INTRODUCTION

Stability of Kerr conjecture

The nonlinear stability of the Kerr family is one of the most pressing issues in mathematical GR today. Roughly, the problem is to show that all spacetime developments of initial data sets, sufficiently close to the initial data set of a Kerr spacetime, behave in the large like a (typically another) Kerr solution. This is not only a deep mathematical question but one with serious astrophysical implications. Indeed, if the Kerr family would be unstable under perturbations, black holes would be nothing more than mathematical artifacts. Here is a more precise formulation of the conjecture.

Conjecture (Stability of Kerr conjecture). Vacuum initial data sets, sufficiently close to Kerr initial data, have a maximal development with complete future null infinity and with domain of outer communication 11 which approaches (globally) a nearby Kerr solution.

There are three, related, major obstacles in passing from the stability of Minkowski to that of the Kerr family.

1. The first can be understood in the general framework of nonlinear hyperbolic or dispersive equations. Given a nonlinear equation N [φ] = 0 and a stationary solution φ 0 we have two notions of stability, orbital stability, according to which small perturbations of φ 0 lead to solutions φ which remain close, in some norm (typically L 2 based ) for all time, and asymptotical stability, according to which the perturbed solutions converge, as t → ∞, to a nearby stationary solution. Note that the second notion is far stronger, and much more precise, than the first and that orbital stability can only be established (without appealing to the the stronger version) only for equations with very weak nonlinearities. For quasilinear equations, such as the Einstein field equations, a proof of stability requires, necessarily, a proof of asymptotic stability. This must then be based on a detailed understanding of the decay properties of the linearized 12 equations.

One is thus led to study the linearized equations N [φ 0 ]ψ = 0, with N [φ 0 ] the Fréchet derivative of N at φ 0 , which, in many important cases, are hyperbolic 13 systems with variable coefficients that typically present instabilities. In the exceptional situation, when nonlinear stability can ultimately be established, one can tie Chapter 2 PRELIMINARIES 2.1 Axially symmetric polarized spacetimes

Axial symmetry

We consider vacuum, four dimensional, simply connected, axially symmetric spacetimes (M, g, Z) with g Lorentzian and Z an axial Killing vectorfield on M. We denote by A the axis of symmetry, i.e. the points on M for which X := g(Z, Z) = 0. In the case of interest for us we assume dX = 0 and that A is a smooth manifold of codimension 2. The Ernst potential of the spacetime is given by,

The 1-form σ µ dx µ is closed and thus there exists a function σ :

where

Hence we can choose the potential σ such that σ = -X. By a standard calculation one can show that,

Definition 2.1.1. An axially symmetric Lorentzian manifold (M, g, Z) is said to be polarized if the Ernst potential σ is real, i.e. σ = -X. In that case the metric g can be written in the form,

AXIALLY SYMMETRIC POLARIZED SPACETIMES

51

We can easily check that D / k is the formal adjoint of D / k , i.e.,

). The kernel of D / 1 : S 0 -→ S 1 consists of constants on S while the kernel of D / 2 consists of constant multiple of co-vectors f with f θ = Ce Φ . Moreover,

).

Proposition 2.1.17. Let (S, g / ) be a compact manifold with Gauss curvature K. We have, i.) The following identity holds for vectorfields f ∈ S 1 ,

Basic notions in general relativity

We provide a quick review of the basic concepts of general relativity relevant to this work. For a proper introduction to the subject we refer to the books by R. Wald [START_REF] Wald | General Relativity[END_REF] and S. Caroll [START_REF] Caroll | Spacetime and geometry. An introduction to general relativity[END_REF].

Spacetime and causality

The main object of Einstein's general relativity is the space-time. To define a space-time, consider a four dimensional Lorentzian manifolds (M, g), with g denoting a Lorentzian metric of signature (-, +, +, +). Two Lorentzian manifolds (M, g), (M , g ) are equivalent if there exists a diffeomorphism Φ : M → M such that g = Φ # (g ). A space-time is simply a class of equivalence of such Lorentzian manifolds.

A Lorentzian metric divides vectors X in a tangent space T p (M) into timelike, null and space-like according to whether g(X, X) is, respectively, negative, zero or positive. A curve γ(t) is said to be timelike, respectively null, if its tangent vector γ(t) is timelike or null. It is called causal if it is either time-like or null.

Remark 1.1.1. Observers in general relativity are identified to timelike curves, and freely moving observers correspond to timelike geodesics. Points of M are referred to as events 18 CHAPTER 1. INTRODUCTION and the proper time of an observer γ(t) between the events γ(t 1 ), γ(t 2 ) is the integral,

t 2 t 1 -g γ(t), γ(t) dt.
Massless particles, on the other hand, follow null geodesics. The proper time of such a particle, i.e. the proper time of the corresponding null geodesic, is the affine parameter of the geodesic vectorfield associated to the curve.

Given a set S ⊂ M, we denote by I + (S) the set of all points in M which can be reached by future directed timelike curves1 originating at S, called the future set of S. The set J + (S), consisting of points which can be reached by future directed causal curves from S, is called the causal future of S. One defines in the same manner the past and causal pasts I -(S) and J -(S).

A hypersurface Σ is called space-like or null, if the direction normal to it is time-like, respectively null. Typical spacelike hypersurfaces are given by the level surfaces of time functions t, i.e. non-degenerate functions on M ( dt = 0) such that its gradient -g µν ∂ µ t∂ ν is timelike. Typical null hypersurfaces are given by level surfaces of optical functions u, i.e. non-degenerate functions u : M → R verifying g µν ∂ µ u∂ ν u = 0, du = 0.

(1.1.1)

In that case the gradient L := -g µν ∂ µ u∂ ν is both null and geodesic, i.e. g(L, L) = 0 and D L L = 0.

A spacelike hypersurface Σ is said to be a Cauchy hypersurface in M if any in-extendible causal curve intersects Σ at precisely one point. Spacetimes which admit such hypersurfaces rule out causal pathologies such as the presence closed timelike curves. A spacetime is called globally hyperbolic if it possesses such a hypersurface and, in addition, all sets of the form J + (p) ∩ J -(q) are compact.

The initial value formulation for Einstein equations

Let (M, g) a spacetime. Einstein equations are given by

R αβ - 1 2 g αβ R = T αβ (1.1.2)
with R αβ the Ricci curvature of g, R the scalar curvature of g, and T αβ the energymomentum tensor of some matterfield defined on (M, g). An initial data set consists of a 3 dimensional manifold Σ (0) , a complete Riemannian metric g (0) , a symmetric 2tensor k (0) , and a well specified set of initial conditions corresponding to the matter-fields under consideration. These have to verify a well known set of constraint equations. We restrict the discussion to asymptotically flat initial data sets, i.e. outside a sufficiently large compact set K, Σ (0) \ K is diffeomorphic to the complement of the unit ball in R3 and admits a system of coordinates in which g (0) is asymptotically euclidean, and k (0) vanishes asymptotically at appropriate order. A Cauchy development of an initial data set is a globally hyperbolic spacetime (M, g), verifying the Einstein equations (1.1.2) in the presence of a matterfield with energy momentum T and an embedding i : Σ → M such that i * (g (0) ), i * (k (0) ) are the first and second fundamental forms of i(Σ (0) ) in M.

We restrict our attention to the Einstein vacuum equations (EVE), i.e. the case when the energy momentum tensor vanishes identically and the equations take the purely geometric form,

R αβ = 0. (1.1.3) 
In that case, the constraint equations mentioned above take the form div k (0) -∇ trk (0) = 0, R (0) -|k (0) |2 + (trk (0) ) 2 = 0.

(1.1.4)

Here ∇ denotes the covariant derivative on Σ (0) , div the usual divergence of a symmetric 2-tensor, defined with respect to ∇, and R (0) the scalar curvature of the metric g (0) . Moreover |k (0) | and trk (0) are the Riemannian norm and trace of k (0) with respect to g (0) .

The most basic question concerning the initial value problem, solved in a satisfactory way for very large classes of evolution equations, is that of local existence and uniqueness of solutions. For the Einstein equations, this type of result was first established by Y.C. Bruhat [START_REF] Choquet-Bruhat | Théorème d'existence pour certains syst mes d'équations aux dérivèes partielles non linéaires[END_REF] with the help of wave coordinates 2 . According to this result any smooth initial data set admits a smooth, unique (up to an isometry) globally hyperbolic Cauchy development 3 . In the case of nonlinear systems of partial differential equations, the local existence and uniqueness result leads, through a straightforward extension argument, to a result concerning the maximal time interval of existence. The formulation of the same type of result for the Einstein equations is a little more subtle; something similar was achieved in [START_REF] Choquet-Bruhat | Global aspects of the Cauchy problem in general relativity[END_REF], see also [START_REF] Sbierski | On the existence of a maximal Cauchy development for the Einstein equations -a dezornification[END_REF] for a modern version of the result.

Theorem 1.1.2 (Bruhat-Geroch). For each smooth initial data set there exists a unique, smooth, maximal future globally hyperbolic development (MFGHD). The Minkowski space consists of the manifold R 1+3 together with a Lorentzian metric m and a distinguished system of coordinates x α , α = 0, 1, 2, 3, called inertial, relative to which the metric has the diagonal form m αβ = diag(-1, 1, 1, 1). We write, splitting the spacetime coordinates x α into the time component x 0 = t and space components x = x 1 , x 2 , x 3 ,

m = -dt 2 + (dx 1 ) 2 + (dx 2 ) 2 + (dx 3 ) 2 .
In polar coordinates (t, r, θ, ϕ), m = -dt 2 + dr 2 + r 2 dσ S 2 , dσ S 2 := dθ 2 + sin 2 θdϕ 2 .

The standard optical functions in R 1+3 are given by u = tr, u = t + r, often called retarded and advanced time coordinates. One can compactify the Minkowski space by constructing a map P : (u, u, ω) → (U, U , ω), ω ∈ S 2 , where

u = tan U, u = tan U , - π 2 < U ≤ U < π 2 .
The map P establishes a conformal isometry 4 between the Minkowski space R 1+3 and its image onto the Einstein cylinder

E 1+3 = R × S 3 with metric m = -dU dU + 1 4 sin 2 (U -U )dσ S 2 .
More precisely

P # ( m) = Ω 2 m, Ω = cos U cos U = 1 (1 + u 2 ) 1/2 (1 + u 2 ) 1/2
(1. 1.5) where P # ( m) is the pull-back by P of the metric m. 4 For a comprehensive discussion of conformal infinity, see section 11.1 in [START_REF] Wald | General Relativity[END_REF]. ) in E 1+3 is given by,

∂P (R 1+3 ) = I + ∪ I -∪ i 0 ∪ i + ∪ i -.
The sets

I + := U = π 2 , - π 2 < U < π 2 , I -:= U = - π 2 , - π 2 < U < π 2 ,
are called the future and past null infinities of Minkowski space. The sets

i 0 := U = - π 2 , U = π 2 , i + := U = U = π 2 , i -:= U = U = - π 2 ,
are called, respectively, spacelike, timelike future, and timelike past infinities.

Note that all time-like geodesics of Minkowski space begin at i -and end at i + , all spacelike geodesics begin and end at i 0 and all null geodesics start on I -and end on I + . We also note that I -, I + are complete null hypersurfaces, along which dΩ = 0. One can also show that the boundary ∂P (R 1+3 ) is of class C 2 at i 0 and real analytic, everywhere else. Minkowski space has a large number of continuous symmetries given by translations, Lorentz transformations, scaling and conformal translations. At infinitesimal level they generate the following Killing and conformal Killing vectorfields

T µ := ∂ ∂x µ , L µν := x µ ∂ ν -x ν ∂ µ , S := x µ ∂ µ , K µ := 2x µ x ρ ∂ ∂x ρ -(x ρ x ρ ) ∂ ∂x µ .
The vectorfields T 0 , L ij , S, K 0 play a particularly important role in the analysis of wave equations in Minkowski space. Note that the vectorfield T 0 is everywhere timelike while K 0 = (t 2 + r 2 )∂ t + 2tx i ∂ i is timelike everywhere except along the light cone -t 2 + r 2 = 0 where it is null.
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Schwarzschild space

EVE admits a remarkable family of explicit, stationary, solutions given by the two parameter family of Kerr solutions among which one distinguishes the Schwarzschild family of solutions, of mass m > 0,

g S = -1 - 2m r dt 2 + 1 - 2m r -1
dr 2 + r 2 dσ S 2 .

(1.1.6)

Though the metric seems singular at r = 2m, it turns out that one can glue together two regions r > 2m and two regions r < 2m of the Schwarzschild metric to obtain a metric which is smooth along H = {r = 2m}, see [START_REF] Wald | General Relativity[END_REF] for details, called the Schwarzschild horizon. The portion of r < 2m to the future of the hypersurface t = 0 is a black hole whose future boundary r = 0 is singular. The similar region to the past of t = 0 is called a white hole. The region r > 2m, called the domain of outer communication (DOC), is free of singularities. In the new coordinates, the Schwarzschild metric thus extends past r = 2m as illustrated in figure 1.4.

We can also conformally compactify the Schwarzschild space by proceeding with the transformation U := arctan(u ), U := arctan(u ).

The completed, conformally compactified space-time is provided by figure 1.5. Here, as for Minkowski space, the boundaries I + and I -, called future and past null infinities, are idealized boundaries of the space-time corresponding to end points, of future directed, respectively past directed, null geodesics. The points i + and i -correspond to end points of future and past time-like geodesics, while i 0 corresponds to space-like infinity. Note that the black hole region can be identified as the complement of the past of future null infinity, i.e. the complement of J -I + . Similarly the white hole region is the complement of the future of past null infinity J + I -. The null hypersurface H = r = 2m , called the event horizon, is the boundary of the black hole and of the white hole. In figure 1.6, representing one connected component of DOC, we note the presence of the timelike hypersurface r = 3m on which null geodesics can be trapped.

Kerr space

The Schwarzschild family is included in a larger two parameter family of solutions K(a, m) discovered by Kerr. A given Kerr space-time, with 0 ≤ |a| ≤ m has a well defined domain CHAPTER 1. INTRODUCTION of outer communication r > r + := m + (m 2a 2 ) 1/2 . In Boyer-Lindquist coordinates, well adapted to r > r + , the Kerr metric has the form, g K = -∆a 2 sin 2 θ q 2 dt 2 -4amr q 2 sin 2 θdtdϕ + q 2 ∆ dr 2 + q 2 dθ 2 + Σ 2 q 2 sin 2 θdϕ 2 with q 2 = r 2 + a 2 cos 2 θ, ∆ = r 2 + a 2 -2mr, Σ 2 = (r 2 + a 2 ) 2a 2 (sin θ) 2 ∆. Note that ∆(r + ) = 0.

As in the Schwarzschild case, the exterior Kerr metric extends smoothly across the hypersurface r = r + . The future and past sets of any point in the domain of outer communication intersect any timelike curve, passing through points of arbitrary large values of r, in finite time as measured relative to proper time along the curve. This fact is violated by points in the region r ≤ r + , which consists of the union between a black hole region, extended towards the future, and a white hole region to the past. Thus physical signals (i.e. future time-like or null geodesics) which initiate at points in r ≤ r + cannot be registered by far away observers 5 . The domain of outer communication {r > r + } is real analytic. The boundary of the domain of outer communication {r = r + } is called the event horizon. In the non-degenerate case, |a| < m, the event horizon consists of two null hypersurfaces intersecting transversally on a compact 2 sphere. The Kerr solution can also be conformally compactified in the same manner as Minkowski and Schwarzschild. We can thus talk about the future and past null infinities I + , I -as well as i 0 , i + , i -. As before, I + is a complete null hypersurfaces, smooth away from i 0 .

The exterior Kerr metrics are stationary, which means, roughly, that the coefficients of the metric are independent of the time variable t. One can reformulate this by saying that the vectorfield T = ∂ t is Killing6 (everywhere in the domain of outer communication) and time-like at points with r large, i.e. the so called asymptotic region (where the space-time is close to flat). One can also easily check that T is tangent to the horizon H = N ∪ N , which is itself a null hypersurface, i.e. the restriction of the metric to the tangent space to H is degenerate (see figure 1.7). In addition to being stationary, the coefficients of the Kerr metric are independent of the coordinate ϕ. Thus Kerr is stationary and axially symmetric. It has been conjectured that all asymptotically flat stationary solutions of the Einstein vacuum equations must be Kerr solutions. The conjecture has been verified only if additional assumptions are made, see [START_REF] Ionescu | Rigidity results in general relativity: a review[END_REF] for a recent survey of known results.

The Schwarzschild metrics, corresponding to a = 0, are not just axially symmetric but spherically symmetric, which means that the metric is left invariant by the whole rotation Figure 1.7: Exterior region of Kerr group of the standard sphere S 2 . A well known theorem of Birkhoff shows that they are the only such solutions of the Einstein vacuum equations. Another peculiarity of a Schwarzschild metric, not true in the case of Kerr, is that the stationary Killing vectorfield T = ∂ t is orthogonal to the hypersurface t = 0. A stationary spacetime which has this property is called static. This is also equivalent to the fact that the Schwarzschild metric is invariant with respect to the reflection t → -t. Moreover, T is timelike for all r > 2m and null along the Schwarzschild horizon H = {r = 2m}. This is not the case for Kerr solutions in which case T = ∂ t is only time-like for r > m + (m 2a 2 cos 2 θ) 1/2 , null for r = m + (m 2a 2 cos 2 θ) 1/2 and space-like in the region between r + and r = m + (m 2a 2 cos 2 θ) 1/2 , called the ergosphere. Finally we remark that the Kerr family is not physically relevant for |a| > m, hence the restriction to |a| ≤ m.

To summarize:

1. The Kerr family K(a, m), 0 ≤ |a| ≤ m, provides a two parameter family of asymptotically flat solutions of the Einstein vacuum equations exhibiting a smooth domain of outer communication and its complement, separated by the event horizon {r = r + }. For |a| < m, the event horizon consists of two null hypersurfaces intersecting transversally on a compact 2 sphere.

2. All Kerr solutions are stationary, i.e. they admit a Killing vectorfield T which is time-like in the asymptotic region. The Schwarzschild space-time (i.e. a = 0) is also static. Moreover the Kerr family is axially symmetric, i.e. it admits another Killing vector-field Z which vanishes on the axis of symmetry. The Schwarzschild 3. The stationary vector-field T is tangent along the horizon and space-like for all 0 < |a| ≤ m. It remains space-like in a small region of DOC called ergo-region. In the particular case a = 0, T is null along the horizon and time-like everywhere in DOC. [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF]. In all cases 0 ≤ |a| ≤ m, DOC contains trapped null geodesics, i.e. null geodesics which are entirely contained in a region of DOC with a bounded value of r. In the case a = 0, all trapped null geodesics are either tangent to the time-like surface {r = 3m} or asymptotic to it.

5. All physically acceptable Kerr solutions, i.e. |a| ≤ m, have complete future and past null infinities corresponding to r = ∞.

Here are some other important properties of the Kerr family.

• The Kerr solution has a remarkable algebraic feature, encoded in the so called Petrov type D property, according to which it admits, at every point a pair of null vectors (l, l), normalized by the condition g(l, l) = -2, called principal null vectors, such that all components of the Riemann curvature tensor vanish identically except for the two independent components R(l, l, l, l), R(l, l, l, l), with R the Hodge dual of R.

BASIC NOTIONS IN GENERAL RELATIVITY

• In addition to the symmetries provided by the Killing vectorfields T and Z, the Kerr solution possesses a nontrivial Killing tensor, i.e. a symmetric 2-covariant tensor C (the Carter tensor) verifying

D (α C βγ) = 0.
• The Kerr family is distinguished among all stationary solutions of EVE by the vanishing of a four tensor called the Mars-Simon tensor, see [START_REF] Mars | A spacetime characterization of the Kerr metric[END_REF].

Stability of Minkowski space

The Minkowski space (R 1+3 , m) is the simplest solution of the Einstein vacuum equations. Note that it belongs to the Kerr family and corresponds to the particular case a = m = 0. Among all Kerr solutions, the Minkowski space is the only one free pathologies such as singular boundaries, or the presence of Cauchy horizons. In particular, it is geodesically complete, i.e. any freely moving observer in M can be extended indefinitely, as measured relative to its proper time. Such a spacetime is said to have a regular MFGHD. Does this property persist under small perturbations?

The result stated below is a rough version of the global stability of Minkowski. The complete result also provides very precise informations about the decay of the curvature tensor along null and timelike directions as well as many other geometric informations concerning the causal structure of the corresponding spacetime, see [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], as well as [START_REF] Klainerman | The evolution problem in general relativity[END_REF], [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] and [START_REF] Bieri | An extension of the stability theorem of the Minkowski space in general relativity[END_REF]. Of particular interest are peeling properties i.e. the precise decay rates of various components of the curvature tensor along future null geodesics.

Theorem 1.1.4 (Global stability of Minkowski). The maximal future development of an asymptotically flat initial data set, sufficiently close to that of Minkowski space, in an appropriate topology, is geodesically complete and converges to the Minkowski space.

Here are, very schematically, some of the main ideas in the proof of the stability of Minkowski space.

(I) Perturbations radiate and decay sufficiently fast (just fast enough!) to insure convergence.

(II) Interpret the Bianchi identities as a Maxwell like system. This is an effective, invariant, way to treat the hyperbolic character of the equations.

(III) Rely on four important PDE advances of late last century: CHAPTER 1. INTRODUCTION (i) Vectorfield approach to get decay based on approximate Killing and conformal Killing symmetries of the equations, see [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equations[END_REF], [START_REF] Klainerman | The Null Condition and global existence to nonlinear wave equations[END_REF], [START_REF] Klainerman | Remarks on the global Sobolev inequalities[END_REF], [START_REF] Christodoulou | Asymptotic properties of linear field theories in Minkowski space[END_REF].

(ii) Generalized energy estimates using both the Bianchi identities and the approximate Killing and conformal Killing vector fields.

(iii) The null condition identifies the deep mechanism for nonlinear stability, i.e. the specific structure of the nonlinear terms enables stability despite the slow decay rate of the perturbations, see [START_REF] Klainerman | Long time behavior of solutions to nonlinear wave equations[END_REF], [START_REF] Klainerman | The Null Condition and global existence to nonlinear wave equations[END_REF], [START_REF] Christodoulou | Global solutions of nonlinear hyperbolic equations for small initial data[END_REF].

(iv) Involved bootstrap argument according to which one makes educated assumptions about the behavior of the space-time and then proceeds to show that they are in fact satisfied. This amounts to a conceptual linearization, i.e. a method by which the equations become, essentially, linear 7 without actually linearizing them.

Cosmic censorship

Unlike the situation described in Theorem 1.1.4, we expect maximal developments of typical, non small, initial data sets to be incomplete, with singular boundaries. As shown by D. Christodoulou [START_REF] Christodoulou | The formation of black holes in General Relativity[END_REF], trapped surfaces can form in evolution starting with regular initial conditions 8 . Together with the well known singularity theorem of R. Penrose, these results show that there exists a large class of regular initial data whose MFGHD is incomplete.

The unavoidable presence of singularities, for sufficiently large initial data sets, as well as the analysis of explicit examples (such as Schwarzschild and Kerr) have led Penrose to formulate two fundamental conjectures, concerning the character of general solutions to the Einstein equations. Here we restrict our discussion only to the so called weak cosmic censorship conjecture (WCC), which is the only one relevant to the problem of stability. To understand the statement of (WCC), consider the different behavior of null rays in Schwarzschild and Minkowski spacetimes. In Minkowski space, light originating at any point p = (t 0 , x 0 ) propagates, towards future, along the null rays of the null cone tt 0 = |xx 0 |. Any free observer in R 1+3 , following a straight time-like line, will necessarily meet this light cone in finite time, thus experiencing the event p. On the other hand, any point p in the trapped region r < 2m of the Schwarzschild space is such that all null rays initiating at p remain trapped in the region r < 2m. In particular events causally connected to the singularity at r = 0 cannot influence events in the domain of WCC is an optimistic extension of this fact to future developments of general, asymptotically flat initial data sets. The desired conclusion of the conjecture is that any such development, with the possible exception of a non-generic set of initial conditions, has the property that any sufficiently distant observer will not encounter singularities. To make this more precise, one needs to define what a sufficiently distant observer means. This is typically done by introducing the notion of future null infinity I + which provides end points for the null geodesics that propagate to asymptotically large distances. As in the cases analyzed above, future null infinity is constructed by conformally embedding the physical spacetime (M, g) to a larger space-time ( M, g) such that g = Ω 2 g in M, with a null boundary I + (where Ω = 0, dΩ = 0).

Definition 1.1.5. The future null infinity I + is said to be complete 9 if any future null geodesic along it can be indefinitely extended relative to an affine parameter 10 .

Conjecture (Weak Cosmic Censorship conjecture). Generic asymptotically flat initial data sets have maximal future developments possessing a complete future null infinity.

Once the completeness of future null infinity has been established, one can then define the black hole region B to be the complement of the causal past of null infinity

B := M \ J -(I + ). (1.1.7)
The boundary H + of B is called the event horizon of the black hole.

all the instability modes of the linearized system to two properties of the nonlinear equation:

(a) The presence of a continuous 14,15 family of other stationary solutions of N [φ] = 0 near φ 0 .

(b) The presence of a continuous family of diffeomorphisms 16 of the background manifold which map, by pull back, solutions to solutions.

For a typical stationary solution φ 0 , both properties exist and generate nontrivial solutions of the linearized equation N [φ 0 ]ψ = 0. In the case of relatively simple scalar nonlinear equations, where the symmetry group of the equation is small, an effective strategy of dealing with this problem (known under the name of modulation theory) has been developed, see for example [START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF], [START_REF] Merle | On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation[END_REF]. In the case of the Einstein equations this problem is compounded by the large invariance group of the equations, i.e. all diffeomorphisms of the spacetime manifold. To deal with both problems and establish stability one has to

• Track the parameters (a f , m f ) of the final Kerr spacetime.

• Track the coordinate system (gauge condition) relative to which we have decay for all linearized quantities. Such a coordinate system cannot be imposed apriori, it has to emerge dynamically in the construction of the spacetime.

2. As described earlier, the fundamental insight in the stability of the Minkowski space was that we can treat the Bianchi identities as a Maxwell system in a slightly perturbed Minkowski space by using the vectorfield method. This cannot work for perturbations of Kerr due to the fact that some of the null components of the curvature tensor 17 are non-trivial in Kerr.

3. Even if we can establish a useful version of linearization (i.e. one which addresses the above mentioned problems), there are still major obstacles in understanding their decay properties. Indeed, when one considers the simplest, relevant, linear equation on a fixed Kerr background, i.e. the wave equation g ψ = 0 (often referred to as the poor's man linearization of EVE), one encounters serious difficulties even to prove the boundedness of solutions for the most reasonable, smooth, compactly supported, data. Below is a very short description of these.
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• The problem of trapped null geodesics. This concerns the existence of null geodesics 18 neither crossing the event horizon nor escaping to null infinity, along which solutions can concentrate for arbitrary long times. This leads to degenerate energy estimates which require a very delicate analysis.

• The trapping properties of the horizon. The horizon itself is ruled by null geodesics, which do not communicate with null infinity and can thus concentrate energy. This problem was solved by understanding the so called red-shift effect associated to the event horizon, which more than counteracts this type of trapping.

• The problem of superradiance. This is essentially the failure of the stationary Killing field T = ∂ t to be everywhere timelike in the domain of outer communications and, thus, the failure of the associated conserved energy to be positive. Note that this problem is absent in Schwarzschild and, in general, for axially symmetric solutions.

• Superposition problem. This is the problem of combining the estimates in the near region, close to the horizon, (including the ergoregion and trapping) with estimates in the asymptotic region, where the spacetime looks Minkowskian.

4. The full linearized system of EVE around Kerr, usually referred to as the linearized gravity system (LGS), whatever its formulation, presents far more difficulties beyond those mentioned above concerning the poor man's linear scalar wave equation on Kerr, see the discussion below.

Historically, two versions of LGS have been considered. In what follows we review the main known results concerning solutions to the linearized equations on a Kerr background.

Formal mode analysis

The first important results concerning both items (3) and (4) above were obtained by physicists based on the classical method of separation of variables and formal mode analysis. In the particular case where g 0 is the Schwarzschild metric, the linearized equations (1.2.1) can be formally decomposed into modes, by associating t-derivatives with multiplication by iω and angular derivatives with multiplication by l, i.e. the eigenvalues of the spherical laplacian. A similar decomposition, using oblate spheroidal harmonics, can be done in Kerr. The formal study of fixed modes from the point of view of metric perturbations as in (1.2.1) was initiated by Regge-Wheeler [START_REF] Regge | Stability of a Schwarzschild singularity[END_REF] who discovered the master Regge-Wheeler equation for odd-parity perturbations. This study was completed by Vishveshwara [START_REF] Vishveshwara | Stability of the Schwarzschild metric[END_REF] and Zerilli [START_REF] Zerilli | Effective potential for even-parity Regge-Wheeler gravitational perturbation equations[END_REF]. A gauge-invariant formulation of metric perturbations was then given by Moncrief [START_REF] Moncrief | Gravitational perturbations of spherically symmetric systems. I. The exterior problem[END_REF]. An alternative approach via the Newman-Penrose (NP) formalism was first undertaken by . This latter type of analysis was later extended to the Kerr family by Teukolsky [START_REF] Teukolsky | Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations[END_REF] who made the important discovery that the extreme curvature components, relative to a principal null frame, satisfy decoupled, separable, wave equations. These extreme curvature components also turn out to be gauge invariant in the sense that small perturbations of the frame lead to quadratic errors in their expression. The full extent of what could be done by mode analysis, in both approaches, can be found in Chandrasekhar's book [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]. Chandrasekhar also introduced (see [START_REF] Chandrasekhar | On the equations governing the perturbations of the Schwarzschild black hole[END_REF]) a transformation theory relating the two approaches. More precisely, he exhibits a transformation which connects the Teukolsky equations to the Regge-Wheeler one. This transformation was further elucidated and extended by R. Wald [START_REF] Wald | Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations[END_REF] and recently by Aksteiner and al [START_REF] Aksteiner | Gaugeinvariant perturbations of Schwarzschild spacetime[END_REF]. The full mode stability, i.e. lack of exponentially growing modes, for the Teukolsky equation on Kerr is due to Whiting [START_REF] Whiting | Mode stability of the Kerr black hole[END_REF] (see also [START_REF] Shlapentokh-Rothman | Quantitative Mode Stability for the Wave Equation on the Kerr Spacetime[END_REF] for a stronger quantitive version).

Vectorfield method

Note that mode stability is far from establishing even boundedness of solutions to the linearized equations. To achieve that and, in addition, to derive realistic decay estimates one needs an entirely different approach based on a far reaching extension of the classical vectorfield method 19 used in the proof of the nonlinear stability of Minkowski [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF]. The new vectorfield method compensates for the lack of enough Killing and conformal Killing vectorfields on a Schwarzschild or Kerr background by introducing new vectorfields whose deformation tensors have coercive properties in different regions of spacetime, not nec-CHAPTER 1. INTRODUCTION essarily causal. The new method has emerged in the last 15 years in connection to the study of boundedness and decay for the scalar wave equation in the Kerr space K(a, m), ga,m ψ = 0.

(1.2.

2)

The starting and most demanding part of the new method is the derivation of a global, simultaneous, Energy-Morawetz estimate which degenerates in the trapping region. This task is somewhat easier in Schwarzschild, or for axially symmetric solutions in Kerr, where the trapping region is restricted to a smooth hypersurface. The first such estimates, in Schwarzschild, were proved by Blue and Soffer in [START_REF] Blue | Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates[END_REF], [START_REF] Blue | Errata for "Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds[END_REF] followed by a long sequence of further improvements in [START_REF] Blue | Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space[END_REF], [START_REF] Dafermos | The red-shift effect and radiation decay on black hole spacetimes[END_REF], [START_REF] Marzuola | Strichartz estimates on Schwarzschild black hole backgrounds[END_REF] etc. See also [START_REF] Ionescu | On the global stability of the wave-map equation in Kerr spaces with small angular momentum[END_REF] and [63] for a vectorfield method treatment of the axially symmetric case in Kerr with applications to nonlinear equations. In the absence of axial symmetry the derivation of an Energy-Morawetz estimate in Kerr(a, m), |a/m| 1 requires a more refined analysis involving either Fourier decompositions, see [START_REF] Dafermos | A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds[END_REF], [START_REF] Tataru | A local energy estimate on Kerr black hole backgrounds[END_REF], or a systematic use of the second order Carter operator, see [START_REF] Andersson | Hidden symmetries and decay for the wave equation on the Kerr spacetime[END_REF]. The derivation of such an estimate in the full sub-extremal case |a| < m is even more subtle and was recently achieved by Dafermos, Rodnianski and Shlapentokh-Rothman [START_REF] Dafermos | Decay for solutions of the wave equation on Kerr exterior spacetimes iii: The full subextremal case |a| < m[END_REF] by combining mode decomposition with the vectorfield method.

Once an Energy-Morawetz estimate is established one can commute with the time translation vectorfield and the so called redshift vectorfield 20 , first introduced in [START_REF] Dafermos | The red-shift effect and radiation decay on black hole spacetimes[END_REF], to derive uniform bounds for solutions. The most efficient way to also get decay, and solve the superposition problem, is due to Dafermos and Rodnianski, see [START_REF] Dafermos | A new physical-space approach to decay for the wave equation with applications to black hole spacetimes[END_REF], based on the presence of a family of r p -weighted, quasi-conformal vectorfields defined in the far r region of spacetime 21 .

Nonlinear stability of Schwarzschild under polarized perturbations 1.3.1 Bare-bones version our theorem

The goal of the book is to prove the nonlinear stability of the Schwarzschild spacetime under axially symmetric polarized perturbations, i.e. solutions of the Einstein vacuum
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equations (1.1.3) for asymptotically flat 1+3 dimensional Lorentzian metrics which admit a hypersurface orthogonal spacelike Killing vectorfield Z with closed orbits. This class of perturbations allows us to restrict our analysis to the case when the final state of evolution is itself a Schwarzschild spacetime. This is not the case in general, as a typical perturbation of Schwarzschild may approach a member of the Kerr family with small angular momentum.

The simplest version of our main theorem can be stated as follows.

Theorem 1.3.1 (Main Theorem (first version)). The future globally hyperbolic development of an axially symmetric, polarized 22 , asymptotically flat initial data set, sufficiently close (in a specified topology) to a Schwarzschild initial data set of mass m 0 > 0, has a complete future null infinity I + and converges in its causal past J -1 (I + ) to another nearby Schwarzschild solution of mass m ∞ close to m 0 .

Our theorem is an important step in the long standing effort to prove the full nonlinear stability of Kerr spacetimes K(a, m), in the sub-extremal regime |a| < m. We give a succinct review below of some of the most important results which have been obtained so far in this direction.

Linear stability of the Schwarzschild space-time

A first quantitative (i.e. which provides precise decay estimates) proof of the linear stability of Schwarzschild spacetime has recently been established 23 by Dafermos, Holzegel and Rodnianksi in [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF], via the NP formalism (expressed in a double null foliation 24 ). It is important to note that while the Teukolsky equation (in the NP formalism) is separable, and thus amenable to mode analysis, it is not Lagrangian and thus cannot be treated by direct energy type estimates. To overcome this difficulty [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF] relies on a new physical space version of the Chandrasekhar transformation [START_REF] Chandrasekhar | On the equations governing the perturbations of the Schwarzschild black hole[END_REF], which takes solutions of the Teukolsky equations to solutions of Regge-Wheeler, which is manifestly both Lagrangian and coercive. After quantitative decay has been established for this latter equation, based on the new vectorfield method, the physical space form of the transformation allows one to derive quantitative decay for solutions of the original Teukolsky equation. Once decay 36 CHAPTER 1. INTRODUCTION estimates for the Teukolsky equation have been established, the remaining work in [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF] is to bound all other curvature and Ricci coefficients associated to the double null foliation. This last step requires carefully chosen gauge conditions along the event horizon of the fixed Schwarzschild background. This final gauge is itself then quantitatively bounded in terms of the initial data, giving thus a comprehensive statement of linear stability.

1.3.3 Main ideas in the proof of Theorem 1.3.1

In the passage from linear to nonlinear stability of Schwarzschild one has to overcome major new difficulties. Some are similar to those encountered in the stability of Minkowski [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] such as, 1. Need of an appropriate geometric setting which takes into account the decay and peeling properties of the curvature. In [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] this was achieved with the help of the foliation of the perturbed spacetime given by two optical functions (int) u and (ext) u and a maximal time function t. The exterior optical function (ext) u, which was initialized at infinity, was essential to derive the decay and peeling properties along null directions while (int) u, initialized on a timelike axis, was responsible for covering the interior, non-radiative, back scattering, decay.

2. The peeling and decay estimates have to be derived by some version of the geometric vectorfield method which relates decay to generalized energy type estimates.

3. The peeling and decay estimates mentioned above should be sufficiently strong to be able to deal with the error terms generated by the vectorfield method. For this to happen, the error terms need to exhibit an appropriate null structure.

The new main difficulties are as follows:

1. One needs a procedure which allows to take into account the change of mass and detect its final value. Note also that we need to restrict the nature of the perturbations to insure that the final state of a perturbation of Schwarzschild is still Schwarzschild.

2. While in the stability of Minkowski space all components of the curvature tensor where expected to approach zero, this is no longer true. Indeed, the middle curvature component (relative to an adapted null frame), ought to converge to its respective value in the final Schwarzschild spacetime. This statement is unfortunately hard to quantify since that value depends both on the final mass and on the corresponding
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Schwarzschild coordinates. Moreover, some of the other curvature components, which are expected to converge to zero, are also ill defined since a small change of the null frame can produce small linear distortion to the basic equation which these curvature components verify. Note that this difficulty was absent in the stability of the Minkowski space where small changes in the frame produce only quadratic errors.

3. The classical vector-field method used in the nonlinear stability of Minkowski space was based on the construction, together with the spacetime, of an adequate family of approximate Killing and conformal Killing vectorfields which mimic the role played by the corresponding vectorfields in Minkowski space in establishing uniform decay estimates. The Schwarzschild space however has a much more limited set of Killing vectorfields and no useful conformal Killing ones. As mentioned above, this problem appears already in the analysis of the standard scalar linear wave equation in Schwarzschild.

4. As in the stability of the Minkowski space, one needs to make gauge conditions to insure that we are measuring decay relative to an appropriate center of mass frame. Yet, as we saw above, it is no longer true that small perturbations of the null frame produce only quadratic errors for the curvature, as was the case in the stability of Minkowski space. In fact, the center of mass frame of the perturbed black hole continuously changes in response to incoming radiation. This, the so called recoil problem, does not occur in linear theory.

Here is a very short summary of how we solve these new challenges in our work.

1. We resolve the first difficulty by restricting our analysis to axially symmetric, polarized perturbations and by tracking the mass using a quantity, called the quasi-local Hawking mass, for which we derive simple propagation equations which establish monotonicity of the mass up to errors which are quadratic with respect to the perturbations.

2. We resolve the second difficulty by making use of the fact that the extreme components of the curvature are, up to quadratic terms, invariant under null frame transformations. As in [START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF], we also make use of a transformation, similar to that of Chandrasekhar mentioned above, which maps the extreme components of the curvature to a new quantity q, defined up to quadratic errors, that verifies a Regge-Wheeler type equation. Once we manage to control q, i.e. to derive quantitative decay estimates for it, we can also control, in principle 25 , the two extreme curvature CHAPTER 1. INTRODUCTION invariants α and α, the first by inverting the Chandrasekhar transformation and the second by using a variant of the Teukolsky-Starobinski identities. One is then left with the arduous task of recovering 26 all other null components of the curvature tensor and all connection coefficients.

3. The third difficulty manifests itself in the most sensitive part of the entire argument, i.e. in the task of deriving quantitative decay estimates for q by making use of the Regge-Wheeler type equation it verifies. To do this we rely on the new vectorfield method as outlined in section 1.2.2 above. The main new difficulties are:

(i) The vectorfield method introduces new error terms, not present in linear theory. To estimate these terms we need precise decay information, off the final Schwarzschild space, for all connection coefficients and curvature of the perturbation.

(ii) The most difficult terms are those due to the quadratic errors made in the derivation of the Regge-Wheeler equation for q. As in the proof the stability of the Minkowski space the precise rates of decay for various curvature and connection coefficients, i.e. the peeling properties of the perturbation, and the the precise structure of these error terms is of fundamental importance.

4. We solve the fourth and most important new difficulty by a procedure we call General Covariant Modulation (GCM). This procedure, which takes advantage of the full covariance of the Einstein equations, allows us to construct the perturbed spacetime by a continuity argument involving finite GCM admissible spacetimes M as represented in figure 1. [START_REF] Blue | A space-time integral estimate for a large data semi-linear wave equation on the Schwarzschild manifold[END_REF]. The past boundaries C 1 ∪ C 1 are incoming and outgoing null hypersurfaces on which the initial perturbation is prescribed. The future boundaries consists of the union A ∪ C * ∪ C * ∪ Σ * where A and Σ * are spacelike, C * is incoming null, C * outgoing null. The boundary A is chosen so that, in the limit when M converges to the final state, is included in the perturbed black hole. The spacelike boundary Σ * plays a fundamental role in our construction as seen below. The spacetime M also contains a timelike hypersurface T which divides M into an exterior region we call (ext) M and an interior one (int) M. We say that M is a GCM admissible spacetime if it verifies the following properties.

(i) The far region (ext) M is foliated by a geodesic foliation induced by an outgoing optical function u initialized on Σ * (ii) The near region (int) M is foliated by a geodesic foliation induced by an incoming optical function u initialized at T such that its level sets on T coincide with those of u.

NONLINEAR STABILITY OF SCHWARZSCHILD UNDER POLARIZED PERTURBATIONS39

H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C⇤ C ⇤ A C1 C 1 ⌃ ⇤ I+ ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t )
M ( i n t ) M T (iii) The foliation induced on Σ * is such that specific geometric quantities take Schwarzschildian values. We refer to these as GCM conditions. These conditions are dynamically reset in the continuation process on which our proof is based.

(iv) The area radius r(u) of the spheres of constant u along Σ * is far greater than the corresponding value of u. This condition allows us to simplify somewhat the null structure and Bianchi equations induced on Σ * and corresponds to the expectation that the spacelike hypersurfaces Σ * converges to the null infinity of the final state of the perturbation.

5. The GCM conditions together with the control derived on q, α and α mentioned earlier allows us to control all null connection and curvature coefficients along on Σ * , i.e. to derive appropriated decay estimates for them. These estimates can then be transported to (ext) M using the the full scope of the null structure and null Bianchi identities associated to the outgoing geodesic foliation.

6. The decay estimates in (ext) M can then be used as initial condition along the timelike hypersurface T for the incoming foliation of (int) M. These allows us to also derive appropriate decay estimates for all null connection and curvature coefficients CHAPTER 1. INTRODUCTION of the foliation induced by u.

7. The precise decay estimates derived in 5 are sufficiently strong to allow us to control all error terms generated in the process of estimating q, as mentioned in 3.

Note that in figure 1.10, one starts with initial conditions on the union of null hypersurfaces C 1 ∪C 1 rather than an initial spacelike hypersurface Σ (0) . One can justify this simplification based on the results of [START_REF] Klainerman | The evolution problem in general relativity[END_REF], [START_REF] Klainerman | Peeling properties of asymptotic solutions to the Einstein vacuum equations[END_REF], see Remark 3.3.1. The full red line H + represents the future event horizon of the perturbed Schwarzschild. The line T represents the timelike hypersurface separating (int) M from (ext) M. In deriving decay estimates the precise choice of T is irrelevant. A choice, however, needs to be made in order to avoid a derivative loss for our top energy estimates 27 .

The spacetime is constructed by a continuity argument, i.e. we assume that the spacetime terminating at C * ∪ C * saturates a given bootstrap assumption (BA) and show, by a long sequence of a-priori estimates which take advantage of the smallness of the initial perturbation, that (BA) can be improved and the spacetime extended past C * ∪ C * ∪ Σ * .

Our work here is the first to prove the nonlinear stability of Schwarzschild in a restricted class of nontrivial perturbations, i.e. perturbations for which new ideas, such as our GCM procedure are needed. To a large extent, the restriction to this class of perturbations is only needed to ensure that the final state of evolution is another Schwarzschild space. We are thus confident that our procedure may apply in a more general setting. We would like to single out two other recent important contributions to nonlinear stability of black holes.

In the context of asymptotically flat Einstein vacuum equations the result of Dafermos-Holzegel-Rodnianski [START_REF] Dafermos | A scattering theory construction of dynamical black hole spacetimes[END_REF] constructs a class of Kerr black hole solutions starting from future infinity while Hintz-Vasy [START_REF] Hintz | The global non-linear stability of the Kerr-de Sitter family of black holes[END_REF] 28 prove the nonlinear stability of Kerr-de Sitter, for small angular momentum, in the context of the Einstein vacuum equations with a nontrivial positive cosmological constant. Though the two results are very different they share in common the fact that the perturbations they treat decay exponentially. This makes the analysis significantly easier than in our case when the decay is barely enough to control the nonlinear terms.

Organization

The paper is organized as follow. In Chapter 2 we introduce the main quantities, equations and basic tools needed later. It is our main reference kit providing all main null structure 1.5. ACKNOWLEDGEMENTS and null Bianchi equations, in general null frames, in the context of axially symmetric polarized spacetimes. Though we work with the reduced equations, i.e the equations reduced by the symmetries, most of the work in the paper does not really depend of the reduction. Besides insuring that the final state is a Schwarzschild space the reduction only plays a significant role in the GCM construction.

Chapter 3, the heart of the paper, contains the precise version of our main theorem, its main conclusions as well as a full strategy of its proof, divided in nine supporting intermediate results, Theorems M0-M8. We also give a short description of the proof of each theorem.

In the other chapters of this paper we give complete proofs of Theorems, M0-M8 and a full description of our GCM procedure.

The reader versed in the formalism of null structure and Bianchi equations, as discussed in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], is encouraged to glance fast over Chapter 2, to get familiarized with the notation, and then move directly to Chapter 3.
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The first author has been supported by the NSF grant DMS 1362872. He would like to thank the mathematics departments of Paris 6, Cergy-Pontoise and IHES for their 44 CHAPTER 2. PRELIMINARIES where X and g are independent of ϕ. We refer to the orbit space M/Z as the reduced space and the metric g = g ab dx a dx b as the reduced metric. Note that the reduced space (M/Z, g) is smooth away from the axis A. Moreover the scalar X verifies the wave equation,

g X = X -1 D µ XD µ X. (2.1.2)
We denote by R, resp. R the curvature tensor of the spacetime metric g, respectively g, and by g , resp g the d'Alembertian with respect to g and resp. the reduced metric g. We also denote by Γ the Christoffel symbols of g and by Γ the ones of g. Note that the only non-vanishing Christoffel symbols are:

Γ ϕ ϕb = 1 2 X -1 ∂ b X, Γ a ϕϕ = - 1 2 g as ∂ s X, Γ a bc = Γ a bc .
(2.1.3)

One can easily prove the following.

Proposition 2.1.2. The scalar curvature R of the reduced metric g of an axially symmetric polarized Einstein vacuum spacetime vanishes identically 1 . Moreover, setting Φ :=

1 2 log X we find, R ab = D a D b Φ + D a ΦD b Φ, g Φ = -D a ΦD a Φ. (2.1.4) 
Also,

R aϕb ϕ = - 1 2 X -1 D a D b X + 1 4 X -2 D a XD b X = -R ab ,
R acb ϕ = 0, (2.1.5)

R abc d = R abc d ,
and, R abcd = g ac R bd + g bd R acg ad R bcg bc R ad .

(2.1.6)

Finally, when applied to Z-invariant functions, Remark 2.1.4. Schwarzschild spacetime is axially symmetric polarized with, X = r 2 (sin θ) 2 , Φ = log(r) + log(sin θ).

g = g + g ab ∂ a Φ∂ b . ( 2 

Z-frames

We consider orthonormal frames e 0 , e 1 , e θ = e 2 , e ϕ = X -1/2 Z, with X := g(Z, Z), which are Z-equivariant, i.e. [Z, e α ] = 0. From now on, the index ϕ is referring to the frame rather than the coordinates (2.1.10)

Proof. Straightforward verification.

Lemma 2.1.6. We have,

D s R abcd = D s R abcd , D s R ϕbcd = 0, D s R ϕbϕd = -D s R bd , D ϕ R abcd = 0, D ϕ R ϕbcd = D s ΦR sbcd + D c ΦR bd -D d ΦR bc , D ϕ R ϕbϕd = 0.
Proof. Straightforward verification.

Definition 2.1.7. We say that a spacetime tensor U is Z-invariant if L Z U = 0 and Zinvariant polarized if its contractions to an odd number of e ϕ = X -1/2 Z vanish identically.

Proposition 2.1.8. All higher covariant derivatives of the Riemann curvature tensor R of an axially symmetric polarized spacetime (M, g, Z) are Z-invariant, polarized.

Proof. The statement has been already verified above for both R and DR. It suffices to show that, given an arbitrary Z-invariant, polarized tensor U, its covariant derivative DU is also Z-invariant, polarized. The invariance is immediate. To show polarization Similarly, since e ϕ (U a ) = X -1/2 Z(U a ) = X -1/2 L Z U a = 0 and D ϕ e a is proportional to e ϕ , D ϕ U a = e ϕ (U a ) -U Dϕ e a = 0.

Similarly we can check that the contraction of DU with any odd number of e ϕ must be zero.

In what follows we shall refer to Z-invariant, polarized tensors as simply Z-polarized.

Axis of symmetry

We denote by A the axis of symmetry of Z, i.e. the set of zeroes of X = g(Z, Z). Since we assume dX = 0, A is a smooth timelike submanifold of dimension 2. In view of the definition of axial symmetry every trajectory of Z is closed and intersects A at one point.

The following regularity result at A holds true.

Lemma 2.1.9. At the axis of symmetry A we have,

g µν ∂ µ X∂ ν X 4X = e 2Φ g µν ∂ µ Φ∂ ν Φ -→ 1.
(2. 1.11) Proof. This is a classical result, see for example [START_REF] Mars | Axial Symmetry and conformal Killing vectorfields[END_REF]. We provide a proof for the convenience of the reader. We introduce a coordinates system (x 0 , x 1 , x 2 , x 3 ) centered at a point q = (0, 0, 0, 0) on the axis such that the Christoffel symbols of the metric vanish at q and ∂ x 0 |q and ∂ x 1 |q are tangent to the axis at q. In particular, in this coordinates system, the matrix ∂ α Z µ (q) is given by

∂ α Z µ (q) = 0 0 0 A ,
where A is an antisymmetric matrix. Note that we used the fact that Z vanishes on the axis, that q belongs to the axis, and that ∂ α Z µ (q) is antisymmetric since Z is Killing. Now, if x(ϕ) denotes an orbit of Z close to q, and y = (x 2 , x 3 ), we have in particular from Taylor formula dy dϕ = Ay + O(y 2 ).

Hence exp(-ϕA)y(ϕ) = y(0) + O(ϕy 2 ) and since y(2π) = y(0) in view of the 2π-periodicity of the orbits of Z, we infer exp(-2πA)y(0) = y(0) + O(y 2 ).

As y(0) can be taken arbitrarily small, we infer that exp(2πA) is the 2 × 2 identity matrix. Since A is antisymmetric and non zero, its eigenvalues necessarily are i and -i, and hence A T A = I. This yields

A α µ A γ ν A αν = A α µ (A T A) γα = A γµ
and hence

∂ α Z µ (q)∂ γ Z ν (q)∂ α Z ν (q) = ∂ γ Z µ (q).
Finally, since Z vanishes on the axis, and since the coordinates system we use in this lemma has vanishing Christoffel symbols at q, we have as |x| goes to 0

g µν ∂ µ X∂ ν X 4X = Z µ D α Z µ Z ν D α Z ν Z µ Z µ = ∂ β Z µ (q)x β ∂ α Z µ (q)∂ γ Z ν (q)x γ ∂ α Z ν (q) ∂ β Z µ (q)x β ∂ γ Z µ (q)x γ + O(x).
Together with the previous identity, we infer near any point q on the axis

g µν ∂ µ X∂ ν X 4X -→ 1.
This concludes the proof of the lemma.

We note that Z-polarized, smooth, vectorfields are automatically tangent to A. This is the content of the following.

Lemma 2.1.10. Any, regular (i.e. smooth) Z-polarized vectorfield U is tangent to the axis A.
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Proof. Let U a polarized Z-invariant regular vectorfield. Since it is Z-invariant, we have

0 = [Z, U] = Z α D α U -U α D α Z.
Since Z = 0 on the axis and U is regular (hence bounded on the axis) we infer that U α D α Z = 0 on A. In view of (2.1.10),

U α D α Z = U(e φ )e ϕ ,
and since e ϕ is unitary, we infer that U(X 1/2 ) = U(e φ ) = 0 on A and hence U(X) = 0 when X = 0.

Corollary 2.1.11. Let u be a smooth regular optical function, i.e. g αβ D α uD β u = 0, which is Z -invariant, i.e. Z(u) = 0. Then its associated null geodesic generator L = -g αβ ∂ α u∂ β is Z-invariant, polarized, tangent to the axis of symmetry A.

Proof. It is easy to check that L is Z-invariant, polarized. It must therefore be tangent to A in view of Lemma 2.1.10.

Z-polarized S-surfaces

Throughout our work we shall deal various Z-polarized, S-foliations i.e. foliations given by compact 2-surfaces S with induced metrics of the form,

g / = γdθ 2 + Xdϕ 2 , γ = γ(θ) > 0, θ ∈ [0, π].
(2.1.12)

Here γ and X are independent of ϕ, and e Φ vanishes on the poles θ = 0 and θ = π, where Φ = 1 2 log X.

The regularity condition (2.1.11) takes the form, where e θ is the unit vector, e θ := γ -1/2 ∂ θ .

AXIALLY SYMMETRIC POLARIZED SPACETIMES

We denote the induced covariant derivative ∇ / and define the volume radius of S by the formula

|S| = 4πr 2
where |S| is the volume of the surface using the volume form of the metric g / . Note also that the area element on S is given by √ γe Φ dθdϕ.

In this section we record some basic general formulas concerning these surfaces. We consider adapted orthonormal frames e θ , e ϕ = X -1/2 Z = X -1/2 ∂ ϕ .

Note that in view of (2.1.10) we have, ∇ / ϕ e ϕ = -(e θ Φ)e θ , ∇ / ϕ e θ = (e θ Φ)e ϕ , ∇ / θ e θ = ∇ / θ e ϕ = 0.

(2. 1.14) In what follows, we consider Z-invariant polarized tensors tangent to S or simply polarized k-tensors on S.

In view of Lemma 2.1.10, a regular Z-polarized tensor on S must vanish on the axis of symmetry i.e. at θ = 0 and θ = π. More precisely we have, Lemma 2.1.12. The following facts hold true for Z-polarized tensors on S.

1. If U is a 1-form then, on the axis of symmetry 2 of Z, (i.e. for θ = 0 and θ = π), U θ := U (e θ ) = 0 2. For a covariant 2-tensor, then, on the axis of symmetry3 of Z, (i.e. for θ = 0 and θ = π), U θθ = U ϕϕ = 0.

Similar statements can be deduced for higher order tensors.

Proof. Immediate consequence of Lemma 2.1.10.

Lemma 2.1.13. The Gauss curvature K of the metric (2.1.12) can be expressed in terms of the polar function Φ := 1 2 log X by the formula, / Φ = -K.

(2.1.15)

Proof. Direct calculation using the form of the g / metric in (2.1.12).
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Basic operators on S

We recall (see [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] chapter 2) the following operations which preserve the space of fully symmetric traceless tensors:

Definition 2.1.14. We denote by S k the set of k-covariant polarized tensors which are fully symmetric and traceless, i.e. which verify,

f A 1 ...A k = f (A 1 ...A k ) , g / A 1 A 2 f A 1 A 2 ...A k = 0.
We define the following operators on S k -tensors.

1. The operator D / k which takes S k into S k-1 is the divergence operator,

( D / k f ) A 2 ,...A k : = (div / f ) A 2 ,...A k := g / AB ∇ / B f AA 2 ,...A k .
2. The operator D / k which takes S k-1 into S k is the fully symmetrized, traceless, covariant derivative operator 4 ,

( D / k f ) A 1 ...A k : = -∇ / A 1 f, k = 1, -1 k ∇ / (A 1 f A 2 ...A k ) + 1 k(k-1) g / (A 1 A 2 (div / f ) A 3 ...A k ) , k ≥ 2.
3. The operator / k takes S k to S k ,

( / k f ) A 1 ...A k := g / BC ∇ / B ∇ / C f A 1 ...A k .
Remark 2.1.15. Note that if f ∈ S k then curl / f :=∈ BC ∇ / B f CA 1 ...A k = 0.

Lemma 2.1.16. Given f ∈ S k , k ≥ 1, we have the identity,

∇ / B f A 1 ...A k = -( D / k+1 f ) BA 1 ...A k + 1 k g / (BA 1 ( D / k f ) A 2 ...A k ) .
(2.1. [START_REF] Caroll | Spacetime and geometry. An introduction to general relativity[END_REF])

In other words the covariant derivatives of any tensor in S k can be expressed as a linear combination of D / k+1 f and g / ⊗ D / k f .

Proof. The proof follows easily from definitions and the vanishing of the curl / . For example, if k = 2,

3∇ / B f A 1 A 2 = (∇ / B f A 1 A 2 + ∇ / A 1 f A 2 B + ∇ / A 2 f BA 1 ) + (∇ / B f A 1 A 2 -∇ / A 1 f BA 2 ) + (∇ / B f A 1 A 2 -∇ / A 2 f A 1 B ) = -3 [( D / 3 f ) BA 1 A 2 -g / A 1 A 2 ( D / 2 f ) B -g / A 2 B ( D / 2 f ) A 1 -g / A 1 A 2 ( D / 2 f ) B ] = -3 ( D / 3 f ) BA 1 A 2 - 1 2 g / (BA 1 ( D / 2 f ) A 2 )
. 4 For an arbitrary k-tensor, f (A1...A k ) = 1 k! σ∈S k f A σ(1) ...Aσ(k) . In the particular case when k = 1 we get ( D / 1 f ) A = -∇ / A f and when k = 2 we get D / 2 f AB = -1 2 (∇ / A f B + ∇ / B f Ag / AB div / f ).

1. Let (1+3) f ∈ S k sucht that (1+3) f θ...θ = f . Then, 4. Let (1+3) f ∈ S k sucht that (1+3) f θ...θ = f . Then,

( D / k ( 
/ k (1+3) f θ 1 ...θ k = e θ (e θ f ) + e θ (Φ)e θ f -k 2 e θ (Φ) 2 f.
Proof. The proof follows easily from the definitions of D / k , D / k , / k and the formulae (2.1.14). We check below the formula (2.1.18).

-( D / k (1+3) f ) θ...θ = e θ f - 1 2 ( D / k-1 f ) θ...θ = e θ (f ) - 1 2 (e θ f + (k -1)e θ (Φ)f ) = 1 2 (e θ f -(k -1)e θ (Φ)f )
as desired.
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Definition 2.1.20. We say that a scalar f is a reduced k-scalar on S if there is a Zinvariant, polarized, k-covector (1+3) f ∈ S k such that, f = (1+3) f θ...θ .

We denote by s k the set of k reduced scalars.

• Given a k reduced scalar f , reduced from (1+3) f we define,

|∇ / f | 2 = |∇ / (1+3) f | 2 , |∇ / l f | 2 = |∇ / l (1+3) f | 2 .
• Given a k-reduced scalar f on S we define, d / k f := e θ (f ) + ke θ (Φ)f.

• Given a (k -1)-reduced scalar f ∈ S k-1 we define, d / k f := -e θ (f ) + (k -1)e θ (Φ)f.

• Given a k-reduced scalar f ∈ s k we define, / k f := e θ (e θ f ) + e θ (Φ)e θ fk 2 e θ (Φ) 2 f.

In view of Lemma 2.1. [START_REF] Christodoulou | Asymptotic properties of linear field theories in Minkowski space[END_REF] we have,

d / k f = ( D / k (1+3) f ) θ...θ
and,

d / k f = ( D / k (1+3) f ) θ...θ , k = 1, 2( D / k (1+3) f ) θ...θ , k ≥ 2.
Clearly d / k takes k-reduced scalars into (k -1)-reduced scalars, d / k takes (k -1)-reduced ones into k-reduced and / k takes k-reduces scalars into k-reduced scalars.

Remark 2.1.21. Note that, in view of Lemma 2.1.12, any reduced scalar in s k , for k ≥ 1, must vanish on the axis of symmetry of Z, i.e. at the two poles. / k and d / k can only be applied to k-reduced, resp (k -1)reduced scalars. Thus whenever we write a sequence of operators involving d / k , d / k we understand from the context to which type of k-reduced scalars they are applied, see for example the proposition below. The same remark applies to / k . Remark 2.1.23. Note that for given reduced scalar f ∈ s k and h ∈ s 1 we can write,

he θ (f ) = 1 2 h ( d / k f -d / k+1 f ) .
The term h d / k f is the reduced form of a tensor product of (1+3) h with D / k (1+3) f while h d / k+1 f is the reduced form of a contraction between (1+3) h and D / k+1 (1+3) f This can be formalized precisely using Lemma 2.1. [START_REF] Caroll | Spacetime and geometry. An introduction to general relativity[END_REF]. The Remark will be useful in what follows, for example in Lemma 2.2.14. 

d / k d / k = -/ k + kK, d / k d / k = -/ k-1 -(k -1)K. ( 2.1.20) 
In particular for k = 1, 2

d / 1 d / 1 = -/ 1 + K, d / 1 d / 1 = -/ 0 , d / 2 d / 2 = -/ 2 + 2K, d / 2 d / 2 = -/ 1 -K.
Moreover, note the following commutation formulas

d / k d / k -d / k-1 d / k-1 = -2(k -1)K, -d / k / k + / k-1 d / k = -(2k -1)K d / k -ke θ (K), -d / k / k-1 + / k d / k = (2k -1)K d / k + (k -1)e θ (K).
Proof. We have, for a k reduced scalar f ,

-d / k d / k f = (e θ -(k -1)e θ (Φ)
)(e θ (f ) + ke θ (Φ)f ) = e θ (e θ (f )) + ke θ (Φ)e θ f + k(e θ e θ Φ)f -(k -1)e θ (Φ))(e θ (f ) + ke θ (Φ)f ) = e θ (e θ (f )) + e θ (Φ)e θ f + k(e θ e θ Φ)fk(k -1) e θ (Φ) 2 .

In view of Lemma 2.1.13 we have, since Φ is a scalar -K = / Φ = e θ e θ (Φ) + e θ (Φ) 2 .

Therefore, Next, we check the commutation formulas. We have

-d / k d / k f = e θ (
d / k d / k -d / k-1 d / k-1 = -/ k-1 -(k -1)K --/ k-1 + (k -1)K = -2(k -1)K from which we infer d / k (-/ k ) = d / k ( d / k d / k -kK) = d / k d / k d / k -kK d / k -ke θ (K) = d / k-1 d / k-1 -2(k -1)K d / k -kK d / k -ke θ (K) = -/ k-1 -(k -1)K d / k -kK d / k -ke θ (K)
and hence

-d / k / k + / k-1 d / k = -(2k -1)K d / k -ke θ (K).
Also, we have

d / k (-/ k-1 ) = d / k ( d / k d / k + (k -1)K) = d / k d / k d / k + (k -1)K d / k + (k -1)e θ (K) = -/ k + kK d / k + (k -1)K d / k + (k -1)e θ (K)
and hence

-d / k / k-1 + / k d / k = (2k -1)K d / k + (k -1)e θ (K)
as desired.
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We also have for f ∈ s k , k ≥ 1,

∇ / 2 f 2 L 2 (S) + r -2 ∇ / f 2 L 2 (S)
/ k f 2 L 2 (S) + r -4 f 2 L 2 (S) .

(2.1.27)

Proof. The proof of the above statements can be either derived from their space-time version or checked directly.

Lemma 2.1.31. The following relations hold between Z-polarized S-tensors and reduced scalars 7 .

• If f ∈ s 0 |∇ / f | 2 = |e θ f | 2 , |∇ / 2 f | 2 = |e θ (e θ f )| 2 + |e θ Φe θ f | 2 . • If f ∈ s 1 , |∇ / f | 2 = |e θ f | 2 + |e θ (Φ)| 2 |f | 2 . • If f ∈ s 2 , |∇ / f | 2 = 2 |e θ f | 2 + 4|e θ (Φ)| 2 |f | 2 . Proof. If f ∈ s 0 , |∇ / 2 f | 2 = ∇ A ∇ / B f ∇ / A ∇ / B f = |∇ / θ ∇ / θ f | 2 + |∇ / ϕ ∇ / ϕ f | 2 = |e θ (e θ f )| 2 + |e θ Φe θ f | 2 . If f ∈ s 1 is reduced from a Z invariant, polarized vector F , |∇ / f | 2 = ∇ A F B ∇ / A F B = |∇ / θ F θ | 2 + |∇ / ϕ F ϕ | 2 = |e θ f | 2 + |e θ Φf | 2 .
If f ∈ s 2 is reduced from a symmetric, traceless Z-invariant, polarized tensor F = (1+3) f we have,

|∇ / f | 2 = |∇ / θ F θθ | 2 + 2|∇ / θ F ϕθ | 2 + |∇ / θ F ϕϕ | 2 + |∇ / ϕ F θθ | 2 + 2|∇ / ϕ F ϕθ | 2 + |∇ / ϕ F ϕϕ | 2 = |∇ / θ F θθ | 2 + |∇ / θ F ϕϕ | 2 + 2|∇ / ϕ F ϕθ | 2
and, ∇ / θ F θθ = e θ f = -∇ / θ F ϕϕ , ∇ / ϕ F ϕθ = e θ ΦF θθe θ ΦF ϕϕ = 2e θ Φf.

Thus,

|∇ / f | 2 = 2|e θ f | 2 + 8(e θ Φf ) 2
as desired.

Proposition 2.1.32 (Poincaré). The following inequalities hold for k-reduced scalars.

1. If f ∈ s 0 , S |∇ / 2 f | 2 ≥ S K| d / 1 f | 2 .
(2.1.28)

2. If f ∈ s 1 S |∇ / f | 2 ≥ S Kf 2 .
(2.1.29)

3. If f ∈ s 2 , S |∇ / f | 2 ≥ 4 S Kf 2 .
(2.1.30)

Proof. We first prove the result for f ∈ s 2 . According to Lemma 2.1.31, 

2 -1 |∇ / f | 2 = |e θ f | 2 + 4|e θ (Φ)| 2 |f | 2 = (e θ f -2e θ (Φ)f ) 2 + 4f (e θ f )e θ (Φ) = (e θ f -2e θ (Φ)f ) 2 + 2e θ (f 2 )e θ (Φ).
d / s f = r 2p / p k , if s = 2p, r 2p+1 d / k / p k , if s = 2p + 1.
(2.1.37)

We also define the norms,

f hs(S) : = s i=0 d / i f L 2 (S) .
(2.1.38)

Lemma 2.1.37. Assume the Gauss curvature K of S verifies the condition,

K = 1 r 2 + O( ), |r i ∇ / i K| = O( ), 1 ≤ i ≤ [s/2] + 1.
Then, the following holds.

1. If f is a k-scalar, reduced from (1+3) f , we have,

f hs(S) ∼ s j=0
r j ∇ / j f L 2 (S) (2.1.39) where ∇ / denotes the usual covariant derivative operator on S.

2. Equivalently, the norm r -s f hs(S) of a reduced scalar f ∈ s s (S) can be defined as the sum of L 2 norms of any allowable sequence of Hodge operators d / a , d / a applied to f . Proof. For s = 1, 2 the proof of the first part follows immediately from Proposition 2.1.30. For higher s the proof follows, step by step, by a simple commutation argument between covariant derivatives and / k and applications of Proposition 2.1.30. The proof of the second part follows from our reduced elliptic estimates and definition of the reduced Hodge operators.

As a consequence of the lemma we can derive the reduce form of the standard Sobolev and product Sobolev inequalities. Before stating the result we pause to define the product of two reduced scalars. Definition 2.1.38. Let f ∈ s a be reduced from an S a tensor and g ∈ s b reduced from an S b tensor. We define the product f • g to be the reduction of any product between the corresponding tensors on S, i.e. any contraction of the tensor product between them. Thus f • g ∈ s a+b-2c where c denotes the number of indices affected by the contraction.

Examples. Here are the most relevant examples for us.

• f ∈ s 0 , g ∈ s k in which case f • g ∈ s k and equals f g.

• f ∈ s 1 , g ∈ s k in which case f • g ∈ s k-1 or f • g ∈ s k+1 and in both cases f • g = f g
as simple product of the reduced scalars.

• f ∈ s 2 , g ∈ s k in which case f • g ∈ s k-2 or f • g ∈ s k or f • g ∈ s k+2 .
In the first case f • g = 2f g. In the second case and third cases f • g = f g as simple product of the reduced scalars.

Lemma 2.1.39. Let f ∈ s a (S), g ∈ s b (S), a ≥ b, a > 0, and f • g ∈ s a+b-2c where 0 ≤ c ≤ 1 2 (ab) denotes the order of contraction. Then, Proposition 2.1.40. The following results hold true for k-reduced scalars on S,

d / a+b-2c (f g) = f d / b g + g 1 - c a d / a f - c a d / a+1 f , d / a+b-2c+1 (f g) = f d / b+1 g + g - c a d / a f --1 + c a d / a+1 f .
1. If f ∈ s k we have, f L ∞ (S) r -1 f h 2 (S) .
2. Given two reduced scalars f, g we have, f • g hs(S) r -1 f h [s/2]+2 (S) g hs(S) + g h [s/2]+2 (S) f hs(S)

where [s/2] denotes the largest integer smaller than s/2.

Proof. Both statements are classical for S k (S) tensors with respect to the norm on the right hand side of (2.1.39). A direct proof can also be derived using Lemma 2.1.39 and the equivalence definition of the h s (S) norms.

S-averages

Definition 2.1.41. Given any f ∈ s 0 we denote its average by,

f : = 1 |S| S f, f := f -f.
The following follows immediately from the definition.
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Lemma 2.1.42. For any two scalar reduced scalars f and g in s 0 we have

f g = f g + f ǧ,
and,

f g -f g = f g + f ǧ + f ǧ -f ǧ .
Remark 2.1. [START_REF] Klainerman | The evolution problem in general relativity[END_REF]. In view of the notations above, we may rewrite the Poincaré inequality for d / 1 as follows. Under mild assumptions on the Gauss curvature (K = r -2 + O( r -2 ), re θ (K) = O( r -2 )), we have for any f ∈ s 0

S | d / 1 f | 2 ≥ 2 S (1 + O( ))K( f ) 2 .

Invariant S-foliations

In this section we record the main equations associated to general, Z-invariant Einstein vacuum spacetimes (M, g). We start by recalling the spacetime framework of [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] and then we show how the null structure and Bianchi identities simplify in the reduced picture. Throughout this section we consider given an invariant S-foliation 8 and a fixed adapted null pair e 3 , e 4 , i.e. future directed Z-invariant, polarized, null vectors orthogonal to the leaves S of the foliation such as g(e 3 , e 4 ) = -2. Definition 2.1.44. We denote by S k (M) the set of k-covariant polarized tensors on M tangent to the S-foliation and which restrict to S k (S) on any S-surface of the foliation and by s k (M) their corresponding reductions.

Spacetime null decompositions

Following [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] we define the spacetime Ricci coefficients, (2.1.42) 8 From now on, an invariant S foliation is automatically assumed to be a Z invariant polarized foliation.

CHAPTER 2. PRELIMINARIES

We also define the spacetime null curvature components, (1+3)

α AB : = R A4B4 , (1+3) 
β A := 1 2 R A434 , (1+3) ρ := 1 4 R 3434 , (1+3) 
α AB : = R A3B3 , (1+3) 1+3) ρ := 1 4 R 3434 .

β A := 1 2 R A334 , ( 
(2.1.43)

Reduced null decompositions

We define the spacetime Ricci coefficients as follows (2.1.45) Definition 2.1.47. The null components of the Ricci curvature tensor 9 of the metric g are denoted by 9 Recall that the scalar curvature of the reduced metric g vanishes, R = 0, and hence R 34 = R θθ .

R 33 = α, R 44 = α, R 3θ = β, R 4θ = β, R θθ = R 34 = ρ, R 34 = ρ.
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Comparison to the space-time frame Let e 3 , e 4 , e θ be a null frame for the reduced metric g and e 3 , e 4 , e θ , e ϕ = X -1/2 ∂ ϕ the augmented adapted 3 + 1 frame for g. Recall that we have denoted,

(1+3)
χ, (1+3) ξ, (1+3) η, (1+3) η, (1+3) ζ, (1+3) ω, (1+3) χ, (1+3) ξ, (1+3) ω, the standard (as defined in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] ) space-time Ricci coefficients and by

(1+3)
α, (1+3) β, (1+3) ρ, (1+3) ρ, (1+3) β, (1+3) α, the null decomposition of the curvature tensor R.

Proposition 2.1.48. The following relations between the spacetime and reduced Ricci and curvature null components hold true,

• We have,

χ θθ = χ, (1+3) χ θϕ = 0, (1+3) χ ϕϕ = e 4 (Φ),

χ θθ = χ, (1+3) χ θϕ = 0, (1+3) χ ϕϕ = e 3 (Φ),

α θθ = α, (1+3) α θϕ = 0, (1+3) α ϕϕ = -α,

α θθ = α, (1+3) α θϕ = 0, (1+3) α ϕϕ = -α.

• All e ϕ components of (1+3) η, (1+3) η, (1+3) ζ, (1+3) ξ, (1+3) ξ, (1+3) β, (1+3) β vanish and, 

β θ = β, (1+3) β θ = -β. Also, (1+3) 
ω = ω, (1+3) ω = ω, (1+3) ρ = ρ, (1+3) ρ = 0.

• We have, Recalling, see definition in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF],

(1+3)

χ AB = (1+3) χ AB - 1 2 ( (1+3) trχ)g / AB , (1+3) 
χ AB = (1+3) χ AB -1 2 ( (1+3) trχ)g / AB ,

we have

(1+3) χ θθ = 1 2 (χ -e 4 (Φ)) , (1+3) 
χ θθ = 1 2
χe 3 (Φ) .

Proof. We check only the less obvious relations such as those involving the null components of curvature. Using (2.1.5) and (2.1.6) we deduce, (1+3)

α θθ = R θ4θ4 = R θ4θ4 = g θθ R 44 = α, (1+3) 
α θϕ = R θ4ϕ4 = 0, (1+3)

α ϕϕ = R ϕ4ϕ4 = -R 44 = -α, 2 (1+3) β θ = R θ434 = R θ434 = -g 34 R θ4 = 2β, 2 (1+3) β ϕ = R ϕ343 = 0, 4 (1+3) ρ = R 3434 = R 3434 = -2g 34 R 34 = 4ρ, 4 (1+3) ρ = R 3434 = 0, 2 (1+3) β θ = R θ334 = R θ334 = g 34 R θ3 = -2β, 2 (1+3) β ϕ = R ϕ334 = 0.
Definition 2.1.49. We introduce the notation, ϑ : = χe 4 (Φ), κ := (1+3) trχ = χ + e 4 (Φ), ϑ : = χe 3 (Φ), κ := (1+3) trχ = χ + e 3 (Φ).

Thus, (1+3)

χ θθ = (1+3) χ ϕϕ = 1 2 ϑ, (1+3) 
χ θθ = (1+3) χ ϕϕ = 1 2 ϑ.
In particular, χ = 1 2 (ϑ + κ) and χ = 1 2 (ϑ + κ). Remark 2.1.50. In view of Proposition 2.1. [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] we have, 1. The quantities κ, κ, ω, ω, ρ are reduced scalars in s 0 .

2. The quantities η, η, ζ, ξ, ξ, β, β are reduced scalars in s 1 .

3. The quantities ϑ, ϑ, α, α are reduced scalars in s 2 .

Commutation identities

We record first the commutation relations between the elements of the frame, Lemma 2.1.51. The following commutation formulae hold true for reduced scalars.

1. If f ∈ s k , [ d / k , e 3 ]f = 1 2 κ d / k f + Com k (f ), Com k (f ) = - 1 2 ϑ d / k+1 f + (ζ -η)e 3 f -kηe 3 Φf -ξ(e 4 f + ke 4 (Φ)f ) -kβf, [ d / k , e 4 ]f = 1 2 κ d / k f + Com k (f ), Com k (f ) = - 1 2 ϑ d / k+1 f -(ζ + η)e 4 f -kηe 4 Φf -ξ(e 3 f + ke 3 (Φ)f ) -kβf.
(2.1.46) 

2. If f ∈ s k-1 [ d / k , e 3 ]f = 1 2 κ d / k f + Com * k (f ), Com * k (f ) = - 1 2 ϑ d / k-1 f -(ζ -η)e 3 f -(k -1)ηe 3 Φf + ξ(e 4 f -(k -1)e 4 (Φ)f ) -(k -1)βf, [ d / k , e 4 ]f = 1 2 κ d / k f + Com * k (f ), Com * k (f ) = - 1 2 ϑ d / k-1 f + (ζ + η)e 4 f -(k - 
]f = 1 2 κ d / k f + Com k (f ), Com k (f ) = - 1 2 ϑ d / k+1 f + (ζ -η)e 3 f -kηe 3 Φf -ξ(e 4 f + ke 4 (Φ)f ) -kβf.
The other commutation formulae are proved in the same manner.

Schwarzschild spacetime

In standard coordinates the Schwarzschild metric has the form,

ds 2 = -Υdt 2 + Υ -1 dr 2 + r 2 dθ 2 + X 2 dϕ 2 , (2.1.48) 
where,

Υ := 1 - 2m r , X = r 2 sin 2 θ.
We denote by T the stationary Killing vectorfield T = ∂ t and by Z = ∂ ϕ the axial symmetric one. Recall the regular, Z-invariant optical functions in the exterior region r ≥ 2m of Schwarzschild u = tr * , u = t + r * , dr * dr = Υ -1 (2.1.49)

1. The null frame (e 3 , e 4 ) for which e 3 is geodesic (which is regular towards the future for all r > 0) is given by

e 3 = L = Υ -1 ∂ t -∂ r , e 4 = ΥL = ∂ t + Υ∂ r , Υ = 1 - 2m r . (2.1.52)
All Ricci coefficients vanish except,

χ = Υ r , χ = - 1 r , ω = - m r 2 , ω = 0.
2. The null frame (e 3 , e 4 ) for which e 4 is geodesic.

e 4 = L = Υ -1 ∂ t + ∂ r , e 3 = ΥL = ∂ t -Υ∂ r .
All Ricci coefficients vanish except,

χ = 1 r , χ = - Υ r , ω = 0, ω = m r 2 .
Note that the null pair (2.1.52) is regular along the future event horizon as can be easily seen by studying the behavior 11 . of future directed ingoing null geodesics near r = 2m.

Main equations

In this section we translate the null structure and null Bianchi identities associated to an S-foliation in the reduced picture. We start with general, Z-invariant, S foliation . We then consider the special case of geodesic foliations.
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Main equations for general S-foliations

We consider a fixed Z-invariant S-foliation with a fixed Z-invariant null frame e 3 , e 4 .

Null structure equations

We simply translate the well known spacetime null structure equations (see 12 proposition 7.4.1 in [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF]) in the reduced picture. Thus the spacetime equation 13 , ∇ / 3 χ + trχ χ = ∇ / ⊗ξ -2ω χ + (η + η -2ζ) ⊗ξα becomes 14 , e 3 (ϑ) + κ ϑ = 2(e θ (ξ)e θ (Φ)ξ) -2ω ϑ + 2(η + η -2ζ) ξ -2α.

(2.2.1)

The spacetime equation, The spacetime equation,

∇ / 4 trχ + 1 2 trχ trχ = 2div / η + 2ρ + 2ω trχ -χ • χ + 2(ξ • ξ + η • η)
becomes, e 4 (κ) + 1 2 κ κ -2ωκ = 2(e θ η + e θ (Φ)η) + 2ρ -

1 2 ϑ ϑ + 2(ξ ξ + η η).
The spacetime equation,

∇ / 3 ζ = -β -2∇ / ω -χ • (ζ + η) - 1 2 trχ(ζ + η) + 2ω(ζ -η) + ( χ + 1 2 trχ)ξ + 2ωξ becomes (note that (1+3) β = -β !), e 3 ζ + 1 2 κ(ζ + η) -2ω(ζ -η) = β -2e θ (ω) + 2ωξ + 1 2 κ ξ - 1 2 ϑ(ζ + η) + 1 2 ϑ ξ.
The spacetime equation,

∇ / 4 ξ -∇ / 3 η = -β + 4ωξ + χ • (η -η) + 1 2 trχ(η -η)
becomes 15 ,

e 4 (ξ) -e 3 (η) = β + 4ωξ + 1 2 κ(η -η) + 1 2 ϑ(η -η).
The spacetime equation,

∇ / 4 ω + ∇ / 3 ω = ρ + 4ωω + ξ • ξ + ζ • (η -η) -η • η becomes e 4 ω + e 3 ω = ρ + 4ωω + ξ ξ + ζ(η -η) -η η.
The spacetime Codazzi equation,

(1+3) div / (1+3) χ = (1+3) β + 1 2 ( (1+3) ∇ / (1+3) trχ -(1+3) trχ (1+3) ζ) + (1+3) χ • (1+3) ζ becomes 16 , 1 2 (e θ (ϑ) + 2e θ (Φ)ϑ) = -β + 1 2 (e θ (κ) -κζ) + 1 2 ϑζ.
The Gauss equation,

K = - 1 4 (1+3) trχ (1+3) trχ + 1 2 (1+3) χ (1+3) χ -(1+3) ρ becomes, K = - 1 4 κκ + 1 4 ϑϑ -ρ.
We summarize the results in the following proposition.

Proposition 2.2.1.

e 3 (ϑ) + κ ϑ + 2ω ϑ = -2α -2 d / 2 ξ + 2(η + η -2ζ) ξ, e 3 (κ) + 1 2 κ 2 + 2ω κ = 2 d / 1 ξ + 2(η + η -2ζ)ξ - 1 2 ϑ 2 , e 4 ϑ + 1 2 κ ϑ -2ωϑ = -2 d / 2 η - 1 2 κ ϑ + 2(ξ ξ + η 2 ), e 4 (κ) + 1 2 κ κ -2ωκ = 2 d / 1 η + 2ρ - 1 2 ϑ ϑ + 2(ξ ξ + η η), e 3 ζ + 1 2 κ(ζ + η) -2ω(ζ -η) = β + 2 d / 1 ω + 2ωξ + 1 2 κ ξ - 1 2 ϑ(ζ + η) + 1 2 ϑ ξ, e 4 (ξ) -4ωξ -e 3 (η) = β + 1 2 κ(η -η) + 1 2 ϑ(η -η), e 4 ω + e 3 ω = ρ + 4ωω + ξ ξ + ζ(η -η) -η η.
(2.2.3)

In view of the symmetry e 3e 4 , we also derive,

e 4 (ϑ) + κ ϑ + 2ωϑ = -2α -2 d / 2 ξ + 2(η + η + 2ζ)ξ, e 4 (κ) + 1 2 κ 2 + 2ω κ = 2 d / 1 ξ + 2(η + η + 2ζ)ξ - 1 2 ϑ 2 , e 3 ϑ + 1 2 κ ϑ -2ωϑ = -2 d / 2 η - 1 2 κ ϑ + 2(ξ ξ + η 2 ), e 3 (κ) + 1 2 κ κ -2ωκ = 2 d / 1 η + 2ρ - 1 2 ϑ ϑ + 2(ξ ξ + η η), -e 4 ζ + 1 2 κ(-ζ + η) + 2ω(ζ + η) = β + 2 d / 1 ω + 2ωξ + 1 2 κ ξ - 1 2 ϑ(-ζ + η) + 1 2 ϑ ξ, e 3 (ξ) -e 4 (η) = β + 4ωξ + 1 2 κ(η -η) + 1 2 ϑ(η -η), e 4 ω + e 3 ω = ρ + 4ωω + ξ ξ + ζ(η -η) -η η.
(2.2.4)

We also have the Codazzi equations,

d / 2 ϑ = -2β -d / 1 κ -ζκ + ϑ ζ, d / 2 ϑ = -2β -d / 1 κ + ζκ -ϑ ζ,
and the Gauss equation,

K = -ρ - 1 4 κ κ + 1 4 ϑ ϑ.

Null Bianchi identities

We now translate the spacetime null Bianchi identities of [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] (see proposition 7.3.2.) in the reduced picture. The spacetime equation (note that

D / 2 β := -1 2 (1+3) ∇ / ⊗ β), ∇ / 3 α + 1 2 trχ α = -2 D / 2 β + 4ωα -3( χρ + χ ρ) + (ζ + 4η) ⊗ β becomes (note that ρ = 0), e 3 α + 1 2 κα = (e θ (β) -(e θ Φ)β) + 4ωα - 3 2 ϑρ + (ζ + 4η)β. (2.2.5)
The spacetime equation,

∇ / 4 β + 2trχβ = div / α -2ωβ + (2ζ + η) • α + 3(ξρ + ξ ρ)
becomes,

e 4 β + 2κβ = (e θ α + 2(e θ Φ)α) -2ωβ + (2ζ + η)α + 3ξρ. (2.2.6) 
The spacetime equation,

∇ / 3 β + trχβ = D / 1 (-ρ, ρ) + 2 χ • β + 2ω β + ξ • α + 3(ηρ + η ρ) becomes (recall (1+3) β θ = -β), e 3 β + κβ = e θ (ρ) + 2ωβ + 3ηρ -ϑβ + ξα. (2.2.7)
The spacetime equation,

e 4 ρ + 3 2 trχρ = div / β - 1 2 χ • α + ζ • β + 2(η • β -ξ • β)
becomes,

e 4 ρ + 3 2 κρ = (e θ (β) + (e θ Φ)β) - 1 2 ϑ α + ζ β + 2(η β + ξ β). (2.2.8)
Indeed note that,

(1+3) χ • (1+3) α = 2 (1+3) χ θθ (1+3) α θθ = ϑα.
All other equations in the proposition below are derived using the e 3e 4 symmetry. We summarize the results in the following proposition.
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Proposition 2.2.2.

e 3 α + 1 2 κα = -d / 2 β + 4ωα - 3 2 ϑρ + (ζ + 4η)β, e 4 β + 2κβ = d / 2 α -2ωβ + (2ζ + η)α + 3ξρ, e 3 β + κβ = -d / 1 ρ + 2ωβ + 3ηρ -ϑβ + ξα, e 4 ρ + 3 2 κρ = d / 1 β - 1 2 ϑ α + ζ β + 2(η β + ξ β), e 3 ρ + 3 2 κρ = d / 1 β - 1 2 ϑ α -ζ β + 2(η β + ξ β), e 4 β + κβ = -d / 1 ρ + 2ωβ + 3ηρ -ϑβ + ξα, e 3 β + 2κ β = d / 2 α -2ω β + (-2ζ + η)α + 3ξρ, e 4 α + 1 2 κ α = -d / 2 β + 4ωα - 3 2 ϑρ + (-ζ + 4η)β.
(2.2.9)

Mass aspect functions

We define the mass aspect functions,

µ : = -d / 1 ζ -ρ + 1 4 ϑϑ, µ : = d / 1 ζ -ρ + 1 4 ϑϑ.
(2.2.10)

One can derive useful propagation equations, in the e 4 direction for µ and in the e 3 direction for µ by using the null structure and null Bianchi equations, see [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] and [START_REF] Klainerman | The evolution problem in general relativity[END_REF].

In the next section we will do this in the context of null-geodesic foliations. 1. The average of ρ is given by the formulas,

Hawking mass

ρ = - 2m r 3 + 1 16πr 2 S ϑϑ.
(2.2.12)

2. The average of the mass aspect function is,

µ = µ = 2m r 3 . (2.2.13)
3. The average of κ and κ are related by,

κ κ = - 4Υ r 2 -κκ (2.2.14)
where Υ = 1 -2m r .

Proof. We have from the Gauss equation

K = - 1 4 κκ + 1 4 ϑϑ -ρ.
Integrating on S and using the Gauss Bonnet formula, we infer 4π = -

1 4 S κκ + 1 4 S ϑϑ - S ρ.
Together with the definition of the Hawking mass, we infer

S ρ = -4π 1 + 1 16π S κκ + 1 4 S ϑϑ = - 8πm r + 1 4 S ϑϑ and hence ρ = - 2m r 3 + 1 16πr 2 S ϑϑ.
which proves our first identity. The second identity follows easily from the definition of µ, µ and the first formula. Thus, for example,

µ = 1 |S| S µ = 1 |S| S -d / 1 ζ -ρ + 1 4 ϑϑ = -ρ + 1 4|S| S ϑϑ = 2m r 3 .
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To prove the last identity we remark that, in view of the definition of the Hawking mass,

-Υ = 2m r -1 = 1 16π S κκ = 1 16π |S|κ κ + S κκ
and hence

κ κ = - 16πΥ |S| - 1 |S| S κκ = - 4Υ r 2 -κκ.
This concludes the proof of the proposition.

Outgoing geodesic foliations

We restrict our attention to geodesic foliations, i.e. geodesic foliations by Z invariant optical functions.

Basic definitions

Assume given an outgoing optical function u, i.e. Z-invariant solution of the equation,

g αβ ∂ α u∂ β u = g ab ∂ a u∂ b u = 0
and L = -g ab ∂ b u∂ a its null geodesic generator. We choose e 4 such that,

e 4 = ςL, L(ς) = 0. (2.2.15)
Remark 2.2.5. In our definition of a GCM admissible spacetime, see section 3.1, we initialize ς on the spacelike hypersurface Σ * .

We then choose s such that

e 4 (s) = 1. (2.2.16)
The functions u, s generate what is called an outgoing geodesic foliation. Let S u,s be the 2-surfaces of intersection between the level surfaces of u and s. We choose e 3 the unique Z-invariant null vectorfield orthogonal to S u,s and such that g(e 3 , e 4 ) = -2. We then let e θ to be unit tangent to S u,s , Z-invariant and orthogonal to Z. We also introduce Ω := e 3 (s).

(2.2.17) Lemma 2.2.6. We have

ω = ξ = 0, η = -ζ, (2.2.18) ς = 2 e 3 (u) , e 4 (ς) = 0, e θ (log ς) = η -ζ, e θ (Ω) = -ξ -(η -ζ)Ω, e 4 (Ω) = -2ω. (2.2.19)
Proof. Recall that L is geodesic, e 4 = ςL and L(ς) = 0. This immediately implies that e 4 is geodesic, and hence we have to s, and using e 4 (s) = 1 and e θ (s) = 0, we infer e 4 (e 3 (s)) = -2ω, i.e. e 4 (Ω) = -2ω as desired.

ω = ξ = 0.
Remark 2.2.7. In the particular case when ς is constant we have η = ζ = -η. In Schwarzschild, relative to the standard outgoing geodesic frame, we have

ς = 1, Ω = -Υ = -1 - 2m r .
which becomes

e 4 η = -β - 1 2 κ(η -η) - 1 2 ϑ(η -η)
and,

-e 4 ζ + 1 2 κ(-ζ + η) + 2ω(ζ + η) = β + 2 d / 1 ω + 2ωξ + 1 2 κ ξ -1 2 ϑ(-ζ + η) -1 2 ϑ ξ which becomes, e 4 ζ = -κζ -β -ϑζ.
Hence,

e 4 (ζ -η) = -κζ -ϑζ + 1 2 κ(η -η) + 1 2 ϑ(η -η) = κ -ζ + 1 2 (η -η) + ϑ -ζ + 1 2 (η -η) . Since ζ = -η we deduce -ζ + 1 2 (η -η) = 1 2 (-ζ + η) and thus, e 4 (ζ -η) = -κ(ζ -η) -ϑ(ζ -η)
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as desired.

The Bianchi equations equations follow immediately from the general equations derived in the previous section. It only remains to check the equation verified by the mass aspect function µ. We have

e 4 (µ) = -[e 4 , d / 1 ]ζ -d / 1 e 4 (ζ) -e 4 (ρ) + 1 4 e 4 (ϑϑ) = 1 2 κ d / 1 ζ - 1 2 ϑ d / 2 ζ + e 4 (Φ)ζ 2 -βζ -d / 1 (-κζ -β -ϑζ) -- 3 2 κρ + d / 1 β - 1 2 ϑ α -ζβ + 1 4 ϑ - 1 2 κ ϑ + 2 d / 2 ζ - 1 2 κ ϑ + 2ζ 2 + 1 4 ϑ (-κ ϑ -2α) = 3 2 κ d / 1 ζ + ρ - 1 4 ϑϑ - 1 2 ϑ d / 2 ζ + 1 2 (κ -ϑ)ζ 2 + e θ (κ)ζ + d / 1 (ϑζ) + 1 4 ϑ 2 d / 2 ζ - 1 2 κϑ + 2ζ 2
and hence

e 4 (µ) + 3 2 κµ = 1 2 κζ 2 + e θ (κ)ζ + d / 1 (ϑζ) - 1 8 κϑ 2
as desired. This concludes the proof of the proposition.

Transport equations for S-averages

Proposition 2.2.9. For any scalar function f , we have,

e 4 S f = S (e 4 (f ) + κf ), e 3 S f = S (e 3 (f ) + κf ) + Err e 3 S f , (2.2.20)
where the error term is given by the formula

Err e 3 S f : = -ς -1 ς S (e 3 (f ) + κf ) + ς -1 S ς(e 3 (f ) + κf ) + Ω + ς -1 Ως S (e 4 f + κf ) -ς -1 Ω S ς(e 4 f + κf ) -ς -1 S Ω ς(e 4 f + κf ).
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In particular, we have

e 4 (r) = r 2 κ, e 3 (r) = r 2 (κ + A) (2.2.

21)

where

A : = -ς -1 κς + κ Ω + ς -1 Ως + ς -1 ς κ -ς -1 Ω ς κ -ς -1 Ωςκ. (2.2.22)
Proof. See section A.1.

Corollary 2.2.10. For a reduced scalar f , we have

e 4 S f e Φ = S e 4 (f ) + 3 2 κ - 1 2 ϑ f e Φ and e 3 S f e Φ = S e 3 (f ) + 3 2 κ - 1 2 ϑ f e Φ + Err e 3 S f e Φ .
Proof. In view of Proposition 2.2.9, we have as desired.
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Corollary 2.2.11. Given a scalar function f we have,

e 4 (f ) = e 4 (f ) + κ f , e 4 ( f ) = e 4 (f ) -e 4 (f ) -κ f , (2.2.23) 
and

e 3 f = e 3 (f ) + Err[e 3 f ], e 3 ( f ) = e 3 (f ) -e 3 (f ) -Err[e 3 (f )], (2.2.24)
where, Similarly,

Err[e 3 (f )] = -ς -1 ς e 3 f + κf -κf + ς -1 ς(e 3 f + κf ) -ς κ f + Ω + ς -1 Ως e 4 f + κf ) -κ f -ς -1 Ω ς(e 4 f + κf ) -ς κ f -ς -1 Ως(e 4 f + κf ) -Ως κf + κ f .
e 3 (f ) = e 3 S f |S| = 1 |S| e 3 S f - 2e 3 (r) r f = 1 |S| S (e 3 f + κf ) + 1 |S| Err e 3 S f -(κ + A)f = e 3 (f ) + κf -κf + 1 |S| Err e 3 S f -Af = e 3 (f ) + κ f + 1 |S| Err e 3 S f -Af .
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We deduce,

e 3 (f ) = e 3 (f ) + Err[e 3 (f )]
where, recalling the definitions of the error terms Err e 3 S f and A,

Err[e 3 (f )] = κ f + 1 |S| Err e 3 S f -A f = κ f -ς -1 ς e 3 f + κf + ς -1 ς(e 3 f + κf ) + Ω + ς -1 Ως e 4 f + κf -ς -1 Ω ς(e 4 f + κf ) -ς -1 Ως(e 4 f + κf ) -f -ς -1 κς + ς -1 ς κ + κ Ω + ς -1 Ως -ς -1 Ω ς κ -ς -1 Ωςκ , i.e., Err[e 3 (f )] = κ f -ς -1 ς e 3 f + κf -κf + ς -1 ς(e 3 f + κf ) -ς κ f + Ω + ς -1 Ως e 4 f + κf -κ f -ς -1 Ω ς(e 4 f + κf ) -ς κ f -ς -1 Ως(e 4 f + κf ) -Ωςκf as stated. Finally e 3 ( f ) = e 3 f -e 3 (f ) = e 3 f -e 3 (f ) -Err[e 3 f ]
which ends the proof of the corollary.

The following is also an immediate application of Proposition 2.2.9.

Corollary 2.2.12. If f verifies the scalar equation

e 4 (f ) + p 2 κf = F, then, e 4 (r p f ) = r p F.

Commutation identities revisited

We revisit the general commutation identities of Lemma 2.1.51 in an outgoing geodesic foliation.

Lemma 2.2.13. The following commutation formulae holds true,

1. If f ∈ s k , [r d / k , e 4 ]f = r Com k (f ) + 1 2 κ d / k f , [r d / k , e 3 ]f = r Com k (f ) + 1 2 (-A + κ) d / k f .
(2.2.26)

2. If f ∈ s k-1 [r d / k , e 4 ]f = r Com * k (f ) + 1 2 κ d / k f , [r d / k , e 3 ]f = r Com * k (f ) + 1 2 (-A + κ) d / k f .
(2.2.27) Also, we have

Com k (f ) = - 1 2 ϑ d / k+1 f + (ζ -η)e 3 f -kηe 3 Φf -ξ(e 4 f + ke 4 (Φ)f ) -kβf, Com k (f ) = - 1 2 ϑ d / k+1 f + kζe 4 Φf -kβf, Com * k (f ) = - 1 2 ϑ d / k-1 f -(ζ -η)e 3 f -(k -1)ηe 3 Φf + ξ(e 4 f -(k -1)e 4 (Φ)f ) -(k -1)βf, Com * k (f ) = - 1 2 ϑ d / k-1 f + (k -1)ζe 4 Φf -(k -1)βf.
Proof. We make use of the commutation Lemma 2.1.51 and the definition of A, see Proposition 2.2.9, to write, for

f ∈ s k , [r d / k , e 4 ]f = r[ d / k , e 4 ]f -e 4 (r) d / k f = 1 2 rκ d / k f + rCom k (f ) - r 2 κ d / k f = r Com k (f ) + 1 2 κ d / k f [r d / k , e 3 ]f = r[ d / k , e 4 ]f -e 3 (r) d / k f = 1 2 rκ d / k f + rCom k (f ) - r 2 (A + κ) d / k f = r Com k (f ) + 1 2 (-A + κ) d / k f .
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The remaining formulae are proved in the same manner. Also, the form of Com k (f ), Com k (f ), Com * k (f ) and Com * k (f ) follows from Lemma 2.1.51 and the fact that we have ξ = η + ζ = 0 in an outgoing geodesic foliation.

We also record here for future use the following lemma. Lemma 2.2.14. Let T = 1 2 (e 3 + Υe 4 ), with Υ = 1 -2m r . We have,

[T, e 4 ] = ω - m r 2 - m 2r κ - 2 r + e 4 (m) r e 4 + (η + ζ)e θ , [T, e 3 ] = -Υ ω - m r 2 - m 2r κ + 2Υ r - m 2r A + e 3 (m) r e 4 -(η + ζ)Υe θ .
(2.2.28) 

Proof
2 Υ (-2ωe 4 -2(η + ζ)e θ ) -e 3 1 - 2m r e 4 = -Υω - m r 2 e 3 (r) + e 3 (m) r e 4 -Υ(η + ζ)e θ = -Υ ω - m r 2 -Υ m r 2 - m r 2 r 2 (κ + A) + e 3 (m) r e 4 -Υ(η + ζ)e θ = -Υ ω - m r 2 - m 2r κ + 2Υ r - m 2r A + e 3 (m) r e 4 -Υ(η + ζ)e θ
which concludes the proof of the lemma. 

