errε(τ1, τ2) + Iδ[N ](τ1, τ2).

(10.1.74)

To eliminate the term in e3Ψ from the error term we appeal to the following proposition.



10.1. BASIC MORAWETZ ESTIMATES 733

Proposition 10.1.36. Assume �Ψ = VΨ + N and consider the vectorfield X = f−δT
with f−δ := r−δ for r ≥ 4m0 and compactly supported in r ≥ 7m0

2
. With the notation of

Proposition 10.1.9, let

Pµ[f−δT, 0, 0] = f−δQαµT µ,
E [f−δT, 0, 0] = DµPµ[f−δT, 0, 0]− f−δT (Ψ)N.

Then,

1. We have, for r ≥ 4m0

E [f−δT, 0, 0] =
Υ2

4
δr−1−δ|e3Ψ|2 − 1

4
δr−1−δ|e4Ψ|2 +O

(
εr−1−δ (|DΨ|2 + r−2|Ψ|2

))
.

2. We have,

P [f−δT, 0, 0] · e4 = f−δQ(T, e4) ≥ 0, P [f−δT, 0, 0] · e3 = f−δQ(T, e3) ≥ 0.

We postponed the proof of Proof of Proposition 10.1.36 and continue the proof of Theorem
10.1.1. By integration, the proposition provides a bound for12∫

M≥4m0
(τ1,τ2)

r−1−δ|e3Ψ|2

in terms of E[Ψ](τ1), the integrals
∫
M
≥ 7m0

2

(τ1,τ2)
r−1−δ|e4Ψ|2 and

∫
M
≥ 7m0

2

(τ1,τ2)
r−δT (Ψ)N ,

as well as the error terms. The second bulk integral involving the inhomogeneous term
N can be estimates exactly like before. Thus combining the new estimate with that in
the corollary 10.1.34 we derive the desired estimatee, both (10.1.1) and (10.1.2), hence
concluding the proof of Theorem 10.1.1.

Proof of Proposition 10.1.36

We consider vectorfields of the form X = f(r)T with T = 1
2
(Υe3 +e4). Recall, see Lemma

10.1.7, that all components of the deformation tensor (T )π of T = 1
2

(e4 + Υe3) can be
bounded by O(εr−1). Since f = O(r−δ), we deduce,

(X)παβ = f (T )παβ + DαfTβ + DβfTα = DαfTβ + DβfTα +O(εr−1−δ).

12Note that Υ2 ≥ 1
4 in r ≥ 4m0.
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Also,

e3(f) = f ′e3(r) = −f ′ +O(εr−1−δ), e4(f) = f ′e4(r) = Υf ′ +O(εr−1−δ).

Thus, modulo error terms of the form O(ε)r−1−δ(|e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2
)
, we

have

Q · (X)π = 2QαβTαDβf = 2
(
Q3βTβe3f +Q4βTβe4f

)
= −Q(e4, T )e3f −Q(e3, T )e4f

=
1

2
Q(e4, e4 + Υe3)f ′ − 1

2
f ′ΥQ(e3, e4 + Υe3)

=
1

2
f ′
(
|e4Ψ|2 −Υ2|e3Ψ|2

)
.

We now apply Proposition 10.1.9, as well as (10.1.13) (10.1.14), with X = f−δ(r)T , w = 0,
M = 0 so that

Pµ[f−δT, 0, 0] = f−δQαµT µ, E [f−δT, 0, 0] := DµPµ[f−δT, 0, 0]− f−δT (Ψ)N

and

E [f−δT, 0, 0] =
1

2
Q · (X)π − 1

2
f−δT (V )|Ψ|2

=
1

4
f ′−δ(r)

(
|e4Ψ|2 −Υ2|e3Ψ|2

)
+O

(
εr−1−δ(|DΨ|2 + r−2|Ψ|2

))
with |DΨ|2 = |e3Ψ|2 + |e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2. Since f−δ(r) = r−δ for r ≥ 4m0, we
deduce, for r ≥ 4m0,

E [f−δT, 0, 0] =
Υ2

4
δr−1−δ|e3Ψ|2 − 1

4
δr−1−δ|e4Ψ|2 +O

(
εr−1−δ(|DΨ|2 + r−2|Ψ|2

))
.

On the other hand,

P [f−δT, 0, 0] · e4 = f−δQ(T, e4) ≥ 0,

P [f−δT, 0, 0] · e3 = f−δQ(T, e3) ≥ 0,

as desired. This concludes the proof of Proposition 10.1.36.

10.2 Dafermos-Rodnianski rp- weighted estimates

For convenience, we work in this section with the renormalized frame (e′3, e
′
4) defined in

(10.2.7) instead of the original frame (e3, e4). To simplify the exposition, we still denote
it as (e3, e4). Recall that the two are frames are equivalent up to lower terms in m/r.
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In this section we rely on the Morawetz estimates proved in the previous section to
establish rp-weighted estimates in the spirit of Dafermos-Rodnianski [24]. The following
theorem claims rp-weighted estimates for the solution ψ of the wave equation (5.3.5).

Theorem 10.2.1 (rp-weighted estimates). Consider a fixed δ > 0 and let R� m0

δ
, ε� δ.

The following estimates hold true and for all δ ≤ p ≤ 2− δ,
Ėp ;R[ψ](τ2) + Ḃp ;R[ψ](τ1, τ2) + Ḟp[ψ](τ1, τ2) . Ep[ψ](τ1) + Jp[ψ,N ](τ1, τ2). (10.2.1)

Remark 10.2.2. Note that Theorem 10.1.1 on Morawetz estimates and Theorem 10.2.1
on rp-weighted estimates immediately yield for all δ ≤ p ≤ 2− δ,

sup
τ∈[τ1,τ2]

Ep[ψ](τ) +Bp[ψ](τ1, τ2) + Fp[ψ](τ1, τ2) . Ep[ψ](τ1) + Jp[ψ,N ](τ1, τ2), (10.2.2)

which corresponds to Theorem 5.3.4 in the case s = 0.

Theorem 10.2.1 will be proved in section 10.2.3. We will need in this section stronger
assumptions in the region r ≥ 4m0, away from trapping, than those in (10.1.5)–(10.1.7)
of the previous section. For convenience we express our conditions with respect to the
weights13,

wp,q(u, r) = r−p(1 + τ)−q−δdec+2δ0 .

RP0. The assumptions Mor1–Mor3 made in the previous section hold true.

RP1. The Ricci coefficients verify, for r ≥ 4m0∣∣ξ, ϑ, ϑ, η, η, ζ, ω∣∣ . εw1,1,∣∣∣κ+
2

r

∣∣∣, ∣∣∣χ+
1

r

∣∣∣, ∣∣∣e3Φ− χ
∣∣∣ . εw1,1,∣∣∣κ− 2Υ

r

∣∣∣, ∣∣∣χ− Υ

r

∣∣∣, ∣∣∣e4Φ− χ
∣∣∣ . εmin{w1,1, w2,1/2},∣∣∣ω +

m

r2

∣∣∣, |ξ| . εmin{w2,1, w3,1/2}.

(10.2.3)

RP2. The derivatives of r verify, for r ≥ 4m0,∣∣e3(r) + 1
∣∣ . εw0,1,∣∣e4(r)−Υ
∣∣ . εw1,1,∣∣∣e3e4(r) +

2m

r2
, e4e3(r)

∣∣∣ . εw1,1.

(10.2.4)

13The assumptions are consistent with the global frame used in Theorem M1, see Lemma 5.1.1. In
particular, δ0 > 0 is such that δdec − 2δ0 > 0 which is the only needed property of δdec − 2δ0 to derive
the rp weighted estimates.
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RP3. For r ≥ 4m0, ∣∣∣ρ+
2m

r3

∣∣∣ . εw3,1,∣∣∣K − 1

r2

∣∣∣ . εr−2,∣∣eθ(Φ)
∣∣ . r−1.

(10.2.5)

RP4. We also assume, for r ≥ 4m0,

|m−m0| . ε,

|e3m, r
2e4m| . εw0,1,

|e3e4(m), e4e3(m)| . εw1,1.

(10.2.6)

Since the estimates we are establishing are restricted to the far region r > R it is conve-
nient, in this section, to work with the with renormalized frame

e′3 = Υe3, e′4 = Υ−1e4, e′θ = eθ. (10.2.7)

Relative to the new frame (e′3, e
′
4, e
′
θ) we have,

ξ′ = Υ−2ξ, ξ′ = Υ2ξ, ζ ′ = ζ, η′ = η, χ′ = Υ−1χ, χ′ = Υχ

and,

ω′ = Υ−1

(
ω +

1

2
e4(log Υ)

)
= Υ−1

(
ω + Υ−1m

r2
e4(r)−Υ−1 e4(m)

r

)
= Υ−1

((
ω +

m

r2

)
+ Υ−1m

r2
(e4(r)−Υ)−Υ−1 e4(m)

r

)
,

ω′ = Υ

(
ω − 1

2
e3(log Υ)

)
= Υ

(
ω −Υ−1m

r2
e3(r) + Υ−1 e3(m)

r

)
=

m

r2
+ Υ

(
ω −Υ−1m

r2
(e3(r) + 1) + Υ−1 e3(m)

r

)
.

Thus in the new frame we have, for r ≥ 4m0,

RP1’. The Ricci coefficients with respect to the null frame (e′3, e
′
4, e
′
θ) verify, for r ≥ 4m0:∣∣ξ′, ϑ′, ϑ, η′, η′, ζ ′∣∣, ∣∣∣ω′ − m

r2

∣∣∣ . εw1,1,∣∣∣κ′ + 2Υ

r

∣∣∣, ∣∣∣χ′ + Υ

r

∣∣∣, ∣∣e′3Φ− χ′
∣∣ . εw1,1,∣∣∣κ′ − 2

r

∣∣∣, ∣∣∣χ′ − 1

r

∣∣∣, ∣∣e′4Φ− χ′
∣∣ . εmin{w1,1, w2,1/2},∣∣ω′∣∣, |ξ′| . εmin{w2,1, w3,1/2}.

(10.2.8)
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RP2’. The derivatives of r verify, ∣∣e′3(r) + Υ
∣∣ . εw0,1,∣∣e′4(r)− 1
∣∣ . εw1,1,∣∣∣e′3e′4(r), e′4e

′
3(r) +

2m

r2

∣∣∣ . εw1,1.

(10.2.9)

RP3’. The Gauss curvature K of S and ρ verify,∣∣∣ρ+
2m

r3

∣∣∣ . εr−3,∣∣∣K − 1

r2

∣∣∣ . εr−2.
(10.2.10)

RP4’. We also assume

|m−m0| . ε,

|e′3m, r2e′4m| . εw0,1,

|e′3e′4(m), e′4e
′
3(m)| . εw1,1.

(10.2.11)

Remark 10.2.3. In the far region r ≥ 4m0 all norms we are using in our estimates are
equivalent when expressed relative to the null frame (e3, e4, eθ) or (e′3, e

′
4, e
′
θ).

Convention. For the remaining of this section we shall do all calculations with respect to
the renormalized frame (e′3, e

′
4, e
′
θ). For convenience we shall drop the primes, throughout

this section, since there is no danger of confusion. Note however that the main results,
which include the interior region r ≤ R, are always expressed with respect the original
frame.

10.2.1 Vectorfield X = f(r)e4

Lemma 10.2.4. Consider the vectorfield X = f(r)e4.

1. We have the decomposition,

(X)π = (X)Λg + (X)π̃, (X)Λ =
2

r
f
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with symmetric tensor (X)π̃ which verifies

(X)π̃43 = −2f ′ +
4f

r
+O(ε)w1,1 (|f |+ r|f ′|)

(X)π̃33 = 4f ′Υ− 4Υ′ +O(ε)w1,1(|f |+ r|f ′|)
(X)π̃4θ = O(ε)w2,1/2|f |

(X)π̃AB = O(ε)w2,1/2|f |
(X)π̃3θ = O(ε)w1,1|f |

(10.2.12)

2. We have,

� (X)Λ =
2

r
f ′′ +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
(10.2.13)

Proof. See Lemma D.3.1 in appendix.

10.2.2 Energy densities for X = f(r)e4

We start with the following proposition.

Proposition 10.2.5. Assume Ψ verifies the equation �̇gΨ = VΨ + N and let X = fe4

and w = (X)Λ = 2f
r

and let E := E [X,w] = E [X = fe4, w = 2f
r

].

1. We have,

E =
1

2
f ′|e4Ψ|2 +

1

2

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
− 1

2r
f ′′|Ψ|2 + Err

(
ε,
m

r
, f
)

(Ψ)

where,

Err
(
ε,
m

r
, f
)

(Ψ) = O
(m
r2

)
(|f |+ r|f ′|)|e4Ψ|2 +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
|Ψ|2

+ O(ε)w1,1(|f |+ r|f ′|)
(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ O(ε)w2,1/2|f |

(
|e3Ψ|(|e4Ψ|+ r−1|∇/Ψ|) + |∇/Ψ|2 + r−2|Ψ|2

)
.

2. The current,

Pµ = Pµ[X,w] = QµνXν +
1

2
wΨ ·DµΨ− 1

4
|Ψ|2∂µw
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verifies,

P · e4 = f

∣∣∣∣e4Ψ +
1

r
Ψ

∣∣∣∣2 − 1

2
r−2e4(rf |Ψ|2) +O(εr−3)f |Ψ|2,

P · e3 = fQ34 +
1

2
r−2e3

(
rfψ2) + r−1f ′ψ2 +O(mr−3 + εr−2)|rf ′| |Ψ|2.

3. Let θ = θ(r) supported for r ≥ R/2 with θ = 1 for r ≥ R such that fp = θ(r)rp. Let
(p)P := P [fpe4, wp]. Then, for all r ≥ R,

(p)P · e4 +
p

2
r−2e4(θrp+1|Ψ|2) ≥ 1

8
rp−2(p− 1)2|Ψ|2.

Before proceeding with the proof of Proposition 10.2.5, we first establish the following
lemma.

Lemma 10.2.6. We have,

Q · (X)π̃ =
(
f ′ +O

(m
r2

)
(|f |+ r|f ′|)

)
|e4Ψ|2 +

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
+ O(ε)w1,1(|f |+ r|f ′|)

(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ O(ε)w2,1/2|f |

(
|e3Ψ|(|e4Ψ|+ r−1|∇/Ψ|) + |∇/Ψ|2 + r−2|Ψ|2

)
.

Proof. Recall from Proposition 10.1.9 that we have

Q33 = |e3Ψ|2, Q44 = |e4Ψ|2, Q34 = |∇/Ψ|2 + V |Ψ|2,
and,

|QAB| ≤ |e3Ψ||e4Ψ|+ |∇/Ψ|2 + |V ||Ψ|2, |QA3| ≤ |e3Ψ||∇/Ψ|, |QA4| ≤ |e4Ψ||∇/Ψ|.
Hence, in view of Lemma D.3.1 for (X)π̃, we have

Q · (X)π̃ =
1

4
Q44

(X)π̃33 +
1

2
Q34

(X)π̃34 −
1

2
Q4A

(X)π̃3A −
1

2
Q3A

(X)π̃4A +QAB (X)π̃AB

=
(
f ′Υ−Υ′f +O(ε)w1,1(|f |+ r|f ′|)

)
Q44

+

(
−f ′ + 2f

r
+O(ε)w1,1 (|f |+ r|f ′|)

)
Q34

+ O(ε)w1,1|f | Q4A +O(ε)w2,1/2|f | (Q3A +QAB)

=
(
f ′ +O

(m
r2

)
(|f |+ r|f ′|)

)
Q44 +

(
−f ′ + 2f

r

)
Q34

+ O(ε)(|f |+ r|f ′|)w1,1 (Q44 +Q4A) +O(ε)w2,1/2|f | (QAB +Q34)

+O(ε)w3,1/2|f |Q3A
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from which we deduce,

Q · (X)π̃ =
(
f ′ +O

(m
r2

)
(|f |+ r|f ′|)

)
|e4Ψ|2 +

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
+ O(ε)w1,1(|f |+ r|f ′|)

(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ O(ε)w2,1/2|f |

(
|e3Ψ|(|e4Ψ|+ r−1|∇/Ψ|) + |∇/Ψ|2 + r−2|Ψ|2

)
as desired.

We are now ready to prove Proposition 10.2.5.

Proof of Proposition 10.2.5. If Q = Q[Ψ] is the energy momentum tensor of Ψ (recall
�̇Ψ = VΨ +N) and

(X)π = (X)Λ g + (X)π̃

we deduce,

Q · (X)π = (X)ΛtrQ+Q · (X)π̃ = (X)Λ (−L(Ψ)− V |Ψ|2) +Q · (X)π̃.

Hence, for X = fe4 and w = (X)Λ = 2f
r

,

1

2
Q · (X)π +

1

2
wL[Ψ] = −1

2
(X)ΛV |Ψ|2 +

1

2
Q · (X)π̃.

In view of (10.1.14), we infer

E : = E [X,w = (X)Λ,M = 0]

=
1

2
Q · (X)π̃ − 1

4
|Ψ|2�g

(X)Λ− 1

2
(X(V ) + (X)ΛV )|Ψ|2.

Recall that V = −κκ. Hence,

X(V ) + (X)ΛV = fe4(V ) +
2f

r
V = −f

(
e4(κκ) +

2

r
κκ

)
= f

(
κ2κ− 2κρ− 2

r
κκ+O(ε)w3,1

)
= O

(m
r4

+ εw3,1

)
f.

Hence, in view of the computation (10.2.13) of � (X)Λ

−1

4
|Ψ|2�g

(X)Λ− 1

2
(X(V ) + (X)ΛV )|Ψ|2

= − 1

2r
f ′′|Ψ|2 +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
|Ψ|2.
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We deduce,

E =
1

2
Q · (X)π̃ − 1

2r
f ′′|Ψ|2 +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
|Ψ|2

Using Lemma 10.2.6, we deduce,

E =
1

2
f ′|e4Ψ|2 +

1

2

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
− 1

2r
f ′′|Ψ|2 + Err

(
ε,
m

r
, f
)

(Ψ)

where,

Err
(
ε,
m

r
, f
)

(Ψ) = O
(m
r2

)
(|f |+ r|f ′|)|e4Ψ|2 +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
|Ψ|2

+ O(ε)w1,1(|f |+ r|f ′|)
(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ O(ε)w2,1/2|f |

(
|e3Ψ|(|e4Ψ|+ r−1|∇/Ψ|) + |∇/Ψ|2 + r−2|Ψ|2

)
which is the first part of Proposition 10.2.5.

To prove the second part of Proposition 10.2.5, we compute

P · e4 = fQ44 +
1

r
fΨ · e4Ψ− 1

2
e4(r−1f)|Ψ|2

= f

(
|e4Ψ|2 +

1

r
Ψ · e4Ψ

)
− 1

2
e4(r−1f)|Ψ|2

= f

∣∣∣∣e4Ψ +
1

r
Ψ

∣∣∣∣2 − 1

r
fΨ · e4Ψ− r−2f |Ψ|2 − 1

2
e4(r−1f)|Ψ|2

= f

∣∣∣∣e4Ψ +
1

r
Ψ

∣∣∣∣2 − 1

2
r−2e4(rf |Ψ|2) +

1

2
r−2e4(rf)|Ψ|2 − r−2f |Ψ|2 − 1

2
e4(r−1f)|Ψ|2

= f

∣∣∣∣e4Ψ +
1

r
Ψ

∣∣∣∣2 − 1

2
r−2e4(rf |Ψ|2) + r−2(e4(r)− 1)f |Ψ|2.

Since

e4(r) =
r

2
(κ+ A),

we have14

e4(r)− 1 = O(εr−1).

14Note that so far we have only used the weaker version e4(r) − 1 = O(ε). This is the first time we
need the stronger version of the estimate in this chapter.
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Thus, as desired,

P · e4 = f

∣∣∣∣e4Ψ +
1

r
Ψ

∣∣∣∣2 − 1

2
r−2e4(rf |Ψ|2) +O(εr−3)f |Ψ|2.

Also,

P · e3 = fQ34 + r−1fΨ · e3Ψ− 1

2
e3(r−1f)|Ψ|2

= fQ34 +
1

2
r−1fe3(|Ψ|2)− 1

2
e3(r−1f)|Ψ|2

= fQ34 +
1

2

[
r−2e3

(
rf |Ψ|2)− r−2e3(rf)|Ψ|2

]
− 1

2
e3(r−1f)|Ψ|2

= fQ34 +
1

2
r−2e3

(
rf |Ψ|2) + r−1f ′Υ|Ψ|2 − r−1f ′(e3(r) + Υ)|Ψ|2

= fQ34 +
1

2
r−2e3

(
rf |Ψ|2) + r−1f ′|Ψ|2 +O

(
mr−3 + εr−2

)
(r|f ′|)|Ψ|2

as desired.

It remains to prove the last part of Proposition 10.2.5. We have, for r ≥ R

(p)P · e4 = rp|e4Ψ|2 + rp−1Ψe4Ψ− 1

2
e4(rp−1)|Ψ|2

and,

(p)P · e4 +
p

2
r−2e4(θrp+1|Ψ|2) = rp|e4Ψ|2 + rp−1Ψ · e4Ψ− 1

2
e4(rp−1)|Ψ|2

+ prp−1Ψ · e4Ψ +
p(p+ 1)

2
rp−2e4(r)|Ψ|2

= rp|e4Ψ|2 + (p+ 1) rp−1Ψ · e4Ψ +
p2 + 1

2
e4(r)rp−2|Ψ|2

= rp

[∣∣∣∣e4Ψ +
p+ 1

2r
Ψ

∣∣∣∣2 +
(p− 1)2

4r2
|Ψ|2

]

+
p2 + 1

2
(e4(r)− 1)rp−2|Ψ|2

≥ rp−2 (p− 1)2

4
|Ψ|2 −O(ε)

p2 + 1

2
rp−3|Ψ|2.

This concludes the proof of Proposition 10.2.5.

In applications we would like to apply Proposition 10.2.5 to f = rp, 0 < p < 2. We
note however that the presence of the term −1

2
r−1f ′′|Ψ|2 on the right hand side of the

E identity requires an additional correction if p > 1. This additional correction is taken
into account by the following proposition.
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Proposition 10.2.7. Assume Ψ verifies the equation �gΨ = VΨ+N and let X = f(r)e4,
w = (X)Λ = 2f

r
and M = 2r−1f ′e4. Then,

1. We have, with ě4 = r−1e4(r·),

E [X,w,M ] =
1

2
f ′|ě4(Ψ)|2 +

1

2

(
2f

r
− f ′

)
Q34 + Err

(
ε,
m

r
; f
)

[Ψ](10.2.14)

with error term,

Err
(
ε,
m

r
, f
)

(Ψ) = O
(m
r2

)
(|f |+ r|f ′|)|e4Ψ|2 +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
|Ψ|2

+ O(ε)w1,1(|f |+ r|f ′|)
(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ O(ε)w2,1/2|f |

(
|e3Ψ|(|e4Ψ|+ r−1|∇/Ψ|) + |∇/Ψ|2 + r−2|Ψ|2

)
.

2. The current,

Pµ = Pµ[X,w,M ] = QµνXν +
1

2
wΨDµΨ− 1

4
|Ψ|2∂µw +

1

4
Mµ|Ψ|2

verifies,

P · e4 = f(ě4Ψ)2 − 1

2
r−2e4(rf |Ψ|2) +O(εr−1)f(|e4Ψ|2 + r−2|Ψ|2),

P · e3 = fQ34 +
1

2
r−2e3

(
rf |Ψ|2) +O(mr−3 + εr−2)(|f |+ r|f ′|)|Ψ|2.

3. Let θ = θ(r) supported for r ≥ R/2 with θ = 1 for r ≥ R such that fp = θ(r)rp. Let
(p)P := P [fpe4, wp,Mp]. Then, for all r ≥ R,

(p)P · e4 +
p

2
r−2e4(θrp+1|Ψ|2) ≥ 1

8
rp−2(p− 1)2|Ψ|2.

Proof. We start with the first part of Proposition 10.2.7. To this end, we use

(X)π43 = −2e4f + 4fω, (X)πAB = 2f (1+3)χAB

so that

tr (X)π = − (X)π43 + gAB (X)πAB

= 2e4f − 4fω + 2fκ,
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and we compute

DµMµ = Dµ(2r−1f ′e4)µ = Dµ

(
2f ′

rf
Xµ

)
=

2f ′

rf
DivX +X

(
2f ′

rf

)
=

f ′

rf
tr (X)π +X

(
2f ′

rf

)
=

f ′

rf
(2e4f − 4fω + 2fκ) + 2fe4

(
f ′

rf

)
=

f ′

rf

(
2e4(r)f ′ +

4f

r
+O

(m
r3

+ εw2,1

))
+ 2f

(
f ′′rf − f ′(f + rf ′)

r2f 2

)
e4(r)

=
4f ′

r2
+

2(f ′)2

rf
+ 2

f ′′

r
− 2f ′

r2
− 2(f ′)2

rf
+O

(m
r4

+ εw3,1

)
(|f |+ r|f ′|+ r2|f ′′|)

=
2f ′

r2
+

2f ′′

r
+O

(m
r4

+ εw3,1

)
(|f |+ r|f ′|+ r2|f ′′|).

We also have

1

2
Ψ ·DµΨMµ = r−1f ′Ψ ·D4Ψ.

Since we have

E [X,w,M ] = E [X,w] +
1

4
(DµMµ)|Ψ|2 +

1

2
Ψ ·DµΨMµ,

we infer

E [X,w,M ] = E [X,w] +

(
f ′

2r2
+
f ′′

2r
+O

(m
r4

+ εw3,1

)
(|f |+ r|f ′|+ r2|f ′′|)

)
|Ψ|2 + r−1f ′Ψ ·D4Ψ.

Together with Proposition 10.2.5, this yields

E [X,w,M ] =
1

2
f ′
(
|e4Ψ|2 + 2r−1Ψ ·D4Ψ + r−2|Ψ|2

)
+

1

2

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
+Err

(
ε,
m

r
, f
)

(Ψ) +O
(m
r4

+ εw3,1

)
(|f |+ r|f ′|+ r2|f ′′|)|Ψ|2

=
1

2
f ′|e4Ψ + r−1Ψ|2 +

1

2

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
+Err

(
ε,
m

r
, f
)

(Ψ) +O
(m
r4

+ εw3,1

)
(|f |+ r|f ′|+ r2|f ′′|)|Ψ|2

=
1

2
f ′|ě4Ψ + r−1(1− e4(r))Ψ|2 +

1

2

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
+Err

(
ε,
m

r
, f
)

(Ψ) +O
(m
r4

+ εw3,1

)
(|f |+ r|f ′|+ r2|f ′′|)|Ψ|2
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and hence

E [X,w,M ] =
1

2
f ′|ě4Ψ|2 +

1

2

(
−f ′ + 2f

r

)(
|∇/Ψ|2 + V |Ψ|2

)
+ Err

(
ε,
m

r
, f
)

(Ψ)

where

Err
(
ε,
m

r
, f
)

(Ψ) = O
(m
r2

)
(|f |+ r|f ′|)|e4Ψ|2 +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
|Ψ|2

+ O(ε)w1,1(|f |+ r|f ′|)
(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ O(ε)w2,1/2|f |

(
|e3Ψ|(|e4Ψ|+ r−1|∇/Ψ|) + |∇/Ψ|2 + r−2|Ψ|2

)
.

This is the desired estimate (10.2.14).

Next, we consider the second part of Proposition 10.2.7.

Pµ[X,w,M ] = Pµ[X,w] +
1

4
|Ψ|2Mµ = Pµ[X,w] +

1

2
r−1f ′|Ψ|2e4.

Hence, in view of the results in part 2 of Proposition 10.2.5,

P4[X,w,M ] = P4[X,w] = f
∣∣∣ě4Ψ + (1− e4(r))Ψ

∣∣∣2 − 1

2
r−2e4(rf |Ψ|2) +O(εr−3)f |Ψ|2

= f |ě4Ψ|2 − 1

2
r−2e4(rf |Ψ|2) +O(εr−1)f(|e4Ψ|2 + r−2|Ψ|2),

P3[X,w,M ] = P3[X,w]− r−1f ′|Ψ|2 = fQ34 +
1

2
r−2e3

(
rf |Ψ|2) + r−1f ′|Ψ|2 − r−1f ′|Ψ|2

+ O(εr−2)(|f |+ r|f ′|)|Ψ|2

= fQ34 +
1

2
r−2e3

(
rf |Ψ|2) +O(εr−2)(|f |+ r|f ′|)|Ψ|2

as desired. The last part follows from the third part of Proposition 10.2.5.

Lemma 10.2.8. On Σ∗, we have

P ·NΣ∗ =
1

2
fQ34 +

1

2
f(ě4Ψ)2 +

1

2
div Σ∗

(
r−1f |Ψ|2νΣ∗

)
+O(mr−1 + ε)(|f |+ r|f ′|)(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2)

Proof. Recall that there exists a constant c∗ such that u + r = c∗ on Σ∗. In particular,
the unit normal NΣ∗ is collinear to

−2gαβ∂α(u+ r)∂β = e4(u+ r)e3 + e3(u+ r)e4

= e4(r)e3 + (e3(u) + e3(r))e4
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and since

g
(
e4(r)e3 + (e3(u) + e3(r))e4, e4(r)e3 + (e3(u) + e3(r))e4

)
= −4e4(r)(e3(u) + e3(r)),

we infer

NΣ∗ =

√
e4(r)

2
√
e3(u) + e3(r)

e3 +

√
e3(u) + e3(r)

2
√
e4(r)

e4.

In particular, we have

P ·NΣ∗ =

√
e4(r)

2
√
e3(u) + e3(r)

P · e3 +

√
e3(u) + e3(r)

2
√
e4(r)

P · e4.

Now, recall from Proposition 10.2.7 that we have

P · e4 = f(ě4Ψ)2 − 1

2
r−2e4(rf |Ψ|2) +O(εr−1)f(|e4Ψ|2 + r−2|Ψ|2),

P · e3 = fQ34 +
1

2
r−2e3

(
rf |Ψ|2) +O(mr−3 + εr−2)(|f |+ r|f ′|)|Ψ|2.

We deduce

P ·NΣ∗ =

√
e4(r)

2
√
e3(u) + e3(r)

(
fQ34 +

1

2
r−2e3

(
rf |Ψ|2) +O(mr−3 + εr−2)(|f |+ r|f ′|)|Ψ|2

)
+

√
e3(u) + e3(r)

2
√
e4(r)

(
f(ě4Ψ)2 − 1

2
r−2e4(rf |Ψ|2) +O(εr−1)f(|e4Ψ|2 + r−2|Ψ|2)

)
=

√
e4(r)

2
√
e3(u) + e3(r)

fQ34 +

√
e3(u) + e3(r)

2
√
e4(r)

f(ě4Ψ)2

+

√
e4(r)

2
√
e3(u) + e3(r)

1

2
r−2e3

(
rf |Ψ|2)−

√
e3(u) + e3(r)

2
√
e4(r)

1

2
r−2e4(rf |Ψ|2)

+O(mr−3 + εr−2)(|f |+ r|f ′|)|Ψ|2 +O(εr−1)f(|e4Ψ|2 + r−2|Ψ|2)

=
1

2
√

2−Υ
(1 +O(ε))fQ34 +

√
2−Υ

2
(1 +O(ε))f(ě4Ψ)2 +

1

2
r−2νΣ∗

(
rf |Ψ|2)

+O(mr−3 + εr−2)(|f |+ r|f ′|)|Ψ|2 +O(εr−1)f(|e4Ψ|2 + r−2|Ψ|2)

=
1

2
fQ34 +

1

2
f(ě4Ψ)2 +

1

2
r−2νΣ∗

(
rf |Ψ|2)

+O(mr−1 + ε)(|f |+ r|f ′|)(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2)

where we used

e4(r) = 1 +O(ε), e3(r) = −Υ +O(ε), e3(u) = 2 +O(ε),
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and where νΣ∗ denotes the vectorfield

νΣ∗ =

√
e4(r)

2
√
e3(u) + e3(r)

e3 −
√
e3(u) + e3(r)

2
√
e4(r)

e4.

Next, note from the formula that νΣ∗ is unitary and orthogonal to NΣ∗ so that νΣ∗ is a
unit vectorfield, tangent to Σ∗ and normal to eθ. Furthermore, since (νΣ∗ , eθ, eϕ) is an
orthonormal frame of Σ∗, we have

div Σ∗(νΣ∗) = g(DνΣ∗
νΣ∗ , νΣ∗) + g(DeθνΣ∗ , eθ) + g(DeϕνΣ∗ , eϕ).

Since νΣ∗ is a unit vector, the first term vanishes, and hence

div Σ∗(νΣ∗) = g(DeθνΣ∗ , eθ) + g(DeϕνΣ∗ , eϕ)

=

√
e4(r)

2
√
e3(u) + e3(r)

g(Dθe3, eθ)−
√
e3(u) + e3(r)

2
√
e4(r)

g(Dθe4, eθ) + νΣ∗(Φ)

=

√
e4(r)

2
√
e3(u) + e3(r)

κ−
√
e3(u) + e3(r)

2
√
e4(r)

κ.

In particular, we have

div Σ∗

(
r−1f |Ψ|2νΣ∗

)
= r−2νΣ∗

(
rf |Ψ|2) + νΣ∗(r

−2)rf |Ψ|2 + div Σ∗(νΣ∗)r
−1f |Ψ|2

= r−2νΣ∗

(
rf |Ψ|2) +

(
div Σ∗(νΣ∗)−

2νΣ∗(r)

r

)
r−1f |Ψ|2

= r−2νΣ∗

(
rf |Ψ|2) +

( √
e4(r)

2
√
e3(u) + e3(r)

(
κ− 2e3(r)

r

)

−
√
e3(u) + e3(r)

2
√
e4(r)

(
κ− 2e4(r)

r

))
r−1f |Ψ|2

and hence

r−2νΣ∗

(
rf |Ψ|2) = div Σ∗

(
r−1f |Ψ|2νΣ∗

)
+O(εr−2)f |Ψ|2

We finally obtain

P ·NΣ∗ =
1

2
fQ34 +

1

2
f(ě4Ψ)2 +

1

2
r−2νΣ∗

(
rf |Ψ|2)

+O(mr−1 + ε)(|f |+ r|f ′|)(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2)

=
1

2
fQ34 +

1

2
f(ě4Ψ)2 +

1

2
div Σ∗

(
r−1f |Ψ|2νΣ∗

)
+O(mr−1 + ε)(|f |+ r|f ′|)(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2)

which concludes the proof of the lemma.
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10.2.3 Proof of Theorem 10.2.1

Consider the function fp = fp,R defined by,

fp =

{
rp, if r ≥ R,

0, if r ≤ R
2
,

(10.2.15)

where R is a fixed, sufficiently large constant which will be chosen in the proof. We also
consider

Xp = fpe4, wp =
2fp
r
, Mp =

2f ′p
r
e4.

The proof relies on Proposition 10.2.7.

Step 0. (Reduction to the region r ≥ R) In view of the definition of E [Xp, wp,Mp], see
(10.1.13), and in view of the choice of Xp and wp, we have

DµPµ[Xp, wp,Mp] = E [Xp, wp,Mp] + fp(r)ě4Ψ ·N.

We integrate this identity on the domain M(τ1, τ2) to derive,∫
Σ(τ2)

P ·NΣ +

∫
Σ∗(τ1,τ2)

P ·NΣ∗ +

∫
M(τ1,τ2)

E =

∫
Σ(τ1)

P ·NΣ −
∫
M(τ1,τ2)

fpě4Ψ ·N.

Denoting the boundary terms,

K≥R(τ1, τ2) : =

∫
Σ≥R(τ2)

P · e4 +

∫
Σ∗(τ1,τ2)

P ·NΣ∗ −
∫

Σ≥R(τ1)

P · e4,

K≤R(τ1, τ2) : =

∫
Σ≤R(τ1)

P ·NΣ −
∫

Σ≤R(τ2)

P ·NΣ,

we write,

K≥R(τ1, τ2) +

∫
M≥R(τ1,τ2)

E = K≤R(τ1, τ2)−
∫
M≤R(τ1,τ2)

E −
∫
M(τ1,τ2)

fpě4Ψ ·N.

(10.2.16)

We have the following lemma.

Lemma 10.2.9. For p ≥ δ, we have

K≥R(τ1, τ2) +

∫
M≥R(τ1,τ2)

E . Rp+2
(
E[Ψ](τ1) + Jp[N,ψ](τ1, τ2) +O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2)

)
.
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Proof of Lemma 10.2.9. The terms
∫

Σ≤R(τ)
P · NΣ and

∫
M≤R(τ1,τ2)

E on the right can be

estimated as follows ∣∣∣∣ ∫
Σ≤R(τ1)

P ·NΣ

∣∣∣∣ . RpE[Ψ](τ1),∣∣∣∣ ∫
Σ≤R(τ2)

P ·NΣ

∣∣∣∣ . RpE[Ψ](τ2),∣∣∣∣ ∫
M≤R(τ1,τ2)

E
∣∣∣∣ . Rp+2Mor[Ψ](τ1, τ2).

Hence,

K≤R(τ1, τ2)−
∫
M≤R(τ1,τ2)

E . Rp+2 (E[Ψ](τ1) + E[Ψ](τ2) + Mor[Ψ](τ1, τ2)) .

In view of the improved Morawetz Theorem 10.1.1 we have, for fixed δ > 0,

E[Ψ](τ2) + Morr[Ψ](τ1, τ2) + F [Ψ](τ1, τ2) . E[Ψ](τ1) + Jδ[N,ψ](τ1, τ2)

+O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2)

which implies

K≥R(τ1, τ2) +

∫
M≥R(τ1,τ2)

E . Rp+2
(
E[Ψ](τ1) + Jδ[N,ψ](τ1, τ2) +O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2)

)
+

∣∣∣∣∫
M(τ1,τ2)

fpě4Ψ ·N
∣∣∣∣ .

Together with the definition (5.3.7) of Jp and the fact that p ≥ δ, we infer

K≥R(τ1, τ2) +

∫
M≥R(τ1,τ2)

E . Rp+2
(
E[Ψ](τ1) + Jp[N,ψ](τ1, τ2) +O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2)

)
which concludes the proof of Lemma 10.2.9.

The proof of Theorem 10.2.1 now proceeds according to the following steps.

Step 1. (Bulk terms for r ≥ R) We prove the following lower bound for
∫
M≥R(τ1,τ2)

E .

Lemma 10.2.10. Given a fixed δ > 0 we have for all δ ≤ p ≤ 2− δ and R� m
δ

, ε� δ,∫
M≥R(τ1,τ2)

E ≥ 1

4

∫
M≥R(τ1,τ2)

rp−1
(
p|ě4(Ψ)|2 + (2− p)(|∇/Ψ|2 + r−2|Ψ|2)

)
− O(ε)Morr[Ψ](τ1, τ2). (10.2.17)
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Proof of Lemma 10.2.10. We make use of Proposition 10.2.7 according to which,

E [X,w,M ] =
1

2
f ′p|ě4(Ψ)|2 +

1

2

(
2fp
r
− f ′p

)
Q34 + Err

(
ε,
m

r
; fp

)
[Ψ]

= rp−1

[
p

2
|ě4(Ψ)|2 +

1

2
(2− p)(|∇/Ψ|2 + V |Ψ|2)

]
+ Err

(
ε,
m

r
; fp

)
[Ψ]

≥ rp−1

[
p

2
|ě4(Ψ)|2 +

1

2
(2− p)(|∇/Ψ|2 + r−2|Ψ|2)

]
+ Err

(
ε,
m

r
; fp

)
[Ψ]

where,

Err
(
ε,
m

r
, fp

)
(Ψ) = rpO

(m
r2

) [
|e4Ψ|2 + r−2Ψ|2

]
+ rpO(ε)w1,1

(
|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
+ rpO(ε)w2,1/2

(
|e3Ψ|(|e4Ψ|+ r−1|∇/Ψ|) + |∇/Ψ|2 + r−2|Ψ|2

)
. Err

(m
r

)
+ Err(ε),

Err
(m
r

)
= O

(m
r

)
rp−1

[
|ě4Ψ|2 + r−2|Ψ|2

]
,

Err(ε) = O(ε)rp−1
(
|ě4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2 + r−2|e3Ψ|2

)
.

Thus, ∫
M≥R(τ1,τ2)

E ≥
∫
M≥R(τ1,τ2)

rp−1
(p

2
|ě4(Ψ)|2 +

1

2
(2− p)(|∇/Ψ|2 + r−2|Ψ|2)

)
− O

(m
R

)∫
M≥R(τ1,τ2)

rp−1
[
|ě4Ψ|2 + r−2|Ψ|2

]
− O(ε)

∫
M≥R(τ1,τ2)

rp−1
(
|ě4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2

)
− O(ε)

∫
M≥R(τ1,τ2)

rp−3|e3Ψ|2.

For δ ≤ p ≤ 2− δ, R� m
δ

and ε� δ we can absorb all error terms except the last, i.e.∫
M≥R(τ1,τ2)

E ≥ 1

4

∫
M≥R(τ1,τ2)

rp−1
(
p|ě4(Ψ)|2 + (2− p)(|∇/Ψ|2 + r−2|Ψ|2)

)
− O(ε)

∫
M≥R(τ1,τ2)

rp−3|e3Ψ|2.

Note also that for all δ ≤ p ≤ 2− δ we have,∫
M≥R(τ1,τ2)

rp−3|e3Ψ|2 . Morr(τ1, τ2).
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Hence, for all δ ≤ p ≤ 2− δ and R� m
δ

, ε� δ,∫
M≥R(τ1,τ2)

E ≥ 1

4

∫
M≥R(τ1,τ2)

rp−1
(
p|ě4(Ψ)|2 + (2− p)(|∇/Ψ|2 + r−2|Ψ|2)

)
− O(ε)Morr[Ψ](τ1, τ2)

as desired.

Combining (10.2.17) with Lemma 10.2.9, we deduce,

K≥R(τ1, τ2) + Ḃp,R[Ψ](τ1, τ2) . Rp+2
(
E[Ψ](τ1) + Jp[N,ψ](τ1, τ2) (10.2.18)

+O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2)
)
.

Step 2. (Boundary terms for r ≥ R.) Recall that according to Proposition 10.2.7,

P · e4 = fp|ě4Ψ|2 − 1

2
r−2e4(rfp|Ψ|2) +O(εr−1)fp(|e4Ψ|2 + r−2|Ψ|2),

and according to Lemma 10.2.8

P ·NΣ∗ =
1

2
fQ34 +

1

2
f(ě4Ψ)2 +

1

2
div Σ∗

(
r−1f |Ψ|2νΣ∗

)
+O(mr−1 + ε)(|f |+ r|f ′|)(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2)

Recalling the definition of

K≥R =

∫
Σ≥R(τ2)

P · e4 +

∫
Σ∗(τ1,τ2)

P ·NΣ∗ −
∫

Σ≥R(τ1)

P · e4

we write,

K≥R =

∫
Σ≥R(τ2)

fp|ě4Ψ|2 +
1

2

∫
Σ∗(τ1,τ2)

rp
(
Q34 + (ě4Ψ)2

)
−
∫

Σ≥R(τ1)

fp(ě4Ψ)2

− 1

2

∫
Σ≥R(τ2)

r−2e4(rfp|Ψ|2) +
1

2

∫
Σ∗(τ1,τ2)

div Σ∗

(
r−1f |Ψ|2νΣ∗

)
+

1

2

∫
Σ≥R(τ1)

r−2e4(rfp|Ψ|2) +

∫
Σ∗(τ1,τ2)

O(mr−1 + ε)rp−2(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2)

+ O(ε)

(∫
Σ≥R(τ2)

rp−1(|e4Ψ|2 + r−2|Ψ|2)−
∫

Σ≥R(τ1)

rp−1(|e4Ψ|2 + r−2|Ψ|2)

)
.
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Now, the following integrations by parts hold true∫
Σ≥R(τ)

r−2e4(rfp|Ψ|2)

=

∫
r≥R

(∫
Sr

r−2e4(rfp|Ψ|2)

)
1

e4(r)

=

∫
r≥R

1

e4(r)
e4

(∫
Sr

r−1fp|Ψ|2
)
−
∫

Σ≥R(τ)

(
e4

(
r−2
)

+ κr−2
)
rfp|Ψ|2

=

∫
S∗(τ)

rp−1|Ψ|2 −
∫
SR(τ)

rp−1|Ψ|2 −
∫

Σ≥R(τ)

(
κ− 2e4(r)

r

)
r−1fp|Ψ|2

=

∫
S∗(τ)

rp−1|Ψ|2 −
∫
SR(τ)

rp−1|Ψ|2 +O(ε)

∫
Σ≥R(τ)

rp−3|Ψ|2

and ∫
Σ∗(τ1,τ2)

div Σ∗

(
r−1f |Ψ|2νΣ∗

)
=

∫
S∗(τ2)

rp−1|Ψ|2 −
∫
S∗(τ1)

rp−1|Ψ|2

where S∗(τ) denotes the 2-sphere Σ∗∩Σ(τ). Note that the boundary terms cancel, except
the one on r = R, and hence

K≥R =

∫
Σ≥R(τ2)

fp|ě4Ψ|2 +
1

2

∫
Σ∗(τ1,τ2)

rp
(
Q34 + (ě4Ψ)2

)
−
∫

Σ≥R(τ1)

fp|ě4Ψ|2

+

∫
Σ∗(τ1,τ2)

O(mr−1 + ε)rp−2(|e4Ψ|2 + |∇/Ψ|2 + r−2|Ψ|2)

+ O(ε)

(∫
Σ≥R(τ2)

rp−1(|e4Ψ|2 + r−2|Ψ|2)−
∫

Σ≥R(τ1)

rp−1(|e4Ψ|2 + r−2|Ψ|2)

)
+

1

2

∫
SR(τ2)

rp−1|Ψ|2 − 1

2

∫
SR(τ1)

rp−1|Ψ|2.

Using

Q34 + |ě4Ψ|2 = |∇/Ψ|2 +
4Υ

r2
|Ψ|2 +

∣∣∣∣e4Ψ +
1

r
Ψ

∣∣∣∣2
= |∇/Ψ|2 +

4Υ

r2
|Ψ|2 + (e4Ψ)2 +

1

r2
|Ψ|2 +

2

r
Ψ · e4(Ψ)

≥ |∇/Ψ|2 +
4Υ− 3

r2
|Ψ|2 +

2

3
|e4Ψ|2
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and the fact that 4Υ ≥ 3 + 2/3 for r ≥ R and R large enough, we infer

K≥R ≥ 1

2

(∫
Σ≥R(τ2)

rp|ě4Ψ|2 −
∫

Σ≥R(τ1)

rp|ě4Ψ|2 + Ḟp[Ψ](τ1, τ2)

)

+ O(ε)

(∫
Σ≥R(τ2)

rp−3|Ψ|2 −
∫

Σ≥R(τ1)

rp−3|Ψ|2
)

+
1

2

∫
SR(τ2)

rp−1|Ψ|2 − 1

2

∫
SR(τ1)

rp−1|Ψ|2 (10.2.19)

Next, recall that according to Proposition 10.2.7, we have

P · e4 ≥
1

8
rp−2(p− 1)2|Ψ|2 − p

2
r−2e4(rfp|Ψ|2).

We infer∫
Σ≥R(τ2)

P · e4 ≥
1

8

∫
Σ≥R(τ2)

rp−2(p− 1)2|Ψ|2 − p

2

∫
Σ≥R(τ2)

r−2e4(rfp|Ψ|2).

Integrating by parts similarly as before, we infer∫
Σ≥R(τ2)

P · e4 ≥
1

8

∫
Σ≥R(τ2)

rp−2(p− 1)2|Ψ|2 − p

2

∫
S∗(τ)

rp−1|Ψ|2

+
p

2

∫
SR(τ)

rp−1|Ψ|2 +O(ε)

∫
Σ≥R(τ)

rp−3|Ψ|2.

Arguing as for the proof of (10.2.19) except for the boundary term on Σ≥R(τ2) for which
we use the above estimate, we deduce

K≥R ≥ 1

8

∫
Σ≥R(τ2)

rp−2(p− 1)2|Ψ|2 +
1

2

(
−
∫

Σ≥R(τ1)

rp|ě4Ψ|2 + Ḟp[Ψ](τ1, τ2)

)

+ O(ε)

(∫
Σ≥R(τ2)

rp−1(|e4Ψ|2 + r−2|Ψ|2)−
∫

Σ≥R(τ1)

rp−1(|e4Ψ|2 + r−2|Ψ|2)

)
+

1− p
2

∫
S∗(τ2)

rp−1|Ψ|2 +
p

2

∫
SR(τ2)

rp−1|Ψ|2 − 1

2

∫
SR(τ1)

rp−1|Ψ|2.
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We first focus on the case δ ≤ p ≤ 1− δ, in which case the previous estimate yields

K≥R ≥ δ2

8

∫
Σ≥R(τ2)

rp−2|Ψ|2 +
1

2

(
−
∫

Σ≥R(τ1)

rp|ě4Ψ|2 + Ḟp[Ψ](τ1, τ2)

)

+ O(ε)

(∫
Σ≥R(τ2)

rp−1(|e4Ψ|2 + r−2|Ψ|2)−
∫

Σ≥R(τ1)

rp−3|Ψ|2
)

+
1

2

∫
SR(τ2)

rp−1|Ψ|2 − 1

2

∫
SR(τ1)

rp−1|Ψ|2.

Together with (10.2.19) and the fact that ε � δ2 by assumption, we infer in view of the
definition of Ėp,R[Ψ] for δ ≤ p ≤ 1− δ,

Ėp,R[Ψ](τ2) + Ḟp[Ψ](τ1, τ2) . K≥R + Ėp,R[Ψ](τ1) +

∫
SR(τ2)

rp−1|Ψ|2.

Together with (10.2.18), we deduce for δ ≤ p ≤ 1− δ

Ėp,R[Ψ](τ2) + Ḟp[Ψ](τ1, τ2) + Ḃp,R[Ψ](τ1, τ2)

. Ėp,R[Ψ](τ1) +

∫
SR(τ2)

rp−1|Ψ|2 +Rp+2
(
E[Ψ](τ1) + Jp[N,ψ](τ1, τ2)

+O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2)
)
.

In view of the improved Morawetz Theorem 10.1.1, and thanks also to the term Ḃp,R[Ψ](τ1, τ2)

on the left hand side, we may absorb the term O(ε)Ḃδ ; 4m0 [ψ](τ1, τ2)
)

and obtain

Ėp,R[Ψ](τ2) + Ḟp[Ψ](τ1, τ2) + Ḃp,R[Ψ](τ1, τ2)

. Rp+2
(
Ep[Ψ](τ1) + Jp[N,ψ](τ1, τ2)

)
(10.2.20)

which is the desired estimate in the case δ ≤ p ≤ 1− δ.

Finally, we focus on the remaining case, i.e. 1− δ ≤ p ≤ 2− δ. Combining (10.2.19) and
(10.2.18), arguing as in the proof of (10.2.20), and in view of the definition of Ėp,R[Ψ] for
1− δ ≤ p ≤ 2− δ, we obtain

Ėp,R[Ψ](τ2) + Ḟp[Ψ](τ1, τ2) + Ḃp,R[Ψ](τ1, τ2)

. Rp+2 (Ep[Ψ](τ1) + Jp[N,ψ](τ1, τ2))

+O(ε)

∫
Σ≥R(τ2)

rp−3|Ψ|2 +

∫
Σ≥R(τ2)

r−1−δ|Ψ|2

. Rp+2 (Ep[Ψ](τ1) + Jp[N,ψ](τ1, τ2)) + E1−δ[Ψ](τ2)
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where we also used the fact that p ≤ 2− δ so that p− 3 ≤ −1− δ. Together with the fact
that

Ėp,R[Ψ](τ) ≥ Ė1−δ,R[Ψ](τ) for p ≥ 1− δ
and (10.2.20), we infer

Ėp,R[Ψ](τ2) + Ḟp[Ψ](τ1, τ2) + Ḃp,R[Ψ](τ1, τ2) . Rp+2 (Ep[Ψ](τ1) + Jp[N,ψ](τ1, τ2))

for all δ ≤ p ≤ 2− δ as desired. This concludes the proof of Theorem 10.2.1.

10.3 Higher weighted estimates

We use a variation of the method of [5] to derive slightly stronger weighted estimates.
This allows us to prove Theorem 5.3.5 for s = 0 in section 10.4.6. The proof for higher
order derivatives s ≤ ksmall + 29 will be provided in section 10.4.6.

As in the previous section we rely on the assumptions (10.2.8)–(10.2.11) to which we add,

RP5. The assumptions RP0–RP4 hold true for one extra derivative with respect to d.

RP6. e4(m) satisfies the following improvement of RP4

|d≤2e4(m)| . εw2,1. (10.3.1)

10.3.1 Wave equation for ψ̌

Proposition 10.3.1. Assume ψ verifies �2ψ = −κκψ +N . Then ψ̌ = f2ě4ψ verifies:

1. In the region r ≥ 6m0,

(�2 + κκ) ψ̌ = r2

(
e4(N) +

3

r
N

)
+

2

r

(
1− 3m

r

)
e4 ψ̌ +O(r−2)d≤1ψ

+rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ.

2. In the region 4m0 ≤ r ≤ 6m0,

(�2 + κκ) ψ̌ = f2

(
e4(N) +

3

r
N

)
+O(1)d≤2ψ.

The proof of Proposition 10.3.1 is postponed to Appendix D.4.
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10.3.2 The rp weighted estimates for ψ̌

The goal of this section is to prove Theorem 5.3.5 in the case s = 0. The proof for higher
order derivatives s ≤ ksmall + 29 will be provided in section 10.4.6.

Proof of Theorem 5.3.5 in the case s = 0. We write, in accordance to Proposition 10.3.1

� ψ̌ − V ψ̌ = Ň + f2

(
e4 +

3

r

)
N

where,

Ň =


2
r

(
1− 3m

r

)
e4 ψ̌ +O(r−2)d≤1ψ

+rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ, r ≥ 6m0,

O(1)d≤2ψ, 4m0 ≤ r ≤ 6m0.

(10.3.2)

We apply the first part of Proposition 10.2.7 to ψ replaced by ψ̌. This yields, using also
(10.1.13),

DivPq( ψ̌) = Eq( ψ̌) + fqě4 ψ̌ · Ň + fqě4 ψ̌ · f2

(
e4 +

3

r

)
N,

where, with f = fq, Xq = fqe4, wq = 2fq
r
,Mq = 2r−1f ′qe4,

Eq( ψ̌) = E [Xq, wq,Mq] =
1

2
f ′q|ě4( ψ̌)|2 +

1

2

(
2fq
r
− f ′q

)
Q34( ψ̌) + Errq( ψ̌),

Errq( ψ̌) : = Err
(
ε,
m

r
; fq

)
[ ψ̌]

= O
(m
r2

)
rq|e4 ψ̌|2 +O

(m
r4

+ εw3,1

)
rq| ψ̌|2 +O(ε)w1,1r

q
(
|e4 ψ̌|2 + |∇/ ψ̌|2 + r−2| ψ̌|2

)
+ O(ε)w2,1/2r

q
( (
|e4 ψ̌|+ r−1|∇/ ψ̌|

)
|e3 ψ̌|+ |∇/ ψ̌|2 + r−2| ψ̌|2

)
,

Pk( ψ̌) = P [Xq, wq,Mq]( ψ̌).

We then integrate on the domainM(τ1, τ2) to derive, exactly as in the proof of Theorem
10.2.1 (see section 10.2.3),∫

Σ(τ2)

Pq · e4 +

∫
Σ∗(τ1,τ2)

Pq ·NΣ∗ +

∫
M(τ1,τ2)

(
Eq + fqě4 ψ̌Ň

)
=

∫
Σ(τ1)

Pq · e4 −
∫
M(τ1,τ2)

fqě4 ψ̌ · f2

(
e4 +

3

r

)
N. (10.3.3)
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All terms can be treated exactly as in the proof of Theorem 10.2.1, except for the bulk
term, i.e. we obtain the following analog of (10.2.1)

Ėq ;R[ ψ̌](τ2) +

∫
M(τ1,τ2)

(Eq + rqě4( ψ̌)Ň) + Ḟq[ ψ̌](τ1, τ2)

. Eq[ ψ̌](τ1) + Jq

[
ψ̌, f2

(
e4 +

3

r

)
N

]
(τ1, τ2).

Since all terms for r ≤ R can be controlled by one derivative of ψ, we infer

Ėq[ ψ̌](τ2) + Morr[ ψ̌](τ1, τ2) +

∫
M≥R(τ1,τ2)

(Eq + rqě4( ψ̌)Ň) + Ḟq[ ψ̌](τ1, τ2)

. Eq[ ψ̌](τ1) + J̌q[ ψ̌, N ](τ1, τ2) +Rq+3(E1[ψ](τ2) + Morr1[ψ](τ1, τ2)). (10.3.4)

Also, since δ ≤ max(q, δ) ≤ 1− δ, we have in view of Theorem 5.3.4 in the case s = 115

sup
τ∈[τ1,τ2]

E1
max(q,δ)[ψ](τ) +B1

max(q,δ)[ψ](τ1, τ2)

. E1
max(q,δ)[ψ](τ1) + J1

max(q,δ)[ψ,N ](τ1, τ2), (10.3.5)

In view of (10.3.4) and (10.3.5), it thus only remains to estimate the integral∫
M≥R(τ1,τ2)

(Eq + rqě4( ψ̌)Ň),

i.e. we need to derive the analog of (10.2.17) used in the proof of Theorem 10.2.1.
This is achieved in Proposition 10.3.2 below, which together with (10.3.4) and (10.3.5)
immediately yields the proof of Theorem 5.3.5 in the case s = 0.

Proposition 10.3.2. The following estimate holds true,∫
M≥R(τ1,τ2)

(Eq + rqě4( ψ̌)Ň) ≥ 1

8

∫
M≥R(τ1,τ2)

rq−1
(
(2 + q)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 2r−2| ψ̌|2

)
−O(ε) sup

τ1≤τ≤τ2
Ėq,R[ ψ̌](τ)

−O(1)
(
E1

max(q,δ)[ψ](τ1) + J1
max(q,δ)[ψ,N ]

)
.

(10.3.6)

We now focus on the proof of Proposition 10.3.2. In view of the definition of Ň , we have

15The proof of Theorem 5.3.4 for higher derivatives s ≥ 1, even though proved later in section 10.4.5,
is in fact independent of the proof of Theorem 5.3.5 and can thus be invoked here.
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for r ≥ R,

Ň = A0 + A1 + A2,

A0 =
2

r
e4 ψ̌ =

2

r
(ě4 ψ̌ − r−1 ψ̌),

A1 = −6m

r2
e4 ψ̌ +O(r−2)d≤1ψ,

A2 = Err[�g ψ̌],

Err[�g ψ̌] = r2Γge4dψ + rd≤1(Γg)d
≤1ψ + d≤1(Γg)d

2ψ.

Also, recall that we have for r ≥ R

Eq( ψ̌) = E [Xq, wq,Mq] =
q

2
rq−1|ě4( ψ̌)|2 +

2− q
2

rq−1Q34( ψ̌) + Errq( ψ̌).

Consequently, we write,

(Eq + rqě4( ψ̌)Ň) = I0 + I1 + I2,

I0 : =
1

2
rq−1

(
q|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 4(2− q)r−2 ψ̌2

)
+ 2rq−1ě4 ψ̌(ě4 ψ̌ − r−1 ψ̌)

=
1

2
rq−1

(
(q + 4)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 4(2− q)r−2 ψ̌2 − 4r−1ě4 ψ̌ ψ̌

)
,

I1 : = rq−2ě4( ψ̌)
[
−6me4 ψ̌ +O(1)d≤1ψ

]
+O

(m
r

)
rq−3( ψ̌)2,

I2 : = Errq( ψ̌) + rqě4( ψ̌)A2.

(10.3.7)

We will rely on the following two lemmas.

Lemma 10.3.3. The following lower bound estimate holds true for q ≤ 1− δ and r ≥ R,
where R is sufficiently large,

I0 + I1 ≥
1

4
rq−1

(
(2 + q)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 2r−2| ψ̌|2

)
−O(1)rq−3(d≤1ψ)2.(10.3.8)

Lemma 10.3.4. The following estimate holds true for the error term I2∫
M≥R(τ1,τ2)

|I2| . ε sup
τ1≤τ≤τ2

Ėq,R[ ψ̌](τ) +
(m0

R
+ ε
)
Ḃq,R[ ψ̌](τ1, τ2)

+ε

(
sup

τ1≤τ≤τ2
E1
q [ψ](τ) +B1

q [ψ](τ1, τ2) + Jq[ψ,N ](τ1, τ2)

)
.

We postpone the proof of Lemma 10.3.3 and Lemma 10.3.4 to finish the proof of Propo-
sition 10.3.2.
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Proof of Proposition 10.3.2. In view of Lemma 10.3.3 and Lemma 10.3.4, we have∫
M≥R(τ1,τ2)

(Eq + rqě4( ψ̌)Ň) =

∫
M≥R(τ1,τ2)

(I0 + I1) +

∫
M≥R(τ1,τ2)

I2

≥ 1

4

∫
M≥R(τ1,τ2)

rq−1
(
(2 + q)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 2r−2| ψ̌|2

)
− O(1)

∫
M≥R(τ1,τ2)

rq−3(d≤1ψ)2

− O(ε) sup
τ1≤τ≤τ2

Ėq,R[ ψ̌](τ) +O
(m0

R
+ ε
)
Ḃq,R[ ψ̌](τ1, τ2)

− O(ε)

(
sup

τ1≤τ≤τ2
E1
q [ψ](τ) +B1

q [ψ](τ1, τ2) + Jq[ψ,N ](τ1, τ2)

)
so that, since 1− δ < q ≤ 1− δ, and for R sufficiently large and small16 ε,∫
M≥R(τ1,τ2)

(Eq + rqě4( ψ̌)Ň) ≥ 1

8

∫
M≥R(τ1,τ2)

rq−1
(
(2 + q)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 2r−2| ψ̌|2

)
− O(ε) sup

τ1≤τ≤τ2
Ėq,R[ ψ̌](τ)

− O(ε)

(
sup

τ1≤τ≤τ2
E1
q [ψ](τ) +B1

q [ψ](τ1, τ2) + Jq[ψ,N ](τ1, τ2)

)
.

In view of (10.3.5), we infer∫
M≥R(τ1,τ2)

(Eq + rqě4( ψ̌)Ň) ≥ 1

8

∫
M≥R(τ1,τ2)

rq−1
(
(2 + q)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 2r−2| ψ̌|2

)
−O(ε) sup

τ1≤τ≤τ2
Ėq,R[ ψ̌](τ)

−O(1)
(
E1

max(q,δ)[ψ](τ1) + J1
max(q,δ)[ψ,N ]

)
which concludes the proof.

It finally remains to prove Lemma 10.3.3 and Lemma 10.3.4.

Proof of Lemma 10.3.3. Note that,

(q + 4)|ě4 ψ̌|2 − 4r−1(ě4 ψ̌) ψ̌ + 4(2− q)r−2| ψ̌|2

= (q + 2)|ě4 ψ̌|2 + (6− 4q)r−2| ψ̌|2 + 2
(
ě4 ψ̌ − r−1 ψ̌

)2

≥ (q + 2)|ě4 ψ̌|2 + (6− 4q)r−2| ψ̌|2
≥ (q + 2)|ě4 ψ̌|2 + 2r−2| ψ̌|2,

16Using also the second bound on Morr from Theorem 10.1.1 and the bound on Ḃδ,4m0
from the rp

estimates Theorem 10.2.1. See also Remark 10.2.2.
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where we used the fact that q ≤ 1− δ. Hence,

I0 ≥
1

2
rq−1

(
(2 + q)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 2r−2| ψ̌|2

)
.

We also have,

I1 ≤ O
(m
r

)
rq−1

(
|ě4 ψ̌|2 + r−2| ψ̌|2

)
+O(1)

(
rq−1(ě4 ψ̌)2

) 1
2
(
rq−3(d≤1ψ)2

) 1
2 .

Thus if m0/R is sufficiently small, and since q ≤ 1− δ, we deduce, for r ≥ R,

I0 + I1 ≥
1

4
rq−1

(
(2 + q)|ě4 ψ̌|2 + (2− q)|∇/ ψ̌|2 + 2r−2| ψ̌|2

)
−O(1)rq−3(d≤1ψ)2

as desired.

Proof of Lemma 10.3.4. Recall that

I2 = Errq( ψ̌) + rqě4( ψ̌)A2,

A2 = Err[�g ψ̌],

Err[�g ψ̌] = rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ,

Errq( ψ̌) = O
(m
r2

)
rq|e4 ψ̌|2 +O

(m
r4

+ εw3,1

)
rq| ψ̌|2 +O(ε)w1,1r

q
(
|e4 ψ̌|2 + |∇/ ψ̌|2 + r−2| ψ̌|2

)
+ O(ε)w2,1/2r

q
( (
|e4 ψ̌|+ r−1|∇/ ψ̌|

)
|e3 ψ̌|+ |∇/ ψ̌|2 + r−2| ψ̌|2

)
.

Hence,

|I2| . εrq|ě4( ψ̌)|
(
τ−1−δdec(|ě4d

≤1ψ|+ |d≤1ψ|
)

+ r−1τ−
1
2
−δdec(|e3ψ|+ r−1|d2ψ|

))
+
(m
r

+ ε
)
rq−1

(
|ě4 ψ̌|2 + |∇/ ψ̌|2 + r−2| ψ̌|2

)
+ εrq−2τ−

1
2
−δdec |e4 ψ̌||e3 ψ̌|

+εrq−3|∇/ ψ̌||e3 ψ̌|.
This yields, using q ≤ 1− δ,∫
M≥R(τ1,τ2)

|I2| . ε

(
sup

τ1≤τ≤τ2
Ėq,R[ ψ̌](τ)

) 1
2
(

sup
τ1≤τ≤τ2

E1
q [ψ](τ) +B1

q [ψ](τ1, τ2)

) 1
2

+
(m0

R
+ ε
)
Ḃq,R[ ψ̌](τ1, τ2)

+ε

(
sup

τ1≤τ≤τ2
Ėq,R[ ψ̌](τ) + Ḃq[ ψ̌](τ1, τ2)

) 1
2

(∫
M≥R(τ1,τ2)

rq−4|e3 ψ̌|2
) 1

2

. ε sup
τ1≤τ≤τ2

Ėq,R[ ψ̌](τ) +
(m0

R
+ ε
)
Ḃq,R[ ψ̌](τ1, τ2)

+ε

(
sup

τ1≤τ≤τ2
E1
q [ψ](τ) +B1

q [ψ](τ1, τ2)

)
+ ε

∫
M≥R(τ1,τ2)

rq−4|e3 ψ̌|2.
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Next, we estimate the term involving e3 ψ̌. For this we need to appeal to the formula in
Lemma 5.3.7 which we recall below,

�2ψ = −e3e4ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ

We have for r ≥ 6m0

e3 ψ̌ = e3(re4(rψ)) = re3(re4ψ) + e3(r)e4(rψ) = r2e3e4ψ + 2re3(r)e4ψ + e3(r)e4(r)ψ

= r2

(
−�2ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ

)
+ 2re3(r)e4ψ + e3(r)e4(r)ψ

so that

|e3 ψ̌| . r2|N |+ r|e3ψ|+ |d≤2ψ|

and hence∫
M≥R(τ1,τ2)

rq−4|e3 ψ̌|2 .
∫
M≥R(τ1,τ2)

rq−4
(
r4|N |2 + r2|e3ψ|2 + |d≤2ψ|2

)
.

Since q ≤ 1− δ, we infer∫
M≥R(τ1,τ2)

rq−4|e3 ψ̌|2 .
∫

(trap

/
)M(τ1,τ2)

r1−δ|N |2 +B1
q [ψ](τ1, τ2)

. Jq[ψ,N ](τ1, τ2) +B1
q [ψ](τ1, τ2)

and thus∫
M≥R(τ1,τ2)

|I2| . ε sup
τ1≤τ≤τ2

Ėq,R[ ψ̌](τ) +
(m0

R
+ ε
)
Ḃq,R[ ψ̌](τ1, τ2)

+ε

(
sup

τ1≤τ≤τ2
E1
q [ψ](τ) +B1

q [ψ](τ1, τ2)

)
+ ε

∫
M≥R(τ1,τ2)

rq−4|e3 ψ̌|2

. ε sup
τ1≤τ≤τ2

Ėq,R[ ψ̌](τ) +
(m0

R
+ ε
)
Ḃq,R[ ψ̌](τ1, τ2)

+ε

(
sup

τ1≤τ≤τ2
E1
q [ψ](τ) +B1

q [ψ](τ1, τ2) + Jq[ψ,N ](τ1, τ2)

)
.

which concludes the proof of Lemma 10.3.4.
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10.4 Higher derivative estimates

We have proved, respectively in section 10.2 and section 10.3.2, Theorem 5.3.4 on basic
weighted estimates (see Remark 10.2.2) and Theorem 5.3.5 on higher weighted estimates
only in the case s = 0. In this section, we conclude the proof of these theorems by
recovering higher order derivatives17 one by one.

10.4.1 Basic assumptions

Recall that any Ricci coefficient either belongs to Γg or Γb, where Γg and Γb are defined
in section 5.1.2. We make use of the following non sharp consequence of the estimates of
Lemma 5.1.1. We assume, concerning the Ricci coefficients

|dk(Γg)| .
ε

r2u1+δdec−2δ0
trap

for k ≤ ksmall + 30,

|dk(Γb)| .
ε

ru1+δdec−2δ0
trap

for k ≤ ksmall + 30,

|dk(α, β, ρ̌)| . ε

r3u1+δdec−2δ0
trap

for k ≤ ksmall + 30,

|dkα|+ r|dkβ| . ε

ru1+δdec−2δ0
trap

for k ≤ ksmall + 30,

where we recall that δdec and δ0 are such that we have in particular 0 < 2δ0 < δdec.

10.4.2 Strategy for recovering higher order derivatives

So far, we have proved Theorem 5.3.4 in the case s = 018 in section 10.2, and Theorem
5.3.5 on higher weighted estimates in the case s = 0 in section 10.3. We now conclude the
proof of these theorems by recovering higher order derivatives one by one. Since going
from s = 0 to s = 1 is analogous to going from s to s+ 1, we will in fact consider only the
former. More precisely, we assume the following bounds proved respectively in section
section 10.2 and section 10.3,

sup
τ∈[τ1,τ2]

Ep[ψ](τ) +Bp[ψ](τ1, τ2) + Fp[ψ](τ1, τ2) . Ep[ψ](τ1) + Jp[ψ,N ](τ1, τ2), (10.4.1)

17Respectively s ≤ ksmall+30 in the case of Theorem 5.3.4, and s ≤ ksmall+29 in the case of Theorem
5.3.5.

18Recall that Theorem 5.3.4 in the case s = 0 is obtained as a consequence of Theorem 10.1.1 on
Morawetz and energy estimates, and Theorem 10.2.1 on rp-weighted estimates, see Remark 10.2.2.
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and

sup
τ∈[τ1,τ2]

Eq[ ψ̌](τ) +Bq[ ψ̌](τ1, τ2) . Eq[ ψ̌](τ1) + J̌q[ ψ̌, N ](τ1, τ2)

+ E 1
max(q,δ)[ψ](τ1) + J1

max(q,δ)[ψ,N ],
(10.4.2)

and our goal is to prove the corresponding estimates for s = 1. We will proceed as follows

1. we first commute the wave equation for ψ and ψ̌ with T and derive (10.4.1) for Tψ
instead of ψ, and (10.4.2) for T ψ̌ instead of ψ̌,

2. we then commute the wave equation for ψ and ψ̌ with r d/2 and derive (10.4.1) for
r d/2ψ instead of ψ, and (10.4.2) for r d/2 ψ̌ instead of ψ̌,

3. we then use the wave equation satisfied by ψ to derive an estimate for R2ψ in
r ≤ 6m0

19 with a degeneracy at r = 3m,

4. we then commute the wave equation for ψ with R and remove the degeneracy at
r = 3m for R2ψ,

5. we then commute the wave equation for ψ with the redshift vectorfield YH and derive
(10.4.1) for YHψ instead of ψ,

6. we then commute the wave equation for ψ and ψ̌ with f1e4 and derive (10.4.1) for
re4ψ instead of ψ, and (10.4.2) for f1e4 ψ̌ instead of ψ̌, where f1 = r for r ≥ 6m0

and f1 = 0 for r ≤ 4m0,

7. we finally gather all estimates and conclude.

We will follow the above strategy in section 10.4.5 to prove Theorem 5.3.4, and in section
10.4.6 to prove Theorem 5.3.5. To this end, we first derive several commutator identities
and estimates.

10.4.3 Commutation formulas with the wave equation

Commutation with T

Lemma 10.4.1. We have, schematically, the following commutator formulae

[T, e4] = Γgd, [T, e3] = Γbd, [T, d/k] = Γbd + Γb, [T, d?/k] = Γbd + Γb.

19Note that any finite region in r strictly containing the trapping region would suffice.
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Proof. Recall that we have

[e3, e4] = 2ωe4 − 2ωe3 + 2(η − η)eθ.

We infer

2[T, e4] = [e4 + Υe3, e4]

= Υ[e3, e4]− e4(Υ)e3

= Υ
(
2ωe4 − 2ωe3 + 2(η − η)eθ

)
− e4(Υ)e3

= Υ

(
2ωe4 − 2

(
ω +

1

2
Υ−1e4(Υ)

)
e3 + 2(η − η)eθ

)
= (r−1Γb + Γg)d

= Γgd,

and

2[T, e3] = [e4 + Υe3, e3]

= [e4, e3]− e3(Υ)e3

= −2ωe4 + 2ωe3 − 2(η − η)eθ − e3(Υ)e3

= −2ωe4 + 2

(
ω − 1

2
e3(Υ)

)
e3 − 2(η − η)eθ

= −2ωe4 + 2

(
ω +

1

2
Υ−1e4(Υ)− 1

2Υ
T (Υ)

)
e3 − 2(η − η)eθ

= (Γg + Γb)d

= Γbd.

Next, recall in view of Lemma 2.1.51, the following commutation formulae for reduced
scalars.

1. If f ∈ sk,

[ d/k, e3]f =
1

2
κ d/kf + Comk(f),

Comk(f) = −1

2
ϑ d?/k+1f + (ζ − η)e3f − kηe3Φf − ξ(e4f + ke4(Φ)f)− kβf,

[ d/k, e4] =
1

2
κ d/kf + Comk(f),

Comk(f) = −1

2
ϑ d?/k+1f − (ζ + η)e4f − kηe4Φf − ξ(e3f + ke3(Φ)f)− kβf.
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2. If f ∈ sk−1

[ d?/k, e3]f =
1

2
κ d?/kf + Com∗k(f),

Com∗k(f) = −1

2
ϑ d/k−1f − (ζ − η)e3f − (k − 1)ηe3Φf + ξ(e4f − (k − 1)e4(Φ)f)

− (k − 1)βf,

[ d?/k, e4]f =
1

2
κ d/kf + Com∗k(f),

Com∗k(f) = −1

2
ϑ d/k−1f + (ζ + η)e4f − (k − 1)ηe4Φf + ξ(e3f − (k − 1)e3(Φ)f)

− (k − 1)βf.

We infer, schematically,

2[T, d/k] = [e4 + Υe3, d/k]

= [e4, d/k] + Υ[e3, d/k]− eθ(Υ)e3

= −1

2
(κ+ Υκ) d/k + Γbd + r−1Γb + 2eθ

(m
r

)
e3

= Γbd + Γb.

The estimate for [T, d?/k] is similar and left to the reader. This concludes the proof of the
lemma.

Lemma 10.4.2. We have

T (κ) = d≤1Γg, T

(
2ω − 1

2
κ

)
= d≤1Γb, T (K) = d≤1Γg.

Proof. We have

2T (κ) = (e4 + Υe3)κ

= −1

2
κ2 − 2ωκ+ 2 d/1ξ + 2(η + η + 2ζ)ξ − 1

2
ϑ2

+Υ

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2(ξξ + η2)

)
= −1

2
κ2 − 2ωκ− 1

2
κκΥ + 2ωκΥ + 2Υρ

+2 d/1ξ + 2Υ d/1η + 2(η + η + 2ζ)ξ − 1

2
ϑ2 + Υ

(
−1

2
ϑϑ+ 2(ξξ + η2)

)
= r−1dΓb + r−1Γb

= d≤1Γg.
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Also, we have

T (r) = e4(r) + Υe3(r) = e4(r)−Υ + Υ(e3(r)− 1) ∈ rΓb.

We infer

T

(
2ω − 1

2
κ

)
= T

(
1

r

)
+ Γb −

1

2
T

(
κ+

2

r

)
= −T (r)

r2
+ dΓb

= d≤1Γb

and

T (K) = T

(
1

r2

)
+ T

(
K − 1

r2

)
= −2T (r)

r3
+ r−1Γb

= r−1d(Γb) + r−1Γb

= d≤1Γg.

This concludes the proof of the lemma.

Corollary 10.4.3. We have

[T,�2]ψ = d≤1(Γg)d
≤2ψ.

Proof. Recall that we have

�2ψ = −e3e4ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ.

We infer

[T,�2]ψ = −[T, e3]e4ψ − e3[T, e4]ψ + [T,4/ 2]ψ +

(
2ω − 1

2
κ

)
[T, e4]ψ

+T

(
2ω − 1

2
κ

)
e4ψ −

1

2
κ[T, e3]ψ − 1

2
T (κ)e3ψ + 2η[T, eθ]ψ + 2T (η)eθψ.

and hence, using also 4/ 2 = − d?/2 d/2 + 2K,

[T,�2]ψ = −[T, e3](r−1dψ)− d[T, e4]ψ − r−1d[T, d/2]ψ − [T, d?/2]r−1dψ + 2T (K)ψ

+

(
2ω − 1

2
κ

)
[T, e4]ψ + T

(
2ω − 1

2
κ

)
r−1dψ − 1

2
κ[T, e3]ψ − 1

2
T (κ)dψ

+2η[T, eθ]ψ + 2T (η)r−1dψ.
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In view of

[T, e4] = Γgd, [T, e3] = Γbd, [T, d/k] = Γbd + Γb, [T, d?/k] = Γbd + Γb

and

T (κ) = d≤1Γg, T

(
2ω − 1

2
κ

)
= d≤1Γb, T (K) = d≤1Γg,

we deduce, schematically,

[T,�2]ψ = d≤1(Γg)d
≤2ψ + r−1d≤1(Γb)d

≤2ψ

= d≤1(Γg)d
≤2ψ.

This concludes the proof of the corollary.

Commutation with angular derivatives

Lemma 10.4.4. We have, schematically,

[r d/k, e4]f, [r d?/k, e4]f = Γgd
≤1f, [r24/ k, e4]f = d≤1(Γg)d

≤2f

[r d/k, e3]f = −rηe3(f) + Γbd
≤1f, [r d?/k, e3]f = rηe3(f) + Γbd

≤1f.

Proof. Recall from Lemma 2.2.13 that the following commutation formulae holds true,

1. If f ∈ sk,

[r d/k, e4] = r

[
Comk(f)− 1

2
Ad/kf

]
,

[r d/k, e3]f = r

[
Comk(f)− 1

2
Ad/kf

]
.

2. If f ∈ sk−1

[r d?/k, e4]f = r

[
Com∗k(f)− 1

2
Ad?/kf

]
,

[r d?/k, e3]f = r

[
Com∗k(f)− 1

2
Ad?/kf

]
,
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where A = 2/re4(r)− κ and A = 2/re3(r)− κ. Now, we have

Comk(f) = r−1Γgd
≤1f, Com∗k(f) = r−1Γgd

≤1f,

Comk(f) = −ηe3(f) + r−1Γbd
≤1f, Com∗k(f) = ηe3(f) + r−1Γbd

≤1f,

which together with the fact that A ∈ Γg and A ∈ Γb implies, schematically,

[r d/k, e4]f, [r d?/k, e4]f = Γgd
≤1f,

[r d/k, e3]f = −rηe3(f) + Γbd
≤1f, [r d?/k, e3]f = rηe3(f) + Γbd

≤1f.

Since 4/ k = − d?/k d/k + kK, We infer

[r24/ k, e4] = [−r2 d?/k d/k + kr2K, e4]

= −[r d?/k, e4]r d/2 − r d?/k[r d/k, e4]+

This concludes the proof of the lemma.

Corollary 10.4.5. We have

r d/2(�2ψ)− (�1 −K)(r d/2ψ) = −rη�2ψ + d≤1(Γg)d
≤2ψ

and

r d?/2(�1φ)− (�2 − 3K)(r d?/2φ) = rη�1φ+ d≤1(Γg)d
≤2φ.

Proof. Recall that we have

�2ψ = −e3e4ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ

and

�1φ = −e3e4φ+4/ 2φ+

(
2ω − 1

2
κ

)
e4φ−

1

2
κe3φ+ 2ηeθφ

We infer

r d/2(�2ψ)−�1(r d/2ψ) = −[r d/2, e3]e4ψ − e3[r d/2, e4]ψ + r( d/24/ 2 −4/ 1 d/2)ψ + [r,4/ 1] d/2ψ

+reθ

(
2ω − 1

2
κ

)
e4ψ +

(
2ω − 1

2
κ

)
[r d/2, e4]ψ − 1

2
reθ(κ)e3ψ

−1

2
κ[r d/2, e3]ψ + 2r d/2(ηeθψ)− 2ηeθ(r d/2ψ),
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and

r d?/2(�1φ)−�2(r d?/2φ) = −[r d?/2, e3]e4φ− e3[r d?/2, e4]φ+ r( d?/24/ 1 −4/ 2 d
?/2)φ+ [r,4/ 2] d?/2φ

−reθ
(

2ω − 1

2
κ

)
e4φ+

(
2ω − 1

2
κ

)
[r d?/2, e4]φ+

1

2
reθ(κ)e3φ

−1

2
κ[r d?/2, e3]φ+ 2r d/2(ηeθφ)− 2ηeθ(r d/2φ),

and hence, using also in particular the following identities from Proposition 2.1.25

d/24/ 2 −4/ 1 d/2 = −K d/2 + 2eθ(K),

d?/24/ 1 −4/ 2 d
?/2 = −3K d?/2 − eθ(K),

we infer,

r d/2(�2ψ)− (�1 −K)(r d/2ψ) = −[r d/2, e3]e4ψ − d[r d/2, e4]ψ + 2reθ(K)ψ + [r,4/ 1](r−1dψ)

+reθ

(
2ω − 1

2
κ

)
r−1dψ +

(
2ω − 1

2
κ

)
[r d/2, e4]ψ − 1

2
reθ(κ)dψ

−1

2
κ[r d/2, e3]ψ + 2d(r−1ηdψ)− 2r−1ηd(dψ),

and

r d?/2(�1φ)− (�2 − 3K)(r d?/2φ) = −[r d?/2, e3]e4φ− d[r d?/2, e4]φ− reθ(K)φ+ [r,4/ 2](r−1dφ)

−reθ
(

2ω − 1

2
κ

)
r−1dφ+

(
2ω − 1

2
κ

)
[r d?/2, e4]φ+

1

2
reθ(κ)dφ

−1

2
κ[r d?/2, e3]φ+ 2d(r−1ηdφ)− 2r−1ηd(dφ).

This yields, schematically,

r d/2(�2ψ)− (�1 −K)(r d/2ψ)

= −[r d/2, e3]e4ψ − d[r d/2, e4]ψ + r−1[r d/2, e4]ψ − 1

2
κ[r d/2, e3]ψ + d≤1(Γg)d

≤2ψ

and

r d?/2(�1φ)− (�2 − 3K)(r d?/2φ)

= −[r d?/2, e3]e4φ− d[r d?/2, e4]φ+ r−1[r d?/2, e4]φ− 1

2
κ[r d?/2, e3]φ+ d≤1(Γg)d

≤2φ

where we used the fact that r−1d≤1Γb is at least as good as d≤1Γg and the fact that
r−1eθ(r) is Γg.
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Next, we rely on

[r d/k, e4]f, [r d?/k, e4]f = Γgd
≤1f,

[r d/k, e3]f = −rηe3(f) + Γbd
≤1f, [r d?/k, e3]f = rηe3(f) + Γbd

≤1f

to infer

r d/2(�2ψ)− (�1 −K)(r d/2ψ) = rηe3e4ψ +
1

2
rκηe3ψ + d≤1(Γg)d

≤2ψ

and

r d?/2(�1φ)− (�2 − 3K)(r d?/2φ) = −rηe3e4φ−
1

2
rκηe3φ+ d≤1(Γg)d

≤2φ.

This yields

r d/2(�2ψ)− (�1 −K)(r d/2ψ) = rη

(
−�2ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ + 2ηeθψ

)
+d≤1(Γg)d

≤2ψ

= −rη�2ψ + d≤1(Γg)d
≤2ψ

and

r d?/2(�1φ)− (�2 − 3K)(r d?/2φ) = −rη
(
−�1φ+4/ 2φ+

(
2ω − 1

2
κ

)
e4φ+ 2ηeθφ

)
+d≤1(Γg)d

≤2φ

= rη�1φ+ d≤1(Γg)d
≤2φ.

where we used the fact that r−1d≤1Γb is at least as good as d≤1Γg. This concludes the
proof of the corollary.

Commutation with R in the region r ≤ r0

We derive in the following lemma commutator identities that are non sharp as far as
decay in r is concerned. This is sufficient for our needs since we will commute the wave
equation with R only in the region r ≤ r0 for a fixed r0 ≥ 4m0 large enough. We will use
in particular the following estimate Also, recall that

max
k≤ksmall+30

|d(Γg)| .
ε

r2u1+δdec−2δ0
trap

. (10.4.3)
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Lemma 10.4.6. We have

[R, e4] = O

(
ε

u1+δdec−2δ0
trap

)
d, [R, e3] = −2m

r2
e3 +O

(
ε

u1+δdec−2δ0
trap

)
d,

[r d/k, R]f, [r d?/k, R]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤1f, [r24/ k, R]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤2f.

Proof. Recall that R is defined by

R =
1

2
(e4 −Υe3)

and that we have

[e3, e4] = 2ωe4 − 2ωe3 + 2(η − η)eθ.

We infer

[R, e4] =
1

2
[−Υe3, e4] = −Υ

2
[e3, e4] +

1

2
e4(Υ)e3 =

(
Υωe3 +

m

r2
e4(r)

)
e3 +O

(
ε

u1+δdec−2δ0
trap

)
d,

and

[R, e3] =
1

2
[e4 −Υe3, e3] =

1

2
[e4, e3] +

1

2
e3(Υ)e3 =

(
ωe3 +

m

r2
e3(r)

)
e3 +O

(
ε

u1+δdec−2δ0
trap

)
d,

and hence,

[R, e4] = O

(
ε

u1+δdec−2δ0
trap

)
d, [R, e3] = −2m

r2
e3 +O

(
ε

u1+δdec−2δ0
trap

)
d.

Also, recall that we have

[r d/k, e4]f, [r d?/k, e4]f = Γgd
≤1f, [r24/ k, e4]f = d≤1(Γg)d

≤2f

[r d/k, e3]f = −rηe3(f) + Γbd
≤1f, [r d?/k, e3]f = rηe3(f) + Γbd

≤1f.

We infer

[r d/k, e4]f, [r d?/k, e4]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤1f, [r24/ k, e4]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤2f

[r d/k, e3]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤1f, [r d?/k, e3]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤1f.
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Together with the definition for R, we deduce

[r d/k, R]f, [r d?/k, R]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤1f, [r24/ k, R]f = O

(
ε

u1+δdec−2δ0
trap

)
d≤2f.

This concludes the proof of the lemma.

Corollary 10.4.7. We have in the region r ≤ r0

�2(Rψ) =

(
1− 3m

r

)
d2ψ +O

(
ε

u1+δdec−2δ0
trap

)
d2ψ +O(1)d≤1ψ +O(1)d≤1N.

Proof. Recall that we have

�2ψ = −e4(e3(ψ)) +4/ 2ψ −
1

2
κe4ψ +

(
−1

2
κ+ 2ω

)
e3ψ + 2ηeθψ.

Multiplying by r2, we infer

r2�2ψ = −r2e4(e3(ψ)) + r24/ 2ψ −
1

2
r2κe4ψ + r2

(
−1

2
κ+ 2ω

)
e3ψ + 2rηreθψ

and hence

R(r2�2ψ) = r2�2(Rψ)− [R, r2e4e3]ψ + [R, r24/ 2]ψ − 1

2
R(r2κ)e4ψ −

1

2
r2κ[R, e4]ψ

+R

(
r2

(
−1

2
κ+ 2ω

))
e3ψ + r2

(
−1

2
κ+ 2ω

)
[R, e3]ψ + 2R(rη)reθψ

+2rη[R, reθ]ψ.

Using the commutation identities of the previous lemma, we infer in the region r ≤ r0

R(r2�2ψ) = r2�2(Rψ)− [R, r2e4e3]ψ +O

(
ε

u1+δdec−2δ0
trap

)
d2ψ +O(1)dψ.

Also, since ψ satisfies �2ψ = V ψ +N , we infer in the region r ≤ r0

r2�2(Rψ) = [R, r2e4e3]ψ +O

(
ε

u1+δdec−2δ0
trap

)
d2ψ +O(1)d≤1ψ +O(1)d≤1N.

Next, recall that we have

[R, e4] = O

(
ε

u1+δdec−2δ0
trap

)
d, [R, e3] = −2m

r2
e3 +O(ε)d.
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We infer

[R, r2e4e3]ψ = R(r2)e4e3 + r2[R, e4]e3 + r2e4[R, e3]

=
1

2

(
e4(r2)−Υe3(r2)

)
e4e3ψ + r2e4

(
−2m

r2
e3ψ

)
+O

(
ε

u1+δdec−2δ0
trap

)
d2ψ

= 2
(
r − 3m

)
e4e3ψ +O

(
ε

u1+δdec−2δ0
trap

)
d2ψ +O(1)dψ

and thus, in the region r ≤ r0,

�2(Rψ) =

(
1− 3m

r

)
d2ψ +O

(
ε

u1+δdec−2δ0
trap

)
d2ψ +O(1)d≤1ψ +O(1)d≤1N

as desired.

Commutation with the redshift vectorfield

Let a positive bump function κ = κ(r), supported in the region in [−2, 2] and equal to 1
for [−1, 1]. Recall that the redshift vectorfield is given by

YH = κHY(0), κH := κ

(
Υ

δH

)
where Y(0) is defined by

Y(0) = ae3 + be4 + 2T, a = 1 +
5

4m
(r − 2m), b =

5

4m
(r − 2m).

Lemma 10.4.8. We have

[�2, e3]ψ = −2ωe3(e3ψ) + κe4(e3ψ) + κ�2ψ + d≤1(Γg)d
2ψ + r−2d≤1ψ.

Proof. Recall that we have

�2ψ = −e4(e3(ψ)) +4/ 2ψ −
1

2
κe4ψ +

(
−1

2
κ+ 2ω

)
e3ψ + 2ηeθψ.

Since we have

[e4, e3] = 2ωe3 + r−1Γb d/, [ d/k, e3] =
1

2
κ d/k + Γbd + r−1Γb,

[ d?/k, e3] =
1

2
κ d?/k + Γbd + r−1Γb
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We infer

[�2, e3]ψ = −[e4, e3](e3(ψ)) + [4/ 2, e3]− 1

2
κ[e4, e3](ψ)

+
1

2
e3(κ)e4(ψ)− e3

(
−1

2
κ+ 2ω

)
e3(ψ) + 2η[eθ, e3]ψ − 2e3(η)eθ(ψ)

= −2ωe3(e3ψ) + κ4/ 2ψ + d≤1(Γg)d
2ψ + r−2d≤1ψ.

Using again

�2ψ = −e4(e3(ψ)) +4/ 2ψ −
1

2
κe4ψ +

(
−1

2
κ+ 2ω

)
e3ψ + 2ηeθψ,

we deduce

[�2, e3]ψ = −2ωe3(e3ψ) + κ
(
�2ψ + e4(e3ψ)

)
+ d≤1(Γg)d

2ψ + r−2d≤1ψ

= −2ωe3(e3ψ) + κe4(e3ψ) + κ�2ψ + d≤1(Γg)d
2ψ + r−2d≤1ψ.

This concludes the proof of the lemma.

Lemma 10.4.9. The exists a scalar function d0 satisfying the bound

d0 =
1

2m0

+O(δH) on the support of κH,

such that we have, schematically

[�2, YH]ψ = d0Y(0)(YHψ) + 1Υ≤2δH

(
�2ψ + dTψ + d≤1(Γg)d

2ψ +
1

δ2
H
d≤1ψ

)
+

1

δH
1δH≤Υ≤2δHd

≤2ψ.

Proof. We have

Y(0) = ae3 + be4 + 2T = ae3 + b(2T −Υe3) + 2T

= (a−Υb)e3 + 2(1 + b)T.

Thus, in view of the commutator identities

[T,�2]ψ = d≤1(Γg)d
≤2ψ,

[�2, e3]ψ = −2ωe3(e3ψ) + κe4(e3ψ) + κ�2ψ + d≤1(Γg)d
2ψ + r−2d≤1ψ,
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we deduce, schematically,

[�2, Y(0)]ψ = [�2, (a−Υb)e3]ψ + [�2, 2(1 + b)T ]ψ

= (a−Υb)[�2, e3]ψ + gαβDα(a)Dβe3ψ + 2(1 + b)[�2, T ]ψ

+2gαβDα(b)DβTψ + d≤1ψ

= (a−Υb)
(
− 2ωe3(e3ψ) + κe4(e3ψ) + κ�2ψ

)
− 1

2
e3(a)e4(e3ψ)− 1

2
e4(a)e3(e3ψ)

+dTψ + d≤1(Γg)d
2ψ + d≤1ψ.

Since e4 = −Υe3 + 2T , we infer schematically

[�2, Y(0)]ψ =

(
(a−Υb)(−2ω −Υκ) +

Υ

2
e3(a)− 1

2
e4(a)

)
e3(e3ψ)

+�2ψ + dTψ + d≤1(Γg)d
2ψ + d≤1ψ.

We deduce,

[�2, YH]ψ = [�2, κHY(0)]ψ

= κH[�2, Y(0)]ψ + κ′Hd
≤2ψ + κ′′Hd

≤1ψ

= κH

(
(a−Υb)(−2ω −Υκ) +

Υ

2
e3(a)− 1

2
e4(a)

)
e3(e3ψ)

+1Υ≤2δH

(
�2ψ + dTψ + d≤1(Γg)d

2ψ +
1

δ2
H
d≤1ψ

)
+

1

δH
1δH≤Υ≤2δHd

≤2ψ.

Now, we have

κHe3(e3ψ) =
1

a−Υb
κHY(0)(e3ψ) + Tdψ

=
1

(a−Υb)2
κHY(0)(Y(0)ψ) + dTψ + d≤1ψ

=
1

(a−Υb)2
Y(0)(YHψ) + dTψ +

1

δH
d≤1ψ

and hence

[�2, YH]ψ =
(a−Υb)(−2ω −Υκ) + Υ

2
e3(a)− 1

2
e4(a)

(a−Υb)2
Y(0)(YHψ)

+1Υ≤2δH

(
�2ψ + dTψ + d≤1(Γg)d

2ψ +
1

δ2
H
d≤1ψ

)
+

1

δH
1δH≤Υ≤2δHd

≤2ψ.



776 CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS

Now, we have in view of the definition of a and b,

(a−Υb)(−2ω −Υκ) + Υ
2
e3(a)− 1

2
e4(a)

(a−Υb)2
=

(1 +O(Υ))(−2ω +O(Υ)) +O(Υ)

(1 +O(Υ))2

=
1

2m
+O(ε) +O(Υ)

=
1

2m0

+O(ε) +O(Υ)

where we used also our assumptions on ω and m. Thus, we have on the support of κH

(a−Υb)(−2ω −Υκ) + Υ
2
e3(a)− 1

2
e4(a)

(a−Υb)2
=

1

2m0

+O(ε+ δH)

=
1

2m0

+O(δH)

where we used the fact that ε� δH by assumption. Setting

d0 :=
(a−Υb)(−2ω −Υκ) + Υ

2
e3(a)− 1

2
e4(a)

(a−Υb)2
,

this concludes the proof of the lemma.

Commutation with re4

Lemma 10.4.10. We have, schematically,

[�2, re4]ψ =
Υ

r

(
1 +

2m

rΥ2

)
ě4(re4ψ) +�2ψ + Γgd

2ψ +
1

Υ
r−2dTψ + r−2 d/2ψ + r−2dψ.

Proof. Recall that we have

�2ψ = −e3(e4(ψ)) +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ.

Since we have

[re4, e3] = 2rωe3 −
r

2
κe4 + Γbd, [re4, e4] = −r

2
κe4 + Γgd,

[ d/k, re4] =
1

2
rκ d/k + Γgd + Γg, [ d?/k, re4] =

1

2
rκ d?/k + Γgd + Γg,
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we infer, schematically,

[�2, re4]ψ = −[e3, re4]e4ψ − e3[e4, re4]ψ + [4/ 2, re4]ψ +

(
2ω − 1

2
κ

)
[e4, re4]ψ

−re4

(
2ω − 1

2
κ

)
e4ψ −

1

2
κ[e3, re4]ψ +

1

2
re4(κ)e3ψ + 2η[eθ, re4]ψ − 2re4(η)eθψ

=
(

2rωe3 −
r

2
κe4

)
e4ψ −

1

2
e3 (rκe4ψ) + rκ4/ 2ψ +

1

2
re4(κ)e3ψ + Γgd

2ψ + r−2dψ

=
(

2rωe3 −
r

2
κe4

)
e4ψ −

1

2
rκe3e4ψ −

1

4
rκ2e3ψ + Γgd

2ψ + r−2 d/2ψ + r−2dψ.

Using again

�2ψ = −e3(e4(ψ)) +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ.

we have

−1

2
rκe3e4ψ −

1

4
rκ2e3ψ =

1

2
rκ�2ψ + r−2 d/2ψ + r−2dψ

and hence

[�2, re4]ψ =
(

2rωe3 −
r

2
κe4

)
e4ψ +�2ψ + Γgd

2ψ + r−2 d/2ψ + r−2dψ

=

(
2rω

1

Υ
(2T − e4)− r

2
κe4

)
e4ψ +�2ψ + Γgd

2ψ + r−2 d/2ψ + r−2dψ

=

(
−2rω

1

Υ
− r

2
κ

)
e4(e4ψ) +�2ψ + Γgd

2ψ +
1

Υ
r−2dTψ + r−2 d/2ψ + r−2dψ

=

(
Υ +

2m

rΥ

)
e4(e4ψ) +�2ψ + Γgd

2ψ +
1

Υ
r−2dTψ + r−2 d/2ψ + r−2dψ

=
Υ

r

(
1 +

2m

rΥ2

)
ě4(re4ψ) +�2ψ + Γgd

2ψ +
1

Υ
r−2dTψ + r−2 d/2ψ + r−2dψ.

This concludes the proof of the lemma.

10.4.4 Some weighted estimates for wave equations

Recall from Corollary 10.4.5 that we have the following commutator identity

r d/2(�2ψ)− (�1 −K)(r d/2ψ) = −rη�2ψ + d≤1(Γg)d
≤2ψ.
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In particular, to derive weighted estimates for r d/2, we need to derive weighted estimates
for solutions φ to wave equations of the type

(�1 − V1)φ = N,

where φ is a reduced 1-scalar and the potential V1 is given by V1 = V + K = −κκ + K.
This is done in the following theorem.

Theorem 10.4.11. Let φ a reduced 1-scalar solution to

(�1 − V1)φ = N, V1 = −κκ+K.

Then, φ satisfies for all δ ≤ p ≤ 2− δ,

sup
τ∈[τ1,τ2]

Ep[φ](τ) +Bp[φ](τ1, τ2) + Fp[φ](τ1, τ2)

. Ep[φ](τ1) + Jp[φ,N ](τ1, τ2) +

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |φ|(|φ|+ |Rφ|)
+

∫
(trap

/
)M(τ1,τ2)

rp−3|φ|(|φ|+ |dφ|), (10.4.4)

and φ̌ = f2ě4φ satisfies for all 1− δ < q ≤ 1− δ,

sup
τ∈[τ1,τ2]

Eq[φ̌](τ) +Bq[φ̌](τ1, τ2)

. Eq[φ̌](τ1) + J̌q[φ̌, N ](τ1, τ2) + E 1
max(q,δ)[φ](τ1) + J1

max(q,δ)[φ,N ]

+

∫
M(τ1,τ2)

rq−3|φ̌|(|φ̌|+ |dφ̌|). (10.4.5)

Remark 10.4.12. Although we will not need it, we expect that the last 2 terms in the
right-hand side of (10.4.4) and the last term in the right-hand side of (10.4.5) could be
removed.

Proof. We start with the following observations.

• (10.4.5) is the analog of (10.4.1), i.e. of Theorem 5.3.5 in the case s = 0, with V
replaced by V1, and with the reduced 2-scalar ψ replaced by the reduced 1-scalar φ.
The proof is in fact significantly easier in view of the presence of the term∫

M(τ1,τ2)

rq−3|φ̌|(|φ̌|+ |dφ̌|)

on the right-hand side of (10.4.5).
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• (10.4.4) is the analog of (10.4.2), i.e. of Theorem 5.3.4 in the case s = 0, with V
replaced by V1, and with the reduced 2-scalar ψ replaced by the reduced 1-scalar φ.
The proof is in fact significantly easier in view of the presence of the terms∫

(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |φ|(|φ|+ |Rφ|) +

∫
(trap

/
)M(τ1,τ2)

rp−3|φ|(|φ|+ |dφ|)

on the right-hand side of (10.4.4).

• The boundary terms can be treated as in the proof of (10.4.1) and (10.4.2) in view
of the fact that V1 is a positive potential20.

• The only place where there might a potential difficulty concerns the proof of (10.4.5)
in (trap)M where the second to last term on the right-hand side is required to have
a more precise structure.

In view of the above observations, and in particular of the last one, we focus on recovering
the bulk term leading to (10.4.5) in (trap)M. To this end, we choose f ad w as in
Proposition 10.1.16. This yields21

Ė [fR,w](Ψ) ≥ f ′|R(Ψ)|2 + r−1
(
1− 3m

r

)
f |∇/Ψ|2 +O

(
1− 3m

r

r3

)
|Ψ|2.