(m) = 1 -ς -1 ς r 32π S Err 1 + Ω + ς -1 Ως r 32π S Err 1 +ς -1 r 32π S ς 2ρκ + 2ρκ + 2κ d / 1 η + 2κ d / 1 ξ + Err 2 -ς -1 r 32π S (Ως + Ως) (2ρκ + 2ρκ -2κ d / 1 ζ + Err 2 ) - m r ς -1 -ς κ + Ω ς κ + Ωςκ , (2.2.30) 
where

Err 1 := 2κρ + 2e θ (κ)ζ - 1 2 κϑ 2 - 1 2 κϑϑ + 2κζ 2 , Err 1 := 2ρκ -2e θ (κ)η -2e θ (κ)ξ - 1 2 κϑϑ + 2κη 2 + 2κ η -3ζ ξ - 1 2 κϑ 2 , Err 2 := 2ρκ - 1 2 κϑ 2 - 1 2 κϑϑ + 2κζ 2 , Err 2 := 2ρκ + κ 2η 2 - 1 2 ϑϑ + 2κ η -3ζ ξ - 1 2 κϑ 2 .
Proof. The proof relies on the definition of the Hawking mass m given by the formula 2m r = 1+ 1 16π S κκ, Proposition 2.2.9, and the the null structure equations for e 4 (κ), e 4 (κ), e 3 (κ) and e 3 (κ) provided by Proposition 2.2.8. We refer to section A.2 for the details.
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Transport equations for main averaged quantities Lemma 2.2.17. The following equations hold true

e 4 κ - 2 r + 1 2 κ κ - 2 r = - 1 4 ϑ 2 + 1 2 κ2 , e 4 ω - m r 2 = ρ + 2m r 3 + m r 2 κ - 2 r - e 4 (m) r 2 + 3ζ(2η + ζ) + κω, (2.2.31)
and

e 3 κ - 2 r + 1 2 κ κ - 2 r = 2ω κ - 2 r + 4 r ω - m r 2 + 2 ρ + 2m r 3 -ς -1 - 1 2 κ κ + 2ω κ + 2ρ ς - 1 2 κ 2 Ω + ς -1 Ως - 1 r ς -1 κς + 1 r κ Ω + ς -1 Ως + Err e 3 κ - 2 r , (2.2.32) 
where,

Err e 3 κ - 2 r := 2η 2 + 2ω κ - 1 2 κ κ - 1 2 ϑϑ + 1 r ς -1 ς κ - 1 r ς -1 Ω ς κ - 1 r ς -1 Ωςκ -ς -1 ς 1 2 κκ + 2ωκ - 1 2 ϑϑ + 2η 2 +ς -1 ς 1 2 κκ + 2ωκ + 2ρ + 2 d / 1 η - 1 2 ϑϑ + 2η 2 -ς κ κ + Ω + ς -1 Ως 1 2 κ2 - 1 4 ϑ 2 -ς -1 Ω ς 1 2 κ 2 - 1 4 ϑ 2 -ς κ κ -ς -1 Ως 1 2 κ 2 - 1 4 ϑ 2 -Ως κ κ + κκ. (2.2.33)
Proof. The proof relies on Corollary 2.2.11 and the null structure equations for e 4 (κ) and e 3 (κ) provided by Proposition 2.2.8. We refer to section A.3 for the details.
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Transport equations for main checked quantities Proposition 2.2.18 (Transport equations for checked quantities). We have the following transport equations in the e 4 direction,

e 4 κ + κ κ = Err[e 4 κ],
Err[e 4 κ] : = -

1 2 κ2 - 1 2 κ2 - 1 2 (ϑ 2 -ϑ 2 ), e 4 κ + 1 2 κκ + 1 2 κκ = -2 d / 1 ζ + 2ρ + Err[e 4 κ],
Err[e 4 κ] : = - Also in the e 3 direction,

1 2 κκ - 1 2 κκ + - 1 2 ϑϑ + 2ζ 2 -- 1 2 ϑϑ + 2ζ
e 3 (κ) = 2 d / 1 η + 2ρ - 1 2 (κκ + κκ) + 2 (ωκ + κω) + ς -1 - 1 2 κ κ + 2ω κ + 2ρ ς + 1 2 κ 2 Ω + ς -1 Ως + Err[e 3 κ], e 3 (κ) + κ κ = 2 d / 1 ξ -2 (ω κ + ω κ) + ς -1 ς - 1 2 κ 2 -2ω κ -Ω + ς -1 Ως - 1 2 κ κ + 2ρ + Err[e 3 (κ)], e 3 ρ + 3 2 κρ = - 3 2 ρκ + d / 1 β - 3 2 κ ρς -1 ς + 3 2 κ ρ Ω + ς -1 Ως + Err[e 3 ρ],
(2.2.36)

with error terms given by,

Err[e 3 κ] := 2 η 2 -η 2 - 1 2 κκ + 2ωκ - 1 2 ϑϑ -ϑϑ + ς -1 ς 1 2 κκ + 2ωκ - 1 2 ϑϑ + 2η 2 -ς -1 ς 1 2 κκ + 2ωκ + 2ρ + 2 d / 1 η - 1 2 ϑϑ + 2η 2 -ς κ κ -Ω + ς -1 Ως 1 2 κ2 - 1 4 ϑ 2 + ς -1 Ω ς 1 2 κ 2 - 1 4 ϑ 2 -ς κ κ + ς -1 Ως 1 2 κ 2 - 1 4 ϑ 2 -Ως κ κ -κκ,
(2.2.37)

Err[e 3 (κ)] := - 1 2 κ2 -2ω κ + 2(η -3ζ)ξ -2(η -3ζ)ξ - 1 2 ϑ 2 -ϑ 2 -ς -1 ς 1 2 κ 2 -2ω κ + 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 -ς κ κ + ς -1 Ω ς 1 2 κ κ -2 d / 1 ζ + 2ρ - 1 2 ϑ ϑ + 2ζ 2 -ς κ κ + ς -1 Ως 1 2 κ κ -2 d / 1 ζ + 2ρ - 1 2 ϑ ϑ + 2ζ 2 -Ως κ κ -κ2 , (2.2.38) 
and

Err[e 3 ρ] := - 1 2 ϑα + ζβ -2ηβ -2ξβ + 1 2 ϑα + ζβ -2ηβ -2ξβ - 3 2 κρ + ς -1 ς - 1 2 κρ - 1 2 ϑ α -ζ β + 2(η β + ξ β) -ς -1 ς - 1 2 κρ + d / 1 β - 1 2 ϑ α -ζ β + 2(η β + ξ β) -ς κ ρ -Ω + ς -1 Ως - 1 2 κρ - 1 2 ϑ α -ζβ + ς -1 Ω ς - 1 2 κρ + d / 1 β - 1 2 ϑ α -ζβ -ς κ ρ + ς -1 Ως - 1 2 κρ + d / 1 β - 1 2 ϑ α -ζβ -Ως κ -κρ.
(2.2.39)
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Proof. The proof relies on the null structure equations of Proposition 2.2.8, in particular the ones for e 3 (ζ), e 3 (κ) and e 3 (κ). We refer to section A.5 for the details.

Ingoing geodesic foliation

All the equations of section 2.2.4 for outgoing geodesic foliations have a counterpart for ingoing geodesic foliations. The corresponding equations can be easily deduced from the ones in section 2.2.4 by performing the following substitutions

u → u, s → s, C u → C u , S u,s → S u,s , r → r, m → m, e 4 → e 3 , e 3 → e 4 , e θ → e θ , e 4 (s) = 1 → e 3 (s) = -1, α → α, β →, β, ρ → ρ, µ → µ, β → β, α → α, ξ → ξ, ω → ω, κ → κ, ϑ → ϑ, η → η, η → η, ζ → -ζ, κ → κ, ϑ → ϑ, ω → ω, ξ → ξ, Ω = e 3 (s) → Ω = e 4 (s), ς = 2 e 3 (u) → ς = 2 e 4 (u) , κ - 2 r → κ + 2 r , κ + 2Υ r → κ - 2Υ r , ω - m r 2 → ω + m r 2 , ρ + 2m r 3 → ρ + 2m r 3 , µ - 2m r 3 → µ - 2m r 3 , Ω + Υ → Ω -Υ, ς -1 → ς -1, A = 2 r e 3 (r) -κ → A = 2 r e 4 (r) -κ.

Adapted coordinates systems

(u, s, θ, ϕ) coordinates Proposition 2.2.20. Consider, in addition to the functions u, s, ϕ an additional Z invariant function θ. Then, relative to the coordinates system (u, s, θ, ϕ), the following hold true,

1. The spacetime metric takes the form,

g = -2ςduds + ς 2 Ωdu 2 + γ dθ - 1 2 ς(b -Ωb)du -bds 2 + e 2Φ (dϕ) 2 (2.2.40)
where,

Ω = e 3 (s), b = e 4 (θ), b = e 3 (θ), γ -1 = e θ (θ) 2 .
(2.2.41)
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2. In these coordinates the reduced frame takes the form,

∂ s = e 4 -b √ γe θ , ∂ u = ς 1 2 e 3 - 1 2 Ωe 4 - 1 2 √ γ(b -bΩ)e θ , ∂ θ = √ γe θ . (2.2.42)
3. In the particular case when b = e 4 (θ) = 0 we have, To prove the last statement, when b = e 4 (θ) = 0, we start with,

e 4 (γ) = 2χγ, e 4 (b) = -2(ζ + η)γ -1/2
[e 4 , e 3 ] = 2ωe 3 -2ωe 4 + 2(η -η)e θ = -2(ζ + η)e θ -2ωe 4 .
Applying this to θ we derive,

[e 4 , e 3 ](θ) = (-2(ζ + η)e θ -2ωe 4 )(θ) = -2(ζ + η)e θ (θ) = -2(ζ + η)γ -1/2 .
We deduce,

e 4 (b) = e 4 (e 3 (θ)) = -2(ζ + η)γ -1/2 .
To prove the equation for γ we make use of, Thus

e 4 (γ -1/2 ) = -χγ -1/2
from which

e 4 (γ) = 2χγ.
This concludes the proof of the lemma.

Remark 2.2.21. In Schwarzschild, relative to the above coordinate system, we have

ς = 1, Ω = -Υ, b = b = 0, γ = r 2 , e Φ = r sin θ,
so that we obtain outgoing Eddington-Finkelstein coordinates.

Remark 2.2.22. The (u, s, θ, ϕ) coordinates system, with the choice b = 0 (i.e. θ is transported by e 4 (θ) = 0), will be used in section 3.7 and Chapter 9 in connection with our GCM procedure. 

g = - 4ς rκ dudr + ς 2 (κ + A) κ du 2 + γ dθ - 1 2 ςbdu - b 2 Θ 2 (2.2.44)
where,

b = e 4 (θ), b = e 3 (θ), γ = 1 (e θ (θ)) 2 (2.2.45)
and,

Θ := 4 rκ dr -ς κ + A κ du.
2. The reduced coordinates derivatives take the form,

∂ r = 2 rκ e 4 - 2 √ γ rκ be θ , ∂ θ = √ γe θ , ∂ u = ς 1 2 e 3 - 1 2 κ + A κ e 4 - 1 2 √ γ b - κ + A κ b e θ .
(2.2.46)

3.

To control e Φ , we will rely on the following transport equation 

e 4 e Φ r sin θ -1 = e Φ 2r sin θ (κ -ϑ) . ( 2 
r = e Φ r sin θ 1 2 (κ -ϑ) - κ 2 = e Φ 2r sin θ (κ -ϑ)
which concludes the proof of the lemma.

Remark 2.2.24. In Schwarzschild, relative to the above coordinate system, we have

κ = 2 r , κ = - 2Υ r , ς = 1, A = 0, b = b = 0, γ = r 2 , e Φ = r sin θ,
so that we obtain outgoing Eddington-Finkelstein coordinates.

Remark 2.2.25. The (u, r, θ, ϕ) coordinates system, with the choice (2.2.52) for θ introduced below, will be used in Proposition 3.4.3 to prove the convergence to the outgoing Eddington-Finkelstein coordinates of Schwarzschild.

(u, r, θ, ϕ) coordinates

We easily deduce an analog statement relative to (u, r, θ, ϕ) coordinates.

Proposition 2.2.26. Consider, in addition to the functions u, r, ϕ an additional Z invariant function θ. Relative to the coordinates (u, r, θ, ϕ) the following hold true, 1. The spacetime metric takes the form,

g = - 4ς rκ dudr + ς 2 (κ + A) κ du 2 + γ dθ - 1 2 ςbdu - b 2 Θ 2 (2.2.48)
where,

b = e 4 (θ), b = e 3 (θ), γ = 1 (e θ (θ)) 2 (2.2.49)
and,

Θ := 4 rκ dr -ς κ + A κ du.
2. The reduced coordinates derivatives take the form,

∂ r = 2 rκ e 3 - 2 √ γ rκ be θ , ∂ θ = √ γe θ , ∂ u = ς 1 2 e 4 - 1 2 κ + A κ e 3 - 1 2 √ γ b - κ + A κ b e θ .
(2.2.50) 100 CHAPTER 2. PRELIMINARIES

3.

To control e Φ , we will rely on the following transport equation

e 3 e Φ r sin θ -1 = e Φ 2r sin θ (κ -ϑ) . (2.2.51)
Remark 2.2.27. In Schwarzschild, relative to the above coordinate system, we have

κ = 2 r , κ = - 2Υ r , ς = 1, A = 0, b = b = 0, γ = r 2 , e Φ = r sin θ,
so that we obtain ingoing Eddington-Finkelstein coordinates.

Remark 2.2.28. The (u, r, θ, ϕ) coordinates system, with the choice (2.2.52) for θ introduced below, will be used in Proposition 3.4.4 to prove the convergence to the ingoing Eddington-Finkelstein coordinates of Schwarzschild.

Initialization of θ

We now introduce the coordinate function θ that will be used for the (u, r, θ, ϕ) coordinates system and for the (u, r, θ, ϕ) coordinates system, see Remarks 2.2.25 and 2.2.28.

Lemma 2.2.29. Let θ ∈ [0, π] be the Z-invariant scalar on M defined by,

θ := cot -1 (re θ (Φ)) . (2.2.52)
Then,

e Φ r sin θ = √ 1 + a. (2.2.53)
where,

a := e 2Φ r 2 + (e θ (e Φ )) 2 -1. (2.2.54)
Moreover, we have in an outgoing geodesic foliation

re θ (θ) = 1 + r 2 (K -1 r 2 ) 1 + (re θ (Φ)) 2 , e 3 (θ) = - rβ + r 2 (-κ + A + ϑ) e θ (Φ) + rξe 4 (Φ) + rηe 3 (Φ) 1 + (re θ (Φ)) 2 , e 4 (θ) = - rβ + r 2 (-κ + ϑ) e θ (Φ) -rζe 3 (Φ) 1 + (re θ (Φ)) 2 ,
and analog identities hold for an ingoing geodesic foliation.
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Proof. In view of the definition of θ, we have θ ∈ [0, π], sin θ ≥ 0 and

sin θ = 1 √ 1 + cot θ 2 = 1 1 + (re θ (Φ)) 2 = e Φ e 2Φ + (re θ (e Φ ))) 2 = e Φ r e 2Φ r 2 + (e θ (e Φ )) 2 = e Φ r √ 1 + a . Hence e Φ r sin θ = e 2Φ r 2 + (e θ (e Φ )) 2 = √ 1 + a.
Also, we compute

re θ (θ) = - r 2 e θ e θ (Φ) 1 + (re θ (Φ)) 2 .
Next, recall that we have

e θ e θ (Φ) = -K -(e θ (Φ)) 2 .
We infer

re θ (θ) = r 2 (K + (e θ (Φ)) 2 ) 1 + (re θ (Φ)) 2 = 1 + r 2 (K -1 r 2 ) 1 + (re θ (Φ)) 2 .
as desired. Also, we have in an outgoing geodesic foliation

e 4 (θ) = - re 4 e θ (Φ) + e 4 (r)e θ (Φ) 1 + (re θ (Φ)) 2 = - r(D 4 D θ Φ + D D 4 e θ Φ) + e 4 (r)e θ (Φ) 1 + (re θ (Φ)) 2 = - rβ + r e 4 (r) r -e 4 (Φ) e θ (Φ) -rζe 4 (Φ) 1 + (re θ (Φ)) 2 = - rβ + r 2 (-κ + ϑ) e θ (Φ) -rζe 4 (Φ) 1 + (re θ (Φ)) 2 .
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Finally, we compute in an outgoing geodesic foliation

e 3 (θ) = - re 3 e θ (Φ) + e 3 (r)e θ (Φ) 1 + (re θ (Φ)) 2 = - r(D 3 D θ Φ + D D 3 e θ Φ) + e 3 (r)e θ (Φ) 1 + (re θ (Φ)) 2 = - rβ + r e 3 (r) r -e 3 (Φ) e θ (Φ) + rξe 4 (Φ) + rηe 3 (Φ) 1 + (re θ (Φ)) 2 = - rβ + r 2 (-κ + A + ϑ) e θ (Φ) + rξe 4 (Φ) + rηe 3 (Φ) 1 + (re θ (Φ)) 2 .
This concludes the proof of the lemma.

In view of (2.2.53), we will need to control the quantity a defined in (2.2.54). To this end, we will need the following lemma. Proof. The vanishing on the axis follow easily from the fact that both e 2Φ and e θ (e Φ )) 2 -1 vanish on the axis (see (2.1.13)). To prove the second part of the lemma we recall that, with respect to the reduced metric (see equation (2.1.4)),

R ab = D a D b Φ + D a ΦD b Φ,
and (see Definition 2.1.47)

R 3θ = β, R 4θ = β, R θθ = R 34 = ρ, R 34 = ρ.
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Starting with the definition a = e 2Φ r 2 + (e θ (e Φ )) 2 -1, we compute in an outgoing geodesic foliation

e 4 (a) = 2e 4 (Φ)e 2Φ r 2 - 2e 4 (r)e 2Φ r 3 + 2e θ (e Φ )e 4 (e θ (e Φ )) = (κ -ϑ)e 2Φ r 2 - κe 2Φ r 2 + 2e θ (e Φ ) e 4 (e θ (Φ)) + e θ (Φ)e 4 (Φ) e Φ = (κ -ϑ)e 2Φ r 2 + 2e θ (e Φ ) β -e 4 (Φ)ζ e Φ .
Also

e θ (a) = 2e θ (Φ)e 2Φ r 2 + 2e θ (e Φ )e θ (e θ (e Φ )) = 2e θ (Φ)e 2Φ r 2 + 2e θ (e Φ ) e θ (e θ (Φ)) + e θ (Φ) 2 e Φ = 2e θ (Φ)e 2Φ r 2 + 2e θ (e Φ ) ρ + D D θ e θ Φ e Φ = 2e θ (Φ)e 2Φ r 2 + 2e θ (e Φ ) ρ + 1 2 χe 3 Φ + 1 2 χe 4 Φ e Φ = 2e θ (Φ)e 2Φ r 2 + 2e θ (e Φ ) ρ + 1 4 κκ - 1 4 ϑϑ e Φ = 2e θ (Φ)e 2Φ ρ + 2m r 3 + 1 4 κκ + 4Υ r 2 - 1 4 ϑϑ .
Finally, we have in an outgoing geodesic foliation

e 3 (a) = 2e 3 (Φ)e 2Φ r 2 - 2e 3 (r)e 2Φ r 3 + 2e θ (e Φ )e 3 (e θ (e Φ )) = (κ -ϑ)e 2Φ r 2 - κ + A e 2Φ r 2 + 2e θ (e Φ ) e 3 (e θ (Φ)) + e θ (Φ)e 3 (Φ) e Φ = κ -A -ϑ e 2Φ r 2 + 2e θ (e Φ ) β + e 3 (Φ)η + ξe 4 (Φ) e Φ .
This concludes the proof of the lemma.

Remark 2.2.31. The function θ defined by (2.2.52) defines

• together with the functions (u, r, ϕ), a regular coordinates system with the axis of symmetry corresponding to θ = 0, π,

• together with the functions (u, r, ϕ), a regular coordinates system with the axis of symmetry corresponding to θ = 0, π.

Perturbations of Schwarzschild and invariant quantities

Recall that in Schwarzschild all Ricci coefficients ξ, ξ, ϑ, ϑ, η, η, ζ and curvature components α, α, β, β vanish identically. In addition the check quantities κ, κ, ω, ω and ρ also vanish. Thus, roughly, we expect that in perturbations of Schwarzschild these quantities stay small, i.e. of oder O( ) for a sufficiently small . More precisely we say that a smooth, vacuum, Z-invariant, polarized spacetime is an O( )-perturbation of Schwarzschild, or simply O( )-Schwarzschild, if the following are true relative to a Z-invariant null frame e 3 , e 4 , e θ ,

ξ, ξ, ϑ, ϑ, η, η, ζ, κ, κ, ω, ω α, α, β, β , ρ = O( ) (2.3.1)
Moreover,

e 3 (r) - r 2 κ = O( ), e 4 (r) - r 2 κ = O( ), (2.3.2) 
where r is the area radius of the 2-spheres generated by e θ , e ϕ , see (2.1.12).

In reality, of course, we expect that small perturbations of Schwarzschild, remain not only close to the original Schwarzschild but also converge to a nearby Schwarzschild solution but for the discussion below this will suffice.

Null frame transformations

Our definition of O( )-Schwarzschild perturbations does not specify a particular frame. In what follows we investigate how the main Ricci and curvature quantities change relative to frame transformations, i.e linear transformations which take null frames into null frames.

Lemma 2.3.1. A general null transformation can be written in the form,

e 4 = λ e 4 + f e θ + 1 4 f 2 e 3 , e θ = 1 + 1 2 f f e θ + 1 2 f e 4 + 1 2 f 1 + 1 4 f f e 3 , e 3 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 .
(2.3.3)
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Proof. It is straightforward to check that the transformation (2.3.3) takes null frames into null frames. One can also check that it can be written in the form type 

ξ = λ 2 ξ + 1 2 λ -1 e 4 (f ) + ωf + 1 4 f κ + λ 2 Err(ξ, ξ ), Err(ξ, ξ ) = 1 4 f ϑ + l.o.t., ξ = λ -2 ξ + 1 2 λe 3 (f ) + ω f + 1 4 f κ + λ -2 Err(ξ, ξ ), Err(ξ, ξ ) = - 1 8 λf 2 e 3 (f ) + 1 4 f ϑ + l.o.t., (2.3.4) 
ζ = ζ -e θ (log(λ)) + 1 4 (-f κ + f κ) + f ω -f ω + Err(ζ, ζ ), Err(ζ, ζ ) = 1 2 f e θ (f ) + 1 4 (-f ϑ + f ϑ) + l.o.t., η = η + 1 2 λe 3 (f ) + 1 4 κf -f ω + Err(η, η ), Err(η, η ) = 1 4 f ϑ + l.o.t., η = η + 1 2 λ -1 e 4 (f ) + 1 4 κf -f ω + Err(η, η ), Err(η, η ) = - 1 8 f 2 λ -1 e 4 (f ) + 1 4 f ϑ + l.o.t., (2.3.5) 
κ = λ (κ + d / 1 (f )) + λErr(κ, κ ), Err(κ, κ ) = f (ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t., κ = λ -1 κ + d / 1 (f ) + λ -1 Err(κ, κ ), Err(κ, κ ) = - 1 4 f 2 e θ (f ) + f (-ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t., (2.3.6) 106 CHAPTER 2. PRELIMINARIES ϑ = λ (ϑ -d / 2 (f )) + λErr(ϑ, ϑ ), Err(ϑ, ϑ ) = f (ζ + η) + f ξ + 1 4 f f κ + f f ω -f 2 ω + l.o.t. ϑ = λ -1 ϑ -d / 2 (f ) + λ -1 Err(ϑ, ϑ ), Err(ϑ, ϑ ) = - 1 4 f 2 e θ (f ) + f (-ζ + η) + f ξ + 1 4 f f κ + f f ω -f 2 ω + l.o.t., (2.3.7 
)

ω = λ ω - 1 2 λ -1 e 4 (log(λ)) + λErr(ω, ω ), Err(ω, ω ) = 1 4 f e 4 (f ) + 1 2 ωf f - 1 2 f η + 1 2 f ξ + 1 2 f ζ - 1 8 κf 2 + 1 8 f f κ - 1 4 ωf 2 + l.o.t., ω = λ -1 ω + 1 2 λe 3 (log(λ)) + λ -1 Err(ω, ω ), Err(ω, ω ) = - 1 4 f e 3 (f ) + ωf f - 1 2 f η + 1 2 f ξ - 1 2 f ζ - 1 8 κf 2 + 1 8 f f κ - 1 4 ωf 2 + l.o.t. (2.3.8)
The lower order terms we denote by l.o.t. are linear with respect Γ = {ξ, ξ, ϑ, κ, η, η, ζ, κ, ϑ} and quadratic or higher order in f, f , and do not contain derivatives of these latter.

Also,

α = λ 2 α + λ 2 Err(α, α ), Err(α, α ) = 2f β + 3 2 f 2 ρ + l.o.t., β = λ β + 3 2 ρf + λErr(β, β ), Err(β, β ) = 1 2 f α + l.o.t., ρ = ρ + Err(ρ, ρ ), Err(ρ, ρ ) = 3 2 ρf f + f β + f β + l.o.t., β = λ -1 β + 3 2 ρf + λ -1 Err(β, β ), Err(β, β ) = 1 2 f α + l.o.t., α = λ -2 α + λ -2 Err(α, α ), Err(α, α ) = 2f β + 3 2 f 2 ρ + l.o.t.
(2.3.9)

The lower order terms we denote by l.o.t. are linear with respect to the curvature quantities α, β, ρ, β, α and quadratic or higher order in f, f , and do not contain derivatives of these latter.
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Proof. See Appendix A.6.

Lemma 2.3.5. In the particular case when λ = 1, f = 0, we have

e 4 = e 4 + f e θ + 1 4 f 2 e 3 , e θ = e θ + 1 2 f e 3 , e 3 = e 3 , and 
ξ = ξ + 1 2 e 4 f + 1 4 κf + f ω + 1 4 f ϑ + 1 4 f 2 η - 1 4 f 2 η + 1 2 f 2 ζ - 1 16 f 3 κ - 1 4 f 3 ω - 1 16 f 3 ϑ - 1 16 f 4 ξ, ω = ω + 1 2 f ζ - 1 2 ηf - 1 4 f 2 ω - 1 8 f 2 κ - 1 8 f 2 ϑ - 1 8 f 3 ξ, ζ = ζ - 1 4 κ + ω f -f 1 4 ϑ + 1 2 f ξ , η = η + 1 2 e 3 (f ) -f ω - 1 4 f 2 ξ.
Proof. The proof follows from Proposition 2.3.4 by setting λ = 1, f = 0. Since we need precise formulas for the error terms, we provide a proof in section A.9.

Lemma 2.3.6 (Transport equations for (f, f , λ)). Assume that we have in the new null frame (e 3 , e 4 , e θ ) of type (2.3.3)

ξ = 0, ω = 0, ζ + η = 0.
Then, (f , f, log(λ)) satisfy the following transport equations

λ -1 e 4 (f ) + κ 2 + 2ω f = -2ξ + E 1 (f, Γ), λ -1 e 4 (log(λ)) = 2ω + E 2 (f, Γ), λ -1 e 4 (f ) + κ 2 f = -2(ζ + η) + 2e θ (log(λ)) + 2f ω + E 3 (f, f , Γ),
where E 1 , E 2 and E 3 are given by 

E 1 (f, Γ) = - 1 2 ϑf + l.o.t., E 2 (f, Γ) = f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ + l.o.t., E 3 (f, f , Γ) = -f e θ (f ) - 1 2 f ϑ + l.o.
ξ = 0, ω = 0, ζ + η = 0.
Then, (f , f, log(λ)) satisfy the following transport equations

λ -1 e 4 (rf ) = E 1 (f, Γ), λ -1 e 4 (log(λ)) = E 2 (f, Γ), λ -1 e 4 rf -2r 2 e θ (log(λ)) + rf Ω = E 3 (f, f , λ, Γ),
where

E 1 (f, Γ) = - r 2 κf - r 2 ϑf + l.o.t., E 2 (f, Γ) = f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ + l.o.t., E 3 (f, f , λ, Γ) = - r 2 κf + r 2 κ -κ - 2 r e θ (log(λ)) + r 2 d / 1 (f ) + λ -1 ϑ e θ (log(λ)) - r 2 κΩf + rE 3 (f, f , Γ) -2r 2 e θ (E 2 (f, Γ)) + rΩE 1 (f, Γ),
and where E 1 , E 2 and E 3 are given in Lemma 2.3.6.

Proof. See section A.8.

Schematic notation Γ g and Γ b

Many of the identities which we present below, contain a huge number of O( 2 ) terms. In what follows we introduce schematic notation meant to keep track of the most important
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error terms. Note that the decomposition below between the terms Γ g and Γ b is consistent with our main bootstrap assumptions BA-E on energy and BA-D on decay, see section 3.4.1.

Definition 2.3.8. We divide the small connection coefficient terms (relative to an arbitrary null frame) into17 

Γ (0) g = rξ, ϑ, ζ, η, 2 r e 4 (r) -κ, 1 r e θ (r) , Γ (0) b = η, ϑ, ξ, 2 r e 3 (r) -κ .
For higher derivatives we introduce,

Γ (1) g = dΓ (0) g , r 2 e θ (ω), re θ (κ), re θ (κ) , Γ (1) 
b = dΓ (0) b , re θ (ω) ,
and for s ≥ 2,

Γ (s) g = d ≤s Γ g , Γ (s) b = d ≤s Γ b ,
where we have introduced the notations

d = {e 3 , re 4 , d /},
with angular derivatives d / of reduced scalars in s k defined by (2.1.37).

Remark 2.3.9. According to the main bootstrap assumptions BA-E, BA-D (see section 3.4.1), the terms Γ b behave worse in powers of r than the terms in Γ g . Thus, in the calculations below, we replace the terms of the form Γ (s)

g + Γ (s) b by Γ (s)
b . Given the form of the bootstrap assumptions, we may also replace r

-1 Γ (s) b by Γ (s)
g . We will denote l.o.t. the cubic and higher error terms in Γ, Ř. We also include in l.o.t. terms which decay faster in powers of r than the main quadratic terms.

The invariant quantity q

Note from the transformation formulas of Proposition 2.3.4 that the only quantities which remain invariant up to quadratic or higher order error terms are α, α and ρ. Among these only α, α vanish in Schwarzschild. We call such quantities O( 2 ) invariant. In what follows we show that, in addition to these two invariants, there exist other important invariants.

Lemma 2.3.10. The expression, 

e 3 (e 3 (α)) + (2κ -6ω)e 3 (α) + -4e 3 (ω) + 8ω 2 -8ω κ + 1 2 κ 2 α is an O( 2 ) invariant.
(ω) + 8ω 2 -8ωκ + 1 2 κ 2 α.
Note that it differs by O( 2) from the previous one.

Definition 2.3.12. Given a general null frame (e 4 , e 3 , e θ ), and given a scalar function r satisfying the assumptions for section 2.3.2, i.e.

2 r e 4 (r) -κ ∈ Γ g , 1 r e θ (r) ∈ Γ g , 2 r e 3 (r) -κ ∈ Γ b ,
we defined our main quantity q as q := r 4 e 3 (e 3 (α)) + (2κ -6ω)e 3 (α) + -4e 3 (ω) + 8ω 

Several identities for q

In this section, we state three identities involving the quantity q defined by (2.3.10). All calculations are made in a general frame.

Proposition 2.3.13. We have

q = r 4 d / 2 d / 1 ρ + 3 4 κρϑ + 3 4 κρϑ + Err[q] (2.3.11)
with error term written schematically in the form

Err[q] = r 4 e 3 η • β + r 2 d ≤1 Γ b • Γ g ).
(2.3.12)

Proof. See section A.10

The following consequence of Proposition 2.3.13 will prove to be very useful in the sequel.

Proposition 2.3.14. We have

e 3 (rq) = r 5 d / 2 d / 1 d / 1 β - 3 2 ρ d / 2 d / 1 κ - 3 2 κρ d / 2 ζ - 3 2 κρα + 3 4 (2ρ 2 -κκρ)ϑ
+Err[e 3 (rq)], (2.3.13) where the error term Err[e 3 (rq)] is given schematically by where the error term Err[T S] is given schematically by

Err[e 3 (rq)] = rΓ b q + r 5 d ≤1 e 3 η • β + r 3 d ≤2 Γ b • Γ g . ( 2 
Err[T S] = r 4 d /Γ b + rΓ b • Γ b ) • α + r 2 Γ b e 3 (rq) + (d ≤1 Γ b )rq + r 7 d ≤2 e 3 η • β + r 5 d ≤3 Γ b • Γ g .
Proof. See section A.12.

Invariant wave equations

In this section, we write wave equations for the invariant quantities α, α and q.

Preliminaries

Lemma 2.4.1. With respect to a general S-foliation we have, for a reduced scalar ψ ∈ s 0 ,

g ψ = - 1 2 (e 3 e 4 + e 4 e 3 ) ψ + / ψ + ω - 1 2 κ e 4 ψ + ω - 1 2 κ e 3 ψ + (η + η)e θ ψ.
(2.4.1) Also,

g ψ = -e 3 e 4 ψ + / ψ + 2ω - 1 2 κ e 4 ψ - 1 2 κe 3 ψ + 2ηe θ ψ, g ψ = -e 4 e 3 ψ + / ψ + 2ω - 1 2 κ e 3 ψ - 1 2 κe 4 ψ + 2ηe θ ψ.
Proof. We calculate, in spacetime, Hence,

g ψ = g 34 D 3 D 4 ψ + g 43 D 4 D 3 ψ + δ AB D A D B ψ = - 1 2 (D 3 D 4 + D 4 D 3 )ψ + g AB D A D B ψ. Now, δ AB D A D B ψ = / ψ - 1 2 (1+3) trχe 3 ψ - 1 2 (1+3)
g ψ = - 1 2 (e 3 e 4 + e 4 e 3 )ψ + / ψ - 1 2 (1+3) trχe 3 ψ - 1 2 (1+3) trχe 4 ψ + ωe 4 ψ + ηe θ ψ + ωe 3 ψ + ηe θ ψ = - 1 2 (e 3 e 4 + e 4 e 3 )ψ + / ψ + ω - 1 2 (1+3) trχ e 4 ψ + ω - 1 2 (1+3) trχ e 3 ψ + (η + η)e θ ψ.
Since,

1 2 e 4 e 3 ψ = 1 2 e 3 e 4 ψ + ωe 3 ψ -ωe 4 ψ + (η -η)e θ ψ
we also have,

g ψ = -e 3 e 4 ψ + / ψ + 2ω - 1 2 (1+3) trχ e 4 ψ - 1 2 
(1+3)

trχe 3 ψ + 2ηe θ ψ.
Since κ = (1+3) trχ, κ = (1+3) trχ, this concludes the proof of the lemma. (2.4.2)

Equivalently, we have

k ψ = -e 3 e 4 ψ + / k ψ + 2ω - 1 2 κ e 4 ψ - 1 2 κe 3 ψ + 2ηe θ ψ, k ψ = -e 4 e 3 ψ + / k ψ + 2ω - 1 2 κ e 3 ψ - 1 2 κe 4 ψ + 2ηe θ ψ.
Remark 2.4.3. Not that the terms ηe θ ψ, ηe θ ψ have to be interpreted as in Remark 2.1.23, i.e.

ηe θ ψ = 1 2 η ( d / k ψ -d / k+1 ψ) .
The term η d / k ψ is the reduced form of a tensor product of (1+3) η with D / k (1+3) ψ while η d / k+1 ψ is the reduced form of a contraction between the 1 form (1+3) η and k + 1 tensor D / k+1 (1+3) ψ. Thus, for a ψ ∈ s k , we have,

/ k ψ = / ψ -k 2 e θ (Φ) 2 ψ.

Spacetime interpretation of Definition 2.4.2

The linearized equation verified by our main quantity q, which will be derived in the next section, has the form, Given a mixed spacetime tensor in

2 ψ = V ψ. ( 2 
T k M ⊗ T l S M of the form U µ 1 ...µ k ,A 1 ...A
L where e µ is an orthonormal frame on M with (e A ) A=1,2 tangent to S. We define,

Ḋµ U ν 1 ...ν k ,A 1 ...A L = e µ U ν 1 ...ν k ,A 1 ...A l -U Dµν 1 ...ν k ,A 1 ...A l -. . . -U ν 1 ...Dµν k ,A 1 ...A l -U ν 1 ...ν k , ḊµA1...Al -U ν 1 ...ν k ,A 1 ... ḊµAl
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with Ḋµ A denoting the projection of D eµ e A on S. One can easily check the commutator formulae,

( Ḋµ Ḋν -Ḋν Ḋµ )Ψ A = R A B µν Ψ B , ( Ḋµ Ḋν -Ḋν Ḋµ )Ψ λA = R λ σ µν Ψ σA + R A B µν Ψ λB . Define, ˙ g Ψ := g µν Ḋµ Ḋν Ψ.
Consider the following Lagrangian for Ψ = Ψ AB ∈ S 2 .

L[Ψ] = g / A 1 B 1 g / A 2 B 2 g µν Ḋµ Ψ A 1 A 2 Ḋµ Ψ B 1 B 2 + V Ψ A 1 A 2 Ψ B 1 B 2 .
Proposition 2.4.5. The Euler-Lagrange equations for the Lagrangian L[Ψ] above are given by:

˙ Ψ = V Ψ (2.4.4)
and its reduced for ψ = Ψ θθ is precisely (2.4.3).

Proof. Straightforward verification.

Wave equations for α, α, and q

We start with the wave equations for α and α, which are derived in a general null frame.

Proposition 2.4.6. The following identities hold true.

1. The invariant quantity α ∈ s 2 verifies the Teukolsky wave equation,

2 α = -4ωe 4 (α) + (4ω + 2κ)e 3 (α) + V α + Err[ g α], V = -4ρ -4e 4 (ω) -8ωω + 2ω κ -10κ ω + 1 2 κ κ, (2.4.5) 
where Err[ g α] is given schematically by

Err( g α) = Γ g e 3 (α) + r -1 d ≤1 (η, Γ g )(α, β) + ξ(e 3 (β), r -1 dρ) + l.o.t.
where l.o.t. denote terms which are quadratic and enjoy better decay properties or are higher order and decay at least as good.

2. The invariant quantity α ∈ s 2 verifies the Teukolsky wave equation,

2 α = -4ωe 3 (α) + (4ω + 2κ)e 4 (α) + V α + Err[ g α], V = -4ρ -4e 3 (ω) -8ωω + 2ωκ -10κ ω + 1 2 κ κ, (2.4.6) 
where

Err( g α) = r -1 d(Γ b α) + d(Γ b β) + l.o.t.
Proof. See appendix A.13

We may now state the wave equation satisfied by q.

Theorem 2.4.7. The invariant scalar quantity q defined in (2.3.10) verifies the equation,

2 q + κκ q = Err[ 2 q] (2.4.7)
where Err[

2 q] is O( 2 ).
If q is defined relative to a null frame satisfying, in addition to the assumptions of section 2.3.2, that η ∈ Γ g and ξ = 0 for r ≥ 4m 0 , the error term is then given schematically by

Err[ 2 q] = r 2 d ≤2 (Γ g • (α, β)) + e 3 r 3 d ≤2 (Γ g • (α, β)) + d ≤1 (Γ g • q) + l.o.t. (2.4.8)
Proof. See appendix A.14.

Remark 2.4.8. Note that the main frame used in this paper is an outgoing geodesic null frame in r ≥ 4m 0 so that ξ = 0, but unfortunately, as it turns out, η ∈ Γ b . This would not allow us to control the error term appearing in (2.4.7). To overcome this problem, we are forced to define q relative to a different frame where ξ = 0 still holds for r ≥ 4m 0 and for which we have in addition η ∈ Γ g , see Proposition 3.5.5 for the existence of such a frame. See also the discussion at the beginning of section 3.4.6.

The remark above leads us to the following.

Remark 2.4.9. The quantity q we will be working with for the rest of the paper is defined, according to equation (2.3.10), relative to the global frame of Proposition 3.5.5 for which η ∈ Γ g . It is only in such a frame that q verifies the correct decay estimates.
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General covariant modulated admissible spacetimes

Note that all definitions below are consistent with the framework of Z-invariant polarized spacetimes.

Initial data layer

Recall that m 0 > 0 is given as the mass of the Schwarzschild solution to which the initial data is 0 close. Let δ H > 0 be a sufficiently small constant which will be specified later.

Definition 3.1.1 (Initial data layer). We consider a spacetime region (L 0 , g), sketched below in figure 3.1, where

• The metric g is a reduced metric from a Lorentzian spacetime metric g close to Schwarzschild in a suitable topology1 .

• L 0 = (ext) L 0 ∪ (int) L 0 .
• The intersection (ext) L 0 ∩ (int) L 0 is non trivial.
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Furthermore, our initial data layer (L 0 , g) satisfies 1. Boundaries. The future and past boundaries of L 0 are given by (e) The future incoming null boundary of the near region (int) L 0 is denoted by

∂ + L 0 = A 0 ∪ C (2,L 0 ) ∪ C (2,L 0 ) , ∂ -L 0 = C (0,L 0 ) ∪ C (0,L 0 ) , where ( 
C (2,L 0 ) .
(f ) The future spacelike boundary of the near region (int) L 0 is denoted by A 0 .

2. Foliations of L 0 and adapted null frames. The spacetime

L 0 = (ext) L 0 ∪ (int) L 0 is foliated as follows (a)
The far region (ext) L 0 is foliated by two functions (u L 0 , (ext) s L 0 ) such that

• u L 0 is an outgoing optical function on (ext) L 0 whose leaves are denoted by C (u L 0 ,L 0 ) .

• (ext) s L 0 is an affine parameter along the level hypersurfaces of u L 0 , i.e.

(ext) L 0 ( (ext) s L 0 ) = 1 where (ext) L 0 := -g ab ∂ b (u L 0 )∂ a .
• We denote by ( (ext) (e 0 ) 3 , (ext) (e 0 ) 4 , (ext) (e 0 ) θ ) the null frame adapted to the outgoing geodesic foliation (u L 0 , (ext) 

s L 0 ) on (ext) L 0 . • Let (ext) r L 0 denote the area radius of the 2-spheres S(u L 0 , (ext) s L 0 ) of this foliation. • The outgoing future null boundary C (2,L 0 ) corresponds precisely to u L 0 = 2
and the outgoing past null boundary C (0,L 0 ) corresponds to u L 0 = 0. • The foliation by u L 0 of (ext) L 0 terminates at the time like boundary

(ext) r L 0 = 2m 0 1 + δ H 4 .
(b) The near region (int) L 0 is foliated by two functions (u L 0 , (int) s L 0 ) such that
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• u L 0 is an ingoing optical function on (int) L 0 whose leaves are denoted by C (u L 0 ,L 0 ) .

• (int) s L 0 is an affine parameter along the level hypersurfaces of u L 0 , i.e.

(int) L 0 ( (int) s L 0 ) = -1 where (ext) L 0 := -g ab ∂ b (u L 0 )∂ a .
• We denote by ( (int) (e 0 ) 3 , (int) (e 0 ) 4 , (int) (e 0 ) θ ) the null frame adapted to the outgoing geodesic foliation

(u L 0 , (int) s L 0 ) on (int) L 0 . • Let (int) r L 0 denote the area radius of the 2-spheres S(u L 0 , (int) s L 0 ) of this foliation. • The (u L 0 , (int) s) foliation is initialized on (ext) r L 0 = 2m 0 (1 + δ H
2 ) as it will be made precise below.

• The foliation by u L 0 , of (int) L 0 terminates at the space like boundary

A 0 = (int) r L 0 = 2m 0 (1 -2δ H )
where m 0 and δ H have been defined above.

• The ingoing future null boundary C (2,L 0 ) corresponds precisely to u L 0 = 2 and the ingoing past null boundary C (0,L 0 ) corresponds to u L 0 = 0. • The foliation by u L 0 of (int) L 0 terminates at the time like boundary

(int) r L 0 = 2m 0 (1 + 2δ H ) . 3. Initializations of the (u L 0 , (int) s L 0 ) foliation. The (u L 0 , (int) s L 0 ) foliation is initialized on (ext) r L 0 = 2m 0 (1 + δ H
2 ) by setting,

u L 0 = u L 0 , (int) s L 0 = (ext) s L 0 and, with λ 0 = (ext) λ 0 = 1 -2m 0 (ext) r L 0 , (int) (e 0 ) 4 = λ 0 (ext) (e 0 ) 4 , (int) (e 0 ) 3 = λ -1 0 (ext) (e 0 ) 3 , (int) (e 0 ) θ = (ext) (e 0 ) θ . 4. Coordinates system on (ext) L 0 ( (ext) r L 0 ≥ 4m 0 ). In (ext) L 0 ( (ext) r L 0 ≥ 4m 0 ), there exists adapted coordinates (u L 0 , (ext) s L 0 , θ L 0 , ϕ) with b = 0, see Proposition 2.2
.20, such that the spacetime metric g takes the form, 

g = -2du L 0 d (ext) s L 0 + Ω L 0 (du L 0 ) 2 + γ L 0 dθ L 0 - 1 2 b L 0 du L 0 2 + e 2Φ

Main definition

Recall that m 0 > 0 is given as the mass of the Schwarzschild solution to which the initial data is 0 close, and that δ H > 0 is a sufficiently small constant which will be specified later.

Definition 3.1.2 (GCM-admissible spacetime). We consider a spacetime (M, g), sketched below in figure 3.2, where

• The metric g is a reduced metric from a Lorentzian spacetime metric g close to Schwarzschild in a suitable topology2 .

• M = (ext) M ∪ (int) M • T = (ext) M ∩ (int) M is a time-like hyper-surface.
(M, g) is called a general covariant modulated admissible (or shortly GCM-admissible) spacetime if it is defined as follows 1. Boundaries. The future and past boundaries of M are given by • The (u, (ext) s) foliation is initialized on Σ * as it will be made precise below.

∂ + M = A ∪ C * ∪ C * ∪ Σ * , ∂ -M = C 1 ∪ C 1 ,
• We denote by ( (ext) e 3 , (ext) e 4 , (ext) e θ ) the null frame adapted to the outgoing geodesic foliation (u, (ext) s) on (ext) M where (ext) e 4 = L. • Let (ext) r and (ext) m respectively the area radius and the Hawking mass of the 2-spheres S(u, (ext) s) of this foliation. • The outgoing future null boundary C * corresponds precisely to u = u * and the outgoing past null boundary C 1 corresponds to u = 1. • The foliation by u of (ext) M terminates at the time like boundary

T = (ext) r = r T where r T satisfies 3 2m 0 1 + δ H 2 ≤ r T ≤ 2m 0 1 + 3δ H 2 . 122 CHAPTER 3. MAIN THEOREM (b)
The near region (int) M is foliated by two functions (u, (int) s) such that

• u is an ingoing optical function on (int) M, initialized on T , whose leaves are denoted by C(u). • (int) s is an affine parameter along the level hypersurfaces of u, i.e. L( (int) s) = -1 where L := -g ab ∂ b u∂ a .

• The (u, (int) s) foliation is initialized on T as it will be made precise below.

• We denote by ( (int) e 3 , (int) e 4 , (int) e θ ) the null frame adapted to the outgoing geodesic foliation (u, (int) s) on (int) M where (int) e 3 = L. • Let (int) r and (int) m respectively the area radius and the Hawking mass of the 2-spheres S(u, (int) s) of this foliation. • The foliation by u of (int) M terminates at the space like boundary

A = (int) r = 2m 0 (1 -δ H )
where m 0 and δ H have been defined above.

• The ingoing future null boundary C * corresponds precisely to u = u * and the ingoing past null boundary C 1 corresponds to u = 1.

3. GCM foliation of Σ * . The (u, (ext) s)-foliation of (ext) M restricted to the spacelike hypersurface Σ * has the following properties (a) There exists a constant c Σ * such that

Σ * := {u + (ext) r = c Σ * }. (b) We have 4 r u * on Σ * . (3.1.2) (c) (ext) s satisfies 5 (ext) s = (ext) r on Σ * .
(d) We say that Σ * is a general covariant modulated hypersurface6 (or shortly GCM hypersurface) if relative to the above defined null frame of (ext) M, the following

3.1. GENERAL COVARIANT MODULATED ADMISSIBLE SPACETIMES 123 conditions hold 7 along Σ * κ = 2 r , d / 2 d / 1 κ = 0, d / 2 d / 1 µ = 0, S ηe Φ = 0, S ξe Φ = 0, a SP = -1 - 2m r , (3.1.3)
where a is the unique scalar function such that ν = e 3 + ae 4 is tangent to Σ * , and SP denotes the south poles of the spheres on Σ * . Moreover we also assume

S * βe Φ = 0, S * e θ (κ)e Φ = 0, with S * := Σ * ∩ C * . (3.1.4)
Note that the role of the GCM foliation of Σ * is to initialize the (u, (ext) s)foliation of (ext) M.

(e) In view of the definition of ν and ς, we have ν(u) = e 3 (u) + ae 4 (u) = 2/ς. ν being tangent to Σ * , u is thus transported along Σ * , and hence defined up to a constant. To calibrate u on Σ * , we fix the value u = 1 as follows

S 1 = Σ * ∩ {u = 1} is such that S 1 ∩ C (1,L 0 ) ∩ SP = ∅, (3.1.5) 
i.e. S 1 is the unique sphere of Σ * such that its south pole intersects the south pole of one of the sphere of the outgoing null cone C (1,L 0 ) of the initial data layer.

4.

Initialization the (u, (int) s)-foliation on T . The (u, (int) s) foliation is initialized on T such that,

u = u, (int) s = (ext) s
In particular, the 2-spheres S(u, (int) s) coincide on T with S(u, (ext) s) and (int) r = (ext) r. Moreover, the null frame ( (int) e 3 , (int) e 4 , (int) e θ ) is defined on T by the following renormalization,

(int) e 4 = λ (ext) e 4 , (int) e 3 = λ -1 (ext) e 3 , (int) e θ = (ext) e θ on T where λ = (ext) λ = 1 - 2 (ext) m (ext) r . Remark 3.1.3. In Schwarzschild, u = t -r * , u = t + r * , with dr * dr = Υ -1 , and (ext) e 4 = Υ -1 ∂ t + ∂ r , (ext) e 3 = ∂ t -Υ∂ r , (int) e 4 = ∂ t + Υ∂ r , (int) e 3 = Υ -1 ∂ t -∂ r . 124 CHAPTER 3. MAIN THEOREM H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C⇤ C ⇤ A C1 C 1 ⌃ ⇤ I+ ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T Figure 3.2:
The GCM admissible space-time M

Renormalized curvature components and Ricci coefficients

For convenience, we introduce in this section a notation for renormalized curvature components and Ricci coefficients.

Definition 3.1.4 (Renormalized curvature components and Ricci coefficients in (ext) M).

We introduce the following notations in (ext) M

(ext) Ř = α, β, ρ, μ, β, α , (ext) Γ = κ, ϑ, ζ, η, κ, ϑ, ω, ξ ,
where, recall,

ρ = ρ -ρ, μ = µ -µ, κ = κ -κ, κ = κ -κ, ω = ω -ω,
and ξ = ω = 0, η = -ζ.
Note that all the above quantities are defined with respect to the outgoing geodesic foliation of (ext) M (see section 2.2.4), and that the averages are taken with respect to that corresponding 2-spheres.
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Definition 3.1.5 (Renormalized curvature components and Ricci coefficients in (int) M).

We introduce the following notations in (int) M

(int) Ř = α, β, ρ, μ, β, α , (int) Γ = ξ, ω, κ, ϑ, ζ, η, κ, ϑ ,
where we have defined

ρ = ρ -ρ, μ = µ -µ, κ = κ -κ, κ = κ -κ, ω = ω -ω,
and we recall that

ξ = ω = 0, η = ζ, µ - 2m r 3 = 0.
Note that all the above quantities are defined with respect to the ingoing geodesic foliation of (int) M (see section 2.2.6), and that the averages are taken with respect to that corresponding 2-spheres. Remark 3.1.6. In Schwarzschild, we have

(ext) Ř = 0, (int) Ř = 0, (ext) Γ = 0, (int) Γ = 0.

Main norms

Main norms in (ext) M

All quantities appearing in this section are defined relative to the (ext) M frame adapted to the (u, (ext) s) foliation. In particular, recall that with respect to this frame, we have

ξ = ω = 0, η = -ζ.
Recall the definition (2.1.37) of higher order angular derivatives d / s of reduced scalars in s k . We introduce the notations

d = {e 3 , re 4 , d /}.
Definition 3.2.1. We introduce the vectorfield T defined on (ext) M as

T := 1 2 1 - 2m r e 4 + e 3 . (3.2.1)
We also introduce the vectorfield N is defined on (ext) M by 

N := 1 2 1 - 2m r e 4 -e 3 . ( 3 
T = ∂ t , N = 1 - 2m 0 r ∂ r
in the standard (t, r, θ, ϕ) coordinates.

We are ready to introduce our norms in (ext) M.

L 2 curvature norms in (ext) M
Let δ B > 0 a small constant to be specified later. We introduce the weighted curvature norms,

(ext) R ≥4m 0 0 [ Ř] 2 := sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B α 2 + r 4 β 2 + Σ * r 4+δ B (α 2 + β 2 ) + r 4 (ρ) 2 + r 2 β 2 + α 2 + (ext) M(r≥4m 0 ) r 3+δ B (α 2 + β 2 ) + r 3-δ B (ρ) 2 + r 1-δ B β 2 + r -1-δ B α 2 , (ext) R ≤4m 0 0 [ Ř] 2 := (ext) M(r≤4m 0 ) 1 - 3m r 2 | Ř| 2 ,
and

(ext) R 0 [ Ř] := (ext) R ≥4m 0 0 [ Ř] + (ext) R ≤4m 0 0 [ Ř].
For any nonzero integer k, we introduce the following higher derivatives norms

(ext) R k [ Ř] 2 := (ext) R 0 [d ≤k Ř] 2 + (ext) M(r≤4m 0 ) |d ≤k-1 N Ř| 2 + |d ≤k-1 Ř| 2 .
Remark 3.2.3. Note that the derivative in the N direction, unlike all other first derivatives of Ř, appear in the spacetime integral (ext) M(r≤4m 0 ) with top number of derivatives. This reflects the fact the Nderivatives do not degenerate at r = 3m in the Morawetz estimate.

L 2 Ricci coefficients norms in (ext) M
For any k ≥ 2, we introduce the following norms

(ext) G ≥4m 0 k Γ 2 := Σ * r 2 (d ≤k ϑ) 2 + (d ≤k κ) 2 + (d ≤k ζ) 2 + (d ≤k κ) 2 + (d ≤k ϑ) 2 + (d ≤k η) 2 + (d ≤k ω) 2 + (d ≤k ξ) 2 + sup λ≥4m 0 {r=λ} λ 2 (d ≤k ϑ) 2 + (d ≤k κ) 2 + (d ≤k ζ) 2 + λ 2-δ B (d ≤k κ) 2 + (d ≤k ϑ) 2 + (d ≤k η) 2 + (d ≤k ω) 2 + λ -δ B (d ≤k ξ) 2 , (ext) G ≤4m 0 k Γ 2 := (ext) M(≤4m 0 ) d ≤k Γ 2 ,
and

(ext) G k Γ := (ext) G ≤4m 0 k Γ + (ext) G ≥4m 0 k Γ .
Decay norms in (ext) M Let δ dec > 0 a small constant to be specified later. We define

(ext) D 0 [α] := sup (ext) M r 2 (2r + u) 1+δ dec + r 3 (2r + u) 1 2 +δ dec |α|, (ext) D 0 [β] := sup (ext) M r 2 (2r + u) 1+δ dec + r 3 (2r + u) 1 2 +δ dec |β|, (ext) D 0 [ρ] := sup (ext) M r 2 u 1+δ dec + r 3 u 1 2 +δ dec |ρ|, (ext) D 0 [μ] := sup (ext) M r 3 u 1+δ dec |μ|, (ext) D 0 [β] := sup (ext) M r 2 u 1+δ dec |β|, (ext) D 0 [α] := sup (ext) M ru 1+δ dec |α|, 128 CHAPTER 3. MAIN THEOREM and (ext) D 0 [ Ř] := (ext) D 0 [α] + (ext) D 0 [β] + (ext) D 0 [ρ] + (ext) D 0 [μ] + (ext) D 0 [β] + (ext) D 0 [α].
Also, we introduce the following higher derivatives norms

(ext) D 1 [ Ř] := (ext) D 0 [ Ř] + (ext) D 0 [d Ř] + sup (ext) M r 3 (2r + u) 1+δ dec + r 4 (2r + u) 1 2 +δ dec |e 3 (α)| + sup (ext) M r 3 u 1+δ dec + r 4 u 1 2 +δ dec |e 3 (β)| + sup (ext) M r 3 u 1+δ dec |e 3 (ρ)|,
and for any integer k ≥ 2

(ext) D k [ Ř] := (ext) D 1 [d ≤k-1 Ř].
Also, we define

(ext) D 0 [κ] := sup (ext) M r 2 u 1+δ dec |κ|, (ext) D 0 [ϑ] := sup (ext) M ru 1+δ dec + r 2 u 1 2 +δ dec |ϑ|, (ext) D 0 [ζ] := sup (ext) M ru 1+δ dec + r 2 u 1 2 +δ dec |ζ|, (ext) D 0 [κ] := sup (ext) M ru 1+δ dec + r 2 u 1 2 +δ dec |κ|, (ext) D 0 [ϑ] := sup (ext) M ru 1+δ dec |ϑ|, (ext) D 0 [η] := sup (ext) M ru 1+δ dec |η| + Σ * u 2+2δ dec η 2 1 2 , (ext) D 0 [ω] := sup (ext) M ru 1+δ dec |ω|, (ext) D 0 [ξ] := sup (ext) M ru 1+δ dec |ξ|, and 
(ext) D 0 [ Γ] := (ext) D 0 [κ] + (ext) D 0 [ϑ] + (ext) D 0 [ζ] + (ext) D 0 [κ] + (ext) D 0 [ϑ] + (ext) D 0 [η] + (ext) D 0 [ω] + (ext) D 0 [ξ].
Also, we introduce the following higher derivatives norms

(ext) D 1 [ Γ] := (ext) D 0 [d Γ] + sup (ext) M r 2 u 1+δ dec |e 3 (ϑ, ζ, κ)|
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and for any integer k ≥ 2

(ext) D k [ Γ] := (ext) D 1 [d ≤k-1 Γ].
Remark 3.2.4. The integral bootstrap assumption on Σ * for η will only be needed in the proof of Proposition 3.4.6 and recovered in Proposition 7.3.6. In fact, other components satisfy an analog integral estimate on Σ * : this is the case of ϑ, ξ and rβ, see Proposition 7.3.6. But η is the only component for which we need to make this type of bootstrap assumption.

Main norms in (int) M

All quantities appearing in this section are defined relative to the (int) M frame adapted to the (u, (int) s) foliation.

L 2 based norms in (int) M
We introduce the curvature norms,

(int) R 0 [ Ř] 2 := (int) M | Ř| 2 .
For any nonzero integer k, we introduce the following higher derivatives norms

(int) R k [ Ř] := (int) R 0 [d ≤k Ř].
For any k ≥ 0, we introduce the following norms

(int) G k [ Γ] 2 := (int) M |d ≤k Γ| 2 .
Decay norms in (int) M

We define

(int) D 0 [ Ř] := sup (int) M u 1+δ dec | Ř|, (int) D 0 [ Γ] := sup (int) M u 1+δ dec | Γ|.
Also, we introduce the following higher derivatives norms for any integer k ≥ 1

(int) D k [ Ř] := (int) D 0 [d ≤k Ř], (int) D k [ Γ] := (int) D 0 [d ≤k Γ]. 130 CHAPTER 3. MAIN THEOREM

Combined norms

We define the following norms M by combining our above norms on (ext) M and (int) M

N (En) k := (ext) R k [ Ř] + (ext) G k [ Γ] + (int) R k [ Ř] + (int) G k [ Γ], N (Dec) k := (ext) D k [ Ř] + (ext) D k [ Γ] + (int) D k [ Ř] + (int) D k [ Γ].

Initial layer norm

Recall the notations of section 3.1.1 concerning the initial data layer L 0 . Recall that the constant m 0 > 0 is the mass of the initial Schwarzschild spacetime relative to which our initial perturbation is measured. We define the initial layer norm to be8 ,

I k := (ext) I k + (int) I k + I k where (ext) I 0 := sup (ext) L 0 r 7 2 +δ B (|α| + |β|) + r 3 ρ + 2m 0 r 3 + r 2 |β| + r|α| + sup (ext) L 0 r 2 |ϑ| + κ - 2 r + |ζ| + κ + 2 1 -2m 0 r r + sup (ext) L 0 r |ϑ| + ω - m 0 r 2 + |ξ| + sup (ext) L 0( (ext) r 0 ≥4m 0) r γ r 2 -1 + r|b| + |Ω + Υ| + |ς -1| + r e Φ r sin θ -1 , (int) I 0 := sup (int) L 0 |α| + |β| + ρ + 2m 0 r 3 + |β| + |α| + sup (int) L 0 |ϑ| + κ - 2 1 -2m 0 r r + |ζ| + κ + 2 r + |ϑ| + ω + m 0 r 2 + |ξ| , I 0 := sup (int) L 0 ∩ (ext) L 0 |f | + |f | + | log(λ -1 0 λ)| , λ 0 = (ext) λ 0 = 1 - 2m 0 (ext) r L 0 ,
with I k the corresponding higher derivative norms obtained by replacing each component by d ≤k of it. In the definition of I 0 above, (f, f , λ) denote the transition functions of Lemma 2.3.1 from the frame of the outgoing part (ext) L 0 of the initial data layer to the frame of the ingoing part (int) L 0 of the initial data layer in the region (int) L 0 ∩ (ext) L 0 .

Remark 3.2.5. Note that in the definition of (ext) I k we allow a higher power of r in front α, β and their derivatives than what it is consistent with the results of [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] and [START_REF] Klainerman | The evolution problem in general relativity[END_REF]. The additional r δ B power, for δ B small, is consistent instead with the result of [START_REF] Klainerman | Peeling properties of asymptotic solutions to the Einstein vacuum equations[END_REF].

Main theorem

Smallness constants

Before stating our main theorem, we first introduce the following constants that will be involved in its statement.

• The constant m 0 > 0 is the mass of the initial Schwarzschild spacetime relative to which our initial perturbation is measured.

• The integer k large which corresponds to the maximum number of derivatives of the solution.

• The size of the initial data layer norm is measured by 0 > 0.

• The size of the bootstrap assumption norms are measured by > 0.

• δ H > 0 measures the width of the region |r -2m 0 | ≤ 2m 0 δ H where the redshift estimate holds and which includes in particular the region (int) M.

• δ dec is tied to decay estimates in u, u for Γ and Ř.

• δ B is involved in the r-power of the r p weighted estimates for curvature.

In what follows m 0 is a fixed constant, δ H , δ B , and δ dec are fixed, sufficiently small, universal constants, and k large is a fixed, sufficiently large, universal constant, chosen such that From now on, in the rest of the paper, means bounded by a constant depending only on geometric universal constants (such as Sobolev embeddings, elliptic estimates,...) as well as the constants m 0 , δ H , δ dec , δ B , k large but not on and 0 .

0 < δ H , δ dec , δ B min{m 0 , 1}, δ B > 2δ dec , k large 1 δ dec . ( 3 

Statement of the main theorem

We are now ready to give the following precise version of our main theorem.

Main Theorem (Main theorem, version 2).

There exists a sufficiently large integer k large and a sufficiently small constant 0 > 0 such that given an initial layer defined as in section 3.1.1 and satisfying the bound

I k large +5 ≤ 5 3 0 , (3.3.5) 
there exists a globally hyperbolic development with a complete future null infinity I + and a future horizon H + together with foliations and adapted null frames verifying the admissibility conditions of section 3.1.2 such that following bound is satisfied

N (En) k large + N (Dec) k small ≤ C 0 (3.3.6)
where C is a large enough universal constant and where k small is given by

k small = 1 2 k large + 1. (3.3.7)
In particular, • On (int) M we have, with

Γ = {κ, ϑ, ζ, η, κ, ϑ, ω, ξ}, Ř = {α, β, ρ, β, α}, | Γ, Ř| 0 u 1+δ dec .
• The Bondi mass converges as u → +∞ along I + to the final Bondi mass which we denote by m ∞ . The final Bondi mass verifies the estimate

m ∞ m 0 -1 0 .
In particular m ∞ > 0.

• The Hawking mass m satisfies

|m -m ∞ | m 0      0 u 1+δ dec on (ext) M, 0 u 1+δ dec on (int) M.
• The location of the future horizon

H + satisfies r = 2m ∞ + O √ 0 u 1+ δ dec 2 on H + .
• On (ext) M, we have

ρ + 2m ∞ r 3 min 0 r 3 u 1 2 +δ dec , 0 r 2 u 1+δ dec , κ - 2 r 0 r 2 u 1+δ dec , κ + 2 1 -2m∞ r r min 0 r 2 u 1 2 +δ dec 0 ru 1+δ dec , ω - m ∞ r 2 0 ru 1+δ dec .
• On (int) M, we have.

ρ + 2m ∞ r 3 , κ + 2 r , κ - 2 1 -2m∞ r r , ω + m ∞ r 2 0 u 1+δ dec .
• On (ext) M, the space-time metric g is given in the (u, r, θ, ϕ) coordinates system by

g = g m∞, (ext) M + O 0 u 1+δ dec (dr, du, rdθ) 2 , r 2 (sin θ) 2 (dϕ) 2
where g m∞, (ext) M denotes the Schwarzschild metric of mass m ∞ > 0 in outgoing Eddington-Finkelstein coordinates, i.e.

g m∞, (ext) M := -2dudr -1 - 2m ∞ r (du) 2 + r 2 (dθ) 2 + (sin θ) 2 (dϕ) 2 .
• On (int) M, the space-time metric g is given in the (u, r, θ, ϕ) coordinates system by

g = g m∞, (int) M + O 0 u 1+δ dec (dr, du, rdθ) 2 , r 2 (sin θ) 2 (dϕ) 2
where g m∞, (ext) M denotes the Schwarzschild metric of mass m ∞ > 0 in ingoing Eddington-Finkelstein coordinates, i.e.

g m∞, (int) M := 2dudr -1 - 2m ∞ r (du) 2 + r 2 (dθ) 2 + (sin θ) 2 (dϕ) 2 .
Note that analog statements of the above estimates also hold for d k derivatives with k ≤ k small .
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Remark 3.3.1. In this paper, we choose to specify the closeness to Schwarzschild of our initial data in the context of the Characteristic Cauchy problem. Note that the conclusions of our main theorem can be immediately extended to the case where the data are specified to be close to Schwarzschild on a spacelike hypersurface Σ. Indeed, one can reduce this latter case to our situation by invoking

• The results in [START_REF] Klainerman | The evolution problem in general relativity[END_REF] [44] which allow us to control the causal region between Σ and the outgoing part of the initial data layer9 .

• A standard local existence result which controls the finite causal region between Σ and the ingoing part of the initial data layer.

Remark 3.3.2. In the context of the previous remark, we note that the constant m 0 > 0 appearing in the initial data layer norm of the assumption (3.3.5) of our main theorem does not necessarily coincide with the ADM mass of the corresponding initial data set on the spacelike hypersurface Σ. With respect to this ADM mass, we would recover the well known inequality stating that the final Bondi mass is smaller than the ADM mass.

Remark 3.3.3. For most of the proof, it is sufficient to assume the following weaker analog of (3.3.5) for the initial data layer

I k large +5 ≤ 0 .
The only place where we need the stronger assumption (3.3.5) on the initial data layer is in section 8.1, see Remark 8.1.1.

Bootstrap assumptions and first consequences

Main bootstrap assumptions

We assume that the combined norms N 

k small ≤ . (3.4.2)
In the remaining of section 3.4.1, we state several simple consequences of the bootstrap assumptions which will be proved in Chapter 4.

Control of the initial data

While the smallness constant involved in the bootstrap assumptions is > 0, we need the smallness constant involved in the control of the initial data to be 0 > 0. This is achieved in the theorem below.

Theorem M0. Assume that the initial data layer L 0 , as defined in section 3.1.1, satisfies

I k large +5 ≤ 0 .
Then under the bootstrap assumptions BA-D on decay, the following holds true on the initial data hypersurface

C 1 ∪ C 1 , max 0≤k≤k large sup C 1 r 7 2 +δ B |d k (ext) α| + |d k (ext) β| + r 9 2 +δ B |d k-1 e 3 ( (ext) α)| + sup C 1 r 3 d k (ext) ρ + 2m 0 r 3 + r 2 |d k (ext) β| + r|d k (ext) α| 0 , max 0≤k≤k large sup C 1 |d k (int) α| + |d k (int) β| + d k (int) ρ + 2m 0 r 3 +|d k (int) β| + |d k (int) α| 0 , and 
sup C 1 ∪C 1 m m 0 -1 0 .

Control of averages and of the Hawking mass

The following two lemma are simple consequence of the bootstrap assumptions and will be proved in section 4.2.

Lemma 3.4.1 (Control of averages). Assume given a GCM admissible spacetime M as defined in section 3.1.2 verifying the bootstrap assumption for some sufficiently small > 0. Then, we have

sup (ext) M u 1+δ dec r 3 d ≤k small κ - 2 r + r 3 d ≤k small ρ + 2m r 3 0 , sup (ext) M u 1+δ dec r 2 d ≤k small κ + 2Υ r + r 2 d ≤k small ω - m r 2 0 , sup (ext) M u 1 2 +δ dec r 3 d ≤k large κ - 2 r + r 3 d ≤k large ρ + 2m r 3 0 , sup (ext) M u 1 2 +δ dec r 2 d ≤k large κ + 2Υ r + r 2 d ≤k large ω - m r 2 0 , sup (int) M u 1+δ dec d ≤k small κ - 2Υ r + d ≤k small ρ + 2m r 3 0 , sup (int) M u 1+δ dec d ≤k small κ + 2 r + d ≤k small ω + m r 2 0 , sup (int) M u 1 2 +δ dec d ≤k large κ - 2Υ r + d ≤k large ρ + 2m r 3 0 , sup (int) M u 1 2 +δ dec d ≤k large κ + 2 r + d ≤k large ω + m r 2 0 .
Also, we have

sup (ext) M u 1+δ dec r d ≤k small Ω + Υ + u 1 2 +δ dec r d ≤k large Ω + Υ 0 , sup (int) M u 1+δ dec d ≤k small Ω -Υ + u 1 2 +δ dec d ≤k large Ω -Υ 0 .
Finally, recall that µ and µ are given by the following formula

µ = 2m r 3 on (ext) M, µ = 2m r 3 on (int) M.
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max 0≤k≤k large sup (ext) M u 1+δ dec |d k e 3 (m)| + r|d k e 4 (m)| 0 , max 0≤k≤k large sup (int) M u 1+δ dec |d k e 3 (m)| + |d k e 4 (m)| 0 .
The e 4 derivatives behave better in powers of r,

max 0≤k≤k small sup (ext) M r 2 u 1+δ dec |d k e 4 (m)| 0 , max 0≤k≤k large sup (ext) M r 2 u 1 2 +δ dec |d k e 4 (m)| 0 .
Moreover,

sup M m m 0 -1 0 .

Control of coordinates system

The following two propositions on the existence of a suitable coordinates system both in (ext) M and in (int) M are also consequences of the bootstrap assumptions and will be proved in section 4.3.

Proposition 3.4.3 (Control of a coordinates system on (ext) M). Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (2.2.52), i.e.

θ = cot -1 (re θ (Φ)) . (3.4.3)
Consider the (u, r, θ, ϕ) coordinates system introduced in Proposition 2.2.23. Then, relative to these (u, r, θ, ϕ) coordinates, 1. The spacetime metric takes the form,

g = - 4ς rκ dudr + ς 2 (κ + A) κ du 2 + γ dθ - 1 2 ςbdu - b 2 Θ 2 (3.4.4)
where,

b = e 4 (θ), b = e 3 (θ), γ = 1 (e θ (θ)) 2 (3.4.5)
and,

Θ = 4 rκ dr -ς κ + A κ du.
2. The reduced coordinates derivatives take the form,

∂ r = 2 rκ e 4 - 2 √ γ rκ be θ , ∂ θ = √ γe θ , ∂ u = ς 1 2 e 3 - 1 2 κ + A κ e 4 - 1 2 √ γ b - κ + A κ b e θ .
(3.4.6)

3. The following estimates hold true:

max 0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k γ r 2 -1 + r d k b , max 0≤k≤k small sup (ext) M u 1+δ dec d k Ω + d k (ς -1) + r d k b .
Also, e Φ satisfies max

0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k e Φ r sin θ -1 .
Proposition 3.4.4 (Control of a coordinates system on (int) M). Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (3.4.3). Consider the (u, r, θ, ϕ) coordinates system introduced in Proposition 2.2.26. Then, relative to these (u, r, θ, ϕ) coordinates, 1. The spacetime metric takes the form,

g = - 4ς rκ dudr + ς 2 (κ + A) κ du 2 + γ dθ - 1 2 ςbdu - b 2 Θ 2 (3.4.7)
where,

b = e 4 (θ), b = e 3 (θ), γ = 1 (e θ (θ)) 2 (3.4.8)
and,

Θ := 4 rκ dr -ς κ + A κ du. CHAPTER 3. MAIN THEOREM 2.
The reduced coordinates derivatives take the form,

∂ r = 2 rκ e 3 - 2 √ γ rκ be θ , ∂ θ = √ γe θ , ∂ u = ς 1 2 e 4 - 1 2 κ + A κ e 3 - 1 2 √ γ b - κ + A κ b e θ .
(3.4.9)

3. The following estimates hold true:

max 0≤k≤k small sup (int) M u 1+δ dec d k Ω + d k (ς -1) + d k γ r 2 -1 + d k b + d k b .
Also, e Φ satisfies max

0≤k≤k small sup (int) M u 1+δ dec d k e Φ r sin θ -1 .

Pointwise bounds for high order derivatives

We will need later to interpolate between the estimates provided by the bootstrap assumptions on decay and the bootstrap assumptions on energy. To this end, we will need the following consequence of the bootstrap assumptions on weighted energies.

Proposition 3.4.5. The Ricci coefficients and curvature components satisfy the following pointwise estimates on M max

k≤k large -5 sup M r 7 2 + δ B 2 |d k α| + |d k β| + r 3 |d k µ| + |d k ρ| +r 2 |d k κ| + |d k ζ| + |d k ϑ| + |d k κ| + |d k β| +r |d k η| + |d k ϑ| + |d k ω| + |d k ξ| + |d k α| .

Construction of a second frame in (ext) M

Recall that the quantity q satisfies the following wave equation, see (2.4.7),

where the nonlinear term Err[ 2 q] has the schematic structure exhibited in (2.4.8). Also, recall that according to our bootstrap assumption on decay and Proposition 3.4.5, η satisfies on (ext) M |d ≤k small η| ≤ ru 1+δ dec , |d ≤k large -5 η| r .

As discuss in Remark 2.4.8, this decay in r -1 is too weak to derive suitable decay for q. We thus need to provide another frame for (ext) M. This is the aim of the following proposition.

Proposition 3.4.6. Let an integer k loss and a small constant δ 0 > 0 satisfying 10 

16 ≤ k loss ≤ δ dec 3 (k large -k small ), δ 0 := k loss k large -k small . ( 3 
< δ dec 1, δ dec k large 1, k small = 1 2 k large + 1.
In particular, we have δ dec (k large -k small ) 1 and hence the exists an integer k loss satisfying the required constraints.
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max 0≤k≤k small +k loss sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k Γ g | + ru 1+δ dec -2δ 0 |d k Γ b | +r 2 u 1+δ dec -2δ 0 d k-1 e 3 κ - 2 r , κ + 2Υ r , ϑ , ζ , η , η + r 7 2 + δ B 2 + r 3 u 1 2 +δ dec -2δ 0 + r 2 u 1+δ dec -2δ 0 |d k α | + |d k β | + r 9 2 + δ B 2 + r 3 u 1+δ dec + r 4 u 1 2 +δ dec -2δ 0 |d k-1 e 3 (α )| + r 3 u 1+δ dec + r 4 u 1 2 +δ dec -2δ 0 |d k-1 e 3 (β )| + r 3 u 1 2 +δ dec -2δ 0 + r 2 ru 1+δ dec -2δ 0 |d k ρ | +u 1+δ dec -2δ 0 r 2 |d k β | + r|d k α | ,
where we have used the notation11 

Γ g = rω , κ - 2 r , ϑ , ζ , η , η , κ + 2Υ r , r -1 (e 4 (r) -1), r -1 e θ (r), e 4 (m) , Γ b = ϑ , ω - m r 2 , ξ , r -1 (e 3 (r) + Υ), r -1 e 3 (m) .
Furthermore, f satisfies

|d k f | ru 1 2 +δ dec -2δ 0 + u 1+δ dec -2δ 0 , for k ≤ k small + k loss + 2 on (ext) M, |d k-1 e 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + k loss + 2 on (ext) M.
(3.4.11)

Remark 3.4.7. The crucial point of Proposition 3.4.6 is that in the new frame (e 4 , e 3 , e θ ) of (ext) M, η belongs to Γ g and thus displays a better decay in r -1 than η corresponding to the outgoing geodesic frame (e 4 , e 3 , e θ ) of (ext) M.

Global null frames

In this section, we construct 2 smooth global frames on M by matching the frame of (int) M on the one hand with a renormalization of the frame on (ext) M, and on the other hand, with a renormalization of the second frame of (ext) M given by Proposition 3.4.6.

Extension of frames

To construct the first global frame, we need to extend the frame ( (int) e 4 , (int) e 3 , (int) e θ ) of (int) M slightly into (ext) M, and the frame ( (ext) e 4 , (ext) e 3 , (ext) e θ ) of (ext) M slightly into (int) M. We keep the same labels for the extended frame, i.e. ( (int) e 4 , (int) e 3 , (int) e θ ) represents the extended frame of (int) M in (ext) M and vice versa. This convention also applies to the Ricci coefficients, curvature components, area radius and Hawking mass of the extended frames.

Note that these extensions require, in addition to the initialization of the frames on T , to initialize 1. ( (ext) e 4 , (ext) e 3 , (ext) e θ ) on C * by ( (ext) e 4 , (ext) e 3 , (ext) e θ ) = (( (int) Υ) -1(int) e 4 , (int) Υ (int) e 3 , (int) e θ ).

2. ( (int) e 4 , (int) e 3 , (int) e θ ) on C * by ( (int) e 4 , (int) e 3 , (int) e θ ) = ( (ext) Υ (ext) e 4 , ( (ext) Υ) -1(ext) e 3 , (ext) e θ ).

Construction of the first global frame

We start with the definition of the region where the frame of (int) M and a conformal renormalization of the frame of (ext) M will be matched.

Definition 3.5.1. We define the matching region as the spacetime region

Match := (ext) M ∩ (int) r ≤ 2m 0 1 + 3 2 δ H ∪ (int) M ∩ (int) r ≥ 2m 0 1 + 1 2 δ H ,
where, as explained in the previous section, (int) r denotes the area radius of the ingoing geodesic foliation of (int) M and its extension to (ext) M.

Here is our main proposition concerning our first global frame.

Proposition 3.5.2. There exists a global null frame defined on (int) M ∪ (ext) M and denoted by ( (glo) e 4 , (glo) e 3 , (glo) e θ ) such that (c) In the matching region, we have

max 0≤k≤k small -2 sup Match∩ (int) M u 1+δ dec d k ( (glo) Γ, (glo) Ř) , max 0≤k≤k small -2 sup Match∩ (ext) M u 1+δ dec d k ( (glo) Γ, (glo) Ř) , max 0≤k≤k large -1 Match d k ( (glo) Γ, (glo) Ř) 2 1 2
, where (glo) Ř and (glo) Γ are given by

(glo) Ř = α, β, ρ + 2m r 3 , β, α , (glo) Γ = ξ, ω + m r 2 , κ - 2Υ r , ϑ, ζ, η, η, κ + 2 r , ϑ, ω, ξ . 
(d) Furthermore, we may also choose the global frame such that, in addition, one of the following two possibilities hold, i. We have on all (ext) M ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ .

ii. We have on all (int) M ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (int) e 4 , (int) e 3 , (int) e θ .

Remark 3.5.3. The global frame on M of Proposition 3.5.2 will be used to construct the second global frame in the next section, see Proposition 3.5.5. It will also be used to recover high order derivatives in Theorem M8 (stated in section 3.6.2), see section 8.3.2.

Construction of the second global frame

We start with the definition of the region where first global frame of M (i.e. the one of Proposition 3.5.2) and a conformal renormalization of the frame second frame of (ext) M (i.e. the one of Proposition 3.4.6) will be matched.

Definition 3.5.4. We define the matching region as the spacetime region

Match := (ext) M ∩ 7m 0 2 ≤ (ext) r ≤ 4m 0 ,
where (ext) r denotes the area radius of the outgoing geodesic foliation of (ext) M.

Here is our main proposition concerning our second global frame.

Proposition 3.5.5. Let an integer k loss and a small constant δ 0 > 0 satisfying (3.4.10).

There exists a global null frame ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) defined on (int) M ∪ (ext) M such that (a) In (ext) M ∩ { (ext) r ≥ 4m 0 }, we have ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ , where ( (ext) e 4 , (ext) e 3 , (ext) e θ ) denotes the second frame of (ext) M, i.e. the fame of Proposition 3.4.6.

(b) In (int) M ∪ ( (ext) M ∩ { (ext) r ≤ 7m 0 2 }), we have ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = ( (glo) e 4 , (glo) e 3 , (glo) e θ ),

where ( (glo) e 4 , (glo) e 3 , (glo) e θ ) denotes the first global frame of M, i.e. the frame of Proposition 3.5.2.

(c) In the matching region, we have

max 0≤k≤k small +k loss sup Match u 1+δ dec -2δ 0 d k ( (glo ) Γ, (glo ) Ř) ,
where (glo ) Ř and (glo ) Γ are given by

(glo ) Ř = α, β, ρ + 2m r 3 , β, α , (glo ) Γ = ξ, ω + m r 2 , κ - 2Υ r , ϑ, ζ, η, η, κ + 2 r , ϑ, ω, ξ .
with the Ricci coefficients and curvature components being the one associated to the frame ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ).

(d) Furthermore, we may also choose the global frame such that, in addition, one of the following two possibilities hold, i. We have on (ext) M ∩ { (ext) r ≥ 15m 0 4 } ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ .

ii. We have on (int) M ∪ ( (ext) M ∩ { (ext) r ≤ 15m 0 4 }) ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = ( (glo) e 4 , (glo) e 3 , (glo) e θ ).

Remark 3.5.6. The global frame on M of Proposition 3.5.5 will be needed to derive decay estimates for the quantity q in Theorem M1 (stated in section 3.6.1).

3.6 Proof of the main theorem

Main intermediate results

We are ready to state our main intermediary results.

Theorem M1. Assume given a GCM admissible spacetime M as defined in section 3.1.2 verifying the bootstrap assumptions 12 BA-E and BA-D for some sufficiently small > 0.

Then, if 0 > 0 is sufficiently small, there exists δ extra > δ dec such that we have the following estimates in M,

max 0≤k≤k small +20 sup (ext) M ru 1 2 +δextra + u 1+δextra |d k q| + ru 1+δextra |d k e 3 q| + max 0≤k≤k small +20 sup (int) M u 1+δextra |d k q| 0 .
Moreover, q also satisfies the following estimate

max 0≤k≤k small +21 u 2+2δextra (int) M(≥u) |d k q| 2 + max 0≤k≤k small +20 u 2+2δextra Σ * (≥u)
|d k e 3 q| 2 2 0 .

Theorem M2. Under the same assumptions as above we have the following decay estimates for (ext) α

max 0≤k≤k small +20 sup (ext) M r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra
|d k (ext) α| + r|d k e 3 (ext) α| 0 .
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Theorem M3. Under the same assumptions as above we have the following decay estimates for α

(int) D k small +16 [α] 0 , max 0≤k≤k small +18 Σ * u 2+2δextra |d k α| 2 2 0 .
Theorem M4. Under the same assumptions as above we also have the following decay estimates in

(ext) M (ext) D k small +8 [ Ř] + (ext) D k small +8 [ Γ] 0 .
Theorem M5. Under the same assumptions as above we also have the following decay estimates for Ř and Γ in (int) M

(int) D k small +5 [ Ř] + (int) D k small +5 [ Γ] 0 .
Note that, as an immediate consequence of Theorem M2 to Theorem M5 we have obtained, under the same assumptions as above, the following improvement of our bootstrap assumptions on decay

N (Dec) k small +5 0 . (3.6.1) 
3.6.2 End of the proof of the main theorem Definition 3.6.1 (Definition of ℵ(u * )). Let 0 > 0 and > 0 be given small constants satisfying the constraint (3.3.3). Let ℵ(u * ) be the set of all GCM admissible spacetimes M defined in section 3.1.2 such that

• u * is the value of u on the last outgoing slice C * ,

• u * satisfies (3.3.4),

• the bootstrap assumptions (3.4.1) (3.4.2) hold true, i.e., relative to the combined norms defined in section 3.2.3, we have

N (En) k large ≤ , N (Dec) 
k small ≤ .

Definition 3.6.2. Let U be the set of all values of u * ≥ 0 such that the spacetime ℵ(u * ) exists.

The following theorem shows that U is not empty.
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Theorem M6. There exists δ 0 > 0 small enough such that for sufficiently small constants 0 > 0 and > 0 satisfying the constraints (3. In view of Theorem M6, we may define U * as the supremum over all value of u * that belongs to U.

U * := sup u * ∈U u * .
Assume by contradiction that U * < +∞.

Then, by the continuity of the flow, U * ∈ U. Furthermore, according to the consequence (3.6.1) of Theorem M2 to Theorem M5, the bootstrap assumptions on decay (3.4.2) on any spacetime of ℵ(U * ) are improved by

N (Dec) k small +5 0 .
To reach a contradiction, we still need an extension procedure for spacetimes in ℵ(u * ) to larger values of u, as well as to improve our bootstrap assumptions on weighted energies (3.4.1). This is done in two steps.

Theorem M7. Any GCM admissible spacetime in ℵ(u * ) for some 0 < u * < +∞ such that

N (Dec) k small +5 0 ,
has a GCM admissible extension (satisfying (3.3.4)), i.e. u * > u * , initialized by Theorem M0, which verifies

N (Dec) k small 0 .
Remark 3.6.3. Recall that the definition of a GCM admissible spacetime in section 3.1.2 is such that T = {r = r T } for some r T satisfying and therefore belongs to ℵ(u * ). In particular u * belongs to U.

2m 0 1 + δ H 2 ≤ r T ≤ 2m 0 1 + 3δ H 2 . ( 3 
In view of Theorem M8, we have reached a contradiction, and hence

U * = +∞
so that the spacetime may be continued forever. This concludes the proof of the main theorem.

Conclusions

The Penrose diagram of M Complete future null infinity. We first deduce from our estimate that our spacetime M has a complete future null infinity I + . The portion of null infinity of M corresponds to the limit r → +∞ along the leaves C u of the outgoing geodesic foliation of (ext) M. As C u exists for all u ≥ 0 with suitable estimates, it suffices to prove that u is an affine parameter of I + . To this end, recall from our main theorem that the estimates N (Dec) k small 0 hold which implies in particular 13 sup

(ext) M ru 1+δ dec |ξ| + ω - m r 2 + r -1 |ς -1| 0 . (3.6.3) As |m -m 0 | 0 m 0 , see Lemma 3.4.2, m is bounded. We infer that lim Cu,r→+∞ ξ, ω = 0 for all 1 ≤ u < ∞.
In view of the identity

D 3 e 3 = -2ωe 3 + 2ξe θ ,
we infer that e 3 is a null geodesic generator of I + . Since we have e 3 (u) = 2 ς with |ς -1| 0 in view of (3.6.3), u is an affine parameter of I + so that I + is indeed complete. 13 Using also Proposition 3.4.3 for the control of ς.

Existence of a future event horizon. Next, note that the estimates N (Dec) k small 0 also imply sup

(int) M u 1+δ dec κ + 2 r + κ - 2 1 -2m r r 0 .
In particular, considering the spacetime region r ≤ 2m 0 (1δ H /2) of (int) M, and in view of the estimate |mm 0 | 0 m 0 , we infer, for all r ≤ 2m 0 (1

-δ H /2), that κ ≤ 2 r -2m r 2 + O( 0 ) 2 r 2 (r -2m 0 + 2m 0 -2m) + O( 0 ) 2m 0 r 2 (-δ H + 0 ) + O( 0 ).
Thus, since 0 < 0 δ H 1, we deduce, sup

(int) M r≤2m 0 1- δ H 2 κ ≤ - δ H 2m 0 1 -δ H 2 2 + O( 0 ) ≤ - δ H 4m 0 .
Thus, all 2-spheres S(u, s) of the ingoing geodesic foliation of (int) M which are located in the spacetime region r ≤ 2m 0 (1δ H /2) of (int) M are trapped. This implies that the past of I + in M does not contain this region, and hence M contains the event horizon H + of a black hole in its interior. Moreover, since the timelike hyper surface T is foliated by the outgoing null cones C u of (ext) M, it is in the past of I + . Hence, since T is one of the boundaries of (int) M, H + is actually located in the interior of the region (int) M.

Asymptotic stationarity of M. Recall that we have introduced a vectorfield T in (ext) M as well as one in (int) M by

T = e 3 + Υe 4 in (ext) M, T = e 4 + Υe 3 in (int) M.
We can easily express all components of (T ) π in terms of Γ, e 3 (m), e 4 m. Thus, making us of the estimate N (Dec) k small 0 of our main theorem, we deduce,

| (T) π| 0 ru 1+δ dec in (ext) M and | (T) π| 0 u 1+δ dec in (int) M.
In particular, T is an asymptotically Killing vectorfield and hence our spacetime M is asymptotically stationary.

The above conclusions regarding I + and H + allow us to draw the Penrose diagram of M, see figure 3.3.

PROOF OF THE MAIN THEOREM

151 

H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + (ext) M (int) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C ⇤ C ⇤ A C 1 C 1 ⌃ ⇤ I + ( e x t ) M ( i n t ) M T H + C⇤ C ⇤ A C1 C 1 ⌃ ⇤ I+ ( e x t
e 4 (m) = r 32π S - 1 2 κϑ 2 - 1 2 κϑϑ + 2κρ + 2e θ (κ)ζ + 2κζ 2 .
As a simple corollary of the decay estimates of our main theorem, i.e., N (Dec) k small 0 , we deduce,

|e 4 (m)| 2 0 r 2 u 1+2δ dec . (3.6.4)
Since r -2 is integrable, we infer the existence of a limit to m as r → +∞ along

C u M B (u) = lim r→+∞ m(u, r) for all 1 ≤ u < +∞
where M B (u) is the so-called Bondi mass.
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Next, we recall the following formula in (ext) M, see Proposition 2.2.8

e 4 (ϑ) + 1 2 κϑ = 2 d / 2 ζ - 1 2 κϑ + 2ζ 2 .
In view of N (Dec) k small 0 , we deduce

|e 4 (rϑ)| 0 r 2 u 1 2 +δ dec .
Since r -2 is integrable, we infer the existence of a limit to rϑ as r → +∞ along

C u Θ(u, •) = lim r→+∞ rϑ(r, u, •) for all 1 ≤ u < +∞.
On the other hand, in view of

N (Dec) k small 0 again, r|ϑ| 0 u 1+δ dec , on (ext) M.
We infer that

|Θ(u, •)| 0 u 1+δ dec for all 1 ≤ u < +∞.

The spheres at null infinity are round

The Gauss curvature is given by the formula,

K = -ρ - 1 4 κκ + 1 4 ϑϑ.
Thus, in view of our estimates in (ext) M,

K - 1 r 2 0 r 3 u 1 2 +δ dec so that lim r→+∞ r 2 K = 1.
In particular the spheres at null infinity are round. Letting r → +∞ along C u , and using that the spheres at null infinity are round, we infer in view of the definition of M B and Θ

e 3 (M B )(u) = - 1 8 S 2 Θ 2 (u, •) for all 1 ≤ u < +∞.
Since e 3 (u) = 2 ς and e 3 is orthogonal to the spheres foliating I + , we infer e 3 = 2 ς ∂ u . Thus, we obtain the following Bondi mass type formula

∂ u M B (u) = - ς 16 S 2 Θ 2 (u, •) for all 1 ≤ u < +∞,
with ς satisfying (3.6.3).

Final Bondi mass

In view of the estimate

|Θ(u, •)| 0 u 1+δ dec for all 1 ≤ u < +∞,
and the control for ς in (3.6.3), we infer that

|∂ u M B (u)| 2 0 u 2+2δ dec for all 1 ≤ u < +∞.
In particular, since u -2-2δ dec is integrable, the limit along

I + exists M B (+∞) = lim u→+∞ M B (u)
and is the so-called final Bondi mass. We denote it as m ∞ , i.e. m ∞ = M B (+∞).
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Control of mm ∞ . We have as a consequence of the above estimate for ∂ u M B and the

definition of m ∞ |M B (u) -m ∞ | 2 0 u 1+2δ dec for all 1 ≤ u < +∞.
Also, recall from (3.6.4) that we have obtained in

(ext) M |e 4 (m)| 2 0
r 2 u 1+2δ dec which yields, together with the definition of M B (u), by integration in r at fixed u

|m(r, u) -M B (u)| 2 0 ru 1+2δ dec in (ext) M.
We infer sup

(ext) M u 1+2δ dec |m -m ∞ | 2 0 .
(3.6.5) Also, recall the following formula for the derivative of the Hawking mass in (int) M, see Proposition 2.2.16 in the context of an outgoing geodesic foliation,

e 3 (m) = r 32π S - 1 2 κϑ 2 - 1 2 κϑϑ + 2κρ -2e θ (κ)ζ + 2κζ 2 .
Together with the estimates N (Dec) k small 0 , we deduce

|e 3 (m)| 2 0 u 2+2δ dec on (int) M
and hence by integration in r at fixed u, for r

∈ [2m 0 (1 -δ H ), r T ], m(r, u) -m r T , u 2 0 u 2+2δ dec m 0 δ H on (int) M.
According to (3.6.5), since {r = r T } = T = (ext) M ∩ (int) M ⊂ (ext) M, and since u = u in T by the initialization of u, 

u 1+2δ dec m r T , u -m ∞ 2 0 . We deduce sup (int) M u 1+2δ dec |m -m ∞ | 2 0 . ( 3 
|m ∞ -m 0 | 0 m 0 .
In particular we deduce that m ∞ > 0 since 0 can be made arbitrarily small.
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Coordinates systems on (ext) M and (int) M In view of Proposition 3.4.3, and together with the control of the averages κ, κ provided by Lemma 3.4.1, the control of κ provided by the estimates N (Dec) k small 0 , and the control of mm ∞ obtained in (3.6.5), we infer for the space-time metric g on (ext) M in the (u, r, θ, ϕ) coordinates system

g = g m∞, (ext) M + O 0 u 1+δ dec (dr, du, rdθ) 2 , r 2 (sin θ) 2 (dϕ) 2
where g m∞, (ext) M denotes the Schwarzschild metric of mass m ∞ > 0 in outgoing Eddington-Finkelstein coordinates, i.e.

g m∞, (ext) M = -2dudr -1 - 2m ∞ r (du) 2 + r 2 (dθ) 2 + (sin θ) 2 (dϕ) 2 .
Also, in view of Proposition 3.4.4, and together with the control of the averages κ, κ provided by Lemma 3.4.1, the control of κ provided by the estimates N (Dec) k small 0 , and the control of mm ∞ obtained in (3.6.6), we infer for the space-time metric g on (int) M in the (u, r, θ, ϕ) coordinates system g = g m∞, (int) M + O 0 u 1+δ dec (dr, du, rdθ) 2 , r 2 (sin θ) 2 (dϕ)

2
where g m∞, (ext) M denotes the Schwarzschild metric of mass m ∞ > 0 in ingoing Eddington-Finkelstein coordinates, i.e.

g m∞, (int) M = 2dudr -1 - 2m ∞ r (du) 2 + r 2 (dθ) 2 + (sin θ) 2 (dϕ) 2 .
Asymptotic of the future event horizon. We show below that H + is located in the following region of

(int) M 2m 1 - √ 0 u 1+δ dec ≤ r ≤ 2m 1 + √ 0 u 1+ δ dec 2 on H + for any 1 ≤ u < +∞. (3.6.7)
Note first that the lower bound follows from the fact that sup

(int) M r≤2m 1- √ 0 u 1+δ dec κ ≤ - √ 0 u 1+δ dec m 1 - √ 0 u 1+δ dec 2 + O 0 u 1+δ dec ≤ - √ 0 2m 0 u 1+δ dec < 0.
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Concerning the upper bound, we need to show that any 2-sphere

S(u 1 ) := S   u 1 , r = 2m   1 + √ 0 u 1+ δ dec 2 1     , 1 ≤ u 1 < +∞ (3.6.8)
is in the past of I + . Since (ext) M is in the past of I + , it suffices to show that the forward outgoing null cone emanating from any 2-sphere (3.6.8) reaches (ext) M in finite time.

Assume, by contradiction, that there exists an outgoing null geodesic, denoted by γ, perpendicular to S(u 1 ), that does not reach (ext) M in finite time. Let e 4 be the geodesic generator of γ. In view of Lemma 2.3.1 on general null frame transformation, and denoting by (e 4 , e 3 , e θ ) the null frame 14 of (int) M, we look for e 4 under the form

e 4 = λ e 4 + f e θ + 1 4 f 2 e 3 ,
and the fact that e 4 is geodesic implies the following transport equations along γ for f and λ in view of Lemma 2.3.6 (applied 15 with f = 0)

λ -1 e 4 (f ) + κ 2 + 2ω f = -2ξ + E 1 (f, Γ), λ -1 e 4 (log(λ)) = 2ω + E 2 (f, Γ),
where E 1 and E 2 are given schematically by

E 1 (f, Γ) = - 1 2 ϑf + l.o.t., E 2 (f, Γ) = f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ + l.o.t.
Here, l.o.t. denote terms which are cubic or higher order in f and Γ denotes the Ricci coefficients w.r.t. the original null frame (e 3 , e 4 , e θ ) of (int) M.

We then proceed as follows 1. First, we initialize f and λ as follows on the γ ∩ S(u 1 ) f = 0, λ = 1 on γ ∩ S(u 1 ).

14 Recall that we assume by contradiction that γ does not reach (ext) M and hence stays in (int) M. 15 i.e. we keep the direction of e 3 fixed.

2. Then, we initiate a continuity argument by assuming for some

u 1 < u 2 < u 1 + u 1 0 δ dec 2 that we have |f | ≤ √ 0 u 1 2 +δ dec 1 , Υ ≥ √ 0 2u 1+ δ dec 2 1 , 0 < λ < +∞ on γ(u 1 , u 2 ) ∩ (int) M (3.6.9)
where γ(u 1 , u 2 ) denotes the portion of γ in u 1 ≤ u ≤ u 2 .

3. We have

λ -1 e 4 (u) = e 4 (u) + 1 4 f 2 e 3 (u) = 2 ς .
Relying on our control of the ingoing geodesic foliation of (int) M, the above assumption for f and the transport equation for f , we obtain on γ(u 1 , u 2 )

∩ (int) M sup γ(u 1 ,u 2 )∩ (int) M |f | 0 u 1+δ dec 1 (u 2 -u 1 ) 1- δ dec 2 0 u 1+ δ dec 2 
1
which improves our assumption in (3.6.9) on f . 4. We have in view of the control of f λ -1 e 4 (r) = e 4 (r) + 1 4

f 2 e 3 (r) = Υ + O 0 u 1+δ dec 1 .
This yields

λ -1 e 4 (log(Υ)) = 2m r 2 e 4 (r) -2 r λ -1 e 4 (m) Υ = 2m r 2 Υ + O 0 u 1+δ dec 1 Υ .
Thanks to our assumption on the lower bound of Υ, we infer

λ -1 e 4 (log(Υ)) = 2m r 2 (1 + O( √ 0 ))
and since we are in (int) M λ -1 e 4 (log(Υ)) ≥ 1 3m 0 .

Integrating from u = u 1 , we deduce

Υ ≥ √ 0 (1 + √ 0 )u 1+ δ dec 2 1 exp u -u 1 3m 0
which is an improvement of our assumption in (3.6.9) on Υ.

5. In view of the control of f and of the ingoing geodesic foliation of (int) M, we rewrite the transport equation for λ as

λ -1 e 4 (log(λ)) = 2ω + E 2 (f, Γ) = - 2m r 2 + O 0 u 1+δ dec 1 .
Since we have obtained above the other hand

λ -1 e 4 (log(Υ)) = 2m r 2 (1 + O( √ 0 )) we immediately infer λ -1 e 4 (log(λ)Υ 2 ) > 0, λ -1 e 4 (log(λ) √ Υ) < 0.
Integrating from u = u 1 , this yields

√ 0 (1 + √ 0 )u 1+ δ dec 2 2 Υ -2 ≤ λ ≤ √ 0 (1 + √ 0 )u 1+ δ dec 2 1 2 Υ -1 2 .
Since Υ has an explicit lower bounded in view of our previous estimate, as well as an explicit upper bound since we are in (int) M, this yields an improvement of our assumptions in (3.6.9) for λ.

6. Since we have improved all our bootstrap assumptions (3.6.9), we infer by a continuity argument the following bound

Υ ≥ √ 0 (1 + √ 0 )u 1+ δ dec 2 1 exp u -u 1 3m 0 on γ   u 1 , u 1 + u 1 0 δ dec 2   ∩ (int) M.
Now, in this u interval, we may choose

u 3 := u 1 + 3m 0 1 + δ dec 2 log u 1 0
for which we have Υ ≥ 1. This is a contradiction since Υ = O(δ H ) in (int) M. Thus, we deduce that γ reaches (ext) M before u = u 3 , a contradiction to our assumption on γ. This concludes the proof of (3.6.7).
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The general covariant modulation procedure

The role of this section is to give a short description of the results concerning our General Covariant Modulation (GCM) procedure, which is at the heart of our proof. We will apply it in (ext) M under our main bootstrap assumptions BA-E BA-D. The results stated in this section will be proved in Chapter 9.

Spacetime assumptions for the GCM procedure

To state our results, which are local in nature, it is convenient to consider axially symmetric polarized spacetime regions R foliated by two functions (u, s) such that

• On R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4.

• We denote by (e 3 , e 4 , e θ ) the null frame adapted to the outgoing geodesic foliation (u, s) on R.

• We denote by • In adapted coordinates (u, s, θ, ϕ) with b = 0, see Proposition 2.2.20, the spacetime metric g in R takes the form, with Ω = e 3 (s), b = e 3 (θ),

g = -2ςduds + ς 2 Ωdu 2 + γ dθ - 1 2 ςbdu 2 + e 2Φ dϕ 2 , (3.7.2) 
where θ is chosen such that b = e 4 (θ) = 0.

• The spacetime metric induced on S(u, s) is given by,

g / = γdθ 2 + e 2Φ dϕ 2 . (3.7.3)
• The relation between the null frame and coordinate system is given by • s) real numbers so that

e 4 = ∂ s , e 3 = 2 ς ∂ u + Ω∂ s + b∂ θ , e θ = γ -1/2 ∂ θ . ( 3 
1 ≤ • u < +∞, 4m 0 ≤ • s < +∞.
(3.7.5)

We define R = R( • δ,
• ) to be the region

R := |u - • u| ≤ δ R , |s - • s| ≤ δ R , δ R := • δ • -1 2 , (3.7.6)
such that assumption A1-A3 below with constant • on the background foliation of R, are verified. The smaller constant

• δ controls the size of the GCM quantities as it will be made precise below.

Consider the renormalized Ricci and curvature components associated to the (u, s) geodesic foliation of R

Γ : = κ, ϑ, ζ, η, κ - 2 r , κ + 2Υ r , κ, ϑ, ξ, ω, ω - m r 2 , Ω, Ω + Υ , ς + 1 , Ř : = α, β, ρ, ρ + 2m r 3 , β, α .
Since our foliation is outgoing geodesic we also have,

ξ = ω = 0, η + ζ = 0. (3.7.7)
We decompose Γ = Γ g ∪ Γ b where,

Γ g = κ, ϑ, ζ, κ, κ - 2 r , κ + 2Υ r , Γ b = η, ϑ, ξ, ω, ω - m r 2 , r -1 Ω, r -1 ς, r -1 Ω + Υ , r -1 ς -1 .
(3.7.8) Given an integer s max , we assume the following16 

A1. For k ≤ s max , we have on R

Γ g k,∞ • r -2 , Γ b k,∞ • r -1 , (3.7.9) 
and,

α, β, ρ, μ k,∞ • r -3 , e 3 (α, β) k-1,∞ • r -4 , β k,∞ • r -2 , α k,∞ • r -1 .
(3.7.10)

A2. We have, with m 0 denoting the mass of the unperturbed spacetime, sup

R m m 0 -1 • . (3.7.11)
A3. The metric coefficients are assumed to satisfy the following assumptions in R, for all k ≤ s max

r γ r 2 -1, b, e Φ r sin θ -1 ∞,k + Ω + Υ ∞,k + ς -1 ∞,k • (3.7.12)
We will assume, in addition, that there exists scalar functions C = C(u, s), M = M (u, s) such that the following small GCM conditions hold true on R, 

κ - 2 r + d k κ + r d k-1 ( d / 1 κ -Ce Φ ) +r 2 d k-1 ( d / 1 µ -M e Φ ) • δr -2 for all k ≤ s max , (3.7.13) r -2 S ηe Φ • δ, r -2 S ξe Φ • δ. (3.7.14) Also, 2 ς + Ω SP -1 - 2m r • δ. ( 3 
Ψ( • u, • s, θ, ϕ) = • u + U (θ), • s + S(θ), θ, ϕ (3.7.17)
where U, S are smooth functions defined on the interval [0, π] of amplitude at most • . We denote by ψ the reduce map defined on the interval [0, π],

ψ(θ) = ( • u + U (θ), • s + S(θ), θ). (3.7.18)
We restrict ourselves to deformations which fix the South Pole, i.e.

U (0) = S(0) = 0. (3.7.19)

Adapted frame transformations

We consider general null transformations introduced in Lemma 2.3.1,

e 4 = λ e 4 + f e θ + 1 4 f 2 e 3 , e θ = 1 + 1 2 f f e θ + 1 2 f e 4 + 1 2 f 1 + 1 4 f f e 3 , e 3 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 .
(3.7.20) Definition 3.7.3. Given a deformation Ψ :

• S -→ S we say that a new frame (e 3 , e 4 , e θ ), obtained from the standard frame (e 3 , e 4 , e θ ) via the transformation (3.7.20), is S-adapted if we have,

e θ = e S θ = 1 (γ S ) 1/2 ψ # (∂ θ ) (3.7.21)
where ψ # (∂ θ ) is the push-forward defined by the deformation map ψ.

The condition translates into the following relations between the functions U, S defining the deformation and the transition functions (f, f ).

ς # ∂ θ U = (γ S ) # 1/2 f # 1 + 1 4 (f f ) # , ∂ θ S - ς # 2 Ω # ∂ θ U = 1 2 (γ S ) # 1/2 f # , (γ S ) # = γ # + (ς # ) 2 Ω + 1 4 b 2 γ # (∂ θ U ) 2 -2ς # ∂ θ U ∂ θ S -(γςb) # ∂ θ U, U (0) = S(0) = 0.
(3.7.22)

GCM results

Theorem 3.7.4 (GCMS-I). Consider the region R as above, verifying the assumptions A1-A3 and the small GCM conditions 17 (3.7.13). Let

• S denote the sphere

• S = S( • u, • s). For any fix Λ, Λ ∈ R verifying, |Λ|, |Λ| • δ • r 2 , (3.7.23) 
1. There exists a unique GCM sphere S = S (Λ,Λ) , which is a deformation where (f, f ) belong to the triplet (f, f , λ = e a ) which denote the change of frame coefficients from the frame of

• S to the one of S.

2. The transition functions (f, f , log λ) verify, The precise version of Theorem 3.7.4 and its proof are given in section 9.4.

(f, f , log λ) h k (S) • δ, k ≤ s max + 1. ( 3 
The next result requires stronger assumptions for Γ b than those made in A1. The precise version of Theorem 3.7.5 and its proof are given in 9.7.

A1-Strong. For k ≤ s max , Γ g k,∞ • r -2 , Γ b k,∞ • r -1 , Γ b k,∞ ( • ) 1 3 r -2 . ( 3 
Theorem 3.7.6 (GCMH). Consider the region R as above, verifying the assumptions A1-A3 and the small GCM conditions (3.7.13)- (3.7.15).

Let S 0 = S 0 [ • u, • s, Λ 0 , Λ 0 ] the deformation of • S constructed in Theorem GCMS-I above.
There exists a smooth spacelike hypersurface Σ 0 ⊂ R passing through S 0 , a scalar function u S defined on Σ 0 , whose level surfaces are topological spheres denoted by S, and a smooth collection of constants Λ S , Λ S verifying,

Λ S 0 = Λ 0 , Λ S 0 = Λ 0 ,
such that the following conditions are verified:

1. The surfaces S of constant u S verifies all the properties stated in Theorem GCMS-I for the prescribed constants Λ S , Λ S . In particular they come endowed with null frames (e S 4 , e S θ , e S 3 ) such that i. For each S the GCM conditions (3.7.24), (3.7.25) hold with Λ = Λ S , Λ = Λ S .

ii. The transversality conditions hold true on each S.

ξ S = 0, ω S = 0, η S + ζ S = 0. (3.7.30)
2. We have, for some constant c Σ 0 ,

u S + r S = c Σ 0 , along Σ 0 . (3.7.31)
3. Let ν S be the unique vectorfield tangent to the hypersurface Σ 0 , normal to S, and normalized by g(ν S , e S 4 ) = -2. There exists a unique scalar function a S on Σ 0 such that ν S is given by

ν S = e S 3 + a S e S 4 .
The following normalization condition holds true at the South Pole SP of every sphere S, i.e. at θ = 0, The precise version of Theorem 3.7.6 and its proof are given in section 9.8.

a S SP = -1 - 2m S r S . ( 3 

Main ideas

Both theorems GCMS-II and GCMH are based on Theorem GSMS-I. They are heavily based on the transformation formulas for the Ricci and curvature coefficients recorded in Proposition 2.3.4.
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Sketch of the proof of Theorems GSMS-I and GSMS-II

A given deformation Ψ :

• S -→ S is fixed by the parameters U, S and transition functions F = (f, f , λ) connected by the system (3.7.22). Making use of the transformation formulas one can show that the GCM conditions (3.7.24)-(3.7.25) holds true if and only if the transition functions F verify a coercive nonlinear elliptic Hodge system of the form D Ψ F = B(Ψ), where the operator D Ψ depends on the deformation Ψ and the right hand side B, depends on both Ψ and the background foliation (see Proposition 9.4.2 for the precise form of the system). To find a desired GSMS deformation we have to solve a coupled system between the transport type equations in (3.7.22) and the elliptic coercive system D Ψ F = 0 of Proposition 9.4.2.

The actual proof is thus based on an iteration procedure for a sequence of deformation spheres S(n) of • S given by the maps Ψ (n) = (U (n) , S (n) ) :

• S -→ S(n) and the corresponding transition functions (f (n) , f (n) , λ (n) ). The iteration procedure for the quintets

Q (n) = (U (n) , S (n) , f (n) , f (n) , λ (n)
), starting with the trivial quintet Q (0) corresponding to the zero deformation, is described in section 9.4.3. The main steps in the proof are as follows.

1. Given the triplet (f (n) , f (n) , λ (n) ) the pair (U (n) , S (n) ) defines the deformation sphere S(n) and the corresponding pull back map # n :

• S -→ S(n) according to the equation (3.7.22).

2. Given the pair Ψ (n) = (U (n) , S (n) ) and the deformation sphere S(n) we define the triplet (f (n+1) , f (n+1) , λ (n+1) ) by solving the corresponding elliptic system

D Ψ(n) F (n+1) = B(Ψ (n) )
This step is based on the crucial apriori estimates of section 9.4.1.

3. Given the new pair (f (n+1) , f (n+1) ) we make use of the equations (3.7.22) to find a unique new map (U (n+1) , S (n+1) ) and thus the new deformation sphere S(n + 1).

4. The convergence of the iterates Q (n) , described in section 9.4.5 in the boundedness Proposition 9.4.11 and the contraction Proposition 9.4.12. The latter requires us to carefully compare the iterates Q (n) , Q (n+1) by pulling them back to

• S. One has to be particularly careful with the behavior of the iterates on the axis of symmetry. Theorem GSMS-II, which is an easy consequence of Theorem GSMS-I is proved in section 9.7 and the transformation formulas which relate S β S e Φ to Λ = S f e Φ and S e S θ (κ S )e Φ
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167 to Λ = S f e Φ . One can show that there exist choices of Λ, Λ such that S β S e Φ = S e S θ (κ S )e Φ = 0.

Sketch of the proof of Theorem GCMH

The proof of Theorem GCMH makes use of Theorem GCMS-I to construct Σ 0 as a union of GCMS spheres.

Step 1. Theorem GCMS-I allows to construct, for every value of the parameters (u, s) in R (i.e. such that the background spheres S(u, s) ⊂ R) and every real numbers (Λ, Λ), a unique GCM sphere S[u, s, Λ, Λ], as a Z-polarized deformation of S(u, s). In particular (3.7.24) and (3.7.25) are verified and

S 0 = S 0 [ • u, • s, Λ 0 , Λ 0 ].
Step 2. We look for functions Ψ(s), Λ(s), Λ(s) such that 1. We have,

Ψ( • s) = • u, Λ( • s) = Λ 0 , Λ( • s) = Λ 0 .
2. The resulting hypersurface Σ 0 = ∪ s S[Ψ(s), s, Λ(s), Λ(s)] verifies

u S + r S = c Σ 0 , along Σ 0 .
3. The additional GCM conditions (3.7.32) and (3.7.34) of Theorem GCMH are verified.

These conditions lead to a first order differential system for Ψ(s), Λ(s), Λ(s), with prescribed initial conditions at

• s which allows us to determine the desired surface. The proof is given in detail in section 9.8.

Overview of the proof of Theorem M0-M8

In this section, we provide a brief overview of the proof of Theorem M0-M8. In addition to the null frame adapted to the outgoing foliation of (ext) M and to the null frame adapted to the ingoing foliation of (int) M, we have also introduced 2 global frames on M = (int) M∪ (ext) M as well as associated scalars r and m in section 3.5. Unless otherwise specified, when we discuss a particular spacetime region, i.e. (ext) M, (int) M or M, it should be understood that the frame as well as r and m are the ones corresponding to that region. Recall that ν = e 3 + a * e 4 is the unique tangent vectorfield to Σ * which is orthogonal to e θ and normalized by g(ν, e 4 ) = -2. Using the null structure equation for e 3 (κ) and e 3 (β), as well as e 4 (κ) and e 4 (β), we obtain transport equations along Σ * in the ν direction for S e θ (κ)e Φ and S βe Φ = 0.

Integrating these transport equations in ν, we propagate the control on S * to Σ * . In particular, we obtain the following estimates on

S 1 = Σ * ∩ C 1 , S 1 e θ (κ)e Φ + r S 1 βe Φ 2 + r 0 , (3.8.1) 
where we used in the last inequality the dominance condition of r on Σ * , see (3.3.4).

Step 2. We consider the transition functions (f, f , λ) from the frame of the initial data layer to the frame of (ext) M. Since

• S 1 is a sphere of (ext) M in the initial data layer,

• S 1 is a sphere of the GCM hypersurface Σ * ,

• the estimate (3.8.1) holds on S 1 , we can invoke a corollary of the GCM procedure of section 3.7.4 to obtain a first improved bound for (f, f , λ) on S 1 with O( 0 ) smallness constant. After further improvements, leading in particular to a r -1 gain for f compared to f and λ, this ultimately leads to sup See also Remark 4.1.5 for a heuristic explanation of this a priori anomalous behavior.

S 1 r|d ≤k large +4 f | + |d ≤k large +4 (f , log λ)| + |m -m 0 | 0 . ( 3 

Discussion of Theorem M1

Here are the main steps in the proof of Theorem M1.

Step 1. Consider the global frame on M constructed in Proposition 3.5.5 and the definition of q on M with respect to that frame, see section 2.3.3 for the definition of q with respect to any null frame. According to Theorem 2.4.7 we have, where the nonlinear term N = Err[ g q] is a long expression of terms quadratic, or higher order, in Γ, Ř involving various powers of r. Making use of the symbolic notation introduced in definition 2.3.8 we have, see (2.4.8),

Err[ 2 q] = r 2 d ≤2 (Γ g • (α, β)) + e 3 r 3 d ≤2 (Γ g • (α, β)) + d ≤1 (Γ g • q) + l.o.t.
where the terms denoted by l.o.t. are higher order in ( Γ, Ř).

Remark 3.8.2. Recall from Remark 2.4.8 that the above good structure of the error term Err[ 2 q] only holds in a frame for which ξ = 0 for r ≥ 4m 0 and η ∈ Γ g . This is why, in Theorem M1, q is defined relative to the global frame of Proposition 3.5.5, see also Remark 2.4.9.

Step 2. We follow the Dafermos-Rodnianski version of the vector-field method to derive desired decay estimates. We recall that, in the context of a wave equation of the form (Sch) ψ = 0 on Schwarzschild spacetime, their strategy consists in the following:

• Start by deriving Morawetz-energy type estimates for ψ with nondegenerate flux energies and the usual degeneracy of bulk integrals at r = 3m.

• Derive r p weighted estimates for 0 < p < 2 and use them, in conjunction to the Morawetz estimates, to derive decay estimates.

• The decay estimates obtained by using the standard r p weighted approach are too weak to be useful in our nonlinear approach. We improve them by making use of a recent variation of the Dafermos-Rodnianski approach due to Angelopoulos, Aretakis and Gajic [START_REF] Angelopoulos | A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes[END_REF] which is based on first commuting the wave equation is (Sch) ψ = 0 with r 2 (e 4 + r -1 ) and then repeating the process described for the resulting new equation. This procedure allows to derive the improved decay estimates consistent with our decay norms.

• Derive estimates for higher derivatives by commuting with T, r d /, the red-shift vectorfield, and re 4 .

Step 3. The estimates mentioned in step 2 have to be adapted to the case of our equation (3.8.4). There are three main differences to take into account

• The application of the vectorfield method to our context produces various nontrivial commutator terms which have to be absorbed. This is taken care by our bootstrap assumption for Γ, Ř, as well as, in some cases, by integration by parts.

• The presence of the potential V is mostly advantageous but various modifications have to be nevertheless made, especially near the trapping region 22 .

• The presence of the nonlinear term N is the most important complication. The precise null structure of N is essential and various integrations by parts are needed.

• The quadratic terms involving η in N can only be treated provided the definition of q is done with respect to the global frame on M constructed in Proposition 3.5.5, for with η behaves better in powers of r -1 .

Discussion of Theorem M2

Recall from section 2.3.3 that q is defined with respect to a general null frame as follows

q = r 4 e 3 (e 3 (α)) + (2κ -6ω)e 3 (α) + -4e 3 (ω) + 8ω 2 -8ω κ + 1 2 κ 2 α
which yields the following transport equation for α e 3 (e 3 (α)) + (2κ -6ω)e 3 (α) + -4e

3 (ω) + 8ω 2 -8ω κ + 1 2 κ 2 α = q r 4 .
Recall also that q, controlled in Theorem M1, is defined w.r.t. the global frame of Proposition 3.5.5 whose normalization is such that, in particular, ω is a small quantity. Also, since we have

e 3 (r) = r 2 κ + l.o.t.
we infer

e 3 (e 3 (r 2 α)) = q r 2 + l.o.t.
Integrating twice this transport equation from C 1 where we control the initial data -and in particular α -in view of Theorem M0, and using the decay for q provided by Theorem M1, we deduce 23

sup (ext) M r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra |d ≤k small +20 α| 0 , sup (ext) M r 3 (2r + u) 1+δextra log(1 + u) + r 4 (2r + u) 1 2 +δextra |d ≤k small +19 e 3 (α)| 0 .
Now that we control α in the global frame of Proposition 3.5.5, we need to go back to the frame of (ext) M. By invoking the relationships between our various frame of (ext) M, see Proposition 3.5.5 and Proposition 3.4.6, and the transformation formula for α, we infer

(ext) D k small +20 (ext) α 0
and hence the conclusion of Theorem M2.

Discussion of Theorem M3

Here are the main steps in the proof of Theorem M3.

Step 1. To derive decay estimates for α in M, we first recall the following Step 2. Thanks to

• the control in (int) M of the RHS of (3.8.5) which follows from the decay estimates of Theorem M1 for q, as well as the bootstrap assumptions for the quadratic and higher order terms,

• the control of α on C 1 -i.e. of the initial data of (3.8.5) -provided by Theorem M0,

• parabolic estimates for the forward parabolic equation (3.8.5), we obtain the desired decay estimates for α in (int) M.

Step where l.o.t. denotes terms which are quadratic of higher, as well as terms which are linear but display additional decay in r. This is a forward parabolic equation along Σ * . To obtain the desired decay for α along Σ * , one then proceeds as in Step 2, using in addition, for the linear term with extra decay in r, the behavior (3.3.4) of r on Σ * .

Discussion of Theorem M4

Here are the main steps in the proof of Theorem M4.

Step 1. We derive decay estimates for the spacelike GCM hypersurface Σ * . More precisely, thanks to

• the GCM conditions on Σ * κ = 2 r , d / 2 d / 1 κ = 0, d / 2 d / 1 µ = 0, S ηe Φ = 0, S ξe Φ = 0,
• the control of q in (ext) M, established in Theorem M1, and hence in particular on Σ * ,

• the control of α of the outgoing geodesic foliation in (ext) M, established in Theorem M2, and hence in particular on Σ * ,

• the control of α on Σ * , established in Theorem M3,

• the dominance condition (3.3.4) of r on Σ * r Σ * ≥ -2 3 0 u 1+δ dec ,
• the identity (2.3.11) relating q to derivatives of ρ, i.e.

q = r 4 d / 2 d / 1 ρ + 3 4 ρκϑ + 3 4 ρκϑ + • • • ,
• elliptic estimates for Hodge operators on the 2-spheres foliating Σ * , we infer the control with improved decay of all Ricci and curvature components on the spacelike hypersurface Σ * .

Step 2. We derive decay estimates for the outgoing geodesic foliation of (ext) M. More precisely:

• First, we propagate the estimates involving only u -1 2 -δ dec decay in u from Σ * to (ext) M.

• We then focus on the harder to recover estimates, i.e. the ones involving u -1-δ dec decay in u. We proceed as follows.

-We first propagate the main GCM quantities κ, μ, and a renormalized quantity involving κ (see the quantity Ξ in Lemma 7.5.2) from Σ * to (ext) M.

-We then recover the estimates involving u -1-δ dec decay in u on T . To this end, we use that we control the main GCM quantities, α from Theorem M3 (since T belongs both to (ext) M and (int) M), q and α from Theorem M1-M2, and the estimates are then derived somewhat in the spirit of the ones on Σ * , in particular by relying on elliptic estimates for Hodge operators on the 2-spheres foliating T .
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-To recover the remaining estimates in (ext) M involving u -1-δ dec decay in u, we integrate the transport equations in e 4 forward from T , which concludes the proof of Theorem M4.

Discussion of Theorem M5

Here are the main steps in the proof of Theorem M5.

Step 1. We first derive decay estimates for the ingoing geodesic foliation of (int) M on the timelike hyper surface T . More precisely, thanks to

• the fact that the null frame of (int) M is defined on T as a simple conformal renormalization of the null frame of (ext) M in view of its initialization, see section 3.1.2,

• the control of the outgoing geodesic foliation of (ext) M on T obtained in Theorem M4, this allows us to transfer the decay estimates for ( (ext) Ř, (ext) Γ) to ( (int) Ř, (int) Γ) on T .

Step 2. We derive on (int) M decay estimates for the ingoing geodesic foliation of (int) M.

More precisely, thanks to

• the improve decay estimates for α in (int) M derived in Theorem M3,

• the improved decay estimates for Γ and Ř on T derived in the Step 1,

• the null structure equations and Bianchi identities, we infer O( 0 u -1-δ dec ) decay estimates for Γ and Ř corresponding to the ingoing geodesic foliation of (int) M which concludes the proof of Theorem M5.

Discussion of Theorem M6

Step 1. Using (a) The control of the initial data layer,
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(b) Theorem GCMS-II of section 3.7.4, (c) Theorem GCMH of section 3.7.4, we produce a smooth hypersurface Σ * in the initial data layer starting from a GCM sphere S * , and satisfying all the required properties for the future spacelike boundary of a GCM admissible spacetime, according to item 3 of definition 3.1.2.

Step 2. We then consider the outgoing geodesic foliation initialized on Σ * which foliates the region we denote (ext) M, to the past of Σ * , and included in the outgoing part (ext) L 0 of the initial data layer. In order to control it, we consider the transition functions (f, f , λ) from the background frame of the initial data layer to the frame of (ext) M. These functions satisfy transport equations in e 4 with right-hand side depending on (f, f , λ) and the Ricci coefficients of the background foliation. Integrating the transport equations from Σ * , where (f, f , λ) are under control as a by product of the use of Theorem GCMH in Step 1, we obtain the control of (f, f , λ) in (ext) M. Using the transformation formulas of Proposition 2.3.4, and using the control of the initial data layer, we then infer the desired control (i.e. with 0 smallness constant and suitable r-weights) for the Ricci coefficients and curvature components of the foliation of (ext) M.

Step 3. (ext) M terminates on a timelike hypersurface T of constant area radius 24 . We then consider the ingoing geodesic foliation initialized on T according to item 4 of definition 3.1.2, which foliates the region we denote (int) M, included in the ingoing part (int) L 0 of the initial data layer. Proceeding as in Step 2, relying on transport equations in e 3 instead of e 4 , we then derive the desired control (i.e. with 0 smallness constant) for the Ricci coefficients and curvature components of the foliation of (int) M, thus concluding the proof of Theorem M6.

Discussion of Theorem M7

From the assumptions of Theorem M7 we are given a GCM admissible spacetime M = M(u * ) ∈ ℵ(u * ) verifying the following improved bounds, for a universal constant C > 0,

N (Dec) k small +5 (M) ≤ C 0
provided by Theorems M1-M5. We then proceed as follows.
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Step 1. We extend M by a local existence argument, to a strictly larger spacetime M (extend) , with a naturally extended foliation and the following slightly increased bounds

N (Dec) k small +5 (M (extend) ) ≤ 2C 0 .
but which may not verify our admissibility criteria.

Step 2. Using (a) The control of the extended spacetime M (extend) , (b) Theorem GCMS-II of section 3.7.4, (c) Theorem GCMH of section 3.7.4, we produce a small piece of smooth GCM hypersurface Σ * in M (extend) \ M starting from a GCM sphere S * .

Step 3. By a continuity argument based on a priori estimates, we extend Σ * all the way to the initial data layer, while ensuring that it remains in M (extend) \ M and satisfying all the required properties for the future spacelike boundary of a GCM admissible spacetime, according to item 3 of definition 3.1.2.

Step 4. We then consider the outgoing geodesic foliation initialized on Σ * which foliates the region we denote (ext) M, included in the outgoing part of M (extend) . In order to control it, we consider the transition functions (f, f , λ) from the background frame of the initial data layer to the frame of (ext) M. These functions satisfy transport equations in e 4 with right-hand side depending on (f, f , λ) and the Ricci coefficients of the background foliation. Integrating the transport equations from Σ * , where (f, f , λ) are under control as a by product of the use of Theorem GCMH in Step 2, we obtain the control of (f, f , λ) in (ext) M. Using the transformation formulas of Proposition 2.3.4, and using the control of the initial data layer, we then derive the desired control (i.e. with 0 smallness constant and suitable u and r weights) for the Ricci coefficients and curvature components of the foliation of (ext) M.

Step 5. (ext) M terminates on a timelike hypersurface T of constant area radius 25 . We then consider the ingoing geodesic foliation initialized on T according to item 4 of definition 3.1.2, which foliates the region we denote (int) M, included in the ingoing part of M (extend) . Proceeding as in Step 4, relying on transport equations in e 3 instead of e 4 , we then derive the desired control (i.e. with 0 smallness constant and suitable u-weights) for the Ricci coefficients and curvature components of the foliation of (int) M, thus concluding the proof of Theorem M7.

3.8.9 Discussion of Theorem M8

So far, we have only improved our bootstrap assumptions on decay estimates. We now improve our bootstrap assumptions on energies and weighted energies for Ř and Γ relying on an iterative procedure recovering derivatives one by one26 .

Step 0. Let I m 0 ,δ H the interval of R defined by Step 1. The O( 0 ) decay estimates derived in Theorem M7 imply in particular the following (non sharp) consequence

I m 0 ,δ H := 2m 0 1 + δ H 2 , 2m 0 1 + 3δ H 2 . ( 3 
N (En) k small 0 ,
where we recall27 

N (En) k = (ext) R k [ Ř] + (ext) G k [ Γ] + (int) R k [ Ř] + (int) G k [ Γ].
This allows us to initialize our iteration scheme in the next step.

Step 2. Next, for J such that k small ≤ J ≤ k large -1, consider the iteration assumption

N (En) J B [J], (3.8.10) 
where

B [J] := J j=k small -2 ( 0 ) (j) B 1-(j) + (J) 0 B, (j) 
:= 2 k small -2-j , (3.8.11)

B :=   (ext) M r∈I m 0 ,δ H |d ≤k large Ř| 2   1 2
.

(3.8.12)

In view of Step 1, (3.8.10) holds for J = k small . From now on, we assume that (3.8.10) holds for J such that k small ≤ J ≤ k large -2, and our goal is to show that this also holds for J + 1 derivatives.

Step 3. Using the Teukolsky wave equations for α and α, as well as a wave equation for ρ, see Proposition 8.4.1, we derive Morawetz type estimates for J + 1 derivatives of these quantities in terms of O( B [J] + 0 N (En) J+1 ).

Step 4. Relying on Bianchi identities, we also derive Morawetz type estimates for J + 1 derivatives for β and β. As a consequence, we obtain Morawetz type estimates for J + 1 derivatives of all curvature components in terms of O( B [J] + 0 N (En) J+1 ).

Step 5. As a consequence of Step 4, we immediately obtain, for any r 0 ≥ 4m 0 ,

(int) R J+1 [ Ř] + (ext) R J+1 [ Ř] ≤ (ext) R ≥r 0 J+1 [ Ř] + O(r 10 0 ( B [J] + 0 N (En) J+1 
)).

Step 6. Relying on the Bianchi identities, we derive r p -weighted estimates for J + 1 derivatives of curvature on r ≥ r 0 with r 0 ≥ 4m 0 . We obtain

(ext) R ≥r 0 J+1 [ Ř] 1 r δ B 0 (ext) G ≥r 0 k [ Γ] + r 10 0 ( B [J] + 0 N (En) J+1 ).
Step 7. Next, we estimate the Ricci coefficients of (ext) M. To control them, we rely on the null structure equations in (ext) M. Using the null structure equations in (ext) M and the GCM conditions on Σ * , we derive the following weighted estimates for J + 1 derivatives of the Ricci coefficients

(ext) G J+1 [ Γ] (ext) R J+1 [ Ř] + B [J] + 0 N (En) J+1 .
Together with the estimates of Step 5 and Step 6, we infer for a large enough choice of r 0

(ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + (ext) R J+1 [ Ř] B [J] + 0 N (En)
J+1 .

Step 8. Next, we estimate the Ricci coefficients of (int) M. Using the information on T induced by Step 7 and the null structure equations in (int) M, we derive

(int) G J+1 [ Γ] (int) R J+1 [ Ř] + B [J] + 0 N (En) J+1 + T |d J+1 ( (ext) Ř)| 2 1 2
.

We need to deal with the last term. Relying on a trace theorem in the spacetime region (ext) M(r ∈ I m 0 ,δ H ), and the fact that J + 2 ≤ k large , we obtain

T |d J+1 ( (ext) Ř)| 2 1 2   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 
( (ext) R J+1 [ Ř]) 1 2 + (ext) R J+1 [ Ř].
Step 9. The last estimate of Step 7 and the 2 estimates of Step 8 yield, for 0 > 0 small enough,

N (En) J+1 B [J] +   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 B [J] + 0 N (En) J+1 1 2 .
In view of the definition (3.8.11) of B [J], we infer that

N (En) J+1 B [J + 1]
which is the iteration assumption (3.8.10) for J + 1 derivatives. We deduce that (3.8.10) holds for all J ≤ k large -1, and hence

N (En) k large -1 B [k large -1].

CHAPTER 3. MAIN THEOREM

Step 10. Relying on the conclusion of Step 9, and arguing as in Step 3 to Step 7, we obtain the conclusion of Step 7 for J = k large -1, i.e.

(ext) G k large [ Γ] + (int) R k large [ Ř] + (ext) R k large [ Ř] B [k large -1] + 0 N (En) k large .
We then infer that

B [k large -1] 0 + 0 N (En) k large
which yields, together with the last estimate of Step 9,

(ext) G k large [ Γ] + (int) R k large [ Ř] + (ext) R k large [ Ř] 0 + 0 N (En) k large .
Step 11. It remains to recover (int) G k large [ Γ]. Arguing as for the first estimate of Step 8 with J = k large -1, we have

(int) G k large [ Γ] (int) R k large [ Ř] + B [k large -1] + 0 N (En) k large + T |d k large ( (ext) Ř)| 2 1 2
.

Thanks to the outcome of Step 10, we deduce that

(int) G k large [ Γ] 0 + 0 N (En) k large + T |d k large ( (ext) Ř)| 2 1 2
and hence, for 0 > 0 small enough, using again the last estimate of Step 10,

N (En) k large 0 + T |d k large ( (ext) Ř)| 2 1 2
.

It remains to estimate the last term of the RHS of the previous inequality. It is at this stage that we use the choice of r T , or rather its consequence (3.8.9), which implies

T |d k large ( (ext) Ř)| 2 1 2 0 + 0 N (En)
k large so that we finally obtain, for 0 > 0 small enough,

N (En) k large 0
which concludes the proof of Theorem M8. According to the statement of Theorem M0 we consider given the initial layer L 0 = (ext) L 0 ∪ (int) L 0 as defined in Definition 3.1.1. We also assume that the initial layer norm verifies sup

k≤k large +5 I k 0 (4.1.1)
where

I k = (ext) I k + (int) I k + I k and, (ext) I 0 = sup (ext) L 0 r 7 2 +δ B (|α| + |β|) + r 3 ρ + 2m 0 r 3 + r 2 |β| + r|α| + sup (ext) L 0 r 2 |ϑ| + κ - 2 r + |ζ| + κ + 2 1 -2m 0 r r + sup (ext) L 0 r |ϑ| + ω - m 0 r 2 + |ξ| + sup (ext) L 0( (ext) r 0 ≥4m 0) r γ r 2 -1 + r|b| + |Ω + Υ| + |ς -1| + r e Φ r sin θ -1 , 184 CHAPTER 4. CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS (int) I 0 = sup (int) L 0 |α| + |β| + ρ + 2m 0 r 3 + |β| + |α| + sup (int) L 0 |ϑ| + κ - 2 1 -2m 0 r r + |ζ| + κ + 2 r + |ϑ| + ω + m 0 r 2 + |ξ| , I 0 = sup (int) L 0 ∩ (ext) L 0 |f | + |f | + | log(λ -1 0 λ)| , λ 0 = (ext) λ 0 = 1 - 2m 0 (ext) r L 0 ,
with I k the corresponding higher derivative norms obtained by replacing each component by d ≤k of it. In the definition of I 0 above, (f, f , λ) denote the transition functions of Lemma 2.3.1 from the frame of the outgoing part (ext) L 0 of the initial data layer to the frame of the ingoing part (int) L 0 of the initial data layer in the region (int) L 0 ∩ (ext) L 0 .

We divide the proof of Theorem M0 in the following steps.

Step 1. We have the following lemma. 

βe Φ = - 1 2 S d / 1 κe Φ - 1 2 S ζκe Φ + 1 2 S ϑ ζe Φ , S ζe Φ = r S βe Φ + r 2 S ϑ ζe Φ .
Together with the bootstrap assumptions on decay for k = 0, 1 derivatives in Step 3. Let ν * the unique tangent vector to Σ * which can be written as

ν * = e 3 + ae 4
where a is a scalar function on Σ * . Recall that there exists a constant c * such that Σ * = {u + r = c * }. We infer ν * (u + r) = 0 and hence 0 = e 3 (u + r)

+ ae 4 (u + r) = 2 ς + r 2 (κ + A) + a r 2 κ which yields a = - 2 ς + r 2 (κ + A) r 2 κ
.

In view of the GCM condition on κ and the definition of the Hawking mass m, we have on

Σ * κ = 2 r , κ = - 2Υ r
and hence, we have on

Σ * a = - 2 ς + Υ - r 2 A.
The bootstrap assumptions on decay for k = 0 derivatives in (ext) are the bootstrap assumption BA-D on decay for k = 0, 1 derivatives. Indeed, to obtain (4.1.5), we have only used, in Steps 1-4, the bootstrap assumption BA-D on decay for k = 0, 1 derivatives, while, from now on, we will only rely on (4.1.5) and the assumptions (4.1.1) on the initial data layer. This observation will allow us to use the conclusions of Theorem M0, not only for the bootstrap spacetime M in Theorem M1-M5, but also for the extended spacetime in the proof of Theorem M8, where the only assumptions are the one on decay (which are established for the extended spacetime in Theorem M7).

Step 5. On the sphere S 1 = Σ * ∩ C 1 of Σ * , we have in view of the GCM conditions of Σ * and (4.1.5)

κ = 2 r , d / 2 d / 1 κ = 0, d / 2 d / 1 µ = 0, S 1 e θ (κ)e Φ + r S 1 βe Φ 0 . (4.1.6)
We consider the transition functions (f, f , λ) from the frame of the outgoing part (ext) L 0 of the initial data layer to the frame of (ext) M. We assume the following bootstrap assumptions along 

C 1 sup S⊂C 1 f h 4 (S) + r -1 (f , log(λ)) h 4 (S) ≤ . ( 4 
( (ext) r) -1 | (ext) r -(ext) r L 0 | + |u -u L 0 | + ( (ext) r) -1 | (ext) s -(ext) s L 0 | . (4.1.8)
In particular, since u = 1 on S 1 , and (ext) r = (ext) s on Σ * verifies the dominant condition in r, we infer sup

S 1 |u L 0 -1| , inf S 1 (ext) s L 0 ≥ 1 2 -2 3 0 .
Since (ext) L 0 contains the region {4m 0 ≤ (ext) s L 0 < +∞} ∪ {0 ≤ u L 0 ≤ 2}, we infer that the sphere S 1 is included in (ext) L 0 .

We will not only improve the bootstrap assumption (4.1.7), but also gain derivatives iteratively. To this end, for 4 ≤ j ≤ k large + 5, we consider the following iteration assumption

f h j (S 1 ) + r -1 (f , log(λ)) h j (S 1 ) ≤ . (4.1.9)
Note that (4.1.9) holds true for j = 4 in view of (4.1.7), and our goal is to show that (4.1.9) holds with j replaced by j + 1.

Since

• S 1 is a sphere of (ext) M in (ext) L 0 ,

• S 1 is a sphere of the GCM hypersurface Σ * ,

• the estimate (4.1.6) holds on S 1 ,
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• the estimate (4.1.9) holds on S 1 , we can invoke Corollary 9.7.3 with the choice • =

• δ = 0 , δ 1 = , s max = j, and with the background foliation being the one of the outgoing part (ext) L 0 of the initial data layer. We obtain

r -1 (f, f , λ -λ S 1 ) h j+1 (S 1 ) 0 (4.1.10)
and [START_REF] Dafermos | The mathematical analysis of black holes in general relativity[END_REF]. This is due to the fact that, in the change of frame formulas for the curvature components, λ and f are multiplied by terms that decay faster in r.

|λ S 1 -1| 0 + r -1 sup S 1 (ext) r -(ext) r L 0 . ( 4 
Remark 4.1.5. In view of (4.1.8), while |uu L 0 | on S 1 , we have |ss L 0 | r on S 1 . This, as well as the anomalous behavior of f mentioned above, shows that the sphere S 1 is a large deformation, along the outgoing direction, of spheres of the initial data layer (ext) L 0 . This reflects the fact that S 1 (and Σ * ) captures the center of mass frame of the limiting Schwarzschild solution, while the initial data layer foliation captures the center of mass frame of the initial Schwarzschild solution. The behavior of ss L 0 , as well as the one of f , is consistent with the presence of a Lorentz boost between these two center of mass frames.

From now on, we denote the frame, Ricci coefficients and curvature components associated to the frame of (ext) M with a prime, while the frame, Ricci coefficients and curvature components associated to the frame of (ext) L 0 are un-primed. From the following transformation formula of Proposition 2.3.4, 

β = λ β + 3 2 ρf + 1 2 f α + l.o.t
ρ = ρ + 3 2 ρf f + f β + f β + l.o.t.
Differentiating with respect to e θ , and using the decomposition of e θ , we infer

e θ (ρ ) = 1 + 1 2 f f e θ + 1 2 f e 4 + 1 2 f 1 + 1 4 f f e 3 ρ + e θ 3 2 ρf f + f β + f β + l.o.t. = e θ (ρ) + 1 2 f e 4 (ρ) + 1 2 f e 3 (ρ) + e θ 3 2 ρf f + f β + f β + l.o.t.
Together with the estimate (4.1.10) for f and f to estimate the linear terms f e 4 (ρ) and f e 3 (ρ), the estimate (4.1.9) for (f, f , λ) to estimate the other terms, and the estimates (4.1.1) for the curvature components and the Ricci coefficients of the outgoing part (ext) L 0 of the initial data layer, we have, using also the behavior (3.3.4) of r on Σ * and the fact that S 1 ⊂ Σ * , as well as an elliptic estimate and the fact that j ≤ k large + 5, max k≤j-1

r 2 d / k ρ L 2 (S 1 ) 0 . (4.1.13)
Step 6. Recall the definition of the mass aspect function

µ µ = -d / 1 ζ -ρ + 1 4 ϑ ϑ .
Together with the GCM conditions d / 2 d / 1 µ = 0 on Σ * , and the fact that S 1 ⊂ Σ * , we infer

d / 2 d / 1 d / 1 ζ = -d / 2 d / 1 ρ + 1 4 d / 2 d / 1 (ϑ ϑ ).
In view of the identity d

/ 1 d / 1 = d / 2 d / 2 + 2K , we infer ( d / 2 d / 2 + 2K ) d / 2 ζ = -d / 2 d / 1 ρ + 1 4 d / 2 d / 1 (ϑ ϑ ) + 2e θ (K )ζ .
Using the estimate for ρ of Step 5 and an elliptic estimate, max k≤j-2

r 2 d / k d / 2 ζ L 2 (S 1 ) 0 . (4.1.14)
Note that the quadratic terms involving ϑ ϑ and e θ (K )ζ are estimated using the transformation formulas3 , the estimates (4.1.9) for (f, f , λ), and the estimates (4.1.1) for the curvature components and the Ricci coefficients of the outgoing part (ext) L 0 of the initial data layer.

Step 7. Recall Codazzi for ϑ

d / 2 ϑ = -2β -d / 1 κ + ζ κ -ϑ ζ .
We differentiate w.r.t. d / 2 and use the GCM condition κ = 2/r which holds on Σ * and

S 1 ⊂ Σ * to deduce d / 2 d / 2 ϑ = -2 d / 2 β + κ d / 2 ζ -d / 2 (ϑ ζ ).
Together with the estimate of Step 5 for β , the estimate of Step 6 for d / 2 ζ , dealing with the quadratic terms as above, and using an elliptic estimate, we infer,

max k≤j r d / k ϑ L 2 (S 1 ) 0 .
Next, recall the transformation formula

ϑ = λ ϑ -d / 2 (f ) + f (ζ + η) + f ξ + 1 4 f f κ + f f ω -f 2 ω + l.o.t. .
Together with the above estimate for ϑ , the estimate (4.1.9) for (f, f , λ), and the estimates (4.1.1) for the Ricci coefficients of the outgoing part (ext) L 0 of the initial data layer, we infer

max k≤j r d / 2 ( d / k f ) L 2 (S 1 ) 0 + 2 0 .
Together with a Poincaré inequality, we infer max 

k≤j+1 d / k f L 2 (S 1 ) 0 + r -2 S 1 f e Φ . ( 4 
= S - 1 2 κ β + ζ α - 1 2 ϑ β e Φ .
Transporting along C 1 from S 1 , using the control of the = 1 mode of β in (4.1.6) on S 1 , and using the bootstrap assumptions on (ext) M, we infer sup

S⊂C 1 r S β e Φ 0 + 2 0 .
In particular, consider the sphere

S 4m 0 = C 1 ∩ {r = 4m 0 }. Then S 4m 0 β e Φ 0 .
Together with the transformation formula f e Φ 0 + 2 0 .

β = λ β + 3 2 ρf + 1 2 f α + l.o.t
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C 1 λ -1 e 4 (r f ) = E 1 (f, Γ).
We deduce from Corollary 2.2.10 that

e 4 r -2 S f e Φ = r -2 S e 4 (f ) + 1 2 κ + κ - 1 2 ϑ f e Φ = r -2 S r -1 e 4 (r f ) + 3 2 κ - 1 2 ϑ f e Φ = r -2 S r -1 λ E 1 (f, Γ) + 3 2 κ - 1 2 ϑ f e Φ .
In view of the form of E 1 in Corollary 2.3.7, the bootstrap assumption (4.1.7) for f , and the estimates (4.1.1) for the Ricci coefficients of the outgoing part (ext) L 0 of the initial data layer, we have

r 2 |E 1 (f, Γ)| 0 + 2 0 on C 1 .
We deduce

e 4 r -2 S f e Φ 0 r 2 + sup S⊂C 1 r -1 κ L 2 (S) + ϑ L 2 (S) f L 2 (S) .
Using the bootstrap assumption (4.1.7) for f , and the bootstrap assumption on decay on (ext) M for κ and ϑ , we infer

e 4 r -2 S f e Φ 0 + 2 r 2 0 r 2 .
Integrating forward from r = 4m 0 , and using the above estimate for the = 1 mode of f on S 4m 0 , we obtain sup

S⊂C 1 r -2 S f e Φ 0 .
Together with the estimate for d / k f of Step 7, and since

S 1 ⊂ C 1 , we deduce max k≤j+1 d / k f L 2 (S 1 ) 0 .
Together with (4.1.10), we infer

f h j+1 (S 1 ) + r -1 (f , λ -λ S 1 ) h j+1 (S 1 ) 0 .
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In particular, the above estimate for (f, f ) allows to use Lemma 9.2.10 with δ 1 = 0 which yields sup

S 1 r r -1 0 .
Together with (4.1.11), we infer

f h j+1 (S 1 ) + r -1 (f , log λ) h j+1 (S 1 ) 0 .
This implies the iteration assumption (4.1.9) for j + 1, for all 4 ≤ j ≤ k large + 5. Thus, we have obtained

f h k large +6 (S 1 ) + r -1 (f , log λ) h k large +6 (S 1 ) 0 .
In view of the above estimate for (f, f , λ), and since S 1 ⊂ Σ * , we may apply Corollary 9.8.2 with

• δ = 0 and s max = k large + 5 which yields

d ≤k large +6 f L 2 (S 1 ) + r -1 d ≤k large +6 (f , log λ) L 2 (S 1 ) + d ≤k large +5 e 3 (f , log λ) L 2 (S 1 ) 0 .
The above control of (f, f ), together with Lemma 9.2.10 for δ 1 = 0 , and Corollary 9.2.14 with

• = 0 , implies sup S 1 m m 0 -1 + r r -1 0 .
We have thus obtained on S 1

d ≤k large +6 f L 2 (S 1 ) + r -1 d ≤k large +6 (f , log(λ)) L 2 (S 1 ) (4.1.16) + d ≤k large +5 e 3 (f , log(λ)) L 2 (S 1 ) + sup S 1 m m 0 -1 + r r -1 0 .
Finally, we will also need the following estimates on S 1

r d ≤k large +5 κ - 2 r , κ , ϑ L 2 (S 1 ) + r -1 d ≤k large +5 r r -1 L 2 (S 1 ) 0 . (4.1.17)
The estimates for κ in (4.1.17) follow from the GCM condition on κ , as well as Raychadhuri for transversal derivatives. The estimate for ϑ in (4.1.17) follows from the transformation formula, the control (4.1.16) of (f, f , λ), and the control of the initial data layer. We obtain similarly the control of ξ , ω and η on S 1 , which in turn yields the control of Ω and ς on S 1 in view of Lemma 2.2.6, and finally the control of r r in (4.1.17) relying on (4.1.16) and (2.2.21).

Step 9. Recall from Corollary 2.3.7 that (f, log(λ)) satisfy the following transport equations along

C 1 λ -1 e 4 (rf ) = E 1 (f, Γ), λ -1 e 4 (log(λ)) = E 2 (f, Γ),
where, in view of the form of E 1 , E 2 in Corollary 2.3.7 and the estimates (4.1.1) for the Ricci coefficients of the outgoing part (ext) L 0 of the initial data layer, we have 

|d k E 1 (f, Γ)| + |d k E 2 (f, Γ)| 0 r 2 + |d ≤k f | 2 for k ≤ k large + 5 on C 1 . Next,
|d k [T, λ -1 e 4 ]h| + |d k [ d /, λ -1 e 4 ]h| 0 r 2 |d ≤k+1 h| + 1 r |d ≤k (f dh)| + 1 r |d ≤k (hdf )| + |d ≤k (f 2 dh)| + |d ≤k (hf df )|.
By commuting first the transport equations in the direction λ -1 e 4 with (T, d /) k , and by using these transport equations to recover the e 4 derivatives, we deduce

λ -1 e 4 (rd k f ) = E 1,k (f, Γ), λ -1 e 4 (d k log(λ)) = E 2,k (f, Γ),
where we have

|E 1,k (f, Γ)| + |E 2,k (f, Γ)| 0 r 2 + |d ≤k f | 2 for k ≤ k large + 5 on C 1 .
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This allows us to propagate the estimates for (f, λ) in (4.1.10) on S 1 to any sphere on C 1 , and hence sup

S⊂C 1 d ≤k large +5 f L 2 (S) + r -1 d ≤k large +5 log λ L 2 (S) 0 . (4.1.18)
Step 10. Our next goal is to control f along C 1 . We cannot proceed along the same lines as the control of (f, λ) in Step 9. Indeed, we cannot rely on the last transport equation along λ -1 e 4 of Corollary 2.3.7, as it is not consistent with the control of f on S 1 derived in Step 8. Instead, we first control α , κ and ϑ .

Recall the following transformation formula

α = λ 2 α + 2f β + 3 2 f 2 ρ + l.o.t.
which does not depend on f . Together with the control of (f, λ) of Step 9 and the control of the initial data layer, we infer sup

S⊂C 1 r 5 2 +δ B d ≤k large +5 α L 2 (S) 0 .
Next, recall

e 4 κ - 2 r + 1 2 κ κ - 2 r = - 1 4 ϑ 2 + 1 2 κ 2 , e 4 (κ ) + κ κ = - 1 2 (κ ) 2 - 1 2 (κ ) 2 - 1 2 (ϑ 2 -ϑ 2 ),
and

e 4 (ϑ ) + κ ϑ = -2α .
Proceeding as in Step 9, we commute first these transport equations with (T, d /) k , and use the transport equations to recover the e 4 derivatives. By integrating the resulting transport equations from S 1 where κ , κ and ϑ are under control in view of (4.1.17), and using the above control of α , we infer sup

S⊂C 1 r d ≤k large +5 κ - 2 r , κ , ϑ L 2 (S) 0 . (4.1.19)
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λ -1 e 4 log r r = λ -1 e 4 (r ) r - e 4 (r) r - f 2 4 e 3 (r) r = 1 2 λ -1 κ -κ - λ -1 2 κ + 1 2 κ - rf 2 8 (κ + A) = 1 2 d / 1 (f ) + Err(κ, κ ) - λ -1 2 κ + 1 2 κ - rf 2 8 (κ + A)
where we have also used the change of frame formula for κ . Proceeding as in Step 9, we commute first these transport equations with (T, d /) k , and use the transport equations to recover the e 4 derivatives. By integrating the resulting transport equations from S 1 where r r is under control in view of (4.1.17), and using the estimate4 of Step 9 for f and λ, the estimate of Step 10 for κ , and the estimate for the initial data foliation layer on (ext) L 0 , we infer sup

S⊂C 1 r -1 d ≤k large +5 log r r L 2 (S) 0 . (4.1.20)
Step 11.

Recall Codazzi for ϑ d / 2 ϑ = -2β -d / 1 κ + ζ κ -ϑ ζ .
This yields

ζ = r 2 2β + d / 2 ϑ + d / 1 κ + ϑ ζ -ζ κ - 2 r .
Together with the control of κ , ϑ and r of Step 10, we infer sup

S⊂C 1 d ≤k large +4 ζ L 2 (S) sup S⊂C 1 r d ≤k large +4 β L 2 (S) + 0 + 0 sup S⊂C 1 d ≤k large +4 ζ L 2 (S)
and hence, for 0 small enough, sup

S⊂C 1 d ≤k large +4 ζ L 2 (S) sup S⊂C 1 r d ≤k large +4 β L 2 (S) + 0 .
Recall the transformation formulas

β = λ β + 3 2 ρf + 1 2 f α + l.o.t. , ζ = ζ -e θ (log(λ)) + 1 4 (-f κ + f κ) + f ω -f ω + 1 2 f e θ (f ) + 1 4 (-f ϑ + f ϑ) + l.o.t.
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Together with the control of f and λ from Step 9, the control of the initial data foliation layer on (ext) L 0 , and the above control of ζ , we infer sup

S⊂C 1 r -1 d ≤k large +4 f L 2 (S) sup S⊂C 1 d ≤k large +4 ζ L 2 (S) + 0 sup S⊂C 1 r d ≤k large +4 β L 2 (S) + 0 0 + 0 sup S⊂C 1 r -1 d ≤k large +4 f L 2 (S)
and hence, for 0 small enough, sup

S⊂C 1 r -1 d ≤k large +4 f L 2 (S) 0 .
Together with the control of f and λ from Step 9, we have in particular sup

S⊂C 1 d ≤k large +4 f L 2 (S) + r -1 d ≤k large +4 (log(λ), f ) L 2 (S) 0 .
Note that this concludes the improvement of the bootstrap assumptions (4.1.7) on (f, f , λ). Also, using Sobolev, we infer sup

C 1 r|d ≤k large +2 f | + |d ≤k large +2 (f , log(λ))| 0 . (4.1.21)
Step 12. In view of (4.1.21), the change of frame formulas of Proposition 2.3.4, and the estimates (4.1.1) for the curvature components of the outgoing part (ext) L 0 of the initial data layer, we obtain max

0≤k≤k large sup C 1 r 7 2 +δ B |d k (ext) α| + |d k (ext) β| + r 9 2 +δ B |d k-1 e 3 ( (ext) α)| (4.1.22) + sup C 1 r 3 d k (ext) ρ + 2m 0 r 3 + r 2 |d k (ext) β| + r|d k (ext) α| 0 .
Also, according to Proposition 2.2.16, we have in

(ext) M (ext) e 4 ( (ext) m) = (ext) r 32π S 2 (ext) κ (ext) ρ + 2 (ext) e θ ( (ext) κ) (ext) ζ - 1 2 (ext) κ( (ext) ϑ) 2 - 1 2 (ext) κ (ext) ϑ (ext) ϑ + 2 (ext) κ( (ext) ζ) 2 ,
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C 1 r 2 (ext) e 4 ( (ext) m) 2 0 .
This allows us to propagate the estimates for (ext) m in (4.1.16) on S 1 to any sphere on C 1 , and hence sup

C 1 (ext) m m 0 -1 0 . (4.1.23)
Also, in view of the control r r of Step 10, we have sup

C 1 (ext) r (ext) r L 0 -1 0 .
Step 13. Recall that

• ( (ext) e 4 , (ext) e 3 , (ext) e θ ) denotes the null frame of (ext) M,

• ( (int) e 4 , (int) e 3 , (ext) e θ ) denotes the null frame of (int) M,

• ( (ext) (e 0 ) 3 , (ext) (e 0 ) 4 , (ext) (e 0 ) θ ) denotes the null frame of (ext) L 0 ,

• ( (int) (e 0 ) 3 , (int) (e 0 ) 4 , (int) (e 0 ) θ ) denotes the null frame of (int) L 0 .

Also, recall that the timelike hyper surface T is given by

T = { (ext) r = r T } where 2m 0 1 + δ H 2 ≤ r T ≤ 2m 0 1 + 3δ H 2 to that T ⊂ (int) L 0 ∩ (ext)
L 0 , and recall that the frame of (int) M is initialed on T as follows

(int) e 4 = λ (ext) e 4 , (int) e 3 = λ -1 (ext) e 3 , (int) e θ = (ext) e θ on T where λ = (ext) λ = 1 - 2 (ext) m (ext) r .

Denoting

• by (f, f , λ) the transition functions from the frame of the outgoing part (ext) L 0 of the initial data layer to the frame of (ext) M as in Steps 5 to 12,

• by (f , f , λ ) the transition functions from the frame of the ingoing part (int) L 0 of the initial data layer to the frame of (int) M,

• by ( f, f , λ) the transition functions on (int) L 0 ∩ (ext) L 0 from the frame outgoing part (ext) L 0 of the initial data layer to the frame of the ingoing part (int) L 0 of the initial data layer, we obtain, using also that

C 1 ∩ C 1 ⊂ T , sup C 1 ∩C 1 |d ≤k large +2 (f , f , log(λ ))| sup C 1 ∩C 1 |d ≤k large +2 (f, f , log(λ))| + sup C 1 ∩C 1 |d ≤k large +2 ( f, f , log(Υ -1 0 λ))| + sup C 1 ∩C 1 |d ≤k large +2 log(Υ -1 0 Υ)|
where we have denoted

Υ 0 = 1 - 2m 0 (ext) r L 0 , Υ = 1 - 2 (ext) m (ext) r .
Together with the control of ( f, f , log(Υ -1 0 λ)) provided on (int) L 0 ∩ (ext) L 0 by the estimates (4.1.1), the estimates (4.1.21) for (f, f , λ), and the estimates (ext) mm 0 and (ext) r -(ext) r L 0 obtained in Step 12, we infer sup

C 1 ∩C 1 |d ≤k large +2 (f , f , log(λ ))| 0 .
Step 14. We propagate the estimate for (f , f , log(λ )) on C 1 ∩ C 1 provided by Step 8 to C 1 using the analog of Corollary 2.3.7 in the ingoing direction e 3 . We obtain the following estimate sup

C 1 |d ≤k large +2 (f , log λ)| + sup C 1 |d ≤k large +1 f | 0 .
Together with the change of frame formulas of Proposition 2.3.4, and the estimates (4.1.1) for the curvature components of the ingoing part (int) L 0 of the initial data layer, we obtain max

0≤k≤k large sup C 1 |d k (int) α| + |d k (int) β| + d k (int) ρ + 2m 0 r 3 +|d k (int) β| + |d k (int) α| 0 . (4.1.24)
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Also, since we have as a consequence of the initialization on T of the ingoing geodesic foliation of (int) M

(int) m = (ext) m on C 1 ∩ C 1
we infer from the control of (ext) m provided by Step 12

| (int) m -m 0 | 0 on C 1 ∩ C 1 .
We then propagate, similarly to Step 12, this bound to C 1 and obtain sup

C 1 (int) m -m 0 0 .
Together with (4.1.22), (4.1.23) and (4.1.24), this concludes the proof of Theorem M0.

Control of averages and of the Hawking mass

In this section, we prove Lemma 3.4.1 and Lemma 3.4.2.

Proof of Lemma 3.4.1

Step 1. We start with the control of ρ on M. Recall the identity (2.2.12)

ρ + 2m r 3 = 1 4 ϑϑ.
Thus, in view of the bootstrap assumptions BA-D, BA-E, we have,

ρ + 2m r 3 2 min{r -3 u -3 2 -δ dec , r -2 u -2-2δ dec } in (ext) M, ρ + 2m r 3 2 u -2-2δ dec in (int) M.
Differentiating the equation with respect to e 3 , e 4 we derive,

e 4 ρ + 2m r 3 = 1 4 e 4 (ϑ)ϑ + ϑe 4 (ϑ) + l.o.t., e 3 ρ + 2m r 3 = 1 4 e 3 (ϑ)ϑ + ϑe 3 (ϑ) + l.o.t., e θ ρ + 2m r 3 = 0.
Taking higher derivatives in e 3 , e 4 and making use of the bootstrap assumptions BA-D, BA-E, we derive in (ext) M,

d ≤k small ρ + 2m r 3 2 min{r -3 u -3 2 -δ dec , r -2 u -2-2δ dec }, d ≤k large ρ + 2m r 3 r -3 u -1/2-δ dec ,
and in (int) M,

d ≤k small ρ + 2m r 3 2 u -2-2δ dec , d ≤k large ρ + 2m r 3 2 u -1-δ dec .
In particular, sup

(ext) M u 3 2 +δ dec r 3 d ≤k small ρ + 2m r 3 + sup (ext) M u 1 2 +δ dec r 3 d ≤k large ρ + 2m r 3 0 , sup (int) M u 3 2 +δ dec d ≤k small ρ + 2m r 3 + sup (int) M u 1 2 +δ dec d ≤k large ρ + 2m r 3 0
Step 2. Next, we proceed with the control of κ in (ext) M. Recalling Lemma 2.2.17, we start with

e 4 κ - 2 r + 1 2 κ κ - 2 r = - 1 4 ϑ 2 + 1 2 κ2 . (4.2.1)
In view of Corollary 2.2.12 we deduce, from the first equation,

e 4 r κ - 2 r = -r 1 4 ϑ 2 + 1 2 κ2 . (4.2.2)
Making use of the GCM condition

κ = 2 r on Σ * , which yields κ = 2 r on Σ * ,
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we deduce, integrating (4.2.2) with respect to r along C u from Σ * , sup

(ext) M u 1+δ dec r 3 κ - 2 r 2 0 .
Also, making use of the bootstrap assumptions BA-D, BA-E we easily deduce, sup

(ext) M u 1+δ dec r 3 d ≤k small +1 κ - 2 r 2 0 , sup (ext) M u 1 2 +δ dec r 3 d ≤k large +1 κ - 2 r 2 0 .
We next commute (4.2.2) with e 3 and derive,

e 4 e 3 r κ - 2 r = e 3 r 1 4 ϑ 2 + 1 2 κ2 -[e 3 , e 4 ] r κ - 2 r = e 3 r 1 4 ϑ 2 + 1 2 κ2 -2ω r κ - 2 r -2ζ r κ - 2 r .
It is thus easy to see that we can prove estimates of the type sup

(ext) M u 1+δ dec r 3 d ≤k small +1 κ - 2 r 2 0 , sup (ext) M u 1 2 +δ dec r 3 d ≤k large +1 κ - 2 r 2 0 ,
provided that we can check that, sup

(ext) M u 1+δ dec r 3 e ≤k small +1 3 κ - 2 r 2 0 , sup (ext) M u 1 2 +δ dec r 3 e ≤k large +1 3 κ - 2 r 2 0 .
The difficulty in this case is to make sure that we can control terms of the type,

e k+1 3 r 1 4 e k+1 3 (ϑ 2 ) + 1 2 e k+1 3 (κ 2 )
using only at most k derivatives of Γ, Ř. To see this we note that,

e 3 (ϑ 2 ) = e 3 ϑ 2 -( Ω κ -Ω κ)ϑ 2 + κ θ2 , e 3 (κ 2 ) = e 3 κ2 -( Ω κ -Ω κ)κ 2 + κ κ2 ,
and,

e 3 (ϑ) + 1 2 κϑ -2ωϑ = -2 d / 2 ζ - 1 2 κϑ + 2ζ 2 , e 3 κ + 1 2 κ κ = -2μ - 1 2 κκ + 2(ωκ + ωκ) + Ωκ κ + Err[e 3 κ],
Err

[e 3 κ] : = 2(ζ 2 -ζ 2 ) + 2(ωκ -ωκ) - 1 2 κ κ - 1 2 κ κ -Ωκ κ. (4.2.3)
We thus derive, sup

(ext) M u 1+δ dec r 3 d ≤k small +1 κ - 2 r + sup (ext) M u 1 2 +δ dec r 3 d ≤k large +1 κ - 2 r 0 .
Step 3. We next estimate κ in (ext) M making use of the identity (2.2.14) derived in connection to the Hawking mass

κ + 2Υ r = 2Υ rκ κ - 2 r - 1 κ κκ.
Thus, in view of the estimates for κ derived in step 2 we easily infer that, sup

(ext) M u 3 2 +δ dec r 2 d ≤k small κ + 2Υ r + sup (ext) M u 1 2 +δ dec r 2 d ≤k large κ + 2Υ r 0 .
as desired.

Step 4. We estimate ω in (ext) M based on the following identity in Lemma 2.2.17

e 3 κ - 2 r + 1 2 κ κ - 2 r = 2ω κ - 2 r + 4 r ω - m r 2 + 2 ρ + 2m r 3 - 1 2 κ κ - 2 r Ω + 2ωκ - 1 2 ϑϑ + 2ζ 2 + 1 2 Ω -ϑ 2 + κ2 -Ω(e 4 (κ) + κκ) + 1 2 κκ - 1 r
Ωκ, which we rewrite as

ω - m r 2 = r 4 e 3 κ - 2 r + 1 2 κ κ - 2 r -2ω κ - 2 r -2 ρ + 2m r 3 + 1 2 κ κ - 2 r Ω -2ωκ + 1 2 ϑϑ -2ζ 2 - 1 2 Ω -ϑ 2 + κ2 + Ω(e 4 (κ) + κκ) - 1 2 κκ + 1 r Ωκ . (4.2.4)
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Using the estimates of ρ in Step 1, the estimates for κ in Step 2, as well as our bootstrap assumptions on decay and energy, we easily derive sup

(ext) M u 1+δ dec r 2 d ≤k small ω - m r 2 + sup (ext) M u 1 2 +δ dec r 2 d ≤k large ω - m r 2 0 . Remark 4.2.1. It is to estimate k large derivatives of ω -mr -2 that we had to control k large + 1 derivatives of κ -2/r is Step 2.
Step 5. We estimate Ω in (ext) M. First we need the control of Ω on Σ * . To this end, we recall that s is initialized on Σ * by s = r so that

ν(s -r) = 0 on Σ * , ν = e 3 + ae 4 ,
where the scalar function a is such that the vectorfield ν is tangent to Σ * . On the other hand, we have e 4 (s) = 1 and

e 4 (r) = r 2 κ = 1 on Σ *
where we used the GCM condition κ = 2/r on Σ * . We infer e 3 (s) = e 3 (r) on Σ * and hence Ω = e 3 (r) on Σ * .

This yields

Ω = e 3 (r) = rκ 2 + r 2 A,
and hence, in view of the estimate for κ of step 3, the fact that A contains only quadratic terms in view of the formula for A, and in view of the bootstrap assumptions on decay and energy, we infer sup

Σ * u 1+δ dec r d ≤k small Ω - m r 2 + sup Σ * u 1 2 +δ dec r d ≤k large Ω - m r 2 0 .
Then, we use e 4 (Ω) = -2ω and Corollary 2.2.11 to obtain

e 4 (Ω) = -2ω + κ Ω
and hence

e 4 (Ω + Υ) = -2 ω - m r 2 + m r κ - 2 r + κ Ω - 2e 4 (m) r .
Commuting with d, integrating from Σ * where we have controlled Ω above, and using the estimates of Step 2 for κ, Step 4 for ω, the bootstrap assumptions, and the estimates for e 4 (m) of Lemma 3.4.2 (which do not depend on the control of Ω), we infer sup

(ext) M u 1+δ dec r d ≤k small Ω - m r 2 + sup (ext) M u 1 2 +δ dec r d ≤k large Ω - m r 2 0 .
Step 6. Next, we control (int) κ on the cylinder T . From the initialization of the frame of (int) M on T , we have

(int) r = (ext) r, (int) κ = Υ (ext) κ, (int) κ = Υ -1 (ext) κ on T .
Also, making use of the identity (2.2.14) derived in connection to the Hawking mass, we have

(ext) κ + 2Υ r = 2Υ r (ext) κ (ext) κ - 2 r - 1 (ext) κ (ext) κ (ext) κ.
We deduce

(int) κ + 2 r = Υ -1 (ext) κ + 2Υ r = 2 r (ext) κ (ext) κ - 2 r - Υ -1 (ext) κ (ext) κ (ext) κ on T .
To derive higher tangential derivatives along T we remark that the vectorfield

T T = e 4 - e 4 (r) e 3 (r) e 3 = e 4 - κ + A κ e 3 ,
together with e θ , spans the tangent space to T . The transversal derivatives, on the other hand, can be determined with help of the equation,

e 3 κ + 2 r + 1 2 κ κ + 2 r = - 1 4 ϑ 2 + 1 2 κ2 .
adapted to the (int) M foliation. Making use of the estimates for (ext) κ in (ext) M derived in Step 2 and the bootstrap assumptions, we infer that,

sup T u 3 2 +δ dec d ≤k small +1 (int) κ + 2 r + sup T u 1 2 +δ dec d ≤k large +1 (int) κ + 2 r 0 + sup T u 1 2 +δ dec d k large +1 (ext) κ (ext) κ
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Now, in view of the transport equations for (ext) e 4 ( (ext) κ), (ext) e 3 ( (ext) κ), (ext) e 4 ( (ext) κ) and (ext) e 3 ( (ext) κ), as well as the bootstrap assumptions, we have sup

T u 1 2 +δ dec d k large +1 (ext) κ (ext) κ 0 + sup T u 1 2 +δ dec (ext) κd k large d / 1 ( (ext) ζ) + sup T u 1 2 +δ dec (ext) κd k large d / 1 ( (ext) ζ) + sup T u 1 2 +δ dec (ext) κd k large d / 1 ( (ext) ξ) 0 + sup T u 1 2 +δ dec d / 1 (ext) κd k large (ext) ζ + sup T u 1 2 +δ dec d / 1 (ext) κd k large (ext) ζ + sup T u 1 2 +δ dec d / 1 (ext) κd k large (ext) ξ 0
where we have integrated d / 1 by parts and used that d / 1 is its adjoint. We infer

sup T u 3 2 +δ dec d ≤k small +1 (int) κ + 2 r + sup T u 1 2 +δ dec d ≤k large +1 (int) κ + 2 r 0 .
Step 7. From now on, we only work with the frame of (int) M. Starting with the equation,

e 3 κ + 2 r + 1 2 κ κ + 2 r = - 1 4 ϑ 2 + 1 2 κ2 .
Using the estimates of step 5 we can then proceed precisely as in Step 2 ( using the (int) M counterpart of the equations (4.2.3)) to derive, sup

(int) M u 1+δ dec d ≤k small +1 κ + 2 r + sup (int) M u 1 2 +δ dec d ≤k large +1 κ + 2 r 0 .
Step 8. Finally, we estimate the remaining averages in (int) M, i.e. κ and ω. To estimate κ we make use once more of the identity,

κ - 2Υ r = - 2Υ rκ κ + 2 r - 1 κ κκ.
Making use of the estimates of κ in Step 5 as well as the bootstrap assumptions for κ and κ we easily derive, sup

(int) M u 1+δ dec d ≤k small κ - 2Υ r + sup (int) M u 1 2 +δ dec d ≤k large κ - 2Υ r 0 .
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Step 9. To estimate ω we proceed as in Step 4 by making use of the identity

ω + m r 2 = r 4 e 4 κ + 2 r + 1 2 κ κ + 2 r -2ω κ + 2 r -2 ρ + 2m r 3 + 1 2 κ κ + 2 r Ω -2ωκ + 1 2 ϑϑ -2ζ 2 - 1 2 Ω -ϑ 2 + κ2 + Ω(e 4 (κ) + κκ) - 1 2 κκ + 1 r Ωκ .
Thus, in view of the estimates of ρ in Step 1, the estimates for κ in Step 5, the estimates of κ above5 , as well as the bootstrap assumptions BA-D and BA-E, we deduce, sup

(int) M u 1+δ dec d ≤k small ω + m r 2 + sup (int) M u 1 2 +δ dec d ≤k large ω + m r 2 0 .
Step 10. It remains to estimate Ω in (int) M. First we need the control of Ω on T . To this end, we recall that s is initialized on T by s = r so that

T T (s -r) = 0 on T , T T = e 4 - κ + A κ e 3 ,
, where the vectorfield has been introduced above and is tangent to T . On the other hand, we have e 3 (s) = -1 and e 3 (r) = rκ/2, and hence

Ω = e 4 (r) + κ + A κ (-1 -e 3 (r)) = r 2 (κ + A) 1 + κ -2 r κ on T This yields Ω = r 2 (κ + A) 1 + κ -2 r κ on T ,
and hence, in view of the estimate for κ of step 7, the estimate for κ of step 8, the fact that A contains only quadratic terms in view of the formula for A, and in view of the bootstrap assumptions on decay and energy, we infer sup

T u 1+δ dec d ≤k small Ω -Υ + sup T u 1 2 +δ dec d ≤k large Ω -Υ 0 .
Then, we use the analog of the transport equation used to estimate Ω in (ext) M, i.e.

e 3 (Ω -Υ) = 2 ω + m r 2 - m r κ + 2 r + κ Ω + 2e 3 (m) r .
Commuting with d, integrating from T where we have controlled Ω above, and using the estimates of Step 2 for κ, Step 4 for ω, the bootstrap assumptions, and the estimates for e 4 (m) of Lemma 3.4.2 (which do not depend on the control of Ω), we infer sup

(int) M u 1+δ dec d ≤k small Ω -Υ + sup (int) M u 1 2 +δ dec d ≤k large Ω -Υ 0 .
This concludes the proof of Lemma 3.4.1.

Proof of Lemma 3.4.2

Step 1. We start with the control of e 3 (m) and e 4 (m) in (ext) M. According to Proposition 2.2.16 we have in

(ext) M e 4 (m) = r 32π S Err 1 , (4.2.5) 
and

e 3 (m) = 1 -ς -1 ς r 32π S Err 1 + Ω + ς -1 Ως r 32π S Err 1 +ς -1 r 32π S ς 2ρκ + 2ρκ + 2κ d / 1 η + 2κ d / 1 ξ + Err 2 -ς -1 r 32π S (Ως + Ως) (2ρκ + 2ρκ -2κ d / 1 ζ + Err 2 ) - m r ς -1 -ς κ + Ω ς κ + Ωςκ , (4.2.6) 
where

Err 1 := 2κρ + 2e θ (κ)ζ - 1 2 κϑ 2 - 1 2 κϑϑ + 2κζ 2 , Err 1 := 2ρκ -2e θ (κ)η -2e θ (κ)ξ - 1 2 κϑϑ + 2κη 2 + 2κ η -3ζ ξ - 1 2 κϑ 2 , Err 2 := 2ρκ - 1 2 κϑ 2 - 1 2 κϑϑ + 2κζ 2 , Err 2 := 2ρκ + κ 2η 2 - 1 2 ϑϑ + 2κ η -3ζ ξ - 1 2 κϑ 2 .
Thus, according to the bootstrap assumption BA-D on decay, we deduce,

|e 4 (m)| 2 r -2 u -1-δ dec , |e 3 (m)| 2 u -2-2δ dec .
Moreover, differentiating the equations with respect to e 3 , e 4 and making use of both bootstrap assumptions BA-D BA-E on decay and energy, and integrating by part once the e θ derivative for the terms involving e θ (κ) and e θ (κ) when they contain top order derivatives, we infer that, max

0≤k≤k small sup (ext) M r 2 u 1+δ dec |d k e 4 (m)| 0 , max 0≤k≤k large sup (ext) M r 2 u 1 2 +δ dec + ru 1+δ dec |d k e 4 (m)| 0 ,
as well as max

0≤k≤k small sup (ext) M u 2+2δ dec |d k e 3 (m)| 0 , max 0≤k≤k large sup (ext) M u 1+δ dec |d k e 3 (m)| 0 ,
consistent with the statement of the lemma.

Step 2. We derive the estimates on (int) M. According to the analogue of Proposition 2.2.16 in the situation of the incoming geodesic foliations of (int) M, and proceeding as in

Step 1, we easily derive, max

0≤k≤k large sup (int) M u 1+δ dec |d k e 3 (m)| + |d k e 4 (m)| 2 0 . (4.2.7)
Step 3. We estimate mm 0 in (ext) M.

First, recall from Theorem M0 that we have sup

C 1 ∪C 1 |m -m 0 | 0 m 0 . (4.2.8)
We start with the control in (ext) M. Note that (ext) M is covered by integral curves of e 3 starting from C 1 . Thus, integrating the e 3 m equation and making use of the estimate sup C 1 |mm 0 | 0 m 0 as well as the fact that e 3 (u) = 2, we easily deduce that, sup

(ext) M |m -m 0 | 0 m 0 + 2 0 m 0 .
Step 4. We estimate |mm 0 | on T .

In view of our initialization of the ingoing geodesic foliation of (int) M on T ,

(int) κ (int) κ = (ext) κ (ext) κ on T .
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Since the spheres of both foliations agree on T , we infer from the definition of the Hawking mass,

(int) m = (ext) m on T .
Using the estimate for (ext) m we infer that sup

T | (int) m -m 0 | 0 m 0 .
Step 5. We estimate |mm 0 | on (int) M.

Note first that in (int) M,

e 3 (r) + 1 = r 2 κ + 1 = r 2 κ + 2 r .
Thus, in view of the estimate for κ + 2 r derived in Lemma 3.4.1 sup

(int) M |e 3 (r) + 1| 2 .
Thus integrating the estimate (4.

2.7) in r ∈ [2m 0 (1 -δ H ), r T ],
where we recall that r T ≤ 2m 0 (1 + 2δ H ), we derive, sup

(int) M |m -m 0 | 0 m 0 . Since M = (ext) M ∪ (int) M we infer that, sup M |m -m 0 | 0 m 0 .
This concludes the proof of Lemma 3.4.2.

Control of coordinates systems

The goal of this section is to prove Propositions 3.4.3 and 3.4.4. In both cases, the first two claims, on the form of the spacetime metric in the corresponding coordinates system as well as on the expression of the coordinates vectorfield with respect to the null frame (e 4 , e 3 , e θ ), is already proved in Propositions 2.2.23 and 2. 

θ = cot -1 (re θ (Φ)) . (4.3.1) Let b = e 4 (θ), b = e 3 (θ), γ = 1 (e θ (θ)) 2 . (4.3.2)
Then, we have

max 0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k γ r 2 -1 + r d k b , max 0≤k≤k small sup (ext) M u 1+δ dec d k Ω + d k (ς -1) + r d k b , max 0≤k≤k small sup (int) M u 1+δ dec d k Ω + d k (ς -1) + d k γ r 2 -1 + d k b + d k b .
Also, e Φ satisfies max

0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k e Φ r sin θ -1 , max 0≤k≤k small sup (int) M u 1+δ dec d k e Φ r sin θ -1 .
Proof. We prove the estimates in (ext) M. The proof in (int) M is similar and left to the reader.

Step 1. We start with the estimate for Ω. Recall that

d / 1 Ω = ξ
so that the bootstrap assumptions for ξ imply on any 2-sphere of the foliation of (ext) M and for any k

≤ k small r 1 2 d k r d / 1 Ω L 4 (S) + d k r d / 1 Ω L 2 (S) r 2 sup S |d k ξ| ru -1-δ dec .
In view of the commutation formulas of Lemma 2.2.13 and of Proposition 2.1.25, together with the bootstrap assumptions, we infer any k ≤ k small , schematically,

[d k , r d / 1 ] = O( )d ≤k + O(1)d ≤k-1 ,
and hence,

r 1 2 r d / 1 d k Ω L 4 (S) + r d / 1 d k Ω L 2 (S) ru -1-δ dec + d ≤k Ω L 2 (S) + r 1 2 d ≤k Ω L 4 (S) + d ≤k-1 Ω L 2 (S) + r 1 2 d ≤k-1 Ω L 4 (S) ru -1-δ dec + r d / 1 d ≤k Ω L 2 (S) + d ≤k Ω L 2 (S) + d ≤k-1 Ω L 2 (S) + d ≤k Ω 1 2 L 2 (S) d ≤k-1 Ω 1 2 L 2 (S)
, where we used Gagliardo-Nirenberg on S. Together with the Poincaré inequality of Corollary 2.1.34 for d / 1 , we deduce

r 1 2 r d / 1 d k Ω L 4 (S) + r d / 1 d k Ω L 2 (S) + d k Ω L 2 (S) ru -1-δ dec + d ≤k-1 Ω L 2 (S) .
By iteration, and using again Gagliardo-Nirenberg on S, we infer on any 2-sphere of the foliation of (ext) M and for any k

≤ k small r d / 1 d k Ω L 4 (S) + d k Ω L 4 (S) r 1 2 u -1-δ dec ,
and thus, by Sobolev embedding max

0≤k≤k small sup (ext) M u 1+δ dec |d k Ω|
which is the desired estimate for Ω.

Step 2. Next, we estimate ς. First, recall that we have

e θ (log ς) = η -ζ.
Since the bootstrap assumptions for ηζ are at least as good as for ξ, we obtain, arguing as in Step 1 the following analog of the above estimate for Ω max

0≤k≤k small sup (ext) M u 1+δ dec |d k ς| .
Now that we control ς, we turn to the estimate for ς. First, recall from the GCM on Σ * that we have

u + r = c Σ * and a SP = -1 - 2m r
, where ν = e 3 + ae 

ς -2 = - r 2 κ + 2Υ r + A -1 + 2m r κ - 2 r on SP ∩ Σ * .
Together with the fact that ς = ςς, the above control of ς, the control of κ and κ provided by Lemma 3.4.1, the formula for A, the control for Ω in Step 1, the bootstrap assumptions on decay, and the fact that ς is constant on the sphere, we infer max

0≤k≤k small sup Σ * u 1+δ dec |d k (ς -1)| .
Using ς = ς + ς and the above estimates for ς and ς, we obtain max

0≤k≤k small sup Σ * u 1+δ dec |d k (ς -1)| .
Finally, recall e 4 (ς) = 0.

Commuting with d, using the bootstrap assumptions on decay and the above control for ς -1 on Σ * , we infer max

0≤k≤k small sup (ext) M u 1+δ dec |d k (ς -1)| .
Remark 4.3.2. In (int) M, we analogously transport ς from the timelike hyper surface T .

To estimate ς on T , one uses the following identity (in the frame of (int) M)

2 ς -1 = - κ + A Υκ 2 ς -1 - A Υκ - κ -2Υ r + Υ κ + 2 r Υκ on T .
This identity follows from the definition of ς and ς, the identity for e 3 (r) and e 4 (r) in (int) M, the fact that u = u on T , and that T = {r = r T } so that the vectorfield

T T = e 4 - e 4 (r) e 3 (r) e 3 = e 4 - κ + A κ e 3
is tangent to T .

Step 3. We make the auxiliary bootstrap assumption which will be recovered at the end of Step 5

e Φ ≤ 2r, e θ (e Φ ) ≤ 2. (4.3.3)
We start with the estimate for e Φ . Recall from (2.2.53) that the following identity holds

e Φ r sin θ = √ 1 + a. (4.3.4)
where a has been introduced in (2.2.54) by

a = e 2Φ r 2 + (e θ (e Φ )) 2 -1.
In order to estimate e Φ , it thus suffices to estimate a.

Step 4. Now, recall from Lemma 2.2.30 that a verifies the following identities on (ext) M,

e 4 (a) = (κ -ϑ)e 2Φ r 2 + 2e θ (e Φ ) β -e 4 (Φ)ζ e Φ , e θ (a) = 2e θ (Φ)e 2Φ ρ + 2m r 3 + 1 4 κκ + 4Υ r 2 - 1 4 ϑϑ , e 3 (a) = κ -A -ϑ e 2Φ r 2 + 2e θ (e Φ ) β + e 3 (Φ)ζ + ξe 4 (Φ) e Φ .
Together with our bootstrap assumptions on decay for in (ext) M for κ, ϑ, κ, ϑ, β, β, ρ, ζ, ξ and Ω and the bootstrap assumption (4.3.3), we infer max

1≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k a .
In particular, we deduce, sup

(ext) M ru 1 2 +δ dec + u 1+δ dec |ǎ| .
Step 5. To estimate a we make use of equation (2.1.13) according to which e θ (e Φ ) 2 = 1 on the axis of symmetry.

Since e 2Φ also vanishes there we infer that a = 0 on the axis. Therefore, on the axis, ǎ = -a, i.e., a = -ǎ| axis and therefore,

|a| |ǎ| ru 1 2 +δ dec + u 1+δ dec .
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We conclude that, max

0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k a . (4.3.5)
In view of (4.3.4) and (4.3.5), we immediately infer max

0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k e Φ r sin θ -1 .
Together with (4.3.5) and the definition of a, this implies

e Φ = (1 + O( ))r sin θ ≤ 3r 2 , e θ (e Φ ) = 1 - e 2Φ r 2 + a ≤ | cos θ| + O( ) ≤ 3 2 , (4.3.6)
which is an improvement of the bootstrap assumption (4.3.3) which hence holds everywhere on (ext) M.

Step 6. We now prove the estimates for b, b and γ. Recall from Lemma 2.2.29 that θ defined by (4.3.1) satisfies

re θ (θ) = 1 + r 2 (K -1 r 2 ) 1 + (re θ (Φ)) 2 , e 3 (θ) = - rβ + r 2 (-κ + A + ϑ) e θ (Φ) + rξe 4 (Φ) + rζe 3 (Φ) 1 + (re θ (Φ)) 2 , e 4 (θ) = - rβ + r 2 (-κ + ϑ) e θ (Φ) -rζe 3 (Φ) 1 + (re θ (Φ)) 2 .
In view of the definition of b, b and γ, we infer

r √ γ = 1 + r 2 (K -1 r 2 ) 1 + (re θ (Φ)) 2 , b = - rβ + r 2 (-κ + A + ϑ) e θ (Φ) + rξe 4 (Φ) + rζe 3 (Φ) 1 + (re θ (Φ)) 2 , b = - rβ + r 2 (-κ + ϑ) e θ (Φ) -rζe 3 (Φ) 1 + (re θ (Φ)) 2 .
Also, we have in view of the definition of a

1 + (re θ (Φ)) 2 = 1 + (e θ (e Φ )) 2 e 2Φ r 2 = r 2 e 2Φ (1 + a)
and hence

r √ γ = 1 + e 2Φ r 2 r 2 (K -1 r 2 ) 1 + a , b = - e 2Φ r 2 rβ + r 2 (-κ + A + ϑ) e θ (Φ) + rξe 4 (Φ) + rζe 3 (Φ) 1 + a , b = - e 2Φ r 2 rβ + r 2 (-κ + ϑ) e θ (Φ) -rζe 3 (Φ) 1 + a .
The bootstrap assumptions on decay in (ext) M for κ, ϑ, κ, ϑ, β, β, ζ, ξ and Ω, the estimate (4.3.5) for a, the estimate (4.3.6), and the identity

K - 1 r 2 = - 1 4 κκ + 1 4 ϑϑ -ρ - 1 r 2 = - 1 4 κκ + 4Υ r 2 -ρ + 2m r 3 + 1 4 ϑϑ imply max 0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k r √ γ -1 + r d k b ,
and max

0≤k≤k small sup (ext) M ru 1+δ dec d k b .
In particular, we also have max

0≤k≤k small sup (ext) M ru 1 2 +δ dec + u 1+δ dec d k γ r 2 -1 .
These are the desired estimate for b, b and γ in (ext) M. This concludes the proof of the lemma.

In this section, we also prove two useful lemmas concerning estimates on 2-spheres of (ext) M and (int) M. Also, we have

1 sin θ ≤ 2|re θ (Φ)| + 2 on M.
Proof. The proof is similar on (ext) M and (int) M so we focus on (ext) M. Recall from (4.3.6) that

e θ (e Φ ) ≤ 3 2 .
Furthermore, in view of Proposition 3.4.3, we have in particular sup

(ext) M e Φ r sin θ -1 .
Since we have = r sin θe θ (Φ), we deduce

| | = r sin θ e Φ |e θ (e Φ )| ≤ 3 2 (1 + O( )) ≤ 2,
which is the desired estimate for .

We now consider the upper bound for (sin θ) -1 . Recall the definition (2.2.54) of a a = e 2Φ r 2 + (e θ (e Φ )) 2 -1. We infer

r 2 e θ (Φ) 2 = r 2 (e θ (e Φ )) 2 e 2Φ = 1 + a e 2Φ r 2 -1 = 1 + a -(sin θ) 2 1 + e 2Φ r 2 (sin θ) 2 -1 (sin θ) 2 1 + e 2Φ r 2 (sin θ) 2 -1 = (cos θ) 2 + a -(sin θ) 2 e 2Φ r 2 (sin θ) 2 -1 (sin θ) 2 1 + e 2Φ r 2 (sin θ) 2 -1 and hence sin θ|re θ (Φ)| = (cos θ) 2 + a -(sin θ) 2 e 2Φ r 2 (sin θ) 2 -1 1 + e 2Φ r 2 (sin θ) 2 -1 .
Now, in view of (4.3.5), a satisfies in particular sup

(ext) M
|a| .

Together with sup

(ext) M e Φ r sin θ -1 , we infer sin θ|re θ (Φ)| = (cos θ) 2 + O( ) 1 + O( ) .
Thus, we deduce

sin θ|re θ (Φ)| ≥ √ 2 2 (1 + O( )) ≥ 1 2 for 0 ≤ θ ≤ π 4 and 3π 4 ≤ θ ≤ π.
On the other hand, we have

sin θ ≥ √ 2 2 on π 4 ≤ θ ≤ 3π 4
and hence

1 sin θ ≤ 2|re θ (Φ)| + 2 on 0 ≤ θ ≤ π
which is the desired estimate. This concludes the proof of the lemma. Proof. The proof is similar on (ext) M and (int) M so we focus on (ext) M. Recall that the 2-surface S is parametrized by the coordinate θ ∈ [0, π], and that the axis corresponds to the 2 poles θ = 0 and θ = π. In view of sup

(ext) M e Φ r sin θ -1 , we have sup S∩{ π 4 ≤θ≤ 3π 4 } |h| e Φ r -1 sup S |h| and h e Φ L 2 (S∩{ π 4 ≤θ≤ 3π 4 }) r -1 h L 2 (S)
which is the desired estimate for π/4 ≤ θ ≤ 3π/4.

It remains to consider the portions 0 ≤ θ ≤ π/4 and 3π/4 ≤ θ ≤ π of S. These regions can be treated analogously, so we focus on 0 ≤ θ ≤ π/4. Recall from Remark 2.1.21 that any reduced scalar in s k , for k ≥ 1, must vanish on the axis of symmetry of Z, i.e. at the two poles. In particular, h must vanish at θ = 0. We deduce

h e Φ = he Φ e 2Φ = θ 0 ∂ θ (e Φ h) e 2Φ = θ 0 γ S e θ (e Φ h) e 2Φ = θ 0 √ γe Φ d / 1 h e 2Φ
.

Since we have |γ| r, we infer

|h| e Φ θ 0 e Φ | d /h| e 2Φ
and since sup

(ext) M e Φ r sin θ -1 , we deduce |h| e Φ r -1 θ 0 sin(θ )| d /h|dθ (sin θ) 2 .
This yields sup

S∩{0≤θ≤ π 4 } |h| e Φ r -1 sup S | d /h|
which is the desired sup norm estimate for 0 ≤ θ ≤ π/4.
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It remains to control the L 2 -norm on 0 ≤ θ ≤ π/4. We have in view of the above

h e Φ 2 L 2 (S∩{0≤θ≤ π 4 }) r -2 π 4 0 θ 0 sin(θ )| d /h|dθ 2 (sin θ) 4 e Φ dθ r -1 π 4 0 θ 0 (sin(θ )) 2 | d /h| 2 dθ dθ (sin θ) 2 r -1 π 4 0 (sin θ) 2 | d /h| 2 π 4 θ dθ (sin(θ )) 2 dθ r -1 π 4 0 | d /h| 2 sin θdθ r -2 π 4 0 | d /h| 2 e Φ dθ r -2 d /h 2 L 2 (S)
and hence

h e Φ L 2 (S∩{0≤θ≤ π 4 }) r -1 d /h L 2 (S)
which is the desired L 2 (S) estimate for 0 ≤ θ ≤ π/4. This concludes the proof of the lemma.

Pointwise bounds for high order derivatives

The goal of this section is to prove Proposition 3.4.5. We deal first with the region r ≤ 4m 0 as follows 1. The curvature components and Ricci coefficients satisfy in view of the bootstrap assumptions on energy max

k≤k large (int) M | Ř| 2 + | Γ| 2 + max k≤k large -1 (ext) M(r≤4m 0 ) | Ř| 2 + | Γ| 2 ≤ 2 .
2. We first take the trace on the ingoing null cones foliating (int) M and the outgoing null cones foliating (ext) M(r ≤ 4m 0 ) which looses one derivative. We thus obtain max

k≤k large -1 sup 1≤u≤u * Cu | Ř| 2 + | Γ| 2 + max k≤k large -2 sup 1≤u≤u * Cu(r≤4m 0 ) | Ř| 2 + | Γ| 2 2 .
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3. We then take the trace on the 2-spheres S foliation the null cones in (int) M and (ext) M(r ≤ 4m 0 ) to infer max

k≤k large -2 sup (int) M Ř L 2 (S) + Γ L 2 (S) + max k≤k large -3 sup (ext) M(r≤4m 0 ) | Ř| 2 + | Γ| 2 .
4. Finally, using the Sobolev embedding on the 2-sphere S, which looses 2 derivatives, we deduce max

k≤k large -4 sup (int) M | Ř| + | Γ| + max k≤k large -5 sup (ext) M(r≤4m 0 ) | Ř| + | Γ| ,
which is the desired estimate in the region (int) M ∪ (ext) M(r ≤ 4m 0 ).

It remains to consider the region (ext) M(r ≥ 4m 0 ). We proceed as follows

Step 1. The Ricci coefficients satisfy in view of the bootstrap assumptions on energy max

k≤k large Σ * r 2 (d ≤k ϑ) 2 + (d ≤k κ) 2 + (d ≤k ζ) 2 + (d ≤k κ) 2 + (d ≤k ϑ) 2 + (d ≤k η) 2 + (d ≤k ω) 2 + (d ≤k ξ) 2 + sup λ≥4m 0 {r=λ} λ 2 (d ≤k ϑ) 2 + (d ≤k κ) 2 + (d ≤k ζ) 2 + λ 2-δ B (d ≤k κ) 2 + (d ≤k ϑ) 2 + (d ≤k η) 2 + (d ≤k ω) 2 + λ -δ B (d ≤k ξ) 2 ≤ 2 .
We take the trace on the 2-spheres S foliating the timelike cylinders {r = r 0 }, for r 0 ≥ 4m 0 , which looses a derivative, and infer in particular

max k≤k large -1 sup (ext) M(r≥4m 0 ) r d k κ L 2 (S) + d k ζ L 2 (S) + d k ϑ L 2 (S) + r 1-δ B 2 d k κ L 2 (S) + d k η L 2 (S) + d k ϑ L 2 (S) + d k ω L 2 (S) + r -δ B 2 d k ξ L 2 (S)
.

Also, we take the trace on the 2-spheres S foliating the spacelike hyper surface Σ * , which looses a derivative, and infer in particular max

k≤k large -1 sup Σ * r d k κ L 2 (S) .
Step 2. On can easily prove the following trace theorem max

k≤k large -1 sup r≥4m 0 r 5+δ B S (d k α) 2 sup 1≤u≤u * Cu r 4+δ B (d ≤k large α) 2 ,
which together with the bootstrap assumptions on energy for α in (ext) M(r ≥ 4m 0 ) implies max

k≤k large -1 sup r≥4m 0 r 5+δ B S (d k α) 2 2 .
Step 3. Using the trace theorem max

k≤k large -1 sup r≥4m 0 r 5 S (d k β) 2 sup 1≤u≤u * Cu r 4 (d ≤k large β) 2 ,
we infer, together with the bootstrap assumptions on energy for β in (ext) M(r ≥ 4m 0 ), max

k≤k large -1 sup r≥4m 0 r 5 S (d k β) 2 2 . (4.4.1)
The power of r of the above estimate is not strong enough. To upgrade the estimate, recall that we have the Bianchi identity

e 4 (β) + 2κβ = d / 2 α + ζα.
This yields

e 4 r 5+δ B S β 2 = S r 5+δ B 2βe 4 (β) + κβ 2 + b e 4 (r) r β 2 = S r 5+δ B - 1 -δ B 2 κβ 2 + 2β(r -1 d /α + ζα) - 5 + δ B 2 κβ 2
and hence

e 4 r 5+δ B S β 2 + 1 -δ B 2 S r 5+δ B κβ 2 = S r 4+δ B 2β( d /α + rζα) - 5 + δ B 2 κβ 2 S r 4+δ B (d ≤1 α) 2 1 2 S r 4+δ B β 2 1 2 + S r 4+δ B β 2
where we used the pointwise estimates of Step 1 for κ and ζ. We infer

e 4 r 5+δ B S β 2 + S r 4+δ B β 2 S r 4+δ B (d ≤1 α) 2 .

CHAPTER 4. CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS

Integrating, from r ≥ 6m 0 , we deduce sup

r≥6m 0 r 5+δ B S β 2 + sup 1≤u≤u * Cu(r≥6m 0 ) r 4+δ B β 2 sup 1≤u≤u * Cu r 4+δ B (d ≤1 α) 2 + S r=6m 0 β 2 2 ,
where we used the bootstrap assumptions on energy for α in (ext) M(r ≥ 4m 0 ) and the non sharp estimate (4.4.1) for β. Using again (4.4.1), we obtain sup

r≥4m 0 r 5+δ B S β 2 + sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B β 2 2 .
To discuss higher order derivatives, recall from Lemma 2.2.13 the following commutator, written in schematic form,

[ d /, e 4 ] = (κ, ϑ) d / + (ζ, rβ).
Also, recall from Lemma 2.2.14 the following commutator,

[T, e 4 ] = ω -m r 2 -m 2r κ -2 r + e 4 (m) r e 4 + (η + ζ)e θ .
In view of the estimates of Step 1 for k large -1 derivatives of κ, ϑ, ζ, η, ω, the pointwise estimates for β in (4.4.1), the control of κ in Lemma 3.4.1, and the control of e 4 (m) in Lemma 3.4.2, we infer, schematically,

d k [ d /, e 4 ]β, [T, e 4 ]β L 2 (S) O( r -2 ) d ≤k+1 β L 2 (S) for k ≤ k large -2.
Thus, commuting the Bianchi identity for e 4 (β) with T and d / together with the above commutator estimate, using the Bianchi identity to recover the e 4 derivatives, we obtain for higher order derivatives max

k≤k large -1 sup r≥4m 0 r 5+δ B S (d k β) 2 + sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B (d k β) 2 sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B (d ≤k large α) 2 2 .
Step 4. Recall from Proposition 2.2.18 that we have

e 4 ρ + 3 2 κρ + 3 2 ρκ = d / 1 β + Err[e 4 ρ],
Err[e 4 ρ] = -

3 2 κρ + 1 2 κρ - 1 2 ϑα + ζβ + 1 2 ϑα + ζβ .
This yields

e 4 r 4 S (ρ) 2 = S r 4 2ρe 4 (ρ) + κρ 2 + 4 e 4 (r) r ρ2 = S r 4 -3ρκρ + 2ρ(r -1 d /β + Err[e 4 ρ]) + κρ 2
and hence

e 4 r 4 
S (ρ) 2 1 2 S r 4 (ρκ) 2 + (r -1 d /β) 2 + (Err[e 4 ρ]) 2 + κ2 ρ2 1 2
Using the estimates of Step 1, 2 and 3 for κ, ζ, ϑ, α and β, and the control of ρ in Lemma 3.4.1, we infer

e 4 r 4 
S (ρ) 2 1 2 r 3 2 + δ B 2 + r 2 r 4 S (ρ) 2 1 2
.