We infer

Ė [fR,w,M = 2hR](Ψ) ≥ f ′|R(Ψ)|2 + r−1

(
1− 3m

r

)
f |∇/Ψ|2 +O

(
1− 3m

r

r3

)
|Ψ|2

+
1

2
r−2(Υr2h)′|Ψ|2 + hΨR(Ψ).

We now choose a smooth h, compactly supported in [5/2m0, 7/2m0], such that h(3m) = 0
and h′(3m) = 122. We infer r−2(Υr2h)′(3m) = 1/3 > 0 and hence

Ė [fR,w,M ](Ψ) ≥ f ′|R(Ψ)|2 + r−1

(
1− 3m

r

)
f |∇/Ψ|2 +

Υ

r3
|Ψ|2

+O

(
1− 3m

r

r3

)
|Ψ|(|Ψ|+ |R(Ψ)|).

20We have

V1 = −κκ+K =
4Υ + 1 +O(ε)

r2

in view of the assumptions so that V1 is indeed a positive potential.
21Note that Proposition 10.1.16 does not use the particular form of the potential and the type of the

reduced scalar φ and hence holds in our more general case.
22This differs from the choice of h in the proof of (10.4.1) in order to avoid using a Poincaré inequality

(which depends of the type of the reduced scalar) and the particular form of the potential V1.
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In view of the choice of f in Proposition 10.1.16, we have

f ′ &
1

r3
,

(
1− 3m

r

)
f ≥

(
1− 3m

r

)2

,

and hence, there exists two constants c0 > 0 and C0 > 0 such that

Ė [fR,w0,M ](Ψ) ≥ c0

(
1

r3
|R(Ψ)|2 + r−1

(
1− 3m

r

)2

|∇/Ψ|2 +
Υ

r3
|Ψ|2

)

−C0

∣∣1− 3m
r

∣∣
r3

|Ψ|(|Ψ|+ |R(Ψ)|).

The last term above is responsible for the second to last term on the right-hand side of
(10.4.5).

Next, we have the following consequence of (10.4.1) and Theorem 10.4.11.

Corollary 10.4.13. Let φ be a reduced k-scalar for k = 1, 2 such that φ satisfies23

(�k −W )φ = O

(
ε

r2u1+δdec−2δ0
trap

)
dφ1 + φ2

where φ1 and φ2 are given reduced scalars, and where W = V in the case k = 2 and
W = V1 in the case k = 1. Then, φ satisfies for all δ ≤ p ≤ 2− δ,

sup
τ∈[τ1,τ2]

Ep[φ](τ) +Bp[φ](τ1, τ2) + Fp[φ](τ1, τ2)

. Ep[φ](τ1) + ε2

(
sup

[τ1,τ2]

E[φ1](τ) +Bp[φ1](τ1, τ2)

)
+ Jp[φ, φ2](τ1, τ2)

+

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |φ|(|φ|+ |Rφ|) +

∫
(trap

/
)M(τ1,τ2)

rp−3|φ|(|φ|+ |dφ|).

Proof. The wave equation for φ satisfies the assumptions of (10.4.1) and Theorem 10.4.11
with

N = O

(
ε

r2u1+δdec−2δ0
trap

)
dφ1 + φ2.

23Recall that we have δ0 � δdec in view of (5.1.1), and hence δdec − 2δ0 > 0.
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We deduce

sup
τ∈[τ1,τ2]

Ep[φ](τ) +Bp[φ](τ1, τ2) + Fp[φ](τ1, τ2)

. Ep[φ](τ1) + Jp

[
φ,O

(
ε

r2u1+δdec−2δ0
trap

)
dφ1 + φ2

]
(τ1, τ2)

+

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |φ|(|φ|+ |Rφ|) +

∫
(trap

/
)M(τ1,τ2)

rp−3|φ|(|φ|+ |dφ|).

Now, in view of the definition

Jp,R[ψ,N ](τ1, τ2) =

∣∣∣∣ ∫
M≥R(τ1,τ2)

rpě4ψN

∣∣∣∣,
Jp[ψ,N ](τ1, τ2) =

(∫ τ2

τ1

dτ‖N‖L2( (trap)Σ(τ))

)2

+

∫
(trap

/
)M(τ1,τ2)

r1+δ|N |2

+ Jp,4m0 [ψ,N ](τ1, τ2),

we have

Jp

[
φ,O

(
ε

r2u1+δdec−2δ0
trap

)
dφ1 + φ2

]
(τ1, τ2)

. Jp

[
φ,O

(
ε

r2u1+δdec−2δ0
trap

)
dφ1

]
(τ1, τ2) + Jp [φ, φ2] (τ1, τ2)

and, for δ ≤ p ≤ 2− δ, using also δdec − 2δ0 > 0, we have

Jp

[
φ,O

(
ε

r2u1+δdec−2δ0
trap

)
dφ1

]
(τ1, τ2)

. ε2
(∫ τ2

τ1

‖dφ1‖L2( (trap)Σ(τ))

dτ

τ 1+δdec−2δ0

)2

+ ε2
∫

(trap

/
)M(τ1,τ2)

rδ−3|dφ1|2

+ε

∣∣∣∣ ∫
M≥4m0

(τ1,τ2)

rp−2ě4(ψ)dφ1

∣∣∣∣
. ε2 sup

[τ1,τ2]

‖dφ1‖2
L2( (trap)Σ(τ)) + ε2

∫
(trap

/
)M(τ1,τ2)

rp−3|d≤2ψ|2

+ε

(∫
(trap

/
)M(τ1,τ2)

rp−3|dφ|2
) 1

2
(∫

(trap

/
)M(τ1,τ2)

rp−3|dφ1|2
) 1

2

. ε2

(
sup

[τ1,τ2]

E1[φ1](τ) +B1
p [φ1](τ1, τ2)

)
+ ε
(
B1
p [φ1](τ1, τ2)

) 1
2
(
B1
p [φ](τ1, τ2)

) 1
2 .
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We immediately deduce

sup
τ∈[τ1,τ2]

Ep[φ](τ) +Bp[φ](τ1, τ2) + Fp[φ](τ1, τ2)

. Ep[φ](τ1) + ε2

(
sup

[τ1,τ2]

E[φ1](τ) +Bp[φ1](τ1, τ2)

)
+ Jp[φ, φ2](τ1, τ2)

+

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |φ|(|φ|+ |Rφ|) +

∫
(trap

/
)M(τ1,τ2)

rp−3|φ|(|φ|+ |dφ|).

This concludes the proof of the corollary.

Finally, we end this section with the following lemma.

Lemma 10.4.14. Let φ be a reduced k-scalar for k = 1, 2, and let X a vectorfield. We
have for all δ ≤ p ≤ 2− δ,∫

(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |dφ|(|Xφ|+ |R(Xφ)|) +

∫
(trap

/
)M(τ1,τ2)

rp−3|dφ|(|Xφ|+ |d(Xφ)|)

. (Bp[Xφ](τ1, τ2))
1
2 (Bp[φ](τ1, τ2))

1
2 .

Proof. The proof follows immediately from the definition of Bp[φ](τ1, τ2).

10.4.5 Proof of Theorem 5.3.4

We now conclude the proof of Theorem 5.3.4 for all 0 ≤ s ≤ ksmall + 30 by recovering
higher derivatives s ≥ 1 one by one starting from the estimate s = 0 provided by (10.4.1).
As explained in section 10.4.2, it suffices to recover the estimates for s = 1 from the one
for s = 0 as the procedure to recover the estimate for s+1 from the one for s is completely
analogous. We now follow the strategy outlined in section 10.4.2.

Recovering estimates for Tψ

Recall that ψ satisfies

�2ψ = V ψ +N, V = −κκ,

and recall also from Corollary 10.4.3 that we have

[T,�2]ψ = d≤1(Γg)d
≤2ψ.
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We infer

�2(Tψ) + V T (ψ) = T (N) + d≤1(Γg)d
≤2ψ.

In view of Corollary 10.4.13 with φ = T (ψ), φ1 = d≤1ψ and φ2 = T (N), and in view of
(10.4.3), we deduce

sup
τ∈[τ1,τ2]

Ep[Tψ](τ) +Bp[Tψ](τ1, τ2) + Fp[Tψ](τ1, τ2)

. Ep[Tψ](τ1) + ε2

(
sup

[τ1,τ2]

E[d≤1ψ](τ) +Bp[d
≤1ψ](τ1, τ2)

)
+ Jp[T (ψ), T (N)](τ1, τ2)

+

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |Tφ|(|Tφ|+ |R(Tφ)|)

+

∫
(trap

/
)M(τ1,τ2)

rp−3|Tφ|(|Tφ|+ |d(Tφ)|),

and hence, using Lemma 10.4.14 with X = T , we infer for any δ ≤ p ≤ 2− δ,

sup
τ∈[τ1,τ2]

Ep[Tψ](τ) +Bp[Tψ](τ1, τ2) + Fp[Tψ](τ1, τ2) (10.4.6)

. Ep[Tψ](τ1) + J1
p [ψ,N ](τ1, τ2) + ε2

(
sup

[τ1,τ2]

E1[ψ](τ) +B1
p [ψ](τ1, τ2)

)
+Bp[ψ](τ1, τ2).

Recovering estimates for r d/2ψ

Recall that ψ satisfies

�2ψ = V ψ +N, V = −κκ,

and recall also from Corollary 10.4.5 that we have

r d/2(�2ψ)− (�1 −K)(r d/2ψ) = −rη�2ψ + d≤1(Γg)d
≤2ψ

We infer

�1(r d/2ψ) + (V −K)r d/2ψ = rη�2ψ + r d/2(N) + d≤1(Γg)d
≤2ψ

= −rηN + r d/2(N) + d≤1(Γg)d
≤2ψ.

and hence

�1(r d/2ψ) + (V −K)r d/2ψ = −rηN + r d/2(N) + d≤1(Γg)d
≤2ψ.
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In view of Corollary 10.4.13 with φ = r d/2ψ, φ1 = d≤1ψ and φ2 = −rηN + r d/2(N), and
in view of (10.4.3), we deduce

sup
τ∈[τ1,τ2]

Ep[r d/2ψ](τ) +Bp[r d/2ψ](τ1, τ2) + Fp[r d/2ψ](τ1, τ2)

. Ep[r d/2ψ](τ1) + ε2

(
sup

[τ1,τ2]

E[d≤1ψ](τ) +Bp[d
≤1ψ](τ1, τ2)

)

+Jp

[
r d/2ψ,−rηN + r d/2(N)

]
(τ1, τ2) +

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |r d/2φ|(|r d/2φ|+ |R(r d/2φ)|)

+

∫
(trap

/
)M(τ1,τ2)

rp−3|r d/2φ|(|r d/2φ|+ |d(r d/2φ)|),

and hence, using Lemma 10.4.14 with X = r d/2, we infer for any δ ≤ p ≤ 2− δ,

sup
τ∈[τ1,τ2]

Ep[r d/2ψ](τ) +Bp[r d/2ψ](τ1, τ2) + Fp[r d/2ψ](τ1, τ2) (10.4.7)

. Ep[r d/2ψ](τ1) + J1
p [ψ,N ](τ1, τ2) + ε2

(
sup

[τ1,τ2]

E1[ψ](τ) +B1
p [ψ](τ1, τ2)

)
+Bp[ψ](τ1, τ2).

Recovering estimates for Rψ in r ≤ r0

We start with the following lemma.

Lemma 10.4.15. Let ψ satisfy

�2ψ = V ψ +N, V = −κκ.

Then, R2ψ satisfies

R2ψ = −ΥN + T 2ψ +O(r−2) d/2ψ +O(r−1)dψ +O(r−2)ψ.

Proof. Recall that we have

�2ψ = −e3(e4(ψ)) +4/ 2ψ −
1

2
κe3ψ +

(
−1

2
κ+ 2ω

)
e4ψ + 2ηeθψ

and

e4 = T +R, Υe3 = (T −R).
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We infer

Υ�2ψ = −(T −R)(T +R)ψ + Υ4/ 2ψ −
Υ

2
κe3ψ + Υ

(
−1

2
κ+ 2ω

)
e4ψ + 2Υηeθψ

= −T 2ψ +R2ψ − [T,R]ψ +O(r−2) d/2ψ +O(r−1)dψ

and hence

R2ψ = −Υ�2ψ + T 2ψ − [T,R]ψ +O(r−2) d/2ψ +O(r−1)dψ

= −ΥN + T 2ψ − [T,R]ψ +O(r−2) d/2ψ +O(r−1)dψ +O(r−2)ψ

where we used the fact that �2ψ = V ψ +N and V = κκ = O(r−2). Also, we have

[T,R]ψ =
1

4
[e4 + Υe3, e4 −Υe3]ψ

=
1

2

(
− e4(Υ)e3 + Υ[e3, e4]

)
ψ

= O(r−2)dψ

and thus

R2ψ = −ΥN + T 2ψ +O(r−2) d/2ψ +O(r−1)dψ +O(r−2)ψ.

This concludes the proof of the lemma.

We now estimate Rψ in r ≤ r0 for a fixed r0 ≥ 4m0 that will be chosen large enough.
First, in view of the identity of the previous lemma, i.e.

R2ψ = −ΥN + T 2ψ +O(r−2) d/2ψ +O(r−1)dψ +O(r−2)ψ,

we infer

sup
[τ1,τ2]

∫
Σr≤r0 (τ)

|R2ψ|2 +

∫
Mr≤r0 (τ1,τ2)

(
1− 3m

r

)2

(R2ψ)2 (10.4.8)

. sup
[τ1,τ2]

(
E[Tψ] + E[r d/2ψ] + E[ψ] +

∫
Σr≤r0 (τ)

N2

)
+

∫
Mr≤r0 (τ1,τ2)

N2 + Morr[Tψ](τ1, τ2) + Morr[r d/2ψ](τ1, τ2) + Morr[ψ](τ1, τ2).

Next, we remove the degeneracy of the above estimate at r = 3m. Recall from Corollary
10.4.7 that we have in the region r ≤ 4m0

�2(Rψ) =

(
1− 3m

r

)
d2ψ +O

(
ε

u1+δdec−2δ0
trap

)
d2ψ +O(1)d≤1ψ +O(1)d≤1N.

Then,
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1. multiplying Rψ with a cut-off function equal to one on [5/2m0, 7/2m0] and vanishing
on [9/4m0, 4m0] and inferring the corresponding wave equation from the above one
for Rψ,

2. relying on the Morawetz estimate of Proposition 10.1.12 with the particular choice
f(r) = r − 3m,

3. adding a large multiple of the energy estimate,

4. using Proposition 10.1.32 for the boundary terms,

we easily infer the following estimate∫
(trap)M(τ1,τ2)

(R2ψ)2 .
∫
Mr≤4m0

(τ1,τ2)

((
1− 3m

r

)2

(d2ψ)2 + (dψ)2 + (d≤1N)2

)
+E[Rψ](τ1) + ε sup

[τ1,τ2]

E1[ψ](τ).

Together with (10.4.8), we infer

sup
[τ1,τ2]

∫
Σr≤r0 (τ)

|R2ψ|2 +

∫
Mr≤r0 (τ1,τ2)

|R2ψ|2 (10.4.9)

. E[Rψ](τ1) + sup
[τ1,τ2]

(
εE1[ψ](τ) + E[Tψ](τ) + E[r d/2ψ](τ) + E[ψ](τ)

)
+J1

p [ψ,N ](τ1, τ2) + Morr[Tψ](τ1, τ2) + Morr[r d/2ψ](τ1, τ2) + Morr[ψ](τ1, τ2).

Recovering estimates for YHψ

Recall that ψ satisfies

�2ψ = V ψ +N, V = −κκ,

and recall also from Lemma 10.4.9

[�2, YH]ψ = d0Y(0)(YHψ) + 1Υ≤2δH

(
�2ψ + dTψ + d≤1(Γg)d

2ψ +
1

δ2
H
d≤1ψ

)
+

1

δH
1δH≤Υ≤2δHd

≤2ψ

where the scalar function d0 satisfying the bound

d0 =
1

2m0

+O(δH) on the support of κH.
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We infer

�2(YHψ)− V YH(ψ) = d0Y(0)(YHψ) + 1Υ≤2δH

(
N + dTψ + εd2ψ +

1

δ2
H
d≤1ψ

)
+

1

δH
1δH≤Υ≤2δHd

≤2ψ + YH(N).

Then,

1. we use the redshift vectorfield YH as a multiplier,

2. we rely on Proposition 10.1.29,

3. we use the fact that d0 ≥ 0,

4. we add a large multiple of the energy,

5. we use Proposition 10.1.32 for the boundary terms.

We easily infer

sup
[τ1,τ2]

E[YHψ] + Morr[YHψ](τ1, τ2) . E[YHψ](τ1) + J1
p [ψ,N ](τ1, τ2) + εMorr[dψ](τ1, τ2)

+Morr[Rψ](τ1, τ2) + Morr[Tψ](τ1, τ2)

+Morr[r d/2ψ](τ1, τ2) + Morr[ψ](τ1, τ2). (10.4.10)

Recovering estimates for re4ψ in r ≥ r0

Recall that ψ satisfies

�2ψ = V ψ +N, V = −κκ,

and recall also from Lemma 10.4.10

[�2, re4]ψ =
Υ

r

(
1 +

2m

rΥ2

)
ě4(re4ψ) +�2ψ + Γgd

2ψ +
1

Υ
r−2dTψ + r−2 d/2ψ + r−2dψ.

We infer

�2(re4ψ)− V re4(ψ) =
Υ

r

(
1 +

2m

rΥ2

)
ě4(re4ψ) +O

( ε
r2

)
d2ψ +

1

Υ
r−2dTψ + r−2 d/2ψ

+r−2d≤1ψ +N + re4(N).

Then,
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1. as in section 10.2.3, we use the vectorfield fpe4 as a multiplier, where fp = θr0(r)rpe4

and the cut-off θr0(r) is equal to one in the region r ≥ r0 and vanishes in the region
r ≤ r0/2,

2. we rely on Proposition 10.2.7 to control the bulk and the boundary terms,

3. we use the fact that the prefactor of the term ě4(re4ψ) on the right-hand side is
positive for r ≥ 4m0, i.e.

Υ

r

(
1 +

2m

rΥ2

)
≥ 0 for r ≥ 4m0.

We easily infer

sup
τ∈[τ1,τ2]

Ep,r≥r0 [re4ψ](τ) +Bp,r≥r0 [re4ψ](τ1, τ2) + Fp,r≥r0 [re4ψ](τ1, τ2)

. E1
p [re4ψ](τ1) + J1

p [ψ,N ](τ1, τ2) +B1
p,r0/2≤r<r0 [ψ](τ1, τ2) + εB1

p [ψ](τ1, τ2)

+Bp[Tψ](τ1, τ2) +Bp[r d/2ψ](τ1, τ2) +Bp[ψ](τ1, τ2). (10.4.11)

Conclusion of the proof of Theorem 5.3.4

Gathering the estimates (10.4.6), (10.4.7), (10.4.9), (10.4.10) and (10.4.11), we infer for
any δ ≤ p ≤ 2− δ,

sup
τ∈[τ1,τ2]

E1
p [ψ](τ) +B1

p [ψ](τ1, τ2) + F 1
p [ψ](τ1, τ2)

. E1
p [ψ](τ1) + J1

p [ψ,N ](τ1, τ2) + ε2

(
sup

[τ1,τ2]

E1
p [ψ](τ) +B1

p [ψ](τ1, τ2)

)
+ sup

[τ1,τ2]

Ep[ψ](τ) +Bp[ψ](τ1, τ2),

and hence

sup
τ∈[τ1,τ2]

E1
p [ψ](τ) +B1

p [ψ](τ1, τ2) + F 1
p [ψ](τ1, τ2)

. E1
p [ψ](τ1) + J1

p [ψ,N ](τ1, τ2) + sup
[τ1,τ2]

Ep[ψ](τ) +Bp[ψ](τ1, τ2).

In view of (10.4.1), we deduce

sup
τ∈[τ1,τ2]

E1
p [ψ](τ) +B1

p [ψ](τ1, τ2) + F 1
p [ψ](τ1, τ2) . E1

p [ψ](τ1) + J1
p [ψ,N ](τ1, τ2)
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which is Theorem 5.3.4 in the case s = 1. We have thus deduced Theorem 5.3.4 in the
case s = 1 from the case s = 0, i.e. (10.4.1). Since going from s = 0 to s = 1 is analogous
to going from s to s+1, higher order derivatives k ≤ ksmall+30 are recovered in the same
fashion. This concludes the proof of Theorem 5.3.4.

10.4.6 Proof of Theorem 5.3.5

We now conclude the proof of Theorem 5.3.5 for all 0 ≤ s ≤ ksmall + 29 by recovering
higher derivatives s ≥ 1 one by one starting from the estimate s = 0 provided by (10.4.2).
As explained in section 10.4.2, it suffices to recover the estimates for s = 1 from the one
for s = 0 as the procedure to recover the estimate for s+1 from the one for s is completely
analogous. We now follow the strategy outlined in section 10.4.2.

Recovering estimates for T ψ̌

Recall from Proposition 10.3.1 that ψ̌ = f2ě4ψ satisfies

� ψ̌ − V ψ̌ =
2

r

(
1− 3m

r

)
e4 ψ̌ + Ň + f2

(
e4 +

3

r

)
N

where,

Ň =


O(r−2)d≤1ψ + rΓbe4dψ + d≤1(Γb)d

≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d
2ψ, r ≥ 6m0,

O(1)d≤2ψ, 4m0 ≤ r ≤ 6m0,

and recall also from Corollary 10.4.3 that we have

[T,�2] ψ̌ = d≤1(Γg)d
≤2 ψ̌.

We infer

�(T ψ̌)− V T ( ψ̌) =
2

r

(
1− 3m

r

)
e4(T ψ̌) +NT + T

(
f2

(
e4 +

3

r

)
N

)
,



790 CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS

where we have, in view of the estimates24 of Lemma 5.1.1 for dkΓg and dkΓb with k ≤
ksmall + 30,

NT =


O
(

1
τ1+δdec−2δ0

) (
e4d

2ψ + r−1d≤2ψ
)

+O
(

1

rτ
1
2 +δdec−2δ0

)
e3d
≤1ψ +O

(
1
r2

) (
d≤3ψ + εd≤2 ψ̌

)
, r ≥ 6m0,

O(1)d≤3ψ, 4m0 ≤ r ≤ 6m0.

In view of (10.4.2) with T ψ̌ instead of ψ̌ and with

NT + T

(
f2

(
e4 +

3

r

)
N

)

instead of Ň + f2

(
e4 + 3

r

)
N , we deduce

sup
τ∈[τ1,τ2]

Eq[T ψ̌](τ) +Bq[T ψ̌](τ1, τ2)

. Eq[T ψ̌](τ1) + Jq

[
T ψ̌,NT + T

(
f2

(
e4 +

3

r

)
N

)]
(τ1, τ2)

+E 1
max(q,δ)[Tψ](τ1) + J1

max(q,δ)[Tψ, TN ]

. Eq[T ψ̌](τ1) + J̌1
q

[
ψ̌, N

]
(τ1, τ2) + Jq

[
T ψ̌,NT

]
(τ1, τ2)

+E 2
max(q,δ)[ψ](τ1) + J2

max(q,δ)[ψ,N ],

so that it remains to estimate

Jq[T ψ̌,N
T ](τ1, τ2) = Jq,4m0

[
T ψ̌,NT

]
(τ1, τ2) =

∣∣∣∣∣
∫
M≥4m0

(τ1,τ2)

rq(ě4(T ψ̌))NT

∣∣∣∣∣ .
24Here, unlike the proof of Theorem 5.3.4 above, the non sharp estimates of section 10.4.1 are not

enough, and we need instead to rely on the stronger estimates provided by Lemma 5.1.1.
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We have, in view of the definition of NT ,

Jq[T ψ̌,N
T ](τ1, τ2)

.

∣∣∣∣∣
∫
M≥4m0

(τ1,τ2)

rq(ě4(T ψ̌))
1

τ 1+δdec−2δ0

(
e4d

2ψ + r−1d≤2ψ
)∣∣∣∣∣

+

∣∣∣∣∣
∫
M≥4m0

(τ1,τ2)

rq(ě4(T ψ̌))
1

rτ
1
2

+δdec−2δ0
e3d
≤1ψ

∣∣∣∣∣
+

∣∣∣∣∣
∫
M≥4m0

(τ1,τ2)

rq(ě4(T ψ̌))
1

r2
d≤3ψ

∣∣∣∣∣+

∣∣∣∣∣
∫
M≥4m0

(τ1,τ2)

rq(ě4(T ψ̌))
ε

r2
d≤2 ψ̌

∣∣∣∣∣
.

(
sup

[τ1,τ2]

∫
Σ(τ)

rq(ě4(T ψ̌))2

) 1
2
{(

sup
[τ1,τ2]

∫
Σ(τ)

rq
(

(e4d
2ψ)2 + r−2(d≤2ψ)2

)) 1
2

+

(∫
Mr≥4m0

(τ1,τ2)

rq−2(e3d
≤1ψ)2

) 1
2
}

+ ε

∫
M(τ1,τ2)

rq−3(d≤2 ψ̌)2

+

(∫
M(τ1,τ2)

rq−1(ě4(T ψ̌))2

) 1
2
(∫
M(τ1,τ2)

rq−3(d≤3ψ)2

) 1
2

which yields, using in particular the fact that q ≤ 1− δ,

Jq[T ψ̌,N
T ](τ1, τ2)

.

(
sup

[τ1,τ2]

Eq[T ψ̌](τ)

) 1
2
{

sup
[τ1,τ2]

E2
max(q,δ)[ψ](τ) +B1

max(q,δ)[ψ](τ1, τ2)

} 1
2

+ εB1
q [ ψ̌](τ1, τ2)

+
(
Bq[T ψ̌](τ1, τ2)

) 1
2
(
B2

max(q,δ)[ψ](τ1, τ2)
) 1

2
.

We deduce

sup
τ∈[τ1,τ2]

Eq[T ψ̌](τ) +Bq[T ψ̌](τ1, τ2)

. Eq[T ψ̌](τ1) + J̌1
q

[
ψ̌, N

]
(τ1, τ2) + εB1

q [ ψ̌](τ1, τ2)

+ sup
[τ1,τ2]

E2
max(q,δ)[ψ](τ) +B2

max(q,δ)[ψ](τ1, τ2) + J2
max(q,δ)[ψ,N ].

Together with Theorem 5.3.4, this yields

sup
τ∈[τ1,τ2]

Eq[T ψ̌](τ) +Bq[T ψ̌](τ1, τ2) . Eq[T ψ̌](τ1) + J̌1
q

[
ψ̌, N

]
(τ1, τ2) + εB1

q [ ψ̌](τ1, τ2)

+E 2
max(q,δ)[ψ](τ1) + J2

max(q,δ)[ψ,N ]. (10.4.12)
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Recovering estimates for r d/2 ψ̌

Recall from Proposition 10.3.1 that ψ̌ = f2ě4ψ satisfies

� ψ̌ − V ψ̌ =
2

r

(
1− 3m

r

)
e4 ψ̌ + Ň + f2

(
e4 +

3

r

)
N.

Recall also from Corollary 10.4.5 that we have

r d/2(�2 ψ̌)− (�1 −K)(r d/2 ψ̌) = −rη�2 ψ̌ + d≤1(Γg)d
≤2 ψ̌

We infer

�1(r d/2 ψ̌) + (V −K)r d/2 ψ̌ =
2

r

(
1− 3m

r

)
e4(r d/2 ψ̌) +N r d/2 + (r d/2 − rη)

(
f2

(
e4 +

3

r

)
N

)
where

N r d/2 = −rηŇ + r d/2(Ň) + d≤1(Γg)d
≤2 ψ̌.

In view of (10.4.5) with r d/2 ψ̌ instead of ψ̌ and with

N r d/2 + (r d/2 − rη)

(
f2

(
e4 +

3

r

)
N

)
instead of Ň + f2

(
e4 + 3

r

)
N , we deduce

sup
τ∈[τ1,τ2]

Eq[r d/2 ψ̌](τ) +Bq[r d/2 ψ̌](τ1, τ2)

. Eq[r d/2 ψ̌](τ1) + J̌q

[
r d/2 ψ̌, N

r d/2 + (r d/2 − rη)

(
f2

(
e4 +

3

r

)
N

)]
(τ1, τ2)

+E 1
max(q,δ)[r d/2ψ](τ1) + J1

max(q,δ)[r d/2ψ, r d/2N ]

+

∫
M(τ1,τ2)

rq−3|r d/2 ψ̌|(|r d/2 ψ̌|+ |d(r d/2 ψ̌)|)

. Eq[r d/2 ψ̌](τ1) + J̌q
[
r d/2 ψ̌, N

r d/2
]

(τ1, τ2)

+E 2
max(q,δ)[ψ](τ1) + J2

max(q,δ)[ψ,N ] +
(
Bq[r d/2 ψ̌](τ1, τ2)

) 1
2
(
Bq[ ψ̌](τ1, τ2)

) 1
2

so that it remains to estimate

J̌q
[
r d/2 ψ̌, N

r d/2
]

(τ1, τ2) = Jq,4m0

[
r d/2 ψ̌, N

r d/2
]

(τ1, τ2) =

∣∣∣∣∣
∫
M≥4m0

(τ1,τ2)

rq(ě4(r d/2 ψ̌))N r d/2

∣∣∣∣∣ .
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The estimate follows along the same lines as the above one for Jq[T ψ̌,N
T ](τ1, τ2) so we

leave the details to the reader. In the end, we arrive at the following analog of (10.4.12)

sup
τ∈[τ1,τ2]

Eq[r d/2 ψ̌](τ) +Bq[r d/2 ψ̌](τ1, τ2)

. Eq[r d/2 ψ̌](τ1) +Bq[ ψ̌](τ1, τ2) + J̌1
q

[
ψ̌, N

]
(τ1, τ2) + εB1

q [ ψ̌](τ1, τ2)

+E 2
max(q,δ)[ψ](τ1) + J2

max(q,δ)[ψ,N ]. (10.4.13)

Recovering estimates for re4 ψ̌

Recall from Proposition 10.3.1 that ψ̌ = f2ě4ψ satisfies

� ψ̌ − V ψ̌ =
2

r

(
1− 3m

r

)
e4 ψ̌ + Ň + f2

(
e4 +

3

r

)
N.

Recall also from Lemma 10.4.10 that we have

[�2, re4] ψ̌ =
Υ

r

(
1 +

2m

rΥ2

)
ě4(re4 ψ̌) +�2 ψ̌ + Γgd

2 ψ̌ +
1

Υ
r−2dT ψ̌ + r−2 d/2 ψ̌ + r−2d ψ̌.

We infer25

�(re4 ψ̌)− V re4( ψ̌) =

(
2

r

(
1− 3m

r

)
+

Υ

r

(
1 +

2m

rΥ2

))
e4(re4 ψ̌) +N re4

+re4

(
f2

(
e4 +

3

r

)
N

)
,

where

N re4 = re4(Ň) + Ň + Γgd
2 ψ̌ +

1

Υ
r−2dT ψ̌ + r−2 d/2 ψ̌ + r−2d ψ̌.

The rest follows along the same lines as the estimate for T ψ̌ and we arrive at the following
analog of (10.4.12)

sup
τ∈[τ1,τ2]

Eq[re4 ψ̌](τ) +Bq[re4 ψ̌](τ1, τ2) (10.4.14)

. Eq[re4 ψ̌](τ1) +Bq[ ψ̌](τ1, τ2) +Bq[T ψ̌](τ1, τ2) +Bq[r d/2 ψ̌](τ1, τ2)

+J̌1
q

[
ψ̌, N

]
(τ1, τ2) + εB1

q [ ψ̌](τ1, τ2) + E 2
max(q,δ)[ψ](τ1) + J2

max(q,δ)[ψ,N ].

25Notice that the coefficient in front of the term e4(re4 ψ̌) in the RHS of the wave equation for re4 ψ̌
differs from the one in front of the term e4 ψ̌ in the RHS of the wave equation for ψ̌. Nevertheless, we
may apply (10.4.2) with re4 ψ̌ instead of ψ̌ since the only property of this coefficient which is used in
that it is positive on r ≥ 4m0, i.e.

2

r

(
1− 3m

r

)
+

Υ

r

(
1 +

2m

rΥ2

)
≥ 0 on r ≥ 4m0.
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Conclusion of the proof of Theorem 5.3.5

Gathering the estimates (10.4.12), (10.4.13) and (10.4.14), we infer for any −1 + δ < q ≤
1− δ,

sup
τ∈[τ1,τ2]

E1
q [ ψ̌](τ) +B1

q [ ψ̌](τ1, τ2) . E1
q [ ψ̌](τ1) + J̌1

q [ ψ̌, N ](τ1, τ2) +Bq[ ψ̌](τ1, τ2)

+εB1
q [ ψ̌](τ1, τ2) + E 2

max(q,δ)[ψ](τ1) + J2
max(q,δ)[ψ,N ]

and hence

sup
τ∈[τ1,τ2]

E1
q [ ψ̌](τ) +B1

q [ ψ̌](τ1, τ2) . E1
q [ ψ̌](τ1) + J̌1

q [ ψ̌, N ](τ1, τ2) +Bq[ ψ̌](τ1, τ2)

+E 2
max(q,δ)[ψ](τ1) + J2

max(q,δ)[ψ,N ].

In view of (10.4.2), we deduce

sup
τ∈[τ1,τ2]

E1
q [ ψ̌](τ) +B1

q [ ψ̌](τ1, τ2) . E1
q [ ψ̌](τ1) + J̌1

q [ ψ̌, N ](τ1, τ2)

+E 2
max(q,δ)[ψ](τ1) + J2

max(q,δ)[ψ,N ]

which is Theorem 5.3.5 in the case s = 1. We have thus deduced Theorem 5.3.5 in the
case s = 1 from the case s = 0, i.e. (10.4.2). Since going from s = 0 to s = 1 is analogous
to going from s to s+1, higher order derivatives k ≤ ksmall+29 are recovered in the same
fashion. This concludes the proof of Theorem 5.3.5.

10.5 More weighted estimates for wave equations

The goal of this section is to derive Theorem 10.5.2 and Proposition 10.5.4, see below,
which is needed for the proof of Theorem M8 in Chapter 8. Recall that we have used so
far in Chapter 10 the global frame of Proposition 3.5.5. For this last section of Chapter
10, we rely instead on the global frame used in Theorem M8, i.e. the one of Proposition
3.5.2, as it is more regular and allows us to derive estimates for up to klarge derivatives.

Remark 10.5.1. Recall that in the frame of Proposition 3.5.2, we only have26 η ∈ Γb.
Note that the assumptions on the frame used in Chapter 10 are all consistent with η ∈ Γb,
so that all results in this chapter apply for the frame of Proposition 3.5.2.

26Unlike the frame of Proposition 3.5.5 for which η ∈ Γg.
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Theorem 10.5.2. Let ψ a reduced 2-scalar, and φ a reduced 0-scalar satisfying respec-
tively

(�2 + V2)ψ = N2, (�0 + V0)φ = N0, V2 = − 2

r2

(
1 +

2m

r

)
, V0 =

8m

r3
.

Also, assume that the Ricci coefficients and curvature components associated to the global
null frame we are using satisfy the estimates of section 10.4.1 for k ≤ ksmall derivatives.
Then, for any 1 ≤ s ≤ klarge − 1, we have

sup
τ∈[τ1,τ2]

Es
δ [ψ](τ) +Bs

δ [ψ](τ1, τ2) + F s
δ [ψ](τ1, τ2)

. Es
δ [ψ](τ1) + sup

τ∈[τ1,τ2]

Es−1
δ [ψ](τ) +Bs−1

δ [ψ](τ1, τ2) + F s−1
δ [ψ](τ1, τ2)

+Ds[Γ]

(
sup

M(τ1,τ2)

ru
1
2

+δdec
trap |d≤ksmallψ|

)2

+

∫
M(τ1,τ2)

r1+δ|d≤sN2|2 +

∣∣∣∣∫
(trap)M(τ1,τ2)

T (dsφ)dsN2

∣∣∣∣ (10.5.1)

and

sup
τ∈[τ1,τ2]

Es
δ [φ](τ) +Bs

δ [φ](τ1, τ2) + F s
δ [φ](τ1, τ2)

. Es
δ [φ](τ1) + sup

τ∈[τ1,τ2]

Es−1
δ [φ](τ) +Bs−1

δ [φ](τ1, τ2) + F s−1
δ [φ](τ1, τ2)

+Ds[Γ]

(
sup

M(τ1,τ2)

ru
1
2

+δdec
trap |d≤ksmallφ|

)2

+

∫
Σ(τ2)

(d≤sφ)2

r3

+

∫
M(τ1,τ2)

r1+δ|d≤sN0|2 +

∣∣∣∣∫
(trap)M(τ1,τ2)

T (dsφ)dsN0

∣∣∣∣ , (10.5.2)

where Ds[Γ] is defined by

Ds[Γ] :=

∫
(int)M∪ (ext)M(r≤4m0)

(d≤sΓ̌)2

+ sup
r0≥4m0

(
r0

∫
{r=r0}

|d≤sΓg|2 + r−1
0

∫
{r=r0}

|d≤sΓb|2
)
.

The proof of Theorem 10.5.2 relies on the following theorem.

Theorem 10.5.3. Let ψ a reduced scalar, and φ a reduced 0-scalar satisfying respectively

(�2 + V2)ψ = N2, (�0 + V0)φ = N0, V2 = − 2

r2

(
1 +

2m

r

)
, V0 =

8m

r3
.
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Then, we have

sup
τ∈[τ1,τ2]

Eδ[ψ](τ) +Bδ[ψ](τ1, τ2) + Fδ[ψ](τ1, τ2)

. Eδ[ψ](τ1) +

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |ψ|(|ψ|+ |Rψ|) +

∫
(trap

/
)M(τ1,τ2)

rδ−3|ψ|(|ψ|+ |dψ|)

+

∫
M(τ1,τ2)

r1+δ|N2|2 +

∣∣∣∣∫
(trap)M(τ1,τ2)

T (ψ)N2

∣∣∣∣ , (10.5.3)

and

sup
τ∈[τ1,τ2]

Eδ[φ](τ) +Bδ[φ](τ1, τ2) + Fδ[φ](τ1, τ2)

. Eδ[φ](τ1) +

∫
A(τ1,τ2)∪Σ(τ2)∪Σ∗(τ1,τ2)

φ2

r3
(10.5.4)

+

∫
(trap)M(τ1,τ2)

∣∣∣∣1− 3m

r

∣∣∣∣ |φ|(|φ|+ |Rφ|) +

∫
(trap

/
)M(τ1,τ2)

rδ−3|φ|(|φ|+ |dφ|)

+

∫
M(τ1,τ2)

r1+δ|N0|2 +

∣∣∣∣∫
(trap)M(τ1,τ2)

T (φ)N0

∣∣∣∣ .
Proof. The proof of Theorem 10.5.3 is analogous to the one of Theorem 10.4.11. The only
differences are

• The treatment of the right-hand sides N0 and N2 in the spacetime region (trap)M.

• The boundary term on A(τ1, τ2)∪Σ(τ2)∪Σ∗(τ1, τ2) appearing in the right-hand side
of27 (10.5.4).

The treatment of N0 and N2 is similar, so we focus on the one of N2. The only estimate
in which N2 appear in the trapping region is the Morawetz estimate. More precisely, it
appear under the form, see (10.1.72),∣∣∣∣ ∫

(trap)M(τ1,τ2)

(
fδ̂R(Ψ) + ΛT (Ψ) +

1

2
wΨ

)
N2

∣∣∣∣,
27This boundary term, as discussed below, is due to the fact that V0 is positive, which explains why no

such term is present in (10.5.3) due to the negativity of the potential V2 for the wave equation satisfied
by ψ.
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where we recall that Λ is a constant, and fδ̂, w are functions which are in particular
bounded on (trap)M. We infer∣∣∣∣ ∫

(trap)M(τ1,τ2)

(
fδ̂R(Ψ) + ΛT (Ψ) +

1

2
wΨ

)
N2

∣∣∣∣
.

∫
(trap)M(τ1,τ2)

(|R(Ψ)|+ |Ψ|)|N2|+
∣∣∣∣ ∫

(trap)M(τ1,τ2)

T (Ψ)N2

∣∣∣∣
. λBδ[ψ](τ1, τ2) + λ−1

∫
(trap)M(τ1,τ2)

|N2|2 +

∣∣∣∣ ∫
(trap)M(τ1,τ2)

T (Ψ)N2

∣∣∣∣
which yields the desired control provided λ > 0 is chosen small enough so that the term
λBδ[ψ](τ1, τ2) can be absorbed by the LHS in (10.5.3).

Concerning the boundary terms on A(τ1, τ2) ∪ Σ(τ2) ∪ Σ∗(τ1, τ2) appearing in the right-
hand side of (10.5.4), the potential V0 does not appear in the boundary term of the rp

weighted estimates, but it does appear in the boundary term of the energy estimates28.
More precisely, it appears in∫

A(τ1,τ2)∪Σ(τ2)∪Σ∗(τ1,τ2)

Q34 =

∫
A(τ1,τ2)∪Σ(τ2)∪Σ∗(τ1,τ2)

(
|∇/ φ|2 + V0φ

2
)
.

Now, we have in view of the definition of V0∫
A(τ1,τ2)∪Σ(τ2)∪Σ∗(τ1,τ2)

Q34 ≥
∫
A(τ1,τ2)∪Σ(τ2)∪Σ∗(τ1,τ2)

|∇/ φ|2 −O(1)

∫
A(τ1,τ2)∪Σ(τ2)∪Σ∗(τ1,τ2)

φ2

r3

and the control of the boundary terms follows. This concludes the proof of 10.5.3.

We are now in position to prove Theorem 10.5.2. Note first that we have∫
A(τ1,τ2)∪Σ∗(τ1,τ2)

(d≤sφ)2

r3
. F s−1

δ [φ](τ1, τ2)

which explains why the term
∫
A(τ1,τ2)∪Σ∗(τ1,τ2)

(d≤sφ)2

r3 , that one would a priori would expect

in view of (10.5.4), is not present on the right-hand side of (10.5.2). Also, the estimates
for ψ and φ are similar, so we focus on the estimate for ψ.

Proof of Theorem 10.5.2. The proof of Theorem 10.5.2 follows along the same lines as the
one of Theorem 5.3.4. More precisely, following the strategy in section 10.4.2, we recover

28The boundary term of the rp weighted estimates involves only Q44 = (e4φ)2, while the one of the
energy estimate involves also Q34 = |∇/ φ|2 + V0φ

2.
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derivatives one by one starting from Theorem 10.5.3 and use it iteratively in conjonction
with the commutator estimates of section 10.4.3. The only difference is the treatment
of the derivatives for s ≥ ksmall + 1 as we assume that the estimates of section 10.4.1
for the Ricci coefficients and curvature components only hold for k ≤ ksmall derivatives.
Thus, to conclude, we need to consider the terms for which at least ksmall + 1 derivatives
fall on the Ricci coefficients and curvature components. Since on the other hand we have
s ≤ klarge−1, in view of the definition (3.3.7) of ksmall in terms of klarge, and in view of the
commutator estimates of section 10.4.3, one easily checks that these terms are bounded
in absolute value from above by(

|d≤s(Γg)|+ r−1|d≤s(Γb)|
)
|d≤ksmallψ|.

We thus need, in view of Theorem 10.5.3, to estimate∫
M(τ1,τ2)

r1+δ
(
|d≤s(Γg)|+ r−1|d≤s(Γb)|

)2

|d≤ksmallψ|2

+

∫
(trap)M(τ1,τ2)

|Tdsψ||d≤s(Γ̌)||d≤ksmallψ|

. sup
M(τ1,τ2)

(
r2|d≤ksmallψ|2

)∫
M(τ1,τ2)

r−1+δ
(
|d≤s(Γg)|+ r−1|d≤s(Γb)|

)2

+

(
sup

(trap)M(τ1,τ2)

u
1
2

+δdec |d≤ksmallψ|
)(

sup
τ∈[τ1,τ2]

Es
δ [ψ](τ)

) 1
2 (∫

(trap)M(τ1,τ2)

|d≤sΓ̌|2
) 1

2

.

(
sup

M(τ1,τ2)

ru
1
2

+δdec
trap |d≤ksmallψ|

)2

Ds[Γ]

+

(
sup

M(τ1,τ2)

ru
1
2

+δdec
trap |d≤ksmallψ|

)(
sup

τ∈[τ1,τ2]

Es
δ [ψ](τ)

) 1
2 √

Ds[Γ]

where we have used the definition of Ds[Γ]. We infer∫
M(τ1,τ2)

r1+δ
(
|d≤s(Γg)|+ r−1|d≤s(Γb)|

)2

|d≤ksmallψ|2

+

∫
(trap)M(τ1,τ2)

|Tdsψ||d≤s(Γ̌)||d≤ksmallψ|

. λ−1

(
sup

M(τ1,τ2)

ru
1
2

+δdec
trap |d≤ksmallψ|

)2

Ds[Γ] + λ sup
τ∈[τ1,τ2]

Es
δ [ψ](τ)

for any λ > 0 and the last term is then absorbed from the left-hand side of the desired
estimate by choosing λ > 0 small enough which concludes the proof of Theorem 10.5.2.
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Proposition 10.5.4. Let ψ a reduced 2-scalar satisfying

�2ψ = f2(r,m)Y(0)ψ + Ñ2,

where the function f2 is smooth and positive, and where the vectorfield Y(0) has been
introduced in Proposition 10.1.29 in connection with the redshift vectorfield and is given
by

Y(0) :=

(
1 +

5

4m
(r − 2m) + Υ

)
e3 +

(
1 +

5

4m
(r − 2m)

)
e4.

Also, assume that the Ricci coefficients and curvature components associated to the global
null frame we are using satisfy the estimates of section 10.4.1 for k ≤ ksmall derivatives.
Then, for any 1 ≤ s ≤ klarge − 1, we have∫

(int)M(τ1,τ2)

(ds+1ψ)2 . Es
δ [ψ](τ1) +

∫
(ext)M

r≤ 5
2m0

(τ1,τ2)

(ds+1ψ)2

+Ds[Γ]

 sup
(int)M(τ1,τ2)∪ (ext)M

r≤ 5
2m0

r|d≤ksmallψ|

2

+

∫
(int)M(τ1,τ2)∪ (ext)M

r≤ 5
2m0

(
(d≤sψ)2 + (d≤s+1Ñ2)2

)
.

Proof. Recall from Proposition 10.1.29 that the redshift vectorfield is given by

YH := κHY(0), κH := κ

(
Υ

δ
1
10
H

)
,

where κ is a positive bump function κ = κ(r), supported in the region in [−2, 2] and equal
to 1 for [−1, 1].

To estimate ψ in (int)M, we consider

ψ̃ := κ̃

(
r − 2m0(1 + 2δH)

2m0δH

)
where κ̃ is a positive bump function κ = κ(r), supported in the region in (−∞, 1] and
equal to 1 for (−∞, 0]. Since (int)M is included in r ≤ 2m0(1+2δH), we infer in particular

ψ̃ = ψ on (int)M, supp(ψ̃) ⊂ (int)M(τ1, τ2) ∪ (ext)Mr≤2m0(1+3δH).
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Also, we have, in view of the wave equation for ψ,

�2ψ̃ = f2(r,m)Y(0)ψ̃ + Ñ ′2

where Ñ ′2 satisfies∫
(int)M(τ1,τ2)∪ (ext)M

r≤ 5
2m0

(d≤s+1Ñ ′2)2
)
.

∫
(ext)M

r≤ 5
2m0

(τ1,τ2)

(d≤s+1ψ)2

+

∫
(int)M(τ1,τ2)∪ (ext)M

r≤ 5
2m0

(d≤s+1Ñ2)2.

Since ψ̃ = ψ on (int)M, it thus suffices to prove for ψ̃ the following estimate

∫
M(τ1,τ2)

(ds+1ψ̃)2 . Es
δ [ψ̃](τ1) +Ds[Γ]

 sup
(int)M(τ1,τ2)∪ (ext)M

r≤ 5
2m0

r|d≤ksmallψ̃|

2

+

∫
(int)M(τ1,τ2)∪ (ext)M

r≤ 5
2m0

(
(d≤sψ̃)2 + (d≤s+1Ñ ′2)2

)
.

This estimate follows from first deriving the corresponding estimate for s = 0 by using the
redshift as a multiplier, and then by recover derivatives one by one using commutation
with T , d/ and the redshift vectorfield. Note that

• ψ̃ is supported on r ≤ 2m0(1 + 2δH) and hence is estimated on

2m0(1− 2δH) ≤ r ≤ 2m0(1 + 2δH)

so that the redshift vectorfield YH has good properties, both as a multiplier and as
a commutator, on the support of ψ̃.

• The term f2(r,m)Y(0) yields a good sign when using YH as a multiplier since the
function f2(r,m) is positive, and since YH = κHY(0).

This concludes the proof of the proposition.
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APPENDIX TO CHAPTER 2

A.1 Proof of Proposition 2.2.9

In a neighborhood of a given sphere S, we consider a (u, s, θ, ϕ) coordinates system, where
θ is such that e4(θ) = 0. Then, in this coordinates system, we have

∂s = e4.

Since we have

∂s

(∫
S

f

)
=

∫
S

(
∂sf + g(Deθ∂s, eθ)f + g(Deϕ∂s, eϕ)f

)
,

we infer

e4

(∫
S

f

)
=

∫
S

(e4(f) + κf).

In particular, choosing f = 1, we deduce

1

|S|e4(|S|) = κ

and since |S| = 4πr2,

e4(r) =
rκ

2
.

801
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Next, let ∂u the coordinates vectorfield in the (u, s, θ, ϕ) coordinates system. We have

∂u

(∫
S

f

)
=

∫
S

(
∂uf + g(Deθ∂u, eθ)f + g(Deϕ∂u, eϕ)f

)
=

∫
S

(
∂uf + g(Deθ∂u, eθ)f − g(∂u,Deϕeϕ)f

)
=

∫
S

(
∂uf + g(Deθ∂u, eθ)f + g(∂u, D

a(Φ)ea)f
)

On the other hand, we have we have, see (2.2.42),

∂u = ς

(
1

2
e3 −

1

2
Ωe4 −

1

2

√
γbeθ

)
.

We infer

g(Deθ∂u, eθ) + g(∂u, D
a(Φ)ea) =

1

2
ςκ− 1

2
ςΩκ− 1

2
d/1(ς
√
γb)

and thus

ς

(
1

2
e3 −

1

2
Ωe4

)(∫
S

f

)
=

∫
S

(
ς

(
1

2
e3 −

1

2
Ωe4 −

1

2

√
γbeθ

)
f +

1

2
ςκf − 1

2
ςΩκf

−1

2
d/1(
√
γb)f

)
.

We deduce

e3

(∫
S

f

)
= Ωe4

(∫
S

f

)
+ ς−1

∫
S

(
ςe3f − ςΩe4f + ςκf − ςΩκf − d/1(ς

√
γbf)

)
.

Next, we use

e4

(∫
S

f

)
=

∫
S

(e4(f) + κf)

and ∫
S

d/1(ς
√
γbf) = 0.
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We infer

e3

(∫
S

f

)
= Ω

∫
S

(e4(f) + κf) + ς−1

∫
S

(
ςe3f − ςΩe4f + ςκf − ςΩκf

)
= ς−1

∫
S

ς(e3f + κf) +
(
Ω̌ + ς−1Ως̌

) ∫
S

(e4f + κf)

−ς−1Ω

∫
S

ς̌(e4f + κf)− ς−1

∫
S

Ω̌ς(e4f + κf).

We further write,

ς−1

∫
S

ς(e3f + κf) = ς−1ς

∫
S

(e3f + κf) + ς−1

∫
S

ς̌ (e3f + κf)

=

∫
S

(e3f + κf) + (ς−1ς − 1)

∫
S

(e3f + κf) + ς−1

∫
S

ς̌ (e3f + κf)

=

∫
S

(e3f + κf)− ς−1ς̌

∫
S

(e3f + κf) + ς−1

∫
S

ς̌ (e3f + κf).

Hence,

e3

(∫
S

f

)
=

∫
S

(e3f + κf) + Err

[
e3

(∫
S

f

)]
,

Err

[
e3

(∫
S

f

)]
= −ς−1ς̌

∫
S

(e3f + κf) + ς−1

∫
S

ς̌ (e3f + κf)

+
(
Ω̌ + ς−1Ως̌

) ∫
S

(e4f + κf)− ς−1Ω

∫
S

ς̌(e4f + κf)

− ς−1

∫
S

Ω̌ς(e4f + κf)

as desired.

In particular, choosing f = 1, we infer

1

|S|e3(|S|) = κ− ς−1 ς̌ κ+ ς−1 ς̌κ+
(
Ω̌ + ς−1Ως̌

)
κ− ς−1Ω ς̌ κ− ς−1Ω̌ ς κ

= κ− ς−1 ς̌ κ+ ς−1 ς̌ κ̌+
(
Ω̌ + ς−1Ως̌

)
κ− ς−1Ω ς̌ κ̌− ς−1Ω̌ ς κ.

Hence, since |S| = 4πr2, recalling the definition of A,

2e3(r)

r
= κ− ς−1 ς̌ κ+ ς−1 ς̌ κ̌+

(
Ω̌ + ς−1Ως̌

)
κ− ς−1Ω ς̌ κ̌− ς−1Ω̌ ς κ

= κ+ A.

This concludes the proof of Proposition 2.2.9.
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A.2 Proof of Proposition 2.2.16

We start with the proof for e4(m). Recall that the Hawking mass m is given by the
formula 2m

r
= 1 + 1

16π

∫
S
κκ. Differentiating in the e4 direction, we deduce,

2e4(m)

r
− 2me4(r)

r2
=

1

16π
e4

(∫
S

κκ

)
=

1

16π

∫
S

(
e4(κκ) + κκ2

)
.

Now, making use of the e4 transport equations of Proposition 2.2.8,

e4(κκ) = κ

(
−1

2
κ2 − 1

2
ϑ2

)
+ κ

(
−1

2
κκ+ 2ρ− 2 d/1ζ −

1

2
ϑϑ+ 2ζ2

)
= −κκ2 + 2κρ− 2κ d/1ζ −

1

2
κϑ2 − 1

2
κϑϑ+ 2κζ2.

we infer

2e4(m)

r
− m

r
κ =

1

16π

∫
S

(
2κρ− 2κ d/1ζ −

1

2
κϑ2 − 1

2
κϑϑ+ 2κζ2

)
=

1

8π
|S|κ ρ+

1

16π

∫
S

(
2κ̌ρ̌+ 2eθ(κ)ζ − 1

2
κϑ2 − 1

2
κϑϑ+ 2κζ2

)
=

r2

2
κ ρ+

1

16π

∫
S

(
2κ̌ρ̌+ 2eθ(κ)ζ − 1

2
κϑ2 − 1

2
κϑϑ+ 2κζ2

)
and hence

e4(m) =
r3

4
κ

(
ρ+

2m

r3

)
+

r

32π

∫
S

(
−1

2
κϑ2 − 1

2
κϑϑ+ 2κ̌ρ̌+ 2eθ(κ)ζ + 2κζ2

)
.

Using the identity ρ = −2m
r3 + 1

16πr2

∫
S
ϑϑ (see (2.2.12) of Proposition 2.2.4), we deduce

e4(m) =
r

32π

∫
S

(
−1

2
κϑ2 − 1

2
(κ− κ)ϑϑ+ 2κ̌ρ̌+ 2eθ(κ)ζ + 2κζ2

)
=

r

32π

∫
S

(
−1

2
κϑ2 − 1

2
κ̌ϑϑ+ 2κ̌ρ̌+ 2eθ(κ)ζ + 2κζ2

)
=

r

32π

∫
S

Err1

as desired.

In the same vein,

2e3(m)

r
− 2me3(r)

r2
=

1

16π
e3

(∫
S

κκ

)
=

1

16π

∫
S

(
e3(κκ) + κ2κ

)
+ E1,
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with E1 the error term defined in Proposition 2.2.9

E1 =
1

16π
Err

[
e3

(∫
S

κκ

)]
.

We make use of the e3 transport equations of Proposition 2.2.8,

e3(κκ) = κ

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

)
+ κ

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
= −κκ2 + 2κ d/1η + 2κ d/1ξ + 2ρκ+ κ

(
2η2 − 1

2
ϑϑ

)
+ 2κ

(
η − 3ζ

)
ξ − 1

2
κϑ2.

Therefore, setting E2 = 1
16π

∫
S

(
κ
(
2η2 − 1

2
ϑϑ
)

+ 2κ
(
η − 3ζ

)
ξ − 1

2
κϑ2
)

,

2e3(m)

r
− m

r
(κ+ A) =

1

16π

∫
S

(
2κ d/1η + 2κ d/1ξ + 2ρκ

)
+ E1 + E2

=
1

16π

∫
S

(
− 2eθ(κ)η − 2eθ(κ)ξ + 2(ρ+ ρ̌)(κ+ κ̌)

)
+ E1 + E2

=
1

2
r2ρ κ+

1

16π

∫
S

(
− 2eθ(κ)η − 2eθ(κ)ξ + 2ρ̌ κ̌

)
+ E1 + E2

=
1

2
r2κ
(
− 2m

r3
+

1

16πr2

∫
S

ϑϑ
)

+
1

16π

∫
S

(
− 2eθ(κ)η − 2eθ(κ)ξ + 2ρ̌ κ̌

)
+ E1 + E2.

We deduce

2e3(m)

r
=

1

16π

∫
S

(
− 2eθ(κ)η − 2eθ(κ)ξ + 2ρ̌ κ̌+

1

2
κϑϑ

)
+ E1

+
1

16π

∫
S

(
κ

(
2η2 − 1

2
ϑϑ

)
+ 2κ

(
η − 3ζ

)
ξ − 1

2
κϑ2

)
+
m

r
A

=
1

16π

∫
S

(
− 2eθ(κ)η + 2κη2 − 2eθ(κ)ξ + 2κηξ − 1

2
κϑ2
)

+
1

16π

∫
S

(
2ρ̌ κ̌− 6κ ζ ξ − 1

2
κ̌ϑ ϑ

)
+ E1 +

m

r
A,

i.e.,

e3(m) =
r

32π

∫
S

(
− 2eθ(κ)η + 2κη2 − 2eθ(κ)ξ + 2κηξ − 1

2
κϑ2
)

+
r

32π

∫
S

(
2ρ̌ κ̌− 6κ ζ ξ − 1

2
κ̌ϑ ϑ

)
+
r

2

(
E1 +

m

r
A
)
.
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It remains to calculate E1 + m
r
A. Using the definitions of E1 and A and grouping similar

terms appropriately we find

E1 +
m

r
A

= −ς−1ς̌

[
1

16π

∫
S

(e3(κκ) + κκ2) +
m

r
κ

]
+ ς−1

[
1

16π

∫
S

ς̌ (e3(κκ) + κκ2) +
m

r
ς̌κ̌

]
+
(
Ω̌ + ς−1Ως̌

) [ 1

16π

∫
S

(e4(κκ) + κ2κ) +
m

r
κ

]
− ς−1Ω

[
1

16π

∫
S

ς̌(e4(κκ) + κ2κ) +
m

r
ς̌κ̌

]
−ς−1

[
1

16π

∫
S

Ω̌ς(e4(κκ) + κ2κ) +
m

r
Ω̌ςκ

]
.

Now, we have from above calculations

e4(κκ) + κκ2 = 2κρ− 2κ d/1ζ + Err[e4(κκ)],

Err[e4(κκ)] = −1

2
κϑ2 − 1

2
κϑϑ+ 2κζ2,

e3(κκ) + κκ2 = 2ρκ+ 2κ d/1η + 2κ d/1ξ + Err[e3(κκ)],

Err[e3(κκ)] = κ

(
2η2 − 1

2
ϑϑ

)
+ 2κ

(
η − 3ζ

)
ξ − 1

2
κϑ2.

We infer

E1 +
m

r
A = −ς−1ς̌

[
1

16π

∫
S

(2ρκ+ 2κ d/1η + 2κ d/1ξ + Err[e3(κκ)]) +
m

r
κ

]
+ς−1

[
1

16π

∫
S

ς̌ (2ρκ+ 2κ d/1η + 2κ d/1ξ + Err[e3(κκ)]) +
m

r
ς̌κ̌

]
+
(
Ω̌ + ς−1Ως̌

) [ 1

16π

∫
S

(2κρ− 2κ d/1ζ + Err[e4(κκ)]) +
m

r
κ

]
−ς−1Ω

[
1

16π

∫
S

ς̌(2κρ− 2κ d/1ζ + Err[e4(κκ)]) +
m

r
ς̌κ̌

]
−ς−1

[
1

16π

∫
S

Ω̌ς(2κρ− 2κ d/1ζ + Err[e4(κκ)]) +
m

r
Ω̌ςκ

]
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and hence

E1 +
m

r
A = −ς−1ς̌

[
1

16π

∫
S

(
2ρ̌κ̌− 2eθ(κ)η − 2eθ(κ)ξ +

1

2
κϑϑ+ Err[e3(κκ)]

)]
+ς−1

[
1

16π

∫
S

ς̌ (2ρκ̌+ 2ρ̌κ+ 2ρ̌κ̌+ 2κ d/1η + 2κ d/1ξ + Err[e3(κκ)]) +
m

r
ς̌κ̌

]
+
(
Ω̌ + ς−1Ως̌

) [ 1

16π

∫
S

(
2κ̌ρ̌+ 2eθ(κ)ζ +

1

2
κϑϑ+ Err[e4(κκ)]

)]
−ς−1Ω

[
1

16π

∫
S

ς̌(2ρκ̌+ 2ρ̌κ+ 2ρ̌κ̌− 2κ d/1ζ + Err[e4(κκ)]) +
m

r
ς̌κ̌

]
−ς−1

[
1

16π

∫
S

Ω̌ς(2ρκ̌+ 2ρ̌κ+ 2ρ̌κ̌− 2κ d/1ζ + Err[e4(κκ)]) +
m

r
Ω̌ςκ

]
.

We deduce

e3(m) =
(
1− ς−1ς̌

) r

32π

∫
S

Err1 +
(
Ω̌ + ς−1Ως̌

) r

32π

∫
S

Err1

+ς−1 r

32π

∫
S

ς̌
(
2ρκ̌+ 2ρ̌κ+ 2κ d/1η + 2κ d/1ξ + Err2

)
−ς−1 r

32π

∫
S

(Ως̌ + Ω̌ς) (2ρκ̌+ 2ρ̌κ− 2κ d/1ζ + Err2)

−m
r
ς−1
[
−ς̌ κ̌+ Ω ς̌ κ̌+ Ω̌ςκ

]
,

where we have introduced

Err1 = 2κ̌ρ̌+ 2eθ(κ)ζ +
1

2
κϑϑ+ Err[e4(κκ)],

Err1 = 2ρ̌κ̌− 2eθ(κ)η − 2eθ(κ)ξ +
1

2
κϑϑ+ Err[e3(κκ)],

Err2 = 2ρ̌κ̌+ Err[e4(κκ)],

Err2 = 2ρ̌κ̌+ Err[e3(κκ)].

In view of the definition of Err[e4(κκ)] and Err[e3(κκ)], this concludes the proof of Propo-
sition 2.2.16.

A.3 Proof of Lemma 2.2.17

Recall that we have

e4(κ) = −1

2
κ2 − 1

4
ϑ2.
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We infer

e4(κ) = e4(κ) + κ̌2 = −1

2
κ2 − 1

4
ϑ2 + κ̌2

= −1

2
κ2 − 1

4
ϑ2 +

1

2
κ̌2

and hence

e4

(
κ− 2

r

)
= −1

2
κ2 − 1

4
ϑ2 +

1

2
κ̌2 +

2

r

e4(r)

r
= −1

2
κ2 +

1

r
κ− 1

4
ϑ2 +

1

2
κ̌2

= −1

2
κ

(
κ− 2

r

)
− 1

4
ϑ2 +

1

2
κ̌2.

Next, using

e4(ω) = ρ+ ζ(2η + ζ)

we infer that

e4(ω) = e4(ω) + κ̌ω̌ = ρ+ ζ(2η + ζ) + κ̌ω̌,

and hence

e4

(
ω − m

r2

)
= e4(ω) +

2me4(r)

r3
− e4(m)

r2

= ρ+
2m

r3
+
m

r2

(
κ− 2

r

)
− e4(m)

r2
+ 3ζ(2η + ζ) + κ̌ω̌

as stated.

Next, using

e3(κ) +
1

2
κκ− 2ωκ = 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

we deduce

e3(κ) = −1

2
κκ+ 2ωκ+ 2ρ− 1

2
ϑϑ+ 2η2

= −1

2
κκ+ 2ω κ+ 2ρ+ 2ω̌ κ̌− 1

2
κ̌ κ̌− 1

2
ϑϑ+ 2η2.

Making use of Corollary 2.2.11

e3 (κ) = e3(κ) + Err[e3κ]

= −1

2
κκ+ 2ω κ+ 2ρ+ 2ω̌ κ̌− 1

2
κ̌ κ̌− 1

2
ϑϑ+ 2η2 + Err[e3κ]
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and,

e3

(
κ− 2

r

)
= e3 (κ) +

2

r2

r

2
(κ+ A)

= −1

2
κκ+ 2ω κ+ 2ρ+ 2ω̌ κ̌− 1

2
κ̌ κ̌− 1

2
ϑϑ+ 2η2 +

1

r
κ+

1

r
A+ Err[e3κ]

= −1

2
κ

(
κ− 2

r

)
+ 2ω κ+ 2ρ+ 2ω̌ κ̌− 1

2
κ̌ κ̌− 1

2
ϑϑ+ 2η2 +

1

r
A+ Err[e3κ].

Now,

2ω κ+ 2ρ = 2ω

(
κ− 2

r

)
+

4

r
ω + 2ρ

= 2ω

(
κ− 2

r

)
+

4

r

(
ω − m

r2

)
+ 2

(
ρ+

2m

r3

)
.

Hence,

e3

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
= 2ω

(
κ− 2

r

)
+

4

r

(
ω − m

r2

)
+ 2

(
ρ+

2m

r3

)
+ 2η2 + 2ω̌ κ̌− 1

2
κ̌ κ̌− 1

2
ϑϑ+

1

r
A+ Err[e3κ].

In view of Corollary 2.2.11 the error term Err[e3(κ)] is given by

Err[e3(κ)] = −ς−1ς̌ (e3κ+ κκ− κκ) + ς−1
(
ς̌(e3κ+ κκ)− ς̌ κ̌ κ

)
+
(
Ω̌ + ς−1Ως̌

) (
e4κ+ κ2 − κ2

)
− ς−1Ω

(
ς̌(e4κ+ κ2)− ς̌ κ̌ κ

)
− ς−1

(
Ω̌ς(e4κ+ κ2)− Ω̌ς κ κ

)
+ κ̌κ̌.

Together with the null structure equations for e3(κ) and e4(κ), we infer

Err[e3(κ)] = −ς−1ς̌

(
1

2
κκ+ 2ωκ+ 2ρ+ 2 d/1η −

1

2
ϑϑ+ 2η2 − κκ

)
+ς−1

(
ς̌

(
1

2
κκ+ 2ωκ+ 2ρ+ 2 d/1η −

1

2
ϑϑ+ 2η2

)
− ς̌ κ̌ κ

)

+
(
Ω̌ + ς−1Ως̌

) (1

2
κ2 − 1

4
ϑ2 − κ2

)
− ς−1Ω

(
ς̌

(
1

2
κ2 − 1

4
ϑ2

)
− ς̌ κ̌ κ

)

−ς−1

(
Ω̌ς

(
1

2
κ2 − 1

4
ϑ2

)
− Ω̌ς κ κ

)
+ κ̌κ̌.
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and hence

Err[e3(κ)] = −ς−1

(
−1

2
κκ+ 2ω κ+ 2ρ

)
ς̌ − 1

2
κ2
(
Ω̌ + ς−1Ως̌

)
−ς−1ς̌

(
1

2
κ̌κ̌+ 2ω̌κ̌− 1

2
ϑϑ+ 2η2

)
+ς−1

(
ς̌

(
1

2
κκ+ 2ωκ+ 2ρ̌+ 2 d/1η −

1

2
ϑϑ+ 2η2

)
− ς̌ κ̌ κ

)

+
(
Ω̌ + ς−1Ως̌

)(1

2
κ̌2 − 1

4
ϑ2

)
− ς−1Ω

(
ς̌

(
1

2
κ2 − 1

4
ϑ2

)
− ς̌ κ̌ κ

)

−ς−1

(
Ω̌ς

(
1

2
κ2 − 1

4
ϑ2

)
− Ω̌ς κ κ

)
+ κ̌κ̌ (A.3.1)

so that, in view of the definition of A, we obtain

e3

(
κ− 2

r

)
+

1

2
κ

(
κ− 2

r

)
= 2ω

(
κ− 2

r

)
+

4

r

(
ω − m

r2

)
+ 2

(
ρ+

2m

r3

)
− ς−1

(
−1

2
κκ+ 2ω κ+ 2ρ

)
ς̌

−1

2
κ2
(
Ω̌ + ς−1Ως̌

)
− 1

r
ς−1κς̌ +

1

r
κ
(
Ω̌ + ς−1Ως̌

)
+ Err

[
e3

(
κ− 2

r

)]
,

with

Err

[
e3

(
κ− 2

r

)]
= 2η2 + 2ω̌ κ̌− 1

2
κ̌ κ̌− 1

2
ϑϑ+

1

r
ς−1ς̌ κ̌− 1

r
ς−1Ω ς̌ κ̌− 1

r
ς−1Ω̌ςκ

−ς−1ς̌

(
1

2
κ̌κ̌+ 2ω̌κ̌− 1

2
ϑϑ+ 2η2

)
+ς−1

(
ς̌

(
1

2
κκ+ 2ωκ+ 2ρ̌+ 2 d/1η −

1

2
ϑϑ+ 2η2

)
− ς̌ κ̌ κ

)

+
(
Ω̌ + ς−1Ως̌

)(1

2
κ̌2 − 1

4
ϑ2

)
− ς−1Ω

(
ς̌

(
1

2
κ2 − 1

4
ϑ2

)
− ς̌ κ̌ κ

)

−ς−1

(
Ω̌ς

(
1

2
κ2 − 1

4
ϑ2

)
− Ω̌ς κ κ

)
+ κ̌κ̌.

This concludes the proof of Lemma 2.2.17.
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A.4 Proof of Proposition 2.2.18

In view of Corollary 2.2.11 applied to

e4(κ) +
1

2
κ2 = −1

2
ϑ2,

we deduce,

e4κ̌+ κκ̌ = −1

2
κ̌2 − 1

2
κ̌2 − 1

2
(ϑ2 − ϑ2).

In view of Corollary 2.2.11 applied to

e4(κ) +
1

2
κκ = −2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

we deduce,

e4κ̌+
1

2
κκ̌+

1

2
κ̌κ = −1

2
κ̌κ̌− 1

2
κ̌κ̌+ F − F

where,

F − F =

(
−2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
−
(
−2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
= −2 d/1ζ + 2ρ̌+

(
−1

2
ϑϑ+ 2ζ2

)
−
(
−1

2
ϑϑ+ 2ζ2

)
.

Hence,

e4κ̌+
1

2
κκ̌+

1

2
κ̌κ = −2 d/1ζ + 2ρ̌+ Err[e4κ̌]

Err[e4κ̌] : = −1

2
κ̌κ̌− 1

2
κ̌κ̌+

(
−1

2
ϑϑ+ 2ζ2

)
−
(
−1

2
ϑϑ+ 2ζ2

)
.

In view of Corollary 2.2.11 applied to e4(ω) = ρ+ 3ζ2 we deduce,

e4ω̌ = −κ̌ω̌ + (ρ+ 3ζ2)− (ρ+ 3ζ2) = ρ̌− κ̌ω̌ + 3(ζ2 − ζ2).

In view of Corollary 2.2.11 applied to

e4(ρ) +
3

2
κρ = d/1β −

1

2
ϑα− ζβ
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we deduce,

e4ρ̌+
3

2
κρ̌+

3

2
ρκ̌ = −3

2
κ̌ρ̌+

1

2
κ̌ρ̌+ d/1β −

(
1

2
ϑα + ζβ

)
+

(
1

2
ϑα + ζβ

)
.

e4µ+
3

2
κµ = Err[e4µ],

we deduce

e4µ̌+
3

2
κµ̌+

3

2
µκ̌ = −3

2
κ̌µ̌+

1

2
κ̌µ̌+ Err[e4µ]− Err[e4µ].

In view of Corollary 2.2.11 applied to e4(Ω) = −2ω we deduce,

−e4(Ω̌) = 2ω̌ − κ̌Ω̌

as stated.

In view of Corollary 2.2.11 applied to the equation

e3(κ) +
1

2
κκ = 2 d/1η + 2ρ+ 2η2 + 2ωκ− 1

2
ϑϑ

to deduce,

e3(κ̌) = e3(κ)− e3(κ)− Err[e3(κ)]

= −1

2
κκ+ 2 d/1η + 2ρ+ 2η2 + 2ωκ− 1

2
ϑϑ

+
1

2
κκ− 2ρ− 2η2 − 2ωκ+

1

2
ϑϑ− Err[e3κ]

= 2 d/1η + 2ρ̌− 1

2
(κκ̌+ κκ̌) + 2 (ωκ̌+ κω̌)

+2
(
η2 − η2

)
− 1

2
κ̌κ̌+ 2ω̌κ̌− 1

2

(
ϑϑ− ϑϑ

)
− Err[e3κ].
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Now, recall that we have in view of (A.3.1),

Err[e3(κ)] = −ς−1

(
−1

2
κκ+ 2ω κ+ 2ρ

)
ς̌ − 1

2
κ2
(
Ω̌ + ς−1Ως̌

)
−ς−1ς̌

(
1

2
κ̌κ̌+ 2ω̌κ̌− 1

2
ϑϑ+ 2η2

)
+ς−1

(
ς̌

(
1

2
κκ+ 2ωκ+ 2ρ̌+ 2 d/1η −

1

2
ϑϑ+ 2η2

)
− ς̌ κ̌ κ

)

+
(
Ω̌ + ς−1Ως̌

)(1

2
κ̌2 − 1

4
ϑ2

)
− ς−1Ω

(
ς̌

(
1

2
κ2 − 1

4
ϑ2

)
− ς̌ κ̌ κ

)

−ς−1

(
Ω̌ς

(
1

2
κ2 − 1

4
ϑ2

)
− Ω̌ς κ κ

)
+ κ̌κ̌.

We deduce

e3(κ̌) = 2 d/1η + 2ρ̌− 1

2
(κκ̌+ κκ̌) + 2 (ωκ̌+ κω̌)

+ς−1

(
−1

2
κκ+ 2ω κ+ 2ρ

)
ς̌ +

1

2
κ2
(
Ω̌ + ς−1Ως̌

)
+2
(
η2 − η2

)
− 1

2
κ̌κ̌+ 2ω̌κ̌− 1

2

(
ϑϑ− ϑϑ

)
+ ς−1ς̌

(
1

2
κ̌κ̌+ 2ω̌κ̌− 1

2
ϑϑ+ 2η2

)
−ς−1

(
ς̌

(
1

2
κκ+ 2ωκ+ 2ρ̌+ 2 d/1η −

1

2
ϑϑ+ 2η2

)
− ς̌ κ̌ κ

)

−
(
Ω̌ + ς−1Ως̌

)(1

2
κ̌2 − 1

4
ϑ2

)
+ ς−1Ω

(
ς̌

(
1

2
κ2 − 1

4
ϑ2

)
− ς̌ κ̌ κ

)

+ς−1

(
Ω̌ς

(
1

2
κ2 − 1

4
ϑ2

)
− Ω̌ς κ κ

)
− κ̌κ̌

as desired.

In view of Corollary 2.2.11 applied to the equation

e3(κ) +
1

2
κ2 = 2 d/1ξ − 2ω κ+ 2(η − 3ζ)ξ − 1

2
ϑ2

we deduce,

e3(κ̌) + κ κ̌ = 2 d/1ξ − 2 (ω̌ κ+ ω κ̌)

−1

2
κ̌2 − 2ω̌ κ̌+ 2(η − 3ζ)ξ − 2(η − 3ζ)ξ − 1

2

(
ϑ2 − ϑ2

)
− Err[e3κ]
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where,

−Err[e3κ] = ς−1ς̌
(
e3κ+ κ2 − κκ

)
− ς−1

(
ς̌(e3κ+ κ2)− ς̌ κ̌ κ

)
−
(
Ω̌ + ς−1Ως̌

) (
e4κ+ κκ)− κκ

)
+ ς−1Ω

(
ς̌(e4κ+ κκ)− ς̌ κ̌ κ

)
+ ς−1

(
Ω̌ς(e4κ+ κκ)− Ω̌ς κ κ

)
− κ̌2.

In view of the null structure equations for e3(κ) and e4(κ), we infer

−Err[e3κ] = ς−1ς̌

(
−1

2
κ2 − 2ω κ

)
−
(
Ω̌ + ς−1Ως̌

) (
−1

2
κκ+ 2ρ

)
+ ς−1ς̌

(
1

2
κ̌2 − 2ω̌ κ̌+ 2(η − 3ζ)ξ − 1

2
ϑ2

)
−
(
Ω̌ + ς−1Ως̌

) (1

2
κ̌ κ̌− 1

2
ϑϑ+ 2ζ2

)
− ς−1

(
ς̌

(
1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
− ς̌ κ̌ κ

)

+ ς−1Ω

(
ς̌

(
1

2
κκ− 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− ς̌ κ̌ κ

)

+ ς−1

(
Ω̌ς

(
1

2
κκ− 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− Ω̌ς κ κ

)
− κ̌2

and hence

e3(κ̌) + κ κ̌ = 2 d/1ξ − 2 (ω̌ κ+ ω κ̌) + ς−1ς̌

(
−1

2
κ2 − 2ω κ

)
−
(
Ω̌ + ς−1Ως̌

) (
−1

2
κκ+ 2ρ

)
+ Err[e3(κ̌)],

Err[e3(κ̌)] = −1

2
κ̌2 − 2ω̌ κ̌+ 2(η − 3ζ)ξ − 2(η − 3ζ)ξ − 1

2

(
ϑ2 − ϑ2

)
−ς−1

(
ς̌

(
1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
− ς̌ κ̌ κ

)

+ς−1Ω

(
ς̌

(
1

2
κκ− 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− ς̌ κ̌ κ

)

+ς−1

(
Ω̌ς

(
1

2
κκ− 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− Ω̌ς κ κ

)
− κ̌2

as desired.
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In view of Corollary 2.2.11 applied to equation

e3(ρ) +
3

2
κρ = d/1β −

1

2
ϑα− ζβ + 2ηβ + 2ξβ

we deduce,

e3ρ̌+
3

2
κρ̌+

3

2
κ̌ρ = d/1β −

(
1

2
ϑα + ζβ − 2ηβ − 2ξβ

)
+

(
1

2
ϑα + ζβ − 2ηβ − 2ξβ

)
− 3

2
κ̌ρ̌− Err[e3ρ]

where

−Err[e3(ρ)] = ς−1ς̌ (e3ρ+ κρ− κρ)− ς−1
(
ς̌(e3ρ+ κρ)− ς̌ κ̌ ρ

)
−
(
Ω̌ + ς−1Ως̌

) (
e4ρ+ κρ)− κ ρ

)
+ ς−1Ω

(
ς̌(e4ρ+ κρ)− ς̌ κ̌ ρ

)
+ ς−1

(
Ω̌ς(e4ρ+ κρ)− Ω̌ς κ

)
− κ̌ρ̌.

In view of the null structure equations for e3(ρ) and e4(ρ), we infer

−Err[e3(ρ)] = −3

2
κ ρς−1ς̌ +

3

2
κ ρ
(
Ω̌ + ς−1Ως̌

)
+ ς−1ς̌

(
−1

2
κ̌ρ̌− 1

2
ϑα− ζ β + 2(η β + ξ β)

)
− ς−1

(
ς̌

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

)
− ς̌ κ̌ ρ

)

−
(
Ω̌ + ς−1Ως̌

) (
−1

2
κ̌ρ̌− 1

2
ϑα− ζβ

)
+ ς−1Ω

(
ς̌

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζβ

)
− ς̌ κ̌ ρ

)

+ ς−1

(
Ω̌ς

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζβ

)
− Ω̌ς κ

)
− κ̌ρ̌.
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and hence

e3ρ̌+
3

2
κρ̌ = −3

2
ρκ̌+ d/1β −

3

2
κ ρς−1ς̌ +

3

2
κ ρ
(
Ω̌ + ς−1Ως̌

)
+ Err[e3ρ̌],

Err[e3ρ̌] = −
(

1

2
ϑα + ζβ − 2ηβ − 2ξβ

)
+

(
1

2
ϑα + ζβ − 2ηβ − 2ξβ

)
− 3

2
κ̌ρ̌

+ς−1ς̌

(
−1

2
κ̌ρ̌− 1

2
ϑα− ζ β + 2(η β + ξ β)

)
−ς−1

(
ς̌

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

)
− ς̌ κ̌ ρ

)

−
(
Ω̌ + ς−1Ως̌

) (
−1

2
κ̌ρ̌− 1

2
ϑα− ζβ

)
+ς−1Ω

(
ς̌

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζβ

)
− ς̌ κ̌ ρ

)

+ς−1

(
Ω̌ς

(
−1

2
κρ+ d/1β −

1

2
ϑα− ζβ

)
− Ω̌ς κ

)
− κ̌ρ̌,

which ends the proof of Proposition 2.2.18.

A.5 Proof of Proposition 2.2.19

In view of the null structure equation for e3(ζ), we have

1

2
κξ + 2 d?/1ω = e3(ζ) +

1

2
κ(ζ + η)− 2ω(ζ − η)− β +

1

2
ϑ(ζ + η)− 1

2
ϑξ

and hence

1

2
κξ + 2 d?/1ω =

(
1

2
κ+ 2ω +

1

2
ϑ

)
η + e3(ζ)− β

+
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ

which is the first desired identity.

To prove the second identity we start with

e3(κ) +
1

2
κκ− 2ωκ = 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2.
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Applying eθ,

e3(eθ(κ)) + [eθ, e3]κ+
1

2
κeθ(κ) +

1

2
κeθ(κ)− 2ωeθ(κ)− 2κeθ(ω)

= 2eθ( d/1η) + 2eθ(ρ)− 1

2
eθ(ϑϑ) + 2eθ(η

2).

Since [eθ, e3]κ = 1
2
(κ+ ϑ)eθκ+ (ζ − η)e3κ− ξe4κ we deduce,

2eθ( d/1η) + ηe3(κ) + 2eθ(η
2) = −ξe4(κ)− 2κeθ(ω) + e3(eθ(κ)

+
1

2
(κ+ ϑ)eθ(κ) + ζe3(κ) +

1

2
κeθ(κ) +

1

2
κeθ(κ)

− 2ωeθ(κ)− 2eθ(ρ) +
1

2
eθ(ϑϑ),

or, making use of the equations for e3κ and e4κ in Proposition 2.2.8,

2eθ( d/1η) +

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

)
η + 2eθ(η

2)

= −
(
−1

2
κ2 − 1

2
ϑ2

)
ξ − 2κeθ(ω) + e3(eθ(κ))

+
1

2
(κ+ ϑ)eθ(κ) +

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

)
ζ

+
1

2
κeθ(κ) +

1

2
κeθ(κ)− 2ωeθ(κ)− 2eθ(ρ) +

1

2
eθ(ϑϑ).

Since eθ = − d?/1, d?/1 d/1 = d/2 d
?/2 + 2K and K = −ρ− 1

4
κκ+ 1

4
ϑϑ, we infer that(

− 2 d/2 d
?/2 +

1

2
κκ+ 2ωκ+ 2 d/1η + 6ρ− 3

2
ϑϑ+ 2η2

)
η + 2eθ(η

2)

= κ

(
1

2
κξ + 2 d?/1ω

)
+ e3(eθ(κ))

+
1

2
(κ+ ϑ)eθ(κ) +

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

)
ζ

+
1

2
κeθ(κ) +

1

2
κeθ(κ)− 2ωeθ(κ)− 2eθ(ρ) +

1

2
eθ(ϑϑ) +

1

2
ϑ2ξ.

Making use of the previously derived identity,

2 d?/1ω +
1

2
κξ =

(
1

2
κ+ 2ω +

1

2
ϑ

)
η + e3(ζ)− β

+
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ,
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we infer that, (
− 2 d/2 d

?/2 +
1

2
κκ+ 2ωκ+ 2 d/1η + 6ρ− 3

2
ϑϑ+ 2η2

)
η + 2eθ(η

2)

= κ

((
1

2
κ+ 2ω +

1

2
ϑ

)
η + e3(ζ)− β

)
+κ

(
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ

)
+ e3(eθ(κ))

+
1

2
(κ+ ϑ)eθ(κ) +

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

)
ζ

+
1

2
κeθ(κ) +

1

2
κeθ(κ)− 2ωeθ(κ)− 2eθ(ρ) +

1

2
eθ(ϑϑ) +

1

2
ϑ2ξ,

or, (
−2 d/2 d

?/2 + 6ρ+ 2 d/1η −
1

2
κϑ− 3

2
ϑϑ+ 2η2

)
η + 2eθ(η

2)

= κ
(
e3(ζ)− β

)
+ e3(eθ(κ))

+κ

(
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ

)
+

1

2
(κ+ ϑ)eθ(κ) +

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

)
ζ

+
1

2
κeθ(κ) +

1

2
κeθ(κ)− 2ωeθ(κ)− 2eθ(ρ) +

1

2
eθ(ϑϑ) +

1

2
ϑ2ξ

and hence (
2 d/2 d

?/2 − 2 d/1η +
1

2
κϑ− 2η2

)
η − 2eθ(η

2)

= κ
(
−e3(ζ) + β

)
− e3(eθ(κ))

−κ
(

1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ

)
+ 6ρη − 3

2
ϑϑη

−1

2
(κ+ ϑ)eθ(κ)−

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2η2

)
ζ

−1

2
κeθ(κ)− 1

2
κeθ(κ) + 2ωeθ(κ) + 2eθ(ρ)− 1

2
eθ(ϑϑ)− 1

2
ϑ2ξ

which is the second desired identity.

To prove the third identity we start with,

e3(κ) +
1

2
κ2 + 2ω κ = 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2.
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Taking eθ = − d?/1 and using d?/1 d/1 = d/2 d
?/2 + 2K as before,

e3(eθ(κ)) + [eθ, e3]κ+ κeθ(κ) + 2ωeθ(κ) + 2κeθ(ω)

= −2 d?/1 d/1ξ + 2eθ

(
(η − 3ζ)ξ

)
− 1

2
eθ(ϑ

2)

= −2( d/2 d
?/2 + 2K)ξ + 2eθ

(
(η − 3ζ)ξ

)
− 1

2
eθ(ϑ

2).

Thus, since [eθ, e3]κ = 1
2
(κ+ ϑ)eθκ+ ζ − η)e3κ− ξe4κ,

−2( d/2 d
?/2 + 2K)ξ = e3(eθ(κ)) + 2κeθ(ω) +

1

2
(κ+ ϑ)eθκ+ (ζ − η)e3κ− ξe4κ

+ κeθ(κ) + 2ωeθ(κ)− 2eθ

(
(η − 3ζ)ξ

)
+

1

2
eθ(ϑ

2).

Making use of the equations for e3κ, e4κ in Proposition 2.2.8

2( d/2 d
?/2 + 2K)ξ = 2κ d?/1ω − e3(eθ(κ)− 1

2
(κ+ ϑ)eθκ

− (ζ − η)

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ ξ

(
−1

2
κκ− 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− κeθ(κ)− 2ωeθ(κ) + 2eθ

(
(η − 3ζ)ξ

)
− 1

2
eθ(ϑ

2).

We deduce,

2( d/2 d
?/2 +K)ξ

= 2κ d?/1ω + η

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ 2eθ

(
(η − 3ζ)ξ

)
−e3(eθ(κ))− 1

2
eθ(ϑ

2)− 1

2
(κ+ ϑ)eθ(κ)− ζ

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ξ

(
−1

2
κκ− 2K − 2 d/1ζ + 2ρ− 1

2
ϑϑ+ 2ζ2

)
− κeθ(κ)− 2ωeθ(κ)− 6ηζξ − 6eθ(ζξ).

Making use of K = −ρ− 1
4
κκ+ 1

4
ϑϑ and reorganizing we deduce,

2( d/2 d
?/2 +K)ξ

= 2κ d?/1ω + η

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2ηξ − 1

2
ϑ2

)
+ 2eθ(ηξ)− e3(eθ(κ))− 1

2
eθ(ϑ

2)

−1

2
(κ+ ϑ)eθ(κ)− ζ

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ξ
(

4ρ− ϑϑ− 2 d/1ζ + 2ζ2
)
− κeθ(κ)− 2ωeθ(κ)− 6ηζξ − 6eθ(ζξ).
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We make use again of the identity,

2 d?/1ω +
1

2
κξ =

(
1

2
κ+ 2ω +

1

2
ϑ

)
η + e3(ζ)− β

+
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ,

to derive,

2( d/2 d
?/2 +K)ξ

= κ

(
−1

2
κξ +

(
1

2
κ+ 2ω +

1

2
ϑ

)
η + e3(ζ)− β

)
+ κ

(
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ

)
+ η

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2ηξ − 1

2
ϑ2

)
+ 2eθ(ηξ)− e3(eθ(κ))− 1

2
eθ(ϑ

2)

−1

2
(κ+ ϑ)eθ(κ)− ζ

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ξ
(

4ρ− ϑϑ− 2 d/1ζ + 2ζ2
)
− κeθ(κ)− 2ωeθ(κ)− 6ηζξ − 6eθ(ζξ).

Grouping terms and using once more the identity K = −ρ− 1
4
κκ+ 1

4
ϑϑ we deduce,

2 d/2 d
?/2ξ

= −e3(eθ(κ)) + κ
(
e3(ζ)− β

)
+

(
2 d/1ξ +

1

2
κϑ+ 2ηξ − 1

2
ϑ2

)
η + 2eθ(ηξ)−

1

2
eθ(ϑ

2)

+κ

(
1

2
κζ − 2ωζ +

1

2
ϑζ − 1

2
ϑξ

)
− 1

2
(κ+ ϑ)eθ(κ)− 1

2
ϑϑξ

−ζ
(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + 2(η − 3ζ)ξ − 1

2
ϑ2

)
+ξ
(

6ρ− ϑϑ− 2 d/1ζ + 2ζ2
)
− κeθ(κ)− 2ωeθ(κ)− 6ηζξ − 6eθ(ζξ)

which is the third desired identity. This concludes the proof of Proposition 2.2.19.

A.6 Proof of Proposition 2.3.4

The proof follows by straightforward calculations using the definition of Ricci coefficients
and curvature components with respect to the two frames. Recall the transformation
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(2.3.3)

e′4 = λ

(
e4 + feθ +

1

4
f 2e3

)
,

e′θ =

(
1 +

1

2
ff

)
eθ +

1

2
fe4 +

1

2
f

(
1 +

1

4
ff

)
e3,

e′3 = λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
.

We first derive the transformation formulae for κ. We have, under a transformation of
type (2.3.3),

χ′ = g(De′θ
e′4, eθ′)

= g

(
De′θ

(
λ

(
e4 + feθ +

1

4
f 2e3

))
, e′θ

)
= λg

(
De′θ

(
e4 + feθ +

1

4
f 2e3

)
, e′θ

)
= λg

(
De′θ

e4, e
′
θ

)
+ λe′θ(f)g(eθ, e

′
θ) +

λ

4
e′θ(f

2)g(e3, e
′
θ) + λfg

(
De′θ

eθ, e
′
θ

)
+
λ

4
f 2g(De′θ

e3, e
′
θ)

= λg
(
De′θ

e4, e
′
θ

)
+ λ

(
1 +

1

2
ff

)
e′θ(f)− λ

4
fe′θ(f

2) + λfg
(
De′θ

eθ, e
′
θ

)
+
λ

4
f 2χ+ l.o.t.

We recall that the lower order terms we denote by l.o.t., here and throughout the proof, are
linear with respect Γ = {ξ, ξ, ϑ, κ̌, η, η, ζ, κ̌, ϑ} and quadratic or higher order in f, f , and

do not contain derivatives of these latter. We also recall that χ = 1
2
(κ+ϑ), χ = 1

2
(κ+ϑ).

Next, we compute

g
(
De′θ

e4, e
′
θ

)
= g

(
De′θ

e4,

(
1 +

1

2
ff

)
eθ +

1

2
fe3

)
+ l.o.t.

=

(
1 +

1

2
ff

)
g
(
D(1+ 1

2
ff)eθ+ 1

2
fe4+ 1

2
fe3
e4, eθ

)
+

1

2
fg
(
Deθ+ 1

2
fe4+ 1

2
fe3
e4, e3

)
+ l.o.t.

=
(
1 + ff

)
χ+ fξ + fη + fζ + ffω − f 2ω + l.o.t.,

and

fg
(
De′θ

eθ, e
′
θ

)
=

1

2
ffg

(
De′θ

eθ, e4

)
+

1

2
f 2g

(
De′θ

eθ, e3

)
= −1

2
ffχ− 1

2
f 2χ+ l.o.t.
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This yields

χ′ = λg
(
De′θ

e4, e
′
θ

)
+ λ

(
1 +

1

2
ff

)
e′θ(f)− λ

4
fe′θ(f

2) + λfg
(
De′θ

eθ, e
′
θ

)
+
λ

4
f 2χ+ l.o.t.

= λ

(
χ+

(
1 +

1

2
ff

)
e′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ − 1

4
f 2χ+

1

2
ffχ+ ffω − f 2ω

+l.o.t.

)
.

Hence,

κ′ = χ′ + e′4Φ = χ′ + λ

(
e4 + feθ +

1

4
f 2e3

)
Φ

= λ

(
κ+ e′θ(f) + eθ(Φ)f +

1

8
(κ− ϑ)f 2 +

1

2
ffe′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ

−1

4
f 2χ+

1

2
ffχ+ ffω − f 2ω + l.o.t.

)

= λ

(
κ+ d/1

′(f) +
1

2
ffe′θ(f) +

1

4
fe′θ(f

2)− 1

4
f 2κ+ f(ζ + η) + fξ + ffω − f 2ω + l.o.t.

)
and

ϑ′ = χ′ − e′4Φ = χ′ − λ
(
e4 + feθ +

1

4
f 2e3

)
Φ

= λ

(
ϑ+ e′θ(f)− eθ(Φ)f − 1

8
(κ− ϑ)f 2 +

1

2
ffe′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ

−1

4
f 2χ+

1

2
ffχ+ ffω − f 2ω + l.o.t.

)

= λ

(
ϑ− d?/2

′(f) +
1

2
ffe′θ(f)− 1

4
fe′θ(f

2) +
1

4
ffκ+ f(ζ + η) + fξ + ffω − f 2ω + l.o.t.

)
.

This yields

κ′ = λ (κ+ d/1
′(f)) + λErr(κ, κ′),

Err(κ, κ′) =
1

2
ffe′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ +
1

4
f 2κ+ ffω − f 2ω + l.o.t.

= f(ζ + η) + fξ +
1

4
f 2κ+ ffω − f 2ω + l.o.t.
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and

ϑ′ = λ (ϑ− d?/2
′(f)) + λErr(ϑ, ϑ′),

Err(ϑ, ϑ′) =
1

2
ffe′θ(f)− 1

4
fe′θ(f

2) + f(ζ + η) + fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.

= f(ζ + η) + fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.

Next, we derive the transformation formula for κ and ϑ. We have, under a transformation
of type (2.3.3),

χ′ = g(De′θ
e′3, eθ′)

= g

(
De′θ

(
λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

))
, e′θ

)
= λ−1g

(
De′θ

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
, e′θ

)
=

λ−1

2
e′θ

(
ff +

1

8
f 2f 2

)
g(e3, e

′
θ) + λ−1e′θ

(
f

(
1 +

1

4
ff

))
g(eθ, e

′
θ) +

λ−1

4
e′θ
(
f 2
)
g(e4, e

′
θ)

+λ−1

(
1 +

1

2
ff +

1

16
f 2f 2

)
g
(
De′θ

e3, e
′
θ

)
+ λ−1f

(
1 +

1

4
ff

)
g
(
De′θ

eθ, e
′
θ

)
+

1

4
λ−1f 2g

(
De′θ

e4, e
′
θ

)
= −λ

−1

2
fe′θ

(
ff +

1

8
f 2f 2

)
+ λ−1

(
1 +

1

2
ff

)
e′θ

(
f

(
1 +

1

4
ff

))
−λ

−1

4
f

(
1 +

1

4
ff

)
e′θ
(
f 2
)

+ λ−1

(
1 +

1

2
ff

)
g
(
De′θ

e3, e
′
θ

)
+ λ−1fg

(
De′θ

eθ, e
′
θ

)
+

1

4
λ−1f 2χ+ l.o.t.

Then, we easily derive by symmetry from the formula for κ and ϑ

κ′ = λ−1
(
κ+ d/1

′(f)
)

+ λ−1Err(κ, κ′),

Err(κ, κ′) = −1

2
fe′θ

(
ff +

1

8
f 2f 2

)
+

(
3

4
ff +

1

8
(ff)2

)
e′θ(f) +

1

4

(
1 +

1

2
ff

)
fe′θ

(
ff
)

−1

4
f

(
1 +

1

4
ff

)
e′θ
(
f 2
)

+ f(−ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.

= −1

4
f 2e′θ(f) + f(−ζ + η) + fξ − 1

4
f 2κ+ ffω − f 2ω + l.o.t.
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and

ϑ′ = λ
(
ϑ− d?/2

′(f)
)

+ λ−1Err(ϑ, ϑ′),

Err(ϑ, ϑ′) = −1

2
fe′θ

(
ff +

1

8
f 2f 2

)
+

(
3

4
ff +

1

8
(ff)2

)
e′θ(f) +

1

4

(
1 +

1

2
ff

)
fe′θ

(
ff
)

−1

4
f

(
1 +

1

4
ff

)
e′θ
(
f 2
)

+ f(−ζ + η) + fξ +
1

4
ffκ+ ffω − f 2ω + l.o.t.

= −1

4
f 2e′θ(f) + f(−ζ + η) + fξ +

1

4
ffκ+ ffω − f 2ω + l.o.t.

Next, we derive the transformation formula for ζ. We have, under a transformation of
type (2.3.3),

2ζ ′ = g(De′θ
e′4, e

′
3)

= g

(
De′θ

(
λ

(
e4 + feθ +

1

4
f 2e3

))
, e′3

)
= −2e′θ(log(λ)) + λg

(
De′θ

(
e4 + feθ +

1

4
f 2e3

)
, e′3

)
= −2e′θ(log(λ)) + λe′θ(f)g (eθ, e

′
3) +

1

4
λe′θ(f

2)g (e3, e
′
3) + λg

(
De′θ

e4, e
′
3

)
+λfg

(
De′θ

eθ, e
′
3

)
+

1

4
λf 2g

(
De′θ

e3, e
′
3

)
= −2e′θ(log(λ)) + f

(
1 +

1

4
ff

)
e′θ(f)− 1

8
f 2e′θ(f

2) + λg
(
De′θ

e4, e
′
3

)
+ λfg

(
De′θ

eθ, e
′
3

)
+ l.o.t.

We compute

λg
(
De′θ

e4, e
′
3

)
= g

(
De′θ

e4, e3 + feθ
)

+ l.o.t.

= g
(
Deθ+ 1

2
fe4+ 1

2
fe3
e4, e3

)
+ fg

(
Deθ+ 1

2
fe4+ 1

2
fe3
e4, eθ

)
+ l.o.t.

= 2ζ + 2ωf − 2ωf + fχ+ l.o.t.

and

λfg
(
De′θ

eθ, e
′
3

)
= fg

(
De′θ

eθ, e3

)
+ l.o.t.

= fg
(
Deθ+ 1

2
fe4+ 1

2
fe3
eθ, e3

)
+ l.o.t.

= −fχ+ l.o.t.
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This yields

2ζ ′ = −2e′θ(log(λ)) + f

(
1 +

1

4
ff

)
e′θ(f)− 1

8
f 2e′θ(f

2) + λg
(
De′θ

e4, e
′
3

)
+ λfg

(
De′θ

eθ, e
′
3

)
+ l.o.t.

= 2ζ − 2e′θ(log(λ)) + f

(
1 +

1

4
ff

)
e′θ(f)− 1

8
f 2e′θ(f

2) + 2ωf − 2ωf + fχ− fχ+ l.o.t.

and hence

ζ ′ = ζ − e′θ(log(λ)) +
1

4
(−fκ+ fκ) + fω − fω + Err(ζ, ζ ′),

Err(ζ, ζ ′) =
1

2
f

(
1 +

1

4
ff

)
e′θ(f)− 1

16
f 2e′θ(f

2) +
1

4
(−fϑ+ fϑ) + l.o.t.

=
1

2
fe′θ(f) +

1

4
(−fϑ+ fϑ) + l.o.t.

Next, we derive the transformation formulae for η. We have, under a transformation of
type (2.3.3),

2η′ = g
(
De′3

e′4, e
′
θ

)
= g

(
De′3

(
λ

(
e4 + feθ +

1

4
f 2e3

))
, e′θ

)
= λg

(
De′3

(
e4 + feθ +

1

4
f 2e3

)
, e′θ

)
= λg

(
De′3

e4, e
′
θ

)
+ λe′3(f)g (eθ, e

′
θ) + λfg

(
De′3

eθ, e
′
θ

)
+

1

4
λe′3(f 2)g (e3, e

′
θ) +

1

4
λf 2g(De′3

e3, e
′
θ)

= λ

(
1 +

1

2
ff

)
e′3(f)− 1

4
λfe′3(f 2) + λg

(
De′3

e4, e
′
θ

)
+ λfg

(
De′3

eθ, e
′
θ

)
+ l.o.t.

We compute

λg
(
De′3

e4, e
′
θ

)
= λg

(
De′3

e4, eθ +
1

2
fe3

)
+ l.o.t.

= g
(
De3+feθe4, eθ

)
+

1

2
fg (De3e4, e3) + l.o.t.

= 2η + fχ− 2ωf + l.o.t.

and

λfg
(
De′3

eθ, e
′
θ

)
= l.o.t.
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This yields

2η′ = λ

(
1 +

1

2
ff

)
e′3(f)− 1

4
λfe′3(f 2) + λg

(
De′3

e4, e
′
θ

)
+ λfg

(
De′3

eθ, e
′
θ

)
+ l.o.t.