Integrating from r = 4m 0 , we control ρ L 2 (S) from the control in r ≤ 4m 0 , we infer sup

r≥4m 0 r 4 S ρ2 2 .
Next, commuting the equation for e 4 (ρ) with T and d / together with the commutator estimate of Step 3, using the equation for e 4 (ρ) to recover the e 4 derivatives, we obtain similarly for higher order derivatives max

k≤k large -2 sup r≥4m 0 r 4 S (d k ρ) 2 2 .
Step 5. Recall from Proposition 2.2.18 that we have the following transport equations in the e 4 direction,

e 4 κ + 1 2 κκ + 1 2 κκ = -2 d / 1 ζ + 2ρ + Err[e 4 κ],
Err

[e 4 κ] = - 1 2 κκ - 1 2 κκ + - 1 2 ϑϑ + 2ζ 2 -- 1 2 ϑϑ + 2ζ 2 .
This yields

e 4 r S (κ) 2 = S r 2κe 4 (κ) + κκ 2 + e 4 (r) r κ2 = S r 2κ - 1 2 κκ -2 d / 1 ζ + 2ρ + Err[e 4 κ] + κκ 2
and hence, using the the estimates of Step 1 and 4 for κ, ζ, ϑ and ρ, and the control of κ and κ in Lemma 3.4.1, we infer

e 4 r S (κ) 2 r 2 S rκ 2 + r -3 2 S rκ 2 1 2
and hence

e 4 r S (κ) 2 1 2 r 2 r S (κ) 2 1 2 + r -3 2
Integrating backward from Σ * , where κ under control in view of Step 1, we infer

sup r≥4m 0 r 2 S κ2 2 .
Next, commuting the equation for e 4 (κ) with T and d / together with the commutator estimate of Step 3, using the equation for e 4 (κ) to recover the e 4 derivatives, we obtain similarly for higher order derivatives max

k≤k large -2 sup r≥4m 0 r 4 S (d k κ) 2 2 .
Step 6. In view of Codazzi for ϑ, and the estimates of Step 1 on ζ, and ϑ and of Step 3 on κ in (ext) M(r ≥ 4m 0 ), we infer max

k≤k large -2 sup (ext) M(r≥4m 0 ) r d k β L 2 (S) .
Step 7. In view of the null structure equation for e 3 (κ), and the estimates of Step 1 on ω, ζ, η and ϑ, and of Step 3 on κ in (ext) M(r ≥ 4m 0 ), we infer max

k≤k large -3 sup (ext) M(r≥4m 0 ) d k ξ L 2 (S) .
Step 8. In view of the Bianchi identity for e 3 (β), and the estimates of Step 1 on ω, ζ, and η, the estimates of Step 2 on ρ, of Step 3 on κ and of Step 5 on ξ in (ext) M(r ≥ 4m 0 ), we infer max

k≤k large -3 sup (ext) M(r≥4m 0 ) d k α L 2 (S) .
Step 9. Gathering the estimates for Step 1 to Step 8, we have obtained max

k≤k large -1 sup (ext) M(r≥4m 0 ) r 5 2 + δ B 2 d k α L 2 (S) + d k β L 2 (S) + r d k κ L 2 (S) + d k ζ L 2 (S) + d k ϑ L 2 (S) + d k ϑ L 2 (S) + d k ϑ L 2 (S) + d k ω L 2 (S)
+ max

k≤k large -2 sup (ext) M(r≥4m 0 ) r 2 d k µ L 2 (S) + d k ρ L 2 (S) + r d k κ L 2 (S) + d k β L 2 (S)
+ max

k≤k large -3 sup (ext) M(r≥4m 0 ) dξ L 2 (S) + d k α L 2 (S)
.

Using the Sobolev embedding on the 2-sphere S which looses 2 derivatives, and in view of the previous estimate on (ext) M(r ≤ 4m 0 ), we infer max

k≤k large -5 sup M r 7 2 + δ B 2 |d k α| + |d k β| + r 3 |d k μ| + |d k ρ| +r 2 |d k κ| + |d k ζ| + |d k ϑ| + |d k κ| + |d k β| +r |d k ϑ| + |d k ϑ| + |d k ω| + |dξ| + |d k α|
which is the desired estimate on (ext) M(r ≥ 4m 0 ). This concludes the proof of Proposition 3.4.5.

Proof of Proposition 3.4.6

Let (e 4 , e 3 , e θ ) the outgoing geodesic null frame of (ext) M. We will exhibit another frame (e 4 , e 3 , e θ ) of (ext) M provided by

e 4 = e 4 + f e θ + 1 4 f 2 e 3 , e θ = e θ + 1 2 f e 3 , e 3 = e 3 , (4.5.1) 
where f is such that

f = 0 on Σ * ∩ C * , η = 0 on Σ * , ξ = 0 on (ext) M. (4.5.2)
The desired estimates for the Ricci coefficients and curvature components with respect to the new frame (e 4 , e 3 , e θ ) of (ext) M will be obtained using

• the change of frame formulas of Proposition 2.3.4, applied to the change of frame from (e 4 , e 3 , e θ ) to (e 4 , e 3 , e θ ),

• the estimates for f on (ext) M,

• the estimates for the Ricci coefficients and curvature components with respect to the outgoing geodesic frame (e 4 , e 3 , e θ ) of (ext) M provided by the bootstrap assumptions on decay and Proposition 3.4.5.

Step 1. We start by deriving an equation for f on (ext) M. In view of the condition ξ = 0 on (ext) M, see (4.5.2), in view of ξ = ω = 0 and η = -ζ satisfied by the outgoing geodesic foliation of (ext) M, and in view of Lemma 2.3.5, we have

e 4 (f ) + 1 2 κf = - 1 2 f ϑ - 1 2 f 2 η - 3 2 f 2 ζ + 1 8 f 3 κ + 1 2 f 3 ω + 1 8 f 3 ϑ + 1 8 f 4 ξ on (ext) M. (4.5.3)
We also derive an equation for f on Σ * . In view of the condition η = 0 on Σ * , see (4.5.2), and in view of Lemma 2.3.5, we have

e 3 (f ) = -2η + 2f ω + 1 2 f 2 ξ on Σ * . (4.5.4) 
Now, since u + r is constant on Σ * , the following vectorfield ν Σ * := e 3 + a e 4 , a := -e 3 (u + r) e 4 (u + r) , is tangent to Σ * . We compute in view of the above

ν Σ * (f ) = e 3 (f ) + a e 4 (f ) = -2η + 2f ω + 1 2 f 2 ξ + a - 1 2 κf - 1 2 f ϑ - 1 2 f 2 η - 3 2 f 2 ζ + 1 8 f 3 κ + 1 2 f 3 ω + 1 8 f 3 ϑ + 1 8 f 4 ξ .
Using (4.5.1), we have

a = - e 3 (u + r) e 4 (u + r) = - e 3 (u + r) e 4 + f e θ + 1 4 f 2 e 3 (u + r) = - 2 ς + r 2 (κ + A) r 2 κ + 1 4 f 2 2 ς + r 2 (κ + A)
and hence

ν Σ * (f ) = -2η + 2f ω + 1 2 f 2 ξ - 2 ς + r 2 (κ + A) r 2 κ + 1 4 f 2 2 ς + r 2 (κ + A) - 1 2 κf - 1 2 f ϑ - 1 2 f 2 η - 3 2 f 2 ζ + 1 8 f 3 κ + 1 2 f 3 ω + 1 8 f 3 ϑ + 1 8 f 4 ξ on (ext) M. (4.5.5)
Step 2. Next, we estimate f on Σ * . Introducing an integer k loss and a small constant

δ 0 > 0 satisfying 16 ≤ k loss ≤ δ dec 3 (k large -k small ), δ 0 = k loss k large -k small ,
we assume the following local bootstrap assumption

|d ≤k small +k loss +2 f | ≤ √ ru 1 2 +δ dec -2δ 0 on u 1 ≤ u ≤ u * (4.5.6) 
where

1 ≤ u 1 < u * .
Since f = 0 on Σ * ∩ C * in view of (4.5.2), (4.5.6) holds for u 1 close enough to u * , and our goal is to prove that we may in fact choose u 1 = 1 and replace √ with in (4.5.6).

In view of the estimates for the Ricci coefficients and curvature components with respect to the outgoing geodesic frame (e 4 , e 3 , e θ ) of (ext) M provided by Proposition 3.4.5, (4.5.5) yields

ν Σ * (f ) = -2η + h, |d k h| r -1 (|d ≤k f | + |d ≤k f | 4 ) for k ≤ k large -5.
Using commutator identities, using also (4.5.3) and (4.5.4), and in view of (4.5.6), we infer

|ν Σ * ( d / k f )| | d / ≤k η| + √ r 2 u 1 2 +δ dec -2δ 0 for k ≤ k small + k loss + 2, u 1 ≤ u ≤ u * .
Since f = 0 on Σ * ∩ C * in view of (4.5.2), and since ν Σ * is tangent to Σ * , we deduce on Σ * , integrating along the integral curve of

ν Σ * | d / k f | u * u | d / ≤k η| + √ u 1 2 +δ dec -2δ 0 u * u 1 ν Σ * (u )r 2 for k ≤ k small + k loss + 2, u 1 ≤ u ≤ u * . Since ν Σ * (u) = e 3 (u) + a e 4 (u) = e 3 (u) - 2 ς + r 2 (κ + A) r 2 κ + 1 4 f 2 2 ς + r 2 (κ + A) e 4 + f e θ + 1 4 f 2 e 3 u = 2 ς - f 2 2ς 2 ς + r 2 (κ + A) r 2 κ + 1 4 f 2 2 ς + r 2 (κ + A) we have ν Σ * (u) = 2 + O( ) and hence | d / k f | u * u | d / ≤k η| + √ u 1 2 +δ dec -2δ 0 u * u 1 r 2 for k ≤ k small + k loss + 2, u 1 ≤ u ≤ u * .
Together with the behavior (3.3.4) of r on Σ * , we infer

| d / k f | u * u | d / ≤k η| + ru 1 2 +δ dec -2δ 0 for k ≤ k small + k loss + 2, u 1 ≤ u ≤ u * .
Next, we estimate η. We have by interpolation, since

k loss ≤ k large -k small , d / ≤k small +k loss +4 η L 2 (S) d / ≤k small η 1- k loss +4 k large -k small L 2 (S) d / ≤k large η k loss +4 k large -k small L 2 (S)
, and hence, using δ 0 > 0, we have

u * u d / ≤k small +k loss +4 η L 2 (S) Σ * (≥u) u 1+δ 0 | d / ≤k small +k loss +4 η| 2 1 2 1 u 1 2 +δ dec -2δ 0 Σ * u 2+2δ dec | d / ≤k small η| 2 1 2 - k loss +4 2(k large -k small ) Σ * | d / ≤k large η| 2 k loss +4 2(k large -k small ) .
where we have used the fact that

k loss + 4 k large -k small (1 + δ dec ) + δ 0 2 = 1 + 4 k loss (1 + δ dec ) + 1 2 δ 0 ≤ 2δ 0 and 1 2 + δ dec -2δ 0 = 1 2 + δ dec - 4k loss k large -k small ≥ δ dec > 0 since 16 ≤ k loss ≤ 1 8 (k large -k small
) and δ dec > 0 is small. Now, recall from the bootstrap assumptions on decay and energy for η along Σ * that we have

Σ * u 2+2δ dec |d ≤k small η| 2 + Σ * |d ≤k large η| 2 ≤ 2 .
We deduce

u * u d / ≤k small +k loss +4 η L 2 (S) u 1 2 +δ dec -2δ 0 .
Together with the Sobolev embedding on the 2-spheres S foliating Σ * , as well as the behavior (3.3.4) of r on Σ * , we infer

u * u | d / ≤k small +k loss +2 η| ru 1 2 +δ dec -2δ 0 .
Plugging in the above estimate for f , we infer

| d / k f | ru 1 2 +δ dec -2δ 0 for k ≤ k small + k loss + 2, u 1 ≤ u ≤ u * .
Together with (4.5.3) and (4.5.4), we recover e 4 and e 3 derivatives to deduce

|d k f | ru 1 2 +δ dec -2δ 0 for k ≤ k small + k loss + 2, u 1 ≤ u ≤ u * .
This is an improvement of the bootstrap assumption (4.5.6). Thus, we may choose u 1 = 1, and f satisfies the following estimate

|d k f | ru 1 2 +δ dec -2δ 0 for k ≤ k small + k loss + 2 on Σ * .
Together with (4.5.4), as well as the behavior (3.3.4) of r on Σ * , we infer

|d k-1 e 3 f | |d k-1 η| + r 2 ru 1+δ dec -2δ 0 for k ≤ k small + k loss + 2 on Σ * .

Collecting the two above estimates, we obtain

|d k f | ru 1 2 +δ dec -2δ 0 , |d k-1 e 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + k loss + 2 on Σ * . (4.5.7)
Step 3. Next, we estimate f on (ext) M. We assume the following local bootstrap assumption

|d ≤k small +k loss +2 f | ≤ √ ru 1 2 +δ dec -2δ 0 + u 1+δ dec -2δ 0 on r ≥ r 1 . (4.5.8)
where r 1 ≥ 4m 0 . In view of the control of f on Σ * provided by (4.5.7), (4.5.8) holds for r 1 sufficiently large, and our goal is to prove that we may in fact choose r 1 = 4m 0 and replace √ with in (4.5.8).

Recall (4.5.

3)

e 4 (f ) + 1 2 κf = - 1 2 f ϑ - 1 2 f 2 η - 3 2 f 2 ζ + 1 8 f 3 κ + 1 2 f 3 ω + 1 8 f 3 ϑ + 1 8 f 4 ξ on (ext) M.
In view of the estimates for the Ricci coefficients and curvature components with respect to the outgoing geodesic frame (e 4 , e 3 , e θ ) of (ext) M provided by Proposition 3.4.5,

d k - 1 2 f ϑ - 1 2 f 2 η - 3 2 f 2 ζ + 1 8 f 3 κ + 1 2 f 3 ω + 1 8 f 3 ϑ + 1 8 f 4 ξ r -2 u -1 2 |d ≤k f | + r -1 (|d ≤k f | 2 + |d ≤k f | 4 ) for k ≤ k large -5.
Using commutator identities, using also (4.5.3), and in view of (4.5.8), we infer

6 e 4 ( d /, T ) k f + 1 2 κ( d /, T ) k f ≤ r 3 u 1+δ dec -2δ 0 for k ≤ k small + k loss + 2, r ≥ r 1 .
Integrating backwards from Σ * where we have (4.5.7), we deduce 7

|( d /, T ) k f | ≤ ru 1 2 +δ dec -2δ 0 + u 1+δ dec -2δ 0 for k ≤ k small + k loss + 2, r ≥ r 1 .
Together with (4.5.3), we recover the e 4 derivatives and obtain

|d k f | ≤ ru 1 2 +δ dec -2δ 0 + u 1+δ dec -2δ 0 for k ≤ k small + k loss + 2, r ≥ r 1 .
This is an improvement of the bootstrap assumption (4.5.8). Thus, we may choose r 1 = 4m 0 , and we have

|d k f | ru 1 2 +δ dec -2δ 0 + u 1+δ dec -2δ 0 for k ≤ k small + k loss + 2 on (ext) M.
6 Note that

δ dec -2δ 0 = δ dec - 2k loss k large -k small ≥ δ dec 3 > 0
where we have used the definition of δ 0 and the upper bound on k loss . 7 Note that (4.5.7) yields

|d k f | u 1+δ dec -2δ0 for k ≤ k small + k loss + 2 on Σ * .
in view of the behavior (3.3.4) of r on Σ * .
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|d k-1 e 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + k loss + 2 on (ext) M.
Collecting the two above estimates, we obtain

|d k f | ru 1 2 +δ dec -2δ 0 + u 1+δ dec -2δ 0 , for k ≤ k small + k loss + 2 on (ext) M, |d k-1 e 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + k loss + 2 on (ext) M, (4.5.9) 
which is the desired estimate for f .

Step 4. In view of Proposition 2.3.4 applied to our particular case, i.e. a triplet (f, , f , λ) with f = 0 and λ = 1, and the fact that the frame (e 4 , e 3 , e θ ) is outgoing geodesic, we have

ξ = ξ, ζ = ζ - 1 4 f κ -f ω - 1 4 f ϑ + l.o.t., η = η + 1 2 e 3 (f ) -f ω + l.o.t., η = -ζ + 1 4 κf + 1 4 f ϑ + l.o.t., κ = κ + d / 1 (f ) + f (ζ + η) - 1 4 f 2 κ -f 2 ω + l.o.t., κ = κ + f ξ + l.o.t., ϑ = ϑ -d / 2 (f ) + f (ζ + η) -f 2 ω + l.o.t. ϑ = ϑ + f ξ + l.o.t., ω = f ζ - 1 8 κf 2 - 1 4 ωf 2 + l.o.t., ω = ω + 1 2 f ξ, and 
α = α + 2f β + 3 2 f 2 ρ + l.o.t., β = β + 3 2 ρf + l.o.t., ρ = ρ + f β + l.o.t., β = β + 1 2 f α, α = α. (4.5.10)
where the lower order terms denoted by l.o.t. are linear with respect to ξ, ξ, ϑ, κ, η, η, ζ, κ, ϑ and α, β, ρ, β, α, and quadratic or higher order in f , and do not contain derivatives of the latter. Together with the estimates (4.5.9) for f on (ext) M, and the estimates for the Ricci coefficients and curvature components with respect to the outgoing geodesic frame (e 4 , e 3 , e θ ) of (ext) M provided by the bootstrap assumptions on decay and Proposition 3.4.5, we immediately infer max

0≤k≤k small +k loss +1 sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k (Γ g \ {η })| + ru 1+δ dec -2δ 0 |d k Γ b | +r 2 u 1+δ dec -2δ 0 d k-1 e 3 κ - 2 r , κ + 2Υ r , ϑ , ζ , η + r 3 (u + 2r) 1 2 +δ dec -2δ 0 + r 2 (u + 2r) 1+δ dec -2δ 0 |d k α | + |d k β | + r 3 (2r + u) 1+δ dec + r 4 (2r + u) 1 2 +δ dec -2δ 0 |d k-1 e 3 (α )| + r 3 u 1+δ dec + r 4 u 1 2 +δ dec -2δ 0 |d k-1 e 3 (β )| + r 3 u 1 2 +δ dec -2δ 0 + r 2 ru 1+δ dec -2δ 0 |d k ρ | +u 1+δ dec -2δ 0 r 2 |d k β | + r|d k α | (4.5.11)
where we have introduced the notation

Γ g \ {η } = rω , κ - 2 r , ϑ , ζ , η , κ + 2Υ r , r -1 (e 4 (r) -1), r -1 e θ (r), e 4 (m) .
Note also, in view of the above transformation formula for ω , i.e.

ω = f ζ - 1 8 κf 2 - 1 4 ωf 2 + l.o.t.,
that we have in fact a gain of r -1 for ω compared to (4.5.11), i.e. max 0≤k≤k small +k loss +1 sup

(ext) M r 3 u 1 2 +δ dec -2δ 0 + r 2 u 1+δ dec -2δ 0 |d k ω | . ( 4 
.5.12)

We now focus on estimating η . Proceeding as for the other Ricci coefficients would yield for η the same behavior than η and hence a loss of r -1 compared to the desired estimate. Instead, we rely on the following null structure equation which follow from Proposition 2.2.1 and the fact that ξ = 0

e 4 (η -ζ ) + 1 2 κ (η -ζ ) = 2 d / 1 ω - 1 2 ϑ (η -ζ ).
Next,

• we commute with d / and T , and we rely on the corresponding commutator identities,

• we use the above equation for e 4 (η ) to recover the e 4 derivatives,

• we rely on the estimates (4.5.11), as well as the estimate (4.5.12) for ω , which allows us to derive

e 4 (d k (η -ζ )) + 1 2 κ d k (η -ζ ) r 4 u 1 2 +δ dec -2δ 0 + r 3 u 1+δ dec -2δ 0 + r 2 |d ≤k (η -ζ )|, k ≤ k small + k loss .
Integrating backwards from Σ * where η = 0 in view of (4.5.2), and using the control ζ provided by (4.5.11), we infer max

0≤k≤k small +k loss sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k η | + max 0≤k≤k small +k loss sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k ζ | .
Also, commuting first the equation for e 4 (ηζ ) with e 3 , using the commutator identity [e 3 , e 4 ] = 2ω e 4 -2ω e 3 + (ηη )e θ , and proceeding as above to integrate backward from Σ * , we also obtain max

0≤k≤k small +k loss sup (ext) M r 2 u 1+δ dec -2δ 0 |d k-1 e 3 η | + max 0≤k≤k small +k loss sup (ext) M r 2 u 1+δ dec -2δ 0 |d k-1 e 3 ζ | . CHAPTER 4.
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Thus, together with (4.5.11), we infer max

0≤k≤k small +k loss sup (ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k Γ g | + ru 1+δ dec -2δ 0 |d k Γ b | +r 2 u 1+δ dec -2δ 0 d k-1 e 3 κ - 2 r , κ + 2Υ r , ϑ , ζ , η , η + r 3 (u + 2r) 1 2 +δ dec -2δ 0 + r 2 (u + 2r) 1+δ dec -2δ 0 |d k α | + |d k β | + r 3 (2r + u) 1+δ dec + r 4 (2r + u) 1 2 +δ dec -2δ 0 |d k-1 e 3 (α )| + r 3 u 1+δ dec + r 4 u 1 2 +δ dec -2δ 0 |d k-1 e 3 (β )| + r 3 u 1 2 +δ dec -2δ 0 + r 2 ru 1+δ dec -2δ 0 |d k ρ | +u 1+δ dec -2δ 0 r 2 |d k β | + r|d k α | .
Together with the fact that ξ = 0 in view of (4.5.2), this concludes the proof of Proposition 3.4.6. To match the frame of (int) M and a conformal renormalization of the frame of (ext) M, we will need to introduce a cut-off function.

Existence and control of the global frames

Definition 4.6.1. Let ψ : R → R a smooth cut-off function such that 0 ≤ ψ ≤ 1, ψ = 0 on (-∞, 0] and ψ = 1 on [1, +∞). We define ψ m 0 ,δ H as follows ψ m 0 ,δ H (r) = 1 if r ≥ 2m 0 1 + 3 2 δ H , 0 if r ≤ 2m 0 1 + 1 2 δ H , and 
ψ m 0 ,δ H (r) = ψ r -2m 0 1 + 1 2 δ H 2m 0 δ H on 2m 0 1 + 1 2 δ H ≤ r ≤ 2m 0 1 + 3 2 δ H .
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We are now ready to define the global frame of the statement of Proposition 3.5.2.

Definition 4.6.2 (Definition of the global frame). We introduce a global null frame defined on (ext) M ∪ (int) M and denoted by ( (glo) e 4 , (glo) e 3 , (glo) e θ ). The global frame is defined as follows 1. In (ext) M \ Match, we have

( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ .
2. In (int) M \ Match, we have ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (int) e 4 , (int) e 3 , (int) e θ .

3. It remains to define the global frame on the matching region. We denote by (f, f , λ) the reduced scalars such that we have in the matching region

(ext) e 4 = λ (int) e 4 + f (int) e θ + 1 4 f 2(int) e 3 , (ext) e θ = 1 + 1 2 f f (int) e θ + f 2 (int) e 4 + f 2 1 + f f 4 (int) e 3 , (ext) e 3 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 (int) e 3 + f 1 + f f 4 (int) e θ + f 2 4 (int) e 4 ,
where we recall that the frame of (ext) M has been extended to (int) M, see section 3.5.1. Then, in the matching region, the global frame is given by

(glo) e 4 = λ (int) e 4 + f (int) e θ + 1 4 f 2 (int) e 3 , (glo) e θ = 1 + 1 2 f f (int) e θ + f 2 (int) e 4 + f 2 1 + f f 4 (int) e 3 , (glo) e 3 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 (int) e 3 + f 1 + f f 4 (int) e θ + f 2 4 (int) e 4 ,
where • If the cut-off ψ in Definition 3.5.1 is such that ψ = 1 on [1/2, +∞), then ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ on (ext) M.

f = ψ m 0 ,δ H ( (int) r)f, f = ψ m 0 ,δ H ( (int) r)f , λ = 1 -ψ m 0 ,δ H ( (int) r) + ψ m 0 ,δ H ( (int) r) (ext) Υλ.
• If the cut-off ψ in Definition 3.5.1 is such that ψ = 0 on (-∞, 1/2], then ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (int) e 4 , (int) e 3 , (int) e θ on (int) M.

Definition 4.6.4 (Global area radius and Hawking mass). We definition an area radius and a Hawking mass on (ext) M ∪ (int) M as follows

• On (ext) M \ Match, we have

(glo) r = (ext) r, (glo) m = (ext) m • On (int) M \ Match, we have (glo) r = (int) r, (glo) m = (int) m
• On the matching region, we have

(glo) r = (1 -ψ m 0 ,δ H ( (int) r)) (int) r + ψ m 0 ,δ H ( (int) r) (ext) r, (glo) m = (1 -ψ m 0 ,δ H ( (int) r)) (int) m + ψ m 0 ,δ H ( (int) r) (ext) m.
The following two lemmas provide the main properties of the global frame. Lemma 4.6.5. We have in (ext) M \ Match the following relations between the quantities in the respective frames

(glo) α = Υ 2(ext) α, (glo) β = Υ (ext) β, (glo) ρ + 2m r 3 = (ext) ρ + 2m r 3 , (glo) β = Υ -1(ext) β, (glo) α = Υ -2(ext) α, (glo) ξ = 0, (glo) ξ = Υ -2(ext) ξ, (glo) ζ = -(glo) η = (ext) ζ, (glo) η = (ext) η, (glo) ω + m r 2 = - m 2r (ext) κ - 2 r + e 4 (m) r , (glo) ω = Υ -1 (ext) ω - m r 2 + m 2Υr (ext) κ - 2Υ r + m 2Υr (ext) Ω(ext) κ -(ext) Ω(ext) κ - e 3 (m) Υr , (glo) κ - 2Υ r = Υ (ext) κ - 2 r , (glo) κ + 2 r = Υ -1 (ext) κ + 2Υ r , (glo) κ = Υ (ext) κ, (glo) κ = Υ -1(ext) κ, (glo) ϑ = Υ (ext) ϑ, (glo) ϑ = Υ -1(ext) ϑ.
Proof. The proof follows immediately from the change of frame formula with the choice (f = 0, f = 0, λ = Υ), the fact that e θ (Υ) = 0, and the fact that the frame of (ext) M is outgoing geodesic and thus satisfies in particular ξ = ω = 0 and η = -ζ.

Lemma 4.6.6 (Control of the global frame in the matching region). In the matching region, the following estimates holds for the global frame8 max 0≤k≤k small -2

sup

Match∩ (int) M u 1+δ dec d k ( (glo) Γ, (glo) Ř) + sup Match∩ (ext) M u 1+δ dec d k ( (glo) Γ, (glo) Ř) + max 0≤k≤k large -1 Match d k ( (glo) Γ, (glo) Ř) 2 1 2
.

and Match d k large ( (glo) Γ, (glo) Ř) 2 1 2 + T d k large ( (ext) Ř) 2 1 2
.

Remark 4.6.7. The quantities associated to the global frame can be estimated as follows

• In (int) M \ Match, the global frame coincides with the frame of (int) M, and hence, the quantities associated to the global frame satisfy the same estimates than the bootstrap assumptions for the frame of (int) M.

• In (ext) M \ Match, estimates for the quantities associated to the global frame follow from the identities of Lemma 4.6.5 together with the bootstrap assumptions for the frame of (ext) M.

• In Match, the estimates for the quantities associated to the global frame are provided by Lemma 4.6.6.

The proof of Proposition 3.5.2 easily follows from Definition 4.6.2, Remark 4.6.3, and Lemma 4.6.6. Thus, from now on, we focus on the proof of Lemma 4.6.6 which is carried out in the next section.

4.6.2 Proof of Lemma 4.6.6

In this section, we prove Lemma 4.6.6. To ease the exposition, the quantities associated to the the frame of (int) M are unprimed, the quantities associated to the frame of (ext) M are primed, and the quantities associated to the the global frame are double-primed.
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Step 1. Let (e 3 , e θ , e 4 ) denote the frame of (int) M (and its extension) and (e 3 , e θ , e 4 ) the frame of (ext) M (and its extension). We denote by (f, f , λ) the reduced scalars such that

e 4 = λ e 4 + f e θ + 1 4 f 2 e 3 , e θ = 1 + 1 2 f f e θ + f 2 e 4 + f 2 1 + f f 4 e 3 , e 3 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f + 1 4 f 2 f e θ + f 2 4 e 4 .
Together with the initialization of the frame of (ext) M and (int) M on T in section 3.1.2 (where the spheres coincide), we have in particular

f = f = 0, λ = Υ -1 on T . (4.6.2)
Also, recall from section 3.5.1 that in order for (e 3 , e θ , e 4 ) to be defined everywhere on (int) M ∩ Match, we need -in addition to the above initialization of (f, f , λ) on T , to initialize it also on C * ∩ Match by

f = f = 0, λ = Υ -1 on C * ∩ Match. (4.6.3) 
Step 2. Next, we control the change of frame (f, f , λ) from (e 3 , e θ , e 4 ) to (e 3 , e θ , e 4 ) in the region (int) M ∩ Match. To this end, we rely on the transport equation of Lemma 2.3.6 together with the fact that ω = ξ = ζ + η = 0. Then, (f , f, log(λ)) satisfy the following transport equations

λ -1 e 4 (f ) + κ 2 + 2ω f = -2ξ + E 1 (f, Γ), λ -1 e 4 (log(λ)) = 2ω + E 2 (f, Γ), λ -1 e 4 (f ) + κ 2 f = -2(ζ + η) + 2e θ (log(λ)) + 2f ω + E 3 (f, f , Γ),
where E 1 , E 2 and E 3 are given by

E 1 (f, Γ) = - 1 2 ϑf + l.o.t., E 2 (f, Γ) = f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ + l.o.t., E 3 (f, f , Γ) = -f e θ (f ) - 1 2 f ϑ + l.o.t.,
Here, l.o.t. denote terms which are cubic or higher order in f, f (or in f only in the case of E 1 and E 2 ) and Γ and do not contain derivatives of these quantities, where Γ and Γ denotes the Ricci coefficients and renormalized Ricci coefficients w.r.t. the original null frame (e 3 , e 4 , e θ ). We rewrite the transport equation for log(λ) as

λ -1 e 4 (log (Υλ)) = λ -1 e 4 (log(λ)) + λ -1 e 4 (log(Υ)) = 2ω + E 2 (f, Γ) + 1 Υ e 4 + f e θ + 1 4 f 2 e 3 Υ = 2 ω + m r 2 + E 2 (f, Γ) + 2 Υ m(e 4 (r) -Υ) r 2 - 2 Υ e 4 (m) r - 1 Υ f e θ + 1 4 f 2 e 3 Υ.
In view of the above transport equations for f , f and λ, the initialization (4.6.2) (4.6.3) for (f, f , λ) on T ∪ (C * ∩ Match), and the control of Γ induced by the bootstrap assumptions on (int) M, we easily deduce max

0≤k≤k small sup (int) M∩Match u 1+δ dec d k (f, log(Υλ)) + max 0≤k≤k small -1 sup (int) M∩Match u 1+δ dec d k f , max 0≤k≤k large (int) M∩Match d k (f, log(Υλ)) 2 1 2 + max 0≤k≤k large -1 (int) M∩Match d k f 2 1 2
.

Step 3. We need to improve the number of derivatives in the top order estimate for (f, f , log(λ)). To this end, note first in view of the transformation formulas of Proposition 2.3.4 and the control of (f, f , log(λ)) provided by Step 2, we have in particular

max 0≤k≤k large -1 (int) M∩Match d k Ř 2 1 2
.

Relying on this estimate, the control of the Ricci coefficients associated to the outgoing null frame (e 4 , e 3 , e θ ) on T ∪ ( (int) M ∩ Match), and the null structure equations, we infer max

0≤k≤k large -1 (int) M∩Match d k Γ 2 1 2
.

We refer to section 8.9 for a completely analogous proof where the Ricci coefficients are recovered in (int) M based on the control of the curvature components.

In view of the transformation formulas of Proposition 2.3.4, which can be written schematically as

∂ f, f , log(λ) = F (f, f , λ, Γ),
the control of (f, f , log(λ)) provided by Step 2, and the above control of Γ , we infer max

0≤k≤k large (int) M∩Match d k (f, f , log(Υλ)) 2 1 2 
.

Step 4. We still need to control one more derivative of (f, f , log(λ)). Repeating the process of Step 3, we use again the transformation formulas of Proposition 2.3.4 and then the final estimate of Step 3 for (f, f , log(λ)) yields the following control for the curvature components max

0≤k≤k large (int) M∩Match d k Ř 2 1 2
.

Arguing as in Step 3, we infer

9 max 0≤k≤k large (int) M∩Match d k Γ 2 1 2 + T d k large ( (ext) Ř) 2 1 2
.

Using again the transformation formulas of Proposition 2.3.4, this yields the following control for (f, f , log(λ)) max

0≤k≤k large +1 (int) M∩Match d k (f, f , log(Υλ)) 2 1 2 
.

We have finally obtained for (f, f , λ)

in (int) M ∩ Match max 0≤k≤k small -1 sup (int) M∩Match u 1+δ dec d k (f, f , log(Υλ)) , max 0≤k≤k large (int) M∩Match d k (f, f , log(Υλ)) 2 1 2 , (int) M∩Match d k large +1 (f, f , log(Υλ)) 2 1 2 + T d k large ( (ext) Ř) 2 1 2
.

Step 5. In addition to the estimate of (f,

f , λ) in (int) M ∩ Match of Step 4, we need to estimate (f, f , λ) in (ext) M ∩ Match.
To this end, we first control in (ext) M ∩ Match the 9 In Step 3, there is no term corresponding to the one integrated on T . This is due to the fact that for k ≤ k large -1, we have thanks to the bootstrap assumptions on energy and a trace estimate

max 0≤k≤k large -1 T d k ( (ext) Ř) 2 1 2
.

reduced scalar (f , f , λ ) satisfying

e 3 = λ e 3 + f e θ + 1 4 f 2 e 4 , e θ = 1 + 1 2 f f e θ + 1 2 f e 3 + 1 2 f + 1 4 f f 2 e 4 , e 4 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 4 + f + 1 4 f 2 f e θ + 1 4 f 2 e 3 .
Together with the initialization of the frame of (ext) M and (int) M on T in section 3.1.2 (where the spheres coincide), we have in particular

f = f = 0, λ = Υ -1 on T .
Also, recall from section 3.5.1 that in order for (e 3 , e θ , e 4 ) to be defined everywhere on (ext) M ∩ Match, we need -in addition to the above initialization of (f, f , λ) on T , to initialize it also on C * ∩ Match by

f = f = 0, λ = Υ -1 on C * ∩ Match. (4.6.4) 
Arguing similarly to Steps 1-4, we estimate (f , f , λ ) and ( Γ, Ř) in (ext) M ∩ Match. We obtain

max 0≤k≤k small -2 sup (ext) M∩Match u 1+δ dec d k ( Γ, Ř) + max 0≤k≤k large -1 (ext) M∩Match d k ( Γ, Ř) 2 1 2 , (ext) M∩Match d k large Ř 2 1 2 , max 0≤k≤k small -1 sup (ext) M∩Match u 1+δ dec d k (f , f , log(Υ λ )) , max 0≤k≤k large (ext) M∩Match d k (f , f , log(Υ λ )) 2 1 2
, and

(ext) M∩Match d k large Γ 2 1 2 + T d k large ( (ext) Ř) 2 1 2 , (ext) M∩Match d k large +1 (f , f , log(Υ λ )) 2 1 2 + T d k large ( (ext) Ř) 2 1 2
.

Step 6. As mentioned above, in addition to the estimate of (f, f , λ) in (int) M ∩ Match of Step 4, we need to estimate (f, f , λ) in (ext) M ∩ Match. To this end, we derive simple 248 CHAPTER 4. CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS algebraic relations between (f, f , λ) and (f , f , λ ) of Step 5. On the one hand, we have from the definition of (f, f , λ)

g(e 4 , e 3 ) = -2λ, g(e 4 , e θ ) = λf, g(e θ , e 4 ) = -f

1 + f f 4 , g(e θ , e 3 ) = -f , g(e 3 , e 4 ) = -2λ -1 1 + f f 2 + 1 16 f 2 f 2 , g(e 3 , e θ ) = λ -1 f 1 + f f 4 .
On the other hand, we have from the definition of (f , f , λ )

g(e 3 , e 4 ) = -2λ , g(e 3 , e θ ) = λ f , g(e θ , e 4 ) = -f , g(e θ , e 3 ) = -f 1 + f f 4 , g(e 4 , e 3 ) = -2λ -1 1 + f f 2 + 1 16 f 2 f 2 , g(e 4 , e θ ) = λ -1 f 1 + f f 4 .
We immediately infer

λ = λ, f = -λf, f = -λ -1 f .
In view of the estimates of Step 5, we infer max

0≤k≤k small -1 sup (ext) M∩Match u 1+δ dec d k (f, f , log(Υλ)) , max 0≤k≤k large (ext) M∩Match d k (f, f , log(Υλ)) 2 1 2
, and

(ext) M∩Match d k large +1 (f, f , log(Υλ)) 2 1 2 
.

Together with Step 4, this yields max

0≤k≤k small -1 sup (int) M∩Match u 1+δ dec d k (f, f , log(Υλ)) , max 0≤k≤k small -1 sup (ext) M∩Match u 1+δ dec d k (f, f , log(Υλ)) , max 0≤k≤k large Match d k (f, f , log(Υλ)) 2 1 2 + T d k large ( (ext) Ř) 2 1 2
, and max

0≤k≤k large +1 Match d k (f, f , log(Υλ)) 2 1 2 + T d k large ( (ext) Ř) 2 1 2
.

Step 7. Next, we estimate rr and mm. Note first the in view of the initialization of the foliations of (ext) M and (int) M on T , as well as the initializations (4. We start with the region (int) M ∩ Match. We have

e 4 (r ) = r 2 κ = 1 + r 2 κ - 2 r , e 3 (r ) = r 2 (κ + A ) = -Υ + r 2 κ + 2Υ r + r 2 A ,
which together with the identities for e 4 (m ) and e 3 (m ) in the outgoing foliation of (ext) M and the control of the foliation of (ext) M in (int) M ∩ Match established in Step 4 yields, using also e θ (r ) = e θ (m ) = 0, max

0≤k≤k small -2 sup (int) M∩Match u 1+δ dec d k (e 4 (r ) -1, e 3 (r ) + Υ , e θ (r ), e 4 (m ), e 3 (m ), e θ (m )) , max 0≤k≤k large -1 (int) M∩Match d k (e 4 (r ) -1, e 3 (r ) + Υ , e θ (r ), e 4 (m ), e 3 (m ), e θ (m )) 2 1 2
.

On the other hand, we have in view of the decomposition of e 4 , e 3 and e θ of Step 1

e 4 (r) = λ e 4 + f e θ + 1 4 f 2 e 3 r = λ r 2 (κ + A) + 1 4 f 2 e 3 (r) = 1 + λΥ -1 + λ r 2 κ - 2Υ r + r 2 A + 1 4 f 2 e 3 (r) , e 4 (m) = λ e 4 + f e θ + 1 4 f 2 e 3 m = λ e 4 (m) + 1 4 f 2 e 3 (m) , e 3 (r) = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f + 1 4 f 2 f e θ + f 2 4 e 4 r = λ -1 e 3 (r) + 1 2 f f + 1 16 f 2 f 2 e 3 (r) + f 2 4 e 4 (r) = -Υ + λ -1 (λΥ -1) + λ -1 r 2 κ + 2 r + 1 2 f f + 1 16 f 2 f 2 e 3 (r) + f 2 4 e 4 (r) , 250 CHAPTER 4. CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS e 3 (m) = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f + 1 4 f 2 f e θ + f 2 4 e 4 m = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 (m) + f 2 4 e 4 (m) , e θ (r) = 1 + 1 2 f f e θ + f 2 e 4 + f 2 1 + f f 4 e 3 r = f 2 e 4 (r) + f 2 1 + f f 4 e 3 (r),
and

e θ (r) = 1 + 1 2 f f e θ + f 2 e 4 + f 2 1 + f f 4 e 3 m = f 2 e 4 (m) + f 2 1 + f f 4 e 3 (m).
Together with the identities for e 4 (m) and e 3 (m) in the ingoing foliation of (int) M, the final estimates of Step 6 for f and λ, and the bootstrap assumptions for the foliation of .

We deduce

max 0≤k≤k small -2 sup (int) M∩Match u 1+δ dec d k (e 4 (r -r), e θ (r -r ), d(m -m)) , max 0≤k≤k large -1 (int) M∩Match d k (e 4 (r -r), e θ (r -r ), d(m -m)) 2 1 2 
.

In particular, we have sup

(int) M∩Match u 1+δ dec |(e 4 (r -r), e 4 (m -m))| ,
and together with the initialization (4.6.5), we integrate the transport equation from T ∪ ( (int) M ∩ Match) and obtain sup

(int) M∩Match u 1+δ dec |(r -r, m -m)| .
Together with the above estimates, and recovering the e 3 (rr) using

e 3 (r -r) = e 3 (r ) + Υ -e 3 (r) + Υ + 2 m r - m r ,
we infer max

0≤k≤k small -1 sup (int) M∩Match u 1+δ dec d k (r -r, m -m) , max 0≤k≤k large (int) M∩Match d k (r -r, m -m) 2 1 2
.

Finally, arguing similarly in the region (ext) M ∩ Match, we infer max

0≤k≤k small -1 sup (ext) M∩Match u 1+δ dec d k (r -r, m -m) , max 0≤k≤k large (ext) M∩Match d k (r -r, m -m) 2 1 2
, and hence max

0≤k≤k small -1 sup (int) M∩Match u 1+δ dec d k (r -r, m -m) , max 0≤k≤k small -1 sup (ext) M∩Match u 1+δ dec d k (r -r, m -m) , max 0≤k≤k large Match d k (r -r, m -m) 2 1 2
.

Step 8. Recall from Definition 4.6.2 that we have defined the global null frame (e 4 , e 3 , e θ ) as

• In (int) M \ Match, (e 4 , e 3 , e θ ) = (e 4 , e 3 , e θ ).

• In (ext) M \ Match, (e 4 , e 3 , e θ ) = (Υe 4 , Υ -1 e 3 , e θ ).

• In Match, (e 4 , e 3 , e θ ) is given by the change of frame formula starting from (e 4 , e 3 , e θ ) and with change of frame coefficients (f , f , λ ) given by

f = ψf, f = ψf , λ = 1 -ψ + ψΥ λ,
see (4.6.1).
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Also, recall that we have defined r and m as

r = (1 -ψ)r + ψr , m = (1 -ψ)m + ψm .
Step 9. In view of the transformation formulas of Proposition 2.3.4, we have schematically

( Γ , Ř ) = ( Γ, Ř) + d(f , f , λ -1) + f + f + (λ -1) + (r -r) + (m -m).
In view of the definition of (f , f , λ ) and (r , m ) in Step 8, we infer

( Γ , Ř ) = ( Γ, Ř) + d(f, f , Υλ -1) + f + f + (Υλ -1) + (r -r) + (m -m).
Together with the bootstrap assumptions in (int) M for (Γ, Ř), the estimates for (Γ, Ř) in (ext) M provided by Step 5, the estimates for (f, f , λ) provided by Step 6 in Match, and the estimates for rr and mm provided by Step 7, we deduce max

0≤k≤k small -2 sup (int) M∩Match u 1+δ dec d k ( Γ , Ř ) , max 0≤k≤k small -2 sup (ext) M∩Match u 1+δ dec d k ( Γ , Ř ) , max 0≤k≤k large -1 Match d k ( Γ , Ř ) 2 1 2 , Match d k large ( Γ , Ř ) 2 1 2 + T d k large ( (ext) Ř) 2 1 2
.

Since the double-primed quantities correspond to the quantities associated to the the global frame, this concludes the proof of Lemma 4.6.6.

Proof of Proposition 3.5.5

To match the first global frame of M of Proposition 3.5.5 with a conformal renormalization of the second frame of (ext) M of Proposition 3.4.6, we will need to introduce a cut-off function.

Definition 4.6.8. Let ψ : R → R a smooth cut-off function such that 0 ≤ ψ ≤ 1, ψ = 0 on (-∞, 0] and ψ = 1 on [1, +∞). We define ψ m 0 as follows

ψ m 0 (r) = 1 if r ≥ 4m 0 , 0 if r ≤ 7m 0 2 ,
and

ψ m 0 (r) = ψ 2 r -7m 0 2 m 0 on 7m 0 2 ≤ (ext) r ≤ 4m 0 .
We are now ready to define the second global frame, i.e. the global frame of the statement of Proposition 3.5.5.

Definition 4.6.9 (Definition of the second global frame). We introduce a global null frame defined on (ext) M ∪ (int) M and denoted by ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ). The second global frame is defined as follows 1. In (ext) M ∩ { (ext) r ≥ 4m 0 }, we have

( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = (ext) Υe 4 , (ext) Υ -1 e 3 , e θ ,
where (e 4 , e 3 , e θ ) denotes the second frame of (ext) M, i.e. the one constructed in of Proposition 3.4.6.

In

(int) M ∪ ( (ext) M ∩ { (ext) r ≤ 7m 0 2 }),
we have ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = (glo) e 4 , (glo) e 3 , (glo) e θ , where (glo) e 4 , (glo) e 3 , (glo) e θ denotes the first global frame of M of Proposition 3.5.5.

It remains to define the global frame on the matching region Match . We denote by

f the reduced scalar introduced in Proposition 3.4.6 such that we have in (ext) M

e 4 = (ext) e 4 + f (ext) e θ + 1 4 f 2(ext) e 3 , e θ = (ext) e θ + f 2 (ext) e 3 , e 3 = (ext) e 3 .
Then, in the matching region Match , the second global frame of M is given by

(glo ) e 4 = Υ Υ -1 (glo) e 4 + f (glo) e θ + 1 4 f 2 Υ (glo) e 3 , (glo ) e θ = (glo) e θ + f 2 Υ (glo) e 3 , (glo ) e 3 = (glo) e 3 ,
where • If the cut-off ψ in Definition 3.5.4 is such that ψ = 1 on [1/2, +∞), then

f = ψ m 0 ( (ext) r)f, Υ = 1 -ψ m 0 ( (ext) r) + ψ m 0 ( (ext) r) (ext) Υ. ( 4 
( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = (ext) Υe 4 , (ext) Υ -1 e 3 , e θ on (ext) M (ext) r ≥ 15m 0 4 .
• If the cut-off ψ in Definition 3.5.4 is such that ψ = 0 on (-∞, 1/2], then ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ) = (glo) e 4 , (glo) e 3 , (glo) e θ on (int) M ∪ (ext) M (ext) r ≤ 15m 0 4 .

Remark 4.6.11. When dealing with the second global frame ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ), the area radius and Hawking mass that we use are the ones corresponding to the first global frame, i.e. (glo) r and (glo) m.

The following two lemmas provide the main properties of the second global frame of M.

Lemma 4.6.12. We have in (ext) M(r ≥ 4m 0 ) the following relations between the quantities in the second global frame of M, i.e. ( (glo ) e 4 , (glo ) e 3 , (glo ) e θ ), and the second frame of (ext) M, i.e. (e 4 , e 3 , e θ ),

(glo ) α = Υ 2 α , (glo ) β = Υβ , (glo ) ρ + 2m r 3 = ρ + 2m r 3 , (glo ) β = Υ -1 β , (glo ) α = Υ -2 α , (glo ) ξ = 0, (glo ) ξ = Υ -2 ξ , (glo ) ζ = -(glo ) η = ζ , (glo ) η = η , (glo ) ω + m r 2 = Υω + m r 2 (1 -e 4 (r)) + e 4 (m) r , (glo ) ω = Υ -1 ω - m r 2 + m r 2 1 - e 3 (r) Υ - e 3 (m) Υr , (glo ) κ - 2Υ r = Υ κ - 2 r , (glo ) κ + 2 r = Υ -1 κ + 2Υ r , (glo ) ϑ = Υϑ , (glo ) ϑ = Υ -1 ϑ .
Proof. The proof follows immediately from the change of frame formula with the choice (f = 0, f = 0, λ = Υ), the fact that e θ (Υ) = 0, and the fact that the frame (e 4 , e 3 , e θ ) is such that ξ = 0 and η = -ζ .

Lemma 4.6.13 (Control of the second global frame in the matching region). In the matching region, the following estimates holds for the second global frame

max 0≤k≤k small +k loss sup Match u 1+δ dec -2δ 0 d k ( (glo ) Γ, (glo ) Ř) .
Remark 4.6.14. The quantities associated to the second global frame can be estimated as follows

• In (int) M ∪ (ext) M( (ext) r ≤ 7m 0 2
), the second global frame coincides with the first global frame, and hence, the quantities associated to the second global frame satisfy the same estimates than the corresponding quantities for the first global frame.

• In (ext) M( (ext) r ≥ 4m 0 ), estimates for the quantities associated to the second global frame follow from the identities of Lemma 4.6.12 together with the estimates of Proposition 3.4.6 for the second frame of (ext) M.

• In Match , the estimates for the quantities associated to the global frame are provided by Lemma 4.6.13.

The proof of Proposition 3.5.5 easily follows from Definition 4.6.9, Remark 4.6.10, and Lemma 4.6.13. Thus, from now on, we focus on the proof of Lemma 4.6.13 which is carried out below.

Proof of Lemma 4.6.13. Recall from definition 4.6.9 that we have in the matching region Match

(glo ) e 4 = Υ Υ -1 (glo) e 4 + f (glo) e θ + 1 4 f 2 Υ (glo) e 3 , (glo ) e θ = (glo) e θ + f 2 Υ (glo) e 3 , (glo ) e 3 = (glo) e 3 ,
where

f = ψ m 0 ( (ext) r)f, Υ = 1 -ψ m 0 ( (ext) r) + ψ m 0 ( (ext) r) (ext) Υ.
Now, since (ext) r ≥ 7m 0 2 on Match , we also have in that region ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = ( (ext) Υ (ext) e 4 , ( (ext) Υ) -1 (ext) e 3 , (ext) e θ ).

We deduce on Match

(glo ) e 4 = (ext) Υ (ext) e 4 + f (ext) e θ + 1 4 f 2 (ext) e 3 , (glo ) e θ = (ext) e θ + f 2 (ext) e 3 , (glo ) e 3 = ( (ext) Υ) -1 (ext) e 3 ,
where

f = Υ ( (ext) Υ) -1 f = 1 -ψ m 0 ( (ext) r) + ψ m 0 ( (ext) r) (ext) Υ ( (ext) Υ) -1 ψ m 0 ( (ext) r)f.
In view of the transformation formulas of Proposition 2.3.4, we deduce, schematically,

(glo ) Γ, (glo ) Ř = (ext) Γ, (ext) Ř + df + f.
Together with the bootstrap assumptions on decay and Proposition 3.4.5 for ( (ext) Γ, (ext) Ř), and the estimate (3.4.11) for f , we infer max

0≤k≤k small +k loss sup Match u 1+δ dec -2δ 0 d k ( (glo ) Γ, (glo ) Ř)
which concludes the proof of Lemma 4.6.13.

Chapter 5 DECAY ESTIMATES FOR q (Theorem M1)

The goal of the chapter is to prove Theorem M1, i.e. to derive decay estimates for the quantity q for k ≤ k small + 20 derivatives. To this end, we will make use of the wave equation satisfied by q (see (2.4.7))

where N contains only quadratic or higher order terms. Now, in order to have a suitable right-hand side N , recall from the discussion in Remarks 2.4.8 and 2.4.9 that q is defined relative to the global null frame of Proposition 3.5.5 for which ξ = 0 for r ≥ 4m 0 and η ∈ Γ g . For such a global fame, N is given schematically by, see (2.4.8),

N = r 2 d ≤2 (Γ g • (α, β)) + e 3 r 3 d ≤2 (Γ g • (α, β)) + d ≤1 (Γ g • q) + l.o.t. (5.0.2)

Preliminaries

Smallness constants

Recall from the beginning of section 3.3.2 the constant m 0 and the main small constants δ H , δ B , δ dec , and 0 such that

• The constant m 0 > 0 is the mass of the initial Schwarzschild spacetime relative to which our initial perturbation is measured.

• The integer k large which corresponds to the maximum number of derivatives of the solution.

• The size of the initial data layer norm is measured by 0 > 0.

• The size of the bootstrap assumption norms are measured by > 0.

• δ H > 0 measures the width of the region |r -2m 0 | ≤ 2m 0 δ H where the redshift estimate holds and which includes in particular the region (int) M.

• δ dec is tied to decay estimates in u, u for Γ and Ř.

• δ B is involved in the r-power of the r p weighted estimates for curvature.

Recall also that these constants satisfy in view of (3.

3.1) (3.3.2) (3.3.3) 0 < δ H , δ dec , δ B min{m 0 , 1}, δ B > 2δ dec , k large 1 δ dec , 0 , min{δ H , δ dec , δ B , m 0 , 1}, and = 2 3
0 .

We will need the following additional small constants in this chapter

• δ extra > 0, tied to the decay of q, and is chosen such that δ extra > δ dec ,

• δ > 0 for various degeneracies,

• δ 0 > 0 which comes from interpolating between k ≤ k small derivatives of ( Γ, Ř) and k ≤ k large derivatives of ( Γ, Ř), see Lemma 5.1.1,

• q 0 > 0 which will allow us to recover the fact that the decay for q in Theorem M1 has an extra gain u -(δextra-δ dec ) compared from the expected behavior inferred from the bootstrap assumptions.

We will choose δ extra such that

δ dec < δ extra < 2δ dec , δ B ≥ 2δ extra , 5.1. PRELIMINARIES 259 δ and δ 0 such that 0 < , 0 δ, δ 0 δ dec , δ extra , δ H , m 0 , 1, (5.1.1) 
and q 0 such that 1 2δ dec < q 0 < 4δ dec -4δ 0 -4δ.

(5.1.2)

The foliation of M by τ

Recall that the spacetime M is decomposed as M = (int) M ∪ (ext) M and that u is an outgoing optical function on (ext) M while u is an ingoing optical function. In this chapter, we rely on the global frame (e 3 , e 4 , e θ , e ϕ ) defined in section 3.5, and r and m denote the corresponding scalar functions associated to it. Also, we define the trapping region region M trap as,

M trap := 5m 0 2 ≤ r ≤ 7m 0 2 . (5.1.3) Also, let (trap ) M = M \ (trap) M the complement of (trap) M in M.
We foliate our spacetime domain M by Z invariant hypersurfaces Σ(τ ) which are:

• Incoming null in (int) M, with e 3 as null incoming generator. We denote this portion (int) Σ(τ ).

• Strictly spacelike in (trap) M. We denote this portion by (trap) Σ.

• Outgoing null in M >4m 0 . We denote this portion by Σ >4m 0 (τ ).

• The parameter τ of Σ(τ ) can be chosen, smoothly, such that

τ :=      u in M >4m 0 , u + r in M trap , u in (int) M.
(5.1.4)

1 This will allow us to choose in the proof of Theorem M1, see (5.2.10),

δ extra = q 0 -δ 2 
which satisfies the desired estimate δ extra > δ dec for δ > 0 small enough.

• In particular, the unit normal in the region M trap , i.e. the normal to (trap) Σ, satisfies 2

-2 ≤ g(N Σ , e 4 ) ≤ -1, -2 ≤ g(N Σ , e 3 ) ≤ -1 on M trap .

(5.1.5)

Assumptions for Ricci coefficients and curvature

Recall from Remark 2.4.9 that q is defined, according to equation (2.3.10) in Lemma 2.3.10, relative to the global frame of Proposition 3.5.5 for which η ∈ Γ g with the notation

Γ g = Γ (0) g = ξ, ϑ, ω + m r 2 , κ - 2Υ r , η, η, ζ, A , Γ b = Γ (0) b = ϑ, κ + 2 r , A, ω, ξ ,
where we recall that

Υ = 1 - 2m r , A = 2 r e 4 (r) -κ, A = 2 r e 3 (r) -κ.
Note also that ξ vanishes in (ext) M away from the matching region of Proposition 3.5.5, and in particular for r ≥ 4m 0 .

For higher derivatives we write, Γ

g = dξ, dϑ, re θ ω, re θ (κ), dη, dη, dζ, dA

Γ (1) b = dϑ, re θ (κ), dξ, dA, re θ ω, dξ and for s ≥ 2, Γ (s) g = d s-1 Γ (1) g , Γ (s) b = d s-1 Γ (1) b
Moreover we denote

Γ ≤s g = Γ (0) g , Γ (1) g , . . . Γ (s) g , Γ ≤s b = Γ (0) b , Γ (1) 
b , . . .

Γ (s) b
.

2 N Σ is given in view of its definition by

N Σ = 1 √ 2 e 4 (r)(e 3 (u) + e 3 (r)) e 4 (r)e 3 + (e 3 (u) + e 3 (r))e 4 = 1 √ 2 2 -Υ + O( ) (1 + O( ))e 3 + (2 -Υ + O( ))e 4
where we used the bootstrap assumptions.
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With these notations, we may now state the estimates satisfied by the Ricci coefficients and curvature components. 

δ 0 > 0 satisfying 4 16 ≤ k loss ≤ δ dec 3 (k large -k small ), δ 0 = k loss k large -k small . (5.1.6)
Then, the Ricci coefficients and curvature components with respect to the global frame of Proposition 3.5.5 satisfy

ξ = 0 on r ≥ 4m 0 , max 0≤k≤k small +k loss sup M r 2 τ 1 2 +δ dec -2δ 0 + rτ 1+δ dec -2δ 0 |d k Γ g | + rτ 1+δ dec -2δ 0 |d k Γ b | + r 7 2 + δ B 2 + r 3 τ 1 2 +δ dec -2δ 0 + r 2 τ 1+δ dec -2δ 0 |d k α| + |d k β| + r 3 τ 1 2 +δ dec -2δ 0 + r 2 τ 1+δ dec -2δ 0 |d k ρ| +τ 1+δ dec -2δ 0 r 2 |d k β| + r|d k α| , max 0≤k≤k small +k loss sup M r 2 τ 1+δ dec -2δ 0 |d k-1 e 3 (Γ g )| +r 3 (τ + 2r) 1+δ dec -2δ 0 |d k-1 e 3 (α)| + |d k e 3 (β)| .
Proof. In r ≥ 4m 0 , the global frame of Proposition 3.5.5 coincides with a conformal renormalization of the second frame of (ext) M, see Proposition 3.4.6. The estimates there follow immediately from the ones of Proposition 3.4.6. In the matching region 7/2m 0 ≤ r ≤ 4m 0 , the estimates are stated in Proposition 3.5.5. Finally, for (ext) M(r ≤ 7/2m 0 ) and (int) M, the estimates follow directly from interpolation between the bootstrap assumptions on decay for k ≤ k small and the pointwise estimates of Proposition 3.4.5 for k ≤ k large -5.

3 Recall in particular that the global frame of Proposition 3.5.5 is such that η ∈ Γ g . 4 Recall that we have

0 < δ dec 1, δ dec k large 1, k small = 1 2 k large + 1.
In particular, we have δ dec (k largek small ) 1 and hence there exists an integer k loss satisfying the required constraints. We will in fact choose k loss = 33, see (5.2.3).

Structure of nonlinear terms

The following lemma will be important in what follows.

Lemma 5.1.2. For the solution q to the wave equation (5.0.1), the structure of the error term N can be written schematically as follows

N = N g + e 3 (rN g ) + N m [q] (5.1.7)
where,

N g = r 2 d ≤2 (Γ g • (α, β)), N m [q] = d ≤1 (Γ g • q). (5.1.8)
Moreover, for every k ≤ k large -3 we have schematically,

d k N = d ≤k N g + e 3 (d k (rN g )) + d k N m [q].
(5.1.9)

Remark 5.1.3. In fact, (5.1.7) and (5.1.9) also contain lower order terms which are strictly better in powers of r and contain at most the same number of derivatives. For convenience, we drop them in the rest of the proof of Theorem M1.

Proof. For k = 0, this is an immediate consequence of (5.0.2). For the higher derivatives we write,

d k (e 3 (rN g )) = e 3 (d k (rN g )) + [d k , e 3 ](rN g ).
In view of the formula for [e 3 , d /] of Lemma 2.2.13, and the commutator formula for [e 3 , e 4 ], we have, schematically,

[e 3 , e 3 ] = 0, [ d /, e 3 ] = Γ b d + Γ b , [re 4 , e 3 ] = 1 r + Γ b d.
In view of our assumptions.

d i (Γ b ) ≤ r -1 , i ≤ k large -4,
Γ b is at least as good as r -1 , and hence, we deduce, schematically,

[d, e 3 ] = 1 r d + 1 r .
On the other hand, we have, schematically,

[d, r] = r and hence, for k ≤ k large -3, [d k , e 3 ](rN g ) = i+j≤k-1 d i 1 r d + 1 r d j (rN g ) = d ≤k N g
as desired.

Main quantities

We restrict our attention to the region

M(τ 1 , τ 2 ) = M ∩ {τ 1 ≤ τ ≤ τ 2 }.
For a given ψ ∈ s 2 (M) we introduce the following quantities, for 0 ≤ τ 1 < τ 2 ≤ τ * .

Morawetz bulk quantities

Consider the vectorfields, H vanishing for |Υ| ≥ 2δ

T := 1 
1 10
H and define the modified vectorfields,

Ȓ := θ 1 2 (e 4 -e 3 ) + (1 -θ)Υ -1 R = 1 2 θe 4 -e 3 , T := θ 1 2 (e 4 + e 3 ) + (1 -θ)Υ -1 T = 1 2 θe 4 + e 3 , (5.1.11) 
where

θ = θ + Υ -1 (1 -θ). Note that, θ = 1 for |Υ| ≤ δ 1 10 H , Υ -1
for |Υ| ≥ 2δ We define the quantities

Mor[ψ](τ 1 , τ 2 ) : = M(τ 1 ,τ 2 ) 1 r 3 | Ȓψ| 2 + 1 r 4 |ψ| 2 + 1 - 3m r 2 1 r |∇ / ψ| 2 + 1 r 2 | T ψ| 2 , Morr[ψ](τ 1 , τ 2 ) : = Mor[ψ](τ 1 , τ 2 ) + M >4m 0 (τ 1 ,τ 2 ) r -1-δ |e 3 (ψ)| 2 ,
(5. 1.13) with m = m(τ, r) = m(u, r) the Hawking mass in M. The constant δ > 0 is a sufficiently small quantity. An equivalent definition for Morr

[ψ](τ 1 , τ 2 ) is given below, Morr[ψ](τ 1 , τ 2 ) = (trap) M(τ 1 ,τ 2 ) |Rψ| 2 + r -2 |ψ| 2 + 1 - 3m r 2 |∇ / ψ| 2 + 1 r 2 |T ψ| 2 + (trap ) M(τ 1 ,τ 2 ) r -3 |e 4 ψ| 2 + r -1 |ψ| 2 + r -1 |∇ / ψ| 2 + r -1-δ |e 3 ψ| 2 (5.1.14)
where (trap ) M denotes the complement of (trap) M.

Weighted bulk quantities

Define, for 0 < p < 2,

Ḃp ; R [ψ](τ 1 , τ 2 ) : = M ≥R (τ 1 ,τ 2 ) r p-1 p|ě 4 (ψ)| 2 + (2 -p)|∇ / ψ| 2 + r -2 |ψ| 2 , B p [ψ](τ 1 , τ 2 ) : = Morr[ψ](τ 1 , τ 2 ) + Ḃp ; 4m 0 [ψ](τ 1 , τ 2 ).
(5.1.15)

The bulk quantity

B p [ψ](τ 1 , τ 2 ) is equivalent to 5 B p [ψ](τ 1 , τ 2 ) τ 2 τ 1 M p-1 [ψ](τ )dτ
where,

M p-1 [ψ](τ ) = Σ ≤4m 0 (τ ) | Ȓψ| 2 + r -2 |ψ| 2 + 1 - 3m r 2 |∇ / ψ| 2 + m 2 r 2 | T ψ| 2 + Σ ≥4m 0 (τ ) r p-1 p|e 4 (ψ)| 2 + (2 -p)|∇ / ψ| 2 + r -2 |ψ| 2 + Σ ≥4m 0 (τ ) r -1-δ |e 3 ψ| 2 . Remark 5.1.5. Note that, for δ ≤ p ≤ 2 -δ, B p [ψ](τ 1 , τ 2 ) : = Morr[ψ](τ 1 , τ 2 ) + Ḃp ; 4m 0 [ψ](τ 1 , τ 2 )
is equivalent to,

B p [ψ](τ 1 , τ 2 ) Morr[ψ](τ 1 , τ 2 ) + M ≥4m 0 (τ 1 ,τ 2 ) r p-1 |ě 4 (ψ)| 2 + |∇ / ψ| 2 + r -2 |e 3 ψ| 2 + r -2 |ψ| 2 .
Indeed,

M ≥4m 0 (τ 1 ,τ 2 ) r p-3 |e 3 ψ| 2 M ≥4m 0 (τ 1 ,τ 2 ) r -1-δ |e 3 ψ| 2 .
Therefore, since r 2 (|ě 4 (ψ)| 2 + |∇ / ψ| 2 ) |dψ| 2 , we have,

B p [ψ](τ 1 , τ 2 ) Morr[ψ](τ 1 , τ 2 ) + M ≥4m 0 (τ 1 ,τ 2 ) r p-3 |dψ| 2 + |ψ| 2 . (5.1.16)

Basic energy-flux quantity

The basic energy-flux quantity on a hypersurface Σ(τ ) is defined by

E[ψ](τ ) = Σ(τ ) 1 2 (N Σ , e 3 ) 2 |e 4 ψ| 2 + 1 2 (N Σ , e 4 ) 2 |e 3 ψ| 2 + |∇ / ψ| 2 + r -2 |ψ| 2 .
(5.1.17)

Here N Σ denotes a choice for the normal to Σ so that in particular we have

N Σ = N Σ = e 3 on (int) Σ, N Σ = e 4 on (ext) Σ, (5.1.18)
and, in view of (5.1.5),

(N Σ , e 3 ) ≤ -1 and (N Σ , e 4 ) ≤ -1 on (trap) Σ.

(5.1.19)

Weighted energy-flux type quantities

We have In particular, this yields ě4 ψ = r -1 e 4 (rψ).

Ėp ; R [ψ](τ ) :=          Σ ≥R (τ ) r p |ě 4 ψ| 2 + r -2 |ψ| 2 for p ≤ 1 -δ, Σ ≥R (τ ) r p |ě 4 ψ| 2 + r -p-1-δ |ψ| 2 for p > 1 -δ,
Note also that we have the following alternate form

ě4 ψ = e 4 ψ + r -1 ψ + e 4 (r) -1 r ψ
where e 4 (r) -

1 = Υ -1 e 4 (r) -1 = O( r -1
) in view of our assumption on Γ g .

Flux quantities

The boundary of M(τ 1 , τ 2 ) is given by

∂M(τ 1 , τ 2 ) = Σ(τ 1 ) ∪ Σ(τ 2 ) ∪ A(τ 1 , τ 2 ) ∪ Σ * (τ 1 , τ 2 ).
Our basic flux quantity along the spacelike hypersurfaces A and Σ * is given by

F [Ψ](τ 1 , τ 2 ) := A(τ 1 ,τ 2 ) δ -1 H |e 4 Ψ| 2 + δ H |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + Σ * (τ 1 ,τ 2 ) |e 4 Ψ| 2 + |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 , (5.1.23) with A(τ 1 , τ 2 ) = A ∩ M(τ 1 , τ 2 ) and Σ * (τ 1 , τ 2 ) = Σ * ∩ M(τ 1 , τ 2 ).
Weighted flux quantities

Ḟp [ψ](τ 1 , τ 2 ) := Σ * (τ 1 ,τ 2 ) r p |e 4 ψ| 2 + |∇ / ψ| 2 + r -2 |ψ| 2 , F p [ψ](τ 1 , τ 2 ) := F [ψ](τ 1 , τ 2 ) + Ḟp [ψ](τ 1 , τ 2 ).
(5.1.24)

Weighted quantities for the inhomogeneous term N Recall the decomposition (5.1.7) for the inhomogeneous term

N N = N g + e 3 (rN g ) + N m [q].
We define, for p ≥ δ,

I p [N g ](τ 1 , τ 2 ) = τ 2 τ 1 dτ N g L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+p |N g | 2 + (trap ) M(τ 1 ,τ 2 ) r 2+p |N g ||e 3 (N g )| + sup τ ∈[τ 1 ,τ 2 ] Σ(τ )
r p+2 N g 2 + (trap ) M(τ 1 ,τ 2 ) r 3+δ |e 3 (N g )| 2 . (5.1.25) Remark 5.1.7. While N m [q]
is present in the decomposition of the inhomogeneous term N , (5.1.25) only contains a norm for N g . In fact, N m [q] will always be absorbed by the left hand side wherever it appears.

Higher derivative quantities

We define the higher order derivative quantities

E s [ψ], Mor s [ψ], Morr s [ψ], E s p [ψ], B s b [ψ], M s p [ψ], F s [ψ], F s p [ψ], I s p [N g ] by the obvious procedure, Q s [ψ] = k≤s Q[d k ψ].
Remark 5.1.8. Note that in view of Remark 5.1.5 we can also write, equivalently, for p < 2δ,

B s p [ψ](τ 1 , τ 2 ) = M orr s [ψ](τ 1 , τ 2 ) + M >4m 0 (τ 1 ,τ 2 )
r p-3 |d ≤1+s ψ| 2 .

(5.1.26)
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Decay norms

We introduce,

E s p,d [ψ] : = sup 0≤τ ≤τ * (1 + τ ) d E s p [ψ](τ ), B s p,d [ψ] : = sup 0≤τ ≤τ * (1 + τ ) d B s p [ψ](τ, τ * ), sup 0≤τ ≤τ * (1 + τ ) d τ * τ M s p-1 [ψ](τ )dτ , F s p,d [ψ] : = sup 0≤τ ≤τ * (1 + τ ) d F s p [ψ](τ, τ * ), I s p,d [N g ] : = sup 0≤τ ≤τ * (1 + τ ) d I s p [N g ](τ, τ * ).
(5.1.27)

Proof of Theorem M1

Recall that we have to prove for k ≤ k small + 20

|d k q| 0 r -1 (1 + τ ) -1 2 -δextra , |d k q| 0 r -1 2 (1 + τ ) -1-δextra , |d k e 3 (q)| 0 r -1 (1 + τ ) -1-δextra ,

and

(int) M(τ,τ * )

|d k e 3 q| 2 + Σ * (τ,τ * ) |d k e 3 q| 2 2 0 (1 + τ ) -2-2δextra ,
for some constant δ extra such that δ dec < δ extra < 2δ dec .

Flux decay estimates for q

The following result establishes decay of flux estimates for q.

Theorem 5.2.1. Let 0 < q 0 < 1 be a fixed number and s ≤ k small +25. Then, for all δ > 0 we have, with a constant C depending only on s, δ and q 0 such that for all δ ≤ p ≤ 2δ, we have

E s p,2+q 0 -p [q] + B s p,2+q 0 -p [q] + F s p,2+q 0 -p [q] E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + I s+5 q 0 +2,0 [N g ] + I s+5 δ,2+q 0 -δ [N g ], (5.2.1) 
where we recall that the decay norms I s p,d [N g ] are defined by,

I s p,d [N g ] = sup 0≤τ ≤τ * (1 + τ ) d I s p [N g ](τ, τ * ).
Theorem 5.2.1 will be proved in section 5.4.3.

To prove Theorem M1 we have to eliminate the norms I s p,d [N g ] on the right hand side of Theorem 5.2.1.

Proposition 5.2.2. Let s ≤ k small + 30 and assume

q 0 < 4δ dec -4δ 0 (5.2.2)
where

δ 0 = 33 k large -k small = 33 k large - k large 2 -1 (5.2.3)
is the small constant appearing in Lemma 5.1.1. Then, the following estimates hold true,

I s q 0 +2,0 [N g ] + I s δ,2+q 0 -δ [N g ] 4 .
The proof of Proposition 5.2.2 is postponed to section 5.2.3. Together with Theorem 5.2.1, Proposition 5.2.2 immediately yields the proof of the following corollary.

Corollary 5.2.3. In addition to the assumptions of Theorem 5.2.1 we assume

2δ dec < q 0 < 4δ dec -4δ 0 (5.2.4)
where δ 0 > 0 is given by (5.2.3). Then for a sufficiently small bootstrap constant > 0, for all s ≤ k small + 25 and for all δ ≤ p ≤ 2δ, we have

E s p,2+q 0 -p [q] + B s p,2+q 0 -p [q] + F s p,2+q 0 -p [q] E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + 4 .

Proof of Theorem M1

Since = 2/3 0 , and in view of the control on q at τ = 0 provided by Theorem M0, we immediately deduce from Corollary 5.2.3, For all 0 < q ≤ q 0 , δ ≤ p ≤ 2δ, and s ≤ k small + 25,

E s p,2+q 0 -p [q] + B s p,2+q 0 -p [q] + F s p,2+q 0 -p [q] 2 0 .
(5.2.5)

We will also need the following two propositions concerning L 2 estimates on spheres. 

(1 + τ ) 1+q 0 Sr |q (s) | 2 E s 1+δ,1+q 0 -δ [q] 1 2 E s 1-δ,1+q 0 +δ [q] 1 2
(5.2.6) and,

r -1 (1 + τ ) 2+q 0 -δ Sr |q (s) | 2 E s δ,2+q 0 -δ [q].
(5.2.7)

Proposition 5.2.5. We have for s ≤ k small + 25

(1 + τ ) 2+q 0 -δ Σ * (τ,τ * ) |e 3 d ≤s q| 2 F s δ,2+q 0 -δ [q]. (5.2.8)
Also, on any S = S(τ, r) ⊂ Σ(τ ), for s ≤ k small + 23, we have

(1 + τ ) 2+q 0 -δ Sr |e 3 d ≤s q| 2 2 0 + F s+1 δ,2+q 0 -δ [q] + E s+2 δ,2+q 0 -δ [q]. (5.2.9) 
The proof of Proposition 5.2.4 is postponed to section 5.4.4, and the proof of Proposition 5.2.5 is postponed to section 5.4.5.

We now conclude the proof of Theorem M1. Indeed, in view of (5.2.5), Proposition 5.2.4 and Proposition 5.2.5, we infer for s ≤ k small + 25

(1 + τ ) 2+q 0 -δ (int) M(τ,τ * ) |d ≤s+1 q| 2 2 0 , (1 + τ ) 1+q 0 Sr |q (s) | 2 2 0 , r -1 (1 + τ ) 2+q 0 -δ Sr |q (s) | 2 2 0 , (1 + τ ) 2+q 0 -δ Σ * (τ,τ * ) |e 3 d ≤s q| 2 2 0 ,
and for s ≤ k small + 23

(1 + τ ) 2+q 0 -δ S |d s e 3 q| 2 2 0 .
In view of the standard Sobolev inequality on the 2-surfaces S i.e.,

ψ L ∞ (S) r -1 (r∇ / ) ≤2 ψ L 2 (S) ,
we immediately infer for s ≤ k small + 23

|q (s) | 0 r -1 (1 + τ ) -1 2 - q 0 2 , |q (s) | 0 r -1 2 (1 + τ ) -1-q 0 -δ 2 ,
and for s ≤ k small + 21

|d s e 3 (q)| 0 r -1 (1 + τ ) -1-q 0 -δ 2 .
Recall that q 0 > 2δ dec and that δ > 0 can be chosen arbitrarily small so that we have q 0δ > 2δ dec . In particular, we may choose

δ extra := q 0 -δ 2 , δ extra > δ dec , (5.2.10) 
which together with the above estimates for q implies for s ≤ k small + 25

(1 + τ ) 2+q 0 -δ (int) M(τ,τ * ) |d ≤s+1 q| 2 2 0 , (1 + τ ) 2+2δextra Σ * (τ,τ * ) |e 3 d ≤s q| 2 2 0 ,
for s ≤ k small + 23

|q (s) | 0 r -1 (1 + τ ) -1 2 -δextra , |q (s) | 0 r -1 2 (1 + τ ) -1-δextra ,
and for s ≤ k small + 21

|d s e 3 (q)| 0 r -1 (1 + τ ) -1-δextra
as desired. This concludes the proof of Theorem M1.

Proof of Proposition 5.2.2

Recall that,

I p [N g ](τ 1 , τ 2 ) = τ 2 τ 1 dτ N g L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+p |N g | 2 + (trap ) M(τ 1 ,τ 2 ) r 2+p |N g ||e 3 (N g )| + sup τ ∈[τ 1 ,τ 2 ] Σ(τ ) r p+2 N g 2 + (trap ) M(τ 1 ,τ 2 ) r 3+δ |e 3 (N g )| 2 CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
and,

I s p,d [N g ] = sup 0≤τ ≤τ * (1 + τ ) d I s p [N g ](τ, τ * ).
Since we have

r δ (1 + τ ) 2+q 0 -δ r 2+q 0 + (1 + τ ) 2+q 0 ,
and

(trap ) M(τ,τ * ) r 2 |d ≤s e 3 (N g )||d ≤s N g | (trap ) M(τ,τ * ) r|d ≤s N g | 2 + (trap ) M(τ,τ * ) r 3 |d ≤s e 3 (N g )| 2 ,
we infer

I s q 0 +2,0 [N g ] + I s δ,2+q 0 -δ [N g ] (5.2.11) sup 0≤τ ≤τ * (trap ) M(τ,τ * ) r 4+q 0 |d ≤s+1 N g | 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 4+q 0 d ≤s N g 2 +(1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r|d ≤s N g | 2 + (trap ) M(τ,τ * ) r 3+δ |d ≤s e 3 (N g )| 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 2 d ≤s N g 2 + (1 + τ ) 2+q 0 τ * τ dτ d ≤s N g L 2 ( (trap) Σ(τ )) 2 .
In order to prove Proposition 5.2.2, it suffices to estimate the right-hand side of (5.2.11).

To this end, we will estimate separately the terms with highest power of r, i.e. the first two terms, and the terms with highest power the τ , i.e. the four last terms.

Terms with highest power of r in (5.2.11)

We estimate the first two terms of (5.2.11). Recall from Lemma 5.1.2 that

N g = r 2 d ≤2 (Γ g • (α, β)).
Recall from Lemma 5.1.1 we have max

0≤k≤k large -3 sup (ext) M(r≥4m 0 ) r 7 2 + δ B 2 |d k α| + |d k β| .
We infer for s ≤ k large -6

|d ≤s+1 N g | r -7
and hence, for s ≤ k large -6, we deduce

(trap ) M(τ,τ * ) r 4+q 0 |d ≤s+1 N g | 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 4+q 0 d ≤s N g 2 2 (trap ) M(τ,τ * ) r -3-δ B +q 0 (r 2 d ≤s+3 Γ g ) 2 + 2 sup τ ∈[τ,τ * ] Σ(τ ) r -3-δ B +q 0 (r 2 d ≤s+2 Γ g ) 2 .
Since we also have for s ≤ k large -6 sup

r 0 ≥4m 0 {r=r 0 } (r 2 d ≤s+3 Γ g ) 2 2 , M r≤4m 0 (d ≤s+3 Γ g ) 2 2 , sup M |r 2 d ≤s+2 Γ g | ,
we deduce

(trap ) M(τ,τ * ) r 4+q 0 |d ≤s+1 N g | 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 4+q 0 d ≤s N g 2 4 1 + r≥4m 0 dr r 1+δ B -q 0 .
Since q 0 < 4δ dec and δ B ≥ 4δ dec , we have q 0 < δ B and hence, we obtain for s ≤ k large -6

(trap ) M(τ,τ * ) r 4+q 0 |d ≤s+1 N g | 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 4+q 0 d ≤s N g 2 4 .
This is the desired control of the terms with highest power of r in (5.2.11).

Terms with highest power of τ in (5.2.11)

We estimate the four last terms of (5.2.11). In view of Lemma 5.1.1 with k loss = 33, so that

δ 0 = 33 k large -k small -2 = 33 k large - k large 2 -3 ,
we have

d ≤k small +33 Γ g r -2 τ -1/2-δ dec +2δ 0 , d ≤k small +33 Γ g r -1 τ -1-δ dec +2δ 0 , d ≤S+32 e 3 Γ g r -2 [τ -1-δ dec ] 1-δ 0 r -2 τ -1-δ dec +2δ 0 , d ≤k small +33 (α, β) r -3 (τ + r) -1/2-δ dec +2δ 0 , d ≤k small +33 (α, β) r -2 (τ + r) -1-δ dec +2δ 0 , d ≤S+32 e 3 (α, β) r -3-1 2 δ 0 [τ -1-δ dec ] 1-δ 0 r -3 τ -1-δ dec +2δ 0 . CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
In particular, together with the bootstrap assumption for k ≤ k small , the pointwise bound

|d ≤k large -5 α| + |d ≤k large -5 β| r -7 2 - δ B 2
and since N g = r 2 d ≤2 (Γ g • (α, β)), we infer for s ≤ k small + 30

|d s N g | 2 r -3 τ -1-2δ dec +2δ 0 |d s N g | 2 r -1 τ -2-2δ dec +2δ 0 , |d s e 3 (N g )| 2 r -3 τ -3 2 -2δ dec +2δ 0 , |d s e 3 (N g )| 2 r -7 2 - δ B 2 τ -1-δ dec +2δ 0 .
(5.2.12)

Using these 4 bounds and interpolation, we infer for δ > 0

(1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r|d ≤s N g | 2 + (trap ) M(τ,τ * ) r 3+δ |d ≤s e 3 (N g )| 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 2 d ≤s N g 2 + (1 + τ ) 2+q 0 τ * τ dτ d ≤s N g L 2 ( (trap) Σ(τ )) 2 4 (1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r(r -3 τ -1-2δ dec +2δ 0 ) 1+δ (r -1 τ -2-2δ dec +2δ 0 ) 1-δ + 4 (1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r 3+δ (r -3 τ -3 2 -2δ dec +2δ 0 ) 2-2δ (r -7 2 - δ B 2 τ -1-δ dec +2δ 0 ) 2δ + 4 (1 + τ ) 2+q 0 sup τ ∈[τ,τ * ] Σ(τ ) r 2 (r -3 τ -1-2δ dec +2δ 0 ) 2 + 4 (1 + τ ) 2+q 0 τ * τ τ -2-2δ dec +2δ 0 dτ 2 4 (1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r -3-δδ B τ -3-4δ dec +δ+4δ 0 +2δδ dec + 4 (1 + τ ) 2+q 0 sup τ ∈[τ,τ * ] Σ(τ ) r -4 τ -2-4δ dec +4δ 0 + 4 (1 + τ ) 2+q 0 τ * τ τ -2-2δ dec +2δ 0 dτ 2
and since δ > 0, we obtain

(1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r|d ≤s N g | 2 + (trap ) M(τ,τ * ) r 3+δ |d ≤s e 3 (N g )| 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 2 d ≤s N g 2 + (1 + τ ) 2+q 0 τ * τ dτ d ≤s N g L 2 ( (trap) Σ(τ ))
2 4 (1 + τ ) q 0 -4δ dec +δ+4δ 0 +2δδ dec .
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As we have q 0 < 4δ dec -4δ 0 , there exists δ > 0 small enough such that q 0 -4δ dec + δ + 4δ 0 + 2δδ dec ≤ 0, and hence

(1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r|d ≤s N g | 2 + (trap ) M(τ,τ * ) r 3+δ |d ≤s e 3 (N g )| 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 2 d ≤s N g 2 + (1 + τ ) 2+q 0 τ * τ dτ d ≤s N g L 2 ( (trap) Σ(τ )) 2 4 .
This is the desired control of the terms with highest power of τ in (5.2.11). Together with (5.2.11) and the above control of the terms with highest power of r, we infer

I s q 0 +2,0 [N g ] + I s δ,2+q 0 -δ [N g ] sup 0≤τ ≤τ * (trap ) M(τ,τ * ) r 4+q 0 |d ≤s+1 N g | 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 4+q 0 d ≤s N g 2 +(1 + τ ) 2+q 0 (trap ) M(τ,τ * ) r|d ≤s N g | 2 + (trap ) M(τ,τ * ) r 3+δ |d ≤s e 3 (N g )| 2 + sup τ ∈[τ,τ * ] Σ(τ ) r 2 d ≤s N g 2 + (1 + τ ) 2+q 0 τ * τ dτ d ≤s N g L 2 ( (trap) Σ(τ )) 2 4
which is the desired estimate. This concludes the proof of Proposition 5.2.2.

Improved weighted estimates

The goal of this section is to prove the two following theorems on improved weighted estimates.

Theorem 5.3.1. Assume q verifies following wave equation, see (5.0.1), 2 q + κκ q = N with N given, in view of Lemma 5.1.2, by

N = N g + e 3 (rN g ) + N m [q]. Then, for any δ ≤ p ≤ 2 -δ, 0 ≤ s ≤ k small + 30, sup τ ∈[τ 1 ,τ 2 ] E s p [q](τ ) + B s p [q](τ 1 , τ 2 ) + F s p [q](τ 1 , τ 2 ) E s p [q](τ 1 ) + I s+1 p [N g ](τ 1 , τ 2 ). (5.3.1) CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
The next result deals with weighted estimates for the quantity q = f 2 ě4 q, (5.3.2)

where f 2 is a fixed smooth function of r defined as follows,

f 2 (r) = r 2
for r ≥ 6m 0 , 0 for r ≤ 4m 0 .

(5.3.3)

Theorem 5.3.2. Assume q verifies equation, see (5.0.1),

2 q + κκ q = N with, N = N g + e 3 (rN g ) + N m [q]
as in Lemma 5.1.2. Then, for any -1

+ δ < q ≤ 1 -δ, 0 ≤ s ≤ k small + 29, sup τ ∈[τ 1 ,τ 2 ] E s q [q](τ ) + B s q [q](τ 1 , τ 2 ) E s q [q](τ 1 ) + E s+1 q+1 [q](τ 1 ) + I s+2 q+2 [N g ](τ 1 , τ 2 ). (5.3.4)
Remark 5.3.3. Note that in (5.3.1) and (5.3.4), the term N m [q] does not appear in the right-hand side since it turns out that it can be absorbed by the left hand side.

The proof of Theorem 5.3.1 is postponed to section 5.3.2, and the proof of Theorem 5.3.2 is postponed to section 5.3.3. These proofs will rely on weighted energy flux estimates introduced in the next section.

Basic and higher weighted estimates for wave equations

Assume given a spacetime M verifying the bootstrap assumptions with small constant > 0. The proof of Theorem 5.3.1 and Theorem 5.3.2 will rely on estimates stated below for solutions ψ ∈ s 2 (M) of the equation,

2 ψ = V ψ + N, V = -κκ. (5.3.5)
Basic weighted estimates Theorem 5.3.4. Recall the definitions in (5.1.21), (5.1.15). The following holds for any 0 ≤ s ≤ k small + 30. For all δ ≤ p ≤ 2δ, we have,

sup τ ∈[τ 1 ,τ 2 ] E s p [ψ](τ ) + B s p [ψ](τ 1 , τ 2 ) + F s p [ψ](τ 1 , τ 2 ) E s p [ψ](τ 1 ) + J s p [ψ, N ](τ 1 , τ 2 ), (5.3.6)
where, for p ≥ δ, we have introduced the notation

J p,R [ψ, N ](τ 1 , τ 2 ) : = M ≥R (τ 1 ,τ 2 ) r p ě4 ψN , J p [ψ, N ](τ 1 , τ 2 ) : = τ 2 τ 1 dτ N L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 )
r 1+δ |N | 2 + J p,4m 0 [ψ, N ](τ 1 , τ 2 ), (5.3.7) 
and

J s p [ψ, N ](τ 1 , τ 2 ) := k≤s J p [d k ψ, d k N ](τ 1 , τ 2 ).
The proof of Theorem 5.3.4 is postponed to section 10.4.5.

Higher weighted estimates

The next result deals with weighted estimates for the quantity

ψ = f 2 ě4 ψ, (5.3.8) 
where f 2 is a fixed smooth function of r defined as follows,

f 2 (r) = r 2
for r ≥ 6m 0 , 0 for r ≤ 4m 0 .

(5.3.9)

Theorem 5.3.5. The following holds for any -1

+ δ < q ≤ 1 -δ, 0 ≤ s ≤ k small + 29, sup τ ∈[τ 1 ,τ 2 ] E s q [ ψ](τ ) + B s q [ ψ](τ 1 , τ 2 ) E s q [ ψ](τ 1 ) + Js q [ ψ, N ](τ 1 , τ 2 ) + E s+1 max(q,δ) [ψ](τ 1 ) + J s+1 max(q,δ) [ψ, N ],
(5.3.10)

where we have introduced the notation

Jq [ ψ, N ](τ 1 , τ 2 ) := J q,4m 0 ψ, r 2 e 4 N + 3 r N (τ 1 , τ 2 ) = M ≥4m 0 (τ 1 ,τ 2 ) r q+2 ě4 ψ • e 4 N + 3 r N ,
and

Js q [ ψ, N ](τ 1 , τ 2 ) := k≤s Jq [d k ψ, d k N ](τ 1 , τ 2 ).
The proof of Theorem 5.3.5 is postponed to section 10.4.6.

We now proceed to the proof of Theorem 5.3.1 and Theorem 5.3.2 in the next 2 sections. The proofs will follow from the structure of the nonlinear term N of q provided by Lemma 5.1.2 and the use of Theorem 5.3.4 and Theorem 5.3.5.

Proof of Theorem 5.3.1

Applying Theorem 5.3.4 to the equation for q, with N given by Lemma 5.1.2, we derive corresponding estimates with the norm J s p [q, N ](τ 1 , τ 2 ) on the right hand side, i.e. for 0 ≤ s ≤ k small + 30, and for δ ≤ p ≤ 2δ,

sup τ ∈[τ 1 ,τ 2 ] E s p [q](τ ) + B s p [q](τ 1 , τ 2 ) + F s p [q](τ 1 , τ 2 ) E s p [q](τ 1 ) + J s p [q, N ](τ 1 , τ 2 ). (5.3.11)
To prove Theorem 5.3.1, it suffices, in view of (5.3.11), to estimate J s p [q, N ](τ 1 , τ 2 ). Recall that, see (5.3.7) and (5.1.25)

I p [N ](τ 1 , τ 2 ) = τ 2 τ 1 dτ N L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+p |N | 2 + (trap ) M(τ 1 ,τ 2 ) r 2+p |N g ||e 3 (N g )| + sup τ ∈[τ 1 ,τ 2 ] Σ(τ ) r p+2 N 2 + (trap ) M(τ 1 ,τ 2 ) r 3+δ |e 3 (N g )| 2 and, J p,R [q, N ] = M ≥R (τ 1 ,τ 2 ) r p ě4 (q)N , J p [q, N ](τ 1 , τ 2 ) = τ 2 τ 1 dτ N L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+δ |N | 2 +J s p,4m 0 [q, N ](τ 1 , τ 2 ), J s p [q, N ](τ 1 , τ 2 ) = k≤s J p [d k q, d k N ],
Recall also from (5.1.9)

d k N = d ≤k N g + e 3 (d k (rN g )) + d k N m [q]
(5.3.12) and consider separately the three terms.

Case of N m [q]. Recall that N m [q] = d ≤1 (Γ g • q)
. We have, schematically,

d k N m [q] = d 1+k (Γ g • q) = i+j=k+1 d ≤i Γ g d ≤j q.
We make use of the following consequence of the bootstrap assumptions for k ≤ k large -5

d ≤k Γ g ≤ r -2
to deduce,

d k N m [q] r -2 d ≤k+1 q . (5.3.13)
We deduce,

J s p,4m 0 [q, N m [q]](τ 1 , τ 2 ) k≤s M ≥4m 0 (τ 1 ,τ 2 ) r p ě4 q (k) d k N m [q] k≤s M ≥4m 0 (τ 1 ,τ 2 ) r p-3 d 1+k q 2 .
Thus, recalling Remark 5.1.8, we infer

J s p,4m 0 [q, N m [q]](τ 1 , τ 2 ) B s p [q](τ 1 , τ 2 ). (5.3.14)
Next, we estimate in view of (5.3.13)

(trap ) M(τ 1 ,τ 2 ) r 1+δ |d k N m [q]| 2 (trap ) M(τ 1 ,τ 2 )
r δ-3 |d ≤k+1 q| 2 which yields, using again Remark 5.1.8,

(trap ) M(τ 1 ,τ 2 ) r 1+δ |d k N m [q]| 2 B s δ [q](τ 1 , τ 2 ). (5.3.15)
We next estimate the integral

τ 2 τ 1 dτ d k N m [q] L 2 ( (trap) Σ(τ )) .
In view of the definition of

N m [q] = d ≤1 (Γ g • q), d k N m [q] = d ≤k+1 (Γ g • q) = i+j=k+1 d ≤i Γ g d ≤j q = d j≤(k+1)/2 Γ g d ≤k+1 q + d j≤(k+1)/2 q d ≤k+1 Γ g = J 1 + J 2 . CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
Now, since k+1 2 ≤ k small we have

d j≤(k+1)/2 Γ g (1 + τ ) -1-δ dec Hence, J 1 2 L 2 ( (trap) Σ(τ )) = (trap) Σ(τ ) d j≤(k+1)/2 Γ g 2 d ≤k+1 q 2 2 (1 + τ ) -2-2δ dec E s [q](τ )
i.e.,

J 1 L 2 ( (trap) Σ(τ )) (1 + τ ) -1-δ dec (E s [q](τ )) 1/2 .
For J 2 we write,

J 2 2 L 2 ( (trap) Σ(τ )) = (trap) Σ(τ ) d j≤(k+1)/2 q 2 d ≤k+1 Γ g 2 sup (trap) Σ(τ ) d j≤(k+1)/2 q 2 (trap) Σ(τ ) d ≤k+1 Γ g 2 (trap) Σ(τ ) d ≤(k+1)/2+2 q 2 (trap) Σ(τ ) d ≤k+1 Γ g 2 or, since (k + 1)/2 + 2 ≤ s, J 2 L 2 ( (trap) Σ(τ )) (trap) Σ(τ ) d ≤s q 2 1/2 (trap) Σ(τ ) d ≤k+1 Γ g 2 1/2
.

In view of the above estimates for J 1 and J 2 , we deduce, for all k ≤ s ≤ k large -5

τ 2 τ 1 dτ d k N m [q] L 2 ( (trap) Σ(τ ))
sup

τ 1 ≤τ ≤τ 2 (E s [q](τ )) 1/2 + τ 2 τ 1 dτ (trap) Σ(τ ) d ≤s q 2 1/2 (trap) Σ(τ ) d ≤s Γ g 2 1/2 sup τ 1 ≤τ ≤τ 2 (E s [q](τ )) 1/2 + (trap ) M(τ 1 ,τ 2 ) d ≤s q 2 1 2 M r≤4m 0 d ≤s Γ g 2 1/2
Making use of the following consequence of the bootstrap assumptions

M r≤4m 0 d ≤s Γ g 2 1/2
, as well as the fact that

(trap ) M(τ 1 ,τ 2 ) d ≤s q 2 Morr s [q](τ 1 , τ 2 ),
we deduce,

τ 2 τ 1 dτ d k N m [q] L 2 ( (trap) Σ(τ )) 2 2 sup τ 1 ≤τ ≤τ 2 E s [q](τ ) + 2 Morr s [q](τ 1 , τ 2 ) (5.3.16)
which together with (5.3.15) and (5.3.14) yields for any p ≥ δ

J s p [q, N m [q]](τ 1 , τ 2 ) 2 sup τ 1 ≤τ ≤τ 2 E s [q](τ ) + B s p [q](τ 1 , τ 2 ).
(5.3.17)

Case of N g . We write, as before,

J s p,4m 0 [q, N g ](τ 1 , τ 2 ) k≤s M ≥4m 0 (τ 1 ,τ 2 ) r p ě4 q (k) d k N g k≤s M ≥4m 0 (τ 1 ,τ 2 ) r p-1 ě4 q (k) 2 1/2 M ≥4m 0 (τ 1 ,τ 2 ) r p+1 d k N g 2 1/2
. Therefore,

J s p,4m 0 [q, N g ](τ 1 , τ 2 ) B s p [q](τ 1 , τ 2 ) 1/2 I s p [N g ](τ 1 , τ 2 ) 1/2 δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s p [N g ](τ 1 , τ 2 )
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s p [q](τ 1 , τ 2 ) by the left hand side of our main estimate. Also, we have in view of the definition of I s p [N ](τ 1 , τ 2 ) and the fact that p ≥ δ

τ 2 τ 1 dτ d ≤s N g L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+δ |d ≤s N g | 2 I s p [N g ](τ 1 , τ 2 ).
Therefore,

J s p [q, N g ](τ 1 , τ 2 ) = τ 2 τ 1 dτ d ≤s N g L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+δ |d ≤s N g | 2 +J s p,4m 0 [q, N g ](τ 1 , τ 2 ) I s δ [N g ](τ 1 , τ 2 ) + δ -1 1 I s p [N g ](τ 1 , τ 2 ) + δ 1 B s p [q](τ 1 , τ 2 ), CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
i.e.,

J s p [q, N g ](τ 1 , τ 2 ) δ -1 1 I s p [N g ](τ 1 , τ 2 ) + δ 1 B s p [q](τ 1 , τ 2 ). (5.3.18)
Case of e 3 (rN g ). First, note that we have

τ 2 τ 1 dτ d ≤s e 3 (rN g ) L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+δ |d ≤s e 3 (rN g )| 2 τ 2 τ 1 dτ d ≤s+1 N g L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+δ |d ≤s N g | 2 + (trap ) M(τ 1 ,τ 2 ) r 3+δ |d ≤s e 3 (N g )| 2
where we used the fact that |d ≤s e 3 (r)| 1 and |d ≤s r| r. Hence, we infer in view of the definition of

I s p [N ](τ 1 , τ 2 ) and the fact that p ≥ δ τ 2 τ 1 dτ d ≤s e 3 (rN g ) L 2 ( (trap) Σ(τ )) 2 + (trap ) M(τ 1 ,τ 2 ) r 1+δ |d ≤s e 3 (rN g )| 2 I s+1 p [N g ](τ 1 , τ 2 ). (5.3.19) 
We then estimate

J p,4m 0 [q (k) , e 3 (d k (rN g ))](τ 1 , τ 2 ), k ≤ s.
To this end, we introduce a smooth cut-off function φ 0 vanishing for r ≤ 4m 0 and equal to 1 for r ≥ 8m 0 . Then, we have

J p,4m 0 [q (k) , d k (rN g )](τ 1 , τ 2 ) = M(τ 1 ,τ 2 ) r p ě4 q (k) e 3 d k (rN g ) J p,4m 0 [q (k) , φ 0 d k (rN g )](τ 1 , τ 2 ) +J p,4m 0 [q (k) , (1 -φ 0 )rN g ](τ 1 , τ 2 ). (5.3.20)
In view of the fact that 1φ 0 is supported in r ≤ 8m 0 , we easily obtain

J p,4m 0 [q (k) , (1 -φ 0 )rN g ](τ 1 , τ 2 ) sup τ 1 ≤τ ≤τ 2 E s [q](τ ) + B s p [q](τ 1 , τ 2 ) 1/2 I s+1 p [N g ](τ 1 , τ 2 ) 1 2
and hence

J p,4m 0 [q (k) , (1 -φ 0 )rN g ](τ 1 , τ 2 ) δ 1 sup τ 1 ≤τ ≤τ 2 E s [q](τ ) + B s p [q](τ 1 , τ 2 ) + δ -1 1 I s+1 p [N g ](τ 1 , τ 2 ) (5.3.21)
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the terms δ 1 sup τ 1 ≤τ ≤τ 2 E s [q](τ ) and δ 1 B s p [q](τ 1 , τ 2 ) by the left hand side of our main estimate.