= λ

(
1 +

1

2
ff

)
e′3(f)− 1

4
λfe′3(f 2) + 2η + fχ− 2ωf + l.o.t.

and hence

η′ = η +
1

2
λe′3(f) +

1

4
κf − fω + Err(η, η′),

Err(η, η′) =
1

4
λffe′3(f)− 1

8
λfe′3(f 2) +

1

4
fϑ+ l.o.t.

=
1

4
fϑ+ l.o.t.

Next, we derive the transformation formulae for η. We have, under a transformation of
type (2.3.3),

2η′ = g
(
De′4

e′3, e
′
θ

)
= g

(
De′4

(
λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

))
, e′θ

)
= λ−1g

(
De′4

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
, e′θ

)
=

1

2
λ−1e′4

(
ff +

1

8
f 2f 2

)
g (e3, e

′
θ) + λ−1

(
1 +

1

2
ff +

1

16
f 2f 2

)
g
(
De′4

e3, e
′
θ

)
+λ−1e′4

(
f

(
1 +

1

4
ff

))
g (eθ, e

′
θ) + λ−1f

(
1 +

1

4
ff

)
g
(
De′4

eθ, e
′
θ

)
+

1

4
λ−1e′4(f 2)g (e4, e

′
θ) +

1

4
λ−1f 2g

(
De′4

e4, e
′
θ

)
= −1

2
λ−1fe′4

(
ff +

1

8
f 2f 2

)
+ λ−1

(
1 +

1

2
ff

)
e′4

(
f

(
1 +

1

4
ff

))
−1

4
λ−1f

(
1 +

1

4
ff

)
e′4(f 2) + λ−1g

(
De′4

e3, e
′
θ

)
+ λ−1fg

(
De′4

eθ, e
′
θ

)
+ l.o.t.

We compute

λ−1g
(
De′4

e3, e
′
θ

)
= λ−1g

(
De′4

e3, eθ +
1

2
fe4

)
+ l.o.t.

= 2η + fχ− 2fω + l.o.t.
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and

λ−1fg
(
De′4

eθ, e
′
θ

)
= l.o.t.

This yields

2η′ = −1

2
λ−1fe′4

(
ff +

1

8
f 2f 2

)
+ λ−1

(
1 +

1

2
ff

)
e′4

(
f

(
1 +

1

4
ff

))
−1

4
λ−1f

(
1 +

1

4
ff

)
e′4(f 2) + λ−1g

(
De′4

e3, e
′
θ

)
+ λ−1fg

(
De′4

eθ, e
′
θ

)
+ l.o.t.

= −1

2
λ−1fe′4

(
ff +

1

8
f 2f 2

)
+ λ−1

(
1 +

1

2
ff

)
e′4

(
f

(
1 +

1

4
ff

))
−1

4
λ−1f

(
1 +

1

4
ff

)
e′4(f 2) + 2η + fχ− 2fω + l.o.t.

and hence

η′ = η +
1

2
λ−1e′4(f) +

1

4
κf − fω + Err(η, η′),

Err(η, η′) =
1

4
λ−1ffe′4(f)− 1

4
λ−1fe′4

(
ff +

1

8
f 2f 2

)
+ λ−1 1

8

(
1 +

1

2
ff

)
e′4
(
ff 2
)

−1

8
λ−1f

(
1 +

1

4
ff

)
e′4(f 2) +

1

4
fϑ+ l.o.t.

= −1

8
f 2λ−1e′4(f) +

1

4
fϑ+ l.o.t.

Next, we derive the transformation formulae for ξ. We have, under a transformation of
type (2.3.3),

2ξ′ = g
(
De′4

e′4, e
′
θ

)
= g

(
De′4

(
λ

(
e4 + feθ +

1

4
f 2e3

))
, e′θ

)
= λg

(
De′4

(
e4 + feθ +

1

4
f 2e3

)
, e′θ

)
= λg

(
De′4

e4, e
′
θ

)
+ λe′4(f)g (eθ, e

′
θ) + λfg

(
De′4

eθ, e
′
θ

)
+

1

4
λe′4(f 2)g (e3, e

′
θ) +

1

4
λf 2g

(
De′4

e3, e
′
θ

)
= λ

(
1 +

1

2
ff

)
e′4(f)− 1

4
λfe′4(f 2) + λg

(
De′4

e4, e
′
θ

)
+ λfg

(
De′4

eθ, e
′
θ

)
+ l.o.t.
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We compute

λg
(
De′4

e4, e
′
θ

)
= λg

(
De′4

e4, eθ +
1

2
fe3

)
+ l.o.t.

= λ2g (De4+feθe4, eθ) +
1

2
λ2fg (De4e4, e3) + l.o.t.

= 2λ2ξ + λ2fχ+ 2λ2fω + l.o.t.

and

λfg
(
De′4

eθ, e
′
θ

)
= l.o.t.

This yields

2ξ′ = λ

(
1 +

1

2
ff

)
e′4(f)− 1

4
λfe′4(f 2) + λg

(
De′4

e4, e
′
θ

)
+ λfg

(
De′4

eθ, e
′
θ

)
+ l.o.t.

= λ

(
1 +

1

2
ff

)
e′4(f)− 1

4
λfe′4(f 2) + 2λ2ξ + λ2fχ+ 2λ2fω + l.o.t.

and hence

ξ′ = λ2

(
ξ +

1

2
λ−1e′4(f) + ωf +

1

4
fκ

)
+ λ2Err(ξ, ξ′),

Err(ξ, ξ′) =
1

4
λ−1ffe′4(f)− 1

8
λ−1fe′4(f 2) +

1

4
fϑ+ l.o.t.

=
1

4
fϑ+ l.o.t.

In the particular case when λ = 1, f = 0, see Remark 2.3.5, the error term takes the form,

Err(ξ, ξ′) =
1

4
fϑ+

1

4
f 2
(
η + 2ζ − η

)
− 1

4
f 3

(
ω +

1

2
χ

)
− 1

16
f 4ξ.

Next, we derive the transformation formulae for ξ. We have, under a transformation of



A.6. PROOF OF PROPOSITION 2.3.4 829

type (2.3.3),

2ξ′ = g
(
De′3

e′3, e
′
θ

)
= g

(
De′3

(
λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

))
, e′θ

)
= λ−1g

(
De′3

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
, e′θ

)
=

1

2
λ−1e′3

(
ff +

1

8
f 2f 2

)
g (e3, e

′
θ) + λ−1g

(
De′3

e3, e
′
θ

)
+λ−1e′3

(
f

(
1 +

1

4
ff

))
g (eθ, e

′
θ) + λ−1fg

(
De′3

eθ, e
′
θ

)
+

1

4
λ−1e′3(f 2)g (e4, e

′
θ) + l.o.t.

= −1

2
λ−1fe′3

(
ff +

1

8
f 2f 2

)
+ λ−1

(
1 +

1

2
ff

)
e′3

(
f

(
1 +

1

4
ff

))
−1

4
λ−1f

(
1 +

1

4
ff

)
e′3(f 2) + λ−1g

(
De′3

e3, e
′
θ

)
+ λ−1fg

(
De′3

eθ, e
′
θ

)
+ l.o.t.

We compute

λ−1g
(
De′3

e3, e
′
θ

)
= λ−1g

(
De′3

e3, eθ +
1

2
fe4

)
+ l.o.t.

= λ−2g
(
De3+feθe3, eθ

)
+

1

2
λ−2fg (De3e3, e4) + l.o.t.

= 2λ−2ξ + λ−2f χ+ 2λ−2f ω + l.o.t.

and

λ−1fg
(
De′3

eθ, e
′
θ

)
= l.o.t.

This yields

2ξ′ = −1

2
λ−1fe′3

(
ff +

1

8
f 2f 2

)
+ λ−1

(
1 +

1

2
ff

)
e′3

(
f

(
1 +

1

4
ff

))
−1

4
λ−1f

(
1 +

1

4
ff

)
e′3(f 2) + λ−1g

(
De′3

e3, e
′
θ

)
+ λ−1fg

(
De′3

eθ, e
′
θ

)
+ l.o.t.

= −1

2
λ−1fe′3

(
ff +

1

8
f 2f 2

)
+ λ−1

(
1 +

1

2
ff

)
e′3

(
f

(
1 +

1

4
ff

))
−1

4
λ−1f

(
1 +

1

4
ff

)
e′3(f 2) + 2λ−2ξ + λ−2f χ+ 2λ−2f ω + l.o.t.
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and hence

ξ′ = λ−2

(
ξ +

1

2
λe′3(f) + ω f +

1

4
f κ

)
+ λ−2Err(ξ, ξ′),

Err(ξ, ξ′) = −1

4
λfe′3

(
ff +

1

8
f 2f 2

)
+

1

4
λffe′3(f) +

1

8
λ

(
1 +

1

2
ff

)
e′3
(
ff 2
)

−1

8
λf

(
1 +

1

4
ff

)
e′3(f 2) +

1

4
f ϑ+ l.o.t.

= −1

8
λf 2e′3(f) +

1

4
f ϑ+ l.o.t.

Next, we derive the transformation formulae for ω. We have, under a transformation of
type (2.3.3),

4ω′ = g
(
De′4

e′4, e
′
3

)
= g

(
De′4

(
λ

(
e4 + feθ +

1

4
f 2e3

))
, e′3

)
= −2e′4(log λ) + λg

(
De′4

(
e4 + feθ +

1

4
f 2e3

)
, e′3

)
= −2e′4(log λ) + λg

(
De′4

e4, e
′
3

)
+ λe′4(f)g (eθ, e

′
3) + λfg

(
De′4

eθ, e
′
3

)
+

1

4
λe′4(f 2)g (e3, e

′
3) +

1

4
λf 2g

(
De′4

e3, e
′
3

)
= −2e′4(log λ) + f

(
1 +

1

4
ff

)
e′4(f)− 1

8
f 2e′4(f 2) + λg

(
De′4

e4, e
′
3

)
+ λfg

(
De′4

eθ, e
′
3

)
+ l.o.t.

We compute

λg
(
De′4

e4, e
′
3

)
= g

(
De′4

e4,

(
1 +

1

2
ff

)
e3 + feθ

)
+ l.o.t.

= λ

(
1 +

1

2
ff

)
g
(
De4+feθ+ 1

4
f2e3

e4, e3

)
+ λfg (De4+feθe4, eθ) + l.o.t.

= 4λ

(
1 +

1

2
ff

)
ω + 2λfζ − λf 2ω + 2λfξ + λffχ+ l.o.t.

and

λfg
(
De′4

eθ, e
′
3

)
= fg

(
De′4

eθ, e3

)
+ l.o.t.

= λfg (De4+feθeθ, e3) + l.o.t.

= −2λfη − λf 2χ+ l.o.t.
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This yields

4ω′ = −2e′4(log λ) + f

(
1 +

1

4
ff

)
e′4(f)− 1

8
f 2e′4(f 2) + λg

(
De′4

e4, e
′
3

)
+ λfg

(
De′4

eθ, e
′
3

)
+ l.o.t.

= −2e′4(log λ) + f

(
1 +

1

4
ff

)
e′4(f)− 1

8
f 2e′4(f 2) + 4λ

(
1 +

1

2
ff

)
ω + 2λfζ − λf 2ω

+2λfξ + λffχ− 2λfη − λf 2χ+ l.o.t.

and hence

ω′ = λ

(
ω − 1

2
λ−1e′4(log(λ))

)
+ λErr(ω, ω′),

Err(ω, ω′) =
1

4
f

(
1 +

1

4
ff

)
e′4(f)− 1

32
f 2e′4(f 2) +

1

2
ωff − 1

2
fη +

1

2
fξ +

1

2
fζ

−1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.

=
1

4
fe′4(f) +

1

2
ωff − 1

2
fη +

1

2
fξ +

1

2
fζ − 1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.

In the particular case, see Remark 2.3.5, when λ = 1, f = 0 we have the more precise
formula,

ω′ = ω +
1

2
f(ζ − η)− 1

8
f 2
(
2ω + κ+ ϑ+ fξ

)
Next, we derive the transformation formulae for ω. We have, under a transformation of
type (2.3.3),

4ω′ = g
(
De′3

e′3, e
′
4

)
= g

(
De′3

(
λ−1

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

))
, e′4

)
= 2e′3(log(λ))

+λ−1g

(
De′3

((
1 +

1

2
ff +

1

16
f 2f 2

)
e3 + f

(
1 +

1

4
ff

)
eθ +

1

4
f 2e4

)
, e′4

)
= 2e′3(log(λ)) +

1

2
λ−1e′3

(
ff +

1

8
f 2f 2

)
g (e3, e

′
4) + λ−1

(
1 +

1

2
ff

)
g
(
De′3

e3, e
′
4

)
+λ−1e′3

(
f

(
1 +

1

4
ff

))
g (eθ, e

′
4) + λ−1fg

(
De′3

eθ, e
′
4

)
+

1

4
λ−1e′3(f 2)g (e4, e

′
4) + l.o.t.

= 2e′3(log(λ))− e′3
(
ff +

1

8
f 2f 2

)
+ fe′3

(
f

(
1 +

1

4
ff

))
− 1

8
f 2e′3(f 2)

+λ−1

(
1 +

1

2
ff

)
g
(
De′3

e3, e
′
4

)
+ λ−1fg

(
De′3

eθ, e
′
4

)
+ l.o.t.
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We compute

λ−1

(
1 +

1

2
ff

)
g
(
De′3

e3, e
′
4

)
=

(
1 +

1

2
ff

)
g
(
De′3

e3, e4 + feθ
)

= λ−1

(
1 +

1

2
ff

)
g
(
D(1+ 1

2
ff)e3+feθ+ 1

4
f2e4

e3, e4 + feθ

)
+ l.o.t.

= 4λ−1

(
1 +

1

2
ff

)
ω − 2λ−1fζ − λ−1f 2ω + 2λ−1ffω

+2λ−1fξ + λ−1ff χ+ l.o.t.

and

λ−1fg
(
De′3

eθ, e
′
4

)
= fg

(
De′3

eθ, e4

)
+ l.o.t.

= λ−1fg
(
De3+feθeθ, e4

)
+ l.o.t.

= −2λ−1fη − λ−1f 2χ+ l.o.t.

This yields

4ω′ = 2e′3(log(λ))− e′3
(
ff +

1

8
f 2f 2

)
+ fe′3

(
f

(
1 +

1

4
ff

))
− 1

8
f 2e′3(f 2)

+4λ−1

(
1 +

1

2
ff

)
ω − 2λ−1fζ − λ−1f 2ω + 2λ−1ffω

+2λ−1fξ + λ−1ff χ− 2λ−1fη − λ−1f 2χ+ l.o.t.

and hence

ω′ = λ−1

(
ω +

1

2
λe′3(log(λ))

)
+ λ−1Err(ω, ω′),

Err(ω, ω′) = −1

4
e′3

(
ff +

1

8
f 2f 2

)
+

1

4
fe′3

(
f

(
1 +

1

4
ff

))
− 1

32
f 2e′3(f 2)

+ωff − 1

2
fη +

1

2
fξ − 1

2
fζ − 1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.

= −1

4
fe′3(f) + ωff − 1

2
fη +

1

2
fξ − 1

2
fζ − 1

8
κf 2 +

1

8
ffκ− 1

4
ωf 2 + l.o.t.

Next we derive the formula for α. We have

α′ = R(e′4, e
′
4) = λ2R

(
e4 + feθ +

1

4
f 2e3, e4 + feθ +

1

4
f 2e3

)
= λ2

(
R44 + 2fR4θ + f 2Rθθ +

1

2
f 2R34

)
+ l.o.t.

= λ2

(
α + 2fβ +

3

2
f 2ρ

)
+ l.o.t.
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and hence

α′ = λ2α + λ2Err(α, α′),

Err(α, α′) = 2fβ +
3

2
f 2ρ+ l.o.t.

The formula for α is easily derived by symmetry from the one on α.

Next we derive the formula for β. We have

β′ = R(e′4, e
′
θ) = λR

(
e4 + feθ +

1

4
f 2e3,

(
1 +

1

2
ff

)
eθ +

1

2
(fe4 + fe3)

)
+ l.o.t.

= λ

(
R4θ + fRθθ +

1

2
fR44 +

1

2
fR43

)
+ l.o.t.

= λ

(
β +

3

2
fρ+

1

2
fα

)
+ l.o.t.

and hence

β′ = λ

(
β +

3

2
fρ

)
+ λErr(β, β′),

Err(β, β′) =
1

2
fα + l.o.t.

The formula for β is easily derived by symmetry from the one on β.

Finally, we derive the formula for ρ. We have

ρ′ = R(e′4, e
′
3) = R

(
e4 + feθ +

1

4
f 2e3,

(
1 +

1

2
ff

)
e3 + feθ +

1

4
f 2e4

)
+ l.o.t.

= R43 +
1

2
ffR43 + fR4θ + fRθ3 + ffRθθ + l.o.t.

= ρ+
3

2
ρff + fβ + fβ + l.o.t.

and hence

ρ′ = ρ+ Err(ρ, ρ′),

Err(ρ, ρ′) =
3

2
ρff + fβ + fβ + l.o.t.

This concludes the proof of Proposition 2.3.4.
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A.7 Proof of Lemma 2.3.6

For ξ′ and ω′, we need more precise transformation formula than the ones of Proposition
2.3.4. We have

2ξ′ = g(De′4
e′4, e

′
θ)

= λ2g(Dλ−1e′4
(λ−1e′4), e′θ)

= λ2g

(
Dλ−1e′4

(λ−1e′4), eθ +
1

2
fe3

)
+ λ2

f

2
g

(
Dλ−1e′4

(λ−1e′4), e4 + feθ +
1

4
f 2e3

)
= λ2g

(
Dλ−1e′4

(λ−1e′4), eθ +
1

2
fe3

)
+ λ2

f

2
g
(
Dλ−1e′4

(λ−1e′4), λ−1e′4
)

= λ2g

(
Dλ−1e′4

(λ−1e′4), eθ +
1

2
fe3

)
.

Also, we have

4ω′ = g(De′4
e′4, e

′
3)

= −2e′4(log(λ)) + λg(Dλ−1e′4
(λ−1e′4), λe′3)

= −2e′4(log(λ)) + λg(Dλ−1e′4
(λ−1e′4), e3) + λfg

(
Dλ−1e′4

(λ−1e′4), eθ +
1

2
fe3

)
+

1

4
λf 2g

(
Dλ−1e′4

(λ−1e′4), e4 + feθ +
1

4
f 2e3

)
= −2e′4(log(λ)) + λg(Dλ−1e′4

(λ−1e′4), e3) + λfg

(
Dλ−1e′4

(λ−1e′4), eθ +
1

2
fe3

)
+

1

4
λf 2g

(
Dλ−1e′4

(λ−1e′4), λ−1e′4
)

= −2e′4(log(λ)) + λg(Dλ−1e′4
(λ−1e′4), e3) + λfg

(
Dλ−1e′4

(λ−1e′4), eθ +
1

2
fe3

)
.

In view of the change of frame formula for ξ′, we infer

4ω′ = −2e′4(log(λ)) + λg(Dλ−1e′4
(λ−1e′4), e3) + λ−1fξ′.
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Next, we compute

g
(
Dλ−1e′4

(λ−1e′4), eθ
)

= g

(
Dλ−1e′4

(
e4 + feθ +

1

4
f 2e3

)
, eθ

)
= g

(
Dλ−1e′4

e4, eθ
)

+ λ−1e′4(f) +
1

4
f 2g

(
Dλ−1e′4

e3, eθ
)

= g
(
De4+feθ+ 1

4
f2e3

e4, eθ

)
+

(
e4 + feθ +

1

4
f 2e3

)
f

+
1

4
f 2g

(
De4+feθ+ 1

4
f2e3

e3, eθ

)
= 2ξ + fχ+

1

2
f 2η +

(
e4 + feθ +

1

4
f 2e3

)
f +

1

2
f 2η +

1

4
f 3χ

+
1

8
f 4ξ.

Also, we have

g
(
Dλ−1e′4

(λ−1e′4), e3

)
= g

(
Dλ−1e′4

(
e4 + feθ +

1

4
f 2e3

)
, e3

)
= g

(
Dλ−1e′4

e4, e3

)
+ fg

(
Dλ−1e′4

eθ, e3

)
= g

(
De4+feθ+ 1

4
f2e3

e4, e3

)
+ fg

(
De4+feθ+ 1

4
f2e3

eθ, e3

)
= 4ω + 2fζ − f 2ω − 2ηf − f 2χ− 1

2
f 3ξ.

We deduce

2ξ′ = λ2g

(
Dλ−1e′4

(λ−1e′4), eθ +
1

2
fe3

)
= λ2

{
2ξ + fχ+

1

2
f 2η +

(
e4 + feθ +

1

4
f 2e3

)
f +

1

2
f 2η +

1

4
f 3χ

+
1

8
f 4ξ +

1

2
f

(
4ω + 2fζ − f 2ω − 2ηf − f 2χ− 1

2
f 3ξ

)}

= λ2

{
2ξ +

(
e4 + feθ +

1

4
f 2e3

)
f + fχ+ 2fω +

1

2
f 2η − 1

2
f 2η + f 2ζ − 1

4
f 3χ

−1

2
f 3ω − 1

8
f 4ξ

}
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and

4ω′ = −2e′4(log(λ)) + λg(Dλ−1e′4
(λ−1e′4), e3) + λ−1fξ′

= λ

{
4ω − 2

(
e4 + feθ +

1

4
f 2e3

)
log(λ) + 2fζ − f 2ω − 2ηf − f 2χ− 1

2
f 3ξ

}
+λ−1fξ′.

If ξ′ = 0, we infer

2ξ +

(
e4 + feθ +

1

4
f 2e3

)
f + fχ+ 2fω +

1

2
f 2η − 1

2
f 2η + f 2ζ − 1

4
f 3χ

−1

2
f 3ω − 1

8
f 4ξ = 0

and hence

λ−1e′4(f) +
(κ

2
+ 2ω

)
f = −2ξ − 1

2
ϑf − 1

2
f 2η +

1

2
f 2η − f 2ζ +

1

8
f 3κ+

1

2
f 3ω

+
1

8
f 3ϑ+

1

8
f 4ξ

which yields the desired transport equation for f

λ−1e′4(f) +
(κ

2
+ 2ω

)
f = −2ξ + E1(f,Γ),

E1(f,Γ) = −1

2
ϑf − 1

2
f 2η +

1

2
f 2η − f 2ζ +

1

8
f 3κ+

1

2
f 3ω +

1

8
f 3ϑ+

1

8
f 4ξ.

Also, if ξ′ = 0 and ω′ = 0, we infer

0 = 4ω − 2

(
e4 + feθ +

1

4
f 2e3

)
log(λ) + 2fζ − f 2ω − 2ηf − f 2χ− 1

2
f 3ξ

and hence

λ−1e′4(log(λ)) = 2ω + fζ − 1

2
f 2ω − ηf − 1

4
f 2κ− 1

4
f 2ϑ− 1

4
f 3ξ

which yields the desired transport equation for log(λ)

λ−1e′4(log(λ)) = 2ω + E2(f,Γ),

E2(f,Γ) = fζ − 1

2
f 2ω − ηf − 1

4
f 2κ− 1

4
f 2ϑ− 1

4
f 3ξ.
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Finally, we derive the transport equation for f . In view of the transformation formulas
of Proposition 2.3.4 for ζ ′ and η′, and the fact that we assume ζ ′ + η′ = 0, we have

1

2
λ−1e′4(f) = −(ζ + η) + e′θ(log(λ))− 1

4
fκ+ fω − 1

2
fe′θ(f) +

1

8
f 2λ−1e′4(f)

−1

4
fϑ+ l.o.t.

Together with the above identity for λ−1e′4(f), we infer

λ−1e′4(f) +
κ

2
f = −2(ζ + η) + 2e′θ(log(λ)) + 2fω + E3(f, f ,Γ),

E3(f, f ,Γ) = −fe′θ(f)− 1

2
fϑ+ l.o.t.,

which yields the third identity of the statement. This concludes the proof of Lemma 2.3.6.

A.8 Proof of Corollary 2.3.7

In view of Lemma 2.3.6 and the fact that (e3, e4, eθ) emanates from an outgoing geodesic
foliation and hence

ξ = 0, ω = 0, ζ + η = 0,

we have

λ−1e′4(f) +
κ

2
f = E1(f,Γ),

λ−1e′4(log(λ)) = E2(f,Γ),

λ−1e′4(f) +
κ

2
f = 2e′θ(log(λ)) + 2fω + E3(f, f ,Γ).

The second equation is the desired identity for log(λ).

We still need to derive the first and the third identities. We start with the first one. We
have

λ−1e′4(rf) = r
(
−κ

2
f + E1(f,Γ)

)
+ λ−1e′4(r)f

= −r
2

(
κ− 2λ−1e′4(r)

r

)
f + rE1(f,Γ).

λ−1e′4 = e4 + feθ +
f 2

4
e3,
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we infer

λ−1e′4(r) =
r

2
κ+

f 2

4
e3(r)

and hence

λ−1e′4(rf) = −r
2

(
κ̌− e3(r)

2r
f 2

)
f + rE1(f,Γ)

as desired.

Next, we have

λ−1e′4

(
rf − 2r2e′θ(log(λ)) + rfΩ

)
= r

(
−κ

2
f + 2e′θ(log(λ)) + 2fω + E3(f, f ,Γ)

)
− 2r2e′θ(E2(f,Γ)) + rΩ

(
−κ

2
f + E1(f,Γ)

)
+λ−1e′4(r)f − 2r2[λ−1e′4, e

′
θ] log(λ)− 4rλ−1e′4(r)e′θ(log(λ)) + rλ−1e′4(Ω)f + λ−1e′4(r)fΩ

= −r
2

(
κ− 2λ−1e′4(r)

r

)
f + 2r

(
1− 2λ−1e′4(r)

)
e′θ(log(λ))− 2r2λ−1[e′4, e

′
θ] log(λ)

+r
(
λ−1e′4(Ω) + 2ω

)
f − r

2

(
κ− 2λ−1e′4(r)

r

)
Ωf − 2r2e′θ(log(λ))λ−1e′4(log(λ))

+rE3(f, f ,Γ)− 2r2e′θ(E2(f,Γ)) + rΩE1(f,Γ).

Since we have

λ−1e′4 = e4 + feθ +
f 2

4
e3,

we infer

λ−1e′4(r) =
r

2
κ+

f 2

4
e3(r),

λ−1e′4(Ω) = e4(Ω) + feθ(Ω) +
f 2

4
e3(Ω)

= −2ω + feθ(Ω) +
f 2

4
e3(Ω).

Together with the transport equation for log(λ) and the commutator identity for [e′4, e
′
θ],

we infer

λ−1e′4

(
rf − 2r2e′θ(log(λ)) + rfΩ

)
= −r

2

(
κ̌− e3(r)

2r
f 2

)
f + 2r

(
1− rκ− e3(r)

2
f 2

)
e′θ(log(λ)) + r2λ−1(κ′ + ϑ′)e′θ(log(λ))

+r

(
eθ(Ω) +

f

4
e3(Ω)

)
f 2 − r

2

(
κ̌− e3(r)

2r
f 2

)
Ωf

−2r2e′θ(log(λ))E2(f,Γ) + rE3(f, f ,Γ)− 2r2e′θ(E2(f,Γ)) + rΩE1(f,Γ).
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Now, recall the following transformation formulas

λ−1κ′ = κ+ d/′1(f) + Err(κ, κ′),

Err(κ, κ′) = f(ζ + η)− 1

4
f 2κ− f 2ω + l.o.t.

We infer

λ−1e′4

(
rf − 2r2e′θ(log(λ)) + rfΩ

)
= −r

2

(
κ̌− e3(r)

2r
f 2

)
f + r2

(
κ̌−

(
κ− 2

r

)
− e3(r)

r
f 2

)
e′θ(log(λ))

+r2
(
d/′1(f) + Err(κ, κ′) + λ−1ϑ′

)
e′θ(log(λ))

+r

(
eθ(Ω) +

f

4
e3(Ω)

)
f 2 − r

2

(
κ̌− e3(r)

2r
f 2

)
Ωf

−2r2e′θ(log(λ))E2(f,Γ) + rE3(f, f ,Γ)− 2r2e′θ(E2(f,Γ)) + rΩE1(f,Γ).

This concludes the proof of Corollary 2.3.7.

A.9 Proof of Lemma 2.3.5

Recall that we have obtained in section A.7

2ξ′ = λ2

{
2ξ +

(
e4 + feθ +

1

4
f 2e3

)
f +

(
1

2
κ+ 2ω

)
f +

1

2
ϑf +

1

2
f 2η − 1

2
f 2η + f 2ζ − 1

4
f 3χ

−1

2
f 3ω − 1

8
f 4ξ

}
,

4ω′ = λ

{
4ω − 2

(
e4 + feθ +

1

4
f 2e3

)
log(λ) + 2fζ − f 2ω − 2ηf − f 2χ− 1

2
f 3ξ

}
+λ−1fξ′.

In the case where λ = 1 and f = 0, we immediately infer

2ξ′ = 2ξ +

(
e4 + feθ +

1

4
f 2e3

)
f +

(
1

2
κ+ 2ω

)
f +

1

2
ϑf +

1

2
f 2η − 1

2
f 2η + f 2ζ − 1

4
f 3χ

−1

2
f 3ω − 1

8
f 4ξ,

4ω′ = 4ω + 2fζ − f 2ω − 2ηf − f 2χ− 1

2
f 3ξ,
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and hence

ξ′ = ξ +
1

2
e′4(f) +

(
1

4
κ+ ω

)
f +

1

4
ϑf +

1

4
f 2η − 1

4
f 2η +

1

2
f 2ζ − 1

8
f 3χ

−1

4
f 3ω − 1

16
f 4ξ,

ω′ = ω +
1

2
fζ − 1

4
f 2ω − 1

2
ηf − 1

8
f 2κ− 1

8
f 2ϑ− 1

8
f 3ξ.

Finally, we compute the change of frame formula for ζ ′ and η′ when λ = 1, f = 0. We
have in this case

e′4 = e4 + feθ +
1

4
f 2e3,

e′θ = eθ +
1

2
fe3,

e′3 = e3,

and hence

2ζ ′ = g
(
De′θ

e′4, e
′
3

)
= g

(
De′θ

(
e4 + feθ +

1

4
f 2e3

)
, e3

)
= g

(
De′θ

e4, e3

)
+ fg

(
De′θ

eθ, e3

)
= g

(
Deθ+ 1

2
fe3
e4, e3

)
+ fg

(
Deθ+ 1

2
fe3
eθ, e3

)
= 2ζ − 2ωf − χf − ξf 2

= 2ζ −
(

1

2
κ+ 2ω

)
f − f

(
1

2
ϑ+ fξ

)
and

2η′ = g
(
De′3

e′4, e
′
θ

)
= g

(
De′3

(
e4 + feθ +

1

4
f 2e3

)
, e′θ

)
= g

(
De′3

e4, e
′
θ

)
+ e′3(f)g (eθ, e

′
θ) + fg

(
De′3

eθ, e
′
θ

)
+

1

4
e′3(f 2)g (e3, e

′
θ) +

1

4
f 2g(De′3

e3, e
′
θ)

= e′3(f) + g

(
De3e4, eθ +

1

2
fe3

)
+ fg

(
De3eθ,

1

2
fe3

)
+

1

4
f 2g(De3e3, eθ)

= 2η + e′3(f)− 2fω − 1

2
f 2ξ

which yields the desired change of frame formula for ζ ′ and η′. This concludes the proof
of Lemma 2.3.5.
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A.10 Proof of Proposition 2.3.13

Recall that we have

q = r4

(
e3(e3(α)) + (2κ− 6ω)e3(α) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
α

)
,

which we write in the form q = r4J where,

J = e3(e3(α)) + (2κ− 6ω)e3(α) + V α,

V = −4e3(ω) + 8ω2 − 8ω κ+
1

2
κ2.

We make use of the general1 Bianchi equations, see Proposition 2.2.2

e3α +
1

2
κα = − d?/2 β + 4ωα− 3

2
ϑρ+ Err[e3(α)],

e3β + κβ = − d?/1ρ+ 2ωβ + 3ηρ+ Err[e3(β)],

e3ρ+
3

2
κρ = d/1β + Err[e3(ρ)]

as well as the null structure equations (see Proposition 2.2.1)

e3ϑ+
1

2
κϑ− 2ωϑ = −2 d?/2 η −

1

2
κϑ+ Err[e3(ϑ)]

e3(κ) +
1

2
κ2 + 2ω κ = 2 d/1ξ + Err[e3(κ)]

where Err[e3(α)],Err[e3(β)],+Err[e3(ρ)],Err[e3(ϑ)],Err[e3(κ)] denote the corresponding
quadratic terms in each equation. We also make use of the commutation formula (see
Lemma 2.1.51)

[e3, d
?/2]β = −1

2
κ d?/2β − Com∗2(β)

Com∗2(β) = −1

2
ϑ d/1β − (ζ − η)e3β − ηe3Φβ + ξ(e4β − e4(Φ)β)− β · β

1In an arbitrary Z-invariant frame.
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Thus,

J = e3

(
−1

2
κα− d?/2β + 4ωα− 3

2
ϑρ+ Err[e3(α)]

)
+ (2κ− 6ω)e3(α) + V α

= (
3

2
κ− 2ω)e3α +

(
− 1

2
e3κ+ 4e3(ω) + V

)
α− d?/2e3β − [e3, d

?/2]β − 3

2
ϑe3ρ−

3

2
ρe3ϑ

+ e3Err[e3(α)]

= (
3

2
κ− 2ω)

(
−1

2
κα− d?/2β + 4ωα− 3

2
ϑρ+ Err[e3(α)]

)
+
(
− 1

2
e3κ+ 4e3(ω) + V

)
α

− d?/2e3β +
1

2
κ d?/2β −

3

2
ϑe3ρ−

3

2
ρe3ϑ+ e3Err[e3(α)] + Com∗2(β)

= − d?/2e3β + (−κ+ 2ω) d?/2β +
(
− 1

2
e3κ+ 4e3(ω) + V + (

3

2
κ− 2ω)(−1

2
κ+ 4ω)

)
α

− 3

2

(
ϑe3ρ+ ρe3ϑ+ ϑρ(

3

2
κ− 2ω)

)
+ e3Err[e3(α)] + (

3

2
κ− 2ω)Err[e3(α)] + Com∗2(β)

Hence,

J = − d?/2e3β + (−κ+ 2ω) d?/2β −
3

2

(
ϑe3ρ+ ρe3ϑ+ ϑρ(

3

2
κ− 2ω)

)
+Wα + E

W : = −1

2
e3κ+ 4e3(ω) + V + (

3

2
κ− 2ω)(−1

2
κ+ 4ω)

E : = e3Err[e3(α)] + (
3

2
κ− 2ω)Err[e3(α)] + Com∗2(β)

(A.10.1)

Now, ignoring cubic and higher order terms,

− d?/2e3β + (−κ+ 2ω) d?/2β = − d?/2 (−κβ − d?/1ρ+ 2ωβ + 3ηρ+ Err[e3(β)]) + (−κ+ 2ω) d?/2β

= d?/2 d
?/1ρ− 3ρ d?/2η + β d?/1(κ− 2ω)− 3η d?/1ρ− d?/2Err[e3(β)]

Also,

ϑe3ρ+ ρe3ϑ+ ϑρ(
3

2
κ− 2ω) = ϑ

(
−3

2
κρ+ d/1β

)
+ ϑρ(

3

2
κ− 2ω)

+ρ

(
−1

2
κϑ+ 2ωϑ− 2 d?/2 η −

1

2
κϑ+ Err[e3(ϑ)]

)
= −1

2
κρϑ− 1

2
κρϑ− 2ρ d?/2η + ϑ d/1β + ρErr[e3(ρ)]
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and,

W = −1

2
e3κ+ 4e3(ω) +

(
−4e3(ω) + 8ω2 − 8ω κ+

1

2
κ2

)
+ (

3

2
κ− 2ω)(−1

2
κ+ 4ω)

= −1

2
e3κ+

(
8ω2 − 8ω κ+

1

2
κ2

)
+

(
−3

4
κ2 − 8ω2 + 7ωκ

)
= −1

2
e3κ−

1

4
κ2 − ωκ

= −1

2

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + Err[e3(κ)]

)
− 1

4
κ2 − ωκ

= − d/1ξ −
1

2
Err[e3(κ)]

Thus, back to (A.10.1),

J = d?/2 d
?/1ρ− 3ρ d?/2η + β d?/1(κ− 2ω)− 3η d?/1ρ− d?/2Err[e3(β)]

− 3

2

(
− 1

2
κρϑ− 1

2
κρϑ− 2ρ d?/2η + ϑ d/1β + ρErr[e3(ρ)]

)
− d/1ξα + E

= d?/2 d
?/1ρ+

3

4
ρ(κϑ+ κϑ) + β d?/1(κ− 2ω)− 3η d?/1ρ−

3

2
ϑ d/1β − d/1ξα−

3

2
ρErr[e3(ρ)] + E

In other words,

J = d?/2 d
?/1ρ+

3

4
ρ(κϑ+ κϑ) + Err

Err : = β d?/1(κ− 2ω)− 3η d?/1ρ−
3

2
ϑ d/1β − d/1ξα

− 3

2
ρErr[e3(ρ)] + e3Err[e3(α)] + (

3

2
κ− 2ω)Err[e3(α)] + Com∗2(β) + l.o.t.

It remains to analyze the lower order terms according to our convention in Definition 2.3.8
Note that we can write the first line in the expression of Err

Err1 = r−1Γb · β + r−2Γg · d/Γg + r−2Γg d/Γb + r−1 d/Γb · α
= r−1 d/≤1Γb · β + r−2Γg d/Γb + l.o.t.

On the other hand,

Err[e3(ρ)] = −1

2
ϑα− ζ β + 2(η β + ξ β) = Γg · Γb + Γb · β

Err[e3(α)] = (ζ + 4η)β = Γg · β
e3Err[e3(α)] = e3(ζ + 4η)β + (ζ + 4η)e3(β)

= e3(ζ + 4η) · β + (ζ + 4η)(−κβ − d?/1ρ+ 2ωβ + 3ηρ)

= e3(ζ + 4η) · β + r−1Γgβ + r−2Γg d/Γg + r−3Γg · Γg
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Com∗2(β) = −1

2
ϑ d/1β − (ζ − η)e3β − ηe3Φβ + ξ(e4β − e4(Φ)β)− β · β

= −1

2
ϑ d/1β − (ζ − η) (−κβ − d?/1ρ+ 2ω β + 3ηρ)− ηe3(Φ)β

+ ξ (−2κβ + d?/2α− 2ωβ)− ξe4Φβ − β · β + l.o.t.

= r−1Γb · d/≤1β + r−2Γg · d/Γb + l.o.t.

Therefore, schematically,

Err = e3(ζ + 4η) · β + r−1Γb d/
≤1β + r−2Γg d/Γb + l.o.t.

and therefore,

Err[q] = r4Err = r4
(
e3(ζ + 4η) · β + r−1Γb · d/≤1β + r−2Γg · d/Γb

)
+ l.o.t.

Since e3ζ ∈ r−1dΓb and β ∈ r−1Γg we rewrite in the form,

Err[q] = r4e3η · β + r2d≤1
(
Γb · Γg).

This concludes the proof of Proposition 2.3.13.

A.11 Proof of Proposition 2.3.14

We start with the formula (2.3.11)

rq = r5

(
d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ

)
+ rErr[q].

with Err[q] given by (2.3.12). Taking the e3 derivative we deduce,

e3(rq) = r5L+ 5e3(r) q + e3(rErr[q])− 5e3(r)Err[q],

L : = e3

{
d?/2 d

?/1ρ+
3

4
e3(κρϑ) +

3

4
e3(κρϑ)

}
(A.11.1)

We calculate L as follows,

L = e3 d
?/2 d

?/1ρ+
3

4
e3(κρϑ) +

3

4
e3(κρϑ)

= d?/2 d
?/1e3(ρ) + [e3, d

?/2 d
?/1]ρ+

3

4
e3(κρϑ) +

3

4
e3(κρϑ).
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Ignoring cubic and higher order terms

e3(κρϑ) = κρe3(ϑ) + e3(κ)ρϑ+ κe3(ρ)ϑ

= κρ

(
−1

2
κϑ+ 2ωϑ− 2 d?/2 η −

1

2
κϑ+ Err[e3ϑ]

)
+

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + Err[e3κ]

)
ρϑ

+κ

(
−3

2
κρ+ d/1β −

1

2
ϑα + Err[e3(ρ)]

)
ϑ

= κρ

(
−5

2
κϑ− 2 d?/2 η −

1

2
κϑ

)
+ κρErr[e3ϑ] + 2 d/1ξ ρϑ+ κ( d/1β)ϑ

We deduce,

e3(κρϑ) = κρ

(
−5

2
κϑ− 2 d?/2 η −

1

2
κϑ

)
+ E1

E1 = 2 d/1ξ ρϑ+ κ( d/1β)ϑ+ κρErr[e3(ϑ)]

(A.11.2)

where Err[e3(ϑ)], Err[e3(κ)],Err[e3(ρ)] denote the quadratic error terms in the correspond-
ing equations. Also,

e3(κρϑ) = κρe3(ϑ) + e3(κ)ρϑ+ κe3(ρ)ϑ

= κρ
(
− κϑ− 2ω ϑ− 2α− 2 d?/2 ξ + Err[e3(ϑ)]

)
+

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ+ Err[e3(κ)]

)
ρϑ

+

(
−3

2
κρ+ d/1β + Err[e3(ρ)]

)
κϑ

Hence, ignoring the higher order terms,

e3(κρϑ) = κρ
(
− 3κϑ− 2α− 2 d?/2 ξ

)
+ 2ρ2ϑ+ E2

E2 : = 2ρ d/1ηϑ+ κ d/1βϑ+ κρErr[e3(ϑ)]
(A.11.3)

Also, we have

d?/2 d
?/1e3(ρ) = d?/2 d

?/1

(
−3

2
κρ+ d/1β + Err[e3(ρ)]

)
= d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κ d?/2 d

?/1ρ+ E3

E3 = d?/2 d
?/1Err[e3(ρ)]− 3 d?/1κ · d?/1ρ



846 APPENDIX A. APPENDIX TO CHAPTER 2

i.e.,

e3(κρϑ) = κρ

(
−5

2
κϑ− 2 d?/2 η −

1

2
κϑ

)
+ E1,

e3(κρϑ) = κρ
(
− 3κϑ− 2α− 2 d?/2 ξ

)
+ 2ρ2ϑ+ E2

d?/2 d
?/1e3(ρ) = d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κ d?/2 d

?/1ρ+ E3

(A.11.4)

Now, in view of Lemma 2.1.51 we have (for f = d?/1ρ ∈ s2−1),

[e3, d
?/2] d?/1ρ = −1

2
κ d?/2 d

?/1ρ− Com∗2( d?/1ρ)

and

[e3, d
?/1]ρ = −[e3, eθ]ρ = −1

2
κ d?/1ρ−

1

2
ϑeθρ+ (ζ − η)e3ρ− ξe4ρ

= −1

2
κ d?/1ρ−

1

2
ϑeθρ+ (ζ − η)

(
− 3

2
κρ+ d/1β + Err[e3(ρ)]

)
− ξ

(
− 3

2
κρ+ d/1β + Err[e4(ρ)]

)
= −1

2
κ d?/1ρ−

3

2
ρ
[
(ζ − η)κ− ξκ

]
+ E41

E41 = (ζ − η) d/1β − ξ d/1β + (ζ − η)e3[(ρ)]− 1

2
ϑeθρ− ξErr[e4(ρ)]

We deduce

d?/2[e3, d
?/1]ρ = d?/2

(
− 1

2
κ d?/1ρ−

3

2
ρ
[
κ(ζ − η)− κξ

]
+ E41

)
= −1

2
κ d?/2 d

?/1ρ−
3

2
ρ
(
κ d?/2(ζ − η)− κ d?/2ξ

)
+ E4

E4 = d?/2E41 −
1

2
d?/1κ · d?/1ρ−

3

2
(ζ − η) d?/1(κρ) +

3

2
ξ d?/1(κρ)

Hence, since [e3, d
?/2 d

?/1]ρ = [e3, d
?/2] d?/1ρ+ d?/2[e3, d

?/1]ρ,

[e3, d
?/2 d

?/1]ρ = −κ d?/2 d
?/1ρ−

3

2

(
d?/2(ζ − η)κρ− d?/2ξκρ

)
− Com∗2( d?/1ρ) + E4.(A.11.5)
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We deduce, recalling (A.11.4),

L = d?/2 d
?/1e3(ρ) + [e3, d

?/2 d
?/1]ρ+

3

4
e3(κρϑ) +

3

4
e3(κρϑ)

= d?/2 d
?/1 d/1β −

3

2
ρ d?/2 d

?/1κ−
3

2
κ d?/2 d

?/1ρ+ E3

− κ d?/2 d
?/1ρ−

3

2

(
d?/2(ζ − η)κρ− d?/2ξκρ

)
− Com∗2( d?/1ρ) + E4

+
3

4

(
κρ

(
−5

2
κϑ− 2 d?/2 η −

1

2
κϑ

))
+ E1

+
3

4

(
κρ
(
− 3κϑ− 2α− 2 d?/2 ξ

)
+ 2ρ2ϑ+ Err1

)
= d?/2 d

?/1 d/1β −
5

2
κ d?/2 d

?/1ρ−
3

2
ρ d?/2 d

?/1κ−
3

2
ρκ d?/2ζ

+
3

4
κρ

(
−5

2
κϑ− 1

2
κϑ

)
+

3

4
κρ
(
− 3κϑ− 2α

)
+

3

2
ρ2ϑ

+ E1 + E2 + E3 + E4 − Com∗2( d?/1ρ)

i.e.,

L = d?/2 d
?/1 d/1β −

5

2
κ d?/2 d

?/1ρ−
3

2
ρ d?/2 d

?/1κ−
3

2
ρκ d?/2ζ

− 3

4
κρ

(
5

2
κϑ+

1

2
κϑ

)
− 3

4
κρ (3κϑ+ 2α) +

3

2
ρ2ϑ+ E

E = E1 + E2 + E3 + E4 − Com∗2( d?/1ρ)

(A.11.6)

On the other hand, in view of (2.3.11), writing e3r = r
2

(κ+ A),

5e3(r)q = r
5

2
κq + 5rAq

=
5

2
r5κ

{
d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ+ Err

}
+ 5rAq
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Hence, in view of (A.11.1) and (A.11.6),

e3(rq) = r5L+ 5e3(r)q + e3(rErr)− 5e3(r)Err

= r5

{(
d?/2 d

?/1 d/1β −
5

2
κ d?/2 d

?/1ρ−
3

2
ρ d?/2 d

?/1κ−
3

2
ρκ d?/2ζ

)

− 3

4
κρ

(
5

2
κϑ+

1

2
κϑ

)
− 3

4
κρ (3κϑ+ 2α) +

3

2
ρ2ϑ

}

+
5

2
r5κ

{
d?/2 d

?/1ρ+
3

4
κρϑ+

3

4
κρϑ

}
+ r5E + e3(r5Err)− 5

e3r

r
r5Err + 5rAq

= r5

(
d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ −

3

2
κρα +

3

4
(2ρ2 − κκρ)ϑ

)
+ Err[e3(rq)].

where,

Err[e3(rq)] = e3(rErr[q])− 5e3rErr[q] + 5rAq + r5E (A.11.7)

= re3(Err[q]) + Err[q] + 5rAq + r5E (A.11.8)

and

E = E1 + E2 + E3 + E4 − Com∗2( d?/1ρ)

with,

E1 = 2 d/1ξ ρϑ+ κ( d/1β)ϑ+ κρErr[e3(κ)]

E2 = 2ρ d/1ηϑ+ κ d/1βϑ+ κρErr[e3(ϑ)]

E3 = d?/2 d
?/1Err[e3(ρ)]− 3 d?/1κ · d?/1ρ

E4 = d?/2E41 −
1

2
d?/1κ · d?/1ρ−

3

2
(ζ − η) d?/1(κρ) +

3

2
ξ d?/1(κρ)

E41 = (ζ − η) d/1β − ξ d/1β −
1

2
ϑeθρ

Com∗2( d?/1ρ) = −1

2
ϑ d/1 d

?/1ρ− (ζ − η)e3 d
?/1ρ− ηe3Φ d?/1ρ+ ξ(e4 d

?/1ρ− e4(Φ) d?/1ρ)− β d?/1ρ.

Note also that,

(ζ − η)e3 d
?/1ρ = (ζ − η) · d?/1e3ρ+ (ζ − η)

(
− 1

2
κ d?/1ρ−

1

2
ϑeθρ+ (ζ − η)e3ρ− ξe4ρ̌

)
Using our schematic notation

Err[e3(κ)] = Γb · Γb + l.o.t.

Err[e3(ϑ)] = Γb · Γb + l.o.t.

Err[e3(ρ)] = Γg · α + l.o.t. = Γg · Γb + l.o.t.
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and

E1 = r−4Γb · d/≤1Γb + l.o.t.

E2 = r−4Γb · d/≤1Γb + r−2Γb · β + l.o.t.

E3 = r−2 d/2(Γg · Γb) + r−3( d/Γg) · ( d/Γg)
E41 = r−2Γg · ( d/Γb) + r−1Γb · d/β + r−2Γb d/ · Γg

= r−2 d/(Γg · Γb) + l.o.t.

E4 = r−3 d/2(Γg · Γb) + l.o.t.

Com∗2( d?/1ρ) = r−3Γb · d≤2Γg + r−2 d/Γb · Γg + l.o.t.

and, since r−1Γb can be replaced by Γg and d/β can be replaced by r−1Γg,

E = r−3 d/2(Γg · Γb) + l.o.t.

Taking into account the expression of Err[q] in Proposition 2.3.13 we write

re3(Err[q]) + Err[q] = re3

[
r4e3η · β + r2d≤1

(
Γb · Γg)

]
+ r4e3η · β + r2d≤1

(
Γb · Γg)

= r5d≤1
(
e3η · β

)
+ r3d≤2

(
Γb · Γg

)
and therefore, back to (A.11.7),

Err[e3(rq)] = e3(rErr[q]) + Err[q] + rAq + r5E

= r5d≤1
(
e3η · β

)
+ r3d≤2

(
Γb · Γg

)
+ rΓbq + r2 d/2(Γg · Γb) + l.o.t.

= rΓbq + r5d≤1
(
e3η · β

)
+ r3d≤2

(
Γb · Γg

)
.

This concludes the proof of Proposition 2.3.14.

A.12 Proof of the Teukolsky-Starobinski identity

According to Proposition 2.3.14 we have

e3(rq) = r5

{
d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ −

3

2
κρα +

3

4
(2ρ2 − κκρ)ϑ

}
+ Err[e3q].

We infer that

e3(r2e3(rq)) = r7

{
e3 d

?/2 d
?/1 d/1β −

3

2
e3(ρ d?/2 d

?/1κ)− 3

2
e3(κρ d?/2ζ)− 3

2
e3(κρα)

+
3

4
e3

(
(2ρ2 − κκρ)ϑ

)}
+ 7re3(r)e3(rq)

+ r2e3

(
Err[e3q]

)
+ rErr[e3q] + l.o.t.