It remains to estimate the terms

J p,4m 0 [q (k) , φ 0 e 3 (d k (rN g ))](τ 1 , τ 2 ), k ≤ s
which is supported for r ≥ 4m 0 . Note that e 3 (rN g ) behaves like rN g and therefore the same sequence of estimates as for N g would lead to a loss of r -1 . For this reason we need to integrate by parts by parts in e 3 .

Proposition 5.3.6. The following estimate holds true, for all k ≤ s ≤ k large -5,

k≤s J p,4m 0 [q (k) , φ 0 e 3 (d k (rN g ))](τ 1 , τ 2 ) δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s+1 p [N g ](τ 1 , τ 2 ) (5.3.22)
for a sufficiently small δ 1 > 0.

We postponed the proof of Proposition 5.3.6 to the end of the section. We are now in position to conclude the proof of Theorem 5.3.1.

Proof of Theorem 5. 

J p,4m 0 [q (k) , e 3 (d k (rN g ))](τ 1 , τ 2 ) δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s+1 p [N g ](τ 1 , τ 2 ).
Together with (5.3.17), (5.3.18) and (5.3.19), we infer

J s p [q, N ](τ 1 , τ 2 ) (δ 1 + )B s p [q](τ 1 , τ 2 ) + δ -1 1 I s+1 p [N g ](τ 1 , τ 2 ) + 2 sup τ 1 ≤τ ≤τ 2 E s [q](τ ).
In view of (5.3.11), this concludes the proof of Theorem 5.3.1.

The proof of Proposition 5.3.6 will rely in particular on the following identity.

Lemma 5.3.7. The following hold true for any ψ ∈ s 2

• We have, schematically, e 3 e 4 (rψ) = -r 2 ψ + r / 2 ψ + r -1 dψ.

(5.3.23)

• The following identity holds true, schematically,

e 3 e 4 (rd k ψ) = -d ≤k (r 2 ψ) + r / 2 (d ≤k ψ) + r -1 d ≤k+1 ψ. (5.3.24)
Proof. We start with the following identity for ψ ∈ s 2 , see Definition 2.4.2,

2 ψ = -e 3 e 4 ψ + / 2 ψ + 2ω - 1 2 κ e 4 ψ - 1 2 κe 3 ψ + 2ηe θ ψ
from which we deduce,

r 2 ψ = -re 3 e 4 ψ + r / 2 ψ + 2ω - 1 2 κ e 4 ψ - 1 2 κe 3 ψ + 2ηe θ ψ .
On the other hand, or, schematically, in view of the definition of dψ and the estimate |ω|

+ r|Γ g | + |Γ b | r -1 , e 3 e 4 (rψ) = -r 2 ψ + r / 2 ψ + rΓ g + Γ b + r -1 e 3 ψ = -r 2 ψ + r / 2 ψ + r -1 dψ which is (5.3.23).
To derive the identity for higher derivatives we write, schematically,

d k e 3 e 4 (rψ) = -d k (r 2 ψ) + d k (r / 2 ψ) + d k (rΓ g dψ).
We write,

d k e 3 e 4 (rψ) = e 3 e 4 (rd k ψ) + [d k , e 3 e 4 r]ψ = e 3 e 4 (rd k ψ) + [d k , e 3 ]dψ + e 3 [d k , e 4 r]ψ, d k (r / 2 ψ) = r / 2 d k ψ + [d k , r / ]ψ = r / 2 d k ψ + [d k , r -1 ]d 2 ψ + r -1 [d k , r 2 / ]ψ.
In view of the identities for [e 

] = 0, [ d /, r 2 / ] = d / + 1, [e 3 , e 4 r] = (r -1 + Γ g )d [e 3 , d /] = Γ b d + Γ b , [e 4 r, d /] = (r 2 ξ + rΓ g )d + rΓ g
In view of the estimates for Γ g , Γ b , and the fact that ξ = 0 for r ≥ 4m 0 , we infer

[d k , e 3 ] = r -1 d ≤k , [d k , r 2 / ] = d ≤k+1 , [d k , r -1 ] = r -1 d ≤k-1
and hence We deduce

d k e 3 e 4 (rψ) = e 3 e 4 (rd k ψ) + e 3 [d k , e 4 r]ψ + r -1 d ≤k+1 ψ, d k (r / 2 ψ) = r / 2 d k ψ + r -1 d ≤k+1 ψ.
e 3 e 4 (r(re 4 ) j d k-j ψ) = -(re 4 ) j d k-j (r 2 ψ) + r / 2 (d k ψ) + r -1 d ≤k+1 ψ + e 4 r(re 4 ) ≤j-1 d k-j ψ.
We infer by induction on j e 3 e 4 (r(re 4 )

j d k-j ψ) = -(re 4 ) ≤j d k-j (r 2 ψ) + r / 2 (d ≤k ψ) + r -1 d ≤k+1 ψ
and hence

e 3 e 4 (rd k ψ) = -d ≤k (r 2 ψ) + r / 2 (d ≤k ψ) + r -1 d ≤k+1 ψ
which is (5.3.24). This concludes the proof of Lemma 5.3.7.

We now are in position to prove Proposition 5.3.6.

Proof of Proposition 5.3.6. We integrate by parts,

J p,4m 0 [q (k) , φ 0 d k (rN g )](τ 1 , τ 2 ) M(τ 1 ,τ 2 ) e 3 φ 0 (r)r p ě4 q (k) d k (rN g ) + |B k p (τ 1 )| + |B k p (τ 2 )| + M(τ 1 ,τ 2 )
Div(e 3 )φ 0 (r)r p ě4 q (k) d k (rN g ) (5.3.25) where Div(e 3 ) denotes the spacetime divergence of e 3 , and where the boundary terms are bounded by

|B k p (τ 1 )| Σ(τ 1 ) r p |ě 4 q (k) | |d k (rN g )|, |B k p (τ 2 )| Σ(τ 2 ) r p |ě 4 q (k) | |d k (rN g )|.
We estimate,

|B k p (τ )| Σ(τ ) r p |ě 4 q (k) | |d k (rN g )| Σ(τ ) r p |ě 4 q (k) | 2 1/2 Σ(τ ) r p |d k (rN g )| 2 1/2 E k p [q](τ ) 1/2 Σ(τ ) r p+2 |d k N g | 2 1/2 .
We deduce, with δ 1 > 0 a sufficiently small constant, for any τ ∈ [τ 1 , τ 2 ],

B k p (τ 1 ) δ 1 sup τ 1 ≤τ ≤τ 2 E k p [q](τ ) + δ -1 1 sup τ 1 ≤τ ≤τ 2 Σ(τ ) r p+2 |N ≤k g | 2 , B k p (τ 2 ) δ 1 sup τ 1 ≤τ ≤τ 2 E k p [q](τ ) + δ -1 1 sup τ 1 ≤τ ≤τ 2 Σ(τ ) r p+2 |N ≤k g | 2 .
(5.3.26)

Next, notice that Div(e 3 ) = κ -2ω so that

|Div(e 3 )| r -1 .
Together with the fact that e 3 (Φ 0 (r)) is supported in 4m 0 ≤ r ≤ 8m 0 , the fact that |e 3 (r)| 1 and rě 4 q (k) = e 4 (rq (k) ) + O(r -1 )e 4 (q (k) ),
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we infer

M(τ 1 ,τ 2 ) e 3 φ 0 (r)r p ě4 q (k) d k (rN g ) + M(τ 1 ,τ 2 )
Div(e 3 )φ 0 (r)r p ě4 q (k) d k (rN g )

M(τ 1 ,τ 2 )
φ 0 (r)r p-1 e 3 e 4 (rq

(k) )d k (rN g ) + M ≥4m 0 (τ 1 ,τ 2 ) r p-1 |ě 4 (q (k) )||d k (rN g )| + M 4m 0 ≤r≤8m 0 (τ 1 ,τ 2 ) |ě 4 (q (k) )||d k (rN g )| M(τ 1 ,τ 2 ) φ 0 (r)r p-1 e 3 e 4 (rq (k) )d k (rN g ) + M ≥4m 0 (τ 1 ,τ 2 ) r p-1 |ě 4 (q (k) )| 2 1 2 M ≥4m 0 (τ 1 ,τ 2 ) r p+1 |d ≤k N g | 2 1 2
and hence

M(τ 1 ,τ 2 ) e 3 φ 0 (r)r p ě4 q (k) d k (rN g ) + M(τ 1 ,τ 2 )
Div(e 3 )φ 0 (r)r p ě4 q (k) d k (rN g )

M(τ 1 ,τ 2 )
φ 0 (r)r p-1 e 3 e 4 (rq

(k) )d k (rN g ) + B s p [q](τ 1 , τ 2 ) 1/2 I s p [N g ](τ 1 , τ 2 ) 1 2
which yields

M(τ 1 ,τ 2 ) e 3 φ 0 (r)r p ě4 q (k) d k (rN g ) + M(τ 1 ,τ 2 )
Div(e 3 )φ 0 (r)r p ě4 q (k) d k (rN g )

L k + δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s p [N g ](τ 1 , τ 2 ) (5.3.27)
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s p [q](τ 1 , τ 2 ) by the left hand side of our main estimate, and where we have introduced the notation

L k : = M(τ 1 ,τ 2 )
φ 0 (r)r p-1 e 3 e 4 rq (k) d k (rN g ).

(5.3.28)

It remains to estimate the term L k . Making use of Lemma 5.3.7, we deduce

L k = M(τ 1 ,τ 2 )
φ 0 (r)r p-1 e 3 e 4 (rq

(k) )d k (rN g ) = - M(τ 1 ,τ 2 ) φ 0 (r)r p-1 d ≤k (r 2 q)d k (rN g ) + M(τ 1 ,τ 2 ) φ 0 (r)r p / 2 (d ≤k q)d k (rN g ) + M(τ 1 ,τ 2 ) φ 0 (r)r p-2 d ≤k+1 q d k (rN g ) = L k 1 + L k 2 + L k 3 .
We first estimate L k 3 as follows

L k 3 M ≥4m 0 (τ 1 ,τ 2 ) r p-2 |d ≤k+1 q| |d k (rN g )| M ≥4m 0 (τ 1 ,τ 2 ) r p-3 d ≤k+1 q 2 1/2 M ≥4m 0 (τ 1 ,τ 2 ) r p+1 |d ≤k N g | 2 1/2
In view of Remark 5.1.8 we thus deduce,

L k 3 B k p [q]
1/2

M ≥4m 0 (τ 1 ,τ 2 ) r p+1 |d ≤k N g | 2 1/2 B k p [q](τ 1 , τ 2 ) 1/2 I k p [N g ](τ 1 , τ 2 ) 1/2
and hence

L k 3 δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s p [N g ](τ 1 , τ 2 ) (5.3.29)
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s p [q](τ 1 , τ 2 ) by the left hand side of our main estimate.

We now estimate the term

L k 2 = M(τ 1 ,τ 2 ) φ 0 (r)r p / 2 (d k q)d k (rN g )
by first performing another integration by parts in the angular directions

L k 2 M ≥4m 0 (τ 1 ,τ 2 ) r p-2 d k+1 q d k+1 (rN g ) M ≥4m 0 (τ 1 ,τ 2 ) r p-3 d k+1 q 2 1/2 M ≥4m 0 (τ 1 ,τ 2 ) r p+1 d ≤k+1 N g 2 1/2 B k p [q](τ 1 , τ 2 ) 1/2 I k+1 p [N g ](τ 1 , τ 2 ) 1/2 .
Hence,

L k 2 δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s+1 p [N g ](τ 1 , τ 2 ) (5.3.30)
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s p [q](τ 1 , τ 2 ) by the left hand side of our main estimate.

It remains to estimate the term,

L k 1 = - M(τ 1 ,τ 2 ) φ 0 (r)r p-1 d ≤k (r 2 q)d k (rN g ).
Making use of the equation verified by q, i.e., 2 q = -κκq + N , we deduce,

d k (r 2 q) = -d k (rκκq) + d k (rN ).
Recall (5.1.9)

d k N = d ≤k N g + e 3 (d k (rN g )) + d k N m [q].
We infer

d ≤k (rN ) = rd ≤k N + d ≤k-1 N = rd ≤k N g + re 3 (d ≤k (rN g )) + rd ≤k N m [q]
and hence

|d k (r 2 q)| r -1 d ≤k q + r d ≤k N g | + r 2 d ≤k e 3 (N g )| + r d k N m [q]| r -1 d ≤k+1 q + r d ≤k N g | + r 2 d ≤k e 3 (N g )|.
(5.3.31)

Note that we have used in the last inequality the form of N m [q] = d ≤1 (Γ g q) and the fact that |Γ g | ≤ r -2 . We deduce, using (5.3.31),

L k 1 M ≥4m 0 (τ 1 ,τ 2 ) r p-1 |d ≤k+1 q |d ≤k N g | + M ≥4m 0 (τ 1 ,τ 2 ) r p+1 |d ≤k N g | 2 + M ≥4m 0 (τ 1 ,τ 2 ) r p+2 |d ≤k e 3 (N g )||d ≤k N g | B k p [q](τ 1 , τ 2 ) 1/2 I k p [N g ](τ 1 , τ 2 ) 1/2 + I k p [N g ](τ 1 , τ 2 ).
We deduce

L k 1 δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s p [N g ](τ 1 , τ 2 ) (5.3.32)
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s p [q](τ 1 , τ 2 ) by the left hand side of our main estimate.

Together with (5.3.29) and (5.3.30) we deduce, 

L k δ 1 B k p [q](τ 1 , τ 2 ) + δ -1 1 I k p [N g ](τ 1 , τ 2 ). ( 5 
J p,4m 0 [q (k) , φ 0 d k (rN g )](τ 1 , τ 2 ) δ 1 B s p [q](τ 1 , τ 2 ) + δ -1 1 I s+1 p [N g ](τ 1 , τ 2 )
which concludes the proof of Proposition 5.3.6.

Proof of Theorem 5.3.2

We apply Theorem 5.3.5 to the case when ψ = q. Hence,

E s q [q](τ 2 ) + B s q [q](τ 1 , τ 2 ) E s q [q](τ 1 ) + Js q [q, N ](τ 1 , τ 2 ) + E s+1 max(q,δ) [q](τ 1 ) + J s+1 max(q,δ) [q, N ](τ 1 , τ 2 ).
(5.3.34) Also, recall that q = f 2 ě4 q, where f 2 is a fixed smooth function of r defined as follows,

f 2 (r) = r 2 for r ≥ 6m 0 , 0 for r ≤ 4m 0 . (5.3.35)
In particular, q is supported in r ≥ 4m 0 , and hence, in view of Remark 5.1.5,

B q [q](τ 1 , τ 2 ) M ≥4m 0 (τ 1 ,τ 2 ) r q-3 |dq| 2 , (5.3.36)
where we have used the fact that -1

+ δ ≤ q ≤ 1 -δ.
First, notice that the proof of Theorem 5.3.1 yields

J s+1 max(q,δ) [q, N ](τ 1 , τ 2 ) sup τ 1 ≤τ ≤τ 2 E s+1 [q](τ ) + B s+1 max(q,δ) [q](τ 1 , τ 2 ) + I s+2 max(q,δ) [N g ](τ 1 , τ 2 ).
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Hence, using Theorem 5.3.1, together with the fact that max(q, δ) ≤ 1δ, we infer

J s+1 max(q,δ) [q, N ](τ 1 , τ 2 ) E s+1 max(q,δ) [q](τ 1 ) + I s+2 max(q,δ) [N g ](τ 1 , τ 2 ).
Since q ≥ -1 + δ, we have max(q, δ) ≤ δ ≤ q + 1 and thus

J s+1 max(q,δ) [q, N ](τ 1 , τ 2 ) E s+1 q+1 [q](τ 1 ) + I s+2 q+1 [N g ](τ 1 , τ 2 ).
(5.3.37)

It only remains to estimate the term

Js q [q, N ](τ 1 , τ 2 ) = k≤s Jq [d k q, d k N ](τ 1 , τ 2 ) with, Jq [q, N ](τ 1 , τ 2 ) = J q,4m 0 q, r 2 e 4 N + 3 r N (τ 1 , τ 2 ) = M ≥4m 0 (τ 1 ,τ 2 ) r q+2 ě4 q • e 4 N + 3 r N .
We rewrite in the equivalent form,

Jq [d k q, d k N ](τ 1 , τ 2 ) = M ≥4m 0 (τ 1 ,τ 2 )
r q rě 4 d k q d k+1 N .

(5.3.38)

Using the identity (5.1.9), we have

d k+1 N = d ≤k+1 N g + e 3 (d ≤k+1 rN g ) + d k+1 N m [q].
The integral due to d ≤k+1 N g is treated as follows

Jq [d k q, d k N g ](τ 1 , τ 2 ) M ≥4m 0 (τ 1 ,τ 2 ) r q rě 4 d k q d ≤k+1 N g M ≥4m 0 (τ 1 ,τ 2 ) r q-3 rě 4 d k q 2 1/2 M ≥4m 0 (τ 1 ,τ 2 ) r q+3 d ≤k+1 N g 2 1/2 Therefore, Js q [q, N g ](τ 1 , τ 2 ) B s q [q](τ 1 , τ 2 ) 1/2 I s+1 q+2 [N g ](τ 1 , τ 2 ) 1/2 δ 1 B s q [q](τ 1 , τ 2 ) + δ -1 1 I s+1 q+2 [N g ](τ 1 , τ 2 ) (5.3.39)
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s q [q](τ 1 , τ 2 ) by the left hand side of our main estimate.

The integral due to d k+1 N m [q] is treated as follows

Jq [d k q, d k N m [q]](τ 1 , τ 2 ) M ≥4m 0 (τ 1 ,τ 2 ) r q rě 4 d k q d k+1 N m [q] M ≥4m 0 (τ 1 ,τ 2 ) r q+1 ě4 d k q d ≤k+2 q d ≤k+2 Γ g M ≥4m 0 (τ 1 ,τ 2 ) r q-1 τ -1 2 -δ dec +2δ 0 ě4 d k q d ≤k+2 q M ≥4m 0 (τ 1 ,τ 2 ) r q τ -1-2δ dec +4δ 0 ě4 d k q 2 1 2 M ≥4m 0 τ 1 ,τ 2 ) r q-2 d ≤k+2 q 2 1 2 sup τ 1 ≤τ ≤τ 2 E s q [q](τ ) 1 2 B s+1 q+1 [q](τ 1 , τ 2 ) 1 2
where we have used |Γ g | r -2 τ -1/2-δ dec +2δ 0 and 2δ 0 < δ dec . Since δ ≤ q + 1 ≤ 2δ and s ≤ k small + 29, we have in view of Theorem 5.3.1

B s+1 q+1 [q](τ 1 , τ 2 ) E s+1 q+1 [q](τ 1 ) + I s+2 q+1 [N g ](τ 1 , τ 2 ). We infer k≤s Jq [d k q, d k N m [q]](τ 1 , τ 2 ) 2 sup τ 1 ≤τ ≤τ 2 E s q [q](τ ) + E s+1 q+1 [q](τ 1 ) + I s+2 q+1 [N g ](τ 1 , τ 2 ). (5.3.40)
It remains to estimate the integral due to e 3 (d ≤k+1 rN g ). We proceed as in Proposition 5.3.6 by integration by parts, and obtain in particular the following analog of (5.3.27)

Jq [d k q, d k e 3 (rN g )](τ 1 , τ 2 ) P k + δ 1 B s q [q](τ 1 , τ 2 ) + δ -1 1 I s+1 q+2 [N g ](τ 1 , τ 2 ) (5.
3.41) where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s q [q](τ 1 , τ 2 ) by the left hand side of our main estimate, and where we have introduced the notation P k for the analog of L k in (5.3.28), i.e.6 

P k := M(τ 1 ,τ 2 )
r q e 3 e 4 rd k q d ≤k+1 (rN g ).

(5.3.42)

As in Lemma 5.3.7, e 3 e 4 (rd k q) = -d ≤k (r 2 q) + r / 2 (d ≤k q) + r -1 d ≤k+1 q.

(5.3.43)

We infer

P k = M(τ 1 ,τ 2 )
r q e 3 e 4 rd k q d ≤k+1 (rN g ) = -

M(τ 1 ,τ 2 ) r q d ≤k (r 2 q)d ≤k+1 (rN g ) + M(τ 1 ,τ 2 ) r q+1 / 2 (d ≤k q)d ≤k+1 (rN g ) + M(τ 1 ,τ 2 ) r q-1 d ≤k+1 q d ≤k+1 (rN g ) = P k 1 + P k 2 + P k 3 .
The last two terms on the right can be treated exactly as the the corresponding terms in the treatment of L k . This yields to the following analog of (5.3.29) and (5.3.30)

P k 3 δ 1 B s q [q](τ 1 , τ 2 ) + δ -1 1 I s+1 q+2 [N g ](τ 1 , τ 2 ), P k 2 δ 1 B s q [q](τ 1 , τ 2 ) + δ -1 1 I s+2 q+2 [N g ](τ 1 , τ 2 ), (5.3.44) 
where δ 1 > 0 is chosen sufficiently small so that we can later absorb the term δ 1 B s p [q](τ 1 , τ 2 ) by the left hand side of our main estimate.

It thus only remains to consider the analogous of the term L k 1 , i.e.

P k 1 = M(τ 1 ,τ 2 ) r q d k (r 2 q)d ≤k+1 (rN g ).
Now, in view of Proposition 10.3.1, q verifies, schematically,

2 q = r -2 d ≤1 q + r -2 d ≤2 q + rd ≤1 N so that d k (r 2 q) = r -1 d ≤k+1 q + r -1 d ≤k+2 q + r 2 d ≤k+1 N = r -1 d ≤k+1 q + r -1 d ≤k+2 q + r 2 d ≤k+1 N g + r 2 d ≤k+1 N m [q] + r 2 d ≤k+1 e 3 (rN g ). CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
We infer the following decomposition of P k

1 P k 1 = M(τ 1 ,τ 2 ) r q-1 d ≤k+1 q + d ≤k+2 q d ≤k+1 (rN g ) + M(τ 1 ,τ 2 ) r q+2 d ≤k+1 N m [q]d ≤k+1 (rN g ) + M(τ 1 ,τ 2 ) r q+2 d ≤k+1 N g + d ≤k+1 e 3 (rN g ) d ≤k+1 (rN g ) = P k 11 + P k 12 + P k 13 .
P k 11 is estimated as Js q [q, N g ](τ 1 , τ 2 ), see (5.3.39), and hence

|P k 11 | B s q [q](τ 1 , τ 2 ) 1/2 I s+1 q+2 [N g ](τ 1 , τ 2 ) 1/2 δ 1 B s q [q](τ 1 , τ 2 ) + B s max(q,δ) [q](τ 1 , τ 2 ) + δ -1 1 I s+1 q+2 [N g ](τ 1 , τ 2 )
which in view of Theorem 5.3.1 yields

|P k 11 | δ 1 B s q [q](τ 1 , τ 2 ) + E s+1 max(q,δ) [q](τ 1 ) + δ -1 1 I s+1 q+2 [N g ](τ 1 , τ 2 ). (5.3.45) 
Next, P k 12 is estimated as follows

|P k 12 | M ≥4m 0 (τ 1 ,τ 2 ) r q+3 |d ≤k+1 N m [q]||d ≤k+1 N g | M ≥4m 0 (τ 1 ,τ 2 ) r q+3 |d ≤k+2 Γ g ||d ≤k+2 q||d ≤k+1 N g | M ≥4m 0 (τ 1 ,τ 2 ) r q+1 τ -1 2 -δ dec +2δ 0 |d ≤k+2 q||d ≤k+1 N g | M ≥4m 0 (τ 1 ,τ 2 ) r q-2 |d ≤k+2 q| 2 1 2 M ≥4m 0 (τ 1 ,τ 2 ) r q+4 τ -1-2δ dec +4δ 0 |d ≤k+1 N g | 2 1 2 B s+1 q+1 [q](τ 1 , τ 2 ) 1 2 sup τ ∈[τ 1 ,τ 2 ] Σ(τ ) r q+4 |d ≤k+1 N g | 2 1 2
where we have used |Γ g | r -2 τ -1/2-δ dec +2δ 0 and 2δ 0 < δ dec . We infer

|P k 12 | B s+1 q+1 [q](τ 1 , τ 2 ) + I s+1 q+2 [N g ](τ 1 , τ 2 ). (5.3.46)
Finally, P k 13 is estimated as follows

|P k 13 | M ≥4m 0 (τ 1 ,τ 2 ) r q+3 |d ≤k+1 N g | + |d ≤k+1 e 3 (rN g )| |d ≤k+1 N g | M ≥4m 0 (τ 1 ,τ 2 ) r q+3 |d ≤k+1 N g | 2 + M ≥4m 0 (τ 1 ,τ 2 ) r q+4 |d ≤k+1 e 3 (N g )||d ≤k+1 N g | I s+1 q+2 [N g ](τ 1 , τ 2 ).
Together with (5.3.45) and (5.3.46), we infer

|P k 1 | ≤ |P k 11 | + |P k 12 | + |P k 13 | δ 1 B s q [q](τ 1 , τ 2 ) + E s+1 max(q,δ) [q](τ 1 ) + δ -1 1 I s+1 q+2 [N g ](τ 1 , τ 2 ) + B s+1 q+1 [q](τ 1 , τ 2 ).
Together with (5.3.44), we deduce

|P k | ≤ |P k 1 | + |P k 2 | + |P k 3 | δ 1 B s q [q](τ 1 , τ 2 ) + E s+1 max(q,δ) [q](τ 1 ) + δ -1 1 I s+2 q+2 [N g ](τ 1 , τ 2 ) + B s+1 q+1 [q](τ 1 , τ 2 ).
Together with (5.3.34), (5.3.37), (5.3.39), (5.3.40) and (5.3.41), this concludes the proof of Theorem 5.3.2.

Decay estimates

In this section we prove the decay estimates. In particular

• In section 5.4.1, we prove first flux decay estimates for q.

• In section 5.4.2, we prove flux decay estimates for q.

• In section 5.4.3, we prove Theorem 5.2.1.

• In section 5.4.4, we prove Proposition 5.2.4 on pointwise decay estimates for q.

• In section 5.4.5, we prove Proposition 5.2.5 on flux estimates on Σ * and on improved pointwise estimates for e 3 (q).

The decay estimates rely on the norms (5.1.27) which we recall below.

E s p,d [ψ] = sup 0≤τ ≤τ * (1 + τ ) d E s p [ψ](τ ), B s p,d [ψ] = sup 0≤τ ≤τ * (1 + τ ) d τ * τ M s p-1 [ψ](τ )dτ, F s p,d [ψ] = sup 0≤τ ≤τ * (1 + τ ) d F s p [ψ](τ ), I s p,d [N g ] = sup 0≤τ ≤τ * (1 + τ ) d I s p [N g ](τ, τ * ).

First flux decay estimates

The goal of this section is to prove the following flux decay estimates for q.

Theorem 5.4.1. Assume q verifies all the estimates of Theorem 5.3.1. Then the following estimates hold true for all s ≤ k small + 30 and for all δ

≤ p ≤ 2 -δ E s-[2-δ-p] p,2-δ-p [q] + B s-[2-δ-p] p,2-δ-p [q] + F s-[2-δ-p] p,2-δ-p [q] E s 2-δ [q](0) + I s+1 2-δ,0 [N g ] + I s+1 δ,2-2δ [N g ]. (5.4.1)
Here, [x] denotes the least integer greater or equal to x.

Proof. We make use of Theorem 5.3.1 according to which we have, for δ ≤ p ≤ 2δ, and 0 ≤ k ≤ k small + 30,

E s p [q](τ 2 ) + B s p [q](τ 1 , τ 2 ) + F s p [q](τ 1 , τ 2 ) E s p [q](τ 1 ) + I s+1 p [N g ](τ 1 , τ 2 )
which we write in the form,

E s p (τ 2 ) + τ 2 τ 1 M s p-1 (τ )dτ E s p (τ 1 ) + I s+1 p [N g ](τ 1 , τ 2 ), δ ≤ p ≤ 2 -δ. (5.4.2)
In particular,

E s 2-δ (τ ) + τ τ /2 M s 1-δ (λ)dλ E s 2-δ (τ /2) + I s+1 2-δ, 0 [N g ].
By the mean value theorem there exists τ 0 ∈ [τ /2, τ ] such that,

M s 1-δ (τ 0 ) 1 τ E s 2-δ (τ /2) + I s+1 2-δ, 0 [N g ] . Since 7 E s-1 1-δ (τ ) M s 1-δ (τ ),
we deduce,

E s-1 1-δ (τ 0 ) 1 τ E s 2-δ (τ /2) + I s+1 2-δ, 0 [N g ] .
Moreover, applying (5.4.2) again for p = 1δ, we deduce,

E s-1 1-δ (τ ) + τ τ 0 M s-1 -δ (λ)dλ E s-1 1-δ (τ 0 ) + (1 + τ ) -1 I s 1-δ,1 [N g ] (1 + τ ) -1 E s 2-δ (τ /2) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] .
In particular,

E s-1 1-δ (τ ) (1 + τ ) -1 E s 2-δ (τ /2) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] . (5.4.3) 
Interpolating with

E s 2-δ (τ ) E s 2-δ (τ /2) + I s+1 2-δ, 0 [N g ]
by using,

E s p (E s p 1 ) p 2 -p p 2 -p 1 (E s p 2 ) p-p 1 p 2 -p 1 , p 1 ≤ p ≤ p 2 ,
we deduce

E s-1 1 (τ ) (E s-1 1-δ (τ )) 1-δ (E s-1 2-δ (τ )) δ (1 + τ ) -1+δ E s 2-δ (τ /2) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] .
The same inequality hods for τ replaced by τ /2 i.e.,

E s-1 1 (τ /2) (1 + τ ) -1+δ E s 2-δ (τ /4) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] . (5.4.4)
We now repeat the procedure starting this time with the inequality (5.4.2) for p = 1,

E s-1 1 (τ ) + τ τ /2 M s-1 0 (λ)dλ E s-1 1 (τ /2) + I s 1 [N g ](τ /2, τ ) E s-1 1 (τ /2) + (1 + τ ) -1+δ I s 1,1-δ [N g ]. 298 CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
Thus, in view of (5.4.4),

τ τ /2 M s-1 0 (λ)dλ (1 + τ ) -1+δ E s 2-δ (τ /4) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] + I s 1,1-δ [N g ]
or, since

E s 2-δ (τ /4) E s 2-δ (0) + I s+1 2-δ,0 [N g ],
we infer that,

τ τ /2 M s-1 0 (λ)dλ B(1 + τ ) -1+δ
where,

B : = E s 2-δ (0) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] + I s 1,1-δ [N g ].
(5.4.5)

Repeating the mean value argument, we can find

τ 1 ∈ [τ /2, τ ] such that, M s-1 0 (τ 1 ) 1 τ τ τ /2 M s-1 0 (λ)dλ B(1 + τ ) -2+δ .
We now make use of the fact that the energy norm E s-1 is comparable with M s-1 0 everywhere except in the trapping region where we lose a derivative. Thus

E s-2 (τ 1 ) M s-1 0 (τ 1 )
and therefore,

E s-2 (τ 1 ) B(1 + τ ) -2+δ . (5.4.6)
We would like now to compare E s-2 (τ ) with E s-2 (τ 1 ) using the usual version of the energy inequality and thus derive a similar estimate for the former. Unfortunately8 , we don't have a closed energy inequality for E and we therefore have instead to rely on E δ for which we have the inequality,

E s-2 δ (τ ) E s-2 δ (τ 1 ) + I s-1 δ [N g ](τ 1 , τ ). (5.4.7)
We also have in view of (5.4.3)

E s-2 1-δ (τ 1 ) (1 + τ ) -1 E s 2-δ (0) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] .
Interpolating this last inequality with (5.4.6) we deduce, for δ > 0 sufficiently small

E s-2 δ (τ 1 ) E s-2 (τ 1 ) 1-2δ 1-δ E s-2 1-δ (τ 1 ) δ 1-δ (1 + τ ) -2+2δ (B + E s-2 1-δ (0) + I s-1 1-δ,0 [N g ]) (1 + τ ) -2+2δ B.
Thus, in view of (5.4.7),

E s-2 δ (τ ) E s-2 δ (τ 1 ) + I s-1 δ [N g ](τ 1 , τ ) (1 + τ ) -2+2δ (B + I s-1 δ,2-2δ [N g ]) i.e., E s-2 δ (τ ) (1 + τ ) -2+2δ E s 2-δ (0) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] + I s 1,1-δ [N g ] + I s-1 δ,2-2δ [N g ] . We infer E s-2 δ,2-2δ E s 2-δ (0) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] + I s 1,1-δ [N g ] + I s-1 δ,2-2δ [N g ]
which can be written in the shorter form (by interpolation of the middle terms),

E s-2 δ,2-2δ E s 2-δ (0) + I s+1 2-δ, 0 [N g ] + I s+1 δ,2-2δ [N g ]. (5.4.8) 
Also, (5.4.3) yields

E s-1 1-δ,1 E s 2-δ (0) + I s+1 2-δ, 0 [N g ] + I s 1-δ,1 [N g ] E s 2-δ (0) + I s+1 2-δ, 0 [N g ] + I s+1 δ,2-2δ [N g ].
(5.4.9)

while from Theorem 5.3.1, we have

E s 2-δ,0 E s 2-δ (0) + I s+1 2-δ, 0 [N g ].
(5.4.10) Interpolating (5.4.8) and (5.4.9), as well as (5.4.9) and (5.4.10), we infer for all s ≤ k small + 30 and for all δ

≤ p ≤ 2 -δ E s-[2-δ-p] p,2-δ-p [q] E s 2-δ [q](0) + I s+1 2-δ,0 [N g ] + I s+1 δ,2-2δ [N g ]. (5.4.11)
Finally, making use of Theorem 5.3.1 between τ and τ * , we have in particular

B s-[2-δ-p] p [q](τ, τ * ) + F s-[2-δ-p] p [q](τ, τ * ) E s-[2-δ-p] p [q](τ ) + I s+1-[2-δ-p] p [N g ](τ, τ * ) (1 + τ ) -(2-δ-p) E s-[2-δ-p] p,2-δ-p [q] + I s+1 p,2-δ-p [N g ]
and hence, we infer for all s ≤ k small + 30 and for all δ

≤ p ≤ 2 -δ B s-[2-δ-p] p,2-δ-p [q] + F s-[2-δ-p] p,2-δ-p [q] E s-[2-δ-p] p,2-δ-p [q] + I s+1 2-δ,0 [N g ] + I s+1 δ,2-2δ [N g
]. Together with (5.4.11), this concludes the proof of Theorem 5.4.1.

Flux decay estimates for q

The goal of this section is to prove the following flux decay estimates for q.

Theorem 5.4.2. The following estimates hold for all q 0 -1 ≤ q ≤ q 0 , where q 0 is a fixed number δ < q 0 ≤ 1δ, and s ≤ k small + 28

E s q,q 0 -q [q] + B s q,q 0 -q [q] E s q 0 [q](0) + E s+2 2-δ [q](0) + I s+3 q 0 +2,0 [N g ] + I s+3 δ,2+q 0 -δ [N g ].
Proof. Since δ < q 0 ≤ 1δ, according to Theorem 5.3.2, q = f 2 ě4 q verifies, for any q 0 -1 ≤ q ≤ q 0 and any s ≤ k small + 29,

E s q [q](τ 2 ) + B s q [q](τ 1 , τ 2 ) E s q [q](τ 1 ) + E s+1 q+1 [q](τ 1 ) + I s+2 q+2 [N g ](τ 1 , τ 2 ).
According to the definition of our decay norms above we have,

I s+2 q+2 [N g ](τ 1 , τ 2 ) (1 + τ 1 ) q-q 0 I s+2 q+2,q 0 -q [N g ].
(5.4.12)

Also, according to the definition 5.1.27 for the decay norms for q we also have

E s+1 q+1 [q](τ 1 ) (1 + τ 1 ) q-q 0 E s+2 q+1,q 0 -q [q].
We deduce 9 , for all q 0 -1 ≤ q ≤ q 0 ,

E s q [q](τ 2 ) + τ 2 τ 1 M s q [q](τ ) E s q [q
](τ 1 ) + (1 + τ 1 ) q-q 0 Ẽs q,q 0 -q (5.4.13)

where, Ẽs q,q 0 -q := E s+1 q+1,q 0 -q [q] + I s+2 q+2,q 0 -q [N g ].

(5.4.14)

In particular,

E s q 0 [q](τ 2 ) + τ 2 τ 1 M s q 0 -1 [q](τ )dτ E s q 0 [q](τ 1 ) + Ẽs q 0 ,0 . (5.4.15)
By the mean value theorem we deduce that there exists

τ 0 ∈ [τ 1 , τ 2 ] such that, M s q 0 -1 [q](τ 0 ) 1 τ 2 -τ 1 E s q 0 [q](τ 1 ) + Ẽs q 0 ,0 1 τ 2 -τ 1 E s q 0 ,0 [q] + Ẽs q 0 ,0 .
Thus also,

E s q 0 -1 [q](τ 0 ) 1 τ 2 -τ 1
E s q 0 ,0 [q] + Ẽs q 0 ,0 .

(5.4.16)

We now make use of (5.4.13) to compare the quantities E q [q] for negative weights (q = q 0 -1) at different values of τ .

E s q 0 -1 [q](τ 2 ) E s q 0 -1 [q](τ 0 ) + (1 + τ 0 ) -1 Ẽs q 0 -1,1 .
Combining this with (5.4.16) we deduce,

E s q 0 -1 [q](τ 2 ) 1 τ 2 -τ 1 E s q 0 ,0 [q] + Ẽs q 0 ,0 + (1 + τ 0 ) -1 Ẽs q 0 -1,1 .
Applying this inequality for

τ 2 = τ ≤ τ * , τ 1 = 1 2 τ , τ 0 ∈ [τ 1 , τ 2 ] we deduce, E s q 0 -1 [q](τ ) (1 + τ ) -1 E s q 0 ,0 [q] + Ẽs q 0 ,0 + Ẽs q 0 -1,1 . (5.4.17) 
We now interpolate this last inequality with the following immediate consequence of (5.4.15)

E s q 0 [q](τ ) E s q 0 ,0 [q] + Ẽs q 0 ,0
to deduce, for all q 0 -1 ≤ q ≤ q 0 , E s q [q](τ ) (1 + τ ) q-q 0 E s q 0 ,0 [q] + Ẽs q 0 ,0 + Ẽs

q 0 -1,1
i.e., E s q,q 0 -q [q] E s q 0 ,0 [q] + Ẽs q 0 ,0 + Ẽs q 0 -1,1 .

In view of the definition of Ẽs q,q 0 -q , this yields for all q 0 -1 ≤ q ≤ q 0 ,

E s q,q 0 -q [q] E s q 0 ,0 [q] + E s+1 q 0 +1,0 [q] + E s+1 q 0 ,1 [q] + I s+2 q 0 +2,0 [N g ] + I s+2 q 0 +1,1 [N g ].
On the other hand, we have in view of Theorem 5.3.2,

E s q 0 ,0 [q] E s q 0 [q](0) + E s+1 q 0 +1,0 [q] + I s+2 q 0 +2,0 [N g ]
and hence

E s q,q 0 -q [q] E s q 0 [q](0) + E s+1 q 0 +1,0 [q] + E s+1 q 0 ,1 [q] + I s+2 q 0 +2,0 [N g ] + I s+2 q 0 +1,1 [N g ]. CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
Now, since δ < q 0 ≤ 1δ, we have δ < q 0 < q 0 + 1 ≤ 2δ and thus, we may apply Theorem 5.4.1 to obtain for all q 0 -1 ≤ q ≤ q 0

E s+1 q+1,q 0 -q [q] E s+2 2-δ [q](0) + I s+3 2-δ,0 [N g ] + I s+3 δ,2-2δ [N g ].
(5.4.18)

We thus infer

E s q,q 0 -q [q] E s q 0 [q](0) + E s+2 2-δ [q](0) + I s+3 q 0 +2,0 [N g ] + I s+3 q 0 +1,1 [N g ] + I s+3 2-δ,0 [N g ] + I s+3 δ,2-2δ [N g ] and hence, for all q 0 -1 ≤ q ≤ q 0 , E s q,q 0 -q [q] E s q 0 [q](0) + E s+2 2-δ [q](0) + I s+3 q 0 +2,0 [N g ] + I s+3 δ,2-2δ [N g ]. (5.4.19)
Finally, making use of Theorem 5.3.2 between τ and τ * , we have in particular

B s q [q](τ, τ * ) E s q [q](τ ) + E s+1 q+1 [q](τ ) + I s+2 q+2 [N g ](τ, τ * ) (1 + τ ) -(q 0 -q) E s q,q 0 -q [q] + E s+1 q+1,q 0 -q [q] + I s+2 q+2,q 0 -q [N g ] (1 + τ ) -(q 0 -q) E s q,q 0 -q [q] + E s+2 2-δ [q](0) + I s+3 q 0 +2,0 [N g ] + I s+3 δ,2-2δ [N g ]
where we used (5.4.18) in the last inequality. Hence, we infer for all s ≤ k small + 28 and for all q 0 -1 ≤ q ≤ q 0 B s q,q 0 -q [q] E s q,q 0 -q [q] + E s+2 2-δ [q](0) + I s+3 q 0 +2,0 [N g ] + I s+3 δ,2-2δ [N g ]. Together with (5.4.19), this concludes the proof of Theorem 5.4.2.

Proof of Theorem 5.2.1

In this section, we prove Theorem 5.2.1 by making use of Theorem 5.4.1 and Theorem 5.4.2. We start with the main estimate of Theorem 5.4.2 with q = -δ which we write in the form,

E s -δ [q] (1 + τ ) -q 0 -δ C s q 0
where,

C s q 0 := E s q 0 [q](0) + E s+2 2-δ [q](0) + I s+3 q 0 ,0 [N g ] + I s+3 δ,q 0 +2-δ [N g ].
In view of the definition (5.1.21) of E s -δ [q] and since q = f 2 ě4 q,

Σ ≥4m 0 (τ ) r -δ |ě 4 q| 2 + r -2 |q| 2 (1 + τ ) -q 0 -δ C s q 0 .
Hence,

Ės 2-δ,4m 0 [q] = Σ ≥4m 0 (τ ) r 2-δ |ě 4 q| 2 (1 + τ ) -q 0 -δ C s q 0 . (5.4.20)
In view of the decay estimates (5.4.1) for q established in Theorem 5.4.1 we have,

E s (τ ) (1 + τ ) -2+2δ B 2+s 2-δ , B 2+s 2-δ : = E s+2 2-δ [q](0) + I s+3 2-δ,0 [N g ] + I s+3 δ,2-2δ [N g ].
Thus, the quantity

E s 2-δ = E s 2-δ [q](τ ) = Ės 2-δ,4m 0 [q] + E s [q]
verifies,

E s 2-δ (1 + τ ) -q 0 -δ C s q 0 + B 2+s 2-δ . (5.4.21)
On the other hand, E s 2-δ verifies (5.4.2) for p = 2δ, i.e.

E s 2-δ (τ 2 ) + τ 2 τ 1 M s 1-δ (τ )dτ E s 2-δ (τ 1 ) + I s+1 2-δ [N g ](τ 1 , τ 2 ).
Since

I s+1 2-δ [N g ](τ 1 , τ 2 ) (1 + τ 1 ) -q 0 -δ I s+1 2-δ,q 0 +δ [N g ],
we infer

E s 2-δ (τ ) + τ τ /2 M s 1-δ (τ )dτ E s 2-δ (τ /2) + I s+1 2-δ [N g ](τ /2, τ ) (1 + τ ) -q 0 -δ C s q 0 + B 2+s 2-δ + I s+1 2-δ,q 0 +δ [N g ] .(5.4.22)
Following the same arguments as in the proof of Theorem 5.4.1 we deduce, for a

τ 0 ∈ [τ /2, τ ], E s-1 1-δ (τ 0 ) (1 + τ ) -q 0 -1-δ C s q 0 + B 2+s 2-δ + I s+1 2-δ,q 0 +δ [N g ]
and since,

E s 1-δ (τ ) E s 1-δ (τ 0 ) + I s+1 1-δ (τ 0 , τ )[N g ],
we infer that,

E s 1-δ (τ ) (1 + τ ) -q 0 -1-δ C s+1 q 0 + B 3+s 2-δ + I s+2 2-δ,q 0 +δ [N g ] + I s+1 1-δ,1+q 0 +δ [N g ] . (5.4.23) CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
Interpolating with (5.4.21), i.e.

E s 2-δ (1 + τ ) -q 0 -δ C s q 0 + B 2+s 2-δ
we deduce,

E s 1 (E s 1-δ ) 1-δ (E s 2-δ ) δ (1 + τ ) -q 0 -1 C s+1 q 0 + B 3+s 2-δ + I s+2 2-δ,q 0 +δ [N g ] + I s+1 1-δ,1+q 0 +δ [N g ] . Hence, E s 1 (1 + τ ) -q 0 -1 C s+1 q 0 + B 3+s 2-δ + I s+2 2-δ,q 0 +δ + I s+1 1-δ,1+q 0 +δ . (5.4.24)
As in the proof of Theorem 5.4.1 we repeat the procedure starting with the inequality (5.4.2) for p = 1,

E s 1 (τ ) + τ τ /2 M s 0 (λ)dλ E s 1 (τ /2) + I s+1 1 [N g ](τ /2, τ ) (1 + τ ) -q 0 -1 C s+1 q 0 + B 3+s 2-δ + I s+2 2-δ,q 0 +δ [N g ] + I s+1 1-δ,1+q 0 +δ [N g ] + (1 + τ ) -1-q 0 I s+1 1,1+q 0 [N g ] (1 + τ ) -q 0 -1 C s+1 q 0 + B 3+s 2-δ + I s+s 2-δ,q 0 +δ [N g ] + I s+1 1-δ,1+q 0 +δ [N g ] + I s+1 1,1+q 0 [N g ] from which we infer that, for a τ 0 ∈ [τ /2, τ ], E s (τ 0 ) (5.4.25) (1 + τ ) -q 0 -2 C s+2 q 0 + B s+4 2-δ + I s+3 2-δ,q 0 +δ [N g ] + I s+2 1-δ,1+q 0 +δ [N g ] + I s+2 1,1+q 0 [N g ] .
Interpolating (5.4.23) and (5.4.25) we deduce, for δ > 0 sufficiently small

E s δ (τ 0 ) E s (τ 0 ) 1-2δ 1-δ E s 1-δ (τ 0 ) δ 1-δ (1 + τ ) -2-q 0 +δ C s+2 q 0 + B s+4 2-δ + I s+3 2-δ,q 0 +δ [N g ] + I s+2 1-δ,1+q 0 +δ [N g ] + I s+2 1,1+q 0 [N g ] .
Thus, since we have, as in (5.4.7),

E s δ (τ ) E s δ (τ 0 ) + I s+1 δ [N g ](τ 0 , τ ),
we deduce

E s δ (τ ) (1 + τ ) -2-q 0 +δ C s+2 q 0 + B s+4 2-δ + I s+3 2-δ,q 0 +δ [N g ] + I s+2 1-δ,1+q 0 +δ [N g ] + I s+2 1,1+q 0 [N g ] + (1 + τ ) -2-q 0 +δ I s+1 δ,2+q 0 -δ [N g ] i.e., E s δ (τ ) (1 + τ ) -2-q 0 +δ C s+2 q 0 + B s+4 2-δ + I s+3 2-δ,q 0 +δ [N g ] + I s+2 1-δ,1+q 0 +δ [N g ] +I s+2 1,1+q 0 [N g ] + I s+1 δ,2+q 0 -δ [N g ] .
By interpolating the middle terms we write,

E s δ (τ ) (1 + τ ) -2-q 0 +δ C s+2 q 0 + B s+4 2-δ + I s+3 2-δ,q 0 +δ [N g ] + I s+3 δ,2+q 0 -δ [N g ] . We now recall, C s q 0 := E s q 0 [q](0) + E s+2 2-δ [q](0) + I s+3 q 0 +2,0 [N g ] + I s+3 δ,q 0 +2-δ [N g ] B 2+s 2-δ : = E s+2 2-δ [q](0) + I s+3 2-δ,0 [N g ] + I s+3 δ,2-2δ [N g ]. Hence, C s+2 q 0 + B s+4 2-δ + I s+3 2-δ,q 0 +δ [N g ] + I s+3 δ,2+q 0 -δ [N g ] = E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + I s+5 q 0 +2,0 [N g ] + I s+5 δ,q 0 +2-δ [N g ] + E s+4 2-δ [q](0) + I s+5 2-δ,0 [N g ] + I s+5 δ,2-2δ [N g ] + I s+3 2-δ,q 0 +δ [N g ] + I s+3 δ,2+q 0 -δ [N g ]. We deduce, E s δ,2+q 0 -δ [q] E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + I s+5 q 0 +2,0 [N g ] + I s+5 δ,2+q 0 -δ [N g ]. (5.4.26)
We can also simplify the right hand side of (5.4.24),

C s+1 q 0 + B 3+s 2-δ + I s+2 2-δ,q 0 +δ [N g ] + I s+1 1-δ,1+q 0 +δ [N g ] E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + I s+5 q 0 +2,0 [N g ] + I s+5 δ,2+q 0 -δ [N g ]. Thus (5.4.23) becomes, E s 1-δ,1+q 0 +δ E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + I s+5 q 0 +2,0 [N g ] + I s+5 δ,2+q 0 -δ [N g ].
(5.4.27) Similarly, (5.4.21) yields 

E s 2-δ,q 0 -δ E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + I s+5 q 0 +2,0 [N g ] + I s+5 δ,2+q 0 -δ [N g ]. ( 5 
≤ p ≤ 2 -δ E s p,2+q 0 -p [q] E s+2 q 0 [q](0) + E s+4 2-δ [q](0) + I s+5 q 0 +2,0 [N g ] + I s+5 δ,2+q 0 -δ [N g ]. (5.4.29)
Finally, making use of Theorem 5.3.1 between τ and τ * , we have in particular

B s p [q](τ, τ * ) + F s p [q](τ, τ * ) E s p [q](τ ) + I s+1 p [N g ](τ, τ * ) (1 + τ ) -(2+q 0 -p) E s p,2+q 0 -p [q] + I s+1 p,2+q 0 -p [N g ]
and hence, we infer for all s ≤ k small + 25 and for all δ ≤ p ≤ 2δ

B s p,2+q 0 -p [q] + F s p,2+q 0 -p [q] E s p,2+q 0 -p [q] + I s+5 q 0 +2,0 [N g ] + I s+5 δ,2+q 0 -δ [N g
]. Together with (5.4.29), this concludes the proof of Theorem 5.2.1.

Proof of Proposition 5.2.4

Let χ be a smooth cut-off function vanishing for r ≤ 4m 0 and equal to 1 for r ≥ 6m 0 . To prove estimate (5.2.6) we consider the identity,

e 4 Sr χ(q (s) ) 2 = Sr e 4 (χ(q (s) ) 2 ) + κχ(q (s) ) 2 = Sr χ(2q (s) e 4 q (s) + 2r -1 (q (s) ) 2 ) + χ (q (s) ) 2 + χ(κ -2r -1 )|q (s) | 2 = Sr 2χq (s) ě4 q (s) + χ (q (s) ) 2 + O(r -2 )|q (s) | 2 .
Integrating between 4m 0 and r for a fixed r ≥ 6m 0 , we deduce, in view of the definitions of E[q (s) ](τ ) and of E p [q (s) ](τ ),

Sr |q (s) | 2 Σ(τ ) ≥4m 0 |q (s) ||ě 4 q (s) | + E[q (s) ](τ ) Σ(τ ) ≥4m 0 r 1+δ |ě 4 q (s) | 2 1/2 Σ(τ ) ≥4m 0 r -1-δ |q (s) | 2 1/2 + E[q (s) ](τ ) E 1+δ [q (s) ](τ ) 1/2 E 1-δ [q (s) ](τ ) 1/2 .
Clearly, this estimate also holds for r ≤ 6m 0 . Together with the definition (5.1.27) of E s p,d [q (s) ], we immediately infer

(1 + τ ) 1+q 0 Sr |q (s) | 2 E s 1+δ,1+q 0 -δ [q] 1 2 E s 1-δ,1+q 0 +δ [q] 1 2
which is the desired estimate (5.2.6).

To prove (5.2.7) we start instead with the identity,

e 4 r -1 Sr χ(q (s) ) 2 = Sr r -1 e 4 (χ(q (s) ) 2 ) + κχ(q (s) ) 2 - e 4 (r) r 2 Sr χ(q (s) ) 2 = Sr r -1 χ(2q (s) e 4 q (s) + r -1 (q (s) ) 2 ) + χ (q (s) ) 2 + χ(κ -2r -1 )|q (s) | 2 - e 4 (r) -1 r 2 Sr χ(q (s) ) 2 = Sr 2r -1 χe 4 (q (s) )q (s) + r -1 χ (q (s) ) 2 + O(r -2 )|q (s) | 2 .
Integrating between 4m 0 and r for a fixed r ≥ 6m 0 , we deduce, in view of the definitions of E[q (s) ](τ ) and of E p [q (s) ](τ ),

r -1 Sr |ψ| 2 Σ(τ ) ≥4m 0 r -1 |q (s) ||e 4 (q (s) )| + E[q (s) ](τ ) 2 Σ(τ ) ≥4m 0 |e 4 (q (s) )| 2 1/2 Σ(τ ) ≥4m 0 r -2 |q (s) | 2 1/2 + E[q (s) ](τ ) E[q (s) ](τ ) E δ [q (s) ](τ ).
Clearly, this estimate also holds for r ≤ 6m 0 . Together with the definition (5.1.27) of E s p,d [q (s) ], we immediately infer

r -1 (1 + τ ) 2+q 0 -δ Sr |q (s) | 2 E s δ,2+q 0 -δ [q]
which is the desired estimate (5.2.7). This concludes the proof of Proposition 5.2.4.

Proof of Proposition 5.2.5

Recall the following definitions

F [ψ](τ 1 , τ 2 ) = A(τ 1 ,τ 2 ) δ -1 H |e 4 Ψ| 2 + δ H |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + Σ * (τ 1 ,τ 2 ) |e 4 Ψ| 2 + |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 , Ḟp [ψ](τ 1 , τ 2 ) = Σ * (τ 1 ,τ 2 ) r p |e 4 ψ| 2 + |∇ / ψ| 2 + r -2 |ψ| 2 , F p [ψ](τ 1 , τ 2 ) = F [ψ](τ 1 , τ 2 ) + Ḟp [ψ](τ 1 , τ 2 ), F s [ψ](τ 1 , τ 2 ) = k≤s F [d k ψ](τ 1 , τ 2 ), F s p [ψ](τ 1 , τ 2 ) = k≤s F p [d k ψ](τ 1 , τ 2 ), F s p,d [ψ] = sup 0≤τ ≤τ * (1 + τ ) d F s p [ψ](τ, τ * ).
We deduce

F s [q](τ, τ * ) ≤ F s δ [q](τ, τ * ) ≤ (1 + τ ) -2-q 0 +δ F s δ,2+q 0 -δ [q] CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
and hence in particular

(1 + τ ) 2+q 0 -δ Σ * (τ,τ * ) |e 3 d ≤s q| 2 + r -2 |d ≤s q| 2 F s δ,2+q 0 -δ [q] (5.4.30)
which yields the desired estimate (5.2.8).

Next, we focus on the proof of (5.2.9). We start with the following trace estimate sup Σ * (τ,τ * )

e 3 d ≤s q L 2 (S) νe 3 d ≤s q L 2 (Σ * (τ,τ * )) + e 3 d ≤s q L 2 (Σ * (τ,τ * ))
where we recall that ν is tangent to Σ * , orthogonal to e θ and given by

ν = e 3 + ae 4 , -2 ≤ a ≤ - 1 2 .
We infer sup Σ * (τ,τ * )

e 3 d ≤s q L 2 (S) e 3 e 3 d ≤s q L 2 (Σ * (τ,τ * )) + e 4 e 3 d ≤s q L 2 (Σ * (τ,τ * )) + e 3 d ≤s q L 2 (Σ * (τ,τ * )) e 3 d ≤s+1 q L 2 (Σ * (τ,τ * )) + r -1 d ≤s+1 q L 2 (Σ * (τ,τ * ))
+ [e 4 , e 3 ]d ≤s q L 2 (Σ * (τ,τ * ))

e 3 d ≤s+1 q L 2 (Σ * (τ,τ * )) + r -1 d ≤s+1 q L 2 (Σ * (τ,τ * )) .
In view of (5.4.30), we deduce

sup Σ * (1 + τ ) 2+q 0 -δ e 3 d ≤s q 2 L 2 (S) F s+1 δ,2+q 0 -δ [q]. (5.4.31)
Next, we extend (5.4.31) to r ≥ 4m 0 . In view of (5.3.24), we have schematically

e 3 e 4 (rd k q) = -d ≤k (r 2 q) + r / 2 (d ≤k q) + r -1 d ≤k+1 q = -d ≤k (r 2 q) + r -1 d ≤k+2 q.
Also, we have e 4 (re 3 (d k q)) = e 3 e 4 (rd k q) + [e 4 , e 3 ](rd k q)e 4 (e 3 (r)d k q)

and hence, we infer schematically e 4 (re 3 (d k q)) = -d ≤k (r 2 q) + r -1 d ≤k+2 q.
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|d k (r 2 q)| r -1 d ≤k+1 q + r d ≤k N g | + r 2 d ≤k e 3 (N g )|.
We deduce

|e 4 (re 3 (d k q))| r -1 d ≤k+2 q + r d ≤k N g | + r 2 d ≤k e 3 (N g )|
Now, we have

e 4 r -2 S (re 3 (d ≤s q)) 2 = r -2 S 2e 4 (re 3 (d ≤s q))re 3 (d ≤s q) + κ(re 3 (d ≤s q)) 2 - 2e 4 (r) r r -2 S (re 3 (d ≤s q)) 2 = r -2 S 2e 4 (re 3 (d ≤s q))re 3 (d ≤s q) + (κ -2r -1 )(re 3 (d ≤s q)) 2 -2 e 4 (r) -1 r r -2 S (re 3 (d ≤s q)) 2
and hence

e 4 r -2 S (re 3 (d ≤s q)) 2 r -2 S r -1 d ≤s+2 q + r d ≤s N g | + r 2 d ≤s e 3 (N g )| |re 3 (d ≤s q)| +r -2 (re 3 (d ≤s q)) 2 r -2 S r -1 2 d ≤s+2 q 2 + r 2 d ≤s N g | 2 + r 4 d ≤s e 3 (N g )| 2 +r -7 2 S (re 3 (d ≤s q)) 2
Together with (5.2.7), this yields

e 4 r -2 S (re 3 (d ≤s q)) 2 r -2 S r 7 2 d ≤s N g | 2 + r 11 2 d ≤s e 3 (N g )| 2 +r -4 S (re 3 (d ≤s q)) 2 + r -3 2 (1 + τ ) -2-q 0 +δ E s+2 δ,2+q 0 -δ [q]. CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)
Now, recall from (5.2.12) that we have for s ≤ k small + 30

|d s N g | 2 r -3 τ -1-2δ dec +2δ 0 |d s N g | 2 r -1 τ -2-2δ dec +2δ 0 , |d s e 3 (N g )| 2 r -3 τ -3 2 -2δ dec +2δ 0 , |d s e 3 (N g )| 2 r -7 2 - δ B 2 τ -1-δ dec +2δ 0 .
By interpolation, we infer

r -2 S r 7 2 d ≤s N g | 2 + r 11 2 d ≤s e 3 (N g )| 2 4 r -3 2 τ -5 2 -4δ dec +4δ 0 + 4 r -1-δ B 2 τ -5 2 -3δ dec +4δ 0 2 0 r -1-δ B 2 τ -5 2 -3δ dec +4δ 0
and hence

e 4 r -2 S (re 3 (d ≤s q)) 2 r -4 S (re 3 (d ≤s q)) 2 + 2 0 r -1-δ B 2 τ -5 2 -3δ dec +4δ 0 + r -3 2 (1 + τ ) -2-q 0 +δ E s+2 δ,2+q 0 -δ [q].
We integrate from Σ * . By Gronwall, and in view of (5.4.31), we deduce for r ≥ 4m 0

(1 + τ ) 2+q 0 -δ Sr (e 3 d ≤s q) 2 2 0 + F s+1 δ,2+q 0 -δ [q] + E s+2 δ,2+q 0 -δ [q].
On the other hand, we have by a trace estimate for r ≤ 4m 0

(1 + τ ) 2+q 0 -δ Sr (e 3 d ≤s q) 2 E s+2 0,2+q 0 -δ [q].
We finally deduce on M

(1 + τ ) 2+q 0 -δ Sr (e 3 d ≤s q) 2 2 0 + F s+1 δ,2+q 0 -δ [q] + E s+2 δ,2+q 0 -δ [q]
which is the desired estimate (5.2.9). This concludes the proof of Proposition 5.2.5.

Chapter 6 DECAY ESTIMATES FOR α AND α (Theorems M2, M3)

In this section, we rely on the decay of q to prove the decay estimates for α and α. More precisely, we rely on the results of Theorem M1 to prove Theorem M2 and M3.

Proof of Theorem M2

6.1.1 A renormalized frame on (ext) M

In Theorem M1, decay estimates are derived for q defined with respect to the global frame constructed in Proposition 3.5.5. We have the following control for the Ricci coefficients in that frame. Then, the Ricci coefficients satisfy the following estimates

max 0≤k≤k small +20 sup (ext) M u 1 2 r 2 d k ω + m r 2 , κ - 2Υ r , ϑ, ζ, η, η + r d k ξ, ω, κ + 2 r , ϑ , + d k (e 4 (r) -Υ, e 3 (r) + 1) .
Proof. This follows immediately from the stronger estimates of Lemma 5.1.1 with the CHAPTER 6. DECAY ESTIMATES FOR α AND α (THEOREMS M2, M3)

choice k loss = 20.

A transport equation for α

To recover α from q, we derive below a transport equation for α where q is on the RHS. We are careful to avoid terms of the type e 3 (ω) as they are anomalous w.r.t. decay in r. Indeed, they only decay linearly in r -1 while all comparable term decay like r -2 in r.

Lemma 6.1.2. We have

κ 2 e 3 e 3 α κ 2 -8ω - 2 κ 2 d / 1 ξ - 1 2 ϑ 2 α κ 2 = q r 4 + 10ω + 4 κ -d / 1 ξ -2(η -3ζ)ξ + 1 4 ϑ 2 e 3 α + -2 d / 1 ξ + 6κ -24ω + 8 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ω + 1 2 ϑ 2 - 4 κ e 3 ((η -3ζ)ξ) + 16 + 48 κ ω - 24 κ 2 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ζξ α.
Proof. We compute

e 3 e 3 α κ 2 = e 3 e 3 α κ 2 - 2e 3 (κ)α κ 3 = 1 κ 2 e 3 e 3 α -4 e 3 (κ) κ e 3 α -2κ 2 e 3 e 3 (κ) κ 3 α .
Now, recall the following null structure equation

e 3 (κ) + 1 2 κ 2 + 2ω κ = 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 .
We infer

e 3 (κ) κ = - 1 2 κ -2ω + 1 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2
and e 3 e 3 (κ)

κ 3 = e 3 - 1 2κ -2 ω κ 2 + 1 κ 3 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 = e 3 (κ) 2κ 2 + e 3 -2 ω κ 2 + 1 κ 3 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 = - 1 4 + 1 2κ -2ω + 1 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 +e 3 -2 ω κ 2 + 1 κ 3 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2
and hence

κ 2 e 3 e 3 α κ 2 = e 3 e 3 α -4 e 3 (κ) κ e 3 α -2κ 2 e 3 e 3 (κ) κ 3 α = e 3 e 3 α + 2κe 3 α + 1 2 κ 2 α + 8ω - 4 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 e 3 α + -κ -2ω + 1 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 -2κ 2 e 3 -2 ω κ 2 + 1 κ 3 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 α.
Next, recall from section 2.3.3 that q is defined with respect to a general null frame as follows

q = r 4 e 3 (e 3 (α)) + (2κ -6ω)e 3 (α) + -4e 3 (ω) + 8ω 2 -8ω κ + 1 2 κ 2 α .
We infer

κ 2 e 3 e 3 α κ 2 = q r 4 + 14ω - 4 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 e 3 α + 4e 3 (ω) -8ω 2 + 10ω κ -2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 -2κ 2 e 3 -2 ω κ 2 + 1 κ 3 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 α.
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We rewrite the following terms

4e 3 (ω) -2κ 2 e 3 -2 ω κ 2 + 1 κ 3 2 d / 1 ξ - 1 2 ϑ 2 α = κ 2 e 3 8 ω κ 2 - 2 κ 3 2 d / 1 ξ - 1 2 ϑ 2 α -4κ 2 ωe 3 α κ 2 + 2 κ 2 d / 1 ξ - 1 2 ϑ 2 e 3 (α) = κ 2 e 3 8 ω κ 2 - 2 κ 3 2 d / 1 ξ - 1 2 ϑ 2 α + -4ω + 2 κ 2 d / 1 ξ - 1 2 ϑ 2 e 3 α -4κ 2 ωe 3 1 κ 2 α
so that we obtain

κ 2 e 3 e 3 α κ 2 -8 ω κ 2 - 2 κ 3 2 d / 1 ξ - 1 2 ϑ 2 α = q r 4 + 10ω - 4 κ d / 1 ξ + 2(η -3ζ)ξ - 1 4 ϑ 2 e 3 α + -8ω 2 + 10ω κ -2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 -4κ 2 e 3 1 κ 3 (η -3ζ)ξ -4κ 2 ωe 3 1 κ 2 α
which we rewrite as

κ 2 e 3 e 3 α κ 2 -8ω - 2 κ 2 d / 1 ξ - 1 2 ϑ 2 α κ 2 = q r 4 + 10ω - 4 κ d / 1 ξ + 2(η -3ζ)ξ - 1 4 ϑ 2 e 3 α + -8ω 2 + 10ω κ -2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 - 4 κ e 3 ((η -3ζ)ξ) + 12 e 3 (κ) κ 2 (η -3ζ)ξ + 8 e 3 (κ) κ ω α.
Now, recall from above that we have

e 3 (κ) κ = - 1 2 κ -2ω + 1 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 .
We finally deduce

κ 2 e 3 e 3 α κ 2 -8ω - 2 κ 2 d / 1 ξ - 1 2 ϑ 2 α κ 2 = q r 4 + 10ω + 4 κ -d / 1 ξ -2(η -3ζ)ξ + 1 4 ϑ 2 e 3 α + -2 d / 1 ξ + 6κ -24ω + 8 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ω + 1 2 ϑ 2 - 4 κ e 3 ((η -3ζ)ξ) + 16 + 48 κ ω - 24 κ 2 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ζξ α.
This concludes the proof of the lemma.

Estimates for transport equations in e 3

The following lemma will be useful to integrate the transport equations in e 3 . and

γ[p] 1 r 2 u 1 2 +δextra + r u 1+δextra 1 r(2r + u) 1 2 +δextra + 1 log(1+u) (2r + u) 1+δextra
where (u, r) correspond to p and (r , u ) to a point on γ[p], and where the integration along γ[p] relies on a parametrization of γ[p] normalized with respect to e 3 .

Proof. Note first from the construction of (ext) M that γ[p] exists for any p ∈ (ext) M (i.e. any point p can be joined to C 1 by an integral curve of e 3 ), and

γ[p] is included in (ext) M.
Next, recall that the integration along γ[p] relies on a parametrization of γ[p] normalized with respect to e 3 . To parametrize the integration by u or r, we will thus have to derive an upper bound for the corresponding Jacobian of the change of variable, i.e. for
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To this end, note that we have on

(ext) M e 3 (u) = 2 ςΥ ≥ 2 + O( ) Υ ≥ 1 Υ ≥ 1
since Υ ≤ 1 by definition. Also, we have on (ext) M in view of Lemma 6.1.1

|e 3 (r)| ≥ 1 -|e 3 (r) + 1| = 1 + O( ) ≥ 1 2 .
Hence, we have obtained on

(ext) M 1 |e 3 (u)| ≤ 1 2 , 1 |e 3 (r)| ≤ 1. (6.1.1)
Next, since e 3 (u) > 0 and e 3 (r) < 0 in (ext) M, we have r ≥ r and 1 ≤ u ≤ u. We start with the proof of the first inequality. We consider two cases

• If r ≥ u, we have γ[p] 1 r 2+l u 1 2 +δextra + r 1+l u 1+δextra ≤ 1 r 2+l u 0 1 |e 3 (u )| du u 1 2 +δextra u 1 2 -δextra r 2+l 1 r 1+l (2r + u) 1 2 +δextra + r l (2r + u) 1+δextra
, where we used (6.1.1).

• If r ≤ u, we separate the integral in r ≥ u, which coincides with 1 ≤ u ≤ u, and
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r ≤ r ≤ u and compute

γ[p] 1 r 2+l u 1 2 +δextra + r 1+l u 1+δextra = u 0 1 r 2+l u 1 2 +δextra + r 1+l u 1+δextra du |e 3 (u )| + u r 1 r 2+l u 1 2 +δextra + r 1+l u 1+δextra dr |e 3 (r )| 1 u 2+l u 0 1 |e 3 (u )| du u 1 2 +δextra + min 1 u 1 2 +δextra u r 1 |e 3 (r )| dr r 2+l , 1 u 1+δextra u r 1 |e 3 (r )| dr r 1+l 1 u 5 2 +δextra + min 1 u 1 2 +δextra 1 r 1+l , 1 u 1+δextra 1 r l 1 r 1+l (2r + u) 1 2 +δextra + r l (2r + u) 1+δextra
, where we used (6.1.1). This proves the first inequality.

The second inequality is obtained similarly as follows

• If r ≥ u, we have γ[p] 1 r 2 u 1 2 +δextra + r u 1+δextra ≤ 1 r 2 u 0 1 |e 3 (u )| du u 1 2 +δextra u 1 2 -δextra r 2 1 r(2r + u) 1 2 +δextra + (2r + u) 1+δextra
, where we used (6.1.1).

• If r ≤ u, we separate the integral in r ≥ u, which coincides with 1 ≤ u ≤ u, and CHAPTER 6. DECAY ESTIMATES FOR α AND α (THEOREMS M2, M3) r ≤ r ≤ u and compute

γ[p] 1 r 2 u 1 2 +δextra + r u 1+δextra = u 0 1 r 2 u 1 2 +δextra + r u 1+δextra du |e 3 (u )| + u r 1 r 2 u 1 2 +δextra + r u 1+δextra dr |e 3 (r )| 1 u 3 u 0 1 |e 3 (u )| du u 1 2 +δextra + min 1 u 1 2 +δextra u r 1 |e 3 (r )| dr r 2 , 1 u 1+δextra u r 1 |e 3 (r )| dr r 1 u 5 2 +δextra + min 1 u 1 2 +δextra 1 r , 1 u 1+δextra 1 r u dr r 1 r(2r + u) 1 2 +δextra + (2r+u) 1+δ extra log(1+u)
, where we used (6.1.1). This concludes the proof of the lemma. 

r 1+l (2r + u) 1 2 +δextra + r l (2r + u) 1+δextra |ψ| 0 .
• If h and ψ satisfy

|h| 0 r 2 u 1 2 +δextra + ru 1+δextra on (ext) M(u ≤ u 1 ) and |ψ| 0 r 3 2 +δextra on C 1 , we have sup (ext) M(u≤u 1 ) r(2r + u) 1 2 +δextra + (2r + u) 1+δextra log(1 + u) |ψ| 0 .
Proof. This follows immediately from Lemma 6.1.3. We start with an estimate for α on C 1 .

Lemma 6.1.5. We have

max 0≤k≤k small +22 sup C 1 r 7 2 +δextra |d k α| + max 0≤k≤k small +21 sup C 1 r 9 2 +δextra |d k e 3 α| 0 .
Proof. Recall that on C 1 , we have obtained in Theorem M0 max

0≤k≤k large sup C 1 r 7 2 +δ B |d k (ext) α| + |d k (ext) β| + r 9 2 +δ B |d k-1 e 3 ( (ext) α)| + sup C 1 r 3 d k (ext) ρ + 2m 0 r 3 + r 2 |d k (ext) β| + r|d k (ext) α| 0 .
Since we have chosen δ B ≥ δ extra , we deduce max

0≤k≤k large sup C 1 r 7 2 +δextra |d k (ext) α| + r 9 2 +δextra |d k-1 e 3 ( (ext) α)| 0 .
Next, recall that q is defined with respect to the global frame constructed in Proposition 3.5.5. In view of Proposition 3.5.5 and Proposition 3.4.6, and the change of frame formula for α in Proposition 2.3.4, we have

α = ( (ext) Υ) 2 (ext) α + 2f (ext) β + 3 2 f 2 (ext) ρ + l.o.t. (6.1.2)
where f satisfies1 , see (3.4.11),

|d k f | ru 1 2 + u , for k ≤ k small + 22 on (ext) M, |d k-1 e 3 f | ru for k ≤ k small + 22 on (ext) M. (6.1.3)
We easily infer max

0≤k≤k small +22 sup C 1 r 7 2 +δextra |d k α| + max 0≤k≤k small +21 sup C 1 r 9 2 +δextra |d k e 3 α| 0 .
This concludes the proof of the lemma.

Next, let 0 < u 1 ≤ u * . We introduce the following bootstrap assumption for α on

(ext) M(u ≤ u 1 ) max 0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra |d k α| + r|d k e 3 α| ≤ . (6.1.4)
The goal of this section will be the following proposition, i.e. the improvement of these bootstrap assumptions.

Proposition 6.1.6. We have

max 0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra
|d k α| + r|d k e 3 α| 0 .

Proposition 6.1.6 will be proved at the end of this section.

Based on the bootstrap assumptions (6.1.4), we estimate the RHS of the transport equation for α.

Lemma 6.1.7. We have

e 3 e 3 α κ 2 -F 1 = F 2
where F 1 and F 2 satisfy

max 0≤k≤k small +20 sup (ext) M(u≤u 1 )
r(2r + u) 1+δextra + r 2 (2r + u)

1 2 +δextra |d k F 1 | + max 0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 u 1+δextra + r 3 u 1 2 +δextra |d k F 2 | 0 .
Proof. Recall that we have

κ 2 e 3 e 3 α κ 2 -8ω - 2 κ 2 d / 1 ξ - 1 2 ϑ 2 α κ 2 = q r 4 + 10ω + 4 κ -d / 1 ξ -2(η -3ζ)ξ + 1 4 ϑ 2 e 3 α + -2 d / 1 ξ + 6κ -24ω + 8 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ω + 1 2 ϑ 2 - 4 κ e 3 ((η -3ζ)ξ) + 16 + 48 κ ω - 24 κ 2 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ζξ α
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e 3 e 3 α κ 2 -F 1 = F 2
where F 1 and F 2 are defined by

F 1 := 8ω - 2 κ 2 d / 1 ξ - 1 2 ϑ 2 α κ 2
and

F 2 := q r 4 κ 2 + 1 κ 2 10ω + 4 κ -d / 1 ξ -2(η -3ζ)ξ + 1 4 ϑ 2 e 3 α + 1 κ 2 -2 d / 1 ξ + 6κ -24ω + 8 κ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ω + 1 2 ϑ 2 - 4 κ e 3 ((η -3ζ)ξ) + 16 + 48 κ ω - 24 κ 2 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 ζξ α.
In view of the bootstrap assumptions (6.1.4) for α, the estimates of Lemma 6.1.1 for the Ricci coefficients, and using Theorem M2 to estimate q, we easily infer max

0≤k≤k small +20 sup (ext) M(u≤u 1 )
r(2r + u) 1+δextra + r 2 (2r + u)

1 2 +δextra |d k F 1 | max 0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra |d k α| + r|d k e 3 α| 2 0 .
and max

0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 u 1+δextra + r 3 u 1 2 +δextra |d k F 2 | max 0≤k≤k small +20 sup (ext) M(u≤u 1 ) u 1+δextra + ru 1 2 +δextra |d k q| + max 0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra |d k α| + r|d k e 3 α| 0 + 2 0 .
This concludes the proof of the lemma. r(2r + u) 1+δextra + r 2 (2r + u)

1 2 +δextra |d l F 1, d / k | + max 0≤l≤k small +20-k sup (ext) M(u≤u 1 ) r 2 u 1+δextra + r 3 u 1 2 +δextra |d l F 2, d / k | 0 ,
and for j ≥ 1 max

0≤l≤k small +20-k-j sup (ext) M(u≤u 1 )
r 1+j (2r + u) 1+δextra + r 2+j (2r + u)

1 2 +δextra |d l F 1, d / k ,e j 4 | + max 0≤l≤k small +20-k-j sup (ext) M(u≤u 1 ) r 2+j u 1+δextra + r 3+j u 1 2 +δextra |d l F 2, d / k ,e j 4 | 0 + max 0≤j+k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra r × | d / k (re 4 ) j-1 e 3 α| + | d / k (re 4 ) j-2 e 2 3 α| .
Proof. Recall from Lemma 6.1.7 that we have

e 3 e 3 α κ 2 -F 1 = F 2
where F 1 and F 2 satisfy max

0≤k≤k small +20 sup (ext) M r(2r + u) 1+δextra + r 2 (2r + u) 1 2 +δextra |d k F 1 | + max 0≤k≤k small +20 sup (ext) M r 2 u 1+δextra + r 3 u 1 2 +δextra |d k F 2 | 0 .
Differentiating with d / k , this yields

e 3 e 3 d / k α κ 2 + [ d / k , e 3 ] α κ 2 -d / k F 1 = d / k F 2 -[ d / k , e 3 ] e 3 α κ 2 -F 1
and hence

e 3 e 3 d / k α κ 2 -F 1, d / k = F 2, d / k
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where

F 1, d / k := d / k F 1 -[ d / k , e 3 ] α κ 2 , F 2, d / k := d / k F 2 -[ d / k , e 3 ] e 3 α κ 2 -F 1 .
In view of Lemma 2.2.13, we have schematically

[ d /, e 4 ] = Γ g d + Γ g + rβ, [ d /, e 3 ] = Γ b d + Γ b + rβ.
Together with the estimates of Lemma 6.1.1 for the Ricci coefficients and curvature components as well as the bootstrap assumptions (6.1.4) for α on (ext) M, we infer max

0≤j≤k small +20-k sup (ext) M r(2r + u) 1+δextra + r 2 (2r + u) 1 2 +δextra |d j F 1, d / k | + max 0≤j≤k small +20-k sup (ext) M r 2 u 1+δextra + r 3 u 1 2 +δextra |d j F 2, d / k | 0 .
Next, we consider the case j ≥ 1. We have the commutator [e 4 , e 3 ] = 2ωe 3 -2ωe 4 -4ζe θ .

In view of the estimates of Lemma 6.1.1 for the Ricci coefficients, and in view of the bootstrap assumptions (6.1.4) for α, we infer after commutation by e j 4 for 0 ≤ k + j ≤ k small + 20

e 3 e 3 d / k e j 4 α κ 2 -F 1, d / k ,e j 4 = F 2, d / k ,e j 4
where max

0≤l≤k small +20-k-j sup (ext) M(u≤u 1 ) r 1+j (2r + u) 1+δextra + r 2+j (2r + u) 1 2 +δextra |d l F 1, d / k ,e j 4 | + max 0≤l≤k small +20-k-j sup (ext) M(u≤u 1 ) r 2+j u 1+δextra + r 3+j u 1 2 +δextra |d l F 2, d / k ,e j 4 | 0 + max 0≤j+k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra r × | d / k (re 4 ) j-1 e 3 α| + | d / k (re 4 ) j-2 e 2 3 α| 0 .
This concludes the proof of the lemma.

CHAPTER 6. DECAY ESTIMATES FOR α AND α (THEOREMS M2, M3)

We are now ready to prove Proposition 6.1.6.

Step 1. For 0 ≤ k ≤ k small + 20, recall from the above lemma with j = 0 that we have

e 3 e 3 d / k α κ 2 -F 1, d / k = F 2, d / k
where max

0≤j≤k small +20-k sup (ext) M(u≤u 1 ) r 2 u 1+δextra + r 3 u 1 2 +δextra |d j F 2, d / k | 0 .
Also, we have in view of Lemma 6.1.5 max

0≤k≤k large -4 sup C 1 r 5 2 +δextra e 3 d / k α κ 2 -F 1, d / k 0 .
In view of Corollary 6.1.4, we immediately infer for any 0

≤ k ≤ k small + 20 max 0≤k≤k small +20 sup (ext) M(u≤u 1 )
r 2 (2r + u)

1 2 +δextra + r(2r + u) 1+δextra e 3 d / k α κ 2 -F 1, d / k 0 .
Since we have from the above lemma that max

0≤j≤k small +20-k sup (ext) M(u≤u 1 )
r(2r + u) 1+δextra + r 2 (2r + u)

1 2 +δextra |d j F 1, d / k | 0 ,
we deduce that we have for any 0 ≤ k ≤ k small + 20 max

0≤k≤k small +20 sup (ext) M(u≤u 1 )
r 2 (2r + u)

1 2 +δextra + r(2r + u) 1+δextra e 3 d / k α κ 2 0 . (6.1.5)
Step 2. Next, note that we have in view of Lemma 6.1.5 max

0≤k≤k large -3 sup C 1 r 3 2 +δextra d / k α κ 2 0 .
Together with the transport equation (6.1.5), and in view of Corollary 6.1.4, we infer max

0≤k≤k small +20 sup (ext) M(u≤u 1 )
r(2r + u)

1 2 +δextra + (2r + u) 1+δextra log(1 + u) d / k α κ 2 0 .
In view of the control of κ provided by Lemma 6.1.1, we easily deduce max

0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 3 (2r + u) 1 2 +δextra + r 2 (2r + u) 1+δextra log(1 + u) d / k α 0 .
Together with (6.1.5), we infer max

0≤k≤k small +20 sup (ext) M(u≤u 1 )
r 3 (2r + u)

1 2 +δextra + r 2 (2r + u) 1+δextra log(1 + u) | d / k α| + r| d / k e 3 α| 0 .
Step 3. Next, recall from section 2.3.3 that q is defined with respect to a general null frame as follows

q = r 4 e 3 (e 3 (α)) + (2κ -6ω)e 3 (α) + -4e 3 (ω) + 8ω 2 -8ω κ + 1 2 κ 2 α .
We infer

e 3 (e 3 (α)) = q r 4 -(2κ -6ω)e 3 (α) --4e 3 (ω) + 8ω 2 -8ω κ + 1 2 κ 2 α.
Together with the above estimate for α and e 3 α, we infer by iteration max

0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra × |( d /, e 3 ) k α| + r|( d /, e 3 ) k e 3 α| 0 .
Step 4. Arguing as for Step 1, but with j ≥ 1, we infer the following analog of (6.1.5)

max 0≤j+k≤k small +20 sup (ext) M(u≤u 1 )
r 2 (2r + u)

1 2 +δextra + r(2r + u) 1+δextra e 3 d / k (re 4 ) j α κ 2 0 + max 0≤j+k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra r × | d / k (re 4 ) j-1 e 3 α| + | d / k (re 4 ) j-2 e 2 3 α| .
Step 5. Arguing as for Step 2, but with j ≥ 1, we infer the following analog of the last estimate of Step 2 max

0≤j≤k small +20 sup (ext) M(u≤u 1 ) r 3 (2r + u) 1 2 +δextra + r 2 (2r + u) 1+δextra log(1 + u) | d / k (re 4 ) j α| + r| d / k (re 4 ) j e 3 α| 0 + max 0≤j+k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra r × | d / k (re 4 ) j-1 e 3 α| + | d / k (re 4 ) j-2 e 2 3 α| .
Step 6. Arguing as for Step 3, but with j ≥ 1, we infer the following analog of the last estimate of Step 3 max

0≤j+k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra × |( d /, e 3 ) k (re 4 ) j α| + r|( d /, e 3 ) k (re 4 ) j e 3 α| 0 + max 0≤j+k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra r × |( d /, e 3 ) k (re 4 ) j-1 e 3 α| + r|( d /, e 3 ) k (re 4 ) j-2 e 2 3 α| .
Step 7. Arguing by iteration on j, noticing that the last estimate of Step 3 corresponds to desired estimate for j = 0, and in view of the estimate derived in Step 6, we finally obtain max This concludes the proof of Proposition 6.1.6.

0≤j+k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u)

End of the proof of Theorem M2

First, note in view of the estimates for α on C 1 provided by Lemma 6.1.5 that the bootstrap assumptions (6.1.4) for α hold by continuity for some sufficiently small u 1 > 0. Then, we may in view of Proposition 6.1.6 choose u 1 = u * . We deduce therefore max

0≤k≤k small +20 sup (ext) M r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra |d k α| + r|d k e 3 α| 0 .
Next, recall from (6.1.2) and (6.1.3) that we have

α = ( (ext) Υ) 2 (ext) α + 2f (ext) β + 3 2 f 2 (ext) ρ + l.o.t.
where f satisfies

|d k f | ru 1 2 + u , for k ≤ k small + 22 on (ext) M, |d k-1 e 3 f | ru for k ≤ k small + 22 on (ext) M.
Together with bootstrap assumptions for (ext) β and (ext) ρ, we easily infer max

0≤k≤k small +20 sup (ext) M r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 2 +δextra |d k (ext) α| + r|d k e 3 (ext) α| 0 .
This concludes the proof of Theorem M2.

Proof of Theorem M3

Theorem M3 contains decay estimates for α in (int) M and on Σ * . We first proceed with the estimate on (int) M before moving to (ext) M.

Estimate for α in (int) M

Recall that q, controlled in Theorem M1, is defined with respect to the global frame of Proposition 3.5.5. Recall also that we may choose the global null frame to coincide with the ingoing geodesic null frame of (int) M in (int) M (see property (b) in Proposition 3.5.5 together with property (d) ii. in Proposition 3.5.2). Thus, in this section, as we only work on (int) M, the null frame (e 4 , e 3 , e θ ) denotes both the frame of (int) M and the global frame with respect to which q is defined. We start with the following definition. Definition 6.2.1. In (int) M, we define with respect to the ingoing geodesic frame of (int) M

T := e 4 - 1 κ κ + A e 3 . (6.2.1)
The estimate for α in (int) M relies on the following proposition.

Proposition 6.2.2. Let 0 ≤ k ≤ k small + 17. Then, α satisfies in (int) M 6m T (d k α) + r 4 d / 2 d / 1 d / 1 d / 2 (d k α) = F k where F k satisfies max 0≤k≤k small +17 (int) M u 2+2δ dec |d ≤1 F k | 2 2 0 .
Remark 6.2.3. In view of the definition of T , we have

T (r) = e 4 (r) - 1 κ κ + A e 3 (r) = 0
so that T is tangent to the hypersurfaces of constant r. In particular, ( T , e θ ) spans the tangent space of hypersurfaces of constant r. Therefore, in view of Proposition 6.2.2, α and its derivatives satisfy on each hyper surface of contant r in (int) M, i.e. on {r = r 0 } for 2m 0 (1δ H ) ≤ r ≤ r T , a forward parabolic equation. Furthermore, since we have T (u) = 2/ς = 2 + O( ), u plays the role of time in this forward parabolic equation.

We also derive estimates for the control of the parabolic equation appearing in the statement of Proposition 6.2.2. Lemma 6.2.4. Let f and h reduced 2-scalars such that

6m T + r 4 d / 2 d / 1 d / 1 d / 2 f = h.
Then, for any real number n ≥ 0 and any r 0 such that 2m 0 (1δ H ) ≤ r 0 ≤ r T , we have sup 1≤u≤u * S(r=r 0 ,u)

(1 + u n )f 2 n S(r=r 0 ,1) f 2 + 2 u * 1 S(r=r 0 ,u) (1 + u n-2 )(df ) 2 + (int) M (1 + u n )(d ≤1 h) 2 .
We are now in position to control α in (int) M. Recall from Proposition 6.2.2 that α satisfies in

(int) M for 0 ≤ k ≤ k small + 17 6m T (d k α) + r 4 d / 2 d / 1 d / 1 d / 2 (d k α) = F k .
Applying Lemma 6.2.4 with n = 2 + 2δ dec , f = d k α and h = F k , we infer for any r 0 such that 2m 0 (1

-δ H ) ≤ r 0 ≤ r T sup 1≤u≤u * S(r=r 0 ,u) (1 + u 2+2δ dec )(d k α) 2 S(r=r 0 ,1) (d k α) 2 + 2 u * 1 S(r=r 0 ,u) (1 + u 2δ dec )(d k+1 α) 2 + (int) M (1 + u 2+2δ dec )(d ≤1 F k ) 2 .
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(1 + u 2+2δ dec )(d k α) 2 2 0 .
In particular, we have obtained max

0≤k≤k small +17 sup (int) M u 1+δ dec d k α L 2 (S) 0 .
Using the Sobolev embedding on 2-surface and the fact that r is bounded on (int) M, we infer max

0≤k≤k small +15 sup (int) M u 1+δ dec |d k α| 0 and hence (int) D k small +15 [α] 0 (6.2.2)
which is the desired estimate for α in (int) M.

The proof of Proposition 6.2.2 will be given in section 6.2.3, and the proof of Lemma 6.2.4 in section 6.2.4. But first we show, in the next section, how to conclude the proof of Theorem M3 by controlling α on Σ * .

Estimate for α on Σ *

Recall that q, controlled in Theorem M1, is defined with respect to the global frame of Proposition 3.5.5. We will first control α in this frame, before coming back to (ext) M at the end of the argument. We start with the following definition. Definition 6.2.5. In Σ * , we define, with respect to the the global frame of Proposition 3.5.5,

ν := e 3 + ae 4 , (6.2.3) 
where the scalar function a is uniquely defined so that ν is tangent to Σ * .

The estimate for α on Σ * relies on the following proposition. 

6m ν + r 4 d / 2 d / 1 d / 1 d / 2 f = h.
Then, for any real number n ≥ 0, we have

Σ * (1 + u n )f 2 n Σ * ∩C 1 f 2 + 2 Σ * (1 + u n-2 )(df ) 2 + Σ * (1 + u n )h 2 .
Using the Lemma we are in position to control α on Σ * . According to Proposition 6.2.6 α satisfies in Σ * , for 0

≤ k ≤ k small + 18, 6m ν(d k α) + r 4 d / 2 d / 1 d / 1 d / 2 (d k α) = F k .
Applying Lemma 6.2.8 with n = 2 + 2δ dec , f = d k α and h = F k , we infer

Σ * (1 + u 2+2δ dec )(d k α) 2 Σ * ∩C 1 (d k α) 2 + 2 Σ * (1 + u 2δ dec )(d k+1 α) 2 + Σ * (1 + u 2+2δ dec )(F k ) 2 .
Together with the bounds for α on C 1 provided by Theorem M0, the bootstrap assumptions on decay and energy for α in (ext) M, and the bound for F k provided by Proposition 6.2.6, we infer

Σ * (1 + u 2+2δ dec )(d k α) 2 2 0 .
In particular, we have obtained max

0≤k≤k small +18 Σ * (1 + u 2+2δ dec )(d k α) 2 0 .
Now, recall that α in the above estimate is defined with respect to the global frame of Proposition 3.5.5. In view of Proposition 3.5.5 and Proposition 3.4.6, and the change of frame formula for α in Proposition 2.3.4, we have

α = ( (ext) Υ) -2 (ext) α.
Hence, we immediately infer max

0≤k≤k small +18 Σ * (1 + u 2+2δ dec )(d k(ext) α) 2 0 .
which is the desired estimate in Σ * . Together with (6.2.2), this concludes the proof of Theorem M3.

The proof of Proposition 6.2.6 will be given in section 6.2.5, and to the proof of Lemma 6.2.8 which will be given in section 6.2.6.

Proof of Proposition 6.2.2

In this section we derive as corollary of the Teukolsky-Starobinski identity, see Proposition 2.3.15, a parabolic equation for α.

Corollary 6.2.9. The quantity α satisfies in (int) M the following equation

6m T α + r 4 d / 2 d / 1 d / 1 d / 2 α = 1 r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) -r -3 Err[T S] - 3 2 r 4 ρ + 2m r 3 κ -3mr κ + 2 r e 4 α -- 3 2 r 4 ρ + 2m r 3 κ + 3mr κ κ + 2 r κ + 3mrκ + 6m κ A e 3 α
where the vectorfield T is defined by (6.2.1).

Proof. According to Proposition (2. + -

3 2 r 4 ρ + 2m r 3 κ + 3mr κ κ + 2 r κ + 3mrκ + 6m κ A e 3 .
We infer

6m T α + r 4 d / 2 d / 1 d / 1 d / 2 α = 1 r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) -r -3 Err[T S] - 3 2 r 4 ρ + 2m r 3 κ -3mr κ + 2 r e 4 α -- 3 2 r 4 ρ + 2m r 3 κ + 3mr κ κ + 2 r κ + 3mrκ + 6m κ A e 3 α.
This concludes the proof of the corollary.

Corollary 6.2.10. α satisfies in

(int) M 6m T α + r 4 d / 2 d / 1 d / 1 d / 2 α = F
where F satisfies

max 0≤k≤k small +18 (int) M u 2+2δ dec |d k F | 2 2 0 .
Proof. In view of Corollary 6.2.9, α satisfies

6m T α + r 4 d / 2 d / 1 d / 1 d / 2 α = F with F := 1 r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) + F 1 , F 1 := -r -3 Err[T S] - 3 2 r 4 ρ + 2m r 3 κ -3mr κ + 2 r e 4 α -- 3 2 r 4 ρ + 2m r 3 κ + 3mr κ κ + 2 r κ + 3mrκ + 6m κ A e 3 α.
Using the bootstrap assumptions in (int) M for decay and energies, and in view of the fact that F 1 contains only quadratic or higher order terms, we easily derive max

0≤k≤k small +18 sup (int) M u 3 2 + 3 2 δ dec |d k F 1 | 2 0 .
In view of the definition of F , this yields max

0≤k≤k small +18 (int) M u 2+2δ dec |d k F | 2 2 0 + max 0≤k≤k small +20 (int) M u 2+2δ dec |d k q| 2 .
Together with Theorem M1, and the fact that δ extra > δ dec , we infer max

0≤k≤k small +18 (int) M u 2+2δ dec |d k F | 2 2 0 .
This concludes the proof of the corollary.

We are now ready to prove Proposition 6.2.2. In view of Corollary 6.2.10, α satisfies

6m T α + r 4 d / 2 d / 1 d / 1 d / 2 α = F.
Commuting with d k , we infer

6m T (d k α) + r 4 d / 2 d / 1 d / 1 d / 2 (d k α) = F k
where F k is defined by 

F k := -6m[d k , T ]α -6 k j=1 d j (m)d k-j T α -[d k , r d / 2 ]r d / 1 r d / 1 r d / 2 α -r d / 2 [d k , r d / 1 ]r d / 1 r d / 2 α -r d / 2 r d / 1 [d k , r d / 1 ]r d / 2 α -r d / 2 r d / 1 r d / 1 [d k , r d / 2 ]α + d k F.
= 2 ω + m r 2 -
2m(e 3 (r) + 1)

r 2 + 2e 3 (m) r + e 3 κ κ + Υ + e 3 1 κ A e 3 -4ζe θ = d Γ + Γ d.
Together with the bootstrap assumptions in (int) M for decay and energies, and in view of the fact that F 1 contains only quadratic or higher order terms, we easily derive max

0≤k≤k small +18 sup (int) M u 3 2 + 3 2 δ dec -6m[d k , T ]α -6 k j=1 d j (m)d k-j T α -[d k , r d / 2 ]r d / 1 r d / 1 r d / 2 α -r d / 2 [d k , r d / 1 ]r d / 1 r d / 2 α -r d / 2 r d / 1 [d k , r d / 1 ]r d / 2 α -r d / 2 r d / 1 r d / 1 [d k , r d / 2 ]α 2 .
In view of the definition of F k , this yields max

0≤k≤k small +18 (int) M u 2+2δ dec |F k | 2 4 + max 0≤k≤k small +18 (int) M u 2+2δ dec |d k F | 2 .
Together with the estimate for F of Corollary 6.2.10, we infer max

0≤k≤k small +18 (int) M u 2+2δ dec |F k | 2 4 + 2 0 2 0 .
This concludes the proof of Proposition 6.2.2.

Proof of Lemma 6.2.4

In this section we prove Lemma 6.2.4, i.e. we derive estimates for the control of the parabolic equation appearing in the statement of Proposition 6.2.2. To this end, we first start with a Poincaré inequality.

Lemma 6.2.11. We have

S f d / 2 d / 1 d / 1 d / 2 f ≥ 24 S (1 + O( ))K 2 f 2 .
Proof. We have

d / 2 d / 1 d / 1 d / 2 = d / 2 (-/ 1 + K) d / 2 = -d / 2 / 1 d / 2 + K d / 2 d / 2 + d / 1 (K) d / 2 = -/ 2 d / 2 d / 2 + / 2 d / 2 -d / 2 / 1 d / 2 + K d / 2 d / 2 + d / 1 (K) d / 2 = ( d / 2 d / 2 -2K) d / 2 d / 2 + 3K d / 2 -d / 1 (K) d / 2 + K d / 2 d / 2 + d / 1 (K) d / 2 = ( d / 2 d / 2 ) 2 + 2K d / 2 d / 2 .
Recall also the Poincaré inequality for d / 2 which holds for any reduced 2-scalar f

S | d / 2 f | 2 ≥ 4 S Kf 2 .
Then, we easily infer

S f d / 2 d / 1 d / 1 d / 2 f = S f ( d / 2 d / 2 ) 2 f + S 2Kf d / 2 d / 2 f ≥ 4 2 S (1 + O( ))K 2 f 2 + 8 S (1 + O( ))K 2 f 2 ≥ 24 S (1 + O( ))K 2 f 2
where we also used the estimates for the Gauss curvature

K = 1 r 2 + O r 2 , re θ (K) = O r 2 ,
which follow from the bootstrap assumptions.

The following identity will be useful.

Lemma 6.2.12. We have for any reduced scalar f

T S f 2 = 2 S f T f + S 2 κ Af e 3 (f ) + κf 2 - κ κ S κf 2 - 1 κ A S (2f e 3 (f ) + κf 2 ) + Err e 4 S f 2 .
Proof. Recall from the definition of T that

T = e 4 - 1 κ κ + A e 3 .
We infer, in view of the analog of Proposition 2.2.9 for an ingoing geodesic foliation,

T S f 2 = e 4 S f 2 - 1 κ κ + A e 3 S f 2 = S (2f e 4 (f ) + κf 2 ) + Err e 4 S f 2 - 1 κ κ + A S (2f e 3 (f ) + κf 2 ) = S 2f T f + 2 κ κ + A f e 3 (f ) + κf 2 + Err e 4 S f 2 - 1 κ κ + A S (2f e 3 (f ) + κf 2 ) = 2 S f T f + S 2 κ Af e 3 (f ) + κf 2 - κ κ S κf 2 - 1 κ A S (2f e 3 (f ) + κf 2 ) +Err e 4 S f 2 .
This concludes the proof of the lemma.
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We are now ready to prove Lemma 6.2.4. Recall from Lemma 6.2.12 that we have

T S f 2 = 2 S f T f + S 2 κ Af e 3 (f ) + κf 2 - κ κ S κf 2 - 1 κ A S (2f e 3 (f ) + κf 2 ) + Err e 4 S f 2 .
In view of the equation satisfied by f , we infer

T S f 2 = - 1 3m S r 4 f d / 2 d / 1 d / 1 d / 2 f + 1 3m S hf + S 2 κ Af e 3 (f ) + κf 2 - κ κ S κf 2 - 1 κ A S (2f e 3 (f ) + κf 2 ) +Err e 4 S f 2 .
Now, from the definition of T , we have T (u) = 2/ς. We deduce

T u n S f 2 + u n 3m S r 4 f d / 2 d / 1 d / 1 d / 2 f = u n 3m S hf + u n S 2 κ Af e 3 (f ) + κf 2 -u n κ κ S κf 2 - u n κ A S (2f e 3 (f ) + κf 2 ) + u n Err e 4 S f 2 + 2 ς nu n-1 S f 2 .
This yields in view of the bootstrap assumptions

T u n S f 2 + u n 3m S r 4 f d / 2 d / 1 d / 1 d / 2 f u n 3m h L 2 (S) f L 2 (S) + u n-1 S |f ||d ≤1 f | + nu n-1 S f 2 .
Next, we rely on the Poincaré inequality of Lemma 6.2.11 to deduce

T u n S f 2 + u n S f 2 u n S h 2 + 2 u n-2 S (df ) 2 + nu n-1 S f 2 .
Integrating in u between 1 and u * , and recalling that T (u) = 2/ς, we infer for any r 0 such that 2m 0 (1

-δ H ) ≤ r 0 ≤ r T S(r=r 0 ,u) u n f 2 + u 1 S(r=r 0 ,u ) u n f 2 du
S(r=r 0 ,1)

f 2 + u 1 S(r=r 0 ,u ) u n h 2 du + 2 u 1 S(r=r 0 ,u ) u n-2 (df ) 2 du +n u 0 S(r=r 0 ,u ) u n-1 f 2 du .
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In particular, we have for n = 0 sup 1≤u≤u * S(r=r 0 ,u)

f 2 + u * 1 S(r=r 0 ,u) f 2 du
S(r=r 0 ,1)

f 2 + u * 1 S(r=r 0 ,u) h 2 du + 2 u * 1 S(r=r 0 ,u) u -2 (df ) 2 du.
Then, starting from the case n = 0 and arguing by iteration on the largest integer below n, one immediately deduces for any real n ≥ 0 sup 1≤u≤u * S(r=r 0 ,u)

(1 + u n )f 2 + u * 1 S(r=r 0 ,u) (1 + u n )f 2 du
S(r=r 0 ,1)

f 2 + u * 1 S(r=r 0 ,u) (1 + u n )h 2 du + 2 u * 1 S(r=r 0 ,u) (1 + u n-2 )(df ) 2 du.
Now, a simple trace estimate yields S(r=r 0 ,u)

(1 + u n )h 2 C u (1 + u n ) |h| 2 + |e 3 (h)| 2 so that u * 1 S(r=r 0 ,u) (1 + u n )h 2 du u * 1 C u (1 + u n ) |h| 2 + |e 3 (h)| 2 du (int) M (1 + u n )(d ≤1 h) 2 .
We deduce sup 1≤u≤u * S(r=r 0 ,u)

(1 + u n )f 2 + u * 1 S(r=r 0 ,u) (1 + u n )f 2 du S(r=r 0 ,1) f 2 + (int) M (1 + u n )(d ≤1 h) 2 + 2 u * 1 S(r=r 0 ,u) (1 + u n-2 )(df ) 2 du
which concludes the proof of Lemma 6.2.4.

Proof of Proposition 6.2.6

In this section, we infer from the Teukolsky-Starobinski identity, see Proposition 2.3.15, a parabolic equation for α.

Corollary 6.2.13. α satisfies on Σ * the following equation

6m να + r 4 d / 2 d / 1 d / 1 d / 2 α = 1
r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq)r -3 Err[T S] -

3 2 r 4 ρκ -6am e 4 α -- 3 2 r 4 ρ + 2m r 3 κ + 3mr κ - 2Υ r - 12m r e 3 α.
where the vectorfield ν is defined by (6.2.3).

Proof. Recall from (2.3.15) that we have

e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) = r 7 d / 2 d / 1 d / 1 d / 2 α + 3 2 ρ κe 4 -κe 3 α + Err[T S].
This yields We infer

3 2 r 4 ρ κe 4 -κe 3 α + r 4 d / 2 d / 1 d / 1 d / 2 α = 1 r 3 e 3 (
6m να + r 4 d / 2 d / 1 d / 1 d / 2 α = 1 r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) -r -3 Err[T S] - 3 2 r 4 ρκ -6am e 4 α -- 3 2 r 4 ρ + 2m r 3 κ + 3mr κ - 2Υ r - 12m r e 3 α.
This concludes the proof of the corollary.

Corollary 6.2.14. α satisfies on

Σ * 6m να + r 4 d / 2 d / 1 d / 1 d / 2 α = F where F satisfies max 0≤k≤k small +18 Σ * u 2+2δ dec |d k F | 2 2 0 .
Proof. In view of Corollary 6.2.9, α satisfies

6m να + r 4 d / 2 d / 1 d / 1 d / 2 α = F
with F := e 3 (e 3 (q)) + F 1 , F 1 := 1 r 3 e 3 (r 2 e 3 (r)q) + e 3 (r 3 )e 3 (q) + 2ωr 2 e 3 (rq)r -3 Err[T S]

- 3 2 r 4 ρκ -6am e 4 α -- 3 2 r 4 ρ + 2m r 3 κ + 3mr κ - 2Υ r - 12m r e 3 α.
Recall also that Err[T S] is given schematically by, see Proposition 2.3.15,

Err[T S] = r 4 d /Γ b + rΓ b • Γ b ) • α + r 2 Γ b e 3 (rq) + (d ≤1 Γ b )rq + r 7 d ≤2 e 3 η • β + r 5 d ≤3 Γ b • Γ g .
We infer that F 1 is given schematically by

F 1 = r d /Γ b + rΓ b • Γ b ) • α + r -1 Γ b e 3 (rq) + (d ≤1 Γ b )rq + r 4 d ≤2 e 3 η • β + r 2 d ≤3 Γ b • Γ g + r -1 Γ b = r -1 Γ b + r 2 d ≤3 Γ b • Γ g + r 4 d ≤3 Γ g • β
where we have used

• The fact we are working here with the global frame of Proposition 3.5.5 which has the property that η ∈ Γ g .

• The fact that Γ b behave better that rΓ g .

• The fact that q ∈ rΓ g .

• The fact that α and e 3 (q) behaves at least as good as Γ b .

• The fact that ρ + 2m r 3 behaves as good as r -1 Γ g . • The fact that e 3 (r) + 1 belongs to rΓ b . Now, recall from Lemma 5.1.1 that the global frame of Proposition satisfies in particular 2 max

0≤k≤k small +22 sup M r 7 2 +δ dec -2δ 0 |d k β| + r 2 u 1 2 +δ dec -2δ 0 |d k Γ g | + ru 1+δ dec -2δ 0 |d k Γ b | .(6.2.4)
2 Here we use (3.4.11) with k loss = 22.

Together with the schematic for of F 1 and the behavior (3.3.4) of r on Σ * , and the fact that δ 0 can be chosen to satisfy 3 8δ 0 ≤ δ dec , we infer max

0≤k≤k small +18 sup Σ * ru 3 2 + 3 2 δ dec |d k F 1 | u 1 2 +δ dec * sup Σ * (r -1 ) + 2 0 .
In view of the definition of F , this yields max

0≤k≤k small +18 Σ * u 2+2δ dec |d k F | 2 2 0 + max 0≤k≤k small +19 Σ * u 2+2δ dec |d k e 3 (q)| 2 .
Together with Theorem M1, and the fact that δ extra > δ dec , we infer max

0≤k≤k small +18 Σ * u 2+2δ dec |d k F | 2 2 0 .
This concludes the proof of the corollary.

We are now ready to prove Proposition 6.2.6. In view of Corollary 6.2.14, α satisfies

6m να + r 4 d / 2 d / 1 d / 1 d / 2 α = F.
Commuting with d k , we infer

6m ν(d k α) + r 4 d / 2 d / 1 d / 1 d / 2 (d k α) = F k
where F k is defined by

F k := -6m[d k , ν]α -6 k j=1 d j (m)d k-j να -[d k , r d / 2 ]r d / 1 r d / 1 r d / 2 α -r d / 2 [d k , r d / 1 ]r d / 1 r d / 2 α -r d / 2 r d / 1 [d k , r d / 1 ]r d / 2 α -r d / 2 r d / 1 r d / 1 [d k , r d / 2 ]α + d k F.
Note that we have schematically

[d, d /] = rΓ b d, [ ν, d /] = O(r -1 ) + rΓ b d, [ ν, re 4 ] = O(r -1 )d, [ ν, e 3 ] = O(r -1 )d.
3 Recall from Lemma 5.1.1 that we have

δ 0 = k loss k large -k small .
Since we have here k loss = 22, and since we have 2k small ≤ k large + 1 and k large δ dec 1, we deduce δ 0 δ dec and we have indeed 8δ 0 ≤ δ dec .

F k = d k F + r -1 d ≤k+4 Γ b + rd ≤k+4 (Γ 2 b ).
In view of (6.2.4) and the behavior (3.3.4) of r on Σ * , we have max

0≤k≤k small +18 sup Σ * ru 3 2 + 3 2 δ dec |r -1 d ≤k+4 Γ b + rd ≤k+4 (Γ 2 b )| u 1 2 +δ dec * sup Σ * r -1 + 2 0 .
This yields max

0≤k≤k small +18 Σ * u 2+2δ dec |F k | 2 2 0 + max 0≤k≤k small +18 sup Σ * u 2+2δ dec |d k F | 2 .
Together with the estimate for F of Corollary 6.2.14, we infer max

0≤k≤k small +18 Σ * u 2+2δ dec |F k | 2 4 + 2 0 2 0 .
This concludes the proof of Proposition 6.2.6.

Proof of Lemma 6.2.8

In this section we prove Lemma 6.2.8, i.e. we derive estimates for the control of the parabolic equation appearing in the statement of Proposition 6.2.6. The following identity will be useful.

Lemma 6.2.15. We have for any reduced scalar

f ν S f 2 = 2 S f ν(f ) + S (-2af e 4 (f ) + κf 2 ) + a S (2f e 4 (f ) + κf 2 ) + Err e 3 S f 2 .
Proof. Recall from the definition of ν that ν = e 3 + ae 4 .
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We infer, in view of Proposition 2.2.9,

ν S f 2 = e 3 S f 2 + ae 4 S f 2 = S (2f e 3 (f ) + κf 2 ) + Err e 3 S f 2 + a S (2f e 4 (f ) + κf 2 ) = 2 S f ν(f ) + S (-2af e 4 (f ) + κf 2 ) + a S (2f e 4 (f ) + κf 2 ) + Err e 3 S f 2 .
This concludes the proof of the lemma.

We are now ready to prove Lemma 6.2.8. Recall from Lemma 6.2.15 that we have

ν S f 2 = 2 S f ν(f ) + S (-2af e 4 (f ) + κf 2 ) + a S (2f e 4 (f ) + κf 2 ) + Err e 3 S f 2 .
In view of the equation satisfied by f , we infer

ν S f 2 = - 1 3m S r 4 f d / 2 d / 1 d / 1 d / 2 f + 1 3m S hf + S (-2af e 4 (f ) + κf 2 ) + a S (2f e 4 (f ) + κf 2 ) + Err e 3 S f 2 .
Now, from the definition of ν, we have ν(u) = 2/ς. We deduce

ν u n S f 2 + u n 3m S r 4 f d / 2 d / 1 d / 1 d / 2 f = u n 3m S hf + u n S (-2af e 4 (f ) + κf 2 ) + au n S (2f e 4 (f ) + κf 2 ) +u n Err e 3 S f 2 + 2 ς nu n-1 S f 2 .
This yields in view of the bootstrap assumptions

ν u n S f 2 + u n 3m S r 4 f d / 2 d / 1 d / 1 d / 2 f u n 3m h L 2 (S) f L 2 (S) + 1 r + u -1 u n S |f ||d ≤1 f | + nu n-1 S f 2 u n 3m h L 2 (S) f L 2 (S) + u n-1 S |f ||d ≤1 f | + nu n-1 S f 2
where we have used in the last inequality the behavior (3.3.4) of r on Σ * . Next, we rely on the Poincaré inequality of Lemma 6.2.11 to deduce

ν u n S f 2 + u n S f 2 u n S h 2 + 2 u n-2 S (df ) 2 + nu n-1 S f 2 .
Integrating in u between 1 and u * , and recalling that ν(u) = 2/ς, we infer

Σ * u n f 2 Σ * ∩C 1 f 2 + Σ * u n h 2 + 2 Σ * u n-2 (df ) 2 + n Σ * u n-1 f 2 .
In particular, we have for n = 0

Σ * f 2 Σ * ∩C 1 f 2 + Σ * h 2 + 2 Σ * u -2 (df ) 2 .
Then, starting from the case n = 0 and arguing by iteration on the largest integer below n, one immediately deduces for any real n ≥ 0

Σ * (1 + u n )f 2 Σ * ∩C 1 f 2 + Σ * (1 + u n )h 2 + 2 Σ * (1 + u n-2 )(df ) 2
which concludes the proof of Lemma 6.2.8.

Chapter 7 DECAY ESTIMATES (Theorems M4, M5)

In this chapter, we rely on the decay of q, α and α to prove the decay estimates for all the other quantities. More precisely, we rely on the results of Theorem M1, M2 and M3 to prove Theorem M4 and M5.

Preliminaries to the proof of Theorem M4

In what follows we give a detailed proof of Theorem M4, which, we recall, provides the main decay estimates in (ext) M. The proof makes use of the bootstrap assumptions BA-D, BA-E, the results of Theorems M1, M2, M3 and Lemmas 3.4.1, 3.4.2. In this section, we start with some preliminaries.

Geometric structure of Σ *

The proof of Theorem M4 depends in a fundamental way on the geometric properties of the GCM hypersuface Σ * , the spacelike future boundary of (ext) M introduced in section 3.1.2. For the convenience of the reader, we recall below its main features.

1. The affine parameter s is initialized on Σ * such that s = r.
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2. There exists a constant c * such that 

Σ * := {u + r = c * }.

Main assumptions

We reformulate below the main bootstrap assumption2 in the form needed in the proof of Theorem M4.

Definition 7.1.1. We make use of the following norms on S = S(u, r)

⊂ (ext) M, f ∞ (u, r) : = f L ∞ S(u,r) , f 2 (u, r) := f L 2 S(u,r) , f ∞,k (u, r) := k i=0 d i f ∞ (u, r), f 2,k (u, r) := k i=0 d i f 2 (u, r). (7.1.10)
To simplify the exposition it also helps to introduce the following schematic notation for the connection coefficients (recall ω, ξ = 0 and ζ = -η), Ref 2. The quantity3 q satisfies on (ext) M, for all 0 ≤ k ≤ k small + 20,

Γ g = κ, ϑ, η, ζ, κ ∪ κ - 2 r , κ + 2Υ r , Γ b = ϑ, η, ω, ξ, A, r -1 ς, r -1 Ω, ∪ ω - m r 2 , r -1 (ς -1), r -1 (Ω + Υ) .
1. For 0 ≤ k ≤ k small , Γ g ∞,k min r -2 u -1 2 -δ dec , r -1 u -1-δ dec , e 3 Γ g ∞,k-1 r -2 u -1-δ dec , Γ b ∞,k r -1 u -1-δ dec . (7.1.12) 2. For k ≤ k large -5 Γ g ∞,k r -2 , Γ b ∞,k r -1 . ( 7 
q ∞,k 0 min u -1-δextra , r -1 u -1 2 -δextra , e 3 q ∞,k-1 0 r -1 u -1-δextra . (7.1.14)
In addition, on the last slice Σ * , for all k ≤ k small + 20,

Σ * (τ,τ * ) |e 3 d k q| 2 + |e 4 d k q| 2 + r -2 |q| 2 2 0 (1 + τ ) -2-2δ dec . (7.1.15)
According to Theorem M2 we have on (ext) M, for all 0 

≤ k ≤ k small + 20, α ∞,k 0 min r -3 (u + 2r) -1 2 -δextra , log(1 + u)r -2 (u + 2r) -1-δextra , e 3 α ∞,k-1 0 min r -4 (u + 2r) -1 2 -δextra , log(1 + u)r -3 (u + 2r) -1-δextra . ( 7 
≤ k ≤ k small , β ∞,k min r -3 (u + 2r) -1 2 -δ dec , r -2 (u + 2r) -1-δ dec , e 3 β ∞,k-1 min r -4 (u + 2r) -1 2 -δ dec , r -3 (u + 2r) -1-δ dec , ρ, ρ + 2m r 3 ∞,k min r -3 u -1 2 -δ dec , r -2 u -1-δ dec , e 3 ρ, ρ + 2m r 3 ∞,k-1 r -3 u -1-δ dec , μ, µ - 2m r 3 ∞,k r -3 u -1-δ dec , β ∞,k r -2 u -1-δ dec . (7.1.19) Since K = -ρ -1 4 κκ + 1 4 ϑϑ = 1 r 2 -(ρ -ρ) -1 4 (κκ -κκ) + l.o.t. we also deduce for all 0 ≤ k ≤ k small , K - 1 r 2 ∞,k min r -3 u -1 2 -δ dec , r -2 u -1-δ dec .
ii. For all k ≤ k large -5, 

r 7 2 + δ B 2 α ∞,k + β ∞,k , r 3 ρ ∞,k + r 2 β ∞,k + r α ∞,k . ( 7 
κ - 2 r , κ + 2Υ r , ω - m r 2 , ρ + 2m r 3 .
In particular they can be estimated by replaced by 0 in Ref 1.

Remark 7.1.4. Note that r(ρ, ρ + 2m r 3 ), r(K -1 r 2 ) behave as Γ g . For convenience we shall just simply add them to Γ g . Similarly (rβ, α) behave as Γ b . Thus, our extended Γ g , Γ b are

Γ g = κ, ϑ, η, ζ, κ, r ρ ∪ κ - 2 r , κ + 2Υ r , r ρ + 2m r 3 , Γ b = ϑ, η, ω, ξ, A, r -1 ς, r -1 Ω, rβ, α ∪ ω - m r 2 , r -1 (ς -1), r -1 (Ω + Υ) .
Note also that we can write e 3 (Γ g ) = r -1 dΓ b . 

Interpolation and product estimates

We estimate quadratic error terms with the help of the following lemma.

Lemma 7.1.6. Let k loss = 25. Then, the following interpolation estimates hold true for all 0 ≤ k ≤ k small + k loss

Γ g ∞,k + r ρ, β, α ∞,k r -2 u -1 2 - δ dec 2 , (Γ b , α) ∞,k + r β ∞,k r -1 u -1-δ dec 2 . (7.1.22)
Also, the following product estimates hold true for all 0 ≤ k ≤ k small + k loss

Γ g • Γ g ∞,k + r ρ, β, α • Γ g ∞,k 0 r -4 u -1-δ dec , Γ g • Γ b , α ∞,k + r Γ g • β ∞,k + r ρ, β, α • Γ b ∞,k 0 r -3 u -3 2 -δ dec β, α • Γ b ∞,k 0 r -9 2 u -1-δ dec , Γ b , α • Γ b ∞,k + r β • Γ b ∞,k 0 r -2 u -2-δ dec . (7.1.23)
Proof. All estimates are easy to prove in the range 0 ≤ k ≤ k small . We shall thus assume that k small ≤ k ≤ k small + k loss . Since k loss < k small we have k/2 < k small for all k in that range.

For simplicity of notation we write L := k large -5, S := k small . By standard interpolation inequalities, for all S ≤ k ≤ L,

Γ g ∞,k Γ g k-S L-S ∞,L Γ g L-k L-S ∞,S r -2 u -1 2 -δ dec L-k L-S r -2 u -1 2 -δ dec u 1 2 +δ dec k-S L-S , Γ b ∞,k Γ b k-S L-S ∞,L Γ b L-k L-S ∞,S r -1 u -1-δ dec L-k L-S r -1 u -1-δ dec u 1+δ dec k-S L-S .
Now, we may assume that k loss satisfies 5

k loss ≤ δ dec 3 (k large -k small ).
Thus, for k small ≤ k ≤ k small + k loss , we have

u 1 2 +δ dec k-S L-S + u 1+δ dec k-S L-S u 1+δ dec k loss k large -5-k small u 1+δ dec δ dec 3 u δ dec 2 and hence Γ g ∞,k r -2 u -1 2 - δ dec 2 , Γ b ∞,k r -1 u -1-δ dec 2 .
Since r ρ satisfies the same estimates as Γ g and rβ and rα satisfy even better estimates, and that α and rβ satisfy the same estimate as Γ b , we infer

Γ g ∞,k + r ρ, β, α ∞,k r -2 u -1 2 - δ dec 2 , (Γ b , α) ∞,k + r β ∞,k r -1 u -1-δ dec 2 ,
which is the desired interpolation bound.

The first, second and last product estimates follow immediately from the above interpolation bound. Finally, the third product estimate follows from the above interpolation 5 Recall that we have

0 < δ dec 1, δ dec k large 1, k small = 1 2 k large + 1.
In particular, we have δ dec (k largek small ) 1 and hence we may indeed assume that k loss = 25 satisfies the required constraints.
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estimate for Γ b and the following interpolation estimate for

k small ≤ k ≤ k small + k loss (β, α) ∞,k (β, α) k-S L-S ∞,L (β, α) L-k L-S ∞,S r -7 2 - δ B 2 k-S L-S min r -7 2 - δ B 2 , r -3 u -1 2 -δ dec L-k L-S r -7 2 - δ B 2 1-δ dec r -3 u -1 2 -δ dec δ dec r -7 2 u -δ dec 2
where we have used in the last inequality the fact that δ B > 2δ dec .

Elliptic estimates

We shall often make use of the results of Proposition 

1. If f ∈ s 1 (S), d /f h k (S) + f h k (S) r d / 1 f h k (S) . 2. If f ∈ s 2 (S), d /f h k (S) + f h k (S) r d / 2 f h k (S) . 3. If f ∈ s 0 (S), d /f h k (S) r d / 1 f h k (S) . 4. If f ∈ s 1 (S), f h k+1 (S) r d / 2 f h k (S) + r -2 S e Φ f . 5. If f ∈ s 1 (S), f -S f e Φ S e 2Φ e Φ h k+1 (S) r d / 2 f h k (S) .
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Main equations

The proof of Theorem M4 relies heavily on the null structure and null Bianchi identities derived in section 2.2.4, see Propositions 2.2.8. We also rely on Proposition 2.2.18 for equations verified by the check quantities. We rewrite them below in a schematic form.

Proposition 7.1.8 (Transport equations for checked quantities). We have the following transport equations in the e 4 direction,

e 4 κ + κ κ = Γ g • Γ g , e 4 κ + 1 2 κκ + 1 2 κκ = -2 d / 1 ζ + 2ρ + Γ g • Γ b , e 4 ω = ρ + Γ g • Γ b , e 4 ρ + 3 2 κρ + 3 2 ρκ = d / 1 β + Γ b • α + Γ g • β + κ • ρ, e 4 μ + 3 2 κμ + 3 2 µκ = r -1 Γ g • d / ≤1 Γ g . (7.1.24)
Also, we have in the e 3 direction,

e 3 κ = r -1 d / ≤1 Γ b + Γ b • d / ≤1 Γ b , e 3 ρ = r -2 d / ≤1 Γ b + r -1 Γ b • d / ≤1 Γ b . (7.1.25)
Proof. The statements follow from the precise formulas of Proposition 2.2.18 and the symbolic notation in (7.1.11). We also use the convention made in Remark 7.1.4 according to which we write r ρ, r μ ∈ Γ g , (rβ, α) ∈ Γ b and e 3 (Γ g ) = r -1 (dΓ b ).

Equations involving q

Recall that our main quantity q has been introduced in Definition 2. 1. Everywhere in (ext) M we have ξ = 0.

2. The transition function f verifies, relative to the background frame (e 3 , e θ , e 4 ), the estimates7 

|d k f | ru 1 2 +δ dec -2δ 0 + u 1+δ dec -2δ 0 , for k ≤ k small + 20 on (ext) M, |d k-1 e 3 f | ru 1+δ dec -2δ 0 for k ≤ k small + 20 on (ext) M. (7.1.27)
3. The primed Ricci coefficients and curvature components verify8 max 0≤k≤k small +k loss sup

(ext) M r 2 u 1 2 +δ dec -2δ 0 + ru 1+δ dec -2δ 0 |d k Γ g | + ru 1+δ dec -2δ 0 |d k Γ b | +r 2 u 1+δ dec -2δ 0 d k-1 e 3 κ - 2Υ r , κ + 2 r , ϑ , ζ , η , η + r 3 (u + 2r) 1 2 +δ dec -2δ 0 + r 2 (u + 2r) 1+δ dec -2δ 0 |d k α | + |d k β | + r 3 (2r + u) 1+δ dec + r 4 (2r + u) 1 2 +δ dec -2δ 0 |d k-1 e 3 (α )| + r 3 u 1+δ dec + r 4 u 1 2 +δ dec -2δ 0 |d k-1 e 3 (β )| + r 3 u 1 2 +δ dec -2δ 0 + r 2 ru 1+δ dec -2δ 0 |d k ρ | +u 1+δ dec -2δ 0 r 2 |d k β | + r|d k α | .
We have the following analog of Proposition 2.3.13.

Proposition 7.1.10. We have, relative to the background frame of (ext) M,

r 4 d / 2 d / 1 ρ + 3 4 κρϑ + 3 4 κρϑ = q + Err (7.1.28)
with error term expressed schematically in the form

Err = r 2 d / ≤2 (Γ b • Γ g ). (7.1.29)
Proof. We make use of Proposition 2.3.13. Recall (see Remark 2.4.9) that the quantity q we are working with is defined relative to the global frame of Proposition 3.5.5. We thus write 9 ,

q = r 4 ( d / 2 ) ( d / 1 ) ρ + 3 4 κ ρ ϑ + 3 4 κ ρ ϑ + Err , Err = r 4 e 3 η • β + r 2 d ≤1 Γ b • Γ g ),
where the primes refer to the global frame in which q was defined. Since in that frame e 3 η ∈ r -1 dΓ b and β ∈ r -1 Γ g we can simplify and write,

Err = r 2 d ≤1 Γ b • Γ g ).
We also have in view of Proposition 2.3.4

ρ = ρ + f β + O(f 2 α), β = β + 1 2 f α, α = α, κ = κ + f ξ, κ = κ + d / 1 (f ) + f (ζ + η) + O(r -1 f 2 ), ϑ = ϑ -d / 2 (f ) + f (ζ + η) + O(r -1 f 2 ), ϑ = ϑ + f ξ. Note that ( d / 1 ) ρ = -e θ (ρ) = -e θ ρ - 1 2 f e 3 ρ = d / 1 ρ - 1 2 f e 3 ρ.
We deduce,

( d / 2 ) ( d / 1 ) ρ = ( d / 2 ) ( d / 1 ) ρ + ( d / 2 ) ( d / 1 ) (Γ b • Γ g ) + l.o.t. = ( d / 2 ) d / 1 - 1 2 f e 3 ρ + r -2 d / ≤2 (Γ b • Γ g ) = d / 2 d / 1 - 1 2 f e 3 ρ + r -2 d / ≤2 (Γ b • Γ g ) = d / 2 d / 1 ρ - 1 2 d / 2 f e 3 ρ + r -2 d / ≤2 (Γ b • Γ g ).
9

The values of r and r differ only by lower order terms which do not affect the result.

Similarly,

κ ρ ϑ = ρκ ϑ -d / 2 f + r -3 d / ≤1 (Γ g • Γ g ), κ ρ ϑ = κρϑ + r -3 d / ≤1 (Γ b • Γ g ).
We deduce,

( d / 2 ) ( d / 1 ) ρ + 3 4 κ ρ ϑ + 3 4 κ ρ ϑ = d / 2 d / 1 ρ + 3 4 κρϑ + 3 4 κρϑ - 1 2 d / 2 f e 3 ρ + 3 2 κρ + r -2 d / ≤2 (Γ b • Γ g ).
Note that,

d / 2 f e 3 ρ + 3 2 κρ = d / 2 f d / 1 β - 1 2 ϑα + l.o.t. = r -2 d / ≤2 (Γ g • Γ b ). Hence ( d / 2 ) ( d / 1 ) ρ + 3 4 κ ρ ϑ + 3 4 κ ρ ϑ = d / 2 d / 1 ρ + 3 4 κρϑ + 3 4 κρϑ + r -2 d / ≤2 (Γ b • Γ g ).
This concludes the proof of Proposition 7.1.10.

We shall also need the following analogue of Proposition 2.3.14.

Proposition 7.1.11. The following identity holds true in (ext) M, with respect to its background frame

e 3 (rq) = r 5 d / 2 d / 1 d / 1 β - 3 2 ρ d / 2 d / 1 κ - 3 2 κρ d / 2 ζ - 3 2 κρα + 3 4 (2ρ 2 -κκρ)ϑ + Err[e 3 (rq)], (7.1.30) 
where

Err[e 3 (rq)] = r 3 d ≤3 Γ b • Γ g . (7.1.31)
Proof. We start with the result of Proposition 2.3.14 which we write in the form, (r ) -5 e 3 (r Proof. We make use of Proposition 7.1.12 . We shall also make use of the conventions mentioned in Remark 7.1.

q) = ( d / 2 d / 1 d / 1 ) β - 3 2 κ ρ α - 3 2 ρ ( d / 2 d / 1 ) κ - 3 2 κ ρ( d / 2 ) ζ + 3 4 (2(ρ ) 2 -κ κ ρ )ϑ + (r ) -5 Err[e 3 (r q)] Err [e 3 (r q)] = r Γ b q + r 5 d ≤1 e 3 η • β + r 3 d ≤2 Γ b • Γ g .
4, i.e. ρ, μ ∈ r -1 Γ g , β ∈ r -1 Γ b , α ∈ Γ b .
We start with,

2 d / 2 d / 2 η = κ -e 3 (ζ) + β -e 3 (e θ (κ)) + r -2 d / ≤1 Γ g + r -1 d /(Γ b • Γ b ) We apply d / 1 d / 1 to derive, 2 d / 1 d / 1 d / 2 d / 2 η = κ -d / 1 d / 1 e 3 (ζ) + d / 1 d / 1 β -d / 1 d / 1 e 3 (e θ (κ)) + r -4 d / ≤3 Γ g + r -3 d / 3 (Γ b • Γ b ) = κ -e 3 ( d / 1 d / 1 (ζ) + d / 1 d / 1 β -d / 1 d / 1 e 3 (e θ (κ)) -κ[ d / 1 d / 1 , e 3 ]ζ + r -4 d / ≤3 Γ g + r -3 d / 3 (Γ b • Γ b )
Making use of the commutation formula, see Lemma 7.1.5, and the null structure equations for e 3 ζ, e 4 ζ,

[ d / 1 , e 3 ]ζ = -ηe 3 ζ + r -2 d /ζ + Γ b e 4 ζ + l.o.t. = r -1 Γ b • Γ b + r -2 d /Γ g + l.o.t.
we deduce, schematically,

[ d / 1 d / 1 , e 3 ]ζ = d / 1 [ d / 1 , e 3 ]ζ + [ d / 1 , e 3 ] d / 1 ζ = r -1 d / r -1 Γ b • Γ b + r -2 d /ζ + l.o.t. + Γ b e 3 d / 1 ζ + r -2 d / 1 ζ + l.o.t. = r -2 d /(Γ b • Γ b ) + r -3 d / 2 ζ + Γ b d / 1 e 3 ζ + Γ b e 3 ζ + r -2 d /ζ + l.o.t. = r -2 d /(Γ b • Γ b ) + r -2 Γ b d /(dΓ b ) + r -1 Γ b • Γ b • Γ b + r -4 d / 2 Γ g = r -2 d /(Γ b d ≤1 Γ b ) + r -4 d / 2 Γ g + l.o.t.
Hence,

2 d / 1 d / 1 d / 2 d / 2 η = κ -e 3 ( d / 1 d / 1 ζ) + d / 1 d / 1 β -d / 1 d / 1 e 3 (e θ (κ)) + r -4 d / ≤3 Γ g + r -3 d / 2 (Γ b • d /Γ b ) (7.1.34) Since µ = -d / 1 ζ -ρ + 1 4 ϑϑ, we deduce, d / 1 µ = -d / 2 d / 1 ζ -d / 1 ρ + 1 4 d / 1 (ϑϑ), e 3 d / 1 µ = -e 3 ( d / 2 d / 1 ζ) -e 3 d / 1 ρ + 1 4 e 3 d / 1 (ϑϑ) = -e 3 ( d / 2 d / 1 ζ) -d / 1 e 3 ρ -[ d / 1 , e 3 ]ρ + 1 4 d / 1 e 3 (ϑϑ) + 1 4 [e 3 , d / 1 ](ϑ • ϑ).
Making use of the equations for e 3 ρ = d / 1 β -3 2 κρ + Γ g • Γ b and also the equations for10 e 4 ρ, e 3 ϑ, e 3 ϑ, e 4 ϑ, e 4 ϑ (and writing d /

1 β = r -1 d /β = r -2 d /Γ b ) [e 3 , d / 1 ]ρ = Γ b e 3 ρ + Γ b e 4 ζ + r -2 d /ρ = r -2 Γ b d /Γ b + r -3 d /Γ g + l.o.t., [e 3 , d / 1 ](ϑ • ϑ) = Γ b e 3 (ϑ • ϑ) + Γ b e 4 (ϑ • ϑ) + r -2 d /(ϑ • ϑ) = r -2 d / Γ b • Γ g + l.o.t.
We deduce, ignoring the lower order terms,

e 3 d / 1 µ = -e 3 ( d / 2 d / 1 ζ) -d / 1 d / 1 β - 3 2 κρ + Γ g • Γ b + r -2 Γ b d /Γ b + r -2 d / Γ b Γ g + r -3 d /Γ g = -e 3 ( d / 2 d / 1 ζ) -d / 1 d / 1 β + 3 2 κ d / 1 ρ + r -3 d /Γ g + r -2 d / ≤1 (Γ b • Γ b ).
Hence,

e 3 ( d / 1 d / 1 ζ) = -e 3 ( d / 1 µ) -d / 1 d / 1 β + r -3 d /Γ g + r -2 d / ≤2 (Γ b • Γ b ) + l.o.t. (7.1.35)
and thus, back to (7.1.34), 

2 d / 1 d / 1 d / 2 d / 2 η = κ e 3 ( d / 1 µ) + 2 d / 1 d / 1 β -d / 1 d / 1 e 3 e θ (κ) + r -4 d / ≤3 Γ g + r -3 d / ≤3 (Γ b • Γ b ) + l.o.t. ( 7 
+ κ[ d / 2 , e 3 ] d / 1 µ + r -1 d /Γ g • e 3 ( d / 1 µ) + 2 d / 1 d / 1 β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ). (7.1.37)
Note that, in view of (7.1.36) we can write,

e 3 ( d / 1 µ) = 2κ -1 d / 2 d / 1 d / 1 e 3 e θ (κ) -2 d / 1 d / 1 β + 2κ -1 d / 1 d / 1 d / 2 d / 2 η = r -3 d / ≤4 Γ b + l.o.t. (7.1.38) Hence, r -1 d /Γ g • e 3 ( d / 1 µ) + 2 d / 1 d / 1 β = r -4 d /Γ g • d / ≤4 Γ b .
Similarly,

[ d / 2 , e 3 ] d / 1 µ = Γ b • e 3 d / 1 µ + Γ b e 4 d / 1 µ + r -3 d / 2 µ + l.o.t. = r -3 Γ b • d / ≤4 Γ b + Γ b d / 1 e 4 µ + [e 4 , d / 1 ]µ + r -4 d / 2 Γ g + l.o.t.

Structure of the proof of Theorem M4

We rephrase the statement of Theorem M4 as follows.

Theorem 7.2.1. Let M = (int) M ∪ (ext) M be a GCM admissible spacetime 11 . Under the basic bootstrap assumptions and the results of Theorems M1-M4 (all encoded in Ref 1-Ref 4) the following estimates 12 hold true, for all k ≤ k small +8, everywhere on (ext) M,

Γ g ∞,k 0 min r -2 u -1 2 -δ dec , r -1 u -1-δ dec , e 3 Γ g ∞,k-1 0 r -2 u -1-δ dec , Γ b ∞,k 0 r -1 u -1-δ dec , (7.2.1)
and,

β ∞,k 0 min r -2 (u + 2r) -1-δ dec , r -3 (u + 2r) -1 2 -δ dec , e 3 β ∞,k-1 0 r -3 (u + 2r) -1-δ dec , ρ ∞,k 0 min r -2 u -1-δ dec , r -3 u -1 2 -δ dec , e 3 ρ ∞,k 0 r -3 u -1-δ dec , μ ∞,k 0 r -3 u -1-δ dec , β ∞,k 0 r -2 u -1-δ dec . (7.2.2) 
Moreover, everywhere in (ext) M,

α ∞,k 0 r -1 u -1-δ dec . (7.2.3)
Here is a short sketch of the proof of the theorem.

1. Estimates on Σ * . To start with, we only have good 13 estimates for q, α and α, according to Ref 2. To proceed we make use in an essential way of all the GCM conditions (7.1.3)-(7.1.5) on the spacelike boundary Σ * to estimate all the Ricci and curvature coefficients along Σ * . We also take full advantage of the dominance condition r ≥ -1 0 u 1+δ * on Σ * . The main result is stated in Proposition 7.3.12. The proof is divided in the following intermediary steps. 11 In particular the conditions (7.1.1)-(7.1.5) hold on the spacelike boundary Σ * .

12 See Remark 7.1.4 for the definition of Γ g , Γ b used here. 13 i.e estimates in terms of 0 . (c) We make use of the previous steps to complete the proof for the remaining desired estimates on Σ * in Proposition 7.3.12. This step also uses, in addition to the GCM conditions, Proposition 7.1.10 relating q to d / 2 d / 1 ρ, the Codazzi equations and elliptic estimates on 2 surfaces. (ext) M. We make use of the propagation equations in e 4 and the estimates on Σ * to derive some of the desired estimates of Theorem 7.2.1, more precisely the better estimates in powers of r for the Γ g quantities. Note that these estimates decay only like u -1/2-δ dec in powers of u.

First Estimates in

(a) We first prove the desired estimates for κ, μ by simply integrating the corresponding e 4 equations. Note that these estimates are also well behaved in terms of powers of u. This is done in section 7.4.3.

(b) We derive spacetime estimates for all the = 1 modes in Lemma 7.4.6. This is done by propagating them from the last slice in the e 4 direction, combined with Codazzi equations and the vanishing of the = 1 mode of e θ (K).

(c) We provide all the optimal estimates in terms of powers 14 of r for the quantities ϑ, ζ, η, κ, β, ρ. This is achieved in Proposition 7.4.5 with the help of the estimates on the last slice, the propagation equation for these quantities and the estimates for the = 1 modes derived in the previous step.

3. Optimal u-decay estimates in (ext) M. We derive all the remaining estimates of Theorem 7.2.1 for all but the quantities ξ, ω, Ω, ς. The main remaining difficulty is to get the top decay in powers of u for ϑ, ζ, η, κ, β, ρ, β. The result is stated in Proposition 7.5.1. We proceed as follows.

(a) One would like to start with ϑ by using the equation e 4 ϑ + κϑ = -2α. This unfortunately cannot work by integration15 starting from the last slice Σ * . Similar problems occur for ζ, β, ρ. On the other hand the quantities κ and ϑ could in principle be propagated using their corresponding e 4 equations from Σ * , but unfortunately they are strongly coupled with the other quantities for which we don't yet have information. For example we have,

e 4 κ + 1 2 κκ + 1 2 κκ = -2 d / 1 ζ + 2ρ + Γ g • Γ b ,
and therefore we cannot derive the estimate for κ, by integration, before estimating d / 1 ζ and ρ. To circumvent this difficulty we proceed by an indirect method as follows.

(b) We can derive optimal decay information on various mixed quantity. For example making use of the equation

e 3 α + 1 2 κ -4ω α = -d / 2 β - 3 2 ϑρ + 5ζβ,
we infer the desired decay in u for the quantity d / 2 β -3 2 ϑρ. Other such informations can be derived from the Codazzi equations for ϑ, ϑ, the Bianchi identity for β and the identity (7.1.28) of Lemma 7.1.10.

(c) We combine the control we have for α, κ, μ with the control for the mixed quantities mentioned above with a propagation equation for an intermediary quantity,

Ξ := r 2 e θ (κ) + 4r d / 1 d / 1 ζ -2r 2 d / 1 d / 1 β .
We show in the crucial Lemma 7.5.2 that Ξ is also a good mixed quantity, i.e. it has optimal decay in u. It is important to note that this estimate does not depend linearly on α for which we only have information on the last slice and T .

( 7.3 Decay estimates on the last slice Σ *

Preliminaries

We shall make use of the following norms on Σ * . 

ψ * ∞,k (u, r) := j≤k d j * ψ L ∞ (S(u,r)) , d j * = j 1 +j 2 ≤j d / j 1 (ν * ) j 2 . ( 7 
a * = - 2 ς + Υ - r 2 A = - 2 ς -Ω. ( 7 
b d ψ + a * Γ g d ψ + d /a * e 4 ψ = rΓ b (ν * ψ -a * e 4 ψ) + a * Γ g d ψ + d /a * e 4 ψ = rΓ b ν * ψ -a * (Γ b d ψ + Γ g d ψ) + d /Γ b • dψ = rΓ b ν * ψ + d ≤1 Γ b • dψ as desired.
To estimate derivatives of the = 1 modes on Σ * we make use of the following. Lemma 7.3.2. For every scalar function h we have the formula

ν * S h = (ς) -1 S ς (ν * (h) + (κ + a * κ)h) . (7.3.6) 
In particular

ν * (r) = r 2 (ς) -1 ς(κ + a * κ). (7.3.7)
Proof. We consider the coordinates u, θ along Σ * with ν * (θ) = 0. In these coordinates we have,

ν * = 2 ς ∂ u .
The lemma follows easily by expressing the volume element of the surfaces S ⊂ Σ * with respect to the coordinates u, θ (see also the proof of Proposition 2.2.9). Proof. We have

ν * S ψe Φ = ς -1 S ς ν * (ψe Φ ) + (κ + a * κ)ψe Φ = ς -1 S ς ν * ψe Φ + e -Φ ν * (e Φ ) + κ + a * κ ψe Φ .
Recalling that e 4 (Φ) = 1 2 (κϑ), e 3 (Φ) = 1 2 (κϑ) we deduce

e -Φ ν * (e Φ ) + κ + a * κ = 3 2 (κ + a * κ) - 1 2 (ϑ -a * ϑ).
Hence, writing also ςa * = -2 -ςΩ, ς = ς + ς, κ = κ + κ, κ = κ + κ, and Ω = Ω + Ω,

ν * S ψe Φ = ς -1 S ς ν * ψ + 3 2 (κ + a * κ)ψ e Φ - 1 2 ς -1 S ς(ϑ -a * ϑ)ψe Φ = ς -1 ς S ν * ψ + 3 2 (κ -Ωκ)ψ e Φ + ς -1 S ς ν * ψ + 3 2 (κ -Ωκ) e Φ -3ς -1 S κψe Φ - 1 2 ς -1 S ς(ϑ -a * ϑ)ψe Φ = S ν * ψ + 3 2 (κ -Ωκ)ψ e Φ -3ς -1 S κψe Φ + (ς -1 ς -1) S ν * ψ + 3 2 (κ -Ωκ)ψ e Φ + ς -1 S ς ν * ψ + 3 2 (κ -Ωκ)ψ e Φ - 1 2 ς -1 S ς(ϑ -a * ϑ)ψe Φ = S (ν * ψ)e Φ + 3 2 κ -2κ -Ω κ S ψe Φ + Err[ψ, ν * ]
where,

Err[ψ, ν * ] = r 4 Γ b ν * (ψ) + r 3 Γ b ψ + r 3 Γ b ψ + r 3 Γ g ψ
and the conclusion follows from the fact that Γ g behaves at least as good as Γ b .

Corollary 7.3.4. Given ψ ∈ s 1 and k ≥ 1, the following estimate holds true Proof. We prove (7.3.9) by iteration. First, (7.3.9) holds true for k = 1 in view of Lemma 7.3.3. Also, assuming (7.3.9) for k ≥ 1, we apply it with ψ replaced by ν * ψ which implies

S (ν k * ψ)e Φ k j=0 ν j * S ψe Φ + d ≤k-1 r 4 Γ b ν * (ψ) + r 3 Γ b ψ . ( 7 
S (ν k+1 * ψ)e Φ k j=0 ν j * S ν * ψe Φ + d ≤k-1 r 4 Γ b ν 2 * (ψ) + r 3 Γ b ψ .
Applying Lemma 7.3.3 with ψ replaced by ν * ψ to all terms in the sum of the left hand side, we infer (7.3.9) with k replaced by k + 1 which shows that (7.3.9) holds indeed for all k by iteration.

Differential identities involving GCM conditions on Σ *

Recall our our GCM conditions on The goal of the section is to derive identities involving the GCM conditions which will be used later, see Lemma 7.3.9.

Σ * κ = 2 r , d / 2 d / 1 µ = 0, d / 2 d / 1 κ = 0, S ηe Φ = 0, S ξe Φ = 0. ( 7 
Proposition 7.3.5. The following identities hold true on Σ * .

2 d / 2 d / 1 d / 1 d / 2 d / 2 η = κ ν * ( d / 2 d / 1 µ) + 2 d / 2 d / 1 d / 1 β -d / 2 d / 1 d / 1 ν * (e θ (κ)) + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t., (7.3.12 
)

2 d / 2 d / 1 d / 1 d / 2 d / 2 ξ = ν * ( d / 2 d / 2 + 2K) d / 2 d / 1 κ) -κ ν * ( d / 2 d / 1 µ) + 2 d / 2 d / 1 d / 1 β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t. (7.3.13)
The quadratic terms denoted l.o.t. are lower order both in terms of decay in r, u as well in terms of number of derivatives.

In particular, if the GCM conditions (7.3.10) are verified, we deduce,

d / 2 d / 1 d / 1 d / 2 d / 2 η = κ d / 2 d / 1 d / 1 β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t., d / 2 d / 1 d / 1 d / 2 d / 2 ξ = -κ d / 2 d / 1 d / 1 β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t. (7.3.14)
Proof. The proof is a straightforward application of Proposition 7.1.14. Indeed according to (7.1.32) we have

2 d / 2 d / 1 d / 1 d / 2 d / 2 η = κ e 3 ( d / 2 d / 1 µ) + 2 d / 2 d / 1 d / 1 β -d / 2 d / 1 d / 1 e 3 (e θ (κ)) + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t.
On the other hand since

ν * = e 3 + a * e 4 with a * = 2 ς * -Υ + r 2 A, see (7.1.8), e 3 ( d / 2 d / 1 µ) = ν * ( d / 2 d / 1 µ) -a * e 4 ( d / 2 d / 1 µ) = ν * ( d / 2 d / 1 µ) -a * ( d / 2 d / 1 e 4 µ + [e 4 , d / 2 d / 1 ]μ) .
Also, in the same fashion 16 ,

d / 2 d / 1 d / 1 e 3 (e θ (κ)) = d / 2 d / 1 d / 1 [ν * (e θ (κ)) -a * e 4 e θ κ] = d / 2 d / 1 d / 1 [(ν * (e θ (κ))] -a * d / 2 d / 1 d / 1 (e 4 e θ κ) + r -3 i+j=2 d / i a * d / j (e 4 e θ κ) = d / 2 d / 1 d / 1 [ν * (e θ (κ)) -a * e θ e 4 κ -[e 4 , e θ ]κ] = r -2 i+j=2 d / i Γ b d / j (e θ (e 4 κ) + [e θ , e 4 ]κ) .
Thus, after using the transport equations for e 4 µ, e 4 κ and the commutator lemma applied to [e 4 , e θ ] we easily deduce,

2 d / 2 d / 1 d / 1 d / 2 d / 2 η = κ ν * ( d / 2 d / 1 µ) + 2 d / 2 d / 1 d / 1 β -d / 2 d / 1 d / 1 ν * (e θ (κ)) + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t.
which confirms the first identity of the proposition.

The second part of the proposition can be derived in the same manner starting with the identity (7.1.33)

2 d / 2 d / 1 d / 1 d / 2 d / 2 ξ = e 3 ( d / 2 d / 2 + 2K) d / 2 d / 1 κ) -κ e 3 ( d / 2 d / 1 µ) + 2 d / 2 d / 1 d / 1 β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t.
This concludes the proof of the proposition.

Control of the flux of some quantities on Σ *

The goal of this section is to establish the following.

Proposition 7.3.6. The following estimate holds true for all k ≤ k small + 18

Σ * (u,u * ) r 2 d / ≤3 d k * β 2 + d / ≤4 d k * Γ b 2 2 0 u -2-2δ dec . (7.3.15)
We also have for k ≤ k small + 17 Proof. Note that (7.3.16) follows immediately from (7.3.15) using the trace theorem and Sobolev. We thus concentrate our attention on deriving (7.3.15).

r d / ≤1 β * ∞,k + d / ≤2 Γ b * ∞,k 0 r -1 u -1-δ dec . ( 7 
Step 1. We first prove the corresponding estimates for β away from its = 1 mode. More precisely we prove.

Lemma 7.3.8. The following estimates holds true for all k ≤ k small + 18

Σ * (u,u * )

r 4 d / 2 ( d / ≤2 d k * β) 2 2 0 u -2-2δ dec . (7.3.17)
Proof. We make use of Proposition 7.1.11 according to which

e 3 (rq) = r 5 d / 2 d / 1 d / 1 β - 3 2 κρα - 3 2 ρ d / 2 d / 1 κ - 3 2 κρ d / 2 ζ + 3 4 (2ρ 2 -κκρ)ϑ + Err[e 3 (rq)]
where

Err[e 3 (rq)] = r 3 d ≤3 Γ b • Γ g .
In view of Lemma 7.1.6, we have for all k ≤ k small + 18,

Err[e 3 (rq)] ∞,k (u, r) 0 u -3 2 -δ dec . (7.3.18)
We can also check, making use of the estimates (7.1.13), and Lemma 7.1.6 for ϑ,

ρ d / 2 d / 1 κ, κρ d / 2 ζ, κκρϑ, ρ 2 ϑ ∞,k r -7 + r -6 u -1-δ dec 2 .
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In view of our assumption for r on Σ * we have r ≥ 0 u 1+δ dec , we thus deduce for all k ≤ k small + 18

e 3 (rq) -r 5 d / 2 d / 1 d / 1 β - 3 2 κρα ∞,k r -2 + r -1 u -1-δ dec 2 + 0 u -3 2 -δ dec 0 u -3 2 -δ dec .
We infer that, 

r -1 r 4 d k * d / 2 d / 1 d / 1 β L 2 (S) r -1 r -1 d k * e 3 (rq) L 2 (S) + r -1 d k * α L 2 (S) + 0 r -1 u -3 2 -δ dec where d k * = ν k 1 * d / k 2 denote
|e 3 d k q| 2 + r -2 |q| 2 + |d k α| 2 2 0 (1 + u) -2-2δ dec , k ≤ k small + 18,
we deduce

Σ * (u,u * ) r 8 d k * ( d / 2 d / 1 d / 1 β) 2 2 0 u -2-2δ dec .
Taking into account the commutator Lemma 7.3.1, as well as the product Lemma 7.1.6, we deduce, for k ≤ k small + 18, Σ * (u,u * )

r 8 d / 2 d / 1 d / 1 (d k * β) 2 2 0 u -2-2δ dec . (7.3.19) Since d / 1 d / 1 = d / 2 d / 2 + 2K, we infer that Σ * (u,u * ) r 8 ( d / 2 d / 2 + 2K) d / 2 (d k * β) 2 2 0 u -2-2δ dec .
In view of the coercivity of d / 2 d / 2 + 2K we deduce, Σ * (u,u * )

r 4 d / 2 ( d / ≤2 d k * β) 2 2 0 u -2-2δ dec , k ≤ k small + 18.
This concludes the proof of Lemma 7.3.8.
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Step 2. We make use of Lemma 7.3.8 to prove the desired estimate for ϑ, i.e.

Σ * (u,u * )

d / ≤4 d k * ϑ| 2 2 0 u -2-2δ dec , k ≤ k small + 18. (7.3.20)
Proof of (7.3.20). One starts with the Codazzi equation

d / 2 ϑ = -2β -d / 1 (κ) -ζκ + Γ g • Γ b .
Differentiating w.r.t. d / 2 and then taking tangential derivatives d

/ ≤2 d k * we derive, d / ≤2 d k * d / 2 d / 2 ϑ = -2 d / ≤2 d k * d / 2 β -d / ≤2 d k * d / 2 d / 1 (κ) -d / ≤2 d k * r -2 d /Γ g + r -1 d / (Γ g • Γ b ) .
Making use of the GCM condition d / 2 d / 1 κ = 0 along Σ * and the interpolation estimates of Lemma 7.1.6, for all k ≤ k small + 18,

d / ≤2 d k * d / 2 d / 2 ϑ = -2 d / ≤2 d k * d / 2 β + r -2 d / ≤2 d k+1 Γ g + r -1 d / ≤2 d k+1 (Γ g • Γ b ) = -2 d / ≤2 d k * d / 2 β + O r -4 u -1 2 - δ dec 2 or, since r ≥ 0 u 1+δ dec , d / ≤2 d k * d / 2 d / 2 ϑ = -2 d / ≤2 d k * d / 2 β + O 0 r -3 u -3 2 -δ dec .
Moreover,

d / 2 d / 2 d / ≤2 d k * ϑ = -2 d / ≤2 d k * d / 2 β + O 0 r -3 u -3 2 -δ dec + [ d / ≤2 d k * , d / 2 d / 2 ]ϑ.
Using the commutator estimates of Lemma 7.3.1 and the interpolation estimates of Lemma 7.1.6, we derive

d / 2 d / 2 d k * ϑ = -2d k * d / 2 β + O 0 r -3 u -3 2 -δ dec .
Integrating and using the previously derived estimate for β we deduce,

Σ * (u,u * ) r 4 d / 2 d / 2 d / ≤2 d k * ϑ 2 2 0 u -2-2δ dec , k ≤ k small + 18.
In view of the coercivity of d / 2 d / 2 we infer that,
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Step 3. We next derive a non sharp, preliminary, estimate for the = 1 mode of β with the help of the Codazzi equation for ϑ,

2β = -d / 2 ϑ + e θ (κ) -κζ + Γ g • Γ b = -d / 2 ϑ + r -1 d / ≤1 Γ g + Γ g • Γ b .
Projecting on the = 1 mode, this yields

2 S βe Φ = r 2 d / ≤1 Γ g + r 3 Γ g • Γ b .
Differentiating, and using Lemma 7.1.6, we deduce

ν k * S βe Φ u -1 2 - δ dec 2 , k ≤ k small + 18. (7.3.21)
Together with Corollary 7.3.4, we infer

S (ν k * β)e Φ u -1 2 - δ dec 2 + r 4 |d k (β • Γ b )|.
Together with product estimates of Lemma 7.1.6, and since r ≥ ( -1 0 )u 1+δ dec on Σ * , we deduce, for k ≤ k small + 18,

S (ν k * β)e Φ 0 ru -3 2 -δ dec . (7.3.22) 
We combine the result of Lemma 7.3.8 with (7.3.22) to deduce 

Σ * (u,u * ) r 2 d / ≤3 d k * β 2 2 0 u -2-2δ dec , k ≤ k small + 18. ( 7 
d / ≤3 d k * β 2 r 4 S d / 2 ( d / ≤2 d k * β) 2 + r -2 S (ν k * β)e Φ 2 r 4 S d / 2 ( d / ≤2 d k * β) 2 + 2 0 u -3-2δ dec .
Thus, integrating and making use of estimate (7.3.17), we infer

Σ(u,u * ) r 2 d / ≤3 d k * β 2 Σ(u,u * ) r 4 d / 2 ( d / ≤2 d k * β) 2 + 2 0 u -2-2δ dec 2 0 u -2-2δ dec
which concludes the proof of (7.3.23).

Step 4. Next, we establish the estimates for η and ξ. We first estimate d / 2 (η, ξ).

Σ * (u,u * )

r 2 | d / 2 ( d / ≤5 d k * η)| 2 + | d / 2 ( d / ≤5 d k * ξ)| 2 2 0 u -2-2δ dec . (7.3.24)
Proof. We prove Lemma 7.3.9 based on the identities of Proposition 7.3.5. To derive the desired flux estimate for η we make use of the first part of Proposition 7.3.5 according to which we have,

2 d / 2 d / 1 d / 1 d / 2 d / 2 η = κ ν * ( d / 2 d / 1 µ) + 2 d / 2 d / 1 d / 1 β -d / 2 d / 1 d / 1 ν * (e θ (κ)) + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t. Since, d / 1 d / 1 = d / 2 d / 2 + 2K, we deduce, d / 2 ( d / 2 d / 2 + 2K) d / 2 d / 2 η = 1 2 κν * ( d / 2 d / 1 µ) -d / 2 d / 1 d / 1 ν * (e θ (κ)) + κ d / 2 ( d / 2 d / 2 + 2K)β + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t.
or,

( d / 2 d / 2 + 2K) d / 2 d / 2 d / 2 η -κ d / 2 β = 1 2 κν * ( d / 2 d / 1 µ) -d / 2 d / 1 d / 1 ν * (e θ (κ)) + r -5 d / ≤4 Γ g + r -4 d / ≤4 (Γ b • Γ b ) + l.o.t.
Taking higher tangential derivatives and using our GCM assumptions on Σ *

d k * ( d / 2 d / 2 + 2K) d / 2 d / 2 d / 2 η -κ d / 2 β = d k * r -5 d / ≤4 Γ g + r -4 d / ≤3 (Γ b • dΓ b ) + l.o.t.
Making use of the commutation Lemma 7.3.1 we can rewrite,

r 2 ( d / 2 d / 2 + 2K) d / 2 d / 2 d / 2 (d k * η) -κ d / 2 (d k * β) = j≤k d / ≤2 r -3 d / ≤2 d j * Γ g + r -2 d / ≤1 d j * (Γ b • dΓ b ) .
Using the ellipticity of the operators ( d / 2 d / 2 + 2K) and d / 2 d / 2 , Lemma 7.1.6 and the dominance condition r ≥ ( -1 0 ) u 1+δ dec on Σ * , we derive, for k ≤ k small + 18, 

d / 2 ( d / ≤4 d k * η) L 2 (S) r d / 2 ( d / ≤2 d k * β) L 2 (S) + 0 r -1 u -3 2 -δ dec . ( 7 
r 2 d / 2 ( d / ≤4 d k * η) 2 Σ * (u,u * ) r 4 d / 2 ( d / ≤2 d k * β) 2 + 0 u -2-2δ dec 0 u -2-2δ dec
as stated. This completes the proof of Lemma 7.3.9 for η. The proof for ξ is very similar and left to the reader.
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Step 5. In this step, we derive the desired estimates for η and ξ, i.e. we show

Σ * (u,u * ) | d / ≤5 d k * η| 2 + | d / ≤5 d k * ξ| 2 2 0 u -2-2δ dec , k ≤ k small + 18. (7.3.26)
To this end, we prove the following estimates for the = 1 mode of ξ and η

S (ν k * η)e Φ + S (ν k * ξ)e Φ 0 r 2 u -2-δ dec , k ≤ k small + 18. (7.3.27)
Then, (7.3.26) follows from (7.3.27) and Lemma 7.3.9 using a Poincaré inequality.

To prove (7.3.27), we apply Corollary 7.3.4 to η and ξ. This yields for k ≥ 1

S (ν k * ξ)e Φ + S (ν k * η)e Φ k j=0 ν j * S ξe Φ + ν j * S ηe Φ + r 4 d k Γ b • Γ b .
In view of the GCM condition for the = 1 mode of η and ξ, we infer

S (ν k * ξ)e Φ + S (ν k * η)e Φ r 4 d k Γ b • Γ b
For k ≤ k small + 18, we infer, using the product Lemma 7.1.6,

S (ν k * ξ)e Φ + S (ν k * η)e Φ 2 0 u -2-2δ dec
which concludes the proof of (7.3.27), and hence of (7.3.26).

Step 6. Next, we derive the flux estimates for ω, ς, Ω and A. Adding κ times the first equation to the second equation of Proposition 7.1.12, we obtain

2κ d / 1 ω = -e 3 (e θ (κ)) -2 d / 2 d / 2 η + κ 1 2 κ + 2ω η - 1 2 κ 2 ξ + r -2 d / ≤1 Γ g + r -1 d / ≤1 (Γ b • Γ b ).
In view of the GCM condition for κ, the fact that ν * = e 3 + a * e 4 , and Raychadhuri, we have

-e 3 (e θ (κ)) = a * e 4 (e θ (κ)) = r -1 d /(Γ g • Γ g )
and hence To estimate A, note first that the flux estimate for A -A follows immediately from formula (7.1.9) and the above flux estimate for Ω. It they remains to control A. In view of (2.2.22), we have

r d / 1 ω = - 1 2 r 2 d / 2 d / 2 η + r 2 4 κ 1 2 κ + 2ω η - r 2 8 κ 2 ξ + d / ≤1 Γ g + r d / ≤1 (Γ b • Γ b ).
ςA = -κς + κ ς Ω + Ως + ς κ -Ω ς κ -Ωςκ
and hence, taking the average, we infer

A = -(ς -1)A -ς Ǎ + ς κ -Ω ς κ -Ως κ.
The flux estimate for A follows then from the product estimates of Lemma 7.1.6.

Step 7. It remains to derive the flux estimate for ω, Ω and ς. Recall (4.2.4)

ω - m r 2 = r 4 e 3 κ - 2 r + 1 2 κ κ - 2 r -2ω κ - 2 r -2 ρ + 2m r 3 + 1 2 κ κ - 2 r Ω -2ωκ + 1 2 ϑϑ -2ζ 2 - 1 2 Ω -ϑ 2 + κ2 + Ω(e 4 (κ) + κκ) - 1 2 κκ + 1 r Ωκ .
Using the GCM condition for κ, the fact that ν * = e 3 + a * e 4 , and Lemma 2.2.17 for e 4 (κ -2/r), the identity (2.2.12) for ρ, we infer ω -m r 2 = rΓ b • Γ g . which together with Lemma 7.1.6 yields the the flux estimate for ω.

Next, taking the average of (7.1.9), we have

Ω + Υ = r 2 A.
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The flux estimate for Ω follows from the above identity and the flux estimate for A derived in Step 6.

Finally, we derive the flux estimate for ς. Recall equation (7.1.8)

a * = - 2 ς + Υ - r 2 A
and the GCM condition for a * , see (7.1.1),

a * SP = -1 - 2m r .
We deduce,

2 ς SP = 2 - r 2 A SP . Since ς = ς SP + ς SP , we infer ς -1 = ς SP + 1 1 -r 4 A SP r 4 A

SP

and the flux estimate for ς follows from the above identity and the flux estimates for ς and A of Step 6. This concludes the proof of Proposition 7.3.6.

Estimates for some = 1 modes on Σ *

In this section, we control the = 1 modes of e θ (κ), e θ (ρ), e θ (µ) and of β. We summarize the results in the following proposition. 

k≤k small +20 ν k * S βe Φ 0 r -1 u -1-δ dec , S e θ (κ)e Φ 0 u -2-δ dec .
(7.3.28)

Remark 7.3.11. We note that the estimates for the = 1 modes of e θ (κ) and β are sharp 17 . During the proof we shall also need to derive sharp estimates for the = 1 modes of ζ and β, see (7.3.30) and (7.3.32).

Proof. We will rely on the following auxiliary bootstrap assumptions

S βe Φ r -1 u -1-δ dec , S e θ (κ)e Φ u -2-δ dec . (7.3.29)
Step 1. We start with proving an intermediary estimate for the = 1 mode of ζ. In view of the Codazzi equations and the GCM condition on κ,

d / 2 ϑ = -2β + (e θ (κ) + ζκ) + Γ g • Γ g = -2β + 2 r ζ + Γ g • Γ g
and hence

S ζe Φ = -r S βe Φ + r 4 Γ g • Γ g .
Thus, using the product estimates of Lemma 7.1.6,

S ζe Φ r S βe Φ + 0 u -1-δ dec .
In particular, in view of (7.3.29), we infer

S ζe Φ u -1-δ dec . (7.3.30)
Step 2. Next, we establish an intermediary estimates for the = 1 mode of β. We start with the Codazzi equation for ϑ,

2β = -d / 2 ϑ + e θ (κ) + 2Υ r ζ + Γ g • Γ b
and project on the = 1 mode, i.e. We make use of the estimate (7.3.30) for ζ, the auxiliary estimate (7.3.29) for e θ (κ), the dominance condition r ≥ -1 0 u 1+δ dec on Σ * , and bootstrap assumptions for Γ g to deduce

r -1 S βe Φ r -2 S ζe Φ + r -1 S e θ (κ)e Φ + S Γ g • Γ b r -2 u -1-δ dec + r -1 u -2-δ dec + r -2 u -1 2 -δ dec S |Γ b | 0 u -3-2δ dec + 0 u -3 2 -2δ dec Γ b L 2 (S)
.

Thus, we infer

u * u r -1 S βe Φ du 0 u -2-2δ dec + 0 u * u u -3-4δ dec 1/2 u * u Γ b 2 L 2 (S) 1/2
which together with the flux estimate of Proposition 7.3.6 implies

u * u r -1 S βe Φ du 0 u -2-2δ dec . (7.3.32) 
Step 3. Next, we provide an intermediary estimate for the = 1 mode of ρ. We start by differentiating the Gauss equation K = -ρ - Using the the auxiliary estimate (7.3.29) for the = 1 mode of e θ (κ)

S e θ (ρ)e Φ r -1 u -2-δ dec + S | d / ≤1 (Γ g • Γ b )|.
Making use of r ≥ -1 0 u 1+δ dec and the bootstrap assumptions on Γ g , we deduce

S e θ (ρ)e Φ 0 u -3-2δ dec + 0 u -3 2 -2δ dec d / ≤1 Γ b L 2 (S) .
Integrating in u we derive, Step 4. Next, we control the = 1 mode of e θ (κ) on Σ * . To this end, we need the precise identity18 of Proposition 2.2.19

u * u S e θ (ρ)e Φ du 0 u -2-δ dec + 0 u * u u -3-4δ dec 1 2 u * u d / ≤1 Γ b 2 L 2 (S)
e 3 (e θ (κ)) = -2 d / 2 d / 2 ξ + κ e 3 (ζ) -β + κ 2 ζ - 3 2 κe θ κ + 6ρξ -2ωe θ (κ) + Err[ d / 2 d / 2 ξ], Err[ d / 2 d / 2 ξ] = 2 d / 1 ξ + 1 2 κ ϑ + 2ηξ - 1 2 ϑ 2 η + 2e θ (ηξ) - 1 2 e θ (ϑ 2 ) +κ 1 2 ϑζ - 1 2 ϑξ - 1 2 ϑe θ κ - 1 2 ϑϑξ -ζ 2 d / 1 ξ + 2(η -3ζ)ξ - 1 2 ϑ 2 + ξ -ϑϑ -2 d / 1 ζ + 2ζ 2 -6ηζξ -6e θ (ζξ).
The error term can be written schematically as,

Err[ d / 2 d / 2 ξ] = r -1 d / ≤1 Γ b • Γ b + r -1 d / ≤1 Γ g • Γ b .
Note also that we can write

κ 1 2 κζ -2ωζ - 3 2 κe θ κ + ζ 1 2 κ 2 + 2ω κ + 6ρξ -2ωe θ (κ) = 4Υ 2 r 2 ζ + 1 r 3 - 8m r e θ (κ) - 12m r 3 ξ + r -1 d / ≤1 (Γ g • Γ b ).
Also, using the transport equation for e 4 (κ) and the GCM condition for κ, we have e 4 (e θ (κ)) = e θ e 4 κ + [e 4 , e θ ]κ

= e θ - 1 2 κ κ -2 d / 1 ζ + 2ρ + Γ g • Γ b + 1 2 κe θ κ + l.o.t. = - 1 r e θ κ + 2 d / 1 d / 1 ζ + 2e θ (ρ) + r -1 d /(Γ g • Γ b ) = - 1 r e θ κ + 2( d / 2 d / 2 + 2K)ζ + 2e θ (ρ) + r -1 d /(Γ g • Γ b ).
We can also write, since

ν * = e 3 + a * e 4 e 3 (ζ) = ν * (ζ) -a * e 4 (ζ) = ν * (ζ) -a * (-κζ -β + Γ g • Γ g ) = ν * (ζ) -1 + 2m r 2 r ζ + β + Γ b • Γ g .
Combining, we deduce

ν * (e θ (κ)) = -2 d / 2 d / 2 ξ + κν * (ζ) + 2Υ r β + E 1 + E 2 , E 1 = 4 r 2 1 - 6m r ζ + 2 r 2 - 3m r e θ (κ) - 12m r 3 ξ -2 1 + 2m r d / 2 d / 2 ζ + 2Υ r 1 + 2m r β -2 1 + 2m r e θ (ρ), E 2 = r -1 d / ≤1 Γ b • Γ b + r -1 d / ≤1 (Γ g • Γ b ). (7.3.35)
We introduce the following notation

f := e θ (κ) -κζ. (7.3.36)
Using the fact that ν * = e 3 + a * e 4 , and the transport equation for e 3 (κ) and e 4 (κ), we have

ν * (f ) = ν * (e θ (κ)) -κν * (ζ) -ν * (κ)ζ = ν * (e θ (κ)) -κν * (ζ) -e 3 (κ) + a * e 4 (κ))ζ = ν * (e θ (κ)) -κν * (ζ) + 4 r 2 1 - 4m r ζ + r -1 d / ≤1 (Γ g • Γ b ).
Together with (7.3.35), we deduce, with a similar E 2 ,

ν * (f ) = -2 d / 2 d / 2 ξ + 2Υ r β + 4 r 2 1 - 4m r ζ + E 1 + E 2 . ( 7 

.3.37)

Projecting on the = 1 mode and integrating d / 2 d / 2 ξ by parts, we derive

S ν * (f )e Φ = 2Υ r S βe Φ + 4 r 2 1 - 4m r S ζe Φ + S (E 1 + E 2 )e Φ .
In view of Ref 1, we have schematically

S E 2 e Φ = O d / ≤1 Γ b 2 L 2 (S) + r -1 u -1 2 -δ dec d / ≤1 Γ b L 2 (S) .
Also, using the GCM condition for the = 

r 2 1 - 4m r ζ + E 1 e Φ r -2 u -1-δ dec + r -1 u -2-2δ dec + S e θ (ρ)e Φ . 4 
We deduce,

S (ν * f )e Φ r -1 S βe Φ + S e θ (ρ)e Φ + d / ≤1 Γ b 2 L 2 (S) + r -1 u -1 2 -δ dec d / ≤1 Γ b L 2 (S) + r -2 u -1-δ dec + r -1 u -2-2δ dec ,
or, making use of the assumption r ≥ -1

0 u 1+δ dec , S (ν * f )e Φ r -1 S βe Φ + S e θ (ρ)e Φ + d / ≤1 Γ b 2 L 2 (S) + 0 u -3-2δ dec . (7.3.38)
On the other hand, according to Lemma 7.3.3,

ν * S f e Φ = S (ν * f )e Φ + 3 2 κ -2κ -Ω κ S f e Φ + Err[f, ν * ] (7.3.39)
with error term

Err[f, ν * ] = r 4 Γ b ν * (f ) + r 3 Γ b f. (7.3.40) Note that r -1 S f e Φ = r -1 S e θ (κ)e Φ -r -1 S κζe Φ = r -1 S e θ (κ)e Φ + 2r -2 Υ S ζe Φ -r -1 S κζe Φ .
Thus in view of our auxiliary assumption (7.3.29) for e θ (κ), estimate (7.3.30) of Step 1, and the dominance condition for r, we deduce

r -1 S f e Φ r -1 u -2-2δ dec + r -2 u -1-δ dec 0 u -3-3δ dec . (7.3.41)
Also, we have in view of the definition of f and (7.3.37)

f = r -1 d / ≤1 Γ g , ν * (f ) = r -2 d / ≤2 Γ b .
Together with (7.3.40), we infer

Err[f, ν * ] = r 4 Γ b r -2 d / ≤2 Γ b + r 2 Γ b • d / ≤1 Γ g .
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We deduce, together with (7.3.38), (7.3.39) and (7.3.41)

ν * S f e Φ r -1 S βe Φ + S e θ (ρ)e Φ + d / ≤4 Γ b 2 L 2 (S) + 0 u -3-2δ dec
where we have also used the control of Γ g and Sobolev.

Integrating in u, and making use of Proposition 7.3.6 on the flux estimates for Γ b , as well as the estimate (7.3.32) for the = 1 mode of β and the estimate (7.3.34) for the = 1 mode of e θ (ρ), we infer

u * u ν * S f e Φ du 0 u -2-δ dec .
We deduce

S(u) f e Φ S * f e Φ + u * u ν * S f e Φ du S * f e Φ + 0 u -2-δ dec .
Together with the definition of f and the GCM condition for the = 1 mode of e θ (κ) on S * , this yields

S(u) e θ (κ)e Φ S(u) κζe Φ + S * κζe Φ + 0 u -2-δ dec r -1 S(u) ζe Φ + r -1 S * ζe Φ + r 3 |Γ g • Γ g | + 0 u -2-δ dec .
Together with the estimate (7.3.30) for the = 1 mode of ζ, the control of Γ g , and the dominance condition of r on Σ * , we obtain

S e θ (κ)e Φ r -1 u -1-δ dec + 0 u -2-δ dec 0 u -2-δ dec
which improves the estimate for the = 1 mode of e θ (κ) in (7.3.29) and establishes the desired estimate for the = 1 mode of e θ (κ).

Step 5. We establish the desired estimate for the = 1 mode of e θ (ρ). In view of (7. 

Φ 0 r -1 u -2-δ dec + 2 r -1 u -3 2 -δ dec 0 r -1 u -1-δ dec
which is the desired estimate for the = 1 mode of e θ (ρ).

Step 6. To estimate the = 1 mode of µ we differentiate the relation µ = -div ζρ + Γ g • Γ b by e θ and obtain

e θ (µ) = d / 1 d / 1 ζ -e θ (ρ) + r -1 d /(Γ g • Γ b ) = ( d / 2 d / 2 + 2K)ζ -e θ (ρ) + r -1 d /(Γ g • Γ b ) = d / 2 d / 2 ζ + 2 r 2 ζ -e θ (ρ) + r -1 d /(Γ g • Γ b ) + l.o.t. Hence, S e θ (µ)e Φ = 2r -2 S ζe Φ - S e θ (ρ)e Φ + r 2 d /(Γ g • Γ b ). (7.3.43) 
Using the estimate (7.3.30) for the = 1 mode of ζ and the estimate of Step 5 for the = 1 mode of e θ (ρ), we deduce, using also the dominant condition for r on Σ * , S e θ (µ)e Φ r -2 u -1-δ dec + 0 r -1 u -1-δ dec 0 r -1 u -1-δ dec which is the desired estimate for the = 1 mode of e θ (µ).

Step 7. It remains to estimate the = 1 mode of β. We start with the e 3 β equation

e 3 β + κβ = -d / 1 ρ + 2ωβ + 3ηρ -ϑβ + ξα.
Also, taking into account the e 4 equation for β and recalling that a

* = -1 + 2m r + rΓ b , ν * (β) = e 3 (β) + a * e 4 β = -κβ -d / 1 ρ + 2ωβ + 3ηρ -ϑβ + ξα + a * (-2κβ + d / 2 α + ζα) = -d / 1 ρ - 6m r 3 η + 6 r 1 - m r β -1 + 2m r d / 2 α + r -1 Γ b • d / ≤1 Γ g .
Projecting on the = 1 mode, and using the GCM condition for the = 1 mode of η,

S ν * (β)e Φ = S e θ (ρ)e Φ + 6 r 1 - m r S βe Φ + S Γ b • d / ≤1 Γ g . (7.3.44)
On the other hand, making use of Lemma 7.3.3, the auxiliary assumption (7.3.29) for the = 1 mode of β and r ≥ -1 0 u 1+δ dec ,

ν * S βe Φ = S (ν * β)e Φ + 3 2 κ -2κ -Ω κ S βe Φ + r 4 Γ b ν * (β) + r 3 Γ b β = S (ν * β)e Φ - 6 r S βe Φ + r 2 Γ b • d ≤1 Γ g
where we have used the fact that ν * β = r -2 Γ g . Together with (7.3.44), we deduce

ν * S βe Φ S e θ (ρ)e Φ + 1 r S βe Φ + r 2 Γ b • d ≤1 Γ g .
Using (7.3.29) and (7.3.42), we infer

ν * S βe Φ 1 r S e θ (κ)e Φ + r -2 u -1-δ dec + r 2 |Γ b • d ≤1 Γ g | + S | d / ≤1 (Γ g • Γ b )|.
Using the control of the = 1 mode for e θ (κ) derived in Step 4, our control for Γ g and Sobolev, as well as the dominance condition in r on Σ * , we infer

ν * S βe Φ 0 r -1 u -2-δ dec + r -1 u -1 2 -δ dec d / ≤2 Γ b L 2 (S) . (7.3.45) 
Integrating (7.3.45) in u, and making use of Proposition 7.3.6 on the flux estimates for Γ b , we infer

u * u ν * S βe Φ 0 r -1 u -1-δ dec + r -1 u * u u -1-2δ dec 1 2 Σ * (u,u * ) |Γ b | 2 1 2 0 r -1 u -1-δ dec .
In view of the GCM condition for the = 1 mode of β on S * , we infer on Σ * S βe Φ 0 r -1 u -1-δ dec which is the desired estimate for k = 0. Also, coming back to (7.3.45), and using our control for Γ b , we have

ν * S βe Φ 0 r -1 u -1-δ dec
which is our desired estimate for k = 1.
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It remains to consider the case 2 ≤ k ≤ k small + 20. In view of Corollary 7.3.4, we easily derive the following estimate

ν k * S βe Φ ν ≤k-2 * S ν 2 * βe Φ + ν * S βe Φ + S βe Φ + d ≤k-1 (r 4 Γ b ν * (β) + r 3 Γ b β) .
Since ν * β = r -2 Γ g , and using our product estimates, as well as the above improved estimates for the = 1 mode of β for k = 0 and k = 1, we infer, for 2 ≤ k ≤ k small + 20,

ν k * S βe Φ ν ≤k-2 * S ν 2 * βe Φ + 0 r -1 u -1-δ dec . (7.3.46)
In view of (7.3.46), we need to estimate ν 2 * β. Recall from above that

ν * (β) = -d / 1 ρ - 6m r 3 η + 6 r 1 - m r β -1 + 2m r d / 2 α + r -1 Γ b • d / ≤1 Γ g .
Differentiating again, and relying on the Commutation formula of Lemma 7.3.1, we infer

ν 2 * (β) = -d / 1 (ν * ρ) - 6m r 3 ν * η + 6 r 1 - m r ν * β -1 + 2m r d / 2 (ν * α) +r -1 d ≤1 (Γ b • d / ≤1 Γ g ).
Also, using the Bianchi identity for e 3 (ρ) and e 4 (ρ), as well as ν * = e 3 + a * e 4 , we have

ν * ρ = d / 1 β + r -2 d ≤1 Γ g
and hence

ν 2 * (β) = -d / 1 d / 1 β - 6m r 3 ν * η + 6 r 1 - m r ν * β -1 + 2m r d / 2 (ν * α) +r -3 d ≤2 Γ g + r -1 d ≤1 (Γ b • d / ≤1 Γ g ).
This yields,

S ν 2 * (β)e Φ = - S d / 1 d / 1 βe Φ - 6m r 3 S ν * ηe Φ + 6 r 1 - m r S ν * βe Φ +d ≤2 Γ g + r 2 d ≤1 (Γ b • d / ≤1 Γ g ). Since d / 1 d / 1 = d / 2 d / 2 + 2K, we infer S ν 2 * (β)e Φ = - 2 r 2 S βe Φ - 6m r 3 S ν * ηe Φ + 6 r 1 - m r S ν * βe Φ +d ≤2 Γ g + r 2 d ≤1 (Γ b • d / ≤1 Γ g ).
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Also, applying Lemma 7.3.3 to the last two integrals of the RHS, and using again that

ν * β = r -2 Γ g , we obtain S ν 2 * (β)e Φ = - 2 r 2 S βe Φ - 6m r 3 ν * S ηe Φ + 6 r 1 - m r ν * S βe Φ +d ≤2 Γ g + r 2 d ≤1 (Γ b • d / ≤1 Γ g ).
Together with (7.3.46), the control of Γ b and Γ g , and the dominance of r on Σ * , and arguing again by iteration for the β term, we deduce

ν k * S βe Φ 1 r 2 ν k-2 * S βe Φ + 1 r 3 ν k-1 * S ηe Φ + 0 r -1 u -1-δ dec .
Together with the GCM condition for the = 1 mode for η and the estimate (7.3.21), we infer for 2 ≤ k ≤ k small + 20

ν k * S βe Φ 0 r -1 u -1-δ dec
as desired. This completes the proof of Proposition 7.3.10.

Decay of Ricci and curvature components on Σ *

Recall that

• we have already derived improved pointwise estimates for α and α, respectively in Theorem M2 and Theorem M3,

• we have already derived improved pointwise estimates for β and Γ b on Σ * , see (7.3.16) in Proposition 7.3.6,

• κ = 0 on Σ * in view of the GCM condition for κ.

In the following proposition, we derive improved pointwise estimates on Σ * for the remaining quantities, i.e. κ, ρ, ζ, μ, ϑ and β.

Proposition 7.3.12. The following estimates hold true along Σ * for all k ≤ k small + 18

κ, r μ * ∞,k 0 r -2 u -1-δ dec , ϑ, ζ, r ρ * ∞,k 0 r -2 u -1 2 -δ dec , β * ∞,k 0 r -3 (2r + u) -1 2 -δ dec .
(7.3.47)
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Also, for all k ≤ k small + 17

ν * ϑ, ζ, r ρ * ∞,k 0 r -2 u -1-δ dec , ν * β * ∞,k 0 r -4 u -1 2 -δ dec . (7.3.48)
Proof. We proceed in several steps.

Step 1. In this step we control κ. First, note from Proposition 2.2.18 that we have

e 3 (κ) = r -1 d / ≤1 Γ b + r -1 Γ g + Γ b • Γ b , e 4 (κ) = r -1 d / ≤1 Γ g ,
and hence

ν * (κ) = r -1 d / ≤1 Γ b + r -1 d / ≤1 Γ g + Γ b • Γ b .
Together with the improved control of Γ b in (7.3.16), the control of Γ g , and the dominance in r condition, we infer, for all k ≤ k small + 17,

ν * κ * ∞,k 0 r -2 u -1-δ dec + r -3 0 r -2 u -1-δ dec .
It then remains to control d / k κ. Since we have d / 2 d / 1 κ = 0 in view of our GCM condition, we infer, using a Poincaré inequality

r -1 d / k κ L 2 (S) r -2 S e θ (κ)e Φ 0 r -2 u -1-δ dec
where we have used Proposition 7.3.10 to estimate the = 1 mode of κ. Together with the above estimate for ν * κ, we infer, for all k ≤ k small + 18, the desired estimate

κ * ∞,k 0 r -2 u -1-δ dec .
Step 2. Next, we estimate ρ. First, note from Proposition 2.2.18 that we have

e 3 (ρ) = r -1 d / ≤1 β + r -2 Γ g + Γ b • Γ g , e 4 (ρ) = r -2 d / ≤1 Γ g ,
and hence

ν * (ρ) = r -1 d / ≤1 β + r -2 d / ≤1 Γ g + Γ b • Γ g .
Together with the improved control of β in (7.3.16), the control of Γ g , and the dominance in r condition, we infer, for all k ≤ k small + 17,

ν * ρ * ∞,k 0 r -3 u -1-δ dec + r -4 0 r -3 u -1-δ dec .
It then remains to control d / k ρ. In view of Proposition 7.1.10, we have, relative to the background frame of (ext) M,

r 4 d / 2 d / 1 ρ + 3 4 κρϑ + 3 4 κρϑ = q + r 2 d / ≤2 (Γ b • Γ g ) + l.o.t.
Using the improved control for q in Ref 2, the improved control for ϑ in (7.3.16), and the product Lemma 7.1.6, we have, for all k ≤ k small + 17,

q * ∞,k + ϑ * ∞,k + r 2 d / ≤2 (Γ b • Γ g ) * ∞,k 0 r -1 u -1 2 -δ dec .
Also, using our condition on

r along Σ * ϑ * ∞,k r -2 0 r -1 u -1-δ dec .
We deduce, for all k ≤ k small + 17,

d / 2 d / 1 ρ * ∞,k 0 r -5 u -1 2 -δ dec .
We infer, using a Poincaré inequality, for all k ≤ k small + 19,

r -1 d / k ρ L 2 (S) r -2 S e θ (ρ)e Φ + 0 r -3 u -1 2 -δ dec 0 r -3 u -1 2 -δ dec
where we have used Proposition 7.3.10 to estimate the = 1 mode of ρ. Together with the above estimate for ν * κ, we infer, for all k ≤ k small + 18, the desired estimate

ρ * ∞,k 0 r -3 u -1 2 -δ dec .
Step 3. Next, we control d / k μ and d / k ζ. Since we have d / 2 d / 1 µ = 0 in view of our GCM condition, we infer, using a Poincaré inequality

r -1 d / k μ L 2 (S) r -2 S e θ (µ)e Φ 0 r -3 u -1-δ dec
where we have used Proposition 7.3.10 to estimate the = 1 mode of µ.

Also, from the definition of µ =d / 1 ζρ + 1 4 ϑϑ, we have,

d / 1 ζ = -μ -ρ + Γ g • Γ b
and hence, using also the product Lemma 7.1.6, we infer

r -1 d / k ζ L 2 (S) d / k μ L 2 (S) + d / k ρ L 2 (S) + 0 r -2 u -1-δ dec .
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Together with the above improved estimates for μ, and the improved estimates for ρ of

Step 2, we deduce

r -1 d / k ζ L 2 (S) 0 r -2 u -1 2 -δ dec , r -1 d / k μ L 2 (S) 0 r -3 u -1-δ dec .
Step 4. We conclude in this step the control of ζ and μ. From the null structure equations, we have

e 3 (ζ) = r -1 d / ≤1 Γ b + r -1 Γ g + Γ b • Γ b , e 4 (ζ) = r -1 d / ≤1 Γ g ,
and hence

ν * (ζ) = r -1 d / ≤1 Γ b + r -1 d / ≤1 Γ g + Γ b • Γ b .
Together with the improved control of Γ b in (7.3.16), the control of Γ g , and the dominance in r condition, we infer, for all k ≤ k small + 17,

d / ≤1 ν * ζ * ∞,k 0 r -2 u -1-δ dec + r -3 0 r -2 u -1-δ dec . Using μ = -d / 1 ζ -ρ + Γ g • Γ b ,
we also have for all k ≤ k small + 17, in view of the above improved estimate for ν * ζ, the commutation formula of Lemma 7.3.1, and the improved estimate of ρ of Step 2,

ν * ρ * ∞,k 0 r -3 u -1-δ dec .
Together with the improved estimate for d / k ζ and d / k ρ of Step 3, we infer, for all k ≤ k small + 18, the desired estimates

ζ * ∞,k 0 r -2 u -1 2 -δ dec , μ * ∞,k 0 r -3 u -1-δ dec .
Step 5. Next, we estimate ϑ. From the null structure equations, we have

e 3 (ϑ) = r -1 d / ≤1 Γ b + r -1 Γ g + Γ b • Γ b , e 4 (ϑ) = r -1 d / ≤1 Γ g ,
and hence

ν * (ϑ) = r -1 d / ≤1 Γ b + r -1 d / ≤1 Γ g + Γ b • Γ b .
Together with the improved control of Γ b in (7.3.16), the control of Γ g , and the dominance in r condition, we infer, for all k ≤ k small + 17,

ν * ϑ * ∞,k 0 r -2 u -1-δ dec + r -3 0 r -2 u -1-δ dec .
It remains to control d / k ϑ. We use Codazzi and the GCM equation for κ, which yields

d / 2 ϑ = -2β + (e θ (κ) + ζκ) + Γ g • Γ g , = -2β + 2 r ζ + Γ g • Γ g .
Making use of the bootstrap assumption for β and the estimate of Step 3 for ζ,

r -1 d / k d / 2 ϑ L 2 (S) β ∞,k + r -1 ζ * ∞,k + 0 r -3 u -1-δ dec r -7
2 -δ dec + 0 r -3 u -1/2-δ dec from which we derive, using also the condition r ≥ -1 0 u 1+δ dec and a Poincaré inequality, r -1 d / k ϑ L 2 (S) 0 r -2 u -1/2-δ dec . Together with the above estimate for ν * ϑ, we infer, for all k ≤ k small + 18,

ϑ * ∞,k 0 r -2 u -1/2-δ dec .
Step 6. Finally, we estimate β. From Bianchi, we have

e 3 β = r -1 d /ρ + r -1 β + r -3 Γ b + r -1 Γ b • Γ g , e 4 (β) = r -1 d /α + r -1 β + r -1 Γ g • Γ g
and hence

ν * (β) = r -1 d /ρ + r -1 d /α + r -1 β + r -3 Γ b + r -1 Γ b • Γ g .
Together with the improved control of Γ b in (7.3.16), the bootstrap assumptions for α and β, the improved estimate for ρ of Step 2, and the dominance in r condition, we infer, for all k ≤ k small + 17,

ν * β * ∞,k 0 r -4 u -1 2 -δ dec + r -9 2 0 r -4 u -1 2 -δ dec .
It remains to control d / k β. We have from Bianchi

d / 2 β = e 3 α + r -1 α + r -3 ϑ + Γ b • (α, β) + r -1 Γ g • Γ g .
Hence, using in particular the improved estimate for ϑ of Step 6, and the improved estimate for α and e 3 α of Ref 2, we infer

d / k d / 2 β L 2 (S) 0 r -4 (2r + u) -1 2 -δ dec . This yields, using a Poincaré inequality r -1 d / k β L 2 (S) r -3 S βe Φ + 0 r -3 (2r + u) -1 2 -δ dec 0 r -3 (2r + u) -1 2 -δ dec
where we have used Proposition 7.3.10 to estimate the = 1 mode of β. Together with the above estimate for ν * β, we infer, for all k ≤ k small + 18, the desired estimate

β * ∞,k 0 r -4 u -1 2 -δ dec .
This concludes the proof of Proposition 7.3.12. 

Transport lemmas

The following lemma will be used repeatedly in what follows.

Lemma 7.4.2. If f verifies the transport equation

e 4 (f ) + p 2 κf = F,
we have for fixed u and any r 0 ≤ r ≤ r * ,

r p f ∞ (u, r) r p 0 f ∞ (u, r H ) + r r 0 λ p F ∞ (u, λ)dλ, r p f ∞ (u, r) r p * f ∞ (u, r * ) + r * r λ p F ∞ (u, λ)dλ, (7.4.2)
where r is the area radius at fixed u.

Proof. According to Corollary 2.2.12 we have e 4 (r p f ) = r p F The desired estimates follow easily by integration with respect to the affine parameter s, recall that e 4 (s) = 1.

Proposition 7.4.3. The following inequalities hold true for all k ≤ k large -5,

r 0 ≤ r ≤ r * r p f ∞,k (u, r) r p * f ∞,k (u, r * ) + r * r λ p F ∞,k (u, λ)dλ, r p f ∞,k (u, r) r p 0 f ∞,k (u, r 0 ) + r r 0 λ p F ∞,k (u, λ)dλ. (7.4.3)
Proof. Commuting the equation e 4 (r p f ) = r p F with d /, applying the commutation Lemma 7.4.1and our bootstrap assumptions on Γ g we derive,

e 4 (r p | d /f |) r p | d /F | + r p | d /F | + r -2 r p | d /f | + re 4 (r p f ) r p (| d /F | + |F |) + r -2 r p (| d /f | + |f |).
Similarly, commuting with T,

e 4 T(r p f ) = T(r p F ) -[T, e 4 ](r p f ) = r p F -pr p-1 T(r)F -r -1 Γ b d r p f.
Hence,

e 4 r p Tf = r p T(F ) -pr p-1 T(r)F -r -1 Γ b d r p f -pe 4 r p-1 T(r)f i.e., e 4 r p |Tf | r p |TF | + |F | + O( r -2 ) r p |F | + | d /f | + |f | .
Similarly, commuting the equation with re 4 we derive,

e 4 r p |rf | r p |re 4 F | + |F | + O( r -2 ) r p |F | + | d /f | + |f | .
Integrating the inequalities,

e 4 (r p | d /f |) r p (| d /F | + |F |) + r -2 r p (| d /f | + |f |) e 4 r p |Tf | r p |TF | + |F | + r -2 r p | d /f | + |f | e 4 r p |rf | r p |re 4 F | + |F | + r -2 r p |F | + | d /f | + |f |
and applying Gronwall we derive the desired estimates in (7.4.3) for k = 1.

Repeating the procedure for d k , any combination of derivatives of the form Proof. This is an immediate consequence of Proposition (2.2.9). Indeed according to it and e 4 Φ = 1 2 (κϑ), In what follows we prove the stronger estimates in terms of powers of r for the quantities κ, μ, ϑ, ζ, κ, β, ρ. More precisely we establish the following.

d k = T k 1 d / k 2 with k 1 + k 2 = k,
Proposition 7.4.5. The following estimates hold true in (ext) M for all k ≤ k small + 20

κ ∞,k 0 r -2 u -1-δ dec , μ ∞,k-2 0 r -3 u -1-δ dec . (7.4.5)
Also, for all k ≤ k small + 18 Step 1. We prove the following estimates for κ in (ext) M.

ϑ, ζ, κ, r ρ ∞,k 0 r -2 u -1/2-δ dec , β ∞,k 0 r -3 (2r + u) -1/2-δ dec , e 3 β ∞,k-1 0 r -4 u -1/2-δ dec , e θ K ∞,k-1 0 r -4 u -1/2-δ dec .
κ ∞,k 0 r -5/2 u -1-δ dec , k ≤ k small + 20. (7.4.7)
We make use of the equation

e 4 (κ) + κ κ = F := - 1 2 κ2 - 1 2 κ2 - 1 2 ϑ 2 -ϑ 2 .
In view of our assumptions Ref 1-2 and Lemma 7.1.6

F ∞,k (u, λ) 0 λ -7/2 u -1-δ dec . Applying Proposition 7.4.3 we deduce, r 2 κ ∞,k (u, r) r 2 * κ ∞,k (u, r * ) + 0 u -1-δ dec r * r λ 2 λ -7/2 dλ r 2 * κ ∞ (u, r * ) + 0 r -1/2 u -1-δ dec .
In view of the control on the last slice we infer that, everywhere in

(ext) M, κ ∞,k (u, r) 0 r -5/2 u -1-δ dec .
Step 2. We prove the estimate, μ ∞,k 0 r -3 u -1-δ dec , k ≤ k small + 18. (7.4.8)

Recall that we have

e 4 (μ) + 3 2 κμ = - 3 2 µκ + F, F : = - 3 2 μκ + 1 2 μκ + Err[e 4 μ] -Err[e 4 μ],
Err[e 4 μ] = -

1 8 κϑ 2 -ϑ d / 2 ζ -ϑζ 2 + 2e θ (κ) -2β + 3 2 κζ ζ.
In view of Lemma 7.1.6 we check, F ∞,k (u, λ) 0 λ -9/2 u -1-δ dec . Applying Proposition 7.4.3 and the estimates on the last slice for μ we deduce

r 3 d k μ ∞,k (u, λ) r 3 * d k μ ∞,k (u, r * ) + 0 u -1-δ dec r * r λ 3 λ -9/2 r 3 * d k μ ∞,k (u, r * ) + 0 u -1-δ dec r -1/2
0 u -1-δ dec from which the desired estimate (7.4.8) follows.

Estimates for the = 1 modes in (ext) M

We extend the validity of Lemma 7.3.10 to the entire region (ext) M. Lemma 7.4.6. The following estimates hold true on (ext) M or all k ≤ k small + 19,

S βe Φ ∞,k (u, r) 0 r -1 u -1-δ dec , S ζe Φ ∞,k (u, r) 0 ru -1-δ dec , S e θ (ρ)e Φ ∞,k (u, r) 0 r -1 u -1-δ dec , S e θ (κ)e Φ ∞,k (u, r) 0 u -1-δ dec , S βe Φ ∞,k (u, r) 0 u -1-δ dec .
(7.4.9)

Proof. We first note that the estimate for the = 1 mode of μ is an immediate consequence of the estimate (7.4.8). To prove the remaining estimates we proceed in steps as follows.

Step 1. Observe that the estimates of Lemma 7.3.10 remain valid when we replaces the norms * ∞,k by ∞,k . To show this it suffices to prove estimates for re 4 of all = 1 modes. This can easily be achieved with the help of Lemma 7.4.4 and our e 4 transport equations for ζ, ρ, μ, κ, β.

Step 2. We establish the estimate, Recall that (α, β) r -3 (2r + u) -1/2-δ dec .

S βe Φ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 20. ( 7 
We deduce,

e 4 r S βe Φ r 0 r -2 u -1/2-δ dec r -3 (2r + u) -1/2-δ dec S |e Φ | 0 r -1 u -1/2-δ dec (2r + u) -1/2-δ dec 0 r -1-δ u -1-δ dec
i.e., in view of the estimate on Σ * , everywhere on (ext) M,

S βe Φ r -1 u -1-δ dec . (7.4.12) 
Commuting with T, d / and re 4 we also easily deduce,

d k 2 (re 4 ) k 1 S βe Φ ∞ r -1 u -1-δ dec , ∀ k 1 + k 2 ≤ k small + 20
from which (7.4.10) follows.

Step 3. We prove the estimate,

S ζe Φ ∞,k 0 r 1/2 u -1-δ dec , k ≤ k small + 19 (7.4.13)
which is better than the desired estimate in Lemma 7.4.6. This follows, as for the corresponding estimate on Σ * , by projecting the Codazzi equation for ϑ on the = 1 mode

S ζe Φ = r 2Υ 2 S βe Φ - S e θ (κ)e Φ - S ϑζe Φ - S κ - 2Υ r ζe Φ .
Note that in view of the estimates for κ in (7.4.7) already established 19 we have,

S e θ (κ)e Φ ∞,k 0 r -1/2 u -1-δ dec , k ≤ k small + 19.
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S βe Φ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 19.
Thus, since Υ is bounded away from zero in (ext) M, we easily deduce

S ζe Φ ∞,k 0 r 1/2 u -1-δ dec , k ≤ k small + 19.
Step 4. We prove the estimate, Together with the above estimate for the = 1 mode of ζ, the estimate (7.4.8) for μ and the bootstrap assumptions, we infer that

S e θ (ρ)e Φ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 19. ( 7 
S e θ (ρ)e Φ ∞,k 0 r -1 u -1-δ dec .
Step 5. We prove the estimate,

S e θ (κ)e Φ ∞,k 0 u -1-δ dec , k ≤ k small + 19. (7.4.15)
As in the corresponding estimate on the last slice we make use of the remarkable identity for the = 1 mode of e θ (K), i.e. The estimate (7.4.15) follows easily from with the above estimate for the = 1 mode of e θ (ρ), the estimate for κ in (7.4.7) and the bootstrap assumptions.