(A.12.1)
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We first compute

e3 d
?/2 d

?/1 d/1β = d?/2 d
?/1 d/1(e3β) + [e3, d

?/2] d?/1 d/1β + d?/2[e3, d
?/1] d/1β + d?/2 d

?/1[e3, d/1]β

= d?/2 d
?/1 d/1(e3β) +

(
−1

2
κ d?/2 +

1

2
ϑ d/1 + (ζ − η)e3 + ηe3Φ− ξ(e4 − e4(Φ)) + β

)
d?/1 d/1β

+ d?/2

((
−1

2
κ d?/1 +

1

2
ϑ d/0 + (ζ − η)e3 − ξe4

)
d/1β

)
+ d?/2 d

?/1

((
−1

2
κ d/1 +

1

2
ϑ d?/2 − (ζ − η)e3 + ηe3Φ + ξ(e4 + e4(Φ)) + β

)
β

)
In view of our general commutation formulas in Lemma 2.1.51 and our notation convention
for error terms2 we have3 ,

[e3, d
?/2] d?/1 d/1β =

(
−1

2
κ d?/2 +

1

2
ϑ d/1 + (ζ − η)e3 + ηe3Φ− ξ(e4 − e4(Φ)) + β

)
d?/1 d/1β

= −1

2
κ d?/2 d

?/1 d/1β + r−4Γb · d/≤3Γb + l.o.t.

d?/2[e3, d
?/1] d/1β = d?/2

((
−1

2
κ d?/1 +

1

2
ϑ d/0 + (ζ − η)e3 − ξe4

)
d/1β

)
= −1

2
κ d?/2 d

?/1 d/1β + r−4
(
Γb · d/≤3Γb + Γ≤1

b · d/≤2Γb
)

+ l.o.t.

d?/2 d
?/1[e3, d/1]β = d?/2 d

?/1

((
−1

2
κ d/1 +

1

2
ϑ d?/2 − (ζ − η)e3 + ηe3Φ + ξ(e4 + e4(Φ)) + β

)
β

)
= −1

2
κ d?/2 d

?/1 d/1β + r−4
(
Γb · d/≤3Γb + Γ≤1

b · d/≤2Γb
)

+ l.o.t.

Hence, schematically,

e3 d
?/2 d

?/1 d/1β = d?/2 d
?/1 d/1(e3β)− 3

2
κ d?/2 d

?/1 d/1β + r−4 d/≤3(Γb · Γb)

Using the Bianchi identity e3β = d/2α− 2(κ+ω) β+ (−2ζ + η)α+ 3ξρ we further deduce,

d?/2 d
?/1 d/1(e3β) = d?/2 d

?/1 d/1 d/2α− 2(κ+ ω) d?/2 d
?/1 d/1β + 3ρ d?/2 d

?/1 d/1ξ + r−4 d/≤3(Γb · Γb)

i.e.,

e3 d
?/2 d

?/1 d/1β = d?/2 d
?/1 d/1 d/2α− 2(κ+ ω) d?/2 d

?/1 d/1β + 3ρ d?/2 d
?/1 d/1ξ −

3

2
κ d?/2 d

?/1 d/1β

+ r−4 d/≤3(Γb · Γb)
(A.12.2)

2In particular we write β ∈ r−1Γb.
3We also commute once more e3 and e4 with d?/1, d/1, d

?/2, d/2 and use Bianchi.
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We next calculate the second term e3(ρ d?/2 d
?/1κ) on the right hand side of (A.12.1)

e3(ρ d?/2 d
?/1κ) = ρ d?/2 d

?/1e3κ+ ρ[e3, d
?/2] d?/1κ+ ρ d?/2[e3, d

?/1]κ+ e3(ρ) d?/2 d
?/1κ.

Using the equation for e3κ in Proposition 2.2.1 we derive,

ρ d?/2 d
?/1e3κ = ρ d?/2 d

?/1

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + Γb · Γb

)
,

= −ρ (κ+ 2ω) d?/2 d
?/1κ− 2ρκ d?/2 d

?/1ω + 2ρ d?/2 d
?/1 d/1ξ + r−5 d/≤2Γb · Γb

Also,

[e3, d
?/2] d?/1κ =

(
−1

2
κ d?/2 +

1

2
ϑ d/1 + (ζ − η)e3 + ηe3Φ− ξ(e4 − e4(Φ)) + β

)
d?/1κ

= −1

2
κ d?/2 d

?/1κ+ r−2Γb · d/≤2Γg,

d?/2[e3, d
?/1]κ = d?/2

((
−1

2
κ d?/1 −

1

2
ϑ d?/1 + (ζ − η)e3 − ξe4

)
κ

)
,

= −1

2
κ d?/2 d

?/1κ+ d?/2(ζ − η)e3κ− d?/2ξe4κ+ r−2 d/≤2(Γb · Γg)

Using also. the Bianchi equation

e3ρ = −3

2
κρ+ d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

We deduce,

e3(ρ d?/2 d
?/1κ) = −ρ (κ+ 2ω) d?/2 d

?/1κ− 2ρκ d?/2 d
?/1ω + 2ρ d?/2 d

?/1 d/1ξ

− ρκ d?/2 d
?/1κ+ ρ

(
d?/2(ζ − η)e3κ− d?/2(ξ)e4κ

)
− 3

2
ρκ d?/2 d

?/1κ+ r−5 d/≤2(Γb · Γg)

i.e.,

e3(ρ d?/2 d
?/1κ) = −7

2
ρκ d?/2 d

?/1(κ)− 2ρω d?/2 d
?/1κ− 2ρκ d?/2 d

?/1ω + 2ρ d?/2 d
?/1 d/1ξ

+ ρ
(
d?/2(ζ − η)e3κ− d?/2(ξ)e4κ

)
+ r−5 d/≤2(Γb · Γg).

(A.12.3)
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Now,

d?/2(ζ − η)e3κ− d?/2(ξ)e4κ

= d?/2(ζ − η)

(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + Γb · Γb

)
− d?/2ξ

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ+ Γg · Γb

)
= d?/2(ζ − η)

(
−1

2
κ2 − 2ω κ

)
− d?/2ξ

(
−1

2
κκ+ 2ωκ+ 2ρ

)
+ r−2 d/≤1Γb · d/≤1Γb.

Therefore, back to (A.12.3),

e3(ρ d?/2 d
?/1κ) = −7

2
ρκ d?/2 d

?/1(κ)− 2ρω d?/2 d
?/1κ− 2ρκ d?/2 d

?/1ω + 2ρ d?/2 d
?/1 d/1ξ

+ ρ d?/2(ζ − η)

(
−1

2
κ2 − 2ω κ

)
− ρ d?/2ξ

(
−1

2
κκ+ 2ωκ+ 2ρ

)
+ r−5 d/≤2(Γb · Γg)..

(A.12.4)

We next estimate the third term e3(κρ d?/2ζ) on the right hand side of (A.12.1),

e3(κρ d?/2ζ) = κρ d?/2(e3ζ) + κρ[e3, d
?/2]ζ + e3(κ)ρ d?/2ζ + κe3(ρ) d?/2ζ

Using again the equations

e3(κ) = −1

2
κ2 − 2ω κ+ 2 d/1ξ + Γb · Γb

e3ρ = −3

2
κρ+ d/1β + Γg · Γb

i.e.,

e3(κ)ρ d?/2ζ = (−1

2
κ2 − 2ω κ)ρ d?/2ζ + r−5 d/Γb · d/Γg

κe3ρ d
?/2ζ = −3

2
κ2ρ+ r−4 d/Γb · d/Γg

the equation,

e3ζ = −1

2
κ(ζ + η) + 2ω(ζ − η) + β + 2 d?/1ω + 2ωξ +

1

2
κξ + Γb · Γb
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and the commutator formula,

[e3, d
?/2]ζ =

(
−1

2
κ d?/2 +

1

2
ϑ d/1 + (ζ − η)e3 + ηe3Φ− ξ(e4 − e4(Φ)) + β

)
ζ

= −1

2
κ d?/2ζ + r−1Γb · d/≤1Γg

we deduce

e3(κρ d?/2ζ) = κρ d?/2

(
−1

2
κ(ζ + η) + 2ω(ζ − η) + β + 2 d?/1ω + 2ωξ +

1

2
κξ + Γb · Γb

)
− 1

2
κ2ρ d?/2ζ + r−5Γb · d/≤1Γg

− 1

2
κ2ρ d?/2ζ − 2ω κρ d?/2ζ + r−5 d/≤1Γb · d/≤1Γg

− 3

2
κ2ρ d?/2ζ + r−4 d/Γb · d/Γg

= κρ

(
−3κ d?/2ζ −

1

2
κ d?/2η − 2ω d?/2η + d?/2β + 2 d?/2 d

?/1ω + 2ω d?/2ξ +
1

2
κ d?/2ξ

)
+ r−4 d/≤1Γb · d/≤1Γg + r−5 d/≤1Γb · d/≤1Γb

i.e.,

e3(κρ d?/2ζ) = κρ

(
−3κ d?/2ζ −

1

2
κ d?/2η − 2ω d?/2η + d?/2β + 2 d?/2 d

?/1ω + 2ω d?/2ξ +
1

2
κ d?/2ξ

)
+ r−4 d/≤1Γb · d/≤1Γg + r−5 d/≤1Γb · d/≤1Γb

(A.12.5)

For the fourth term on the right hand side of (A.12.1) we have

e3(κρα) = κρe3(α) + e3(κ)ρα + κe3(ρ)α

= κρe3(α) +

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2(ξ ξ + η η)

)
ρα

+κ

(
−3

2
κρ+ d/1β −

1

2
ϑα− ζ β + 2(η β + ξ β)

)
α

= κρe3(α) + (−2κκ+ 2ωκ+ 2ρ) ρα +
(
r−3 d/Γb + r−2Γb · Γb) · α

i.e.,

e3(κρα) = κρe3(α) + (−2κκ+ 2ωκ+ 2ρ) ρα +
(
r−3 d/Γb + r−2Γb · Γb) · α. (A.12.6)

Finally, for the fifth term on the right hand side of (A.12.1), using the e3 equations for
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ϑ, ρ, κ, κ,

e3

(
(2ρ2 − κκρ)ϑ

)
= (2ρ2 − κκρ)e3ϑ+ 4ρe3(ρ)ϑ− e3(κ)κρϑ− κe3(κ)ρϑ− κκe3(ρ)ϑ

= (2ρ2 − κκρ)
(
− κϑ− 2ω ϑ− 2α− 2 d?/2 ξ + Γb · Γb

)
+4ρ

(
−3

2
κρ+ d/1β + Γg · Γb

)
ϑ

−
(
−1

2
κκ+ 2ωκ+ 2ρ+ 2 d/1η + Γb · Γb

)
κρϑ

−κ
(
−1

2
κ2 − 2ω κ+ 2 d/1ξ + Γb · Γb

)
ρϑ

−κκ
(
−3

2
κρ+ d/1β + Γg · Γb

)
ϑ

i.e.,

e3

(
(2ρ2 − κκρ)ϑ

)
= (2ρ2 − κκρ)

(
− κϑ− 2ω ϑ− 2α− 2 d?/2 ξ

)
− 6κρ2ϑ

−
(
−1

2
κκ+ 2ωκ+ 2ρ

)
κρϑ+ κ

(
1

2
κ2 + 2ω κ

)
ρϑ+

3

2
κ2κρ

+ r−5 d/≤1Γb · Γb

from which,

e3

(
(2ρ2 − κκρ)ϑ

)
= (2ρ2 − κκρ)

(
− 2α− 2 d?/2 ξ

)
+

(
7

2
κκ2ρ− 10κρ2 + 2κκρω − 4ωρ2

)
ϑ

+ r−5 d/≤1Γb · Γb. (A.12.7)

Recalling (A.12.1)

r−7e3(r2e3(rq)) = e3 d
?/2 d

?/1 d/1β −
3

2
e3(ρ d?/2 d

?/1κ)− 3

2
e3(κρ d?/2ζ)− 3

2
e3(κρα)

+
3

4
e3

(
(2ρ2 − κκρ)ϑ

)
+ 7r−6e3(r)e3(rq)

+ r2e3

(
Err[e3q]

)
+ rErr[e3q] + l.o.t.
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and making use of (A.12.4)–(A.12.7) we deduce,

r−7e3(r2e3(rq)) = d?/2 d
?/1 d/1 d/2α− 2(κ+ ω) d?/2 d

?/1 d/1β + 3ρ d?/2 d
?/1 d/1ξ −

3

2
κ d?/2 d

?/1 d/1β

− 3

2

{
− 7

2
ρκ d?/2 d

?/1(κ)− 2ρω d?/2 d
?/1κ− 2ρκ d?/2 d

?/1ω + 2ρ d?/2 d
?/1 d/1ξ

+ρ d?/2(ζ − η)

(
−1

2
κ2 − 2ω κ

)
− ρ d?/2ξ

(
−1

2
κκ+ 2ωκ+ 2ρ

)}

− 3

2

{
κρ

(
−3κ d?/2ζ −

1

2
κ d?/2η − 2ω d?/2η + d?/2β + 2 d?/2 d

?/1ω + 2ω d?/2ξ +
1

2
κ d?/2ξ

)}

− 3

2

{
κρe3(α) + (−2κκ+ 2ωκ+ 2ρ) ρα +

(
r−3 d/Γb + r−2Γb · Γb) · α

}

+
3

4

{
(2ρ2 − κκρ)

(
− 2α− 2 d?/2 ξ

)
+

(
7

2
κκ2ρ− 10κρ2 + 2κκρω − 4ωρ2

)
ϑ

}
+ 7r−6e3(r)e3(rq) + Err + r−7

(
r2e3

(
Err[e3q]

)
+ rErr[e3q]

)
+ l.o.t..

where, the error term Err is given by

Err =
(
r−3 d/Γb + r−2Γb · Γb) · α + r−4 d/≤1Γb · d/≤1Γg + r−5 d/≤1Γb · d/≤1Γb(A.12.8)

Denoting the expression of left hand side of the identity (2.3.15) by I, i.e.

I := e3(r2e3(rq)) + 2ωr2e3(rq)

we deduce,

r−7I = d?/2 d
?/1 d/1 d/2α−

(
7

2
κ+ 2ω

)
d?/2 d

?/1 d/1β +
3

2

(
7

2
κ+ 2ω

)
ρ d?/2 d

?/1κ+
3

2

(
7

2
κ+ 2ω

)
κρ d?/2ζ

− 3

2
κρ d?/2β −

3

2
κρe3(α)− 3

2

(
− 3κκ+ 2ωκ+ 4ρ

)
ρα

+
3

4

(
7

2
κκ2ρ− 10κρ2 + 2κκρω − 4ωρ2

)
ϑ+ r−7

[
7re3(r)e3(rq) + 2ωr2e3(rq)

]
+ Ẽrr.

where the new error term Ẽrr is given by

Ẽrr = Err + r−7
(
r2e3

(
Err[e3q]

)
+ rErr[e3q]

)
+ 2ωr−5Err[e3q]
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To calculate the term J := 7re3(r)e3(rq) + 2ωr2e3(rq) in the last row we make use once
more of the identity of Lemma 2.3.14 to derive

J = r2

(
7

2
κ+ 2ω

)
e3(rq) + 7r

(
e3(r)− r

2
κ
)
e3(rq)

= r2

(
7

2
κ+ 2ω

)
e3(rq) + r2Γbe3(rq)

= r7

(
7

2
κ+ 2ω

){
d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ −

3

2
κρα +

3

4
(2ρ2 − κκρ)ϑ

}
+ r2

(
7

2
κ+ 2ω

)
Err[e3(rq)] + r2Γbe3(rq)

i.e.,

r−7J =

(
7

2
κ+ 2ω

){
d?/2 d

?/1 d/1β −
3

2
ρ d?/2 d

?/1κ−
3

2
κρ d?/2ζ −

3

2
κρα +

3

4
(2ρ2 − κκρ)ϑ

}
+ r−5

(
7

2
κ+ 2ω

)
Err[e3(rq)] + r−5Γbe3(rq)

Combining and simplifying,

r−7I = d?/2 d
?/1 d/1 d/2α−

3

2
κρ d?/2β −

3

2
κρe3(α)− 3

2

(
1

2
κκ+ 4ωκ+ 4ρ

)
ρα− 9

4
κρ2ϑ+

˜̃
Err.

where,

˜̃
Err = Ẽrr + r−5

(
7

2
κ+ 2ω

)
Err[e3(rq)] + r−5Γbe3(rq)

Using Bianchi to replace d?/2β, we deduce

r−7I = d?/2 d
?/1 d/1 d/2α−

3

2
κρ

(
−e4α−

1

2
κα + 4ωα− 3

2
ρϑ+ r−1Γg · Γb

)
− 3

2
κρe3(α)− 3

2

(
1

2
κκ+ 4ωκ+ 4ρ

)
ρα− 9

4
κρ2ϑ+ r−5Γg · Γb + l.o.t.

= d?/2 d
?/1 d/1 d/2α +

3

2
κρe4α−

3

2
κρe3(α)− 6

(
κω + ωκ+ ρ

)
ρα + r−5Γg · Γb.

I = e3(r2e3(rq)) + 2ωr2e3(rq)

= r7

{
d?/2 d

?/1 d/1 d/2α +
3

2
κρe4α−

3

2
κρe3(α)

}
+ Err[ST ]
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where,

Err[ST ] = r7Ẽrr + r2

(
7

2
κ+ 2ω

)
Err[e3(rq)] + r2Γbe3(rq) + r2Γg · Γb

+ r7Err +
(
r2e3

(
Err[e3q]

)
+ rErr[e3q]

)
+ 2ωr2Err[e3q] + r2Γbe3(rq) + r2Γg · Γb

Recall that, see (A.12.8),

Err =
(
r−3 d/Γb + r−2Γb · Γb) · α + r−4 d/≤1Γb · d/≤1Γg + r−5 d/≤1Γb · d/≤1Γb

Hence,

Err[ST ] = r4
(
d/Γb + rΓb · Γb) · α + r3 d/≤1Γb · d/≤1Γg + r2 d/≤1Γb · d/≤1Γb + r2Γbe3(rq)

+ r2e3

(
Err[e3q]

)
+ rErr[e3q] + 2ωr2Err[e3q]

Recall that, see Proposition 2.3.14,

Err[e3(rq)] = rΓbq + r5d≤1
(
e3η · β

)
+ r3d≤2

(
Γb · Γg

)
.

Therefore,

E = r2e3

(
Err[e3q]

)
+ rErr[e3q] + 2ωr2Err[e3q]

= r2
(
Γbe3(rq) + e3(Γb)rq

)
+ r7d≤2

(
e3η · β

)
+ r5d≤3

(
Γb · Γg

)
+ r2Γbq + r6d≤1

(
e3η · β

)
+ r4d≤2

(
Γb · Γg

)
= r2

(
Γbe3(rq) + (d≤1Γb)rq

)
+ r7d≤2

(
e3η · β

)
+ r5d≤3

(
Γb · Γg

)
Thus,

Err[TS] = r4
(
d/Γb + rΓb · Γb) · α + r2

(
Γbe3(rq) + (d≤1Γb)rq

)
+ r7d≤2

(
e3η · β

)
+ r5d≤3

(
Γb · Γg

)
which end the proof of Proposition 2.3.15.

A.13 Proof of Proposition 2.4.6

In this section we give a proof of Proposition 2.4.6, i.e. we derive the wave equation for
the extreme curvature component α,

�gα = −4ωe4(α) + (2κ+ 4ω) e3(α) + V α + Err(�gα),

V : =

(
−4e4(ω) +

1

2
κκ− 10κω + 2κω − 8ωω − 4ρ+ 4eθ(Φ)2

)
α,

(A.13.1)
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where

Err(�gα) =
1

2
ϑe3(α) +

3

4
ϑ2ρ+ eθ(Φ)ϑβ − 1

2
κ(ζ + 4η)β − (ζ + η)e4(β)− ξe3(β)

+eθ(Φ)(2ζ + η)α + β2 + e4(Φ)ηβ + e3(Φ)ξβ − (ζ + 4η)e4(β)− (e4(ζ) + 4e4(η))β

−2(κ+ ω)(ζ + 4η)β + 2eθ(κ+ ω)β − eθ((2ζ + η)α)− 3ξeθ(ρ) + 2ηeθ(α)

+
3

2
ϑ(eθ(β) + eθ(Φ)β) + 3ρ(η + η + 2ζ)ξ + (eθ(η) + eθ(Φ)η)α +

1

4
κϑα− 2ωϑα

−1

2
ϑϑα + ξξα + η2α +

3

2
ϑζβ + 3ϑ(ηβ + ξβ)− 1

2
ϑ(ζ + 4η)β.

The equation for α can then be easily inferred by symmetry.

Proof. We make use of the Bianchi identities

eθ(β)− eθ(Φ)β = e3(α) +
(κ

2
− 4ω

)
α +

3

2
ϑ ρ− (ζ + 4η)β,

e4(β) + 2(κ+ ω)β = eθ(α) + 2eθ(Φ)α + (2ζ + η)α + 3ξρ.

to infer that

e4(e3(α)) = e4(eθ(β))− eθ(Φ)e4(β)− e4(eθ(Φ))β −
(κ

2
− 4ω

)
e4(α)−

(
e4(κ)

2
− 4e4(ω)

)
α

−3

2
ϑe4(ρ)− 3

2
e4(ϑ)ρ+ (ζ + 4η)e4(β) + (e4(ζ) + 4e4(η))β

= e4(eθ(β))− eθ(Φ)
(
eθ(α) + 2eθ(Φ)α− 2(κ+ ω)β + (2ζ + η)α + 3ξρ

)
−(D4DθΦ +DD4eθΦ)β −

(κ
2
− 4ω

)
e4(α)−

(
e4(κ)

2
− 4e4(ω)

)
α

−3

2
ϑe4(ρ)− 3

2
e4(ϑ)ρ+ (ζ + 4η)e4(β) + (e4(ζ) + 4e4(η))β.

Hence,

e4(e3(α)) = e4(eθ(β))− eθ(Φ)(eθ(α) + 2eθ(Φ)α) + 2eθ(Φ)(κ+ ω)β − 3eθ(Φ)ξρ

+e4(Φ)eθ(Φ)β −
(κ

2
− 4ω

)
e4(α)−

(
e4(κ)

2
− 4e4(ω)

)
α

−3

2
ϑe4(ρ)− 3

2
e4(ϑ)ρ− eθ(Φ)(2ζ + η)α− β2 − e4(Φ)ηβ − e3(Φ)ξβ

+(ζ + 4η)e4(β) + (e4(ζ) + 4e4(η))β



A.13. PROOF OF PROPOSITION 2.4.6 859

and

eθ(eθ(α)) = eθ(e4(β)) + 2(κ+ ω)eθ(β) + 2eθ(κ+ ω)β − 2eθ(Φ)eθ(α)− 2eθ(eθ(Φ))α

−eθ((2ζ + η)α)− 3eθ(ξρ)

= eθ(e4(β)) + 2(κ+ ω)
(
eθ(Φ)β + e3(α) +

(κ
2
− 4ω

)
α +

3

2
ϑ ρ− (ζ + 4η)β

)
+2eθ(κ+ ω)β − 2eθ(Φ)eθ(α)− 2(DθDθΦ +DDθeθΦ)α− eθ((2ζ + η)α)− 3eθ(ξρ)

= eθ(e4(β)) + 2(κ+ ω)eθ(Φ)β + 2(κ+ ω)e3(α) + 2(κ+ ω)
(κ

2
− 4ω

)
α + 3(κ+ ω)ϑ ρ

−2eθ(Φ)eθ(α)− 2

(
ρ− eθ(Φ)2 +

1

2
χe4(Φ) +

1

2
χe3(Φ)

)
α− 3eθ(ξ)ρ

−2(κ+ ω)(ζ + 4η)β + 2eθ(κ+ ω)β − eθ((2ζ + η)α)− 3ξeθ(ρ).

In view of Lemma 2.4.1, we have

�gf = −e4(e3(f)) + eθ(eθ(f))− 1

2
κe4(f) +

(
−1

2
κ+ 2ω

)
e3(f) + eθ(Φ)eθ(f) + 2ηeθ(f).

We infer

�gα = −e4(e3(α)) + eθ(eθ(α))− 1

2
κe4(α) +

(
−1

2
κ+ 2ω

)
e3(α) + eθ(Φ)eθ(α) + 2ηeθ(α)

= [eθ, e4](β)− e4(Φ)eθ(Φ)β +
3

2
ϑe4(ρ) +

3

2
e4(ϑ)ρ+ 3(κ+ ω)ϑ ρ− 3(eθ(ξ)− eθ(Φ)ξ)ρ

−4ωe4(α) +

(
3

2
κ+ 4ω

)
e3(α)

+

(
e4(κ)

2
− 4e4(ω) + κκ− 8κω + κω − 8ωω − 2ρ+ 4eθ(Φ)2 − χe4(Φ)− χe3(Φ)

)
α

+eθ(Φ)(2ζ + η)α + β2 + e4(Φ)ηβ + e3(Φ)ξβ − (ζ + 4η)e4(β)− (e4(ζ) + 4e4(η))β

−2(κ+ ω)(ζ + 4η)β + 2eθ(κ+ ω)β − eθ((2ζ + η)α)− 3ξeθ(ρ) + 2ηeθ(α).

Next, we have

[eθ, e4](β) = χeθ(β)− (ζ + η)e4(β)− ξe3(β)

= χ

(
eθ(Φ)β + e3(α) +

(κ
2
− 4ω

)
α +

3

2
ϑ ρ− (ζ + 4η)β

)
− (ζ + η)e4(β)− ξe3(β)
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and hence

�gα = −4ωe4(α) +

(
3

2
κ+ χ+ 4ω

)
e3(α) + V1α

+
3

2
ϑe4(ρ) +

3

2
e4(ϑ)ρ+ 3(κ+ ω)ϑ ρ− 3(eθ(ξ)− eθ(Φ)ξ)ρ+

3

2
χϑ ρ

+ Err1

where,

V1 :=
e4(κ)

2
− 4e4(ω) + κκ− 8κω + κω − 8ωω − 2ρ+ 4eθ(Φ)2 − χe4(Φ)− χe3(Φ)

+ χ
κ

2
− 4χω,

Err1 := eθ(Φ)ϑβ − χ(ζ + 4η)β − (ζ + η)e4(β)− ξe3(β)

+ eθ(Φ)(2ζ + η)α + β2 + e4(Φ)ηβ + e3(Φ)ξβ − (ζ + 4η)e4(β)− (e4(ζ) + 4e4(η))β

− 2(κ+ ω)(ζ + 4η)β + 2eθ(κ+ ω)β − eθ((2ζ + η)α)− 3ξeθ(ρ) + 2ηeθ(α).

Next, we make use of

e4(ϑ) + κϑ+ 2ωϑ = −2α + 2(eθ(ξ)− eθ(Φ)ξ) + 2(η + η + 2ζ)ξ,

e4(ρ) +
3

2
κρ = eθ(β) + eθ(Φ)β − 1

2
ϑα + ζβ + 2(ηβ + ξβ),

to calculate the term

I : =
3

2
ϑe4(ρ) +

3

2
e4(ϑ)ρ+ 3(κ+ ω)ϑ ρ− 3(eθ(ξ)− eθ(Φ)ξ)ρ+

3

2
χϑ ρ

=
3

2
ϑ

(
−3

2
κρ+ d/1β

)
+

3

2
ρ (−κϑ− 2ωϑ− 2α + 2(eθ(ξ)− eθ(Φ)ξ)) + 3(κ+ ω)ϑ ρ

− 3(eθ(ξ)− eθ(Φ)ξ)ρ+
3

2

κ+ ϑ

2
ϑ ρ+ l.o.t.

= −3ρα +
3

2
ϑ d/1β +

3

4
ϑ2ρ.

Hence,

�gα = −4ωe4(α) +

(
3

2
κ+ χ+ 4ω

)
e3(α) + (V1 − 3ρ)α

+ Err1 +
3

2
ϑ d/1β +

3

4
ϑ2ρ.

Using also,

e4(κ) +
1

2
κκ− 2ωκ = 2(eθ(η) + eθ(Φ)η) + 2ρ− 1

2
ϑϑ+ 2(ξξ + η2)
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and the identities, 2χ = κ+ ϑ, as well as 2χ = κ+ ϑ, we finally obtain

�gα = −4ωe4(α) + (2κ+ 4ω) e3(α) + V α + Err[�α]

as desired.

We write schematically the error term,

Err[�α] =
1

2
ϑe3(α) +

3

4
ϑ2ρ+ eθ(Φ)ϑβ − 1

2
κ(ζ + 4η)β − (ζ + η)e4(β)− ξe3(β)

+eθ(Φ)(2ζ + η)α + β2 + e4(Φ)ηβ + e3(Φ)ξβ − (ζ + 4η)e4(β)− (e4(ζ) + 4e4(η))β

−2(κ+ ω)(ζ + 4η)β + 2eθ(κ+ ω)β − eθ((2ζ + η)α)− 3ξeθ(ρ) + 2ηeθ(α)

+
3

2
ϑ(eθ(β) + eθ(Φ)β) + 3ρ(η + η + 2ζ)ξ + (eθ(η) + eθ(Φ)η)α +

1

4
κϑα− 2ωϑα

−1

2
ϑϑα + ξξα + η2α +

3

2
ϑζβ + 3ϑ(ηβ + ξβ)− 1

2
ϑ(ζ + 4η)β

as follows,

Err[�gα] =

(
1

r
Γg +

1

r
d/Γg

)
α + Γge3(α) +

1

r
Γg d/α

+

(
β +

1

r
Γg +

1

r
dΓg

)
β +

1

r
Γgd(β) + Γge3(β)

+ (Γg)
2ρ+

1

r
Γg d/(ρ)

= Γge3(α, β) + r−1Γ≤1
g · d≤1(α, β, ρ̌) + β2 + Γ2

gρ.

This concludes the proof of Proposition 2.4.6.

A.14 Proof of Theorem 2.4.7

Recall the symbolic notation used in the statement of the theorem.

Γg =
{
ϑ, η, η, ζ, A

}
, Γb =

{
ϑ, ξ, A

}
,

dΓg =
{
dϑ, reθ(κ), dη, dη, dζ, dA

}
, dΓb =

{
dϑ, eθ(κ), dξ, dA

}
,

where A = 2
r
e4(r)− κ, A = 2

r
e3(r)− κ. We also denote, for s ≥ 2,

dsΓg = ds−1dΓg, dsΓb = ds−1dΓb,
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for higher derivatives with respect to d = (e3, re4, d/) (see definition 2.1.36 for the notation
d/ and d/s).

We also recall Remark 2.3.9.

Remark A.14.1. According to the main bootstrap assumptions BA-E, BA-D (see sec-
tion 3.4.1.) the terms Γb behave worse in powers of r than the terms in Γg. Thus, in
the symbolic expressions below, we replace the terms of the form Γg + Γb by Γb. We also
replace r−1Γb by Γg. We will denote l.o.t. all cubic and higher error terms in Γ̌, Ř. We
also include in l.o.t. terms which decay faster in powers of r that those taking into account
by the main quadratic terms.

Recall that

q = r4Q(α), (A.14.1)

where Q is the operator

Q := e3e3 + (2κ− 6ω)e3 +W, W := −4e3(ω) + 8ω2 − 8ω κ+
1

2
κ2. (A.14.2)

Lemma A.14.2. The quantity q is fully invariant with respect to the conformal frame
transformations

e′3 = λ−1e3, e4 = λe4, e′θ = eθ.

Proof. The proof is an immediate consequence of Definition A.14.3 and Lemmas A.14.5,
A.14.4 below.

We recall that under the above mentioned frame transformation we have

α′ = λ2α, β′ = λβ, ρ′ = ρ, κ′ = λ−1κ, κ′ = λκ, η′ = η, η′ = η,

ω′ = λ−1

(
ω +

1

2
e3(log λ)

)
, ω′ = λ

(
ω − 1

2
e4(log λ)

)
, ζ ′ = ζ − eθ(log λ).

Definition A.14.3. We say that a reduced tensor is conformal invariant of type4 a, i.e.
a-conformal invariant, if under the conformal change of frames e′3 = λ−1, e′4 = λe4 it
transforms by

f ′ = λaf.

4Note that for a given Ricci or curvature coefficient a coincides with the signature of the component.
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Lemma A.14.4. Let f be an a-conformal invariant tensor.

1. The tensor

∇3f : = e3f − 2aωf (A.14.3)

is a− 1 conformal invariant.

2. The tensor

∇4f : = e4f + 2aωf (A.14.4)

is a+ 1 conformal invariant.

3. The tensor,

∇/ (c)
A f = ∇/ Af + aζAf (A.14.5)

is a-conformal invariant.

Proof. Immediate verification.

Lemma A.14.5. We have

Q(α) = ∇3(∇3α) + 2κ∇3α +
1

2
κ2α.

Proof. We have,

∇3(∇3α) = ∇3(e3α− 4ωα) = e3(e3α− 4ωα)− 2ω(e3α− 4ωα)

= e3e3α− 4e3ωα− 4ωe3α− 2ωe3α + 8ω2α.

Hence,

Q(α) = ∇3(∇3α) + 2κ∇3α +
1

2
κα

= e3e3α− 4e3ωα− 4ωe3α− 2ωe3α + 8ω2α + 2κ(e3α− 4ωα) +
1

2
κ2α

= e3e3α + (2κ− 6ω)e3α +

(
−4e3ω + 8ω2 − 8κω +

1

2
κ2

)
as stated.
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Remark A.14.6. Using the definitions of ∇3,∇4 the null structure equations for κ, κ
take the form,

∇3κ+
1

2
κ2 = 2 d/1ξ + Γb · Γb = r−1 d/Γb + l.o.t.,

∇4κ+
1

2
κκ = 2 d/1η + 2ρ+ Γg · Γb = 2ρ+ r−1 d/Γg,

∇3κ+
1

2
κκ = 2 d/1η + 2ρ+ Γg · Γb = 2ρ+ r−1 d/Γg,

∇4κ+
1

2
κ2 = 2 d/1ξ + Γg · Γg = r−1 d/Γg.

(A.14.6)

Also, since ρ is 0-conformal

∇3ρ+
3

2
κρ = d/1β + Γg · Γb = r−1 d/Γg. (A.14.7)

Definition A.14.7. Given f an a-conformal S-tangent tensor we define its a-conformal
Laplacian to be

(c)4/ f = (c)∇/ A (c)∇/ Af.

Lemma A.14.8. The following formula holds true for a 2-conformal tensor f

(c)4/ f = 4/ 2f + 4ζ∇/ f + 2
(
div ζ + 2|ζ|2

)
f.

In particular we have,

(c)4/ f = 4/ 2f + r−1 d/≤1(Γg · f).

Proof. Immediate verification.

The goal of this section is to prove Theorem 2.4.7 which we recall below for the convenience
of the reader.

Theorem A.14.9. The invariant scalar quantity q defined in (2.3.10) verifies the equa-
tion,

�2q + κκ q = Err[�2q] (A.14.8)

where, schematically,

Err[�2q] := r2d≤2(Γg · (α, β)) + e3

(
r3d≤2(Γg · (α, β))

)
+ d≤1(Γg · q) + l.o.t.(A.14.9)
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Definition A.14.10. Given a quadratic or higher order E we say the following

1. E ∈ Good if r4E can be expressed in the form (2.4.8).

2. E ∈ Good1 if after applying r4e3 or r3 it can be expressed in the form (2.4.8).

3. E ∈ Good2 if after applying r4e3e3, r
4e3 or r3 it can be expressed in the form (2.4.8).

In view of the definition we note that,

(e3 + r−1)Good1 = Good, QGood2 = Good.

To prove the theorem we have to check that Err[�2q] = r4Good.

A.14.1 The Teukolsky equation for α

We recall below Proposition 2.4.6.

Lemma A.14.11. We have

�2α = −4ωe4(α) + (4ω + 2κ)e3(α) + V α + Err[�gα],

V = −4ρ− 4e4(ω)− 8ωω + 2ω κ− 10κω +
1

2
κκ,

where Err[�gα] is given schematically by

Err(�gα) := Γge3(α) + r−1d≤1
(

(η,Γg)(α, β)
)

+ ξ(e3(β), r−1dρ̌).

Remark A.14.12. Since ξ vanishes for r ≥ 4m0, η ∈ Γg and e3α = r−1dα we deduce,

Err(�gα) ∈ Good2.

Lemma A.14.13. The Teukolsky equation for α can be written in the form,

L(α) = Good2 (A.14.10)

where L is the operator

Lα = −∇4∇3α + (c)4/ 2α−
5

2
κ∇3α−

1

2
κ∇4α−

(
−4ρ+

1

2
κκ

)
α. (A.14.11)

We also note that, for a 0-conformal tensor f ,

�2f = −∇4∇3f + (c)4/ 2f −
1

2
κ∇3f −

1

2
κ∇4f + r−1Γg · d/f. (A.14.12)
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Proof. Recall that we have (see Definition 2.4.2)

�2α = −e4(e3(α)) +4/ 2α−
1

2
κe4(α) +

(
−1

2
κ+ 2ω

)
e3(α) + 2ηeθ(α).

Therefore,

L(α) = −e4(e3(α)) +4/ 2α−
1

2
κe4(α) +

(
−1

2
κ+ 2ω

)
e3(α) + 2ηeθ(α)

+ 4ωe4(α)− (4ω + 2κ)e3(α)− V α

= −e4(e3(α)) +4/ 2α−
(

1

2
κ− 4ω

)
e4α−

(
5

2
κ+ 2ω

)
e3α + 2ηeθ(α)− V α

= −e4(e3(α)) + (c)4/ 2α−
(

1

2
κ− 4ω

)
e4α−

(
5

2
κ+ 2ω

)
e3α− V α + Good2.

On the other hand,

∇4(∇3(α)) = ∇4

(
e3α− 4ωα

)
= e4

(
e3α− 4ωα

)
+ 2ω

(
e3α− 4ωα

)
= e4e3α− 4ωe4α− 4e4ωα + 2ωe3α− 8ωωα.

Hence,

−∇4∇3α−
5

2
κ∇3α−

1

2
κ∇4α = −e4e3α + 4ωe4α + 4e4ωα− 2ωe3α + 8ωωα

− 5

2
κ
(
e3α− 4ωα)− 1

2
κ(e4α + 4ωα)

= −e4e3α−
1

2
(κ− 4ω)e4α−

(
5

2
κ+ 2ω

)
e3α

+
(
4e4ω + 8ωω + 10κω − 2ωκ

)
α.

We deduce, with V ′ = −4ρ+ 1
2
κκ,

−∇4∇3α−
5

2
κ∇3α−

1

2
κ∇4 − V ′α = −e4e3α−

1

2
(κ− 4ω)e4α−

(
5

2
κ+ 2ω

)
e3α

+

(
4e4ω + 8ωω + 10κω − 2ωκ+ 4ρ− 1

2
κκ

)
α

= −e4e3α−
1

2
(κ− 4ω)e4α−

(
5

2
κ+ 2ω

)
e3α− V α.

Hence,

Lα = −∇4∇3α + (c)4/ 2α−
5

2
κ∇3α−

1

2
κ∇4α−

(
−4ρ+

1

2
κκ

)
α ∈ Good2

as desired. The proof of the second part of the lemma follows in the same manner.
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A.14.2 Commutation lemmas

The goal of the following lemmas is to calculate the commutator of Q with L.

Lemma A.14.14. Give f an a-conformal tensor we have,

[∇3,∇4]f = 2aρf + r−1Γg d/
≤1f. (A.14.13)

Proof. We have

[∇3,∇4]f = ∇3∇4f −∇4∇3f

=
(
e3 − 2(a+ 1)ω

)(
e4f + 2aωf

)
−
(
e4 + 2(a− 1)ω

)
(e3f − 2aωf

)
= e3e4f − 2(a+ 1)ωe4f + 2ae3(ωf)− 4a(a+ 1)ωωf

− e4e3f − 2(a− 1)ωe3f + 2ae4(ωf) + 4a(a− 1)ωω

= [e3, e4]f − 2ωe4f + 2ωe3(f) + 2a
(
e3ω + e4ω − 4ωω

)
f.

Recall that,

[e3, e4] = −2ωe3 + 2ωe4 + 2(η − η)eθ,

e3ω + e4ω − 4ωω = ρ+ Γg · Γb.

We deduce5,

[∇3,∇4]f = 2aρ+ r−1Γg d/
≤1f

as stated.

Lemma A.14.15. Assume f a-conformal and g is b- conformal. Then fg is a + b-
conformal and

∇3(fg) = f∇3g + g∇3f,

∇4(fg) = f∇4g + g∇4f.

Proof. Indeed

∇3(fg) = e3(fg)− 2(a+ b)ωfg = fe3g + ge3f − 2(a+ b)ωfg = f∇3g + g∇3f

as stated.

5Recall that η ∈ Γg in the frame we are using.
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Lemma A.14.16. We have,

[Q,∇3]α = κ2∇3α +
1

2
κ3α + Good1,

[Q,∇4]α =
(
2ρ+ κκ

)
∇3α +

1

2
κκ2α + Good1.

(A.14.14)

Also,

[Q,∇4∇3]α =
(
− 2ρ+ κκ

)
∇3∇3α + κ2∇4∇3α +

1

2
κ3∇4α

+

(
3ρκ− 1

2
κκ2

)
∇3α +

3

2
κ2

(
−1

2
κκ+ 2ρ

)
α + Good.

(A.14.15)

Proof. We have6,

[Q,∇3]α =

(
∇3∇3 + 2κ∇3 +

1

2
κ2

)
∇3α−∇3

((
∇3∇3 + 2κ∇3 +

1

2
κ2

)
α

)
= −2∇3(κ)∇3α− κ(∇3κ)α

= −2

(
−1

2
κ2 + r−1Γb

)
∇3α− κ

(
−1

2
κ2 + r−1Γb

)
α

= κ2∇3α +
1

2
κ3α + r−1Γgd

≤1α

and,

[Q,∇4]α =

(
∇3∇3 + 2κ∇3 +

1

2
κ2

)
∇4α−∇4

((
∇3∇3 + 2κ∇3 +

1

2
κ2

)
α

)
=

(
∇3∇3∇4 −∇4∇3∇3

)
α + 2κ

(
∇3∇4 −∇4∇3

)
α− 2∇4κ∇3α− κ(∇4κ)α

= ∇3

([
∇3,∇4]α

)
+ [∇3,∇4]∇3α + 2κ[∇3,∇4]α− 2∇4κ∇3α− κ(∇4κ)α.

In view of Lemma A.14.14 we have,[
∇3,∇4]α = 4ρα + r−1Γg · d/≤1α,[

∇3,∇4]∇3α = 2ρ∇3α + r−1Γg · d/≤1∇3α.

Hence,

[Q,∇4]α = ∇3

(
4ρα + r−1Γg d/

≤1α
)

+
(

2ρ+ r−1Γg d/
≤1
)
∇3α + 2κ

(
4ρα + r−1Γg d/

≤1α
)

− 2∇4κ∇3α− κ(∇4κ)α

=
(
6ρ− 2∇4κ

)
∇3α +

(
4∇3ρ+ 8κρ− κ∇4κ

)
α + Good1.

6Recall that r−1Γb = Γg.
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We now note, using the equations for ∇4ρ and ∇4κ,

4∇3ρ+ 8κρ− κ∇4κ = 4

(
−3

2
κρ+ r−1 d/Γg

)
+ 8κρ− κ

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
=

1

2
κκ2 + r−1 d/Γg

6ρ− 2∇4κ = 6ρ− 2

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
= 2ρ+ κκ+ r−1 d/Γg.

Hence,

[Q,∇4]α =
(
2ρ+ κκ

)
∇3α +

1

2
κκ2α + Good1

as stated.

Also,

[Q,∇4∇3]α = [Q,∇4]∇3α +∇4

(
[Q,∇3]α

)
. (A.14.16)

We first calculate, as above, for f = ∇3α

[Q,∇4]f =

(
∇3∇3 + 2κ∇3 +

1

2
κ2

)
∇4f −∇4

((
∇3∇3 + 2κ∇3 +

1

2
κ2

)
f

)
=

(
∇3∇3∇4 −∇4∇3∇3

)
f + 2κ

(
∇3∇4 −∇4∇3

)
f − 2∇4κ∇3α− κ(∇4κ)f

= ∇3

([
∇3,∇4]f

)
+ [∇3,∇4]∇3f + 2κ[∇3,∇4]f − 2∇4κ∇3f − κ(∇4κ)f.

In view of Lemma A.14.14, since f = ∇3α is 1-conformal and ∇3f is 0-conformal, we
have [

∇3,∇4]f = 2ρf + r−1Γg d/
≤1f,[

∇3,∇4]∇3f = r−1Γg d/
≤1∇3f.

Hence

[Q,∇4]f = ∇3

(
2ρf + r−1Γg d/

≤1f
)

+
(
r−1Γg d/

≤1
)
∇3f + 2κ

(
2ρf + r−1Γg d/

≤1f
)

− 2∇4κ∇3f − κ(∇4κ)f

=
(
2ρ− 2∇4κ

)
∇3f +

(
2∇3ρ+ 4κρ− κ∇4κ

)
f

+ r−1Γg d/
≤1∇3f + r−2Γg d/

≤1f.
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Therefore,

[Q,∇4]∇3α =
(
2ρ− 2∇4κ

)
∇3∇3α +

(
2∇3ρ+ 4κρ− κ∇4κ

)
∇3α + r−2Γgd

≤2α.

As above,

2ρ− 2∇4κ = 2ρ− 2

(
−1

2
κκ+ 2ρ+ r−1Γg

)
= −2ρ+ κκ+ r−1Γg,

2∇3ρ+ 4κρ− κ∇4κ = 2

(
−3

2
κρ+ r−1Γg

)
+ 4κρ− κ

(
−1

2
κκ+ 2ρ+ r−1Γg

)
=

1

2
κκ2 − ρκ+ r−1Γg.

Hence, since r−1Γg(∇3∇3α,∇3α) = r−2Γg · d≤2α = Good,

[Q,∇4]∇3α =
(
− 2ρ+ κκ

)
∇3∇3α +

(
1

2
κκ2 − ρκ

)
∇3α + Good. (A.14.17)

We deduce,

[Q,∇4∇3]α = [Q,∇4]∇3α +∇4

(
[Q,∇3]α

)
=

(
− 2ρ+ κκ

)
∇3∇3α +

(
1

2
κκ2 − ρκ

)
∇3α

+ ∇4

(
κ2∇3α +

1

2
κ3α + Good1

)
+ Good

=
(
− 2ρ+ κκ

)
∇3∇3α + κ2∇4∇3α +

1

2
κ3∇4α

+

(
∇4(κ2) +

1

2
κκ2 − ρκ

)
∇3α +

3

2
κ2∇4κα + Good.

Note that

∇4(κ2) +
1

2
κκ2 − ρκ = 2κ

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
+

1

2
κκ2 − ρκ

= 3ρκ− 1

2
κκ2 + r−2 d/Γg,

3

2
κ2∇4κ =

3

2
κ2

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
.

Hence,

[Q,∇4∇3]α =
(
− 2ρ+ κκ

)
∇3∇3α + κ2∇4∇3α +

1

2
κ3∇4α

+

(
3ρκ− 1

2
κκ2

)
∇3α +

3

2
κ2

(
−1

2
κκ+ 2ρ

)
α + Good

as stated.
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Lemma A.14.17. Given f a 2-conformal tensor in s2 we have

[∇3,
(c)4/ ]f = −κ (c)4/ f + r−1d≤2(Γb · f).

Proof. Recall that for a 2-conformal spacetime tensor f we have

(c)4/ f = 4/ f + r−1 d/≤1(Γg · f).

Hence,

[∇3,
(c)4/ ]f = [∇3,4/ ]f +∇3

(
r−1 d/≤1(Γg · f)

)
+ r−1 d/≤1(Γg · ∇3f).

On the other hand, since ∇/ ω = r−1 d/Γb,∇/ 2ω = r−2 d/2Γb,

[∇3,4/ ]f = [e3 − 4ω,4/ ]f = [e3,4/ ]f + r−2 d/≤2(Γb · f).

We deduce,

[∇3,
(c)4/ ]f = [e3,4/ ]f + r−2d≤2(Γb · f) + e3

(
r−1 d/≤1(Γg · f)

)
.

In the reduced form, for an s2 tensor f ,

[∇3,
(c)4/ ]f = [e3,4/ 2]f + r−2d≤2(Γb · f) + e3

(
r−1 d/≤1(Γg · f)

)
.

We now recall that 4/ 2 = − d?/2 d/2 +2K. Hence, applying the commutation Lemma7 2.1.51,

[4/ 2, e3]f = [− d?/2 d/2 + 2K, e3]f = − d?/2[ d/2, e3]f − [ d?/2, e3] d/2f − 2e3(K)f

= − d?/2

(
1

2
κ d/2 + Com2(f)

)
−
(

1

2
κ d?/2 + Com∗2( d/2f)

)
− 2e3(K)

= −κ d?/2 d/2f − 2e3(K)f + eθ(κ) d/2f − d?/2 (Com2(f))− Com∗2( d/2f)

= −κ d?/2 d/2f − 2e3(K)f + r−2d≤2(Γb · f) + r−1d≤1(Γg · e3f)

= κ4/ 2f − 2(e3K + κK)f + r−2d≤2(Γb · f) + r−1d≤1(Γg · e3f).

7Recall that we have

Com2(f) = −1

2
ϑd?/3f + (ζ − η)e3f − 2ηe3Φf − ξ(e4f + ke4(Φ)f)− 2βf,

Com∗2(f) = −1

2
ϑd/1f − (ζ − η)e3f − ηe3Φf + ξ(e4f − e4(Φ)f)− βf.
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Note that, ignoring the quadratic terms,

e3K + κK = −e3

(
ρ+

1

4
κκ

)
− κ

(
ρ+

1

4
κκ

)
= −e3ρ− κρ−

1

4

(
e3(κκ) + κκ2

)
=

1

2
κρ− d/1β −

1

4

{
κ

(
−1

2
κ2 − 2ω κ

)
+ κ

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ

)
+ κκ2

}
= − d/1β −

1

2
κ d/1η.

We deduce,

[e3,4/ 2] = −[4/ 2, e3]f = −κ4/ 2f + r−1d≤2(Γb · f).

Consequently,

[∇3,
(c)4/ ]f = −κ (c)4/ f + r−1d≤2(Γb · f)

as stated.

Lemma A.14.18. We have,

[Q, (c)4/ ]α = −2κ∇3
(c)4/ α− 5

2
κ2 (c)4/ α + Good. (A.14.18)

Proof. We have

[Q, (c)4/ 2]α =

[
∇3∇3 + 2κ∇3 +

1

2
κ2

]
(c)4/ α− (c)4/

[
∇3∇3α + 2κ∇3α +

1

2
κ2α

]
= ∇3[∇3,

(c)4/ ]α + [∇3,
(c)4/ ]e3α + [2κ∇3,

(c)4/ ]α +

[
1

2
κ2, (c)4/ 2

]
α.

Note that

[2κ∇3,
(c)4/ ]α = 2κ[∇3,

(c)4/ ]α + Good,[
1

2
κ2, (c)4/ 2

]
α = Good.