Step 6. We prove the estimate,

S βe Φ ∞,k 0 u -1-δ dec , k ≤ k small + 19. (7.4.16)
Projecting the Codazzi for ϑ on the = 1 mode, we have

-2 S βe Φ + S e θ (κ)e Φ - S κζe Φ + S ϑζe Φ = 0 and hence S βe Φ = 1 2 S e θ (κ)e Φ + Υ r S ζe Φ - 1 2 S κ + 2Υ r ζe Φ + 1 2 S ϑζe Φ .
The desired estimate follows easily in view of the above estimates for the = 1 mode of e θ (κ), the = 1 mode of ζ and the bootstrap assumptions.

Completion of the proof of Proposition 7.4.5

We prove the second part of Proposition 7.4.5, i.e. we prove for all k ≤ k small + 18

ϑ, ζ, κ, r ρ ∞,k 0 r -2 u -1/2-δ dec , β ∞,k 0 r -3 (2r + u) -1/2-δ dec , e 3 β ∞,k-1 0 r -4 u -1/2-δ dec , e θ K ∞,k-1 0 r -4 u -1/2-δ dec .
(7.4.17)

We also prove the stronger estimate for β β ∞,k 0 log(1 + u)r -3 (2r + u) -1/2-δextra . (7.4.18)

Proof. We proceed in steps as follows.

Step 1. We derive the estimate,

ϑ ∞,k 0 r -2 u -1/2-δ dec , ∀ k ≤ k small + 19, (7.4.19) 
with the help of the equation e 4 ϑ + κϑ = F := -2ακϑ and the corresponding estimate on the last slice.

Note that,

α ∞,k 0 r -3-δ (2r + u) -1/2-δ dec
where δ > 0 is a small constant, δ < δ extraδ dec . Thus, using also the product estimates of Lemma 7.1.6, we easily check that,

F ∞,k 0 r -3-δ u -1/2-δ dec + 0 r -7/2 u -1-δ dec , k ≤ k small + 20.
Making use of Proposition 7.4.3 we deduce, for all k ≤ k small + 19,

r 2 d k ϑ ∞,k (u, r) r 2 * d k ϑ ∞,k (u, r * ) + 0 u -1/2-δ dec r * r λ -1-δ dλ.
Thus, in view of the results on the last slice Σ * , we deduce,

d k ϑ ∞ (u, r) r -2 u -1/2-δ dec .
Step 2. We derive the estimate,

β ∞,k 0 r -3 (2r + u) -1/2-δ dec , ∀ k ≤ k small + 19. (7.4.20)
We proceed exactly as in the estimates for β on the last slice Σ * by making use of the Bianchi identity

e 3 α + 1 2 κ -4ω α = -d / 2 β -3 2 ϑρ + 5ζβ, from which we deduce, d / 2 β ∞,k-1 e 3 α ∞,k-1 + r -1 α ∞,k-1 + r -3 ϑ ∞,k-1 + 0 r -5 u -1-δ dec .
Thus, in view of the above estimate for ϑ and Ref 2 for α,

d / 2 β ∞,k-1 0 r -4 (2r + u) -1/2-δ dec + 0 r -5 u -1/2-δ dec .
On the other hand we have, according to (7.4.10), We can prove a stronger estimate for β. Indeed we have, in view of Ref 2.

S βe Φ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 20.
|α| log(1 + u)r -3 (2r + u) -1/2-δextra , |e 3 α| r -4 (2r + u) -1/2-δextra .
Hence, using the equation

e 3 α + 1 2 κ -4ω α = -d / 2 β -3 2 ϑρ + 5ζβ, d / 2 β ∞,k 0 log(1 + u)r -4 (2r + u) -1/2-δextra + 0 r -5 u -1/2-δ dec .
According to Lemma 7.1.7

β h k+1 (S) r d / 2 β h k (S) + r -2 S e Φ β
and thus, in view of the estimate (7.4.10) for the = 1 mode of β,

β h k+1 (S) 0 log(1 + u)r -2 (2r + u) -1/2-δextra + 0 r -3 u -1-δ dec 0 log(1 + u)r -2 (2r + u) -1/2-δextra .
The estimates for the T and e 4 derivatives are derived in the same manner. and hence,

β ∞,k 0 log(1 + u)r -3 (2r + u) -1/2-δextra , ∀ k ≤ k small + 19. (7.4.21)
This improvement is needed in the next step.

Step 3. We derive the estimate

ζ ∞,k 0 r -2 u -1/2-δ dec , ∀ k ≤ k small + 19. (7.4.22)
For this we make use of the transport equation for ζ,

e 4 ζ + κζ = F := -β + Γ g • Γ g
and the improved estimate for β in the previous step. Thus, making use of the product Lemma 7.1.6,

F ∞,k β ∞,k + 0 r -7/2 u -1-δ dec 0 log(1 + u)r -3 (2r + u) -1/2-δextra + 0 r -7/2 u -1-δ dec 0 r -3-δ u -1/2-δ dec + 0 r -7/2 u -1-δ dec .
Making use of Proposition 7.4.3 we deduce

r 2 d k ζ ∞,k (u, r) r 2 * d k ζ ∞,k (u, r * ) + 0 u -1/2-δ dec r * r λ -1-δ dλ.
Thus, in view of the estimates on the last slice,

r 2 d k ζ ∞ (u, r) 0 u -1/2-δ dec , k ≤ k small + 19
as desired.

Step 4. We derive the estimate

ρ ∞,k 0 r -3 u -1/2-δ dec , ∀ k ≤ k small + 18. (7.4.23)
We make use of the definition of µ from which we infer that,

μ = -d / 1 ζ -ρ + Γ g • Γ b .
Hence, in view of the product Lemma and the estimates already derived, for all k ≤

k small + 18, ρ ∞,k r -1 ζ ∞,k+1 + μ ∞,k + 0 r -3 u -1-δ dec 0 r -3 u -1/2-δ dec as desired.
Step 5. We derive the estimate κ ∞,k 0 r -2 u -1/2-δ dec , ∀ k ≤ k small + 18. (7.4.24)

We make use of the equation

e 4 κ + 1 2 κκ = F := -2 d / 1 ζ - 1 2 κκ + 2ρ + Γ g • Γ b .
In view of the previously derived estimates,

F ∞,k 0 r -3 u -1/2-δ dec , k ≤ k small + 18.
Making use of Proposition 7.4.3 we deduce, for all k ≤ k small + 18,

r d k κ ∞,k (u, r) r * d k κ ∞,k (u, r * ) + 0 u -1/2-δ dec r * r λ -2 dλ r * d k κ ∞,k (u, r * ) + 0 r -1 u -1/2-δ dec .
Thus, in view of the estimates on the last slice,

r d k κ ∞ (u, r) 0 (r * ) -1 u -1/2-δ dec + 0 r -1 u -1/2-
δ dec from which the desired estimate easily follows.
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Step 6. We derive the estimate 

e 3 β ∞,k 0 r -4 u -1/2-δ dec , ∀ k ≤ k small + 17. ( 7 
e 3 β ∞,k r -1 β ∞,k + d / 1 ρ ∞,k + r -3 ζ ∞,k + 0 r -4 u -1-δ dec 0 r -4 u -1/2-δ dec .
Step 7. As a corollary of the above estimates (see also Ref 4) we also derive, in (ext) M,

K -K ∞,k-1 0 r -3 u -1/2-δ dec , k ≤ k small + 18, K - 1 r 2 ∞,k-1 0 r -3 u -1/2-δ dec , k ≤ k small + 18. (7.4.26)
In view of the definition of K we have,

e θ (K) = -e θ ρ - 1 4 κκ - 1 4 κκ + 1 4 ϑϑ .
Thus, in view of the above estimates, for all k ≤ k small + 17, e θ K ∞,k 0 r -4 u -1/2-δ dec from which the desired estimate easily follows.

Control in (ext) M, Part II

We derive the crucial decay estimates which imply, in particular, decay of order u -1-δ dec for all quantities in Γ and Ř (except ξ, ω, Ω which will be treated separately) in the interior. More precisely we prove the following, Proposition 7.5.1. The following estimates hold true in (ext) M, for all k ≤ k small + 8.

ϑ, ζ, η, κ, ϑ, rβ, r ρ, rβ, α ∞,k 0 r -1 u -1-δ dec . (7.5.1)
To prove the proposition we make use of the fact that we already have good decay estimates in terms of powers of u for κ, μ. We also derive below decay estimates for various renormalized quantities. We start with the following simple estimate for η in terms of ζ.

η ∞,k ζ ∞,k + 0 r -1 u -1-δ dec , k ≤ k small + 17. (7.5.2)
This can be derived by propagation from the last slice with the help of the equation,

e 4 (η -ζ) + 1 2 κ(η -ζ) = - 1 2 ϑ(η -ζ) = Γ g • Γ b . Note that Γ g • Γ b ∞,k 0 r -3 u -1-δ dec .
Thus making use of Proposition 7.4.3 we deduce

r η -ζ ∞,k (u, r) r * η -ζ ∞,k (u, r * ) + r * r λ Γ g • Γ b ∞,k (u, λ) r * η -ζ ∞,k (u, r * ) + 0 u -1-δ dec
with r * the value of r on C(u) ∩ Σ * . On the last slice we have derived the estimates, recorded in Proposition 7.3.6 and Proposition 7.4.5

η * ∞,k 0 r -1 u -1-δ dec , ζ * ∞,k 0 r -2 u -1/2-δ dec .
In view of the dominance condition on r on Σ * we deduce,

η -ζ * ∞,k (u, r) 0 r -1 u -1-δ dec
and therefore also,

r * η -ζ ∞,k (u, r * ) 0 u -1-δ dec . Therefore, r η ∞,k (u, r) r ζ ∞,k (u, r) + 0 u -1-δ dec
as desired.

Crucial lemmas

We start with the following lemma.

Lemma 7.5.2. The s 1 (M) reduced tensor 

Ξ : = r 2 e θ (κ) + 4r d / 1 d / 1 ζ -2r 2 d / 1 d / 1 β (7.5.3) verifies in (ext) M the estimate, Ξ ∞,k 0 u -1-δ dec , ∀ k ≤ k small + 13. ( 7 
κ) = r 2 (κ -κ) d / 1 κ - 1 2 r 2 κ d / 1 κ -4r 2 d / 1 d / 1 ζ -r 2 d / 1 μ + r 2 ( d / 1 (ζ 2 ) + ϑ d / 1 κ) = - 1 2 r 2 κ d / 1 κ -4r 2 d / 1 d / 1 ζ + Err 1
where,

Err 1 : = - 1 2 r 2 κ d / 1 κ -r 2 d / 1 μ + r 2 κ d / 1 κ + d / 1 (ζ 2 ) + ϑ d / 1 κ .
In view of the estimate already established for , κ, μ and the product Lemma 7.1.6 we check,

Err 1 ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 17.
To simplify notation we introduce the following. We say that a quantity ψ ∈ s k (M) is r -p Good a provided that it verifies the estimate, everywhere in (ext) M,

ψ ∞,k 0 r -p u -1-δ dec , ∀k ≤ k small + a. (7.5.6)
Using this notation we write,

e 4 (r 2 d / 1 κ) = -4r 2 d / 1 d / 1 ζ + r -2 Good 17 . (7.5.7)
Using the same notation the transport equation for ζ can be written in the form,

e 4 ζ + κζ = -β -ϑζ -κζ = -β + r -7/2 Good 20 .
Commuting with (r d / 1 )(r d / 1 ) (making us of Lemma 7.4.1) we derive

e 4 (r 2 d / 1 d / 1 ζ) + κ(r 2 d / 1 d / 1 ζ) = -r 2 d / 1 d / 1 β + r -7/2 Good 18 .
Since e 4 (r) = 1 2 rκ we deduce,

e 4 (r 3 d / 1 d / 1 ζ) = - 1 2 κr 3 d / 1 d / 1 ζ -r 3 d / 1 d / 1 β + r -5/2 Good 18 . (7.5.8) 
Similarly the transport equation for β takes the form

e 4 β + 2κβ = d / 2 α + ζα -2κβ = d / 2 α + r -9/2 Good 20
and,

e 4 (r 2 d / 1 d / 1 β) + 2κr 2 d / 1 d / 1 β = r 2 d / 1 d / 1 d / 2 α + r -9/2 Good 18 .
As before, since e 4 (r) = 1 2 rκ, we deduce,

e 4 (r 4 d / 1 d / 1 β) = -κr 4 d / 1 d / 1 β + r 4 d / 1 d / 1 d / 2 α + r -5/2 Good 18 .
(7.5.9) Combining (7.5.7)-(7.5.9) we deduce,

e 4 Ξ = e 4 r 2 -d / 1 κ + 4r d / 1 d / 1 ζ -2r 2 d / 1 d / 1 β = 4r 2 d / 1 d / 1 ζ + 4 - 1 2 κr 3 d / 1 d / 1 ζ -r 3 d / 1 d / 1 β -2 -κr 4 d / 1 d / 1 β + r 4 d / 1 d / 1 d / 2 α + r -2 Good 17 = -2 κ - 2 r r 3 d / 1 d / 1 ζ + 2r 4 κ - 2 r d / 1 d / 1 β -2r 4 d / 1 d / 1 d / 2 α + r -2 Good 17 .
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Making use of Ref 4 estimates for κ -2 r and the estimates for α in Ref 2 , i.e.,

r 4 | d / 1 d / 1 d / 2 α| 0 r -1 (2r + u) -1-δextra 0 r -1-δ u -1-δextra+δ , 0 < δ < δ extra i.e., r 4 d / 1 d / 1 d / 2 α = r -1-δ Good 13
we thus deduce,

e 4 Ξ = r -1-δ Good 13 .
We deduce,

Ξ ∞,k (u, r) Ξ ∞,k (u, r * ) + 0 u -1-δ dec r * r λ -1-δ dλ, ∀k ≤ k small + 13.
In view of the estimates on the last slice it is easy to check that

Ξ ∞,k (u, r * ) 0 u -1-δ dec , ∀k ≤ k small + 13.
Indeed, on the last slice,

d / 1 κ ∞,k 0 r -3 u -1/2-δ dec , d / 1 d / 1 ζ ∞,k 0 r -4 u -1/2-δ dec , d / 1 d / 1 β ∞,k 0 r -5 u -1/2-δ dec .
Hence, since r u on Σ * ,

Ξ ∞,k (u, r * ) 0 r -1 u -1/2-δ dec 0 u -1-δ dec .
Thus everywhere on (ext) M,

Ξ ∞,k 0 u -1-δ dec , ∀k ≤ k small + 13
as desired.

In the following lemma, we make use of the control we have already established for q, α, α, κ, μ in (ext) M to derive two nontrivial relations between angular derivatives of ζ, κ and β.

Remark 7.5.4. According to Theorem M3 we only have good estimates for α along T and on the last slice Σ * . To keep track of this fact we denote by r -p Good a (α) those r -p Good a terms which depend linearly on α and their derivatives.

Thus,

A 2 d / 2 e θ (κ) + 4r d / 1 d / 1 ζ -2r 2 d / 1 d / 1 β ∈ r -7 Good 8 .
Making use of

d / 2 d / 1 d / 1 = d / 2 d / 2 d / 2 + 2K = ( d / 2 d / 2 + 2K) d / 2 -e θ (K),
we deduce,

A 2 d / 2 (e θ κ) = -4rA 2 d / 2 d / 1 d / 1 ζ + 2r 2 A 2 d / 2 d / 1 d / 1 β + r -7 Good 8 = -4rA 2 ( d / 2 d / 2 + 2K) d / 2 ζ + 2r 2 A 2 ( d / 2 d / 2 + 2K) d / 2 β + r -7 Good 8 = -4rA 2 B d / 2 ζ + 2r 2 A 2 B d / 2 β + r -7 Good 8 .
Thus, in view of the lemma,

A 2 d / 2 (e θ κ) = -3r κ ρA d / 2 e θ (κ) + r -8 Good 12 - 9 4 r 2 κ ρ 2 d / 2 e θ (κ) + r -9 Good 9 (α) + r -7 Good 8 .
We deduce,

A 2 d / 2 e θ κ + 3r (κ ρ) A d / 2 e θ (κ) + 9 4 r 2 (κ ρ) 2 d / 2 e θ (κ) ∈ r -7 Good 8 (α).
Finally,

A 2 d / 2 e θ κ - 12m r 3 A d / 2 e θ (κ) + 36m 2 r 6 d / 2 e θ (κ) ∈ r -7 Good 8 (α)
as desired.

Lemma 7.5.7. We have the following Poincaré inequality on

(ext) M for f ∈ s 2 (M) with A = ( d / 2 d / 2 -3ρ) S f A 2 - 12m r 3 A + 36m 2 r 6 f ≥ 1 4r 2 S ( d / 2 f ) 2 + 9 r 4 S f 2 .
Proof. Recall that we have the following Poincaré inequality for d / 2

S ( d / 2 f ) 2 ≥ 4 S Kf 2 . 7.5. CONTROL IN (EXT ) M, PART II 411 Since K -r -2 r -2 , S f Af = S f ( d / 2 d / 2 -3ρ)f ≥ S (4K -3ρ)f 2 = 4 r 2 + 6m r 3 + O(r -2 ) S f 2 . Since A is positive self-adjoint, S f A 2 f = S (A 1/2 f )A(A 1/2 f ) = 4 r 2 + 6m r 3 + O(r -2 ) S |A 1/2 f | 2 = 4 r 2 + 6m r 3 + O(r -2 ) S f Af This yields S f A 2 f - 12m r 3 Af = 4 r 2 + 6m r 3 - 12m r 3 + O(r -2 ) S f Af = 4 r 2 - 6m r 3 + O(r -2 ) S f Af,
and therefore,

S f A 2 - 12m r 3 A + 36m 2 r 6 ≥ 4 r 2 - 6m r 3 + O(r -2 ) S f Af + 36m 2 r 6 S f 2 = 4 r 2 1 - 3m 2r + O(r -2 ) S f Af + 36m 2 r 6 S f 2 .
Note that for r > 2m we have,

1 - 3m 2r > 1 4 .
We deduce, for sufficiently small , everywhere in

(ext) M, S f A 2 - 12m r 3 A + 36m 2 r 6 > 1 r 2 S f Af + 36m 2 r 4 S f 2 . Now, since ρ + 2m r 3 0 r -3 S f Af = S f ( d / 2 d / 2 -3ρ)f = S | d / 2 f | 2 + 6m r 3 + O(r -3 0 ) |f | 2 .
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Hence,

S f Af + 36m 2 r 4 S f 2 > S | d / 2 f | 2 + 6m r 3 + 36m 2 r 6 |f | 2 > S | d / 2 f | 2 or, since S ( d / 2 f ) 2 ≥ 4 S 1 r 2 S |f | 2 + O( 0 r -3 ) S |f | 2 . We deduce, S f A 2 - 12m r 3 A + 36m 2 r 6 ≥ 1 4r 2 S ( d / 2 f ) 2 + 9 r 4 S f 2
as desired. This concludes the proof of the lemma.

Applying the lemma to f = d / 2 e θ κ in (7.5.16), i.e.

A 2 d / 2 (e θ κ) - 12m r 3 A d / 2 e θ (κ) + 36m 2 r 6 d / 2 e θ (κ) ∈ r -7 Good 8 (α)
or, in any region where

α 2,k 0 r -1 u -1-δ dec , k ≤ k small + 16,
we have

A 2 d / 2 (e θ κ) - 12m r 3 A d / 2 e θ (κ) + 36m 2 r 6 d / 2 e θ (κ) 2,k 0 r -6 u -1-δ dec , k ≤ k small + 8.
We deduce, by L 2 -elliptic estimates,

d / 2 e θ κ 2,k 0 r -2 u -1-δ dec , k ≤ k small + 12. (7.5.19)
Since we control the = 1 mode of e θ κ we infer that,

e θ κ 2,k 0 r -1 u -1-δ dec , k ≤ k small + 13 i.e., κ 2,k 0 u -1-δ dec , k ≤ k small + 14.
Therefore, using the Sobolev embedding,

κ ∞,k 0 r -1 u -1-δ dec k ≤ k small + 12.
This proves the following, Proposition 7.5.8. In any region of (ext) M where,

α 2,k 0 r -1 u -1-δ dec , k ≤ k small + 16,
we also have, Step 1. We prove the estimates,

κ ∞,k 0 r -1 u -1-δ dec k ≤ k small + 12. ( 7 
ζ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 15, β ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 12. (7.5.22)
According to (7.5.17)

A 2 B d / 2 ζ = 3 4 κ ρ A d / 2 e θ (κ) + r -8 Good 12 (α), A 2 B d / 2 β = - 9 8 κ ρ 2 d / 2 e θ (κ) + r -9 Good 9 (α).
In view of (7.5.19) we deduce, in L 2 norms,

A 2 B d / 2 ζ 2,k r -4 A d / 2 e θ κ 2,k + 0 r -7 u -1-δ dec , k ≤ k small + 12, A 2 B d / 2 β 2,k r -8 d / 2 e θ κ 2,k + 0 r -8 u -1-δ dec , k ≤ k small + 9.
Thus, in view of the estimates for κ derived above,

A 2 B d / 2 ζ 2,k 0 r -7 u -1-δ dec , k ≤ k small + 12, A 2 B d / 2 β 2,k 0 r -8 u -1-δ dec , k ≤ k small + 9.
Thus, by elliptic estimates,

d / 2 ζ 2,k 0 r -1 u -1-δ dec , k ≤ k small + 16, d / 2 β 2,k 0 r -2 u -1-δ dec , k ≤ k small + 13.
In view of the estimates for the = 1 modes of ζ, β we deduce,

ζ 2,k 0 u -1-δ dec , k ≤ k small + 17, β 2,k 0 r -1 u -1-δ dec , k ≤ k small + 14.
Passing to L ∞ norms we derive Step 2. We prove the estimate

ζ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 15, β ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 13. ( 7 
η ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 15.
This follows immediately from the estimate from ζ and the previously derived estimate (7.5.2). Indeed,

η ∞,k ζ ∞,k + 0 r -1 u -1-δ dec 0 r -1 u -1-δ dec .
Step 3. We derive the estimate,

ϑ ∞,k r -1 u -1-δ dec , k ≤ k small + 11. (7.5.24)
This follows easily in view of the equation (see (7.5.11))

d / 2 ϑ + 2β -κζ ∈ r -3 Good 20 from which, in view of Step 1, d / 2 ϑ 2,k 0 r -1 u -1-δ dec , k ≤ k small + 12.
The desired estimate follows by elliptic estimates and Sobolev.

Step 4. We derive the intermediate estimate for ϑ, ϑ ∞,k 0 u -1-δ dec , k ≤ k small + 12. (7.5.25)

To show this we combine the equations (see (7.5.11))

d / 2 ϑ + 2β -e θ (κ) + κζ ∈ r -3 Good 20 , d / 2 β + 3 2 ρϑ ∈ r -2 Good 15 , to deduce, d / 2 d / 2 ϑ -3ρϑ = d / 2 e θ κ + κ d / 2 ζ + r -2 Good 15 ,
and hence,

Aϑ 2,k 0 r -1 u -1-δ dec , k ≤ k small + 12.
Thus, 

ϑ 2,k 0 ru -1-δ dec , k ≤ k small + 14
ϑ ∞,k 0 u -1-δ dec , k ≤ k small + 12
as desired.

Step 5. We derive the estimate,

ρ ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 14. (7.5.26) From, d / 2 d / 1 ρ + 3 4 κ ρϑ + 3 4 κ ρϑ ∈ r -4 Good 20 ,
we deduce,

d / 2 d / 1 ρ 2,k r -4 ( θ 2,k + θ 2,k ) + 0 r -3 u -1-δ dec , k ≤ k small + 14 0 r -3 u -1-δ dec , k ≤ k small + 14.
Since we control the = 1 mode of d / 1 ρ (see Lemma 7.4.6) we infer that, ρ 2,k 0 r -1 u -1-δ dec , k ≤ k small + 16

i.e., ρ ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 14 as desired.

Step 6. We derive the estimate,

β ∞,k 0 r -2 u -1-δ dec , ∀ k ≤ k small + 9 (7.5.27)
with the help of the identity

e 3 (rq) = r 5 d / 2 d / 1 d / 1 β - 3 2 κρα - 3 2 ρ d / 2 d / 1 κ - 3 2 κρ d / 2 ζ + 3 4 (2ρ 2 -κκρ)ϑ + Err[e 3 (rq)],
Err[e 3 (rq)] = r 4 (e

3 Γ b ) • d / ≤1 β + rΓ b • q + r 2 d / 3 (Γ g • Γ b ),
of Proposition 7.1.11. In view of (7.3.18) we have,

Err[e 3 (rq)] ∞,k (u, r) 0 u -1-δ dec , k ≤ k small + 16.
We can now make use of the estimates for κ, , ζ, ϑ, ϑ already derived and the Ref 2 estimate for e 3 (q) and α to deduce, for all k ≤ k small + 10,

ρ d / 2 d / 1 κ ∞,k 0 r -6 u -1-δ dec , κρ d / 2 ζ ∞,k 0 r -6 u -1-δ dec , ρ 2 ϑ ∞,k 0 r -6 u -1-δ dec , κκϑ ∞,k 0 r -5 u -1-δ dec , κρα ∞,k 0 r -5 u -1-δ dec , e 3 (rq) ∞,k 0 u -1-δ dec .
Therefore,

d / 2 d / 1 d / 1 β ∞,k 0 r -5 u -1-δ dec , k ≤ k small + 10, i.e., d / 2 d / 1 d / 1 β 2,k 0 r -4 u -1-δ dec , k ≤ k small + 10.
Making use of the identity,

d / 1 d / 1 = d / 2 d / 2 + 2K, we deduce ( d / 2 d / 2 + K) d / 2 β 2,k 0 r -4 u -1-δ dec . Since d / 2 d / 2 + K is coercive we deduce, d / 2 β 2,k 0 r -2 u -1-δ dec , ∀ k ≤ k small + 10.
Since we control the = 1 mode of β (see Lemma 7.4.6 ) according to Lemma 7.3.10,

β 2,k 0 r -1 u -1-δ dec , ∀ k ≤ k small + 11.
Hence,

β ∞,k 0 r -2 u -1-δ dec , ∀ k ≤ k small + 9.
(7.5.28)

Step 7. Using the above estimate for β we can improve the estimate for ϑ derived in Step 4. We show, in the region where the estimate (7.5.21) for α holds, we infer that, for all k ≤ k small + 11,

ϑ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 9. ( 7 
d / 2 ϑ 2,k β 2,k + r -1 κ 2,k+1 + r -1 ζ 2,k + 0 r -2 u -1-δ dec 0 r -2 u -1-δ dec .
Thus, for all k ≤ k small + 12 We extend the validity of Proposition 7.5.1 to all of (ext) M propagating the estimates derived in the first part on T . We also recall that we have good decay estimates for κ and μ everywhere on (ext) M.

ϑ 2,k 0 r -1 u -1-δ dec and hence, ϑ ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 10. ( 7 
Step 1. We first derive estimates for ϑ in M ext making use of the transport equation

e 4 (ϑ) + κϑ = -2α -(κ -κ)ϑ = -2α + Γ g • Γ g .
Making use of Proposition 7.4.3 we derive, for all r ≥ r 0 = r T ,

r 2 ϑ ∞,k (u, r) r 2 0 ϑ ∞,k (u, r 0 ) + r r 0 λ 2 α ∞,k (u, λ)dλ + 0 u -1-δ dec .
We now make use of the estimate,

α ∞,k (u, r) 0 r -2 u -1-δ dec , k ≤ k small + 20 CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)
and, ϑ ∞,k (u, r 0 ) 0 u -1-δ dec derived above in (7.5.24), to derive

r 2 ϑ ∞,k (u, r) 0 u -1-δ dec + 0 ru -1-δ dec .
Therefore, everywhere on (ext) M,

ϑ ∞,k (u, r) 0 r -1 u -1-δ dec . (7.5.31)
Step 2. Next, we estimate β from the equation,

e 4 β + 2κβ = d / 2 α -(κ -κ)β + Γ g • α = d / 2 α + Γ g • (α, β)
to deduce in the same manner

r 4 β ∞,k (u, r) r 2 0 β ∞,k (u, r 0 ) + r r 0 λ 4 d / 2 α ∞,k (u, λ)dλ + 0 ru -1-δ dec .
Thus, in view of the estimates for α in (7.5.23) and the estimates for α in Ref2, i.e., for 0 ≤ k ≤ k small + 20, α ∞,k 0 min{r -2 log(1 + u)(u + 2r) -1-δextra , r -3 (u + 2r) -1 2 -δextra }.

Thus we have with I(u, r)

:= r r 0 λ 4 d / 2 α ∞,k (u, λ)dλ I(u, r) 0 min log(1 + u) r r 0 λ(u + 2λ) -1-δextra dλ, r r 0 (u + 2λ) -1/2-δextra dλ . If r ≤ 2u we have, r r 0 λ(u + 2λ) -1-δextra dλ r 2 u -1-δextra r 2 (u + 2r) -1-δextra and r -4 I(u, r) 0 r -2 log(1 + u)(u + 2r) -1-δextra . If r ≥ 2u we have, r r 0 (u + 2λ) -1/2-δextra (u + 2r) 1/2+δextra
and r -4 I(u, r) r -4 (u + 2r) 1/2+δextra r -2 (u + 2r) -1-δextra .

We deduce,

β ∞,k r -4 β ∞,k (u, r 0 ) + 0 r -2 log(1 + u)(u + 2r) -1-δextra .
Thus in view of (7.5.23),

β ∞,k 0 r -2 log(1 + u)(u + 2r) -1-δextra . (7.5.32)
Step 3. We now estimate ζ using the equation

e 4 (ζ) + κζ = -β + Γ g • Γ g .
This can be done exactly as in Step 1 making use of the estimates already derived for β and the estimate (7.5.23) for ζ along T . We thus derive,

ζ ∞,k 0 r -1 u -1-δ dec , k ≤ k small+15 .
Step 4. We estimate ρ using equation

ρ = -d / 1 ζ -μ + Γ g • Γ b ,
the previous estimate for ζ and μ in (ext) M. We deduce, ρ ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 14. (7.5.33)

Step 5. We estimate κ using the equation,

e 4 κ + 1 2 κκ + 1 2 κκ = -2 d / 1 ζ + 2ρ + Γ g • Γ b .
Making use of the estimates in (ext) M for κ, ζ and ρ as well as the estimates for κ on T in Proposition 7.5.8 we derive, everywhere on Step 6. We estimate β everywhere on (ext) M with the help of the equation

(ext) M, κ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 12. ( 7 
e 4 β + κβ = -d / 1 ρ -3ζρ -ϑβ -(κ -κ)β
together with the estimate (7.5.28) for β on T and the above derived estimates for ρ, ζ in (ext) M to infer that,

β ∞,k 0 r -2 u -1-δ dec , ∀ k ≤ k small + 9. (7.5.35)
Step 7. We extend the for ϑ everywhere on (ext) M by making use of the Codazzi equation for ϑ in (7.5.11),

d / 2 ϑ + 2β -e θ (κ) + κζ ∈ r -3 Good 20 .
Using the estimates already derived above, we infer that, for all k ≤ k small + 11,

d / 2 ϑ 2,k β 2,k + r -1 κ 2,k+1 + r -1 ζ 2,k + 0 r -2 u -1-δ dec 0 r -2 u -1-δ dec .
Hence, everywhere in (ext) M, ϑ 2,k 0 r -1 u -1-δ dec , for all k ≤ k small + 12, and therefore, ϑ ∞,k 0 r -2 u -1-δ dec , for all k ≤ k small + 10.

Step 7. We estimate α everywhere on (ext) M by making use of the equation

e 4 α + 1 2 κα = -d / 2 β - 3 2 ϑρ -5ζβ - 1 2 (κ -κ)α
as well as the estimate (7.5.21) for α on T and the above estimates in all (ext) M for β and ϑ. Proceeding as before we derive, α ∞,k 0 r -1 u -1-δ dec , for all k ≤ k small + 8. (7.5.36) This concludes the proof of Proposition 7.5.1.
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Conclusion of the proof of Theorem M4

So far we have established the following estimates, for all k ≤ k small + 8

κ, r μ ∞,k 0 r -2 u -1-δ dec , ϑ, ζ, κ, r ρ ∞,k 0 r -2 u -1/2-δ dec , ϑ, ζ, η, κ, ϑ, rβ, r ρ, rβ, α ∞,k 0 r -1 u -1-δ dec , β, re 3 β ∞,k 0 r -3 (2r + u) -1/2-δ dec .
(7.6.1)

It only remains to derive improved decay estimates for e 3 (β, ϑ, ζ, κ, ρ) and the estimates for ξ, ω, ς, Ω as well as ς + 1 and Ω + Υ in terms of u -1-δ dec decay. More precisely it remains to prove the following.

Proposition 7.6.1. The following estimates hold true on (ext) M for all k ≤ k small + 7.

e 3 (ϑ, ζ , κ), re 3 β, re 3 ρ ∞,k 0 r -2 u -1-δ dec , ξ, ω ∞,k 0 r -1 u -1-δ dec , ς, Ω, ς + 1, Ω + Υ ∞,k 0 u -1-δ dec .
Proof. We proceed in steps as follows.

Step 1. We make use of the equation e 3 ϑ = -1 2 κ ϑ + 2ωϑ -2 d / 2 η -1 2 κ ϑ + 2η 2 and the previously derived estimates to derive,

e 3 ϑ ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 9. (7.6.2)
Step 2. We make use of the equation e 3 β + (κ -2ω)β =d / 1 ρ + 3ηρ + Γ g β + Γ b α and the previously derived estimates for β, ρ, β to derive,

e 3 β ∞,k 0 r -3 u -1-δ dec , k ≤ k small + 9.
Step 3. To estimate e 3 ζ in the next step we actually need a stronger estimate for e 3 β than the one derived above. At the same time we derive an improved estimate for β. We show in fact, for some 0 < δ,

β ∞,k 0 r -2-δ u -1-δ dec , k ≤ k small + 10, e 3 β ∞,k-1 0 r -3-δ u -1-δ dec , k ≤ k small + 10. (7.6.3)
This makes use of the equation

e 4 β + 2κβ = d / 2 α + Γ g • α = F := d / 2 α + Γ g • α -2κβ
and the estimates for α in Ref 2. Thus, for some 0 < δ < δ extraδ dec ,

F ∞,k log(1 + u)r -3 (2r + u) -1-δextra + 0 r -4 u -1-δ dec 0 u -1-δ dec r -3-δ .
Integrating from T , where r = r T = r 0 1, we deduce with the help of Proposition 7.4.3

r 4 β ∞,k (u, r) r 0 4 β ∞,k (u, r 0 ) + r r 0 λ 4 F ∞,k (u, λ)dλ β ∞,k (u, r 0 ) + 0 r r 0 λ 1-δ dλ.
Based on the previously derived estimate for β we have

β ∞,k (u, r H ) 0 u -1-δ dec . Hence, β ∞,k (u, r) 0 r -4 u -1-δ dec + 0 r -4 r 2-δ u -1-δ dec 0 r -2-δ u -1-δ dec
as desired.

To prove the second estimate in (7.6.3) we commute the transport equation for β with T and make use of the corresponding estimate for Tα (which follows from Ref 2.

Tα ∞,k 0 log(1 + u)r -4 (2r + u) -1-δextra 0 u -1-δ dec r -4-δ as well as the fact that we control Tβ on T , i.e. Tβ ∞,k-1 (u, r 0 ) 0 u -1-δ dec .

Step 4. We make use of the equation e 4 ζ + κζ = -β + Γ g • Γ g to derive,

e 3 ζ k,∞ 0 r -2 u -1-δ dec , k ≤ k small + 9. (7.6.4)
Indeed commuting the equation with T we derive,

e 4 Tζ + κTζ = F := -Tβ + [T, e 4 ]ζ + ζTκ + T(Γ g • Γ g ).
It is easy to check, in view of the commutation Lemma 7.4.1,

F ∞,k-1 Tβ ∞,k-1 + 0 r -4 u -1-δ dec .
Thus, in view of the estimate for e 3 ζ derived in Step 3 and the estimate for e 4 ζ we infer that,

F ∞,k-1 0 r -3-δ u -1-δ dec .
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ζ k,∞ 0 r -1 u -1-δ dec r 2 Tζ ∞,k-1 r 0 2 Tζ ∞,k-1 (u, r 0 ) + 0 u -1-δ dec r r 0 λ -1-δ dλ Tζ ∞,k-1 (u, r 0 ) + 0 r -δ u -1-δ dec 0 u -1-δ dec .
Hence

Tζ ∞,k-1 0 r -2 u -1-δ dec
from which the desired estimate easily follows.

Step 5. We make use of the equation e 4 (ω) = ρ + Γ g • Γ b and the previously derived estimates for ρ as well as the estimates of ω on the last slice (see Proposition 7.3.12) to derive the estimate ω ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 9. (7.6.5)

Indeed,

e 4 ω ∞,k ρ ∞,k + 0 r -3 u -1-δ dec 0 r -2 u -1-δ dec .
Thus, applying Proposition 7.4.3, integrating from Σ * and using the previously derived estimate for ω on Σ * ,

ω ∞,k (u, r) ω ∞,k (u, r * ) + 0 u -1-δ dec r * r λ -2 dλ 0 r -1 u -1-δ dec
as desired.

Step 6. We derive the estimate, 

ξ ∞,k 0 r -1 u -1-δ dec , k ≤ k small + 9 (7.
F ∞,k 0 r -2 u -1-δ dec .
Integrating from Σ * and making use of the estimate for ξ on Σ * (see Proposition 7.3.12) we derive,

ξ ∞,k (u, r) ξ ∞,k (u, r * ) + 0 r -1 u -1-δ dec 0 r -1 u -1-δ dec .
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Step 7. We derive the estimate Step 8. We derive the estimate

Ω ∞,k 0 u -1-δ dec , k ≤ k small + 8. ( 7 
ς -1 ∞,k 0 u -1-δ dec , k ≤ k small + 8. (7.6.8)
The estimate follows from the propagation equation e 4 (ς) = 0 and the estimate for ς -1 on the last slice Σ * .

Step 9. We derive the estimate,

e 3 ρ ∞,k 0 r -3 u -1-δ dec , k ≤ k small + 8 (7.6.9)
with the help of the equation (see Proposition 7.1.8)

e 3 ρ = r -2 d / ≤1 Γ b + r -1 Γ b • Γ b
and the previously derived estimates for β, κ, ρ, Ω, ς.

Step 10. We derive the estimate, e 3 κ ∞,k 0 r -2 u -1-δ dec , k ≤ k small + 8 (7.6.10) using the equation (see Proposition 7.1.8)

e 3 κ = r -1 d / ≤1 Γ b + Γ b • Γ b
and the previously derived estimates for κ, ξ, ω, Ω, ς. This ends the proof of Proposition 7.6.1 and Theorem M4.

Proof of Theorem M5

Recall from Theorem M3 that we have obtained the following estimate for

(int) α in (int) M max 0≤k≤k small +16 sup (int) M u 1+δ dec |d k α| 0 . (7.7.1)
Step 1. We consider the control of the other curvature components, as well as the Ricci components on T . Recall that the (u, (int) s) foliation is initialized on T as follows

• u and (int) s are defined on T by u = u and (int) s = (ext) s on T .

In particular, the 2-spheres S(u, (int) s) coincide on T with the 2-sphere S(u, (ext) s).

• In view of the above initialization, and the fact that T = {r = r T }, we infer that

(int) r = (ext) r = r T , (int) m = (ext) m.
• The null frame ( (int) e 3 , (int) e 4 , (int) e θ ) is defined on T by (int) e 4 = (ext) λ (ext) e 4 , (int) e 3 = ( (ext) λ) -1 (ext) e 3 , (int) e θ = (ext) e θ on T where

(ext) λ = 1 - 2 (ext) m (ext) r .
In particular, we deduce the following identities for the curvature components and Ricci coefficients on T .

Lemma 7.7.1. We have on T

(int) ς = - (ext) κ + (ext) A (ext) κ λ -1 (ext) ς, (int) Ω = λ -λ 2 (ext) κ (ext) κ + (ext) A -λ (ext) κ (ext) κ + (ext) A (ext) Ω.
where

λ = (ext) λ = 1 - 2 (ext) m (ext) r .
Moreover, we have on T

(int) α = λ 2 (ext) α, (int) β = λ (ext) β, (int) ρ = (ext) ρ, (int) β = λ -1 (ext) β, (int) α = λ -2 (ext) α, (int) ξ = 0, (int) ω = 0, (int) ζ = (ext) ζ, (int) η = -(ext) ζ, (int) κ = λ (ext) κ, (int) ϑ = λ (ext) ϑ, (int) κ = λ -1 (ext) κ, (int) ϑ = λ -1 (ext) ϑ,
and

(int) ξ = λ 2 (ext) κ (ext) κ + (ext) A ( (ext) ζ -(ext) η), (int) ω = λ (ext) κ (ext) κ + (ext) A (ext) ω, (int) η = (ext) ζ - (ext) κ (ext) κ + (ext) A (ext) ξ.
Proof. The following vectorfield is tangent to T

ν T := (ext) e 3 - (ext) κ + (ext) A (ext) κ (ext) e 4 ,
which can also be written as

ν T = λ (int) e 3 - (ext) κ + (ext) A (ext) κ λ -1 (int) e 4 .
Since ν T is tangent to T , and in view of the definition of u and (int) s, we immediately infer ν T (u) = ν T (u) and ν T ( (int) s) = ν T ( (ext) s) on T and hence, using the identities (ext) e 4 (u) = (int) e 3 (u) = 0, (ext) e 4 ( (ext) s) = 1, (int) e 3 ( (int) s) = -1,

we deduce on T - (ext) κ + (ext) A (ext) κ λ -1 (int) e 4 (u) = (ext) e 3 (u), -λ - (ext) κ + (ext) A (ext) κ λ -1 (int) e 4 ( (int) s) = (ext) e 3 ( (ext) s) - (ext) κ + (ext) A (ext) κ .
In view of the definition of (ext) ς, (int) ς, (ext) Ω and (int) Ω, this yields

(int) ς = - (ext) κ + (ext) A (ext) κ λ -1 (ext) ς, (int) Ω = λ -λ 2 (ext) κ (ext) κ + (ext) A -λ (ext) κ (ext) κ + (ext) A (ext) Ω.
Next, we consider the Ricci coefficients of (int) M on T . From (int) e 4 = λ (ext) e 4 , (int) e 3 = λ -1 (ext) e 3 , (int) e θ = (ext) e θ on T , the fact that λ is constant on T , and the fact that (ext) e θ is tangent to T , we infer on T

(int) α = λ 2 (ext) α, (int) β = λ (ext) β, (int) ρ = (ext) ρ, (int) β = λ -1 (ext) β, (int) α = λ -2 (ext) α,
and

(int) ζ = (ext) ζ, (int) κ = λ (ext) κ, (int) ϑ = λ (ext) ϑ, (int) κ = λ -1 (ext) κ, (int) ϑ = λ -1 (ext) ϑ.
Also, since the foliation of (int) M is ingoing geodesic, we have

(int) ξ = 0, (int) ω = 0, (int) η = -(int) ζ.
It remains to find identities for (int) ξ, (int) ω and (int) η. Since λ is constant on T and ν T tangent to T , we have on T We deduce

D ν T (int) e 4 = λD ν T (ext) e 4 , D ν T (int) e 3 = λ -1 D ν T (ext)
2λ (int) η -2 (ext) κ + (ext) A (ext) κ λ -1 (int) ξ = λ 2 (ext) η -2 (ext) κ + (ext) A (ext) κ (ext) ξ , -4λ (int) ω -4 (ext) κ + (ext) A (ext) κ λ -1 (int) ω = -4 (ext) ω -4 (ext) κ + (ext) A (ext) κ (ext) ω, 2λ (int) ξ -2 (ext) κ + (ext) A (ext) κ λ -1 (int) η = λ -1 2 (ext) ξ -2 (ext) κ + (ext) A (ext) κ (ext) η ,
and thus

(int) ξ = λ 2 (ext) κ (ext) κ + (ext) A ( (ext) ζ -(ext) η), (int) ω = λ (ext) κ (ext) κ + (ext) A (ext) ω, (int) η = (ext) ζ - (ext) κ (ext) κ + (ext) A (ext) ξ.
This concludes the proof of the lemma.
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Remark 7.7.2. Since the 2-spheres S(u, (int) s) coincide on T with the 2-sphere S(u, (ext) s), the above lemma immediately yields

(int) ρ = (ext) ρ, (int) κ = λ (ext) κ, (int) κ = λ -1 (ext) κ (int) μ = -(ext) μ -2 (ext) ρ + 1 2 (ext) ϑ (ext) ϑ - 1 2 (ext) ϑ (ext) ϑ, (int) ω = λ (ext) κ (ext) ω (ext) κ + (ext) A - (ext) ω (ext) κ + (ext) A ,
and

(int) ς = - 1 λ (ext) κ ( (ext) κ + (ext) A) (ext) ς -( (ext) κ + (ext) A) (ext) ς , (int) Ω = -λ 2 (ext) κ 1 (ext) κ + (ext) A - 1 (ext) κ + (ext) A -λ (ext) κ (ext) Ω (ext) κ + (ext) A - (ext) Ω (ext) κ + (ext) A .
Together with the estimates on T for the outgoing geodesic foliation of (ext) M derived in Theorem M4, we infer the control of tangential derivatives to T , i.e. (e θ , T T ) derivatives.

Recovering the traversal derivative thanks to the transport equations in the direction e 3 , we infer for the ingoing geodesic foliation of (int) M on T max 0≤k≤k small +8 sup T u 1+δ dec d k (int) α, (int) β, (int) ρ, (int) β, (int) μ, (int) κ, (int) ϑ, (int) ζ, (int) η, (int) κ, (int) ϑ, (int) ξ, (int) ω, (int) ς, (int) Ω L 2 (S) 0 .

Step 2. Relying on the estimates of the ingoing geodesic foliation of (int) M on T derived in Step 1, we propagate these estimates to (int) M thanks to transport equations in the e 3 direction given by the null structure equations and Bianchi identities. Recalling that α has already been estimated in Theorem M3, see (7.7.1), quantities are recovered in the following order 1. We recover κ, with a control of k small + 8 derivatives, from

e 3 κ + κ κ = Err[e 3 κ].
2. We recover ϑ, with a control of k small + 8 derivatives, from e 3 (ϑ) + κ ϑ = -2α.
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429 3. We recover β, with a control of k small + 8 derivatives, from

e 3 β + 2κ β = d / 2 α -ζα.
4. We recover ζ, with a control of k small + 8 derivatives, from e 3 (ζ) + κζ = βϑζ.

5. We recover η, with a control of k small + 8 derivatives, from

e 3 (η + ζ) + 1 2 κ(η + ζ) = - 1 2 ϑ(η + ζ).
6. We recover μ, with a control of k small + 8 derivatives, from

e 3 μ + 3 2 κμ + 3 2 µκ = Err[e 3 μ].
7. We recover ρ, with a control of k small + 7 derivatives, from

e 3 ρ + 3 2 κρ + 3 2 ρκ = d / 1 β + Err[e 3 ρ].
8. We recover κ, with a control of k small + 7 derivatives, from

e 3 κ + 1 2 κκ + 1 2 κκ = 2 d / 1 ζ + 2ρ + Err[e 3 κ].
9. We recover ϑ, with a control of k small + 7 derivatives, from

e 3 ϑ + 1 2 κ ϑ = -2 d / 2 ζ - 1 2 κ ϑ + 2ζ 2 .
10. We recover β, with a control of k small + 6 derivatives, from

e 3 β + κβ = e θ (ρ) + 3ζρ -ϑβ.
11. We recover α, with a control of k small + 5 derivatives, from

e 3 α + 1 2 κα = -d / 2 β - 3 2 ϑρ + 5ζβ.
12. We recover ω, with a control of k small + 7 derivatives, from

e 3 ω = ρ + Err[e 3 ω].
13. We recover Ω, with a control of k small + 7 derivatives, from e 3 ( Ω) = -2ω + κ Ω.

14. We recover ξ, with a control of k small + 6 derivatives, from

e 3 (ξ) = e 4 (ζ) + β + 1 2 κ(ζ -η) + 1 2 ϑ(ζ -η).
15. We recover ς, with a control of k small + 8 derivatives, from e 3 (ς -1) = 0.

As the estimates are significantly simpler to derive 21 and in the same spirit than the corresponding ones in Theorem M4, we leave the details to the reader. This concludes the proof of Theorem M5.

Chapter 8

INITIALIZATION AND EXTENSION (Theorems M6, M7, M8)

In this chapter, we prove M6 concerning initialization, Theorem M7 concerning extension, and Theorem M8 concerning the improvement of higher order weighted energies.

Proof of Theorem M6

Step 1. Let r 0 such that

r 0 := d 0 -2 3 0 , (8.1.1) 
where the constant d 0 satisfies

1 2 ≤ d 0 ≤ 2
and will be suitably chosen in Step 3. Also, let δ 0 > 0 sufficiently small. Consider the unique sphere

• S of the initial data layer on C (1+δ 0 ,L 0 ) with area radius r 0 . Then, denoting S(u L 0 , (ext) s L 0 ) the spheres of the outgoing portion of the initial data layer, we have

• S = S( • u, • s), • u = 1 + δ 0 , | • s -r 0 | 0 .
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Relying on the control of the initial data layer given by (3.3.5), i.e.

I k large +5 ≤ 5 3 0 ,
we then invoke Theorem GCMS-II of section 3.7.4 with the choices

• δ = • = 0 , s max = k large + 5,
to produce a unique GCM sphere S * , which is a deformation of In order to apply Theorem GCMS-II to the above setting, one needs to check that the initial data foliation layer satisfies the assumptions of the theorem, and in particular

|d ≤smax Γ b | ( • ) 1 3 r -2 0 , r 0 S βe Φ • δ, r 0 S e θ (κ)e Φ • δ, r 0 S e θ (κ)e Φ • δ.
Now, in view of the above choice for s max ,

• δ,

• and r 0 , this follows from Step 2. Starting from S * constructed in Step 1, and relying on the control of the initial data layer, we then invoke Theorem GCMH of section 3.7.4 to produce a smooth spacelike hypersurface Σ * included in the initial data layer, passing through the sphere S * , and a scalar function u defined on Σ * such that

r|d ≤k large +5 Γ b | 0 , r 3 |β| + r 2 | d /κ| + r 2 | d /κ|
• The following GCM conditions holds

κ = 2 r , d / 2 d / 1 κ = d / 2 d / 1 µ = 0, S ηe Φ = S ξe Φ = 0 on Σ * .
• We have, for some constant c Σ * , u + r = c Σ * , along Σ * .

• The following normalization condition holds true at the South Pole SP of every sphere S,

a SP = -1 - 2m r
where a is such that we have

ν = e 3 + ae 4 ,
with ν the unique vectorfield tangent to the hypersurface Σ * , normal to S, and normalized by g(ν, e 4 ) = -2.

Furthermore, we have

1 max k≤k large +4 sup Σ * r |d k f | + |d k f | + |d k log(λ)| 0 , (8.1.2) 
and sup

Σ * |m -m 0 | + |r -r 0 | 0 , (8.1.3) 
where (f, f , λ) are the transition function from the frame of the initial data layer to the frame of Σ * .

Step 3. Provided δ 0 > 0 has been chosen sufficiently small, the spacelike hypersurface Σ * of Step 2 intersects the curve of the south poles of the spheres foliating the outgoing cone C (1,L 0 ) of the initial data layer. We then call S 1 the unique sphere of Σ * such that its south pole coincides with the south pole of a sphere of C (1,L 0 ) , and we calibrate u such that u = 1 on S 1 . We then can compare

• u = 1 + δ 0 to u(S * ) and obtain |u(S * ) -1 -δ 0 | 0 δ 0 , so that 1 ≤ u ≤ u(S * ) on Σ * where 1 < u(S * ) < 1 + 2δ 0 . 1 We have in fact max k≤k large +6 sup Σ * d k f L 2 (S) + d k f L 2 (S) + d k log(λ) L 2 (S) 0 ,
and then use the Sobolev embedding on the 2-spheres S foliating Σ * to deduce (8.1.2).
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Together with the estimate (8.1.3), and in view of the choice (8.1.1) for r 0 , we have inf

Σ * r = r(S * ) = r 0 + O( 0 ) = d 0 -2 3 0 + O( 0 ) = -2 3 0 (u(S * )) 1+δ dec d 0 + O(δ 0 ) + O 5 3 0 .
Thus, we may choose the constant d 0 in the range

1 2 ≤ d 0 ≤ 2 such that inf Σ * r = -2 3 
0 (u(S * )) 1+δ dec so that the dominant condition (3.3.4) for r is satisfied.

Step 4. In view of Step 1 to Step 3, Σ * satisfies all the required properties for the future spacelike boundary of a GCM admissible spacetime, see item 3 of definition 3.1.2. We now control the outgoing geodesic foliation initialized on Σ * and covering the region we denote by (ext) M, which is included in the initial data layer. Let (f, f , λ) the transition functions from the frame of the outgoing part of the initial data layer to the frame of (ext) M. Since both frames are outgoing geodesic, we may apply Corollary 2.3.7 which yields for (f , f, log(λ)) the following transport equations

λ -1 e 4 (rf ) = E 1 (f, Γ), λ -1 e 4 (log(λ)) = E 2 (f, Γ), λ -1 e 4 rf -2r 2 e θ (log(λ)) + rf Ω = E 3 (f, f , λ, Γ),
where

E 1 (f, Γ) = - r 2 κf - r 2 ϑf + l.o.t., E 2 (f, Γ) = f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ + l.o.t., E 3 (f, f , λ, Γ) = - r 2 κf + r 2 κ -κ - 2 r e θ (log(λ)) + r 2 d / 1 (f ) + λ -1 ϑ e θ (log(λ)) - r 2 κΩf + rE 3 (f, f , Γ) -2r 2 e θ (E 2 (f, Γ)) + rΩE 1 (f, Γ),
and where E 1 , E 2 and E 3 are given in Lemma 2.3.6. Integrating these transport equations from Σ * , using the control (8.1.2) of (f, f , λ) on Σ * , and together with the assumption (3.3.5) for the Ricci coefficients of the foliation of the initial data layer, we obtain sup

(ext) M(r≥2m 0 (1+δ H )) r |d ≤k large +4 (f, log(λ))| + |d ≤k large +3 f | 0 . (8.1.4)
Then, let T = {r = 2m 0 (1 + δ H )}, i.e. we choose r T = 2m 0 (1 + δ H ). We initialize the ingoing geodesic foliation of (int) M on T using the outgoing geodesic foliation of (ext) M as in item 4 of definition 3.1.2. Using the control of (f, f , λ) induced on T by (8.1.4), and using the analog of Corollary 2.3.7 in the e 3 direction for ingoing foliations, we obtain similarly, sup

(int) M |d ≤k large +3 (f , log(λ))| + |d ≤k large +2 f | 0 . (8.1.5)
Then, in view of (8.1.4) (8.1.5), and the assumption (3.3.5) for the Ricci coefficients and curvature components of the foliation of the initial data layer, and using the transformation formulas of Proposition 2.3.4, we deduce max

k≤k large sup (ext) M r 7 2 +δ B (|d k α| + |d k β|) + r 3 |d k ρ| + r 2 |d k β| + r|d k α| + sup (ext) M r 2 (|d k κ| + |d k ϑ| + |d k ζ| + |d k κ|) + sup (ext) M r(|d k η| + |d k ϑ| + |d k ω| + |d k ξ|) 0 ,
and max

k≤k large sup (int) M |d k Ř| + |d k Γ| 0 .
In particular, we infer that

N (En) k large + N (Dec) k small 0
which concludes the proof of Theorem M6.

Proof of Theorem M7

In view of the assumptions of Theorem M7, we are given a GCM admissible spacetime M = M(u * ) ∈ ℵ(u * ) verifying the following improved bounds, for a universal constant C > 0,

N (Dec) k small +5 (M) ≤ C 0 (8.2.1)
provided by Theorems M1-M5. We then proceed as follows.

Step 1. We extend M by a local existence argument, to a strictly larger spacetime M (extend) , with a naturally extended foliation and the following slightly increased bounds

N (Dec)
k small +5 (M (extend) ) ≤ 2C 0 , but which may not verify our admissibility criteria.

Step 2. We then invoke Theorem GCMH of section 3.7.4 to extend Σ * in M (extend) \ M as a smooth spacelike hypersurface Σ (extend) *

, together with a scalar function u (extend) , satisfying the same GCM conditions than Σ * .

Step 3. We consider the outgoing geodesic foliation (u (extend) , s (extend) ) initialized on Σ in M (extend) . Note in particular that we have from the definition of Σ * and Σ

(extend) * u (extend) + s (extend) = c Σ * .
We define the following spacetime region to the future of Σ with δ ext > 0 chosen sufficiently small so that R ⊂ M (extend) , and with d 0 a constant satisfying 1 2 ≤ d 0 ≤ 1 which will be suitably chosen in Step 11 below. From now on, for convenience, we drop the index (extend) and simply denote u (extend) and s (extend) by u and s.

(extend) * R := u * ≤ u (extend) ≤ u * + δ ext , c Σ * ≤ u (extend) + s (extend) ≤ c Σ * + ∆ ext ,
Step 4. Since we have on Σ 

≤ k small + 4 sup R r 2 d k κ - 2 r + r 3 d k-1 d / 1 κ -Ce Φ + r 4 d k-1 d / 1 µ -M e Φ 0 r ∆ ext and sup R r -2 S ξe Φ + S ηe Φ 0 r ∆ ext .
Next, in view of (4.1.2) and the fact that ν = e 3 + ae 4 , we have on Σ

(extend) * ν S βe Φ 0 ru 1+δ dec , ν S e θ (κ)e Φ 0 ru 1+δ dec + 2 0 u 2+2δ dec .
In particular, since r(S * ) = Together with the GCM condition on a, we infer

2 ς + Ω SP = 1 + 2m r on Σ * .
As above, propagating forward in e 4 , we infer sup

R 2 ς + Ω SP -1 + 2m r 0 r ∆ ext .
Finally, arguing as we did above on Σ Step 5. We fix the following sphere of the (u (extend) , s (extend) 

) foliation in R ∩ {u ≥ u * } • S := S( • u, • s), • u := u * + δ ext 2 , • s := r * + 3d 0 r * 4u * δ ext . (8.2.2) Define • δ := 0 r ∆ ext = d 0 0 δ ext u * , • := 0 ,
and the small spacetime neighborhood of

• S R( • , • δ) := |u - • u| ≤ δ R , |s - • s| ≤ δ R , δ R = • δ • -1 2 .
Note that R( • ,

• δ) ⊂ R. In view of the estimates in Step 4, we are in position to apply Theorem GCMS II of section 3.7.4, with s max = k small + 4, which yields the existence of
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• S, is included in R( • , • δ)
, and is such that the following GCM conditions hold on it

d / 2 d / 1 κ = d / 2 d / 1 µ = 0, κ = 2 r , S * βe Φ = S * e θ ( κ)e Φ = 0,
where the tilde refer to the quantities and tangential operators on S * .

Step 6. Starting from S * constructed in Step 5, and in view of the estimates in Step 4, we may apply Theorem GCMH of section 3.7.4, with s max = k small + 4, which yields the existence of a smooth small piece of spacelike hypersurface Σ * starting from S * towards the initial data layer, together with a scalar function u defined on Σ * , whose level surfaces are topological spheres denoted by S, so that

• The following GCM conditions are verified on Σ * d / 2 d / 1 κ = d / 2 d / 1 µ = 0, κ = 2 r , S ηe Φ = S ξe Φ = 0,
where the tilde refer to the quantities and tangential operators on Σ * .

• We have, for some constant c Σ * , u + r = c Σ * , along Σ * .

• The following normalization condition holds true at the South Pole SP of every sphere S,

a SP = -1 - 2 m r
where a is such that we have

ν = e 3 + a e 4 ,
with ν the unique vectorfield tangent to the hypersurface Σ * , normal to S, and normalized by g( ν, e 4 ) = -2.

• The transition functions (f, f , λ) from the frame of M (extend) to the frame of Σ * (f, f , log(λ)) h k small +5 • δ.
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Step 7. The spacelike GCM hypersurface Σ * has been constructed in Step 6 in a small neighborhood of S * . We now focus on proving that it in fact extends all the way to the initial data layer. To this end, we denote by u 1 with

1 ≤ u 1 < • u,
the minimal value of u such that

• We have Σ * ∩ C u = ∅ for any u 1 ≤ u ≤ • u. ( 8 

.2.3)

• There exists a large constant D ≥ 1 such that we have for any sphere S of Σ * (u ≥ u 1 )

(f, f , log(λ)) h k small +5 ( S) ≤ Du * • δ. (8.2.4)
• For the same large constant D ≥ 1 as above, we have along Σ * (u ≥ u 1 )

|ψ(s)| ≤ Du * • δ, (8.2.5) 
where the function ψ(s) is such that the curve Step 8. We now focus on improving the bounds (8.2.4) (8.2.5). We first prove that Σ * (u ≥ u 1 ) is included in R. Indeed, (8.2.4) (8.2.5) imply sup

u = -s + c Σ * + ψ(s), s, θ = 0 with ψ( • s) = 0, (8.2 
Σ * (u≥u 1 ) |u + s -c Σ * | sup Σ * (u≥u 1 ) |ψ| + r|f | + r|f | Du * • δ Du * r 0 ∆ ext 2 3 0 D 0 ∆ ext 0 ∆ ext .
On the other hand, by construction, ψ(

• s) = 0 and the south pole of • S and S * coincide, so that we have

c Σ * = • u + • s = u * + r * + δ ext 2 + 3d 0 r * 4u * δ ext = c Σ * + 3 4 1 + 2u * 3d 0 r * ∆ ext and hence sup Σ * (u≥u 1 ) u + s -c Σ * - 3 4 ∆ ext u * 2d 0 r * + 0 ∆ ext 2 3 0 ∆ ext .
In view of the definition of R, we infer

Σ * (u ≥ u 1 ) ⊂ R (8.2.7)
as claimed.

Step 9. Since Σ * (u ≥ u 1 ) ⊂ R, the bound of Step 4 apply, and hence we have Together with the a priori estimates of Chapter 9 on the GCM construction, this yields

|ψ (s)| 1 + 2 m r + Ω + 2 ς SP + |λ -1| m r - m r + |λ -1| + 0 r ∆ ext .
In view of (8. Similarly, we obtain

(f, f , log(λ)) h k small +5 ( S) r -2 S f e Φ + S f e Φ + • δ and ν S f e Φ + ν S f e Φ r 2 • δ + 1 r S f e Φ + S f e Φ .
In view of (8.2.4), we infer

ν S f e Φ + ν S f e Φ r 2 • δ + rDu * • δ
and integrating from S * , we infer

r -2 S f e Φ + S f e Φ u * • δ + D(u * ) 2 r • δ 1 + 2 3 0 D u * • δ u * • δ.
This yields

(f, f , log(λ)) h k small +5 ( S) u * • δ 8.2
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(f, f , log(λ)) h k small +5 ( S) u * • δ, |ψ(s)| u * • δ.
In view of the definition of

• δ, we infer in particular for any sphere

S of Σ * (f, f , log(λ)) h k small +5 ( S) 0 δ ext , |ψ(s)| 0 δ ext . (8.2.9)
Step 10. As Σ * extends all the way to the initial data layer, this allows us to calibrate ũ along Σ * by fixing the value u = 1 as in (3.1.5): For the proof of Theorem M7, we need in particular to prove that ũ * > u * . First, note that, since ũ + r is constant along Σ * , we have 

S 1 = Σ * ∩ { u = 1} is such that S 1 ∩ C (1,L 0 ) ∩ SP = ∅, ( 8 
Σ * = u + r = 1 + r( S 1
u( S * ) -u * + δ ext 2 = u( S * ) -u( • S) = 1 + r( S 1 ) -r( S * ) --s( • S) + c Σ * .
Next, note from 

s = r on Σ * , e 4 (r -s) = r 2 κ - 2 r that we have sup R |r -s| 0 r ∆ ext 0 δ ext . ( 8 
c Σ * = u( S 1 ) + r( S 1 ) -ψ(s( S 1 ))
and thus

u( S * ) -u * + δ ext 2 1 + r( S 1 ) -u( S 1 ) -r( S 1 ) + ψ(s( S 1 )) + 0 δ ext 1 -u( S 1 ) + r( S 1 ) -r( S 1 ) + ψ(s( S 1 )) + 0 δ ext .
In view of (8.2.9) and (8.2.8), we infer

u( S * ) -u * + δ ext 2 1 -u( S 1 ) + 0 δ ext .
Also, since (recall in particular (3.1.5))

u = 1 on S 1 ∩ SP, e L 0 4 (u) = O 0 r 2 ,
and since the south pole of S 1 coincides with the one of the corresponding sphere of C L 0 ,1 , we infer sup

R∩C L 0 ,1 ∩SP |u -1| ∆ ext 0 r 2 0 δ ext .
This yields

u( S * ) -u * + δ ext 2 0 δ ext . (8.2.14)
In particular, we deduce, for 0 small enough,

u( S * ) > u * (8.2.15)
as desired.

Step 11. We would like to check that the dominant condition (3.3.4) for r holds on Σ * , i.e. we need to prove that there exists a choice of constant

d 0 satisfying 1 2 ≤ d 0 ≤ 1 such that r( S * ) = -2 3 0 ( u( S * )) 1+δ dec .
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To this end, note that we have in view of (8.2.8), (8.2.13) and (8.2.14)

r( S * ) - -2 3 0 ( u( S * )) 1+δ dec = s( • S) + O ( 0 δ ext ) - -2 3 0 u * + δ ext 2 + O ( 0 δ ext ) 1+δ dec = s( • S) - -2 3 0 (u * ) 1+δ dec - 1 + δ dec 2 -2 3 0 (u * ) δ dec δ ext + -2 3 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) .
Together with (8.2.2), we infer r( S * ) - 

-2 3 0 ( u( S * )) 1+δ dec = r * + 3d 0 r * 4u * δ ext - -2 3 0 (u * ) 1+δ dec - 1 + δ dec 2 -2 3 0 (u * ) δ dec δ ext + -2 3 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) = r * - -2 3 0 (u * ) 1+δ dec + 3d 0 r * 4 - 1 + δ dec 2 -2 3 0 (u * ) 1+δ dec δ ext u * + -2 3 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) .
-2 3 0 ( u( S * )) 1+δ dec = 3d 0 4 - 1 + δ dec 2 r * δ ext u * + -2 3 0 (u * ) δ dec δ ext O δ ext u * + 0 + O ( 0 δ ext ) = 3r * δ ext 4u * d 0 - 2 + 2δ dec 3 + O 0 + δ ext u * .
Thus, we may choose the contant d 0 such that 1 2 ≤ d 0 ≤ 1 and

r( S * ) = -2 3 0 ( u( S * )) 1+δ dec
as desired.

Step 12. We summarize the properties of Σ * obtained so far:

• Σ * is a spacelike hypersurface included in the spacetime region R.

• The scalar function u is defined on Σ * and it level sets are topological 2-spheres denoted by S.

• The following GCM conditions holds on Σ *

d / 2 d / 1 κ = d / 2 d / 1 µ = 0, κ = 2 r , S ηe Φ = S ξe Φ = 0.
• In addition, the following GCM conditions holds on the sphere

S * of Σ * S * βe Φ = S *
e θ ( κ)e Φ = 0,

• We have, for some constant c Σ * ,

u + r = c Σ * , along Σ * .
• The following normalization condition holds true at the South Pole SP of every sphere S,

a SP = -1 - 2 m r
where a is such that we have

ν = e 3 + a e 4 ,
with ν the unique vectorfield tangent to the hypersurface Σ * , normal to S, and normalized by g( ν, e 4 ) = -2.

• The dominant condition (3.3.4) for r holds on Σ * , i.e. we have

r( S * ) = -2 3 0 ( u( S * )) 1+δ dec .
• ũ is calibrated along Σ * by fixing the value u = 1: 

S 1 = Σ * ∩ { u = 1} is such that S 1 ∩ C (1,L 0 ) ∩ SP = ∅, ( 8 
d ≤k small +5 (f, f , log(λ)) L 2 ( S) 0 δ ext .
Together with the Sobolev embedding on the spheres S, we find sup

Σ * r |d ≤k small +3 (f, f , log(λ))| 0 δ ext .
Possibly reducing the size of δ ext > 0, we deduce sup

Σ * r u 1 2 +δ dec |d ≤k small +3 (f, f , log(λ))| 0 . (8.2.18)
Step 13. We now control the outgoing geodesic foliation initialized on Σ * . We denote by (ext) M the region covered by this outgoing geodesic foliation. Let (e 4 , e 3 , e θ ) of (ext) M extended to the spacetime M (extend) , and satisfying, as discussed in Step 1 to Step 3

N (Dec) k small +5 (M (extend) ) 0 . (8.2.19)
Let (f, f , λ) the transition functions from the frame (e 4 , e 3 , e θ ) to the frame ( e 4 , e 3 , e θ ) of (ext) M. Since both frames are outgoing geodesic, we may apply Corollary 2.3.7 which yields for (f , f, log(λ)) the following transport equations

λ -1 e 4 (rf ) = E 1 (f, Γ), λ -1 e 4 (log(λ)) = E 2 (f, Γ), λ -1 e 4 rf -2r 2 e θ (log(λ)) + rf Ω = E 3 (f, f , λ, Γ),
where

E 1 (f, Γ) = - r 2 κf - r 2 ϑf + l.o.t., E 2 (f, Γ) = f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ + l.o.t., E 3 (f, f , λ, Γ) = - r 2 κf + r 2 κ -κ - 2 r e θ (log(λ)) + r 2 d / 1 (f ) + λ -1 ϑ e θ (log(λ)) - r 2 κΩf + rE 3 (f, f , Γ) -2r 2 e θ (E 2 (f, Γ)) + rΩE 1 (f, Γ),
and where E 1 , E 2 and E 3 are given in Lemma 2.3.6. Integrating these transport equations from Σ * , using the control (8.2.18) of (f, f , λ) on Σ * , and together with the control (8.2.19) for the Ricci coefficients of the foliation of M (extend) , we obtain sup

(ext) M r≥2m 0 (1+ δ H 2 )
r u

1 2 +δ dec + u 1+δ dec |d ≤k small +3 (f, log(λ))| + |d ≤k small +2 f | 0 .
(8.2.20) Then, for any r T in the interval

2m 0 1 + δ H 2 ≤ r T ≤ 2m 0 1 + 3δ H 2 , (8.2.21)
we initialize the ingoing geodesic foliation of (int) M[r T ] on r = r T using the outgoing geodesic foliation of (ext) M as in item 4 of definition 3.1.2. Using the control of (f, f , λ) induced on r = r T by (8.2.20), and using the analog of Corollary 2.3.7 in the e 3 direction for ingoing foliations, we obtain similarly, for any r T in the interval (8.2.21), sup

(int) M[r T ] u 1+δ dec |d ≤k small +2 (f , log(λ))| + |d ≤k small +1 f | 0 . (8.2.22)
Let now, for any r T in the interval (8.2.21),

M[r T ] := (ext) M( r ≥ r T ) ∪ (int) M[r T ].
Then, in view of ( 

k small (M[r T ]) 0
which concludes the proof of Theorem M7.

Proof of Theorem M8

So far, we have only improved our bootstrap assumptions on decay estimates. We now improve our bootstrap assumptions on energies and weighted energies for Ř and Γ relying on an iterative procedure which recovers derivatives one by one 3 .

Let I m 0 ,δ H the interval of R defined by )), and hence on (ext) M(r ≥ r T ) for any r T ∈ I m 0 ,δ H ,

I m 0 ,δ H := 2m 0 1 + δ H 2 , 2m 0 1 + 3δ H 2 . ( 8 
• they hold on (int) M[r T ] for any r T ∈ I m 0 ,δ H , where (int) M[r T ] is initialized on T = {r = r T } using (ext) M(r ≥ r T ) as in section 3.1.2.
It is at this stage that we need to make a specific choice of r T in the context of a Lebesgue point argument. More precisely, we choose r T such that we have

{r=r T } |d ≤k large Ř| 2 = inf r 0 ∈I m 0 ,δ H {r=r 0 } |d ≤k large Ř| 2 . (8.3.2)
Remark 8.3.2. In case the above infimum is achieved for several values of r, we choose r T to be the largest of such values, so that r T is uniquely defined. Note also that the infimum could a priori be infinite, and will only be shown to be finite -and more precisely O( 0 ) -, at the end of the proof of Theorem M8, see section 8.3.4. This could be made rigorous in the context of a continuity argument.

In view of the definition of r T , and since T = {r = r T }, we have

T |d ≤k large Ř| 2 ≤ 1 2m 0 δ H I m 0 ,δ H {r=r 0 } |d ≤k large Ř| 2 dr 0 and hence 4 T |d ≤k large Ř| 2 (ext) M r∈I m 0 ,δ H |d ≤k large Ř| 2 . (8.3.3)
From now on, we may thus assume that the spacetime M satisfies

• the conclusions of Theorem M0, i.e. max

0≤k≤k large sup C 1 r 7 2 +δ B |d k (ext) α| + |d k (ext) β| + r 9 2 +δ B |d k-1 e 3 ( (ext) α)| (8.3.4) + sup C 1 r 3 d k (ext) ρ + 2m 0 r 3 + r 2 |d k (ext) β| + r|d k (ext) α| 0 4
We use the coarea formula, dM = 

) ≥ δ H 2 + O( + δ 2 H ) ≥ δ H 4 .
Note that here depends on δ -1 H , see the convention for made at the end of section 3.3.1.
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and max

0≤k≤k large sup C 1 |d k (int) α| + |d k (int) β| + d k (int) ρ + 2m 0 r 3 +|d k (int) β| + |d k (int) α| 0 , (8.3.5)
• the conclusions of Theorem M7, i.e. 

N (Dec) k small 0 , ( 8 

Main norms

We recall below our norms for measuring weighted energies for curvature components and Ricci coefficients, see sections 3.2.1 and 3.2.2. Let r 0 ≥ 4m 0 . Then, we have for

(ext) M (ext) R ≥r 0 0 [ Ř] 2 = sup 0≤u≤u * Cu(r≥r 0 ) r 4+δ B α 2 + r 4 β 2 + Σ * r 4+δ B (α 2 + β 2 ) + r 4 (ρ) 2 + r 2 β 2 + α 2 + (ext) M(r≥r 0 ) r 3+δ B (α 2 + β 2 ) + r 3-δ B (ρ) 2 + r 1-δ B β 2 + r -1-δ B α 2 , (ext) R ≤r 0 0 [ Ř] 2 = (ext) M(r≤r 0 ) 1 - 3m r 2 | Ř| 2 ,
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(ext) R 0 [ Ř] = (ext) R ≥4m 0 0 [ Ř] + (ext) R ≤4m 0 0 [ Ř], (ext) R k [ Ř] 2 = (ext) R 0 [d ≤k Ř] 2 + (ext) M(r≤4m 0 ) |d ≤k-1 N Ř| 2 + |d ≤k-1 Ř| 2 , for k ≥ 1,
and

(ext) G ≥r 0 k Γ 2 = Σ * r 2 (d ≤k ϑ) 2 + (d ≤k κ) 2 + (d ≤k ζ) 2 + (d ≤k κ) 2 + (d ≤k ϑ) 2 + (d ≤k η) 2 + (d ≤k ω) 2 + (d ≤k ξ) 2 + sup λ≥4m 0 {r=λ} λ 2 (d ≤k ϑ) 2 + (d ≤k κ) 2 + (d ≤k ζ) 2 + λ 2-δ B (d ≤k κ) 2 + (d ≤k ϑ) 2 + (d ≤k η) 2 + (d ≤k ω) 2 + λ -δ B (d ≤k ξ) 2 , (ext) G ≤r 0 k Γ 2 = (ext) M(≤4m 0 ) d ≤k Γ 2 , (ext) G k Γ = (ext) G ≤4m 0 k Γ + (ext) G ≥4m 0 k Γ .
Also, we have for

(int) M (int) R k [ Ř] 2 = (int) M |d ≤k Ř| 2 ,
and

(int) G k [ Γ] 2 = (int) M |d ≤k Γ| 2 .
Finally, we recall the following Morawetz type norms, see section 5.1.4. For δ > 0, we have

B δ [ψ](τ 1 , τ 2 ) = (trap) M(τ 1 ,τ 2 ) |Rψ| 2 + r -2 |ψ| 2 + 1 - 3m r 2 |∇ / ψ| 2 + 1 r 2 |T ψ| 2 + (trap ) M(τ 1 ,τ 2 ) r δ-3 |dψ| 2 + |ψ| 2
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where the scalar function τ and the spacetime region (trap) M have beed introduced in section 5.1.1, and where (trap ) M denotes the complement of (trap) M. Also, we have

E δ [ψ](τ ) = Σ(τ ) 1 2 (N Σ , e 3 ) 2 |e 4 ψ| 2 + 1 2 (N Σ , e 4 ) 2 |e 3 ψ| 2 + |∇ / ψ| 2 + r -2 |ψ| 2 + Σ ≥4m 0 (τ ) r δ |e 4 ψ| 2 + r -2 |ψ| 2 .
Here Σ(τ ) denotes the level set of τ , see section 5.1.1, N Σ denotes a choice for the normal to Σ, and recall that we have

N Σ = N Σ = e 3 on (int) Σ, N Σ = e 4 on (ext) Σ,
with (int) Σ and (ext) Σ defined in section 5.1.1, and

(N Σ , e 3 ) ≤ -1 and (N Σ , e 4 ) ≤ -1 on (trap) Σ.

Moreover, we have

F δ [ψ](τ 1 , τ 2 ) = A(τ 1 ,τ 2 ) δ -1 H |e 4 Ψ| 2 + δ H |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + Σ * (τ 1 ,τ 2 ) |e 3 Ψ| 2 + r δ |e 4 ψ| 2 + |∇ / ψ| 2 + r -2 |ψ| 2 with A(τ 1 , τ 2 ) = A ∩ M(τ 1 , τ 2 ) and Σ * (τ 1 , τ 2 ) = Σ * ∩ M(τ 1 , τ 2 ).

Control of the global frame

Some quantities will be controlled based on the wave equation they satisfy, and will thus need to be defined w.r.t. a global frame, i.e. a smooth frame on M. To this end, we will rely on the global frame of section 3.5.2. We recall below the main properties of that global frame.

From definition 3.5.1, the region where the frame of (int) M and a conformal renormalization of the frame of (ext) M are matched is given by

Match := (ext) M ∩ (int) r ≤ 2m 0 1 + 3 2 δ H ∪ (int) M ∩ (int) r ≥ 2m 0 1 + 1 2 δ H ,

PROOF OF THEOREM M8

453 where (int) r denotes the area radius of the ingoing geodesic foliation of (int) M and its extension to (ext) M.

The following proposition concerning the global frame is an immediate consequence of Proposition 3.5.2 and the decay estimates (8.3.6). (c) In the matching region, we have

max 0≤k≤k small -2 sup Match∩ (int) M u 1+δ dec d k ( (glo) Γ, (glo) Ř) 0 , max 0≤k≤k small -2 sup Match∩ (ext) M u 1+δ dec d k ( (glo) Γ, (glo) Ř) 0 ,
where (glo) Ř and (glo) Γ are given by

(glo) Ř = α, β, ρ + 2m r 3 , β, α , (glo) Γ = ξ, ω + m r 2 , κ - 2Υ r , ϑ, ζ, η, η, κ + 2 r , ϑ, ω, ξ .
(d) Furthermore, we may also choose the global frame such that, in addition, one of the following two possibilities hold, i. We have on all (ext) M ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ .

ii. We have on all (int) M ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (int) e 4 , (int) e 3 , (int) e θ .
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Iterative procedure

Recall our norms for measuring energies for curvature components and Ricci coefficients which are given respectively by

(int) R k [ Ř], (ext) R k [ Ř] and (int) G k [ Γ], (ext) G k [ Γ]
, see sections 3.2.1 and 3.2.2. Recall also our combined weighted energy norm

N (En) k = (ext) R k [ Ř] + (ext) G k [ Γ] + (int) R k [ Ř] + (int) G k [ Γ].
We also introduce the following norm controlling on the matching region the Ricci coefficients and curvature components of the global frame of Proposition 8.3.3

N (match) k := Match d ≤k ( (glo) Γ, (glo) Ř) 2 1 2 . (8.3.8)
To initiate the iterative procedure, we rely on the following lemma.

Lemma 8.3.4. We have

N (En) k small + N (match) k small -2 0 . (8.3.9)
Proof. The estimate (8.3.6) and Proposition 8.3.3 imply in particular

(ext) R ≥4m 0 k small [ Ř] + (ext) R ≤4m 0 k small [ Ř] + (ext) G k small [ Γ] + (int) R k small [ Ř] + (int) G k small [ Γ] + N (match) k small -2 0 (8.3.10)
where the first term of the right-hand side is defined by

(ext) R ≥4m 0 k [ Ř] 2 := sup 0≤u≤u * Cu(r≥4m 0 ) r 4 |d ≤k β| 2 + Σ * r 4 |d ≤k ρ| 2 + r 2 |d ≤k β| 2 + |d ≤k α| 2 + (ext) M(r≥4m 0 ) r 3-δ B |d ≤k ρ| 2 + r 1-δ B |d ≤k β| 2 + r -1-δ B |d ≤k α| 2 .
In view of the definition of the combined weighted energy norm N (En) k

, we infer 

N (En) k small + N (match) k small -2 0 + sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B |d ≤k small α| 2 + Σ * r 4+δ B (|d ≤k small α| 2 + |d ≤k small β| 2 ) + (ext) M(r≥4m 0 ) r 3+δ B (|d ≤k small α| 2 + |d ≤k small β| 2 ) 1 2 . ( 8 
+ (ext) M(r≥4m 0 ) r 3+δ B (|d ≤k small α| 2 + |d ≤k small β| 2 ) (ext) R ≤4m 0 k small [ Ř] 2 + (ext) G k small [ Γ] 2 + 2 0 + 2 0 (N (En) k small ) 2 . (8.3.12)
The proof of (8.3.12) relies on r p -weighted estimates for the Bianchi pair (α, β) and is postponed to section 8.7.3. Then (8.3.9) follows immediately from (8.3.10), (8.3.11) and (8.3.12) for 0 > 0 small enough.

Next, for J such that k small -2 ≤ J ≤ k large -1, consider the iteration assumption

N (En) J + N (match) J B [J], (8.3.13)
where

B [J] := J j=k small -2 ( 0 ) (j) B 1-(j) + (J) 0 B, (j) 
:= 2 k small -2-j , (8.3.14) 

B :=   (ext) M r∈I m 0 ,δ H |d ≤k large Ř| 2   1 2 . ( 8 
B [J] + B 1 2 ( B [J]) 1 2 + 0 B B [J + 1]. (8.3.16)
Proof. We clearly have

B [J] + 0 B B [J + 1]. (8.3.17)
Proposition 8.3.9. Let J such that k small -2 ≤ J ≤ k large -1. Under the iteration assumption (8.3.13), we have for r 0 ≥ 4m 0

(int) R J+1 [ Ř] + (ext) R J+1 [ Ř] ≤ (ext) R ≥r 0 J+1 [ Ř] + O r 10 0 B [J] + 0 N (En) J+1 + N (match) J+1
and

(ext) R ≥r 0 J+1 [ Ř] r -δ B 0 (ext) G ≥r 0 J+1 [ Γ] + r 10 0 B [J] + 0 N (En) J+1 + N (match) J+1 . Proposition 8.3.10. Let J such that k small -2 ≤ J ≤ k large -1.
Under the iteration assumption (8.3.13), we have

(ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + (ext) R J+1 [ Ř] B [J] + 0 N (En) J+1 + N (match) J+1 . Proposition 8.3.11. Let J such that k small -2 ≤ J ≤ k large -1.
Under the iteration assumption (8.3.13), we have

(int) G J+1 [ Γ] B [J] + 0 N (En) J+1 + N (match) J+1 + T |d J+1 ( (ext) Ř)| 2 1 2
.

Proposition 8.3.12. Let J such that k small -2 ≤ J ≤ k large -1. Under the iteration assumption (8.3.13), we have

N (match) J+1 N (En) J+1 + T |d J+1 ( (ext) Ř)| 2 1 2
.

The proof of Propositions 8. 

End of the proof of Theorem M8

To prove Theorem M8, we rely on Propositions 8.3.10, 8.3.11 and 8.3.12. Note that among them only the second two involve the dangerous boundary term

T |d J+1 ( (ext) Ř)| 2 1 2
. We proceed as follows.

Step 1. As mentioned earlier, the estimate (8.3.9) trivially implies the iteration assumption (8.3.13) with J = k small -2. We assume that the iteration assumption (8.3.13) holds for any fixed J such that k small -2 ≤ J ≤ k large -2. In view of Proposition 8.3.11, we have

(int) G J+1 [ Γ] B [J] + 0 N (En) J+1 + N (match) J+1 + T |d J+1 ( (ext) Ř)| 2 1 2 . (8.3.19)
We need to deal with the last term in the RHS of (8.3.19). Relying on a trace theorem in the spacetime region (ext) M(r ∈ I m 0 ,δ H ), and the fact that J + 2 ≤ k large , we obtain 

T |d J+1 ( (ext) Ř)| 2 1 2   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 
( (ext) R J+1 [ Ř]) 1 2 + (ext) R J+1 [ Ř]. ( 8 
N (En) J+1 B [J] +   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 B [J] + 0 N (En) J+1 + N (match) J+1 1 2 + 0 N (match) J+1
, and using also Proposition 8.3.12,

N (match) J+1 N (En) J+1 + T |d J+1 ( (ext) Ř)| 2 1 2 B [J] +   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 B [J] + 0 N (En) J+1 + N (match) J+1 1 2 + 0 N (match) J+1
.

For 0 > 0 small enough, we infer, by absorbing the appropriate terms to the left,

N (En) J+1 + N (match) J+1 B [J] +   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 B [J] + 0 N (En) J+1 + N (match) J+1 1 2 B [J] +   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 B [J] 1 2 +   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 0 N (En) J+1 + N (match) J+1 1 2
and hence

N (En) J+1 + N (match) J+1 B [J] +   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 4 B [J] 1 2 + 0   (ext) M r∈I m 0 ,δ H |d k large Ř| 2   1 2
.

In view of Lemma 8.3.5, we deduce

N (En) J+1 + N (match) J+1 B [J + 1]
which is (8.3.13) for J + 1 derivatives. We deduce that (8.3.13) holds for all J ≤ k large -1, and hence

N (En) k large -1 + N (match) k large -1 B [k large -1]. (8.3.21)
Step 2. Next, Proposition 8.3.10 implies in view of (8.3.21)

(ext) G k large [ Γ] + (int) R k large [ Ř] + (ext) R k large [ Ř] B [k large -1] (8.3.22) + 0 N (En) k large + N (match) k large .
In particular, we have

  (ext) M r∈I m 0 ,δ H |d ≤k large Ř| 2   1 2 ≤ (ext) R k large [ Ř] B [k large -1] + 0 N (En) k large + N (match) k large .
In view of the definition of B [k large -1], we infer for 0 > 0 small enough

  (ext) M r∈I m 0 ,δ H |d ≤k large Ř| 2   1 2 0 + 0 N (En) k large + N (match) k large
and hence

B [k large -1] 0 + 0 N (En) k large + N (match) k large
which yields, together with (8.3.22), 

(ext) G k large [ Γ] + (int) R k large [ Ř] + (ext) R k large [ Ř] 0 + 0 N (En) k large + N (match) k large . ( 8 
(int) G k large [ Γ] 0 + 0 N (En) k large + N (match) k large + T |d k large ( (ext) Ř)| 2 1 2
and hence, for 0 > 0 small enough, using again (8.3.23),

N (En) k large 0 + 0 N (match) k large + T |d k large ( (ext) Ř)| 2 1 2
.

Together with Proposition 8.3.12, we infer for 0 > 0 small enough N (En)

k large + N (match) k large 0 + T |d J+1 ( (ext) Ř)| 2 1 2
.

Step 4. It remains to estimate the last term of the RHS of the previous inequality. Now, in view of (8.3.7) and (8.3.23), we have

T |d k large ( (ext) Ř)| 2 1 2   (ext) M r∈I m 0 ,δ H |d ≤k large Ř| 2   1 2 (ext) R k large [ Ř] 0 + 0 N (En)
k large so that we finally obtain, for 0 > 0 small enough,

N (En) k large 0 .
This concludes the proof of Theorem M8. where

Err[ g ρ] := 3 2 ρ - 1 2 ϑ ϑ + 2(ξ ξ + η η) + 3 2 κ -2ω 1 2 ϑ α -ζ β -2(η β + ξ β) - 1 2 ϑ d / 2 β + (ζ -η)e 3 β -ηe 3 (Φ)β -ξ(e 4 β + e 4 (Φ)β) -ββ -e 3 - 1 2 ϑ α + ζ β + 2(η β + ξ β) -d / 1 (κ)β + 2 d / 1 (ω)β + 3η d / 1 (ρ) -d / 1 -ϑβ + ξα -2ηe θ ρ.
2. The small curvature quantity,

ρ := r 2 ρ + 2m r 3
verifies the wave equation,

g (ρ) + 8m r 3 ρ = -6m g (r) -2 r -2m r 2 r 2 - 3m r κκ + 4Υ r 2 - 3m r (Aκ + Aκ) + Err[ g ρ],
where

Err[ g ρ] := - 6m r AA + 3 r 2 ρ2 + 3 2 4 3 A e 3 (r) r + 4 3 A e 4 (r) r ρ + 3 2 κκ - 8m r 3 + 2 3r 2 g (r 2 ) + 8m r 3 ρ -Ae 3 (ρ) -Ae 4 (ρ) + 2 r Ae 3 (m) + 2 r Ae 4 (m) +4D a (m)D a 1 r + 2 r g (m) + 4r d / 1 (r) d / 1 (ρ) + r 2 Err[ g ρ],
and where we recall that, 

A = 2 r e 4 (r) -κ, A = 2 r e 3 (
(int) M∪ (ext) M(r≤4m 0 ) d J g (r) - 2 r - 2m r 2 2 + sup r 0 ≥4m 0 {r=r 0 } d J g (r) - 2 r - 2m r 2 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 and (trap) M d J e 4 g ( (ext) r) - 2 (ext) r - 2 (ext) m ( (ext) r) 2 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Proof. Recall that, according to definition 4.6.4, r is defined on (ext) M ∪ (int) M as follows

• on (ext) M \ Match, we have

(glo) r = (ext) r,
• on (int) M \ Match, we have

(glo) r = (int) r,
• on the matching region, we have

(glo) r = (1 -ψ m 0 ,δ H ( (int) r)) (int) r + ψ m 0 ,δ H ( (int) r) (ext) r,
where the matching region of Proposition 8.3.3 is given by

Match := (ext) M ∩ (int) r ≤ 2m 0 1 + 3 2 δ H ∪ (int) M ∩ (int) r ≥ 2m 0 1 + 1 2 δ H ,
and where ψ m 0 ,δ H is given by We have on (ext) M g ( (ext) r) = -e 3 e 4 ( (ext) r) + / ( (ext) r) + 2ω -

ψ m 0 ,δ H (r) = ψ r -2m 0 1 + 1 2 δ H 2m 0 δ H on 2m 0 1 + 1 2 δ H ≤ r ≤ 2m 0 1 + 3 2 δ H .
1 2 κ e 4 ( (ext) r) - 1 2 κe 3 ( (ext) r) + 2ηe θ ( (ext) r).
Here, (e 4 , e 3 , e θ ) denotes the frame of (ext) M and the Ricci coefficients are computed w.r.t. frame, so we have

e 4 ( (ext) r) = (ext) r 2 κ, e 3 ( (ext) r) = (ext) r 2 (κ + A), e θ ( (ext) r) = 0 and hence g ( (ext) r) = -e 3 (ext) r 2 κ + 2ω - 1 2 κ (ext) r 2 κ - 1 2 κ (ext) r 2 (κ + A) = - (ext) r 2 e 3 (κ) - e 3 ( (ext) r) 2 κ + 2ω - 1 2 κ (ext) r 2 κ - (ext) r 4 κκ - (ext) r 4 κA = - (ext) r 2 e 3 (κ) - 1 2 κ (ext) r 2 (κ + A) + 2ω - 1 2 κ (ext) r 2 κ - (ext) r 4 κκ - (ext) r 4 κA.
Now, we have

e 3 (κ) = e 3 (κ) + Err[e 3 κ] = - 1 2 κκ + 2ωκ + 2ρ + 2 d / 1 η - 1 2 ϑϑ + 2η 2 + Err[e 3 κ] = - 1 2 κκ + 2ωκ + 2ρ - 1 2 ϑϑ + 2η 2 + Err[e 3 κ]
and hence

g ( (ext) r) = - (ext) r 2 - 1 2 κκ + 2ωκ + 2ρ - 1 2 ϑϑ + 2η 2 + Err[e 3 κ] - 1 2 κ (ext) r 2 (κ + A) + 2ω - 1 2 κ (ext) r 2 κ - (ext) r 4 κκ - (ext) r 4 κA.
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Together with (8.3.4) and the iteration assumption (8.3.13), we easily infer 5

(ext) M(r≤4m 0 ) d J g ( (ext) r) - 2 (ext) r - 2 (ext) m ( (ext) r) 2 2 + sup r 0 ≥4m 0 {r=r 0 } d J g ( (ext) r) - 2 (ext) r - 2 (ext) m ( (ext) r) 2 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 . (8.4.1)
Also, using again (8.3.4) and the iteration assumption (8.3.13), we have

(trap) M d J e 4 g ( (ext) r) - 2 (ext) r - 2 (ext) m ( (ext) r) 2 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 , (8.4.2)
where we have used the null structure equations for e 4 (κ), e 4 (κ), e 4 (ω), e 4 (ϑ), e 4 (ϑ), e 4 (η), the equations for e 4 (Ω),e 4 (ς), e 4 (r), and the Bianchi identity for e 4 (ρ).

Remark 8.4.3. Note that we have used in the last estimate the following observations to avoid a potential loss of one derivative

e 4 (κ) = -2 d / 1 ζ + • • • = 2 ρ + µ - 1 4 ϑϑ + • • • , e 4 (ρ) = d / 1 β + • • • = • • • , e 4 (Err[e 3 κ]) = 2e 4 (ς -1 ς d / 1 η) + • • • = 2ς -1 ς d / 1 e 4 η + • • • = -2ς -1 e θ (ς)e 4 η + • • •
Note also that there is no term involving d J ρ (without average) as such a term appears only in the null structure equations for e 4 (κ), as well as e 4 (ω) and vanishes due to the cancellation 

e 4 2ω - 1 2 κ = 2e 4 (ω) - 1 2 e 4 (κ) = 2ρ + • • • - 1 2 (-2 d / 1 ζ + 2ρ) + • • • = 2µ + • • •
d J g (r) - 2 r - 2m r 2 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 
as desired. This concludes the proof of the lemma. 

N 0 = -6m g (r) -2 r -2m r 2 r 2 - 3m r κκ + 4Υ r 2 - 3m r (Aκ + Aκ) + Err[ g ρ].
Then, N 0 -Err[ g ρ] satisfies

(int) M∪ (ext) M(r≤4m 0 ) d J (N 0 -Err[ g ρ]) 2 + sup r 0 ≥4m 0 {r=r 0 } d J (N 0 -Err[ g ρ]) 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 and d J e 4 N 0 -Err[ g ρ] = - 12mκ r d J ρ + a J on (trap) M
where a J satisfies

(trap) M d J e 4 a J 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Proof. The first estimate is an immediate consequence of Lemma 8.4.2, (8.3.4) and the iteration assumption (8.3.13).

Concerning the second estimate, note that the term d J ρ is due to the null structure equations for e 4 (κ), i.e.

e 4 (κ) = -2 d / 1 ζ + 2ρ + • • • = 4ρ + • • •
Then, the estimate for a J follows from Lemma 8.4.2, (8.3.4) and the iteration assumption (8.3.13).

End of the proof of Proposition 8.3.6

In view of Proposition 8.4.1, ρ satisfies

( 0 + V 0 )ρ = N 0 , V 0 = 8m r 3
, where

N 0 := -6m g (r) -2 r -2m r 2 r 2 - 3m r κκ + 4Υ r 2 - 3m r (Aκ + Aκ) + Err[ g ρ].
We may thus apply the estimate (10.5.2) of Theorem 10.5.2 with φ = ρ and s = J to obtain for any

k small ≤ J ≤ k large -1 sup τ ∈[1,τ * ] E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) + F J δ [ρ](1, τ * ) E J δ [ρ](1) + sup τ ∈[1,τ * ] E J-1 δ [ρ](τ ) + B J-1 δ [ρ](1, τ * ) + F J-1 δ [ρ](1, τ * ) +D J [Γ] sup M ru 1 2 +δ dec trap |d ≤k small ρ| 2 + Σ(τ * ) (d ≤J ρ) 2 r 3 + M r 1+δ |d ≤J N 0 | 2 + (trap) M T (d J ρ)d J N 0 ,
where D J [Γ] is defined by

D J [Γ] := (int) M∪ (ext) M(r≤4m 0 ) (d ≤J Γ) 2 + sup r 0 ≥4m 0 r 0 {r=r 0 } |d ≤J Γ g | 2 + r -1 0 {r=r 0 } |d ≤J Γ b | 2 .
Next we use the iteration assumption (8.3.13) which yields in particular

D J [Γ] ( B [J]) 2 .
Also, we have

ρ = r 2 ρ - 2m r 3 + r 2 ρ
and hence, using again the iteration assumption (8.3.13), as well as the control on averages provided by Lemma 3.4.1, we infer 

sup τ ∈[1,τ * ] E J-1 δ [ρ](τ ) + B J-1 δ [ρ](1, τ * ) + F J-1 δ [ρ](1, τ * ) + Σ(τ * ) (d ≤J ρ) 2 r 3 ( B [J])
E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) + F J δ [ρ](1, τ * ) E J δ [ρ](1) + ( B [J]) 2 + M r 1+δ |d ≤J N 0 | 2 + (trap) M T (d J ρ)d J N 0 .
Next, using the form of N 0 , as well as Corollary 8.4.5, we derive

M r 1+δ |d ≤J N 0 | 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Also, decomposing T as a combination of R and e 4 , integrating e 4 by parts, using again the form of N 0 , as well as Corollary 8.4.5, we have

(trap) M T (d J ρ)d J N 0 (trap) M R(d J ρ)d J (N 0 -Err[ g ρ]) + (trap) M e 4 (N 0 -Err[ g ρ])d J N 0 + (trap) M |T (d J ρ)||d J Err[ g ρ]| (trap) M d J ρe 4 (d J (N 0 -Err[ g ρ])) + B [J] + 0 N (En) J+1 + N (match) J+1 sup τ ∈[1,τ * ] E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) 1 2 (trap) M (d J ρ) 2 + B [J] + 0 N (En) J+1 + N (match) J+1 sup τ ∈[1,τ * ] E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) 1 2 
.