Hence, using the previous commutation Lemma,

[Q, (c)4/ 2]α = ∇3[∇3,
(c)4/ ]α + [∇3,

(c)4/ ]e3α + 2κ[∇3,
(c)4/ ]α + Good

= ∇3

(
− κ (c)4/ α + r−1d≤2(Γb · α)

)
+
(
− κ (c)4/∇3α + r−1d≤2(Γb · ∇3α)

)
+ 2κ

(
− κ (c)4/ α + r−1d≤2(Γb · α)

)
+ Good

= −κ
(
∇3

(c)4/ α + (c)4/∇3α
)
−
(
∇3κ+ 2κ2

)
(c)4/ α + Good

= −κ
(
2∇3

(c)4/ α− [∇3,
(c)4/ ]α

)
−
(
∇3κ+ 2κ2

)
(c)4/ α + Good

= −2κ∇3
(c)4/ α−

(
∇3κ+ 3κ2

)
(c)4/ α + Good.
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Note that

(∇3κ+ 3κ2) (c)4/ α =

(
5

2
κ2 + r−1 d/Γb

)
(c)4/ α =

5

2
κ2 + r−2 d/Γg · d/≤2α.

Hence,

[Q, (c)4/ 2]α = −2κ∇3
(c)4/ α− 5

2
κ2 (c)4/ α + Good

as stated.

Lemma A.14.19. We have

Q(fg) = Q(f)g + fQ(g) + 2∇3f∇3g − 1
2
κ2fg.

Also,

[Q, fe4]g = Q(f)∇4g + f [Q, e4]g + 2∇3f∇3∇4g −
1

2
κ2f∇4g,

[Q, f∇3]g = Q(f)∇3g + f [Q,∇3]g + 2∇3f∇3∇3g −
1

2
κ2f∇3g.

Proof. Recall that,

Q = ∇3∇3 + 2κ∇3 +
1

2
κ2.

Hence,

Q(fg) =

[
∇3∇3 + 2κ∇3 +

1

2
κ2

]
(fg)

= (∇3∇3f)g + f(∇3∇3g) + 2∇3f∇3g + 2κ(∇3fg + f∇3g) +
1

2
κ2fg

=
(
∇3∇3f + 2κ∇3f

)
g + 2∇3f∇3g + fQ(g)

= Q(f)g + fQ(g) + 2∇3f∇3g −
1

2
κ2fg.

Also,

[Q, f∇4]g = Q(f∇4g)− f∇4Q(g) = Q(f)∇4g + fQ∇4(g) + 2∇3f∇3∇4g −
1

2
κ2f∇4g

− f∇4Q(g)

=

(
Q(f)− 1

2
κf

)
∇4g + f [Q,∇4]g + 2∇3f∇3∇4g.

Similarly,

[Q, f∇3]g =

(
Q(f)− 1

2
κ2f

)
∇3g + f [Q,∇3]g + 2∇3f∇3∇3g

as stated.
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A.14.3 Main commutation

Proposition A.14.20. The following identity holds true.

[Q,L]α = −2κ∇4Q(α) + CQQ(α) + Good, (A.14.19)

where,

CQ = −8ρ− 7

2
κκ.

Proof. In view of Lemma A.14.13, we have

Lα = −∇4∇3α + (c)4/ 2α−
5

2
κ∇3α−

1

2
κ∇4α−

(
−4ρ+

1

2
κκ

)
α = Good2.

Hence, we infer

[Q,L]α = −[Q,∇4∇3]α + [Q,4/ 2]α− 1

2
[Q, κ∇4]α− 5

2
[Q, κ∇3]α +

[
Q, 4ρ− 1

2
κκ

]
α

= I + J +K + L+M (A.14.20)

with I, J,K, L,M denoting each of the commutators on the left of (A.14.20).

Expression for I

In view of Lemma A.14.16 we have, for I = −[Q,∇4∇3]α,

I = (2ρ− κκ
)
∇3∇3α− κ2∇4∇3α−

1

2
κ3∇4α−

(
−1

2
κκ2 + 3ρκ

)
∇3α

− 3

2
κ2

(
−1

2
κκ+ 2ρ

)
α + Good.

(A.14.21)

Expression for J

Using Lemma A.14.18,

J = [Q, (c)4/ ]α = −2κ∇3
(c)4/ α− 5

2
κ2 (c)4/ α.
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Recalling the definition of L and the fact that Lα = Good1 we write,

4/ 2α = ∇4∇3α +
5

2
κ∇3α +

1

2
κ∇4α +

(
−4ρ+

1

2
κκ

)
α + Good1.

Hence,

J = −2κ∇3

(
∇4∇3α +

5

2
κ∇3α +

1

2
κ∇4α +

(
−4ρ+

1

2
κκ

)
α

)
− 5

2
κ2

(
∇4∇3α +

5

2
κ∇3α +

1

2
κ∇4α +

(
−4ρ+

1

2
κκ

)
α

)
= −2κ∇3∇4∇3α− 5κκ∇3∇3α− κ2∇3∇4α− 2κ

(
−4ρ+

1

2
κκ

)
∇3α

− 2κ

(
5

2
∇3κ∇3α +

1

2
∇3κ∇4α +∇3

(
−4ρ+

1

2
κκ

)
α

)
− 5

2
κ2

(
∇4∇3α +

5

2
κ∇3α +

1

2
κ∇4α +

(
−4ρ+

1

2
κκ

)
α

)
.

According to Lemma A.14.14

∇3∇4∇3α = ∇4∇3∇3α + [∇3,∇4]∇3α = ∇4∇3∇3α + 2ρ∇3α + r−1Γg d/
≤1∇3α

= ∇4∇3∇3α + 2ρ∇3α + Good,

∇3∇4α = ∇4∇3α + 4ρα + Good1.

We deduce, modulo Good error terms,

J = −2κ
(
∇4∇3∇3α + 2ρ∇3α

)
− 5κκ∇3∇3α− κ2

(
∇4∇3α + 4ρα

)
− 2κ

(
−4ρ+

1

2
κκ

)
∇3α

− 5κ∇3κ∇3α− κ∇3κ∇4α− 2κ∇3

(
−4ρ+

1

2
κκ

)
α

− 5

2
κ2

(
∇4∇3α +

5

2
κ∇3α +

1

2
κ∇4α +

(
−4ρ+

1

2
κκ

)
α

)
.

Grouping terms we rewrite in the form,

J = −2κ∇4∇3∇3α− 5κκ∇3∇3α + J43∇4∇3α + J4∇4α + J3∇3α + J0α.
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We calculate the coefficients J43, J4, J3, J0 as follows.

J43 = −κ2 − 5

2
κ2 = −7

2
κ2,

J4 = −κ∇3κ−
5

4
κ3 = −κ

(
−1

2
κ2 + r−1 d/Γb

)
− 5

4
κ3 = −3

4
κ3 + r−2 d/Γb,

J3 = −4κρ− 2κ

(
−4ρ+

1

2
κκ

)
− 5κ∇3κ−

25

4
κ3

= 4κρ− 29

4
κ3 − 5κ

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
= −6κρ− 19

4
κ3 + r−2 d/Γg,

J0 = −4ρκ2 − 2κ∇3

(
−4ρ+

1

2
κκ

)
− 5

2
κ2

(
−4ρ+

1

2
κκ

)
= 6ρκ2 − 5

4
κκ3 + 8κ∇3ρ− κ (κ∇3κ+ κ∇3κ)

= 6ρκ2 − 5

4
κκ3 + 8κ

(
−3

2
κρ+ r−1 d/Γg

)
− κ

(
κ

(
−1

2
κκ+ 2ρ+ r−1Γg

)
+ κ

(
−1

2
κ2 + r−1 d/Γb

))
= −8κ2ρ− 5

4
κκ3 + κκ3 + r−3 d/Γb + r−2Γg.

Hence

J4∇4α = −3

4
κ3 + Good,

J3∇3α =

(
−6κρ− 19

4
κ3

)
∇3α + Good,

J0α = −8κ2ρ− 1

4
κκ3 + Good.

We finally derive,

J = −2κ∇4∇3∇3α− 5κκ∇3∇3α−
7

2
κ2∇4∇3α

− 3

4
κ3∇4α−

(
6κρ+

19

4
κκ2

)
∇3α−

(
8κ2ρ+

1

4
κκ3

)
α + Good.

(A.14.22)
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Expression for K

Also, using Lemma A.14.19 and Lemma A.14.16 (according to which we have the identity
[Q,∇4]α =

(
2ρ+ κκ

)
∇3α + 1

2
κκ2α + Good1)

K = −1

2

[
Q, κ∇4

]
α = −1

2

(
Q(κ)∇4α + κ[Q,∇4]α + 2∇3κ∇3∇4α−

1

2
κ3∇4α

)
= −1

2

(
Q(κ)− 1

2
κ3

)
∇4α−

1

2
κ

(
(2ρ+ κκ)∇3α +

1

2
κκ2α

)
− ∇3κ∇3∇4α + Good.

Hence,

K = −∇3κ∇3∇4α−
1

2

(
Q(κ)− 1

2
κ3

)
∇4α−

1

2
κ
(
2ρ+ κκ

)
∇3α−

1

4
κκ3α + Good.

We calculate the expression,

Q(κ)− 1

2
κ3 = ∇3∇3κ+ 2κ∇3κ = ∇3

(
−1

2
κ2 + r−1 d/Γb

)
+ 2κ

(
−1

2
κ2 + r−1 d/Γb

)
= −κ

(
∇3κ+ κ2

)
+∇3

(
r−1 d/Γb

)
+ r−2 d/Γb

= −1

2
κ3 +∇3

(
r−1 d/Γb

)
+ r−2 d/Γb.

Hence,

K = −∇3κ∇3∇4α +
1

4
κ3∇4α−

1

2
κ
(
2ρ+ κκ

)
∇3α−

1

4
κκ3α +∇3

(
r−1 d/Γb

)
∇4α + Good.

We note that,

∇3

(
r−1 d/Γb

)
∇4α = ∇3

(
r−1 d/Γb∇4α

)
− r−1 d/Γb∇3∇4α

= ∇3

(
r−1 d/Γgd

≤1α
)
− r−2 d/Γgd

≤2α = Good.

We deduce,

K = −∇3κ∇3∇4α +
1

4
κ3∇4α−

1

2
κ
(
2ρ+ κκ

)
∇3α−

1

4
κκ3α + Good

= −
(
−1

2
κ2 + r−1 d/Γb

)
∇3∇4α +

1

4
κ3∇4α−

1

2
κ
(
2ρ+ κκ

)
∇3α−

1

4
κκ3α + Good

=
1

2
κ2∇3∇4α +

1

4
κ3∇4α−

1

2
κ
(
2ρ+ κκ

)
∇3α−

1

4
κκ3α + Good.
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In view of Lemma A.14.14 [∇3,∇4]α = 4ρα + r−1Γg d/
≤1α. Hence

K =
1

2
κ2
(
∇4∇3α + 4ρα + r−1Γg d/

≤1α
)

+
1

4
κ3∇4α−

1

2
κ
(
2ρ+ κκ

)
∇3α−

1

4
κκ3α + Good

=
1

2
κ2∇4∇3α +

1

4
κ3∇4α−

1

2
κ (2ρ+ κκ)∇3α + κ2

(
2ρ− 1

4
κκ

)
α + Good.

We have thus derived

K =
1

2
κ2∇4∇3α +

1

4
κ3∇4α−

1

2
κ
(
2ρ+ κκ

)
∇3α + κ2

(
2ρ− 1

4
κκ

)
α + Good.(A.14.23)

Expression for L

According to Lemma A.14.19 and Lemma A.14.16 (according to which we have the identity
[Q,∇3]α = κ2∇3α + 1

2
κ3α + Good1)

L = −5

2

[
Q, κe3

]
α = −5

2

(
Q(κ)∇3α + κ[Q,∇3]α + 2∇3κ∇3∇3α−

1

2
κκ2∇3α

)
= −5

2

(
Q(κ)∇3α + κ

(
κ2∇3α +

1

2
κ3α

)
+ 2∇3κ∇3∇3α−

1

2
κκ2∇3α

)
+ Good

= −5∇3κ∇3∇3α−
5

2

(
Q(κ) +

1

2
κκ

)
∇3α−

5

4
κκ3α + Good.

Note that

Q(κ) = ∇3∇3κ+ 2κ∇3κ+
1

2
κκ2

= ∇3

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
+ 2κ

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
+

1

2
κκ2

= −1

2

(
κ∇3κ+ κ∇3κ

)
+ 2

(
−3

2
κρ+ r−1 d/Γg

)
− κκ2 + 4ρκ+

1

2
κκ2

+ e3

(
r−1 d/Γg

)
+ r−2 d/Γg

= −1

2

(
κ∇3κ+ κ∇3κ

)
+ ρκ− 1

2
κκ.

Therefore,

Q(κ) = −1

2
κ

(
−1

2
κ2 + r−1 d/Γb

)
− 1

2
κ

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
+ κρ− 1

2
κκ2

+ r−1d≤2Γg = r−1d≤2Γg.
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We deduce,

L = −5∇3κ∇3∇3α−
5

4
κκ2∇3α +

5

4
κκ3α + Good

= −5

(
−1

2
κκ+ 2ρ

)
∇3∇3α−

5

4
κκ2∇3α +

5

4
κκ3α + Good.

Therefore,

L = −5

(
−1

2
κκ+ 2ρ

)
∇3∇3α−

5

4
κκ2∇3α +

5

4
κκ3α + Good. (A.14.24)

Expression for M

Similarly, according to Lemma A.14.19,

M =

[
Q, 4ρ− 1

2
κκ

]
α = Q

(
4ρ− 1

2
κκ

)
α + 2∇3

(
4ρ− 1

2
κκ

)
∇3α−

1

2
κ2

(
4ρ− 1

2
κκ

)
α

i.e.,

M = Q

(
4ρ− 1

2
κκ

)
α + 2∇3

(
4ρ− 1

2
κκ

)
∇3α−

1

2
κ2

(
4ρ− 1

2
κκ

)
α.

We calculate,

∇3

(
4ρ− 1

2
κκ

)
= 4∇3ρ−

1

2
κ∇3κ−

1

2
κ∇3κ

= 4

(
−3

2
κρ+ r−1 d/Γg

)
− 1

2
κ

(
−1

2
κ2 + r−1 d/Γb

)
− 1

2
κ

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
= −7κρ+

1

2
κκ2 + r−1 d/Γg.

We deduce,

M =

(
Q

(
4ρ− 1

2
κκ

)
− 1

2
κ2

(
4ρ− 1

2
κκ

))
α +

(
−7κρ+

1

2
κκ2

)
∇3α + Good.
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It remains to calculate

M0 = Q

(
4ρ− 1

2
κκ

)
− 1

2
κ2

(
4ρ− 1

2
κκ

)
= ∇3∇3

(
4ρ− 1

2
κκ

)
+ 2κ∇3

(
4ρ− 1

2
κκ

)
= ∇3

(
−7κρ+

1

2
κκ2 + r−1 d/Γg

)
+ 2κ

(
−7κρ+

1

2
κκ2 + r−1 d/Γg

)
= −7ρ∇3κ− 7κ∇3ρ+

1

2
κ2∇3κ+ κκ∇3κ+ 2κ

(
−7κρ+

1

2
κκ2

)
+ ∇3(r−1 d/Γg) + r−2 d/Γg.

Hence,

M0 = −7ρ

(
−1

2
κ2 + r−1 d/Γb

)
− 7κ

(
−3

2
κρ+ r−1 d/Γg

)
+

1

2
κ2

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
+ κκ

(
−1

2
κ2 + r−1 d/Γb

)
+ 2κ

(
−7κρ+

1

2
κκ2

)
+∇3(r−1 d/Γg) + r−2 d/Γg

= κ2ρ+
1

4
κκ3 +∇3(r−1 d/Γg) + r−2 d/Γg.

We conclude,

M =

(
κ2ρ+

1

4
κκ3

)
α + 2

(
−7κρ+

1

2
κκ2

)
∇3α + Good. (A.14.25)

Indeed note that

∇3(r−1 d/Γg)α = ∇3

(
r−1 d/Γgα

)
− r−1 d/Γg∇3α = Good.
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End of the proof of Proposition A.14.20

Using the equations (A.14.21)–(A.14.25) we deduce, back to (A.14.20),

[Q,L]α = I + J +K + L+M

=
(
2ρ− κκ

)
∇3∇3α− κ2∇4∇3α−

1

2
κ3∇4α−

(
−1

2
κκ2 + 3ρκ

)
∇3α

− 3

2
κ2

(
−1

2
κκ+ 2ρ

)
α− 2κ∇4∇3∇3α− 5κκ∇3∇3α−

7

2
κ2∇4∇3α

− 3

4
κ3∇4α−

(
6κρ+

19

4
κκ2

)
∇3α−

(
8κ2ρ+

1

4
κκ3

)
α

+
1

2
κ2∇4∇3α +

1

4
κ3∇4α−

1

2
κ(2ρ+ κκ

)
∇3α + κ2

(
2ρ− 1

4
κκ

)
α

− 5

(
−1

2
κκ+ 2ρ

)
∇3∇3α−

5

4
κκ2∇3α−

5

4
κκ3α

+

(
κ2ρ+

1

4
κκ3

)
α + 2

(
−7κρ+

1

2
κκ2

)
∇3α + Good.

We deduce,

[Q,L]α = −2κ∇4∇3∇3α + C ′33∇3∇3α + C ′43∇4∇3α + C ′4∇4α + C ′3∇3α + C ′0α

with,

C ′33 =
(
2ρ− κκ

)
− 5κκ− 5

(
−1

2
κκ+ 2ρ

)
= −8ρ− 7

2
κκ,

C ′43 = −κ2 − 7

2
κ2 +

1

2
κ2 = −4κ2,

C ′4 = −1

2
κ3 − 3

4
κ3 +

1

4
κ3 = −κ3,

C ′3 =
1

2
κκ2 − 3ρκ−

(
6κρ+

19

4
κκ2

)
− 1

2
κ
(
2ρ+ κκ

)
− 5

4
κκ2 + 2

(
−7κρ+

1

2
κκ2

)
= −24κρ− 5κκ2,

C ′0 = −3

2
κ2

(
−1

2
κκ+ 2ρ

)
−
(

8κ2ρ+
1

4
κκ3

)
+ κ2

(
2ρ− 1

4
κκ

)
− 5

4
κκ3 +

(
κ2ρ+

1

4
κκ3

)
= −8κ2ρ− 3

4
κκ3.

Finally we write, recalling the definition of Q = ∇3∇3 + 2κ∇3 + 1
2
κ2,

∇3∇3α = Q(α)− 2κ∇3α−
1

2
κ2α
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and,

∇4∇3∇3α = ∇4Q(α)− 2κ∇4∇3α−
1

2
κ2∇4α− 2∇4κ∇3α− κ∇4κα.

Hence,

−2κ∇4∇3∇3α + C ′33∇3∇3α = −2κ∇4Q(α) + 4κ2∇4∇3α + κ3∇4α + 4κ∇4κ∇3α

+ 2κ2∇4κα + C ′33

(
Q(α)− 2κ∇3α−

1

2
κ2α

)
.

We deduce,

[Q,L]α = −2κ∇4Q(α) + C ′33Q(α) + 4κ2∇4∇3α + κ3∇4α +
(
4κ∇4κ− 2κC ′33

)
∇3α

+

(
2κ2∇4κ−

1

2
κ2C ′33

)
α + C ′43∇4∇3α + C ′4∇4α + C ′3∇3α + C ′0α.

Thus, setting CQ = C ′33, we deduce,

[Q,L]α = −2κ∇4Q(α) + CQQ(α) + C43∇4∇3α + C4∇4α + C3∇3α + C0α + Good

where,

CQ = C ′33 = −8ρ− 7

2
κκ,

C43 = 4κ2 + C ′43 = 4κ2 − 4κ2 = 0,

C4 = κ3 + C ′4 = κ3 − κ3 = 0.

Also,

C3 = 2κ
(
2∇4κ− C ′33

)
+ C ′3

= 2κ

(
−κκ+ 4ρ+ r−1 d/Γg + 8ρ+

7

2
κκ

)
+ C ′3

= 2κ

(
12ρ+

5

2
κκ

)
+
(
− 24κρ− 5κκ2

)
+ r−2 d/Γg

= r−2 d/Γg,

C0 = 2κ2∇4κ−
1

2
κ2 C ′33 + C ′0

= 2κ2

(
−1

2
κκ+ 2ρ+ r−1 d/Γg

)
+

1

2
κ2

(
8ρ+

7

2
κκ

)
− 8κ2ρ− 3

4
κκ3

= 8κ2ρ+
3

4
κκ3 − 8κ2ρ− 3

4
κκ3 + r−3 d/Γg

= r−3 d/Γg.
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We have therefore checked that,

[Q,L]α = −2κ∇4Q(α) + CQQ(α) + Good, CQ = −8ρ− 7

2
κκ,

as stated in Proposition A.14.20.

A.14.4 Proof of Theorem 2.4.7

We start with the following,

Lemma A.14.21. We have,

�2(fr4) = r4�2f − 2r4
(
κe4f + κe3f

)
+ r4

(
− 5κκ− 4ρ

)
f +O(r4d≤1Γg · f).

We postpone the proof of the lemma to the end of the section and continue below the
proof of the theorem. According to Lemma A.14.13

L(α) = Good2

where L is the operator

Lα = −∇4∇3α + (c)4/ 2α−
5

2
κ∇3α−

1

2
κ∇4α−

(
−4ρ+

1

2
κκ

)
α.

Applying Q and recalling the definition of the error terms Good we derive,

L(Qα) = −[Q,L]α + Good.

Thus, in view of Proposition A.14.20,

[Q,L]α = −2κ∇4Q(α) + CQQ(α), CQ = −8ρ− 7
2
κκ.

We deduce,

L(Qα) = 2κ∇4Q(α)− CQQ(α).

Therefore, modulo Good terms,

2κ∇4Q(α)− CQQ(α) = −∇4∇3(Qα) + (c)4/ 2(Qα)− 5

2
κ∇3Q(α)− 1

2
κ∇4Q(α)

−
(
−4ρ+

1

2
κκ

)
Q(α).
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We deduce

−∇4∇3(Qα) + (c)4/ 2(Qα)− 5

2
κ∇3Q(α)− 5

2
κ∇4Q(α) +

(
CQ −

(
−4ρ+

1

2
κκ

))
Q(α) + Good.

In view of the expression for �2 in the second part of the Lemma A.14.13 we rewrite in
the form

�2Q(f)− 2κ∇3Q(α)− 2κ∇4Q(α)−
(
4ρ+ 4κκ

)
Q(α) = Good + r−1Γg · d/Q(α).

Finally, making use of Lemma A.14.21 and recalling that q = r4Q(α),

�2q = r4�2(Qα)− 2r4
(
κe4(Qα) + κe3(Qα)

)
+ r4

(
− 5κκ− 4ρ

)
Qf +O(r4d≤1Γg ·Q(α)

= r4
(

2κ∇3Q(α) + 2κ∇4Q(α) +
(
4ρ+ 4κκ

)
Q(α) + Good

)
− 2r4

(
κe4(Qα) + κe3(Qα)

)
+ r4

(
− 5κκ− 4ρ

)
Qf +O(d≤1Γg · q)

= −κκq + r4Good.

This ends the proof of Theorem 2.4.7.

Proof of Lemma A.14.21

We have,

�2(fr4) = DαDα(fr4) = Dα(Dαfr
4 + fDαr

4)

= r4�2f + 2Dα(r4)Dαf + f�(r)

= r4�2f −
(
e3(r4)e4f + e4(r4)e3f

)
+ f�(r4) + r4Γgdf

= r4�2f − 4r3
(
e3(r)e4f + e4(r)e3f

)
+ f�(r4) + r4Γgdf

= r4�2f − 2r4
(

(κ+ Γb)e4f + (κ+ Γg)e3f
)

+ f�(r4) + r4Γg · df
= r4�2f − 2r4

(
κe4f + κe3f

)
+ f�(r4) + r4Γg · f.

Also,

�(r4) = −e4(e3(r4))− 1

2
κe4(r4) +

(
−1

2
κ+ 2ω

)
e3(r4) +4/ (r4) + 2ηeθ(r

4)

= −4e4(r3e3(r))− 2r3κ
r

2
(κ+ Γg) + 4r3

(
−1

2
κ+ 2ω

)
r

2
(κ+ Γb) +4/ (r4) + 2ηeθ(r

4)

= −12r2(e4r)(e3r)− 4r3e4e3r − r4κκ+ 2r4

(
−1

2
κ+ 2ω

)
κ+O(r3Γb)

= −3r4(κ+ Γb)(κ+ Γg)− 4r3e4

(r
2

(κ+ Γb)
)
− 2r4κκ+ 4r4ωκ+O(r3Γb).
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Hence,

�(r4) = −5r4κκ+ 4r4ωκ− 2r3e4(rκ) +O(r4d≤1Γg).

Note that,

e4(rκ) = re4(κ) +
r

2
κ(κ+ Γg) = r

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ

)
+
r

2
κ(κ+ Γg)

= 2rρ+ 2rωκ+O(d≤1Γg).

Hence,

�(r4) = −5r4κκ+ 4r4ωκ− 2r3(2rρ+ 2rωκ) +O(r4d≤1Γg)

= r4
(
− 5κκ− 4ρ

)
+O(r4d≤1Γg).

We conclude

�2(fr4) = r4�2f − 2r4
(
κe4f + κe3f

)
+ r4

(
− 5κκ− 4ρ

)
f +O(r4d≤1Γg)

as stated.
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Appendix B

APPENDIX TO CHAPTER 8

B.1 Proof of Proposition 8.4.1

Proposition B.1.1. The following wave equations hold true.

1. The null curvature component ρ verifies the identity

�gρ := κe4ρ+ κe3ρ+
3

2

(
κκ+ 2ρ

)
ρ+ Err[�gρ],

where

Err[�gρ] =
3

2
ρ

(
−1

2
ϑϑ+ 2(ξ ξ + η η)

)
+

(
3

2
κ− 2ω

)(
1

2
ϑα− ζ β − 2(η β + ξ β)

)
−1

2
ϑ d?/2β + (ζ − η)e3β − ηe3(Φ)β − ξ(e4β + e4(Φ)β)− ββ

−e3

(
−1

2
ϑα + ζ β + 2(η β + ξ β)

)
− d?/1(κ)β + 2 d?/1(ω)β + 3η d?/1(ρ)− d/1

(
− ϑβ + ξα

)
− 2ηeθρ.

2. The small curvature quantity,

ρ̃ := r2

(
ρ+

2m

r3

)
887



888 APPENDIX B. APPENDIX TO CHAPTER 8

verifies the wave equation,

�g(ρ̃) +
8m

r3
ρ̃ = −6m

�g(r)−
(

2
r
− 2m

r2

)
r2

− 3m

r

(
κκ+

4Υ

r2

)
−3m

r
(Aκ+ Aκ) + Err[�gρ̃],

where

Err[�gρ̃] := −6m

r
AA+

3

r2
ρ̃2 +

3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r

)
ρ̃

+

(
3

2

(
κκ− 8m

r3
+

2

3r2
�g(r2)

)
+

8m

r3

)
ρ̃

−Ae3(ρ̃)− Ae4(ρ̃) +
2

r
Ae3(m) +

2

r
Ae4(m)

+4Da(m)Da

(
1

r

)
+

2

r
�g(m) + 4r d?/1(r) d?/1(ρ) + r2Err[�gρ].

Proof. We prove the result in the following steps.

Step 1. We start by deriving the wave equation for ρ. From Bianchi, ρ satisfies

e4ρ+
3

2
κρ = d/1β − 1

2
ϑα + ζ β + 2(η β + ξ β).

Differentiating with respect to e3, we obtain

e3(e4(ρ)) +
3

2
κe3(ρ) +

3

2
e3(κ)ρ = e3( d/1β) + e3

(
−1

2
ϑα + ζ β + 2(η β + ξ β)

)
.

Also, β satisfies from Bianchi

e3β + κβ = − d?/1ρ+ 2ωβ + 3ηρ− ϑβ + ξα.

Differentiating with respect to d/1, we infer

d/1(e3β) + κ d/1β − d?/1(κ)β = − d/1 d
?/1ρ+ 2ω d/1β − 2 d?/1(ω)β + 3ρ d/1η − 3η d?/1(ρ)

+ d/1

(
− ϑβ + ξα

)
and hence

d/1 d
?/1ρ = − d/1(e3β)− κ d/1β + 2ω d/1β + 3ρ d/1η

+ d?/1(κ)β − 2 d?/1(ω)β − 3η d?/1(ρ) + d/1

(
− ϑβ + ξα

)
.
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Next, we add the equation for d/1 d
?/1ρ from the one for e3(e4(ρ)). This yields

e3(e4(ρ)) + d/1 d
?/1ρ+

3

2
κe3(ρ) +

3

2
e3(κ)ρ

= [e3, d/1]β − κ d/1β + 2ω d/1β + 3ρ d/1η + e3

(
−1

2
ϑα + ζ β + 2(η β + ξ β)

)
+ d?/1(κ)β − 2 d?/1(ω)β − 3η d?/1(ρ) + d/1

(
− ϑβ + ξα

)
.

Next, we recall the following commutator identity

[e3, d/1]β = −1

2
κ d/1β +

1

2
ϑ d?/2β − (ζ − η)e3β + ηe3(Φ)β + ξ(e4β + e4(Φ)β) + ββ.

We infer

e3(e4(ρ)) + d/1 d
?/1ρ+

3

2
κe3(ρ) +

3

2
e3(κ)ρ+

(
3

2
κ− 2ω

)
d/1β − 3ρ d/1η

=
1

2
ϑ d?/2β − (ζ − η)e3β + ηe3(Φ)β + ξ(e4β + e4(Φ)β) + ββ

+e3

(
−1

2
ϑα + ζ β + 2(η β + ξ β)

)
+ d?/1(κ)β − 2 d?/1(ω)β − 3η d?/1(ρ) + d/1

(
− ϑβ + ξα

)
.

Next, we make use of the Bianchi identities and the null structure equations to compute

3

2
e3(κ)ρ+

(
3

2
κ− 2ω

)
d/1β − 3ρ d/1η

=
3

2
ρ

(
−1

2
κκ+ 2ωκ+ 2 d/1η + 2ρ− 1

2
ϑϑ+ 2(ξ ξ + η η)

)
+

(
3

2
κ− 2ω

)(
e4ρ+

3

2
κρ+

1

2
ϑα− ζ β − 2(η β + ξ β)

)
− 3ρ d/1η

=

(
3

2
κ− 2ω

)
e4ρ+

3

2
ρ
(
κκ+ 2ρ

)
+

3

2
ρ

(
−1

2
ϑϑ+ 2(ξ ξ + η η)

)
+

(
3

2
κ− 2ω

)(
1

2
ϑα− ζ β − 2(η β + ξ β)

)
.
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This yields

e3(e4(ρ))−4/ ρ+
3

2
κe3(ρ) +

(
3

2
κ− 2ω

)
e4ρ+

3

2
ρ
(
κκ+ 2ρ

)
= −3

2
ρ

(
−1

2
ϑϑ+ 2(ξ ξ + η η)

)
−
(

3

2
κ− 2ω

)(
1

2
ϑα− ζ β − 2(η β + ξ β)

)
+

1

2
ϑ d?/2β − (ζ − η)e3β + ηe3(Φ)β + ξ(e4β + e4(Φ)β) + ββ

+e3

(
−1

2
ϑα + ζ β + 2(η β + ξ β)

)
+ d?/1(κ)β − 2 d?/1(ω)β − 3η d?/1(ρ) + d/1

(
− ϑβ + ξα

)
,

where we used the fact that d/1 d
?/1 = −4/ .

Next, recall the formula for the wave operator acting on a scalar ψ

�gψ = −e3e4ψ +4/ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ.

We infer

e3(e4(ρ))−4/ ρ+
3

2
κe3(ρ) +

(
3

2
κ− 2ω

)
e4ρ+

3

2
ρ
(
κκ+ 2ρ

)
= −�gρ+

(
2ω − 1

2
κ

)
e4ρ−

1

2
κe3ρ+ 2ηeθρ

+
3

2
κe3(ρ) +

(
3

2
κ− 2ω

)
e4ρ+

3

2
ρ
(
κκ+ 2ρ

)
and hence

�gρ = κe4ρ+ κe3ρ+
3

2

(
κκ+ 2ρ

)
ρ

+
3

2
ρ

(
−1

2
ϑϑ+ 2(ξ ξ + η η)

)
+

(
3

2
κ− 2ω

)(
1

2
ϑα− ζ β − 2(η β + ξ β)

)
−1

2
ϑ d?/2β + (ζ − η)e3β − ηe3(Φ)β − ξ(e4β + e4(Φ)β)− ββ

−e3

(
−1

2
ϑα + ζ β + 2(η β + ξ β)

)
− d?/1(κ)β + 2 d?/1(ω)β + 3η d?/1(ρ)− d/1

(
− ϑβ + ξα

)
− 2ηeθρ.
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Step 2. We derive the following, identity

�g(r2ρ) = −Ae3(r2ρ)− Ae4(r2ρ)

+
3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r
+ κκ+ 2ρ+

2

3r2
�g(r2)

)
r2ρ

+ 4r d?/1(r) d?/1(ρ) + r2Err[�gρ].

(B.1.1)

Proof. r2ρ satisfies the following wave equation

�g(r2ρ) = r2�gρ+ 2Da(r2)Da(ρ) + ρ�g(r2).

On the other hand, recall that we have

�gρ = κe4ρ+ κe3ρ+
3

2

(
κκ+ 2ρ

)
ρ+ Err[�gρ].

We deduce

�g(r2ρ) =
(
r2κ− e4(r2)

)
e3ρ+

(
r2κ− e3(r2)

)
e4ρ

+
3

2

(
κκ+ 2ρ+

2

3r2
�g(r2)

)
r2ρ+ 4r d?/1(r) d?/1(ρ) + r2Err[�gρ]

= −Ae3(r2ρ)− Ae4(r2ρ)

+
3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r
+ κκ+ 2ρ+

2

3r2
�g(r2)

)
r2ρ+ 4r d?/1(r) d?/1(ρ)

+r2Err[�gρ]

as desired.

Step 3. We now derive the desired formula for �gρ̃. In view of the definition of ρ̃, we
have

�g(ρ̃) = �g(r2ρ) +�g

(
2m

r

)
= �g(r2ρ) + 2m�g

(
1

r

)
+ 4Da(m)Da

(
1

r

)
+

2

r
�g(m).

Together with B.1.1 we deduce,

�g(ρ̃) = −Ae3(r2ρ)− Ae4(r2ρ)

+
3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r
+ κκ+ 2ρ+

2

3r2
�g(r2)

)
r2ρ+ 4r d?/1(r) d?/1(ρ)

+2m�g

(
1

r

)
+ 4Da(m)Da

(
1

r

)
+

2

r
�g(m) + 4r d?/1(r) d?/1(ρ) + r2Err[�gρ].
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Next, we use r2ρ = ρ̃− 2mr−1. This yields

�g(ρ̃)− 3

2

(
κκ− 8m

r3
+

2

3r2
�g(r2)

)
ρ̃

= 2m�g

(
1

r

)
− 3m

r
κκ+

12m2

r4
− 2m

r3
�g(r2)

−6mA
e3(r)

r2
− 6mA

e4(r)

r2

+
3

r2
ρ̃2 +

3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r

)
ρ̃

−Ae3(ρ̃)− Ae4(ρ̃) +
2

r
Ae3(m) +

2

r
Ae4(m)

+4Da(m)Da

(
1

r

)
+

2

r
�g(m) + 4r d?/1(r) d?/1(ρ) + r2Err[�gρ].

Note that in Schwarzschild,

3

2

(
κκ− 8m

r3
+

2

3r2
�g(r2)

)
= −8m

r3

and hence

�g(ρ̃) +
8m

r3
ρ̃

= 2m�g

(
1

r

)
− 3m

r
κκ+

12m2

r4
− 2m

r3
�g(r2)

−6m
e3(r)

r2
− 6mA

e4(r)

r2

+
3

r2
ρ̃2 +

3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r

)
ρ̃+

(
3

2

(
κκ− 8m

r3
+

2

3r2
�g(r2)

)
+

8m

r3

)
ρ̃

−Ae3(ρ̃)− Ae4(ρ̃) +
2

r
Ae3(m) +

2

r
Ae4(m)

+4Da(m)Da

(
1

r

)
+

2

r
�g(m) + 4r d?/1(r) d?/1(ρ) + r2Err[�gρ].

Also, we have

�g

(
1

r

)
− 1

r3
�g(r2) = −�g(r)

r2
+ 2

Dα(r)Dα(r)

r3
− 2
�g(r)

r2
− 2

Dα(r)Dα(r)

r3

= −3
�g(r)

r2
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and hence

�g(ρ̃) +
8m

r3
ρ̃− 6m

�g(r)

r2
− 3m

r
κκ+

12m2

r4

−6m
e3(r)

r2
− 6mA

e4(r)

r2
+

3

r2
ρ̃2 +

3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r

)
ρ̃

+

(
3

2

(
κκ− 8m

r3
+

2

3r2
�g(r2)

)
+

8m

r3

)
ρ̃

−Ae3(ρ̃)− Ae4(ρ̃) +
2

r
Ae3(m) +

2

r
Ae4(m)

+4Da(m)Da

(
1

r

)
+

2

r
�g(m) + 4r d?/1(r) d?/1(ρ) + r2Err[�gρ].

Finally, since

−6m
e3(r)

r2
− 6mA

e4(r)

r2
= −3mA

κ

r
− 3mA

κ

r
− 6m

r
AA

and

−6m
�g(r)

r2
− 3m

r
κκ+

12m2

r4
= −6m

�g(r)−
(

2
r
− 2m

r2

)
r2

− 3m

r

(
κκ+

4Υ

r2

)
,

we obtain

�g(ρ̃) +
8m

r3
ρ̃ = −6m

�g(r)−
(

2
r
− 2m

r2

)
r2

− 3m

r

(
κκ+

4Υ

r2

)
−3mA

κ

r
− 3mA

κ

r
− 6m

r
AA

+
3

r2
ρ̃2 +

3

2

(
4

3
A
e3(r)

r
+

4

3
A
e4(r)

r

)
ρ̃

+

(
3

2

(
κκ− 8m

r3
+

2

3r2
�g(r2)

)
+

8m

r3

)
ρ̃

−Ae3(ρ̃)− Ae4(ρ̃) +
2

r
Ae3(m) +

2

r
Ae4(m)

+4Da(m)Da

(
1

r

)
+

2

r
�g(m) + 4r d?/1(r) d?/1(ρ) + r2Err[�gρ].
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Appendix C

APPENDIX TO CHAPTER 9

C.1 Proof of Lemma 9.2.6

We start with the following

Lemma C.1.1. Let k ≥ 0 an integer and let f ∈ sk(S). Then, we have

( d/Skf)# =

√
γ√
γS #

{
◦
d/k(f

#) +

(
k

2
U

∫ 1

0

(√
γ(eθ(κ)− eθ(ϑ))

)#λ

dλ

+
k

4
S

∫ 1

0

(√
γeθ
(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

))#λ
dλ

+
k

4

(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

)#

U ′ +
k

2
(κ+ ϑ)#S ′

)
f#

}
where for 0 ≤ λ ≤ 1, #λ denotes the pull back by

ψλ(
◦
u,
◦
s, θ) := (

◦
u+ λU(θ),

◦
s+ λS(θ), θ).

Proof. For p ∈
◦
S and f a Z-invariant scalar function on S, we have by definition of the

push forward of a vectorfield

[Ψ#(∂θ)f ]Ψ(p) = [∂θ(f ◦Ψ)]p.

We infer

( d/Skf)# =
1√
γS #

(
∂θ(f

#) + k∂θ(Φ
#)f#

)
895
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and hence

( d/Skf)# =

√
γ√
γS #

(
eθ(f

#) + keθ(Φ)f# + k(eθ(Φ
#)− eθ(Φ))f#

)
=

√
γ√
γS #

( ◦
d/k(f

#) + k(eθ(Φ
#)− eθ(Φ))f#

)
.

Next, we have

eθ(Φ
#)− eθ(Φ) =

√
γ−1
(
∂θ(Φ

#)− ∂θΦ
)

and (
∂θ(Φ

#)− ∂θΦ
)

(
◦
u,
◦
s, θ)

= ∂θ[Φ(
◦
u+ U(θ),

◦
s+ S(θ), θ)]− ∂θΦ(

◦
u,
◦
s, θ)

= (∂θΦ)(
◦
u+ U(θ),

◦
s+ S(θ), θ)− ∂θΦ(

◦
u,
◦
s, θ) +

[
(∂uΦ)#U ′ + (∂sΦ)#S ′

]
(
◦
u,
◦
s, θ)

=

∫ 1

0

d

dλ

[
(∂θΦ)(

◦
u+ λU(θ),

◦
s+ λS(θ), θ)

]
dλ+

[
(∂uΦ)#U ′ + (∂sΦ)#S ′

]
(
◦
u,
◦
s, θ)

= U(θ)

∫ 1

0

(∂u∂θΦ)(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ

+S(θ)

∫ 1

0

(∂s∂θΦ)(
◦
u+ λU(θ),

◦
s+ λS(θ), θ)dλ+

[
(∂uΦ)#U ′ + (∂sΦ)#S ′

]
(
◦
u,
◦
s, θ)

which we rewrite

∂θ(Φ
#)− ∂θΦ = U

∫ 1

0

(∂u∂θΦ)#λdλ+ S

∫ 1

0

(∂s∂θΦ)#λdλ+ (∂uΦ)#U ′ + (∂sΦ)#S ′

where #λ denotes the pull back by the map ψλ(
◦
u,
◦
s, θ) = (

◦
u+ λU(θ),

◦
s+ λS(θ), θ).

Next, recall that,

∂s = e4, ∂u =
1

2

(
e3 − Ωe4 − bγ1/2eθ

)
, ∂θ =

√
γeθ.

Hence,

∂θ∂sΦ =
√
γeθe4(Φ)

∂θ∂uΦ =
1

2

√
γeθ
(
e3Φ− Ωe4Φ− bγ1/2eθΦ

)
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which yields

∂θ(Φ
#)− ∂θΦ = U

∫ 1

0

(√
γeθe4(Φ)

)#λ

dλ

+S

∫ 1

0

(
1

2

√
γeθ
(
e3Φ− Ωe4Φ− bγ1/2eθΦ

))#λ

dλ

+
1

2

(
e3Φ− Ωe4Φ− bγ1/2eθΦ

)#

U ′ + (e4Φ)#S ′

=
1

2
U

∫ 1

0

(√
γ(eθ(κ)− eθ(ϑ))

)#λ

dλ

+
1

4
S

∫ 1

0

(√
γeθ
(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

))#λ
dλ

+
1

4

(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

)#

U ′ +
1

2
(κ+ ϑ)#S ′.

We deduce

( d/Skf)# =

√
γ√
γS #

{
◦
d/k(f

#) +

(
k

2
U

∫ 1

0

(√
γ(eθ(κ)− eθ(ϑ))

)#λ

dλ

+
k

4
S

∫ 1

0

(√
γeθ
(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

))#λ
dλ

+
k

4

(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

)#

U ′ +
k

2
(κ+ ϑ)#S ′

)
f#

}
.

This concludes the proof of the lemma.

We are ready to prove the higher derivative comparison Lemma 9.2.6 which we recall
below.

Lemma C.1.2. Let
◦
S ⊂ R = R(

◦
ε,
◦
δ) as in Definition 9.1.1 verifying the assumptions

A1-A3. Let Ψ :
◦
S −→ S be Z-invariant deformation. Assume the bound

‖(U ′, S ′)‖
L∞1 (

◦
S)

+
◦
r
−1

max
0≤s≤smax−1

‖(U ′, S ′)‖
hs(
◦
S,
◦
g/ )
.

◦
δ. (C.1.1)

Then, we have for any reduced scalar h defined on R
‖h‖hs(S) . sup

R
|d≤kh| for 0 ≤ s ≤ smax.

Also, if f ∈ hs(S) and f# is its pull-back by ψ, we have

‖f‖hs(S) = ‖f#‖
hs(
◦
S, g/ S,#)

= ‖f#‖
hs(
◦
S,
◦
g/ )

(1 +O(
◦
ε)) for 0 ≤ s ≤ smax − 1.
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Remark C.1.3. Note that the estimates of the lemma are independent of the size
◦
r of the

sphere
◦
S = S(

◦
u,
◦
s) ⊂ R, see Definition 9.1.1. To simplify the argument below we assume

◦
r ≈ 1. The general case can be easily deduced by a simple scaling argument or making
obvious adjustments in the inequalities below.

Proof. We argue by iteration. We consider the following iteration assumptions

If (9.2.14) holds, then we have ‖h‖hs(S) . sup
R
|d≤sh|, (C.1.2)

and

If (9.2.14) holds, then we have ‖f#‖
hs(
◦
S, g/ S,#)

= ‖f#‖
hs(
◦
S,
◦
g/ )

(1 +O(
◦
δ)). (C.1.3)

First, note that (C.1.2) holds trivially for s = 0 and (C.1.3) holds for s = 0 by Lemma
9.2.3. Thus, from now on, we assume that (C.1.2) and (C.1.3) hold for some s with
0 ≤ s ≤ smax − 2, and our goal is to prove that it also holds for s replaced by s+ 1.

We start with (C.1.2). We have

d/Skh = eSθh+ eSθ (Φ)h.

Now, recall that we have

eSθ =
1√
γS
∂Sθ , ∂Sθ |Ψ(p) =

((
S ′ − 1

2
ΩU ′

)
e4 +

1

2
U ′e3 +

√
γ

(
1− 1

2
bU ′
)
eθ

) ∣∣∣
Ψ(p)

.

This yields

( d/Skh)|Ψ(p)
=

{
1√
γS

((
S ′ − 1

2
ΩU ′

)
e4(h) +

(
S ′ − 1

2
ΩU ′

)
e4(Φ)h

+
1

2
U ′e3(h) +

1

2
U ′e3(Φ)h+

√
γ

(
1− 1

2
bU ′
)
d/k(h)

)}
|Ψ(p)

.

Together with the iteration assumption (C.1.3), we infer

‖ d/Skh‖hs(S) = ‖( d/Skh)#‖
hs(
◦
S,
◦
g/ )

(1 +O(
◦
δ))

.

∥∥∥∥∥ 1√
γS,#

((
S ′ − 1

2
Ω#U ′

)
(e4(h))# +

(
S ′ − 1

2
Ω#U ′

)
(e4(Φ)h)#

+
1

2
U ′(e3(h))# +

1

2
U ′(e3(Φ)h)# +

√
γ#

(
1− 1

2
b#U ′

)
( d/k(h))#

)∥∥∥∥∥
hs(
◦
S,
◦
g/ )
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i.e.,

‖ d/Skh‖hs(S) .
∥∥( d/k(h))#

∥∥
hs(
◦
S,
◦
g/ )

+

∥∥∥∥∥
( √

γ#√
γS,#

− 1

)
( d/k(h))#

∥∥∥∥∥
hs(
◦
S,
◦
g/ )

+

∥∥∥∥∥ 1√
γS,#

((
S ′ − 1

2
Ω#U ′

)
(e4(h))# +

(
S ′ − 1

2
Ω#U ′

)
(e4(Φ)h)#

+
1

2
U ′(e3(h))# +

1

2
U ′(e3(Φ)h)# − 1

2

√
γ#b#U ′( d/k(h))#

)∥∥∥∥∥
hs(
◦
S,
◦
g/ )

.

Together with a non sharp product rule in hs(
◦
S,
◦
g/ ) and the repeated use of the iteration

assumptions (C.1.2) (C.1.3), we can bound the right hand side of the above inequality by

.

1 +

(
‖√γ‖hs(S) +

∥∥∥(
√
γ)#
∥∥∥
h∞1 (

◦
S)

)∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)

 ‖ d/k(h)‖hs(S)

+‖(U ′, S ′)‖
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)


×
(

1 + ‖(Ω, b√γ)‖hs(S) +
∥∥(Ω, b

√
γ)#
∥∥
h∞1 (

◦
S)

)∥∥∥((e3, e4, d/k)h, e3(Φ)h, e4(Φ)h
)∥∥∥

hs(S)

Therefore ‖ d/Skh‖hs(S) can be bounded by

.

1 +

(
‖√γ‖hs(S) +

∥∥∥(
√
γ)#
∥∥∥
h∞1 (

◦
S)

)∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)

 sup
R

∣∣d≤s d/kh∣∣
+

∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)

(1 + ‖(Ω, b√γ)‖hs(S) +
∥∥(Ω, b

√
γ)#
∥∥
h∞1 (

◦
S)

)
× sup
R

∣∣d≤s (dh, e3(Φ)h, e4(Φ)h)
∣∣ ,

where we used in the last inequality the assumption (9.2.14) on (U ′, S ′). Together with
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(9.1.12) and (9.1.15), we infer

‖ d/Skh‖hs(S) .

{1 +

(
1 +

∥∥∥(
√
γ)#
∥∥∥
h∞1 (

◦
S)

)∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)


+

1 +

∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)

(1 +
∥∥(Ω, b

√
γ)#
∥∥
h∞1 (

◦
S)

)}
× sup
R

∣∣d≤s+1h
∣∣ .

Also, for a reduced scalar v defined on R, we have in view of the assumption (9.2.14) on
(U ′, S ′)

‖v#‖
h∞1 (

◦
S)

= ‖v ◦ ψ‖
h∞1 (

◦
S)

.

(
1 + sup

0≤θ≤π
|ψ′(θ)|

)
sup
R
|d≤1v|

.

(
1 + ‖(U ′, S ′)‖

h∞1 (
◦
S)

)
sup
R
|d≤1v|

. (1 +
◦
δ) sup

R
|d≤1v|. (C.1.4)

Together with (9.1.12) and (9.1.15), we infer

‖ d/Skh‖hs(S) .

{
1 +

∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)

}
sup
R

∣∣d≤s+1h
∣∣ .

Now, recall that

γS (ψ(θ)) = γ(ψ(θ)) +

(
Ω(ψ(θ)) +

1

4
(b(ψ(θ)))2γ(ψ(θ))

)
(U ′(θ))2 − 2U ′(θ)S ′(θ)

− γ(ψ(θ))b(ψ(θ))U ′(θ).

Together with a repeated application of the iteration assumptions and a non sharp product

rule in hs(
◦
S,
◦
g/ ) and (C.1.4), this yields∥∥γS∥∥

hs(S)
+
∥∥γS,#∥∥

h∞1 (
◦
S)

.

(
1 + sup

R
|d≤1(γ,Ω, b2γ, bγ)|+ sup

R
|d≤s(γ,Ω, b2γ, bγ)|

)
×

(
1 + ‖(U ′, S ′)‖

h∞1 (
◦
S)

+ ‖(U ′, S ′)‖
hs(
◦
S,
◦
g/ )

)
. 1
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where we used in the last estimate the assumption (9.2.14) on (U ′, S ′) and (9.1.15). We
infer

∥∥∥∥∥ 1√
γS

∥∥∥∥∥
hs(S)

+

∥∥∥∥∥ 1√
γS,#

∥∥∥∥∥
h∞1 (

◦
S)

. 1

and hence

‖ d/Skh‖hs(S) . sup
R

∣∣d≤s+1h
∣∣

which corresponds to the first of our iteration assumption (C.1.2) with s replaced with
s+ 1 for s ≤ smax − 2.

Next, we focus on recovering the second iteration assumption (C.1.3) with s replaced with
s+ 1 for s ≤ smax − 2. Recall from Lemma C.1.1 that we have for f ∈ sk(S)

( d/Skf)# =

√
γ√
γS #

{
◦
d/k(f

#) +

(
k

2
U

∫ 1

0

(√
γ(eθ(κ)− eθ(ϑ))

)#λ

dλ

+
k

4
S

∫ 1

0

(√
γeθ
(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

))#λ
dλ

+
k

4

(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

)#

U ′ +
k

2
(κ+ ϑ)#S ′

)
f#

}

where for 0 ≤ λ ≤ 1, #λ denotes the pull back by

ψλ(
◦
u,
◦
s, θ) = (

◦
u+ λU(θ),

◦
s+ λS(θ), θ).

For convenience, we rewrite some of the terms as follows

eθ(κ)− eθ(ϑ) = − d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ),

bγ1/2eθΦ =
1

2
γ1/2( d/1b+ d?/2b),
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and

eθ
(
κ− ϑ− Ω(κ− ϑ)− 2bγ1/2eθΦ

)
= − d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ) + d?/1(Ωκ)− d?/1(Ω)ϑ+

1

2
Ω( d/1ϑ− d?/2ϑ)

+ d?/1(γ1/2)( d/1ϑ+ d?/2ϑ)b− 2γ1/2eθ(beθΦ)

= − d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ) + d?/1(Ωκ)− d?/1(Ω)ϑ+

1

2
Ω( d/1ϑ− d?/2ϑ)

+ d?/1(γ1/2)( d/1ϑ+ d?/2ϑ)b− 2γ1/2(−eθ(Φ) d?/2b−Kb)
= − d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ) + d?/1(Ωκ)− d?/1(Ω)ϑ+

1

2
Ω( d/1ϑ− d?/2ϑ)

+ d?/1(γ1/2)( d/1ϑ+ d?/2ϑ)b+
1

2
γ1/2( d/2 d

?/2b+ d?/3 d
?/2b) + 2γ1/2Kb

where we used the identities

eθ(eθ(Φ)) = −(eθ(Φ))2 −K,
2γ1/2eθΦ d?/2b =

1

2
γ1/2( d/2 d

?/2b+ d?/3 d
?/2b).

This yields

( d/Skf)# =

√
γ√
γS #

{
◦
d/k(f

#) +

(
k

2
U

∫ 1

0

(√
γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ)

))#λ

dλ

+
k

4
S

∫ 1

0

(
√
γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ) + d?/1(Ωκ)− d?/1(Ω)ϑ

+
1

2
Ω( d/1ϑ− d?/2ϑ) + d?/1(γ1/2)( d/1ϑ+ d?/2ϑ)b

+
1

2
γ1/2( d/2 d

?/2b+ d?/3 d
?/2b) + 2γ1/2Kb

))#λ

dλ

+
k

4

(
κ− ϑ− Ω(κ− ϑ)− γ1/2( d/1ϑ+ d?/2ϑ)b

)#

U ′ +
k

2
(κ+ ϑ)#S ′

)
f#

}
.

Next, we take the hs(
◦
S,

◦
g/ )-norm of this identity, and we use the iteration assumption to
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replace the norm on the left-hand side with the hs(
◦
S, g/ S,#)-norm. We infer

‖( d/Skf)#‖
hs(
◦
S, g/ S,#)

(1 +O(
◦
δ))

=

∥∥∥∥∥
√
γ√
γS #

{
◦
d/k(f

#) +

(
k

2
U

∫ 1

0

(√
γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ)

))#λ

dλ

+
k

4
S

∫ 1

0

(
√
γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ) + d?/1(Ωκ)− d?/1(Ω)ϑ

+
1

2
Ω( d/1ϑ− d?/2ϑ) + d?/1(γ1/2)( d/1ϑ+ d?/2ϑ)b

+
1

2
γ1/2( d/2 d

?/2b+ d?/3 d
?/2b) + 2γ1/2Kb

))#λ

dλ

+
k

4

(
κ− ϑ− Ω(κ− ϑ)− γ1/2( d/1ϑ+ d?/2ϑ)b

)#

U ′ +
k

2
(κ+ ϑ)#S ′

)
f#

}∥∥∥∥∥
hs(
◦
S,
◦
g/ )

.

Next, we use a non sharp product rule in hs(
◦
S,

◦
g/ ) to infer

‖( d/Skf)#‖
hs(
◦
S, g/ S,#)

(1 +O(
◦
δ))

=

1 +O(1)

∥∥∥∥∥
√
γ√
γS #

− 1

∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

{∥∥∥∥ ◦d/k(f#)

∥∥∥∥
hs(
◦
S,
◦
g/ )

+O(1)

(
‖U‖

hs+1(
◦
S,
◦
g/ )

∫ 1

0

∥∥∥∥∥
(√

γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ)

))#λ

∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

dλ

+‖S‖
hs+1(

◦
S,
◦
g/ )

∫ 1

0

∥∥∥∥∥
(
√
γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ) + d?/1(Ωκ)− d?/1(Ω)ϑ

+
1

2
Ω( d/1ϑ− d?/2ϑ) + d?/1(γ1/2)( d/1ϑ+ d?/2ϑ)b

+
1

2
γ1/2( d/2 d

?/2b+ d?/3 d
?/2b) + 2γ1/2Kb

))#λ
∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

dλ

+

∥∥∥∥(κ− ϑ− Ω(κ− ϑ)− γ1/2( d/1ϑ+ d?/2ϑ)b
)#
∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

‖U ′‖
hs+1(

◦
S,
◦
g/ )

+
∥∥(κ+ ϑ)#

∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)
‖S ′‖

hs+1(
◦
S,
◦
g/ )

)∥∥f#
∥∥
hs+1(

◦
S,
◦
g/ )

}
.
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Since s+ 1 ≤ smax − 1, we infer in view of (9.2.14) and the fact that U(0) = S(0) = 0,

‖( d/Skf)#‖
hs(
◦
S, g/ S,#)

(1 +O(
◦
δ))

=

1 +O(1)

∥∥∥∥∥
√
γ√
γS #

− 1

∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

{∥∥∥∥ ◦d/k(f#)

∥∥∥∥
hs(
◦
S,
◦
g/ )

+O(
◦
δ)

(∫ 1

0

∥∥∥∥∥
(√

γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ)

))#λ

∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

dλ

+

∫ 1

0

∥∥∥∥∥
(
√
γ

(
− d?/1(κ)− 1

2
( d/1ϑ− d?/2ϑ) + d?/1(Ωκ)− d?/1(Ω)ϑ

+
1

2
Ω( d/1ϑ− d?/2ϑ) + d?/1(γ1/2)( d/1ϑ+ d?/2ϑ)b

+
1

2
γ1/2( d/2 d

?/2b+ d?/3 d
?/2b) + 2γ1/2Kb

))#λ
∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

dλ

+

∥∥∥∥(κ− ϑ− Ω(κ− ϑ)− γ1/2( d/1ϑ+ d?/2ϑ)b
)#
∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

+
∥∥(κ+ ϑ)#

∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

)∥∥f#
∥∥
hs+1(

◦
S,
◦
g/ )

}
.

Next, we have by the iteration assumption (C.1.3)∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#

∥∥∥∥
hs(
◦
S,
◦
g/ )

+ sup
0≤λ≤1

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#λ

∥∥∥∥
hs(
◦
S,
◦
g/ )

.

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#

∥∥∥∥
hs(
◦
S, g/ S,#)

+ sup
0≤λ≤1

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#λ

∥∥∥∥
hs(
◦
S, g/ S,#λ )

.
∥∥∥ d/≤2

(
Γ̌, r−2γ − 1, b,Ω + Υ

)∥∥∥
hs(S)

+ sup
0≤λ≤1

∥∥∥ d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
)∥∥∥

hs(Sλ)

where the surface Sλ is the image of
◦
S by ψλ. Since s ≤ smax − 2, we infer in view of our

iteration assumption (C.1.2) and our assumptions (9.1.12) (9.1.15) on the (u, s)-foliation∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#

∥∥∥∥
hs(
◦
S,
◦
g/ )

+ sup
0≤λ≤1

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#λ

∥∥∥∥
hs(
◦
S,
◦
g/ )

. sup
R

∣∣∣d≤s d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
)

Γ̌
∣∣∣

. sup
R

∣∣∣d≤s+2
(

Γ̌, r−2γ − 1, b,Ω + Υ
)

Γ̌
∣∣∣ . ◦δ. (C.1.5)
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Also, we have

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#

∥∥∥∥
h∞1 (

◦
S)

+ sup
0≤λ≤1

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#λ

∥∥∥∥
h∞1 (

◦
S)

=
∥∥∥( d/≤2

(
Γ̌, r−2γ − 1, b,Ω + Υ

))
◦ ψ
∥∥∥
h∞1 (

◦
S)

+ sup
0≤λ≤1

∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))
◦ ψλ

∥∥∥
h∞1 (

◦
S)

.

(
sup
R

∣∣∣d≤3
(

Γ̌, r−2γ − 1, b,Ω + Υ
)∣∣∣)(1 + sup

0≤θ≤π
|ψ′(θ)|

)
.

(
sup
R

∣∣∣d≤3
(

Γ̌, r−2γ − 1, b,Ω + Υ
)∣∣∣)(1 + ‖(U ′, S ′)‖

h∞1 (
◦
S)

)
.

◦
ε

where we used our assumptions (9.1.12) (9.1.15) on the (u, s)-foliation and our assumption
(9.2.14) on (U ′, S ′). Therefore,

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#

∥∥∥∥
h∞1 (

◦
S)

.
◦
δ

sup
0≤λ≤1

∥∥∥∥( d/≤2
(

Γ̌, r−2γ − 1, b,Ω + Υ
))#λ

∥∥∥∥
h∞1 (

◦
S)

.
◦
δ.

(C.1.6)

We deduce

‖( d/Skf)#‖
hs(
◦
S, g/ S,#)

(1 +O(
◦
δ))

=

1 +O(1)

∥∥∥∥∥
√
γ√
γS #

− 1

∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

{∥∥∥∥ ◦d/k(f#)

∥∥∥∥
hs(
◦
S,
◦
g/ )

+O(
◦
δ)
∥∥f#

∥∥
hs+1(

◦
S,
◦
g/ )

}
.

Next, we estimate the term in the RHS involving γ and γS #. From the proof of Lemma
9.2.3, we have

γS,# − γ =
1

2
U

∫ 1

0

((
e3 − Ωe4 − bγ1/2eθ

)
γ
)#λ

dλ+ S

∫ 1

0

(e4γ)#λ dλ

+

(
Ω +

1

4
b2γ

)#

(U ′)2 − 2U ′S ′ − (γb)# U ′.
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Using a non sharp product rule, we infer∥∥γS,# − γ∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

. ‖U‖
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

∫ 1

0

∥∥∥((e3 − Ωe4 − bγ1/2eθ
)
γ
)#λ
∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)
dλ

‖S‖
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

∫ 1

0

∥∥∥(e4γ)#λ

∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)
dλ

+

∥∥∥∥∥
(

Ω +
1

4
b2γ

)#
∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

‖U ′‖
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

+ ‖U ′‖
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)
‖S ′‖

hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

+
∥∥∥(γb)#

∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)
‖U ′‖

hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

.
◦
δ

∫ 1

0

∥∥∥∥( d/≤1
(
r−2γ − 1, b,Ω + Υ

))#λ

∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

dλ

+
◦
δ
∥∥∥(r−2γ − 1, b,Ω + Υ

)#
∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

+
◦
δ

where we used our assumption (9.2.14) on (U ′, S ′) and the fact that U(0) = S(0) = 0.
Using the estimates (C.1.5) (C.1.6) for (r−2γ − 1, b,Ω + Υ), we infer∥∥γS,# − γ∥∥

hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)
.

◦
δ.

Together with (9.1.15) for γ, we infer∥∥∥∥∥
√
γ√
γS #

− 1

∥∥∥∥∥
hs(
◦
S,
◦
g/ )∩h∞1 (

◦
S)

.
◦
δ

and hence

‖( d/Skf)#‖
hs(
◦
S, g/ S,#)

(1 +O(
◦
δ)) =

(
1 +O(

◦
δ)

){∥∥∥∥ ◦d/k(f#)

∥∥∥∥
hs(
◦
S,
◦
g/ )

+O(
◦
δ)
∥∥f#

∥∥
hs+1(

◦
S,
◦
g/ )

}
.

Now, we have

‖f#‖
hs+1(

◦
S, g/ S,#)

= ‖f#‖
L2(
◦
S, g/ S,#)

+ ‖( d/Skf)#‖
hs(
◦
S, g/ S,#)

,

‖f#‖
hs+1(

◦
S,
◦
g/ )

= ‖f#‖
L2(
◦
S,
◦
g/ )

+ ‖
◦
d/k(f

#)‖
hs(
◦
S,
◦
g/ )
.

Together with Lemma 9.2.3, this yields

‖f#‖
hs+1(

◦
S, g/ S,#)

= ‖f#‖
hs+1(

◦
S,
◦
g/ )

(1 +O(
◦
δ)).
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This corresponds to our iteration assumption (C.1.3) with s replaced with s + 1 for
s ≤ smax−2. Thus, we have finally derived both iteration assumption (C.1.3) and (C.1.2)
with s replaced with s+ 1 respectively for s ≤ smax− 2. Hence, we deduce that they hold
for 0 ≤ s ≤ smax − 1, i.e.

‖h‖hs(S) . sup
R
|d≤kh| for 0 ≤ s ≤ smax − 1 (C.1.7)

and

‖f#‖
hs(
◦
S, g/ S,#)

= ‖f#‖
hs(
◦
S,
◦
g/ )

(1 +O(
◦
δ)) for 0 ≤ s ≤ smax − 1.

Together with Lemma 9.2.2, we deduce

‖f‖hs(S) = ‖f#‖
hs+1(

◦
S, g/ S,#)

= ‖f#‖
hs+1(

◦
S,
◦
g/ )

(1 +O(
◦
δ)) for all 0 ≤ s ≤ smax − 1. (C.1.8)

Finally, notice that the restriction s ≤ smax − 2 for the iteration assumptions (C.1.2)
(C.1.3) was only necessary to replace s with s+ 1 in (C.1.3). Indeed, a direct inspection
of the proof reveal that to replace s with s + 1 in (C.1.2), we only need the restriction
s ≤ smax − 1. Thus, running the iteration again, now with s = smax − 1, we deduce

‖h‖hs(S) . sup
R
|d≤kh| for 0 ≤ s ≤ smax.

This concludes the proof of the lemma.
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Appendix D

APPENDIX TO CHAPTER 10

D.1 Horizontal S-tensors

Consider a null pair e3, e4 on (M,g) and, at every point p ∈ M the horizontal space
S = {e3, e4}⊥. Let γ the metric induced on S. By definition, for all X, Y ∈ TSM, i.e.
vectors in M tangent to S,

h(X, Y ) = g(X, Y )

For any Y ∈ T (M) we define its horizontal projection,

Y ⊥ = Y +
1

2
g(Y, e3)e4 +

1

2
g(Y, e3)e4 (D.1.1)

Definition D.1.1. A k-covariant tensor-field U is said to be S-horizontal, U ∈ Tk
S(M),

if for any X1, . . . Xk we have,

U(Y1, . . . Yk) = U(Y ⊥1 , . . . Y
⊥
k )

We define the projection operator,

Πν
µ := δνµ −

1

2
(e3)µ(e4)ν − 1

2
(e4)µ(e3)ν

Clearly Πµ
αΠβ

µ = Πβ
α. An arbitrary tensor Uα1...αm is said to an S- horizontal tensor, or

simply S-tensor, if

Πβ1
α1
. . .Πβm

αm Uβ1...βm = Uα1...αm .

909
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Definition D.1.2. Given X ∈ T(M) and Y ∈ TS(M) we define,

ḊXY := (DXY )⊥

Remark D.1.3. In the particular case when S is integrable and both X, Y ∈ TSM then
ḊXY is the standard induced covariant differentiation on S.

Definition D.1.4. Given a general, covariant, S- horizontal tensor-field U we define its
horizontal covariant derivative according to the formula,

ḊXU(Y1, . . . Yk) = X(U(Y1, . . . Yk)) − U(ḊXY1, . . . Yk)− . . .− U(Y1, . . . ḊXYk).(D.1.2)

where X ∈ TM and Y1, . . . Yk ∈ TSM.

Proposition D.1.5. For all X ∈ TM and Y1, Y2 ∈ TSM,

Xh(Y1, Y2) = h(ḊXY1, Y2) + h(Y1, ḊXY2).

Proof. Indeed,

Xh(Y1, Y2) = Xg(Y1, Y2) = g(DXY1, Y2) + g(Y1,DXY2) = g(ḊXY1, Y2) + g(Y1, ḊXY2)

= h(ḊXY1, Y2) + h(Y1, ḊXY2)

Given an orthonormal frame e1, e2 on S we have,

ḊµeA =
∑
B=1,2

(Λµ)AB eB A,B = 1, 2

where,

(Λµ)αβ := g(Dµeβ, eα)

D.1.1 Mixed tensors

We consider tensors TkM⊗Tl
SM, i.e. tensors of the form,

Uµ1...µk,A1...AL

for which we define,

ḊµUν1...νk,A1...AL = eµUν1...νk,A1...Al − UDµν1...νk,A1...Al − . . .− Uν1...Dµνk,A1...Al

− Uν1...νk,ḊµA1...Al
− Uν1...νk,A1...ḊµAl

We are now ready to prove the following,
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Proposition D.1.6. We have the curvature formula

(ḊµḊν − ḊνḊµ)ΨA = RA
B
µνΨB

More generally,

(ḊµḊν − ḊνḊµ)ΨλA = Rλ
σ
µνΨσA + RA

B
µνΨλB

Proof. Straightforward verification.

D.1.2 Invariant Lagrangian

We introduce,

L = gµνhABḊµΨAḊµΨB +WhABΨAΨB

Proposition D.1.7. The Euler Lagrange equations are given by:

�̇ΨA = WΨA

where �̇ΨA := gµνḊµḊνΨ
A.

Proof. The variation of the action is given by,

0 = 2

∫
M

hAB

(
gµνḊµΨAḊν(δΨ)B +WΨAδΨB

)
dvg

= 2

∫
M

Dν

(
gµνhABḊµΨA(δΨ)B

)
dvg − 2

∫
M

hAB

(
gµνḊνḊµΨA(δΨ)B −WΨAδΨB

)
dvg

= −2

∫
M

hAB

(
gµνḊνḊµΨA(δΨ)B −WΨAδΨB

)
dvg

from which the proposition follows.

D.1.3 Comparison of the Lagrangians

Let Ψ ∈ S2(M) and ψ ∈ s2 its reduced form. Note that the Lagrangian of the scalar
equation

�gψ = V ψ + 4(eθΦ)2ψ
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is given by,

L(ψ) : = gµν∂µψ∂νψ + (V + 4(eθΦ)2)ψ2

while the Lagrangian for,

�̇gΨ = VΨ

is given by

L(Ψ) = gµνḊµΨ · ḊνΨ + VΨ ·Ψ

Proposition D.1.8. We have,

L(Ψ) = 2L(ψ) (D.1.3)

Proof. Observe that,

gµνḊµΨḊνΨ = −Ḋ3Ψ · Ḋ4Ψ + ḊθΨ · ḊθΨ + ḊϕΨ · ḊϕΨ

Now, recalling that,

∇/ ϕeϕ = −eθΦeθ, ∇/ ϕeθ = eθ(Φ)eϕ

∇/ θeθ = 0 ∇/ θeϕ = 0

we deduce

Ḋ3Ψ · Ḋ4Ψ = e3Ψ · e4Ψ = 2e3ψe4ψ

ḊθΨ · ḊθΨ = ḊθΨθθḊθΨθθ + 2ḊθΨθϕḊθΨθϕ + ḊθΨϕϕḊθΨϕϕ

= 2(eθψ)2

ḊϕΨ · ḊϕΨ = ḊϕΨθθḊϕΨθθ + 2ḊϕΨθϕḊϕΨθϕ + ḊϕΨϕϕḊϕΨϕϕ

= 2(eϕψ)2 + 2(−ΨḊϕθϕ
−ΨθḊϕϕ

) · (−ΨḊϕθϕ
−ΨθḊϕϕ

)

= 2(eϕψ)2 + 2(−eθ(Φ)Ψϕϕ + eθ(Φ)Ψθθ) · (−eθ(Φ)Ψϕϕ + eθ(Φ)Ψθθ)

= 2(eϕψ)2 + 8(eθΦ)2ψ2

Hence,

gµνḊµΨḊνΨ = −2e3ψe4ψ + 2(eθψ)2 + 2(eϕψ)2 + 4(eθΦ)2ψ2

and

L(Ψ) = −2e3Ψe4ψ + 2(eθψ)2 + 2(eϕψ)2 + 8(eθΦ)2ψ2 + 2V ψ2
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D.1.4 Energy-momentum tensor

Consider the energy-momentum tensor,

Qµν := ḊµΨ · ḊνΨ−
1

2
gµν

(
ḊλΨ · ḊλΨ + VΨ ·Ψ

)
Lemma D.1.9. We have,

DνQµν = ḊµΨ ·
(
�̇Ψ− V ψ

)
+ ḊνΨARABνµΨB − 1

2
DµVΨ ·Ψ

Proof. We have,

DνQµν = ḊνḊνΨ · ḊµΨ + ḊνΨ ·
(
ḊνḊµ − ḊµḊν

)
Ψ− VDµΨ ·Ψ− 1

2
DµVΨ ·Ψ

= ḊµΨ · ḊνḊνΨ + ḊνΨARABνµΨB − VDµΨΨ− 1

2
DµVΨ ·Ψ

= ḊµΨ
(
�̇Ψ− VΨ

)
+ ḊνΨARABνµΨB − 1

2
DµVΨ ·Ψ

Lemma D.1.10. Relative to an arbitrary Z-polarized frame e3, e4, eθ, eϕ we have,

Q33 = |e3Ψ|2,
Q44 = |e4Ψ|2,
Q34 = |∇/Ψ|2 + V |Ψ|2.

If ψ is the reduced form of Ψ,

Q33 = 2(e3ψ)2,

Q44 = 2(e4ψ)2,

Q34 = 2(eθψ)2 + 2(eϕψ)2 + 2V |ψ|2 + 8(eθΦ)2ψ2.

Also,

gµνQµν = −L(Ψ)− V |Ψ|2,

|L(Ψ)| . |e3Ψ| |e4Ψ|+ |∇/Ψ|2 + V |Ψ|2,
and

|QAB| ≤ |e3Ψ||e4Ψ|+ |∇/Ψ|2 + |V ||Ψ|2,
|QA3| ≤ |e3Ψ||∇/Ψ|,
|QA4| ≤ |e4Ψ||∇/Ψ|.
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D.2 Standard calculation

Proposition D.2.1. Consider an admissible spacetime M and Ψ ∈ S2(M) and X a
vectorfield of the form,

X = ae3 + be4,

1. The 1-form Pµ = QµνXν verifies,

DµPµ = XµḊµΨ ·
(
�̇Ψ− VΨ

)
−X(V )Ψ ·Ψ

2. Let X as above, w a scalar and M a one form. Define,

Pµ = Pµ[X,w,M ] = QµνXν +
1

2
wΨ · ḊµΨ− 1

4
|Ψ|2∂µw +

1

4
|Ψ|2Mµ

Then, with |Ψ|2 := Ψ ·Ψ,

DµPµ[X,w,M ] =
1

2
Q · (X)π − 1

2
X(V )Ψ ·Ψ +

1

2
wL[Ψ]− 1

4
|Ψ|2�gw

+
1

4
|Ψ|2DivM +

1

2
Ψ · ḊµΨMµ +

(
X(Ψ) +

1

2
wΨ

)
·
(
�̇Ψ− VΨ

)
Proof. Let Pµ[X, 0, 0] = QµνXν , Then,

DµPµ = XµḊµΨ ·
(
ḊνḊνΨ− VΨ

)
+XµḊνΨARABνµΨB − 1

2
XµDµVΨ ·Ψ

= XµḊµΨ ·
(
�̇Ψ− VΨ

)
− 1

2
X(V )|Ψ|2

Assume X = ae3 + be4. Then, since only the middle components of R are relevant, and
recalling that RAB43 = − ?ρ ∈AB= 0, we derive,

XµḊνΨARABν3ΨB = aḊ4ΨARAB43ΨB + bḊ3ΨARAB434ΨB = 0

To prove the second part of the proposition we write with N [Ψ] := �̇Ψ− VΨ,

DµPµ[X,w,M ] =
1

2
Q · (X)π +X(Ψ) · N [Ψ]− 1

2
X(V )Ψ ·Ψ +

1

2
DµwΨ · ḊµΨ

+
1

2
w ḊµΨ · ḊµΨ +

1

2
wΨ�̇gΨ− 1

2
Ψ · ḊµΨ∂µw −

1

4
|Ψ|2�gw

+
1

4
|Ψ|2DivM +

1

2
Ψ · ḊµΨMµ

=
1

2
Q · (X)π − 1

2
X(V )Ψ ·Ψ +

1

2
w ḊµΨ · ḊµΨ +

1

2
wΨ (VΨ +N [Ψ])

− 1

4
|Ψ|2�gw +

1

4
|Ψ|2DivM +

1

2
Ψ · ḊµΨMµ +X(Ψ) ·Ψ · N [Ψ]
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Hence,

DµPµ[X,w,M ] =
1

2
Q · (X)π − 1

2
X(V )Ψ ·Ψ +

1

2
wL[Ψ]− 1

4
|Ψ|2�gw

+
1

4
|Ψ|2DivM +

1

2
Ψ · ḊµΨMµ +

(
X(Ψ) +

1

2
wΨ

)
· N [Ψ]

as desired.

Remark D.2.2. As consequence of the proposition above we deduce that every time we
use vectorfields of the form ae3 + be4 as multipliers, the equation �Ψ−VΨ = N is treated
exactly in the same manner as the scalar equation �ψ − V ψ = N .

Remark D.2.3. Note that in Schwarzschild our potential V = −κκ = 4Υr−2 verifies,

1

4
∂rV = ∂r

[
r−2

(
1− 2m

r

)]
= −2r−3

(
1− 2m

r

)
+

2m

r4

= −2
r − 3m

r4
.

D.3 Vectorfield Xf

Lemma D.3.1. Let Xf := fe4. Then with (X)Λ = 2f
r

and (X)π̃ = (X)π − (X)Λg =
(X)π − 2f

r
g,

• We have,

(X)π̃44 = 0, (X)π4ϕ = 0, (X)π3ϕ = 0,

(X)π̃43 = −2e4f + 4fω +
4f

r
= −2

(
e4(f)− 2f

r

)
+ 4fω,

(X)π̃4θ = 2fξ,

(X)π̃AB = 2f (1+3)χAB −
2f

r
g/ AB = 2f

(
(1+3)χAB −

1

r
δAB

)
,

(X)π̃3θ = 2f(η + ζ),
(X)π̃33 = −8fω − 4e3(f).

(D.3.1)
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• In particular, we have,

(X)π̃43 = −2f ′ +
4f

r
+O(ε) min{w1,1, w2,1/2} (|f |+ r|f ′|) ,

(X)π̃4A = εmin{w2,1, w3,1/2},
(X)π̃AB = O(ε) min{w1,1, w2,1/2}|f |,
(X)π̃3A = O(ε)w1,1|f |,
(X)π̃33 = 4f ′Υ− 4Υ′ +O(ε)w1,1(|f |+ r|f ′|).

(D.3.2)

• We have,

� (X)Λ =
2

r
f ′′ +O

(m
r4

+ εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
. (D.3.3)

Proof. We calculate (X)παβ = g(DeαX, eβ) + g(DeβX, eα),

(X)π44 = 0
(X)π43 = −2e4f + 4fω
(X)π4θ = 2fξ

(X)πAB = 2f (1+3)χAB
(X)π3θ = 2f(η + ζ)
(X)π33 = −8fω − 4e3(f)

We deduce, for (X)π̃ = (X)π − (X)Λg = (X)π − 2f
r

g,

(X)π̃44 = 0

(X)π̃43 = −2e4f + 4fω +
4f

r
= −2

(
e4(f)− 2f

r

)
+ 4fω

(X)π̃4θ = 2fξ

(X)π̃AB = 2f (1+3)χAB −
2f

r
g/ AB = 2f

(
(1+3)χAB −

1

r
δAB

)
(X)π̃3θ = 2f(η + ζ)
(X)π̃33 = −8fω − 4e3(f)

Under the assumptions (10.2.8)– (10.2.9) on the Ricci coefficients (with respect to the
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frame (e′3, e
′
4)), we deduce,

(X)π̃43 = −2e4f + 4fω = −2f ′ +
4f

r
− 2f ′(e4(r)− 1) + 4f(ω − 1)

= −2f ′ +
4f

r
+ εmin{w1,1, w2,1/2} (|f |+ r|f ′|)

(X)π̃4A = εmin{w2,1, w3,1/2},
(X)π̃AB = εmin{w1,1, w2,1/2}|f |
(X)π̃3A = min{w1,1, w2,1/2}|f |
(X)π̃33 = −8fω − 4e3(f) = −8f

(m
r2

+ εw1,1

)
− 4f ′(−Υ + εw0,1)

= 4f ′Υ− 4Υ′ + εw1,1(|f |+ r|f ′|)

To prove formula (D.3.3) we make use of the following (see also Lemma 10.1.11),

Lemma D.3.2. If h = h(r) then

�h = Υh′′(r) +

(
2

r
− 2m

r2

)
h′ +O(ε)w2,1

(
|h|+ r|h′|+ r2|h′′|

)

Proof. For a general scalar h,

�h = −1

2
(e3e4 + e4e3)h+4/ h+

(
(1+3)ω − 1

2
(1+3)trχ

)
e4h+ ( (1+3)ω − 1

2
(1+3)trχ)e3h

with 4/ h = eθeθh+ (eθΦ)2eθh = 0 if h is radial. Thus,

�h = −1

2
(e3e4 + e4e3)h+ ( (1+3)ω − 1

2
(1+3)trχ)e4h+ ( (1+3)ω − 1

2
(1+3)trχ)e3h

= −f ′′(e3r)(e4r)−
1

2
h′(e3e4 + e4e3)r + h′

[
( (1+3)ω − 1

2
(1+3)trχ)e4r + ( (1+3)ω − 1

2
(1+3)trχ)e3r

]
= −h′′(−Υ +O(ε)w0,1)(1 +O(ε)w1,1) +

(m
r2

+O(ε)w1,1

)
h′

+ h′
[
(
m

r2
+

Υ

r
+O(ε)w1,1)(1 +O(ε)w1,1) + (−1

r
+O(ε)w1,1)(−Υ +O(ε)w0,1

]
= Υh′′ +

(
2

r
− 2m

r2

)
h′ +O(ε)w2,1

(
|h|+ r|h′|+ r2|h′′|

)
which concludes the proof of Lemma D.3.2.
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In view of Lemma D.3.2,

� (X)Λ = �

(
2f

r

)
= Υ

(
2f

r

)′′
+

(
2

r
− 2m

r2

)
(
2f

r
)′ +O(ε)w3,1

(
|f |+ r|f ′|+ r2|f ′′|

)
Note that,

Υ

(
2f

r

)′′
+

(
2

r
− 2m

r2

)(
2f

r

)′
= Υ

(
2f ′′

r
− 4f ′

r2
+

4f

r3

)
+

(
2

r
− 2m

r2

)(
2f ′

r
− 2f

r2

)
=

2Υ

r
f ′′ − (Υ− 1)

4f ′

r2
+ (Υ− 1)

4f

r3
− 2m

r2

(
2f ′

r
− 2f

r2

)
=

2

r
+O

(m
r4

) (
|f |+ r|f ′|+ r2|f ′′|

)
Hence,

� (X)Λ =
2

r
f ′′ +O

(m
r4
εw3,1

) (
|f |+ r|f ′|+ r2|f ′′|

)
as desired. This concludes the proof of Lemma D.3.1.

D.4 Proof of Proposition 10.3.1

In view of the following Leibniz rule which holds for any scalar f ,

−4/ 2(fψ) = d?/2 d/2(fψ) + 2Kfψ

= d?/2(f d/2ψ + eθ(f)ψ) + 2Kfψ

= −f4/ 2ψ − eθ(f) d/2ψ + eθ(f) d?/3ψ −4/ 0(f)ψ,

we have the following computation

e4(�2(rψ)) = e4(r�2ψ)− e4(e3(r)e4ψ)− e4(e4(r)e3ψ)− 2e4(eθ(r) d/2ψ)

+2e4(eθ(r) d
?/3ψ) + e4(�0(r)ψ)

= e4(r�2ψ)− e4

(r
2

(κ+ A)e4ψ
)
− e4

(r
2

(κ+ A)e3ψ
)

+e4(�0(r)ψ) + r−1d≤1(Γg)d
≤2ψ

= e4(r�2ψ)− 1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + e4(�0(r)ψ) + r−1Err,

where we have introduced the notation, used throughout the proof of Proposition 10.3.1,

Err := r2Γge4e3ψ + rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ.
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Next, recall that we have

�2ψ = −e4e3ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e3ψ −

1

2
κe4ψ + 2ηeθψ.

We infer

�0(r) = −e4(e3(r)) +4/ 2(r) +

(
2ω − 1

2
κ

)
e3(r)− 1

2
κe4(r) + 2ηeθ(r)

= −e4

(r
2

(κ+ A)
)

+

(
2ω − 1

2
κ

)
r

2
(κ+ A)− 1

2
κ
r

2
(κ+ A) + r−1d≤1Γg

= −1

2
e4(rκ) +

1

2

(
2ω − 1

2
κ

)
rκ− 1

4
rκκ+ rd≤1Γg

=
2

r
+O(r−2) + d≤1Γb

and hence

e4(�2(rψ)) = e4(r�2ψ)− 1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + e4(�0(r)ψ) + d≤1(Γg)d

≤2ψ

= e4(r�2ψ)− 1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + e4

(
2

r
ψ

)
+O(r−3)d≤1ψ + r−1Err

so that

e4(r�2ψ) = e4(�2(rψ)) +
1

2
e4(rκe4ψ) +

1

2
e4 (rκe3ψ)− e4

(
2

r
ψ

)
+O(r−3)d≤1ψ + r−1Err.

We infer

�2(e4(rψ))− e4(r�2ψ) = [�2, e4](rψ)− 1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + e4

(
2

r
ψ

)
+O(r−3)d≤1ψ + r−1Err.

Next, using again

�2ψ = −e4e3ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e3ψ −

1

2
κe4ψ + 2ηeθψ,

we infer

[�2, e4]ψ = −e4[e3, e4]ψ + [4/ 2, e4]ψ +

(
2ω − 1

2
κ

)
[e3, e4]ψ − e4

(
2ω − 1

2
κ

)
e3ψ

+
1

2
e4(κ)e4ψ + 2η[eθ, e4]ψ − 2e4(η)eθψ

= −e4[e3, e4]ψ + [4/ 2, e4]ψ +

(
2ω − 1

2
κ

)
[e3, e4]ψ −

(
2e4(ω)− 1

2

(
−1

2
κ2 − 2ωκ

))
e3ψ

+
1

2

(
−1

2
κκ+ 2ωκ+ 2ρ

)
e4ψ + 2η[eθ, e4]ψ + r−2d≤1(Γg)dψ.
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Now, recall

[e3, e4] = 2ωe4 − 2ωe3 + 2(η − η)eθ,

and, in view of Lemma 2.1.51, the following commutation formulae for reduced scalars

1. If f ∈ sk,

[ d/k, e4] =
1

2
κ d/kf + Comk(f),

Comk(f) = −1

2
ϑ d?/k+1f − (ζ + η)e4f − kηe4Φf − ξ(e3f + ke3(Φ)f)− kβf.

2. If f ∈ sk−1

[ d?/k, e4]f =
1

2
κ d/kf + Com∗k(f),

Com∗k(f) = −1

2
ϑ d/k−1f + (ζ + η)e4f − (k − 1)ηe4Φf + ξ(e3f − (k − 1)e3(Φ)f)

− (k − 1)βf.

We infer

[�2, e4]ψ = −e4

(
(2ωe4 − 2ωe3 + 2ηeθ)ψ

)
+ κ4/ 2ψ

+

(
2ω − 1

2
κ

)(
2ωe4 − 2ωe3 + 2ηeθ

)
ψ −

(
2e4(ω) +

1

4
κ2 + ωκ

)
e3ψ

+
1

2

(
−1

2
κκ+ 2ωκ+ 2ρ

)
e4ψ + r−2d≤1(Γg)d

≤2ψ

= 2e4(ωe3ψ) + κ4/ 2ψ −
(

2e4(ω) +
1

4
κ2

)
e3ψ −

1

4
κκe4ψ +O(r−4)d≤1ψ + r−2Err

= 2ωe4(e3ψ) + κ4/ 2ψ −
1

4
κ2e3ψ −

1

4
κκe4ψ +O(r−4)d≤1ψ + r−2Err.

This implies

[�2, e4](rψ) = 2ωe4(e3(rψ)) + κ4/ 2(rψ)− 1

4
κ2e3(rψ)− 1

4
κκe4(rψ) +O(r−3)d≤1ψ + r−1Err

= 2ωe3(e4(rψ)) + 2ω[e4, e3]rψ + κ4/ 2(rψ)− 1

4
κ2e3(rψ)− 1

4
κκe4(rψ)

+O(r−3)d≤1ψ + r−1Err

= 2ωe3(e4(rψ)) + κ4/ 2(rψ)− 1

4
κ2e3(rψ)− 1

4
κκe4(rψ) +O(r−3)d≤1ψ + r−1Err
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and hence

�2(e4(rψ))− e4(r�2ψ)

= [�2, e4](rψ)− 1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + e4

(
2

r
ψ

)
+O(r−3)d≤1ψ + r−1Err

= 2ωe3(e4(rψ))− 1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + κ4/ 2(rψ)− 1

4
κ2e3(rψ)

−1

4
κκe4(rψ) + e4

(
2

r
ψ

)
+O(r−3)d≤1ψ + r−1Err.

Next, we compute

−1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + κ4/ 2(rψ)− 1

4
κ2e3(rψ) + e4

(
2

r
ψ

)
= −1

2
e4(κ(e4(rψ)− e4(r)ψ))− 1

2
e3(e4(rκψ))− 1

2
[e4, e3](rκψ) +

1

2
e4(e3(rκ)ψ)

+rκ4/ 2ψ −
1

4
rκ2e3ψ −

1

4
κ2e3(r)ψ +

2

r2
e4 (rψ) + e4

(
2

r2

)
rψ + r−1d≤1(Γg)d

≤2ψ

= −1

2
e4(κ(e4(rψ))) +

1

2
e4

(
κ
r

2
(κ+ A)ψ

)
− 1

2
e3(κe4(rψ))− 1

2
e3(e4(κ)rψ)

−1

2

(
− 2ωe4 + 2ωe3 − 2(η − η)eθ

)
(rκψ) +

1

2
e4(e3(rκ)ψ)

+rκ4/ 2ψ −
1

4
rκ2e3ψ −

1

4
κ2 r

2
(κ+ A)ψ +

2

r2
e4 (rψ)− 4e4(r)

r2
ψ + r−1d≤1(Γg)d

≤2ψ

i.e.

−1

2
e4(rκe4ψ)− 1

2
e4 (rκe3ψ) + κ4/ 2(rψ)− 1

4
κ2e3(rψ) + e4

(
2

r
ψ

)
= −1

2
e4(κ(e4(rψ))) +

1

4
e4 (rκκψ)− 1

2
e3(κe4(rψ))− 1

2
e3

((
−1

2
κ2 − 2ωκ

)
rψ

)
−ωe3(rκψ) +

1

2
e4(e3(rκ)ψ) + rκ4/ 2ψ −

1

4
rκ2e3ψ −

1

8
rκ2κψ +

2

r2
e4 (rψ)− 2κ

r
ψ

+O(r−3)d≤1ψ + r−1Err

= −1

2
e4(κ(e4(rψ))) +

1

4
κκe4 (rψ) +

1

4
e4 (κκ) rψ − 1

2
e3(κe4(rψ))− 1

2
e3

((
−1

2
κ2 − 2ωκ

)
rψ

)
−ωe3(rκψ) +

1

2
r−1e3(rκ)e4(rψ) +

1

2
e4(r−1e3(rκ))rψ + rκ4/ 2ψ −

1

4
rκ2e3ψ −

1

8
rκ2κψ

+
2

r2
e4 (rψ)− 2κ

r
ψ +O(r−3)d≤1ψ + r−1Err.
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We infer

�2(e4(rψ))− e4(r�2ψ)

= 2ωe3(e4(rψ))− 1

2
e4(κ(e4(rψ))) +

1

4
e4 (κκ) rψ − 1

2
e3(κe4(rψ))

−1

2
e3

((
−1

2
κ2 − 2ωκ

)
rψ

)
− ωe3(rκψ) +

1

2
r−1e3(rκ)e4(rψ) +

1

2
e4(r−1e3(rκ))rψ

+rκ4/ 2ψ −
1

4
rκ2e3ψ −

1

8
rκ2κψ +

2

r2
e4 (rψ)− 2κ

r
ψ +O(r−3)d≤1ψ + r−1Err.

Since e4(rψ) = rΥě4ψ, this may be rewritten as

�2(rΥě4ψ)− e4(r�2ψ)

= 2ωe3(rΥě4ψ)− 1

2
e4(rΥκě4ψ) +

1

4
e4(κκ)rψ − 1

2
e3(rΥκě4ψ)

−1

2
e3

((
−1

2
κ2 − 2ωκ

)
rψ

)
− ωe3(rκψ) +

1

2
e3(rκ)Υě4ψ +

1

2
e4(r−1e3(rκ))rψ

+rκ4/ 2ψ −
1

4
rκ2e3ψ −

1

8
rκ2κψ +

2

r
Υě4ψ −

2κ

r
ψ +O(r−3)d≤1ψ + r−1Err.

Now, since

�2ψ = −e3e4ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e4ψ −

1

2
κe3ψ + 2ηeθψ,

we have

rκ4/ 2ψ = rκ�2ψ + rκe3e4ψ − rκ
(

2ω − 1

2
κ

)
e4ψ +

1

2
rκ2e3ψ + r−1d≤1(Γb)d

≤1ψ

= rκ�2ψ + rκe3(r−1e4(rψ))− rκe3(r−1e4(r)ψ) +
1

2
κκe4(rψ)

−1

2
κκe4(r)ψ +

1

2
rκ2e3ψ + r−1d≤1(Γb)d

≤1ψ

= rκ�2ψ + rκe3(Υě4ψ)− 1

2
rκe3(κ)ψ +

1

2
κκrΥě4ψ −

r

4
κ2κψ + r−1d≤1(Γb)d

≤1ψ

and hence

�2(rΥě4ψ)− e4(r�2ψ)

= 2ωe3(rΥě4ψ)− 1

2
e4(rΥκě4ψ) +

1

4
e4(κκ)rψ − 1

2
e3(rΥκě4ψ)

−1

2
e3

((
−1

2
κ2 − 2ωκ

)
rψ

)
− ωe3(rκψ) +

1

2
e3(rκ)Υě4ψ +

1

2
e4(r−1e3(rκ))rψ

+rκ�2ψ + rκe3(Υě4ψ)− 1

2
rκe3(κ)ψ − r

4
κ2κψ − 1

4
rκ2e3ψ −

1

8
rκ2κψ

−2κ

r
ψ +O(r−3)d≤1ψ + r−1Err.
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Next, we compute

1

4
e4(κκ)rψ − 1

2
e3

((
−1

2
κ2 − 2ωκ

)
rψ

)
− ωe3(rκψ) +

1

2
e4(r−1e3(rκ))rψ

−1

2
rκe3(κ)ψ − r

4
κ2κψ − 1

4
rκ2e3ψ −

1

8
rκ2κψ − 2κ

r
ψ

=
r

2
κρψ + r−1d≤1(Γb)ψ

= O(r−3)ψ + r−1d≤1(Γb)ψ

so that

�2(rΥě4ψ) = e4(r�2ψ) + rκ�2ψ + 2ωe3(rΥě4ψ)− 1

2
e4(rΥκě4ψ)− 1

2
e3(rΥκě4ψ)

+
1

2
e3(rκ)Υě4ψ + rκe3(Υě4ψ) +O(r−3)d≤1ψ + r−1Err.

Since

�2(r2ě4ψ) = rΥ−1�2(rΥě4ψ)− e3(rΥ−1)e4(rΥě4ψ)− e4(rΥ−1)e3(rΥě4ψ)

+�0(rΥ−1)rΥě4ψ + d≤1(Γg)d
≤2ψ,

we infer

�2(r2ě4ψ) = rΥ−1e4(r�2ψ) + r2Υ−1κ�2ψ + 2rΥ−1ωe3(rΥě4ψ)− 1

2
rΥ−1e4(rΥκě4ψ)

−1

2
rΥ−1e3(rΥκě4ψ) +

1

2
re3(rκ)ě4ψ + r2Υ−1κe3(Υě4ψ)

−e3(rΥ−1)e4(rΥě4ψ)− e4(rΥ−1)e3(rΥě4ψ)

+�0(rΥ−1)rΥě4ψ +O(r−2)d≤1ψ + Err.

Now, we have

2rΥ−1ωe3(rΥě4ψ)− 1

2
rΥ−1e4(rΥκě4ψ)

−1

2
rΥ−1e3(rΥκě4ψ) +

1

2
re3(rκ)ě4ψ + r2Υ−1κe3(Υě4ψ)

−e3(rΥ−1)e4(rΥě4ψ)− e4(rΥ−1)e3(rΥě4ψ) +�0(rΥ−1)rΥě4ψ

= 2r
1− 3m

r

Υ
e4(ě4ψ)

+

{
2rΥ−1ωe3(rΥ)− 1

2
rΥ−1e4(rΥκ)− 1

2
rΥ−1e3(rΥκ) +

1

2
re3(rκ) + r2Υ−1κe3(Υ)

−e3(rΥ−1)e4(rΥ)− e4(rΥ−1)e3(rΥ) +�0(rΥ−1)rΥ

}
ě4ψ + Err.
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Also, we have

2rΥ−1ωe3(rΥ)− 1

2
rΥ−1e4(rΥκ)− 1

2
rΥ−1e3(rΥκ) +

1

2
re3(rκ) + r2Υ−1κe3(Υ)

−e3(rΥ−1)e4(rΥ)− e4(rΥ−1)e3(rΥ) +�0(rΥ−1)rΥ

= 4 +O(r−1) + rΓb

= −r2κκ+O(r−1) + rΓb.

We infer

(�2 + κκ)(r2ě4ψ) = rΥ−1e4(r�2ψ) + r2Υ−1κ�2ψ + 2r
1− 3m

r

Υ
e4(ě4ψ)

+O(r−2)d≤1ψ + Err.

In view of the wee equation satisfied by ψ, i.e.

�2ψ + κκψ = N,

we have

rΥ−1e4(r�2ψ) + r2Υ−1κ�2ψ + 2r
1− 3m

r

Υ
e4(ě4ψ)

= rΥ−1e4(r(N − κκψ)) + r2Υ−1κ(N − κκψ) +
2

r

1− 3m
r

Υ
e4(r2ě4ψ)− 4

1− 3m
r

Υ
e4(r)ě4ψ

= rΥ−1e4(rN) + r2Υ−1κN +
2

r

1− 3m
r

Υ
e4(r2ě4ψ) +

4m

r
ě4ψ − 2r2Υ−1κρψ + d≤1(Γb)d

≤1ψ

= r2

(
Υ−1e4(N) +

3

r
N

)
+

2

r

1− 3m
r

Υ
e4(r2ě4ψ) +O(r−2)d≤1ψ + d≤1(Γb)d

≤1ψ,

from which we deduce

(�2 + κκ)(r2ě4ψ) = r2

(
Υ−1e4(N) +

3

r
N

)
+

2

r

1− 3m
r

Υ
e4(r2ě4ψ) +O(r−2)d≤1ψ + Err.

Since

ψ̌ = f2ě4ψ =
f2

r2
r2ě4ψ,

we infer

(�2 + κκ) ψ̌ =
f2

r2
(�2 + κκ)(r2ě4ψ)− e3

(
f2

r2

)
e4(r2ě4ψ)− e4

(
f2

r2

)
e3(r2ě4ψ)

+eθ

(
f2

r2

)
d/2(r2ě4ψ)− eθ

(
f2

r2

)
d?/3(r2ě4ψ) +�0

(
f2

r2

)
r2ě4ψ
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and hence

(�2 + κκ) ψ̌ = f2

(
Υ−1e4(N) +

3

r
N

)
+
f2

r2

{
2

r

1− 3m
r

Υ
e4(r2ě4ψ) +O(r−2)d≤1ψ + Err

}

−e3

(
f2

r2

)
e4(r2ě4ψ)− e4

(
f2

r2

)
e3(r2ě4ψ)

+eθ

(
f2

r2

)
d/2(r2ě4ψ)− eθ

(
f2

r2

)
d?/3(r2ě4ψ) +�0

(
f2

r2

)
r2ě4ψ.

Now, recall that Err is defined by

Err = r2Γge4e3ψ + rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ.

so that

(�2 + κκ) ψ̌ = f2

(
Υ−1e4(N) +

3

r
N

)
+
f2

r2

{
2

r

1− 3m
r

Υ
e4(r2ě4ψ) +O(r−2)d≤1ψ + r2Γge4e3ψ

+rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ

}

−e3

(
f2

r2

)
e4(r2ě4ψ)− e4

(
f2

r2

)
e3(r2ě4ψ)

+eθ

(
f2

r2

)
d/2(r2ě4ψ)− eθ

(
f2

r2

)
d?/3(r2ě4ψ) +�0

(
f2

r2

)
r2ě4ψ.

In view of

�2ψ = −e4e3ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e3ψ −

1

2
κe4ψ + 2ηeθψ,

we have

r2Γge4e3ψ = r2Γg

(
−�2ψ +4/ 2ψ +

(
2ω − 1

2
κ

)
e3ψ −

1

2
κe4ψ + 2ηeθψ

)
= −r2ΓgN + rΓge3ψ + Γgd

≤2ψ
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and hence

(�2 + κκ) ψ̌ = f2

(
Υ−1e4(N) +

3

r
N

)
+
f2

r2

{
2

r

1− 3m
r

Υ
e4(r2ě4ψ) +O(r−2)d≤1ψ

+rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ

}

−e3

(
f2

r2

)
e4(r2ě4ψ)− e4

(
f2

r2

)
e3(r2ě4ψ)

+eθ

(
f2

r2

)
d/2(r2ě4ψ)− eθ

(
f2

r2

)
d?/3(r2ě4ψ) +�0

(
f2

r2

)
r2ě4ψ.

In particular, we have for r ≥ 6m0

(�2 + κκ) ψ̌ = r2

(
Υ−1e4(N) +

3

r
N

)
+

2

rΥ

(
1− 3m

r

)
e4 ψ̌

+O(r−2)d≤1ψ + rΓbe4dψ + d≤1(Γb)d
≤1ψ + rd≤1(Γg)e3ψ + d≤1(Γg)d

2ψ

and for 4m0 ≤ r ≤ 6m0,

(�2 + κκ) ψ̌ = f2

(
Υ−1e4(N) +

3

r
N

)
+O(1)d2ψ.

This concludes the proof Proposition 10.3.1.
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