In view of the above, we infer

sup τ ∈[1,τ * ] E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) + F J δ [ρ](1, τ * ) (trap) M (d J ρ) 2 + ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Next, note that we have on

R(r -3m) = 1 2 (e 4 (r) -Υe 3 (r)) - 3 2 (e 4 (m) -Υe 3 (m)) = Υ + O( 0 ) ≥ 1 6 on (trap) M,
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and hence, using also integration by parts,

(trap) M (d J ρ) 2 (trap) M R(r -3m)(d J ρ) 2 (trap) M 1 - 3m r |d J ρ||Rd J ρ| B [J] sup τ ∈[1,τ * ] E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) 1 2 
.

We deduce

sup τ ∈[1,τ * ] E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) + F J δ [ρ](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 
as desired. This concludes the proof of Proposition 8.3.6.

8.5 Proof of Proposition 8.3.7 8.5.1 A wave equations for α + Υ 2 α Lemma 8.5.1. We have

2 (α + Υ 2 α) = 4 r 1 - 3m r e 3 (α) -Υe 4 (α) + - 2 r 2 + 16m r 3 α - 2Υ r 2 1 - 2m r - 8m 2 r 2 α + Err 2 (α + Υ 2 α)
where

Err 2 (α + Υ 2 α) = Υ 2 V + 4m r 2 Υ g (r) - 8m r 3 ΥD α (r)D α (r) + 8m 2 r 4 D α (r)D α (r) α + 4 ω + m r 2 + 2 κ - 2Υ r e 3 (α) -4ωe 4 (α) -4Υ Υ ω + m r 2 + m r 2 (e 4 (r) -1) - e 4 (m) r e 3 (α) + 4Υ 2 ω + 2Υ 2 κ + 2 r -4mΥ (e 3 (r) + 1) r 2 + 4Υ e 3 (m) r e 4 (α) + -4ρ - 8m r 3 + 2 ω κ - 2m r 3 + 1 2 κ κ + 4Υ r 2 -4e 4 (ω) -8ωω -10κ ω α + 8Υ r 2 D α (m)D α (r) - 4Υ r g (m) - 8m r 3 D α (r)D α (m) + 8m r D α (m)D α m r α +Υ 2 -4ρ - 8m r 3 -4 e 3 (ω) - 2m r 3 -10 κ ω - 2m r 3 + 1 2 κ κ + 4Υ r 2 -8ωω + 2κω α + 4m r 2 Υ g (r) - 2 r - 2m r 2 α - 8m r 3 1 - 3m r -e 4 (r)e 3 (r) -Υ + (e θ (r)) 2 α +4Υe θ (Υ)e θ (α) + Err[ g α] + Υ 2 Err[ g α].
Proof. Recall from Proposition 2.4.6 that the curvature components α and α verify the following Teukolsky equations

2 α = -4ωe 4 (α) + (4ω + 2κ)e 3 (α) + V α + Err[ g α], V = -4ρ -4e 4 (ω) -8ωω + 2ω κ -10κ ω + 1 2 κ κ,
where

Err( g α) = 1 2 ϑe 3 (α) + 3 4 ϑ 2 ρ + e θ (Φ)ϑβ - 1 2 κ(ζ + 4η)β -(ζ + η)e 4 (β) -ξe 3 (β) +e θ (Φ)(2ζ + η)α + β 2 + e 4 (Φ)ηβ + e 3 (Φ)ξβ -(ζ + 4η)e 4 (β) -(e 4 (ζ) + 4e 4 (η))β -2(κ + ω)(ζ + 4η)β + 2e θ (κ + ω)β -e θ ((2ζ + η)α) -3ξe θ (ρ) + 2ηe θ (α) + 3 2 ϑ d / 1 β + 3ρ(η + η + 2ζ)ξ + d / 1 ηα + 1 4 κϑα -2ωϑα - 1 2 ϑϑα + ξξα + η 2 α + 3 2 ϑζβ + 3ϑ(ηβ + ξβ) - 1 2 ϑ(ζ + 4η)β,
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and

2 α = -4ωe 3 (α) + (4ω + 2κ)e 4 (α) + V α + Err[ g α], V = -4ρ -4e 3 (ω) -8ωω + 2ωκ -10κ ω + 1 2 κ κ,
where

Err( g α) = 1 2 ϑe 4 (α) + 3 4 ϑ 2 ρ + e θ (Φ)ϑ β - 1 2 κ(-ζ + 4η)β -(-ζ + η)e 3 (β) -ξe 4 (β) +e θ (Φ)(-2ζ + η)α + β 2 + e 3 (Φ)ηβ + e 4 (Φ)ξ β -(-ζ + 4η)e 3 (β) -(-e 3 (ζ) + 4e 3 (η))β -2(κ + ω)(-ζ + 4η)β + 2e θ (κ + ω)β -e θ ((-2ζ + η)α) -3ξe θ (ρ) + 2ηe θ (α) + 3 2 ϑ d / 1 β + 3ρ(η + η -2ζ)ξ + d / 1 ηα + 1 4 κϑ α -2ωϑ α - 1 2 ϑϑα + ξξα + η 2 α - 3 2 ϑζβ + 3ϑ(ηβ + ξβ) - 1 2 ϑ(-ζ + 4η)β.
We infer from the above wave equations

2 (α + Υ 2 α) = 2 (α) + Υ 2 2 (α) + 2D µ (Υ 2 )D µ (α) + 0 (Υ 2 )α = -4ωe 4 (α) + (4ω + 2κ)e 3 (α) +Υ 2 -4ωe 3 (α) + (4ω + 2κ)e 4 (α) -2Υe 3 (Υ)e 4 (α) -2Υe 4 (Υ)e 3 (α) +V α + Υ 2 V + 0 (Υ 2 ) α + 4Υe θ (Υ)e θ (α) + Err[ g α] + Υ 2 Err[ g α]
and hence

2 (α + Υ 2 α) = 4 r 1 - 3m r e 3 (α) -Υe 4 (α) +V α + Υ 2 V + 4m r 2 Υ g (r) - 8m r 3 ΥD α (r)D α (r) + 8m 2 r 4 D α (r)D α (r) α + 4 ω + m r 2 + 2 κ - 2Υ r e 3 (α) -4ωe 4 (α) -4Υ Υ ω + m r 2 + m r 2 (e 4 (r) -1) - e 4 (m) r e 3 (α) + 4Υ 2 ω + 2Υ 2 κ + 2 r -4mΥ (e 3 (r) + 1) r 2 + 4Υ e 3 (m) r e 4 (α) + 8Υ r 2 D α (m)D α (r) - 4Υ r g (m) - 8m r 3 D α (r)D α (m) + 8m r D α (m)D α m r α +4Υe θ (Υ)e θ (α) + Err[ g α] + Υ 2 Err[ g α].
8.5. PROOF OF PROPOSITION 8.3.7
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Next, we have in view of the formula for

V V = -4ρ -4e 4 (ω) -8ωω + 2ω κ -10κ ω + 1 2 κ κ = - 2 r 2 + 16m r 3 + -4ρ - 8m r 3 + 2 ω κ - 2m r 3 + 1 2 κ κ + 4Υ r 2 -4e 4 (ω) -8ωω -10κ ω.
Also, we have in view of the formula for

V V = -4ρ -4e 3 (ω) -8ωω + 2ωκ -10κ ω + 1 2 κ κ = - 2 r 2 + -4ρ - 8m r 3 -4 e 3 (ω) + 2m r 3 -10 κ ω - 2m r 3 + 1 2 κ κ + 4Υ r 2 -8ωω + 2κω. Moreover, we have 4m r 2 Υ g (r) - 8m r 3 ΥD α (r)D α (r) + 8m 2 r 4 D α (r)D α (r) = 4mΥ r 2 2 r - 2m r 2 + 4m r 2 Υ g (r) - 2 r - 2m r 2 - 8m r 3 1 - 3m r (-e 4 (r)e 3 (r) + (e θ (r)) 2 ) = 16m 2 Υ r 4 + 4m r 2 Υ g (r) - 2 r - 2m r 2 - 8m r 3 1 - 3m r -e 4 (r)e 3 (r) -Υ + (e θ (r)) 2
and hence

Υ 2 V + 4m r 2 Υ g (r) - 8m r 3 ΥD α (r)D α (r) + 8m 2 r 4 D α (r)D α (r) = - 2Υ r 2 1 - 2m r - 8m 2 r 2 +Υ 2 -4ρ - 8m r 3 -4 e 3 (ω) + 2m r 3 -10 κ ω - 2m r 3 + 1 2 κ κ + 4Υ r 2 -8ωω + 2κω + 4m r 2 Υ g (r) - 2 r - 2m r 2 - 8m r 3 1 - 3m r -e 4 (r)e 3 (r) -Υ + (e θ (r)) 2 .
We deduce

2 (α + Υ 2 α) = 4 r 1 - 3m r e 3 (α) -Υe 4 (α) + - 2 r 2 + 16m r 3 α - 2Υ r 2 1 - 2m r - 8m 2 r 2 α + Err 2 (α + Υ 2 α)
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where

Err 2 (α + Υ 2 α) = Υ 2 V + 4m r 2 Υ g (r) - 8m r 3 ΥD α (r)D α (r) + 8m 2 r 4 D α (r)D α (r) α + 4 ω + m r 2 + 2 κ - 2Υ r e 3 (α) -4ωe 4 (α) -4Υ Υ ω + m r 2 + m r 2 (e 4 (r) -1) - e 4 (m) r e 3 (α) + 4Υ 2 ω + 2Υ 2 κ + 2 r -4mΥ (e 3 (r) + 1) r 2 + 4Υ e 3 (m) r e 4 (α) + -4ρ - 8m r 3 + 2 ω κ - 2m r 3 + 1 2 κ κ + 4Υ r 2 -4e 4 (ω) -8ωω -10κ ω α + 8Υ r 2 D α (m)D α (r) - 4Υ r g (m) - 8m r 3 D α (r)D α (m) + 8m r D α (m)D α m r α +Υ 2 -4ρ - 8m r 3 -4 e 3 (ω) + 2m r 3 -10 κ ω - 2m r 3 + 1 2 κ κ + 4Υ r 2 -8ωω + 2κω α + 4m r 2 Υ g (r) - 2 r - 2m r 2 α - 8m r 3 1 - 3m r -e 4 (r)e 3 (r) -Υ + (e θ (r)) 2 α +4Υe θ (Υ)e θ (α) + Err[ g α] + Υ 2 Err g α
as desired. This concludes the proof of the lemma.

Lemma 8.5.2. We have

e 3 (α) = - 1 2 κα -d / 2 d / -1 1 e 4 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (ζ + 4η)β.
and

e 4 (α) = - 1 2 κα -d / 2 d / -1 1 e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (-ζ + 4η)β.
Proof. Recall that we have

2 (α + Υ 2 α) = 4 r 1 - 3m r e 3 (α) -Υe 4 (α) + - 2 r 2 + 16m r 3 α - 2Υ r 2 1 - 2m r - 8m 2 r 2 α + Err 2 (α + Υ 2 α) .
We first express e 3 (α) -Υe 4 (α) in terms of ρ, where we recall that ρ = r 2 ρ + 2m r . Using Bianchi, we have

e 3 (α) = - 1 2 κα -d / 2 β + 4ωα - 3 2 ϑρ + (ζ + 4η)β, d / 1 β = e 4 (ρ) + 3 2 κρ + 1 2 ϑα -ζβ -2(ηβ + ξβ) = e 4 ρ r 2 - 2m r 3 + 3 2 κρ + 1 2 ϑα -ζβ -2(ηβ + ξβ) = e 4 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ)
and hence

e 3 (α) = - 1 2 κα -d / 2 d / -1 1 e 4 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (ζ + 4η)β.
Similarly, we have

e 4 (α) = - 1 2 κα -d / 2 β + 4ωα - 3 2 ϑρ + (-ζ + 4η)β, d / 1 β = e 3 (ρ) + 3 2 κρ + 1 2 ϑα + ζβ -2(ηβ + ξβ) = e 3 ρ r 2 - 2m r 3 + 3 2 κρ + 1 2 ϑα + ζβ -2(ηβ + ξβ) = e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ)
and hence

e 4 (α) = - 1 2 κα -d / 2 d / -1 1 e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (-ζ + 4η)β.
This concludes the proof of the lemma.

Corollary 8.5.3. We have

2 (α + Υ 2 α) - 2 r 2 1 + 2m r (α + Υ 2 α) = - 8 r 1 - 3m r d / 2 d / -1 1 R ρ r 2 - 6 r 1 - 3m r (ϑ -Υϑ)ρ - 4 r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 + 4Υ r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 + Err 1 ,
where

Err 1 := 4 r 1 - 3m r 4ωα + (ζ + 4η)β -Υ(-ζ + 4η)β + [Υ, d / 2 d / -1 1 ]e 3 ρ r 2 -d / 2 d / -1 1 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) +Υ d / 2 d / -1 1 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) - 2 r 1 - 3m r κ + 2 r α + 4Υ r 1 - 3m r 1 2 κ - 2Υ r -4 ω + m r 2 α +Err 2 (α + Υ 2 α) .
Proof. Recall from Lemma 8.5.1 that we have

2 (α + Υ 2 α) = 4 r 1 - 3m r e 3 (α) -Υe 4 (α) + - 2 r 2 + 16m r 3 α - 2Υ r 2 1 - 2m r - 8m 2 r 2 α + Err 2 (α + Υ 2 α) .
In view of Lemma 8.5.2, we have

e 3 (α) -Υe 4 (α) = -2 d / 2 d / -1 1 R ρ r 2 - 1 2 κα + Υ 1 2 κ -4ω α - 3 2 (ϑ -Υϑ)ρ -d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 +Υ d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 +4ωα + (ζ + 4η)β -Υ(-ζ + 4η)β + [Υ, d / 2 d / -1 1 ]e 3 ρ r 2 -d / 2 d / -1 1 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) +Υ d / 2 d / -1 1 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) .
We infer

2 (α + Υ 2 α) = - 8 r 1 - 3m r d / 2 d / -1 1 R ρ r 2 - 2 r 1 - 3m r κα + - 2 r 2 + 16m r 3 α + 4Υ r 1 - 3m r 1 2 κ -4ω α - 2Υ r 2 1 - 2m r - 8m 2 r 2 α - 6 r 1 - 3m r (ϑ -Υϑ)ρ - 4 r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 + 4Υ r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 + 4 r 1 - 3m r 4ωα + (ζ + 4η)β -Υ(-ζ + 4η)β + [Υ, d / 2 d / -1 1 ]e 3 ρ r 2 -d / 2 d / -1 1 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) +Υ d / 2 d / -1 1 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) +Err 2 (α + Υ 2 α) .
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Since we have

- 2 r 1 - 3m r κα + 4Υ r 1 - 3m r 1 2 κ -4ω α = 4 r 2 1 - 3m r α + 4Υ r 2 1 - 3m r 1 + 2m r α - 2 r 1 - 3m r κ + 2 r α + 4Υ r 1 - 3m r 1 2 κ - 2Υ r -4 ω + m r 2 α,
this yields

2 (α + Υ 2 α) = - 8 r 1 - 3m r d / 2 d / -1 1 R ρ r 2 + 2 r 2 1 + 2m r α + 2Υ r 2 1 - 4m 2 r 2 α - 6 r 1 - 3m r (ϑ -Υϑ)ρ - 4 r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 + 4Υ r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 + Err 1 ,
where

Err 1 = 4 r 1 - 3m r 4ωα + (ζ + 4η)β -Υ(-ζ + 4η)β + [Υ, d / 2 d / -1 1 ]e 3 ρ r 2 -d / 2 d / -1 1 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) +Υ d / 2 d / -1 1 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) - 2 r 1 - 3m r κ + 2 r α + 4Υ r 1 - 3m r 1 2 κ - 2Υ r -4 ω + m r 2 α +Err 2 (α + Υ 2 α) .
Now, since we have 

2 r 2 1 + 2m r α + 2Υ r 2 1 - 4m 2 r 2 α = 2 r 2 1 + 2m r (α + Υ 2 α), 8 
(α + Υ 2 α) - 2 r 2 1 + 2m r (α + Υ 2 α) = - 8 r 1 - 3m r d / 2 d / -1 1 R ρ r 2 - 6 r 1 - 3m r (ϑ -Υϑ)ρ - 4 r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 + 4Υ r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 + Err 1 ,
as desired. This concludes the proof of the corollary.

End of the proof of Proposition 8.3.7

In view of Corollary 8.5.3, α + Υ 2 α satisfies

( 2 + V 2 )(α + Υ 2 α) = N 2 , V 2 = - 2 r 2 1 + 2m r ,
where

N 2 := - 8 r 1 - 3m r d / 2 d / -1 1 R ρ r 2 - 6 r 1 - 3m r (ϑ -Υϑ)ρ - 4 r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 + 4Υ r 1 - 3m r d / 2 d / -1 1 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 + Err 1 .
We may thus apply the estimate (10.5.1) of Theorem 10.5.2 with ψ = α + Υ 2 α and s = J to obtain for any

k small ≤ J ≤ k large -1 sup τ ∈[1,τ * ] E J δ [α + Υ 2 α](τ ) + B J δ [α + Υ 2 α](1, τ * ) + F J δ [α + Υ 2 α](1, τ * ) E J δ [α + Υ 2 α](1) + sup τ ∈[1,τ * ] E J-1 δ [α + Υ 2 α](τ ) + B J-1 δ [α + Υ 2 α](1, τ * ) +F J-1 δ [α + Υ 2 α](1, τ * ) + D J [Γ] sup M ru 1 2 +δ dec trap |d ≤k small (α + Υ 2 α)| 2 + M r 1+δ |d ≤J N 2 | 2 + (trap) M T (d J (α + Υ 2 α))d J N 2 ,
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where D J [Γ] is defined by

D J [Γ] := (int) M∪ (ext) M(r≤4m 0 ) (d ≤J Γ) 2 + sup r 0 ≥4m 0 r 0 {r=r 0 } |d ≤J Γ g | 2 + r -1 0 {r=r 0 } |d ≤J Γ b | 2 .
Next we use the iteration assumption (8.3.13) which yields in particular

D J [Γ] ( B [J]) 2 and sup τ ∈[1,τ * ] E J-1 δ [α + Υ 2 α](τ ) + B J-1 δ [α + Υ 2 α](1, τ * ) + F J-1 δ [α + Υ 2 α](1, τ * ) ( B [J]) 2 .
Together with the control of d ≤k small (α + Υ 2 α) provided by the decay estimate (8.3.6), we infer from the above estimates

sup τ ∈[1,τ * ] E J δ [α + Υ 2 α](τ ) + B J δ [α + Υ 2 α](1, τ * ) + F J δ [α + Υ 2 α](1, τ * ) E J δ [α + Υ 2 α](1) + ( B [J]) 2 + M r 1+δ |d ≤J N 2 | 2 + (trap) M T (d J (α + Υ 2 α))d J N 2 .
Next, using the form of N 2 , as well as the control of ρ provided by Proposition 8.3.6, we derive 

M r 1+δ |d ≤J N 2 | 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 and (trap) M T (d J (α + Υ 2 α))d J N 2 (trap) M 1 - 3m r |T (d J (α + Υ 2 α))| |R(d J ρ)| + |d J ρ| + |d J Γ| + (trap) M |T (d J (α + Υ 2 α))||Err 1 | B [J] + 0 N (En) J+1 + N (match) J+1 sup τ ∈[1,τ * ] E J δ [ρ](τ ) + B J δ [ρ](1, τ * ) 1 
E J δ [α + Υ 2 α](τ ) + B J δ [α + Υ 2 α)](1, τ * ) + F J δ [α + Υ 2 α)](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N ( 
e 4 (α) = - 1 2 κα -d / 2 d / -1 1 e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (-ζ + 4η)β.
We infer

e 4 (α -Υ 2 α) = e 4 (α + Υ 2 α) -2e 4 (Υ 2 α) = e 4 (α + Υ 2 α) -2Υ 2 e 4 (α) -2e 4 (Υ 2 )α = e 4 (α + Υ 2 α) + 2Υ 2 d / 2 d / -1 1 e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) + Υ 2 κα -8Υ 2 ωα + 3Υ 2 ϑρ -2Υ 2 (-ζ + 4η)β - 8mΥe 4 (r) r 2 α + 8Υe 4 (m) r α.
Also, recall from Lemma 8.5.2 that we have

e 3 (α) = - 1 2 κα -d / 2 d / -1 1 e 4 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (ζ + 4η)β.
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We infer

e 3 (α -Υ 2 α) = -e 3 (α + Υ 2 α) + 2e 3 (α) = -e 3 (α + Υ 2 α) -2 d / 2 d / -1 1 e 4 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) -κα + 8ωα -3ϑρ + 2(ζ + 4η)β.
In view of the above identities for e 4 (α -Υ 2 α) and e 3 (α -Υ 2 α), and using the control for ρ provided by Proposition 8.3.6 as well as the control for α + Υ 2 α provided by Proposition 8.3.7, and the iteration assumption (8.3.13), we obtain

B J-1 δ [e 3 (α -Υ 2 α)](1, τ * ) + B J-1 δ [re 4 (α -Υ 2 α)](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Also, using the Bianchi identity for d / 2 α and d / 1 β, we have

d / 1 d / 2 α = d / 1 e 4 β + 2(κ + ω)β -(2ζ + η)α -3ξρ) = e 4 ( d / 1 β) + [ d / 1 , e 4 ]β + d / 1 2(κ + ω)β -(2ζ + η)α -3ξρ) = e 4 e 4 ρ + 3 2 ρ + 1 2 ϑα -ζβ -2(ηβ + ξβ) + [ d / 1 , e 4 ]β + d / 1 2(κ + ω)β -(2ζ + η)α -3ξρ) = e 4 e 4 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ - 2Υ r + 6m(e 4 (r) -Υ) r 4 - 2e 4 (m) r 3 + 1 2 ϑα -ζβ -2(ηβ + ξβ) + [ d / 1 , e 4 ]β + d / 1 2(κ + ω)β -(2ζ + η)α -3ξρ) .
Using the control for ρ provided by Proposition 8.3.6 as well as the iteration assumption (8.3.13), we obtain

B J-2 δ [r 2 d / 1 d / 2 α](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Using the control for α + Υ 2 α provided by Proposition 8.3.7, we infer

B J-2 δ [r 2 d / 1 d / 2 (α -Υ 2 α)](1, τ * ) B J-2 δ [r 2 d / 1 d / 2 α](1, τ * ) + B J-2 δ [r 2 d / 1 d / 2 (α + Υ 2 α)](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Using a Poincaré inequality for d / 1 and for d / 2 , we deduce

B J-2 δ [ d / 2 (α -Υ 2 α)](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Together with the above estimate for e 3 (α -Υ 2 α) and re 4 (α -Υ 2 α), we deduce

B J δ [α -Υ 2 α](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Together with the control for α + Υ 2 α provided by Proposition 8.3.7, we finally obtain

B J δ [α](1, τ * ) + B J δ [Υ 2 α](1, τ * ) ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
(8.6.1)

8.6.2 Control of α (8.6.1) provides in particular the control of Υ 2 α. In this section, we infer a suitable control for α using the wave equation satisfied by α and the redshift vectorfield.

Let Y (0) the vectorfield given by

Y (0) := 1 + 5 4m (r -2m) + Υ e 3 + 1 + 5 4m (r -2m) e 4 ,
where Y (0) has been introduced in Proposition 10.1.29 in connection with the redshift vectorfield.

Lemma 8.6.1. We have

2 α = 4m r 2 1 + 5 4m (r -2m) + Υ Y (0) α + N 2
where N 2 is given by

N 2 := - 4 r 1 + m 1 + 5 4m (r -2m) r 1 + 5 4m (r -2m) + Υ - 1 2 κα -d / 2 d / -1 1 e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (-ζ + 4η)β +V α -4 ω + m r 2 e 3 (α) + 4ω + 2 κ + 2 r e 4 (α) + Err[ g α].
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Proof. Recall from Proposition 2.4.6 that α verifies the following Teukolsky equation

2 α = -4ωe 3 (α) + (4ω + 2κ)e 4 (α) + V α + Err[ g α], V = -4ρ -4e 3 (ω) -8ωω + 2ωκ -10κ ω + 1 2 κ κ,
where

Err( g α) = 1 2 ϑe 4 (α) + 3 4 ϑ 2 ρ + e θ (Φ)ϑ β - 1 2 κ(-ζ + 4η)β -(-ζ + η)e 3 (β) -ξe 4 (β) +e θ (Φ)(-2ζ + η)α + β 2 + e 3 (Φ)ηβ + e 4 (Φ)ξ β -(-ζ + 4η)e 3 (β) -(-e 3 (ζ) + 4e 3 (η))β -2(κ + ω)(-ζ + 4η)β + 2e θ (κ + ω)β -e θ ((-2ζ + η)α) -3ξe θ (ρ) + 2ηe θ (α) + 3 2 ϑ d / 1 β + 3ρ(η + η -2ζ)ξ + d / 1 ηα + 1 4 κϑ α -2ωϑ α - 1 2 ϑϑα + ξξα + η 2 α - 3 2 ϑζβ + 3ϑ(ηβ + ξβ) - 1 2 ϑ(-ζ + 4η)β.
We deduce

2 α = 4m r 2 e 3 (α) - 4 r e 4 (α) + V α -4 ω + m r 2 e 3 (α) + 4ω + 2 κ + 2 r e 4 (α) +Err[ g α].
In view of the definition of Y (0) , we infer

2 α = 4m r 2 1 + 5 4m (r -2m) + Υ Y (0) α - 4 r 1 + m 1 + 5 4m (r -2m) r 1 + 5 4m (r -2m) + Υ e 4 (α) +V α -4 ω + m r 2 e 3 (α) + 4ω + 2 κ + 2 r e 4 (α) + Err[ g α].
Next, recall from Lemma 8.5.2 that we have

e 4 (α) = - 1 2 κα -d / 2 d / -1 1 e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (-ζ + 4η)β.
We infer 

2 α = 4m r 2 1 + 5 4m (r -2m) + Υ Y (0) α + N 2
N 2 = - 4 r 1 + m 1 + 5 4m (r -2m) r 1 + 5 4m (r -2m) + Υ - 1 2 κα -d / 2 d / -1 1 e 3 ρ r 2 + 3 2r 2 κρ - 3m r 3 κ + 2 r + 6m(e 3 (r) + 1) r 4 - 2e 3 (m) r 3 + 1 2 ϑα + ζβ -2(ηβ + ξβ) + 4ωα - 3 2 ϑρ + (-ζ + 4η)β +V α -4 ω + m r 2 e 3 (α) + 4ω + 2 κ + 2 r e 4 (α) + Err[ g α].
This concludes the proof of the lemma.

Lemma 8.6.2. N 2 , in the RHS of the wave equation for α introduced in Lemma 8.6.1, satisfies

(int) M |d J N 2 | 2 ( B [J]) 2 + 2 0 N (En) J+1 + N (match) J+1 2 .
Proof. The proof of the lemma follows immediately from the form of N 2 , see Lemma 8.6.1, as well as the control for ρ provided by Proposition 8.3.6, (8.3.6), and the iteration assumption (8.3.13).

In view of Lemma 8.6.1, we may apply Proposition 10.5.4 with

ψ = α, f 2 (r, m) = 4m r 2 1 + 5 4m (r -2m) + Υ .
We infer

(int) M(1,τ * ) (d J+1 α) 2 E J δ [α](τ = 1) + (ext) M r≤ 5 2 m 0 (1,τ * ) (d J+1 α) 2 +D J [Γ]   sup (int) M(1,τ * )∪ (ext) M r≤ 5 2 m 0 r|d ≤k small α|   2 + (int) M(1,τ * )∪ (ext) M r≤ 5 2 m 0 (d ≤s α) 2 + (d ≤J+1 N 2 ) 2 .

r-weighted divergence identities for Bianchi pairs

Lemma 8.7.1. Let k ≥ 1, let a (1) and a (2) real numbers. We consider the following equations.

• If ψ (1) , h (1) ∈ s k , ψ (2) , h (2) ∈ s k-1 , let (ψ (1) , ψ (2) ) such that e 3 (ψ (1) ) + a (1) κψ (1) = -d / k ψ (2) + h (1) , e 4 (ψ (2) ) + a (2) κψ (2) = d / k ψ (1) + h (2)
, (8.7.1)

• If ψ (1) , h (1) ∈ s k-1 , ψ (2) , h (2) ∈ s k , let (ψ (1) , ψ (2) ) such that e 3 (ψ (1) ) + a (1) κψ (1) = d / k ψ (2) + h (1) , e 4 (ψ (2) ) + a (2) κψ (2) = -d / k ψ (1) + h (2) . (8.7.2)
Then, the pair (ψ (1) , ψ (2) ) satisfies for any real number b 

Div r b ψ 2 (1) e 3 + Div r b ψ 2 (2) e 4 - 1 2 r b κ -4a (1) + b + 2 ψ 2 (1) + 1 2 r b κ 4a (2) -b -2 ψ 2 (2) = 2r b d / 1 (ψ (1) ψ (2) ) -2r b ωψ 2 (1) -2r b ωψ 2 (2) + 2r b ψ (1) h (1) + 2r b ψ (2) h (2) +br b-1 e 3 (r) - r 2 κ ψ 2 (1) + br b-1 e 4 (
with k = 2, a (1) = 1 2 , a (2) = 2, • the Bianchi pair (β, ρ) satisfies (8.7.1) with k = 1, a (1) = 1, a (2) = 3 2 , • the Bianchi pair (ρ, β) satisfies (8.7.2) with k = 1, a (1) = 3 2 , a (2) = 1, • the Bianchi pair (β, α) satisfies (8.7.2) with k = 2, a (1) = 2, a (2) = 1 2 .
Proof of Lemma 8.7.1. The proof being identical for (8.7.1) and (8.7.2), it suffices to prove it in the case where (ψ (1) , ψ (2) ) satisfies (8.7.1).

We compute We infer in view of (8.7.1)

D γ e γ 4 = -
D γ r b ψ 2 (1) e γ 3 = 2r b ψ (1) e 3 (ψ (1) ) + br b-1 e 3 (r)ψ 2 (1) + r b ψ 2 (1) D γ e γ 3 = 2r b ψ (1) -a (1) κψ (1) -d / k ψ (2) + h (1) + br b-1 e 3 (r)ψ 2 (1) + r b ψ 2 (1) (κ -2ω) = -2r b ψ (1) d / k ψ (2) + r b -2a (1) + b 2 + 1 κψ 2 (1) + br b-1 e 3 (r) - r 2 κ ψ 2 (1) -2ωr b ψ 2 (1) + 2r b ψ (1) h (1)
and

D γ r b ψ 2 (2) e γ 4 = 2r b ψ (2) e 4 (ψ (2) ) + br b-1 e 4 (r)ψ 2 (2) + r b ψ 2 (2) D γ e γ 4 = 2r b ψ (2) -a (2) κψ (2) + d / k ψ (1) + h (2) + br b-1 e 4 (r)ψ 2 (2) + r b ψ 2 (2) (κ -2ω) = 2r b ψ (2) d / k ψ (1) + r b -2a (2) + b 2 + 1 κψ 2 (2) + br b-1 e 4 (r) - r 2 κ ψ 2 (2) -2r b ωψ 2 (2) + 2r b ψ (2) h (2) .
We sum the two identities

D γ r b ψ 2 (1) e γ 3 + D γ r b ψ 2 (2) e γ 4 = -2r b ψ (1) d / k ψ (2) + 2r b ψ (2) d / k ψ (1) + r b -2a (1) + b 2 + 1 κψ 2 (1) + r b -2a (2) + b 2 + 1 κψ 2 (2) +br b-1 e 3 (r) - r 2 κ ψ 2 (1) + br b-1 e 4 (r) - r 2 κ ψ 2 (2) -2r b ωψ 2 (1) -2r b ωψ 2 (2)
+2r b ψ (2) h (2) + 2r b ψ (1) h (1)
and hence

D γ r b ψ 2 (1) e γ 3 + D γ r b ψ 2 (2) e γ 4 -r b κ -2a (1) + b 2 + 1 ψ 2 (1) + r b κ 2a (2) - b 2 -1 ψ 2 (2) = 2r b d / 1 (ψ (1) ψ (2) ) + br b-1 e 3 (r) - r 2 κ ψ 2 (1) + br b-1 e 4 (r) - r 2 κ ψ 2 (2) -2r b ωψ 2 (1) -2r b ωψ 2 (2) +2r b ψ (1) h (1) + 2r b ψ (2) h (2) .
This concludes the proof of Lemma 8.7.1.

where 

) k T l ψ (1) ) 2 e 3 + Div r b ( d / j (re 4 ) k T l ψ (2) ) 2 e 4 - 1 2 r b κ -4a (1) + 2k + b + 2 ( d / j (re 4 ) k T l ψ (1) ) 2 + 1 2 r b κ 4a (2) -2k -b -2 ( d / j (re 4 ) k T l ψ (2) ) 2 = 2r b d / 1 d / j (re 4 ) k T l ψ (1) d / j (re 4 ) k T l ψ (2) + 2r b E[ d /, j, k, (re 4 ) k T l ψ (1) , (re 4 ) k T l ψ (2) ] -2r b ω( d / j (re 4 ) k T l ψ (1) ) 2 + 2r b d / j (re 4 ) k T l ψ (1) h (1),j,k,l + 2r b d / j (re 4 ) k T l ψ (2) h (2),j,k,l +br b-1 e 3 (r) - r 2 κ ( d / j (re 4 ) k T l ψ (1) ) 2 + br b-1 e 4 (r) - r 2 κ ( d / j (re 4 ) k T l ψ (2) ) 2 .
where E[ d /, s, k, (re 4 ) k T l ψ (1) , (re 4 ) k T l ψ (2) ] has been introduced in Lemma 8.7.3, and where h (1),j,k,l and h (2),j,k,l are given, schematically, by

h (1),j,k,l = d / ≤j+k+l (h (1) ) + kr -1 d / j+1 (re 4 ) k-1 T l ψ (2) +rd j+k+l Γ g ψ (1) , ψ (2) + O(r -1 )d ≤j+k+l-1 ψ (1) , ψ (2) 
and

h (2),j,k,l = d / ≤j+k+l (h (2) ) + kr -1 d / j+1 (re 4 ) k-1 T l ψ (1) + rd j+k+l Γ g ψ (1) , ψ (2) 
+O(r -1 )d ≤j+k+l-1 ψ (1) , ψ [START_REF] Aksteiner | Gaugeinvariant perturbations of Schwarzschild spacetime[END_REF] .

Proof. We have the following simple schematic consequences of the commutator identities

[T, e 4 ], [T, e 3 ] = r -1 Γ b d, [T, d / k ] = -ηe 3 + Γ g d, [ d /, e 4 ] = Γ g d + Γ g , [ d /, e 3 ] = -rηe 3 + rΓ g d, [re 4 , e 4 ] = - r 2 κe 4 + Γ g d, [re 4 , e 3 ] = - r 2 κe 4 + Γ b d, [re 4 , d / k ] = r -1 d / + Γ g d + Γ g .
Then, differentiating with d / j (re 4 ) k T l the equations

e 3 (ψ (1) ) + a (1) κψ (1) = -d / k ψ (2) + h (1) , e 4 (ψ (2) ) + a (2) κψ (2) = d / k ψ (1) + h (2) ,
and using the above commutator identities we infer

e 3 ( d / j (re 4 ) k T l ψ (1) ) + a (1) -k 2 κ d / j (re 4 ) k T l ψ (1) = -d / j d / k ((re 4 ) k T l ψ (2) ) + h (1),j,k,l , e 4 ( d / j (re 4 ) k T l ψ (2) ) + a (2) -k 2 κ d / j (re 4 ) k T l ψ (2) = d / j d / k ((re 4 ) k T l ψ (1) ) + h (2),j,k,l , were 
h (1),j,k,l = d / j (re 4 ) k T l (h (1) ) + kr -1 d / j+1 (re 4 ) k-1 T l ψ (2) + jrηd j+k+l-1 e 3 ψ (1)
+rd j+k+l Γ g ψ (1) , ψ (2) + O(r -1 )d ≤j+k+l-1 ψ (1) , ψ (2) 
and

h (2),j,k,l = d / j (re 4 ) k T l (h (2) ) + kr -1 d / j+1 (re 4 ) k-1 T l ψ (1) + rd j+k+l Γ g ψ (1) , ψ (2) 
+O(r -1 )d ≤j+k+l-1 ψ (1) , ψ (2) .

Also, using the equation

e 3 (ψ (1) ) = -a (1) κψ (1) -d / k ψ (2) + h (1) ,
Step 1. We start with the case k = 0, i.e. we derive r p weighted curvature estimates for d / j T l derivatives of (α, β) with j + l ≤ k small . First, we apply Corollary 8.7.6 to the Bianchi pair (α, β) with the choice b = 4 + δ B . This choice such that we have in case (a) of Corollary 8.7.6. In particular, we obtain

j+l≤k small sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B ( d / j T l α) 2 + Σ * r 4+δ B ( d / j T l α) 2 + ( d / j T l β) 2 + (ext) M(r≥4m 0 ) r 3+δ B ( d / j T l α) 2 + ( d / j T l β) 2 (ext) M( 7m 0 2 ≤r≤4m 0 ) (d J+1 Ř) 2 r 5 + (ext) M(r≥4m 0 ) r -1+δ B ( d / j T l ϑ) 2 + 2 0 + 2 0 (N (En) k small ) 2 .
We infer that

j+l≤k small sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B ( d / j T l α) 2 + Σ * r 4+δ B ( d / j T l α) 2 + ( d / j T l β) 2 + (ext) M(r≥4m 0 ) r 3+δ B ( d / j T l α) 2 + ( d / j T l β) 2 (ext) R ≤4m 0 k small [ Ř] 2 + (ext) G k small [ Γ] 2 + 2 0 + 2 0 (N (En)
k small ) 2 . (8.7.8)

Step 2. We now argue by iteration on k. For 0 ≤ k ≤ k small -1, we consider the following iteration assumption

j+l≤k small -k sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B ( d / j (re 4 ) k T l α) 2 + Σ * r 4+δ B ( d / j (re 4 ) k T l α) 2 + ( d / j (re 4 ) k T l β) 2 + (ext) M(r≥4m 0 ) r 3+δ B ( d / j (re 4 ) k T l α) 2 + ( d / j (re 4 ) k T l β) 2 (ext) R ≤4m 0 k small [ Ř] 2 + (ext) G k small [ Γ] 2 + 2 0 + 2 0 (N (En) k small ) 2 .
(8.7.9) (8.7.9) holds true for k = 0 in view of (8.7.8). We now assume that (8.7.9) holds true for k such that 0 ≤ k ≤ k small -1, and our goal is to prove that it also holds for k + 1.
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First, note that the Bianchi identity for e 4 (β) together with (8.7.9), yields

j+l≤k small -(k+1) Σ * r 4+δ B ( d / j (re 4 ) k+1 T l β) 2 + (ext) M(r≥4m 0 ) r 3+δ B ( d / j (re 4 ) k+1 T l β) 2 (ext) R ≤4m 0 k small [ Ř] 2 + (ext) G k small [ Γ] 2 + 2 0 + 2 0 (N (En) k small ) 2 . (8.7.10)
We still need to estimate d / j (re 4 ) k+1 T l α. To this end, we apply Corollary 8.7.6 to the Bianchi pair (α, β) with the choice b = 4 + δ B . Since k + 1 ≥ 1, we are in case (c) of Corollary 8.7.6. In particular, we obtain, arguing similarly as above,

j+l≤k small -(k+1) sup 1≤u≤u * Cu(r≥4m 0 ) r 4+δ B ( d / j (re 4 ) k+1 T l α) 2 + Σ * r 4+δ B ( d / j (re 4 ) k+1 T l α) 2 + (ext) M(r≥4m 0 ) r 3+δ B ( d / j (re 4 ) k+1 T l α) 2 j+l≤k small -(k+1) (ext) M(r≥4m 0 ) r 3+δ B ( d / j (re 4 ) k+1 T l β) 2 + (ext) R ≤4m 0 k small [ Ř] 2 + (ext) G k small [ Γ] 2 + 2 0 + 2 0 (N (En) k small ) 2 .
Together with (8.7.10), this implies (8.7.9) for k + 1. Hence, by iteration, (8.7.9) holds for any 0 ≤ k ≤ k small . Now, (8.7.9) for any 0 ≤ k ≤ k small is equivalent to (8.3.12) which is the desired estimate.

Proof of Proposition 8.3.10

To prove Proposition 8.3.10, we rely on the following three propositions.

Proposition 8.8.1. Let J such that k small -2 ≤ J ≤ k large -1. Then, we have

(Σ * ) G J+1 [ Γ] + (Σ * ) G J+1 [ Γ] (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ],
where we have introduced the notations

(Σ * ) G k [ Γ] := Σ * r 2 (d ≤k ϑ) 2 + (d ≤k κ) 2 + (d ≤k ζ) 2 + (d ≤k κ) 2 + (d ≤k ϑ) 2 +(d ≤k η) 2 + (d ≤k ω) 2 + (d ≤k ξ) 2 ,
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)

(Σ * ) G k [ Γ] := Σ * r 2 (d k+1 d /κ) 2 + (d k+1 κ) 2 + (d ≤k+1 μ) 2 + (d k+1 κ) 2 + (d k+1 ζ) 2 ,
and

(Σ * ) R k [ Ř] := Σ * r 4+δ B (d ≤k α) 2 + (d ≤k β) 2 + r 4 (d ≤k ρ) 2 + r 2 (d ≤k β) 2 + (d ≤k α) 2 .
Proposition 8.8.2. Let J such that k small -2 ≤ J ≤ k large -1. Then, we have

(ext) G ≥4m 0 J+1 [ Γ] + (ext) G ≥4m 0 J+1 [ Γ] (Σ * ) G J+1 [ Γ] + (Σ * ) G J+1 [ Γ] + (ext) R J+1 [ Ř] + (ext) G J [ Γ],
where we have introduced the notation

(ext) G ≥4m 0 k [ Γ] := sup λ≥4m 0 {r=λ} λ 6 d k d / 1 d / 1 κ -ϑ d / 4 d / 3 d / -1 2 + d / 2 d / -1 1 ρ 2 +λ 2 (d k+1 κ) 2 + λ 6 d k e θ (µ) + ϑ d / 2 d / 2 ( d / 1 d / 1 ) -1 β + 2ζ ρ 2 +λ 4 (d ≤k μ) 2 + λ 2 d k e θ (κ) -4β 2 + λ 2 d k e 3 (ζ) + β 2 . Proposition 8.8.3. Let J such that k small -2 ≤ J ≤ k large -1.
Then, we have

(ext) G ≤4m 0 J+1 [ Γ] + (ext) G ≤4m 0 J+1 [ Γ] (ext) G ≥4m 0 J+1 [ Γ] + (ext) G ≥4m 0 J+1 [ Γ] + (ext) R J+1 [ Ř] + (ext) G J [ Γ],
where we have introduced the notation

(ext) G ≤4m 0 k [ Γ] := sup r T ≤λ≤4m 0 {r=λ} λ 6 d k d / 1 d / 1 κ -ϑ d / 4 d / 3 d / -1 2 + d / 2 d / -1 1 ρ 2 +λ 2 (d k+1 κ) 2 + λ 6 d k e θ (µ) + ϑ d / 2 d / 2 ( d / 1 d / 1 ) -1 β + 2ζ ρ 2 +λ 4 (d ≤k μ) 2 + λ 2 d k e θ (κ) -4β 2 + λ 2 d k-1 N e 3 (ζ) + β 2 .
The proof of Proposition 8. 

-2 ≤ J ≤ k large -1, (ext) G J+1 [ Γ] (ext) R J+1 [ Ř] + (ext) G J [ Γ],
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where we have used the fact that

(Σ * ) R J+1 [ Ř] ≤ (ext) R J+1 [ Ř], (Σ * ) G J [ Γ] ≤ (ext) G J [ Γ].
In view of the iteration assumption (8.3.13), we infer

(ext) G J+1 [ Γ] (ext) R J+1 [ Ř] + B [J].
Since the estimates in Proposition 8.8.2 are integrated from Σ * , we obtain similarly, for any r 0 ≥ 4m 0 ,

(ext) G ≥r 0 J+1 [ Γ] (ext) R ≥r 0 J+1 [ Ř] + B [J].
On the other hand, we have in view of Proposition 8.3.9, for any r 0 ≥ 4m 0 ,

(ext) R ≥r 0 J+1 [ Ř] r -δ B 0 (ext) G ≥r 0 J+1 [ Γ] + r 10 0 B [J] + 0 N (En) J+1 + N (match) J+1
. and

(int) R J+1 [ Ř] + (ext) R J+1 [ Ř] ≤ (ext) R ≥r 0 J+1 [ Ř] + O r 10 0 B [J] + 0 N (En) J+1 + N (match) J+1
.

Choosing r 0 ≥ 4m 0 large enough, we infer from the above estimates

(ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + (ext) R J+1 [ Ř] B [J] + 0 N (En) J+1 + N (match) J+1
.

This concludes the proof of Proposition 8.3.10.

8.8.1 Proof of Proposition 8.8.1

Step 1. We control κ on Σ * . Recall the GCM conditions κ = 2/r on Σ * . Since ν Σ * and e θ are tangent, we infer

( d /, ν Σ * ) k κ - 2 r = 0.
Together with Raychadhuri, we infer max

k≤J+2 Σ * r 2 d k κ - 2 r 2 + r 4 d k e θ (κ) 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 ,
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where we have used the fact that e 3 is in the span of e 4 and ν Σ * . Note that we have used Codazzi for ϑ to control the term d J+1 e 4 (e θ (κ)).

Step 2. We control the = 1 modes on Σ * . In view of the GCM conditions for κ, and projecting the Codazzi for ϑ on the = 1 mode, we infer on Σ *

S ζe Φ = r S βe Φ + r 2 S ϑζe Φ .
Since the vectorfield ν is tangent to Σ * , we infer

ν J+2 S ζe Φ = r S ν J+2 βe Φ + r 2 S ν J+2 (ϑζ)e Φ + l.o.t. = r S ν J+2 βe Φ + r 2 S ζν J+2 (ϑ)e Φ + r 2 S ϑν J+2 (ζ)e Φ + l.o.t.
where l.o.t. denote, here and below, terms that

• either are linear and contain at most J + 1 derivatives of curvature components and J derivatives of Ricci coefficients,

• or are quadratic and contain at most J + 1 derivatives of Ricci coefficients and curvature components.

Using Bianchi identities and the null structure equations, we deduce

ν J+2 S ζe Φ = r S ν J+1 ( d / 2 α, d / 1 ρ -3ρη)e Φ + r 2 S ζν J+1 d / 2 ηe Φ + r 2 S ϑν J+1 d / 1 ωe Φ + l.o.t. = r S ( d / 2 ν J+1 α, ν J d / 1 d / 1 (β, β))e Φ -3ρ S ν J+1 ηe Φ + r 2 S ζ d / 2 ν J+1 ηe Φ + r 2 S ϑ d / 1 ν J+1 ωe Φ + l.o.t. = r S ( d / 2 ν J+1 α, d / 1 d / 1 ν J (β, β))e Φ + r 2 S ζ d / 2 ν J+1 ηe Φ + r 2 S ϑ d / 1 ν J+1 ωe Φ + l.o.t.,
where we have used, in the last equality, a cancellation due to the fact that ν is tangent to Σ * and S ηe Φ = 0 on Σ * . Using the identity d / 1 d / 1 = d / 2 d / 2 + 2K, integration by parts for all terms, and the fact that d / 2 (e Φ ) = 0 so that the top order linear term vanish, we infer we obtain, with more ease since this estimate is at one lower level of derivatives

ν J+2 S ζe Φ = l.o.t.
(re 4 , ν) J+2 S ζe Φ = l.o.t.
We infer

max k≤J+2 u * 1 r -2 d k S ζe Φ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Next, we have in view of the definition of µ and the identity d

/ 1 d / 1 = d / 2 d / 2 + 2K S e θ (µ)e Φ = S d / 1 d / 1 ζe Φ - S e θ (ρ)e Φ + 1 4 S e θ (ϑϑ)e Φ = 2 S Kζe Φ - S e θ (ρ)e Φ + 1 4 S e θ (ϑϑ)e Φ = 2 r 2 S ζe Φ - S e θ (ρ)e Φ + S K - 2 r 2 ζe Φ + 1 4 S e θ (ϑϑ)e Φ .
To estimate the RHS, we use in particular 

r 2 d k S e θ (µ)e Φ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 + max k≤J+1 u * 1 r -4 d k S e θ (κ)e Φ 2 .
In view of the dominant condition (3.3.4) for r on Σ * , we infer

max k≤J+2 u * 1 r 2 d k S e θ (µ)e Φ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 + 0 max k≤J+1 u * 1 d k S e θ (κ)e Φ 2 .
Next, in view of the remarkable identity for the = 1 mode of e θ (K), we have 
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Arguing as for the estimate of the = 1 mode of e θ (µ), and using the smallness of 0 , we infer

max k≤J+2 u * 1 r 2 d k S e θ (µ)e Φ 2 + max k≤J+2 u * 1 d k S e θ (κ)e Φ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
We have thus obtained

max k≤J+2 u * 1 r -2 d k S ζe Φ 2 + r 2 d k S e θ (µ)e Φ 2 + d k S e θ (κ)e Φ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Step 

max k≤J+2 Σ * r 4 ( d /, ν Σ * ) k μ 2 + r 2 ( d /, ν Σ * ) k κ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Then, in view of the null structure equations for e 4 (μ) and e 4 (κ),

e 4 (μ) = - 3 2 κμ - 3 2 µκ + Err[e 4 μ] e 4 (κ) = - 1 2 κκ - 1 2 κκ + 2μ + 4ρ + Err[e 4 κ],
we infer, together with the control of κ provided by Step 1,

max k≤J+2 Σ * r 4 d k μ 2 + r 2 d k κ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Step 4. Recall that we have

d / 1 ζ = -μ -ρ + 1 4 ϑϑ.
8.8. PROOF OF PROPOSITION 8.3.10 513 Differentiating, and using the Bianchi identities for e 4 (ρ) and e 3 (ρ), and the null structure equations for e 4 (ϑ), e 3 (ϑ), e 4 (ϑ) and e 3 (ϑ), we infer

d / 1 d k ζ = -d k μ -d k-1 d / ρ, β, r -1 β + 1 4 d k-1 d /(ϑϑ), r -1 ϑ d /η, ϑ d /ζ, r -1 ϑ d /ξ + l.o.t. = -d k μ -d /d k-1 ρ, β, r -1 β + 1 4 d / ϑd k-1 (ϑ, r -1 η) + 1 4 d / ϑd k-1 (ϑ, ζ, r -1 ξ) + l.o.t.
We infer, since d / 1 is invertible in view of the corresponding Poincaré inequality,

d k ζ = -r d / -1 d k μ -d k-1 ρ, β, r -1 β + 1 4 ϑd k-1 (ϑ, r -1 η) + 1 4 ϑd k-1 (ϑ, ζ, r -1 ξ) + l.o.t.
Together with the estimate for μ of Step 3, this yields max

k≤J+2 Σ * r 2 (d k ζ) 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Step 5. Recall from the GCM condition that we have on Σ * S ηe Φ = 0.

Together with the transport equation

e 4 (η -ζ) = - 1 2 κ(η -ζ) - 1 2 ϑ(η -ζ),
we infer in view of the the estimates for ζ of Step 4,

max k≤J+1 u * 1 r -4 d k S ηe Φ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Next, recall from Proposition 2.2.19 that η verifies

2 d / 2 d / 2 η = κ -e 3 (ζ) + β -e 3 (e θ (κ)) -κ 1 2 κζ -2ωζ + 6ρη -κe θ κ - 1 2 κe θ (κ) + 2ωe θ (κ) + 2e θ (ρ) + Err[ d / 2 d / 2 η], Err[ d / 2 d / 2 η] = 2 d / 1 η - 1 2 κϑ + 2η 2 η + 2e θ (η 2 ) -κ 1 2 ϑζ - 1 2 ϑξ - 1 2 ϑe θ (κ) - 2 d / 1 η - 1 2 ϑϑ + 2η 2 ζ - 1 2 e θ (ϑ ϑ) - 1 2 ϑ 2 ξ - 3 2 ϑϑη.
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Together with the estimates for κ of Step 1, the estimates for κ of Step 3, and the estimates for

ζ of Step 4, max k≤J+1 Σ * d k r 2 d / 2 d / 2 η -r 2 e θ (ρ) - r 2 2 d / 2 (η 2 ) -r 2 e θ (η 2 ) + r 2 d / 1 (ζη) + 1 4 r 2 e θ (ϑ ϑ) 2 max k≤J+1 Σ * r -2 |d k η| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
In view of the dominant condition (3.3.4) for r on Σ * , we infer max

k≤J+1 Σ * d k r 2 d / 2 d / 2 η -r 2 e θ (ρ) - r 2 2 d / 2 (η 2 ) -r 2 e θ (η 2 ) + r 2 d / 1 (ζη) + 1 4
r 2 e θ (ϑ ϑ)

2 2 3 0 max k≤J+1 Σ * |d k η| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
This yields

max k≤J+1 Σ * r 2 d / 2 d / 2 d k η + r d / 2 [d k , r d / 2 ]η + r d / 2 [d k , r d / 2 ]η -r 2 e θ (d k ρ) - r 2 2 d / 2 d k (η 2 ) -r 2 e θ d k (η 2 ) + r 2 d / 1 d k (ζη) + 1 4 r 2 e θ d k (ϑ ϑ) 2 2 3 0 max k≤J+1 Σ * |d k η| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
We deduce, using a Poincaré inequality for d / 2 , max

k≤J+1 Σ * r d / 2 d k η 2 2 3 0 max k≤J+1 Σ * |d k η| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Together with a Poincaré inequality for r d / 2 and the above control of the = 1 mode of η, we infer max

k≤J+1 Σ * d k η 2 2 3 0 max k≤J+1 Σ * |d k η| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 ,
and hence, for 0 small enough,

max k≤J+1 Σ * d k η 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Step 6. Recall from the GCM condition that we have on Σ * S ξe Φ = 0. 

max k≤J+1 u * 1 r -4 d k S ξe Φ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] max k≤J+1 Σ * r -2 |d k ξ| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
In view of the dominant condition (3.3.4) for r on Σ * , we infer max

k≤J+1 Σ * d k r 2 d / 2 d / 2 ξ + 1 2 e θ (e 3 (κ)) -η d / 1 ξ -e θ (ηξ) + 1 4 e θ (ϑ 2 ) + d / 2 (ζξ) + 3e θ (ζξ) 2 2 3 0 max k≤J+1 Σ * |d k ξ| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
This yields

max k≤J+1 Σ * r 2 d / 2 d / 2 d k ξ + r d / 2 [d k , r d / 2 ]ξ + r d / 2 [d k , r d / 2 ]ξ + 1 2 e θ (d k e 3 (κ)) -d / 1 (ηd k ξ) -e θ d k (ηξ) + 1 4 e θ d k (ϑ 2 ) + d / 2 d k (ζξ) + 3e θ d k (ζξ) 2 2 3 0 max k≤J+1 Σ * |d k ξ| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ]
We deduce, using a Poincaré inequality for d / 2 and the estimates for κ of Step 3,

max k≤J+1 Σ * r d / 2 d k ξ 2 2 3 0 max k≤J+1 Σ * |d k ξ| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Together with a Poincaré inequality for r d / 2 and the above control of the = 1 mode of ξ, we infer max

k≤J+1 Σ * d k ξ 2 2 3 0 max k≤J+1 Σ * |d k ξ| 2 + (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 ,
and hence, for 0 small enough,

max k≤J+1 Σ * d k ξ 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 0 (Σ * ) G J+1 [ Γ] 2 .
Step 7. Using the Codazzi for ϑ and ϑ, the transport equation for ϑ and ϑ in the e 4 and e 3 direction, the control of κ of Step 1, the control of κ of Step 3, the control of ζ of Step 4, the control of η of Step 5, the control of ξ of Step 6, and a Poincaré inequality for d / 2 , we infer max

k≤J+1 Σ * r 2 (d k ϑ) 2 + (d k ϑ) 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 2 3 0 (Σ * ) G J+1 [ Γ] 2 .
Step 8. Recall form Proposition 2.2.19 that ω verifies

2 d / 1 ω = - 1 2 κξ + 1 2 κ + 2ω + 1 2 ϑ η + e 3 (ζ) -β + 1 2 κζ -2ωζ + 1 2 ϑζ - 1 2 ϑξ.
Together with a Poincaré inequality for d / 1 , the control of ξ from Step 6, the control of η from Step 5, and the control of ζ from Step 4, we infer max

k≤J+1 Σ * |d k ω| 2 (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 2 3 0 (Σ * ) G J+1 [ Γ] 2 .
Finally, gathering the estimates of Step 1 to Step 8, we infer

(Σ * ) G J+1 [ Γ] + (Σ * ) G J+1 [ Γ] (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ] + 2 3 0 (Σ * ) G J+1 [ Γ].
and hence, for 0 small enough,

(Σ * ) G J+1 [ Γ] + (Σ * ) G J+1 [ Γ] (Σ * ) R J+1 [ Ř] + (Σ * ) G J [ Γ]
as desired. This concludes the proof of Proposition 8.8.1. where a ∈ R is a given constant, and f and h are scalar functions. Also, let and δ B > 0.

Then, f satisfies sup

r 0 ≥4m 0 r 2a-2 0 {r=r 0 } f 2 Σ * r 2a-2 f 2 + (ext) M(≥4m 0 ) r 2a-1+δ B h 2 .
Proof. Multiply by f to obtain

1 2 e 4 (f 2 ) + a 2 κf 2 = hf.
Next, integrate over S u,r to obtain

1 2 e 4
Su,r

f 2 = Su,r 1 2 (e 4 (f 2 ) + κf 2 ) = - Su,r a -1 2 κf 2 + Su,r hf = - a -1 2 κ Su,r f 2 - a -1 2 Su,r κf 2 + Su,r hf and hence 1 2 e 4
Su,r

f 2 + a -1 2 κ Su,r f 2 = - a -1 2 Su,r κf 2 + Su,r hf.
Also, we multiply by r 2a-2 which yields

1 2 e 4 r 2a-2 Su,r f 2 = - a -1 2 r 2a-2 Su,r κf 2 + r 2a-2
Su,r hf where we used the fact that 2e 4 (r) = rκ. This yields

-e 4 r 2a-2 Su,r f 2 ≤ r 2a-3-δ B Su,r f 2 + 1 4 r 2a-1+δ B Su,r h 2
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and hence

-e 4 e -δ -1 B r -δ B r 2a-2 Su,r f 2 e -δ -1 B r -δ B r 2a-1+δ B Su,r h 2
where we used the fact that 2e 4 (r) = rκ = 2 + O( 0 ). Integrating between r = r 0 and r = r * (u), where r * (u) is such that S u,r * (u) ⊂ Σ * , we infer

r 2a-2 0 Su,r 0 f 2 r * (u) 2a-2 S u,r * (u) f 2 + r * (u) r 0 r 2a-1+δ B Su,r h 2 . (8.8.1)
Remark 8.8.5. Note that we have the following consequences of the coarea formula

dΣ * = ς 2 ς -Υ + r 2 A dµ u,Σ * du, d{r = r 0 } = ς √ -κ -A √ κ dµ u,r 0 du,
where we used in particular that Σ * = {u + r = c Σ * }. Also, we have in (ext) M dM = 4ς 2 r 2 κ 2 dµ u,r dudr. We infer, in (ext) M, using in particular the dominant condition of r on Σ * , 

dΣ * = 1 + O 2 3 0 dµ u,Σ * du, d{r = r 0 } = 1 - 2m 0 r 0 (1 + O( 0 )) dµ u,
0 {r=r 0 } f 2 Σ * r 2a-2 f 2 + (ext) M(r≥4m 0 ) r 2a-1 2 h 2
as desired. This concludes the proof of the lemma.

Corollary 8.8.6. Let the following transport equation in (ext) M

e 4 (f ) + a 2 κf = h
where a ∈ R is a given constant, and f and h are scalar functions. Also, let and δ B > 0.

Then, f satisfies for

5 ≤ k ≤ k large + 1 sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d k f ) 2 Σ * r 2a-2 (d ≤k f ) 2 + sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d ≤k-1 f ) 2 + (ext) M(≥4m 0 ) r 2a-1+δ B (d ≤k h) 2 + sup (ext) M(≥4m 0 ) r a |d ≤k-5 f | 2 (ext) G ≥4m 0 k-1 [ Γ] + (ext) G ≥4m 0 k [κ] 2 .
Proof. We commute first differentiate the equation for f with ( d /, T) l and obtain

e 4 (( d /, T) l f ) + a 2 κ( d /, T) l f = h l , h l := ( d /, T) l h -[( d /, T) l , e 4 ]f - a 2 [( d /, T) l , κ]f.
In view of Lemma 8.8.4, we deduce sup

r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (( d /, T) l f ) 2 Σ * r 2a-2 (d l f ) 2 + (ext) M(≥4m 0 ) r 2a-1+δ B h 2 l .
Now, we have the following schematic commutation formulas

[ d /, e 4 ] = Γ g d + Γ g , [T, e 4 ] = r -1 Γ b d,
Together with the definition of h l and for 5 ≤ l ≤ k large + 1, we deduce

(ext) M(≥4m 0 ) r 2a-1+δ B h 2 l (ext) M(≥4m 0 ) r 2a-1+δ B (d l h) 2 + 2 0 (ext) M r 2a-5+δ B (d ≤l f ) 2 + sup (ext) M r a |d ≤l-5 f | 2 (ext) G l-1 [ Γ] + (ext) G l [κ]
2 and hence sup

r 0 ≥r T r 2a-2 0 {r=r 0 } (( d /, T) l f ) 2 Σ * r 2a-2 (d l f ) 2 + (ext) M r 2a-1+δ B (d l h) 2 + 2 0 (ext) M(≥4m 0 ) r 2a-5+δ B (d ≤l f ) 2 + sup (ext) M(≥4m 0 ) r a |d ≤l-5 f | 2 (ext) G ≥4m 0 l-1 [ Γ] + (ext) G ≥4m 0 l [κ] 2 or, sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (( d /, T) l f ) 2 Σ * r 2a-2 (d l f ) 2 + (ext) M(≥4m 0 ) r 2a-1+δ B (d l h) 2 + 2 0 sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d ≤l f ) 2 + sup (ext) M(≥4m 0 ) r a |d ≤l-5 f | 2 (ext) G ≥4m 0 l-1 [ Γ] + (ext) G ≥4m 0 l [κ] 2 .
Together with the first equation which yields

re 4 (( d /, T) l f ) + a 2 rκ( d /, T) l f = rh l ,
and hence

(re 4 ) j (( d /, T) l f ) + a 2 (re 4 ) j-1 rκ( d /, T) l f = (re 4 ) j-1 (rh l ),
we infer, for 0 > 0 small enough, and for 5

≤ k ≤ k large + 1, sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d k f ) 2 Σ * r 2a-2 (d ≤k f ) 2 + (ext) M(≥4m 0 ) r 2a-1+δ B (d ≤k h) 2 + sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d ≤k-1 h) 2 + sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d ≤k-1 f ) 2 + sup (ext) M(≥4m 0 ) r a |d ≤k-5 f | 2 (ext) G ≥4m 0 k-1 [ Γ] + (ext) G ≥4m 0 k [κ] 2 .
Using a trace estimate, we infer sup

r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d k f ) 2 Σ * r 2a-2 (d ≤k f ) 2 + (ext) M(≥4m 0 ) r 2a-1+δ B (d ≤k h) 2 + sup r 0 ≥4m 0 r 2a-2 0 {r=r 0 } (d ≤k-1 f ) 2 + sup (ext) M(≥4m 0 ) r a |d ≤k-5 f | 2 (ext) G ≥4m 0 k-1 [ Γ] + (ext) G ≥4m 0 k [κ] 2
as desired. This concludes the proof of the corollary.

Lemma 8.8.7. Let the following transport equation in

(ext) M e 4 (f ) + a 2 κf = h
where a ∈ R is a given constant, and f and h are scalar functions. Let b > 2a -2. Then, f satisfies sup

r 0 ≥4m 0 r b 0 {r=r 0 } f 2 + (ext) M(≥4m 0 ) r b-1 f 2 Σ * r b f 2 + (ext) M(≥4m 0 ) r b+1 h 2 .
Proof. Recall from Lemma 8.8.4 the following identity 

1 2 e 4 Su,r f 2 + a -1 2 κ Su,r f 2 = - a -1 2 Su,r
f 2 + 1 2 a -1 - b 2 κ Su,r r b f 2 = - a -1 2 r b Su,r κf 2 + r b Su,r hf
where we used the fact that 2e 4 (r) = rκ. We choose b > 2a -2 and integrate between r = r 0 and r = r * (u), where r * (u) is such that S u,r * (u) ⊂ Σ * , which yields

Su,r 0 r b f 2 + r * r 0 Su,r r b-1 f 2 Su,r * r b f 2 + r * r 0 Su,r r b+1 h 2 .
Then, integrating in u in u ∈ [1, u * ], and relying on Remark 8.8.5 we deduce for r 0 ≥ 4m 0 ,

r b 0 {r=r 0 } f 2 + (ext) M∩{r≥r 0 } r b-1 f 2 Σ * r b f 2 + (ext) M(≥4m 0 ) r b+1 h 2 .
This concludes the proof of the lemma.

Corollary 8.8.8. Let the following transport equation in

(ext) M e 4 (f ) + a 2 κf = h
where a ∈ R is a given constant, and f and h are scalar functions. Let b > 2a -2. Then, f satisfies for 5 ≤ l ≤ k large + 1 sup

r 0 ≥4m 0 r b 0 {r=r 0 } (d k f ) 2 + (ext) M(≥4m 0 ) r b-1 (d k f ) 2 Σ * r b (d ≤k f ) 2 + sup r 0 ≥4m 0 r b 0 {r=r 0 } (d ≤k-1 f ) 2 + (ext) M(≥4m 0 ) r b-1 (d ≤k h) 2 + sup (ext) M(≥4m 0 ) r b |d ≤k-5 f | 2 (ext) G ≥4m 0 k-1 [ Γ] + (ext) G ≥4m 0 k [κ] 2 .
Proof. The proof is based on Lemma 8.8.7. It is similar to the one of Corollary 8.8.6 and left to the reader.

Lemma 8.8.9. Let the following transport equation in

(ext) M e 4 (f ) + a 2 κf = h
where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies sup

r T ≤r 0 ≤4m 0 {r=r 0 } f 2 {r=4m 0 } f 2 + (ext) M(≤4m 0 ) h 2 .
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Proof. Let b > 2a -2. Recall from Lemma 8.8.7 the following identity

1 2 e 4 r b Su,r f 2 + 1 2 a -1 - b 2 κ Su,r r b f 2 = - a -1 2 r b Su,r κf 2 + r b Su,r
hf.

Choosing b = 2a, we obtain

1 2 e 4 r b Su,r f 2 - 1 2 κ Su,r r b f 2 = - a -1 2 r b Su,r κf 2 + r b Su,r hf.
Next, let 1 ≤ u ≤ u * and r T ≤ r 0 ≤ 4m 0 . We now integrate in r 0 ≤ r ≤ 4m 0 and along C u in (ext) M. Since r is bounded on (ext) M(r ≤ 4m 0 ) from above and below, we obtain, for 0 > 0 small enough,

Su,r 0 f 2 S u,4m 0 f 2 + 4m 0 r T Su,r h 2 .
We may now integrate in u to deduce

u * 1 Su,r 0 f 2 u * 1 S u,4m 0 f 2 + u * 1 4m 0 r T Su,r h 2 . 
Relying on Remark 8.8.5 we deduce sup

r T ≤r 0 ≤4m 0 {r=r 0 } f 2 {r=4m 0 } f 2 + (ext) M(≤4m 0 ) h 2 .
as desired. This concludes the proof of the lemma.

Corollary 8.8.10. Let the following transport equation in (ext) M

e 4 (f ) + a 2 κf = h
where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies for

5 ≤ l ≤ k large + 1 sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k f ) 2 {r=4m 0 } (d ≤k f ) 2 + sup r T ≤r 0 ≤4m 0 {r=r 0 } (d ≤k-1 f ) 2 + (ext) M(≤4m 0 ) (d ≤k h) 2 + sup (ext) M(r≤4m 0 ) |d ≤k-5 f | 2 (ext) G ≤4m 0 k-1 [ Γ] + (ext) G ≤4m 0 k [κ] 2 .
Proof. The proof is based on Lemma 8.8.9. It is similar to the one of Corollary 8.8.6 and left to the reader.

Step 1. Recall that e 4 (ϑ) + κϑ = -2α.

In view of Corollary 8.8.6 with a = 2, we have for any

r 0 ≥ 4m 0 max k≤J+1 sup r 0 ≥4m 0 r 2 0 {r=r 0 } (d k ϑ) 2 N ≥4m 0 [J, Γ, Ř] 2 .
Step 2. Next, recall that

e 4 (κ) + κ κ = - 1 4 ϑ 2 + 1 4 ϑ 2 -κ2 .
In view of Corollary 8.8.6 with a = 2, we have for any

r 0 ≥ 4m 0 max k≤J+2 sup r 0 ≥4m 0 r 2 0 {r=r 0 } (d k κ) 2 N ≥4m 0 [J, Γ, Ř] 2
where we have used the null structure equations for e 4 (ϑ), e 3 (ϑ) and d / 2 ϑ to avoid a loss of one derivative for the RHS.

Step 3. Next, recall that e 4 (ζ) + κζ = -βϑζ.

In view of Corollary 8.8.6 with a = 2, we have for any r 0 ≥ 4m 0

max k≤J+1 sup r 0 ≥4m 0 r 2 0 {r=r 0 } (d k ζ) 2 N ≥4m 0 [J, Γ, Ř] 2 .
Step 4. Next, recall that

e 4 (μ) + 3 2 κμ = - 3 2 µκ + Err[e 4 μ].
In view of Corollary 8.8.6 with a = 3, commuting with d / and T, we have for any

r 0 ≥ 4m 0 max k≤J+1 sup r 0 ≥4m 0 r 4 0 {r=r 0 } (d k μ) 2 N ≥4m 0 [J, Γ, Ř] 2
where we used the estimates for κ on (ext) M derived in Step 2.

Step 5. Next, recall that 

e 4 (κ) + 1 2 κκ = - 1 2 κκ + 2ρ -2 d / 1 ζ + Err[e 4 κ].
r 0 ≥4m 0 r 2-δ B 0 {r=r 0 } (d k κ) 2 + (ext) M(r≥4m 0 ) r 1-δ B (d k κ) 2 N ≥4m 0 [J, Γ, Ř] 2
where we used the estimates for κ and μ on (ext) M derived respectively in Step 2 and

Step 4.

Step 6. Next, recall that

e 4 (ϑ) + 1 2 κϑ = 2 d / 2 ζ - 1 2 κϑ + 2ζ 2 = 2 d / 2 d / -1 1 -µ -ρ + 1 4 ϑϑ - 1 2 κϑ + 2ζ 2 .
In view of Corollary 8.8.6 with a = 1, we have for any

r 0 ≥ 4m 0 max k≤J+1 sup r 0 ≥4m 0 {r=r 0 } (d k ϑ) 2 N ≥4m 0 [J, Γ, Ř] 2
where we used the estimates for ϑ and μ on (ext) M derived respectively in Step 1 and

Step 4.

Step 7. Next, recall that e 4 (ω) = ρ + 3ζ 2 -3ζ 2κω.

In view of Corollary 8.8.8 with a = 0 and b = 0 which satisfy the constraint b > 2a -2, we have for any

r 0 ≥ 4m 0 max k≤J+1 sup r 0 ≥4m 0 {r=r 0 } (d k ω) 2 + (ext) M(≥4m 0 ) r -1 (d k ω) 2 N ≥4m 0 [J, Γ, Ř] 2 .
Step 8. In order to estimate ξ in Step 9, we derive an estimate for e 3 (ζ) + β. Recall that we have

e 4 (ζ) + κζ = -β -ϑζ.
Commuting with e 3 , we infer 
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In view of the null structure equation for e 3 (κ), the Bianchi identity for e 3 (β) and the commutator identity for [e 3 , e 4 ], we infer

e 4 (e 3 (ζ)) + 2ωe 4 + 4ζe θ ζ + κe 3 (ζ) + - 1 2 κκ + 2ωκ + 2 d / 1 ζ + 2ρ - 1 2 ϑϑ + 2ζ 2 ζ = (κ -2ω)β + d / 1 ρ -3ζρ + ϑβ -ξα -ϑζ.
Together with the null structure equation for e 4 (ζ), the Bianchi identity for e 4 (β) to get rid of the term d / 1 ρ, and the definition of µ, we infer

e 4 (e 3 (ζ)) + 2ω (-κζ -β -ϑζ) + 4ζ d / 1 d / -1 1 μ + ρ - 1 4 ϑϑ + 1 4 ϑϑ +κe 3 (ζ) + - 1 2 κκ + 2ωκ -2µ + 2ζ 2 ζ = (κ -2ω)β -e 4 (β) -κβ -3ζρ -ϑβ -3ζρ + ϑβ -ξα -ϑζ.
and hence

e 4 (e 3 (ζ) + β) + κ(e 3 (ζ) + β) = κβ + 1 2 κκ + 2µ -6ρ ζ -ϑβ + ϑβ -ξα -ϑζ + 2ωϑζ -4ζ d / 1 d / -1 1 μ + ρ - 1 4 ϑϑ + 1 4 ϑϑ -2ζ 3
In view of Corollary 8.8.6 with a = 2, we have for any r 0 ≥ 4m 0

max k≤J+1 sup r 0 ≥4m 0 r 2 0 {r=r 0 } (d k (e 3 (ζ) + β)) 2 N ≥4m 0 [J, Γ, Ř] 2
where we used the estimates for ζ derived in Step 3.

Step 9. Next, recall that we have

e 4 (ξ) = -e 3 (ζ) + β -κζ -ζϑ = -(e 3 (ζ) + β) + 2β -κζ -ζϑ.
In view of Corollary 8.8.8 with a = 0 and b = -δ B which satisfy the constraint b > 2a -2, we have for any

r 0 ≥ 4m 0 max k≤J+1 sup r 0 ≥4m 0 r -δ B 0 {r=r 0 } (d k ξ) 2 + (ext) M(r≥4m 0 ) r -1-δ B (d k ξ) 2 N ≥4m 0 [J, Γ, Ř] 2
where we used the estimates for ζ and e 3 (ζ) + β on (ext) M derived respectively in Step 3 and Step 8.

Step 12. Recall that we have

e 4 (e θ (κ) -4β) + κ(e θ (κ) -4β) = 2e θ (µ) + 12ρζ - 1 2 κe θ (κ) + 4ϑβ - 1 2 ϑe θ (κ) -e θ (ϑϑ) + 2e θ (ζ 2 ) = 2 e θ (µ) + ϑ d / 2 d / 2 ( d / 1 d / 1 ) -1 β + 2ζ ρ + 12ρζ - 1 2 κe θ (κ) -2ϑ d / 2 d / 2 ( d / 1 d / 1 ) -1 β + 2ζ ρ + 4ϑβ - 1 2 ϑ(e θ (κ) -4β) -2ϑβ -e θ (ϑϑ) + 2e θ (ζ 2 ).
In view of Corollary 8.8.6 with a = 2, we have max

k≤J+1 sup r 0 ≥4m 0 r 2 0 {r=r 0 } d k e θ (κ) -4β 2 N ≥4m 0 [J, Γ, Ř] 2 + (ext) M(≥4m 0 ) r 4 d ≤J+1 e θ (µ) + ϑ d / 2 d / 2 ( d / 1 d / 1 ) -1 β + 2ζ ρ 2 ,
where we have used

• the fact that d /ϑ = d / d / -1 2 d / 2
ϑ and Codazzi for ϑ to estimate the terms of the RHS with one angular derivative of ϑ, 

• the fact that d /ϑ = d / d / -1 2 d / 2 ϑ
d k e θ (µ) + ϑ d / 2 d / 2 ( d / 1 d / 1 ) -1 β + 2ζ ρ 2 + max k≤J+1 sup r 0 ≥4m 0 r 2 0 {r=r 0 } d k e θ (κ) -4β 2 N ≥4m 0 [J, Γ, Ř] 2 .
Finally, we have obtained

max k≤J+1 sup r 0 ≥4m 0 {r=r 0 } r 4 0 (d k μ) 2 + r 2 0 (d k ϑ) 2 + r 2 0 (d k ζ) 2 + r 2 0 (d k (e 3 (ζ) + β)) 2 +r 2-δ B 0 (d k κ) 2 + (d k ϑ) 2 + (d k ω) 2 + r -δ B 0 (d k ξ) 2 N ≥4m 0 [J, Γ, Ř] 2 ,

CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M6, M7, M8

)

max k≤J+2 sup r 0 ≥4m 0 r 2 0 {r=r 0 } d k κ - 2 r 2 N ≥4m 0 [J, Γ, Ř] 2 ,
and max

k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 } r 6 0 d k d / 1 d / 1 κ -ϑ d / 4 d / 3 d / -1 2 + d / 2 d / -1 1 ρ 2 +r 6 0 d k e θ (µ) + ϑ d / 2 d / 2 ( d / 1 d / 1 ) -1 β + 2ζ ρ 2 +r 2 0 d k e θ (κ) -4β 2 N ≥4m 0 [J, Γ, Ř] 2 .
In view of the definition (8.8.2) of N ≥4m 0 [J, Γ, Ř], and of the various norms, we infer

(ext) G ≥4m 0 J+1 [ Γ] + (ext) G ≥4m 0 J+1 [ Γ] (Σ * ) G J+1 [ Γ] + (Σ * ) G J+1 [ Γ] + (ext) R J+1 [ Ř] + (ext) G J [ Γ] + 0 (ext) G ≥4m 0 J+1 [ Γ] + (ext) G ≥4m 0 J+1 [ Γ]
and hence, for 0 small enough,

(ext) G ≥4m 0 J+1 [ Γ] + (ext) G ≥4m 0 J+1 [ Γ] (Σ * ) G J+1 [ Γ] + (Σ * ) G J+1 [ Γ] + (ext) R J+1 [ Ř] + (ext) G J [ Γ].
This concludes the proof of Proposition 8.8.2.

Proof of Proposition 8.8.3

In the proof below, we will repeatedly use the following estimate max

k≤J+1 (ext) M(r≤4m 0 ) (d k f ) 2 max k≤J (ext) M(r≤4m 0 ) (d k f ) 2 + (d k Nf ) 2 + (d k e 4 f ) 2 + (d k d /f ) 2 (8.8.3) 
which follows from the fact that d = ( d /, re 4 , e 3 ) and e 3 = Υe 4 -2N, where we recall that

N = 1 2 Υe 4 -e 3 .
Also, we introduce the following notation which will constantly appear on the RHS of the equalities below 

N ≤4m 0 [J, Γ, Ř] := (ext) G ≥4m 0 J+1 [ Γ] + (ext) G ≥4m 0 J+1 [ Γ] + (ext) R J+1 [ Ř] + (ext) G J [ Γ] + 0 (ext) G ≤4m 0 J+1 [ Γ] + (ext) G ≤4m 0 J+1 [ Γ] . ( 8 
} (d k κ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the null structure equations for e 4 (ϑ), e 3 (ϑ) and d / 2 ϑ to avoid loosing one derivative.

Step 2. Next, recall that

e 4 (μ) + 3 2 κμ = - 3 2 µκ + Err[e 4 μ].
In view of Corollary 8.8.10, we have max

k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k μ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for κ of Step 1.

Step 3. Next, recall that e 4 (ζ) + κζ = -βϑζ.

In view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k e 4 ζ) 2 + (d k ζ) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Also, commuting first with N, and proceeding analogously, we infer

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k Nζ) 2 N ≤4m 0 [J, Γ, Ř] 2
Furthermore, in view of the definition of µ and a Poincaré inequality for d / 1 , we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k d /ζ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used a trace estimate and the estimate for μ of Step 2. The above estimates, together with (8.8.3), imply max

k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k ζ) 2 N ≤4m 0 [J, Γ, Ř] 2 .
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Step 4. Recall that e 4 (ϑ) + κϑ = -2α.

In view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k e 4 ϑ) 2 + (d k ϑ) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Also, commuting first one time with N, and proceeding analogously, we infer

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k Nϑ) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Furthermore, in view of Codazzi for ϑ, and a Poincaré inequality for d / 2 , we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k d /ϑ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used a trace estimate, and the estimate for κ and ζ respectively in Step 1 and Step 3. The above estimates, together with (8.8.3), imply max

k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k ϑ) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Step 5. Recall that we have

e 4 (κ) + 1 2 κκ = - 1 2 κκ -2 d / 1 ζ + 2ρ + Err[e 4 κ] = - 1 2 κκ + 2μ + 4ρ - 1 2 ϑϑ + Err[e 4 κ].
In view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k e 4 κ) 2 + (d k κ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for κ and μ derived respectively in Step 1 and Step 2. Also, commuting first one time with N, and proceeding analogously, we infer

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k Nκ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for κ and μ derived respectively in Step 1 and Step 2. Furthermore, commuting the equation for e 4 (κ) once with e θ , we have

e 4 (e θ (κ)) + κe θ (κ) = - 1 2 κe θ (κ) + 2e θ (µ) + 4e θ (ρ) -e θ (ϑϑ) + 2e θ (ζ 2 ) - 1 2 ϑe θ (κ).
Together with the Bianchi identity for e 4 (β), we infer

e 4 (e θ (κ) -4β) + κ(e θ (κ) -4β) = - 1 2 κe θ (κ) + 2e θ (µ) + 12ρζ +4ϑβ -e θ (ϑϑ) + 2e θ (ζ 2 ) - 1 2 ϑe θ (κ).
In view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k (e 4 (e θ (κ) -4β)) 2 + (d k (e θ (κ) -4β)) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for κ, μ and ζ derived respectively in Step 1, Step 2 and Step 3.

The above estimates, together with (8.8.3), imply

max k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k κ) 2 N ≤4m 0 [J, Γ, Ř] 2 + max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k β) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used a trace estimate on {r = r 0 } for r T ≤ r 0 ≤ 4m 0 .

Step 6. Recall that we have In view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k e 4 ω) 2 + (d k ω) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Also, commuting first one time with N, and proceeding analogously, we infer

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k Nω) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Step 7. Recall that we have

e 4 (e 3 (ζ) + β) + κ(e 3 (ζ) + β) = κβ + 1 2 κκ + 2µ -6ρ ζ -ϑβ + ϑβ -ξα -ϑζ + 2ωϑζ -4ζ d / 1 d / -1 1 μ + ρ - 1 4 ϑϑ + 1 4 ϑϑ -2ζ 3
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Commuting first one time with N, and in view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k N(e 3 (ζ) + β)) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimate for ζ in Step 3.

Step 8. Recall that we have

e 4 (ξ) = -e 3 (ζ) + β -κζ -ζϑ.
In view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k e 4 ξ) 2 + (d k ξ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for ζ derived in Step 3. Also, commuting first one time with N, and proceeding analogously, we infer

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k Nξ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for e 3 (ζ) + β derived in Step 7.

Step 9. Recall

2 d / 1 ω = e 3 ζ + κζ -β - 1 2 κξ + ϑζ - 1 2 ϑξ.
Using a Poincaré inequality for d / 1 , we infer 

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k d /ω) 2 N ≤4m 0 [J, Γ, Ř]
(d k ω) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Step 10. Recall that we have e 4 ( Ω) = -2ω + κ Ω. 

(d k Ω) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for ω derived in Step 9.

Step 11. Recall

2 d / 1 ξ = e 3 (κ) + κ κ + 2ω κ + 2κ ω - 1 2 κκ -2ρ Ω -Err[e 3 κ].
Using a Poincaré inequality for d / 1 , we infer

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k d /ξ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimates for κ, ω and Ω respectively in Step 5, Step 9 and Step 10. The above estimates, together with the estimates for ξ of Step 8 and (8.8.3), imply max

k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k ξ) 2 N ≤4m 0 [J, Γ, Ř] 2 .
Step 12. Recall that

e 4 (ϑ) + 1 2 κϑ = 2 d / 2 ζ - 1 2 κϑ + 2ζ 2 = 2 d / 2 d / -1 1 -μ -ρ + 1 4 ϑϑ - 1 4 ϑϑ - 1 2 κϑ + 2ζ 2 .
In view of Corollary 8.8.10, we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k e 4 ϑ) 2 + (d k ϑ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimate for μ and ϑ respectively in Step 2 and Step 4. Also, commuting first one time with N, and proceeding analogously, we infer

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k Nϑ) 2 N ≤4m 0 [J, Γ, Ř] 2
where we have used the estimate for μ and ϑ respectively in Step 2 and Step 4. Furthermore, in view of Codazzi for ϑ, and a Poincaré inequality for d / 2 , we have

max k≤J sup r T ≤r 0 ≤4m 0 {r=r 0 } (d k d /ϑ) 2 N ≤4m 0 [J, Γ, Ř]
and hence, for 0 small enough,

(ext) G ≤4m 0 J+1 [ Γ] + (ext) G ≤4m 0 J+1 [ Γ] (ext) G ≥4m 0 J+1 [ Γ] + (ext) G ≥4m 0 J+1 [ Γ] + (ext) R J+1 [ Ř] + (ext) G J [ Γ].
This concludes the proof of Proposition 8.8.3.

Proof of Proposition 8.3.11

To prove Proposition 8.3.11, we rely on the following proposition.

Proposition 8.9.1. Let J such that k small -2 ≤ J ≤ k large -1. Then, we have

(int) G J+1 [ Γ] + (int) G J+1 [ Γ] (ext) G J+1 [ Γ] + (ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + T |d J+1 ( (ext) Ř)| 2 1 2
, where the notation (ext) G J+1 [ Γ] has been introduced in Proposition 8.8.2, and where we have introduced the notation

(int) G k [ Γ] := (int) M d k e θ (κ) 2 + (d ≤k μ) 2 + d k (e 4 (ζ) -β) 2 .
The proof of Proposition 8.9.1 is postponed to section 8.9.2. It will rely in particular on basic weighted estimates for transport equations along e 3 in (int) M derived in section 8.9.1.

We now conclude the proof of Proposition 8.3.11. In view of Proposition 8.9.1, we have

(int) G J+1 [ Γ] (ext) G J+1 [ Γ] + (ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + T |d J+1 ( (ext) Ř)| 2 1 2
.

Also, we have in view of Proposition 8.8.1, Proposition 8.8.2 and the iteration assumption (8.3.13)

(ext) G J+1 [ Γ] + (ext) G J+1 [ Γ] (ext) R J+1 [ Ř] + B [J].
We infer

(int) G J+1 [ Γ] (int) R J+1 [ Ř] + (ext) R J+1 [ Ř] + B [J] + T |d J+1 ( (ext) Ř)| 2 1 2 
.
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Together with Proposition 8.3.10, we deduce

(int) G J+1 [ Γ] B [J] + 0 N (En) J+1 + N (match) J+1 + T |d J+1 ( (ext) Ř)| 2 1 2
which concludes the proof of Proposition 8.3.11.

The rest of this section is dedicated to the proof of Proposition 8.9.1.

8.9.1 Weighted estimates for transport equations along e 3 in (int) M Lemma 8.9.2. Let the following transport equation in

(int) M e 3 (f ) + a 2 κf = h
where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies

(int) M f 2 T f 2 + (int) M h 2 .
Proof. Multiply by f to obtain

1 2 e 3 (f 2 ) + a r f 2 = hf.
Next, integrate over S u,r to obtain where we used the fact that 2e 3 (r) = rκ. Also, choosing b = -2a, we obtain

1 2 e 3 Su,r f 2 = Su,r 1 2 (e 3 (f 2 ) + κf 2 ) = - Su,r a -1 2 κf 2 + Su,r hf = - a -1 2 κ Su,r f 2 - a -1 2 
Su,r κf 2 + Su,r
f 2 + 1 2 a + 1 + b 2 κr b Su,r f 2 = - a -1 2 r b Su,r
1 2 e 3 r -2a
Su,r

f 2 + 1 2 κr -2a
Su,r

f 2 = - a -1 2 r -2a Su,r κf 2 + r -2a
Su,r hf.

Next, let 1 ≤ u ≤ u * . We now integrate in r and along C u in (int) M. Since r is bounded on (int) M from above and below, we obtain, for 0 > 0 small enough,

r T 2m 0 -2m 0 δ 0 Su,r f 2 Su,r T f 2 + r T 2m 0 -2m 0 δ 0 Su,r h 2 . 
We may now integrate in u to deduce

u * 1 r T 2m 0 -2m 0 δ 0 Su,r f 2 u * 1 Su,r T f 2 + u * 1 r T 2m 0 -2m 0 δ 0 Su,r h 2 . 
(8.9.1) Remark 8.9.3. Note that we have the following consequence of the coarea formula

dT = ς √ κ + A √ -κ dµ ur T du,
where we used that T = {r = r T }. Also, we have in (int) M dM = 4ς 2 r 2 κ 2 dµ u,r dudr.

We infer, in (int) M,

dT = 1 - 2m 0 r T (1 + O( 0 )) dµ u,r 0 du, and 
dM = (1 + O( 0 ))dµ u,r dudr.
Relying on Remark 8.9.3 we deduce from (8.9.1)

(int) M f 2 T f 2 + (int) M h 2
as desired. This concludes the proof of the lemma.
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Corollary 8.9.4. Let the following transport equation in (int) M

e 3 (f ) + a 2 κf = h
where a ∈ R is a given constant, and f and h are scalar functions. Then, f satisfies for 5 ≤ l ≤ k large + 1

(int) M (d k f ) 2 T (d ≤k f ) 2 + (int) M (d ≤k-1 f ) 2 + (int) M (d ≤k h) 2 + sup (int) M |d ≤k-5 f | 2 (int) G k-1 [ Γ] + (int) G k [κ] 2 .
Proof. The proof is based on Lemma 8.9.2. It is similar to the one of Corollary 8.8.6 and left to the reader.

8.9.2 Proof of Proposition 8.9.1

We introduce the following notation which will constantly appear on the RHS of the equalities below

N (int) [J, Γ, Ř] := (ext) G J+1 [ Γ] + (ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + T |d J+1 ( (ext) Ř)| 2 1 2 + 0 (int) G J+1 [ Γ] + (int) G J+1 [ Γ] . (8.9.2) 
Step 1. In view of Lemma 7.7.1 relating the Ricci coefficients and curvature components of (int) M to the ones of (ext) M on the timelike hypersurface T , we have

T d J+1 ( (int) Γ) 2 T |d J+1 ( (ext) Γ)| 2 .
Also, using again Lemma 7.7.1, we have

T d J+1 (int) e θ ( (int) κ), (int) μ, (int) e 4 ( (int) ζ -(int) β) 2 T d J+1 (ext) e θ ( (int) κ) -4 (ext) β, (int) μ, (int) e 3 ( (int) ζ) + (int) β 2 + T |d J+1 ( (ext) Ř)| 2
We deduce, using that T = {r = r T } and the definitions of the various norms on (ext) M,

T d J+1 ( (int) Γ) 2 + T d J+1 (int) e θ ( (int) κ), (int) μ, (int) e 4 ( (int) ζ -(int) β) 2 (ext) G J+1 [ Γ] + (ext) G J+1 [ Γ] + T |d J+1 ( (ext) Ř)| 2 1 2 
.
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T d J+1 ( (int) Γ) 2 + T d J+1 (int) e θ ( (int) κ), (int) μ, (int) e 4 ( (int) ζ -(int) β) 2 N (int) [J, Γ, Ř] 2 .
From now on, we only consider the frame of (int) M. The previous estimate can be written as

max k≤J+1 T (d k μ) 2 + (d k ζ) 2 + (d k κ) 2 + (d k ϑ) 2 + (d k κ) 2 + (d k ϑ) 2 +(d k (e 4 (ζ) -β)) 2 + (d k ξ) 2 + (d k ω) 2 + (d k Ω) 2 N (int) [J, Γ, Ř] 2 and max k≤J+1 T (d k e θ (κ)) 2 N (int) [J, Γ, Ř] 2 .
Step 2. We have obtained all the desired estimates on T for the foliation of (int) M in Step 1. We now derive the desired estimates on (int) M. To this end, we rely on the transport equations in the e 3 directions which we estimate thanks to Corollary 8.9.4. The initial data on T is estimated thanks to Step 1. In particular, we proceed in the following order

• From

e 3 (κ) + κ κ = Err[e 3 κ]
and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k κ) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (e θ (κ)) + 3 2 κe θ (κ) = - 1 2 ϑe θ (κ) - 1 2 e θ (ϑ 2 )
and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k e θ (κ)) 2 N (int) [J, Γ, Ř]
• From

e 3 (μ) + 3 2 κ μ = - 3 2 µ κ + Err[e 3 μ],
the above control of κ and e θ (κ) (the control of e θ (κ) is needed to estimate Err[e 3 μ]), and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k μ) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (ϑ) + κ ϑ = -2α
and the control of α, we infer max

k≤J+1 (int) M (d k ϑ) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (ζ) + κζ = β -ϑζ
the control of β, and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k ζ) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (κ) + 1 2 κκ = - 1 2 κκ + 2 d / 1 ζ + 2ρ + Err[e 3 κ] = - 1 2 κκ + 2μ + 4ρ - 1 2 ϑϑ + 1 2 ϑϑ + Err[e 3 κ],
the control of ρ, the above control of κ and μ, and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k κ) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (ϑ) + 1 2 κϑ = 2 d / 2 ζ - 1 2 κϑ + 2ζ 2 = 2 d / 2 d / -1 1 μ + ρ - 1 4 ϑϑ + 1 4 ϑϑ - 1 2 κϑ + 2ζ 2 ,
the control of ρ, the above control of ϑ and μ, and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k ϑ) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (ω) = ρ + Err[e 3 ω],
the control of ρ, and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k ω) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (e 4 (ζ) -β) + κ(e 4 (ζ) -β) = -κβ + 1 2 κκ + 2µ -6ρ ζ +ϑβ -ϑβ + ξα -ϑζ + 2ωϑζ -4ζ d / 1 d / -1 1 μ + ρ - 1 4 ϑϑ + 1 4 ϑϑ -2ζ 3 ,
the control of β, the above control of ζ, and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k (e 4 (ζ) -β)) 2 N (int) [J, Γ, Ř] 2 .
• From

e 3 (ξ) = (e 4 (ζ) -β) + 2β + κζ + ϑζ,
the control of β, the above control of e 4 (ζ)-β and ζ, and the bootstrap assumptions, we infer max

k≤J+1 (int) M (d k ξ) 2 N (int) [J, Γ, Ř] 2 .
In view of the above estimates, of the definition (8.9.2) of N ≤4m 0 [J, Γ, Ř], and of the various norms, we infer

(int) G J+1 [ Γ] + (int) G J+1 [ Γ] (ext) G J+1 [ Γ] + (ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + T |d J+1 ( (ext) Ř)| 2 1 2 + 0 (int) G J+1 [ Γ] + (int) G J+1 [ Γ] 550 CHAPTER 8.
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and hence, for 0 small enough,

(int) G J+1 [ Γ] + (int) G J+1 [ Γ] (ext) G J+1 [ Γ] + (ext) G J+1 [ Γ] + (int) R J+1 [ Ř] + T |d J+1 ( (ext) Ř)| 2 1 2
.

This concludes the proof of Proposition 8.9.1.

8.10 Proof of Proposition 8.3.12 Lemma 4.6.6 corresponds to the particular case J = k large -1 of Proposition 8.3.12. Its proof in section 4.6.2 extends immediately to the case k small -2 ≤ J ≤ k large -1 which thus yields the proof of Proposition 8.3.12.

Chapter 9

GCM PROCEDURE 9.1 Preliminaries

We consider an axially symmetric polarized spacetime regions R foliated by two functions (u, s) such that

• On R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4.

• We denote by (e 3 , e 4 , e θ ) the null frame adapted to the outgoing geodesic foliation (u, s) on R.

• Let 

g = -2ςduds + ς 2 Ωdu 2 + γ dθ - 1 2 ςbdu 2 + e 2Φ dϕ 2 , (9.1.2) 
where θ is chosen such that b = e 4 (θ) = 0.
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• The spacetime metric induced on S(u, s) is given by,

g / = γdθ 2 + e 2Φ dϕ 2 . ( 9.1.3) 
• The relation between the null frame and coordinate system is given by

e 4 = ∂ s , e 3 = 2 ς ∂ u + Ω∂ s + b∂ θ , e θ = γ -1/2 ∂ θ . (9.1.4) 
• We denote the induced metric on

• S by • g / = • γ dθ 2 + e 2Φ dϕ 2 . Definition 9.1.1. Let 0 < • δ ≤ • two sufficiently small constants. Let ( • u, • s) real numbers so that 1 ≤ • u < +∞, 4m 0 ≤ • s < +∞. (9.1.5) We define R = R( • δ,
• ) to be the region

R := |u - • u| ≤ δ R , |s - • s| ≤ δ R , δ R := • δ • -1 2 , (9.1.6) 
such that assumption A1-A3 below with constant • on the background foliation of R, are verified. The smaller constant

• δ controls the size of the GCMS quantities as it will be made precise below.

In this section we define the renormalized Ricci and curvature components,

Γ : = κ, ϑ, ζ, η, κ - 2 r , κ + 2Υ r , κ, ϑ, ξ, ω, ω - m r 2 , Ω, Ω + Υ , ς + 1 , Ř : = α, β, ρ, ρ + 2m r 3 , β, α .
Since our foliation is outgoing geodesic we also have,

ξ = ω = 0, η + ζ = 0. ( 9.1.7) 
We decompose Γ = Γ g ∪ Γ b where,

Γ g = κ, ϑ, ζ, κ, κ - 2 r , κ + 2Υ r , , Γ b = η, ϑ, ξ, ω, ω - m r 2 , r -1 Ω, r -1 ς, r -1 Ω + Υ , r -1 ς -1 . (9.1.8) 9.1. PRELIMINARIES 553 
Given a p-reduced scalar f ∈ s p (M), with respect to the given geodesic foliation on R, we consider the following norms on spheres S = S(u, r) ⊂ R,

f ∞ (u, r) : = f L ∞ S(u,r) , f 2 (u, r) := f L 2 S(u,r) , f ∞,k (u, r) = k i=0 d i f ∞ (u, r), f 2,k (u, r) = k i=0 d i f 2 (u, r). (9.1.9) 
where, we recall, that d i stands for any combination of length i of operators of the from e 3 , re 4 , d /. Recall that,

d / s f = r 2p / p k , if s = 2p, r 2p+1 d / k / p k , if s = 2p + 1. (9.1.10)
On a given polarized surface S ⊂ R, not necessarily a leaf S of the given foliation, we define

f h q s (S) : = s i=0 d / S i f L q (S) . (9.1.11) 
where d / S is defined as above with respect to the intrinsic metric on S. In the particular case when q = 2 we omit the upper index i.e., h s (S) = h 2 s (S).

Main assumptions

Given an integer s max , we assume the following1 

A1. For all k ≤ s max , we have on R

Γ g k,∞ • r -2 , Γ b k,∞ • r -1 , (9.1.12) 
and, A3. The metric coefficients are assumed to satisfy the following assumptions in R, for all k ≤ s max

α, β, ρ, μ k,∞ • r -3 , e 3 (α, β) k-1,∞ • r -4 , β k,∞ • r -2 , α k,∞ • r -1 . ( 9 
r γ r 2 -1, b, e Φ r sin θ -1 ∞,k + Ω + Υ ∞,k + ς -1 ∞,k • . (9.1.15)
Remark 9.1.2. The above assumptions imply in particular the following

|e 4 (r)|, |e 3 (r)| 1, e 4 (s) = 1 + O( • ), e 3 (u) = 2 + O( • ), e 4 (u) = 0.
Hence, since r = 

Moreover, for any reduced 1-scalar h, we have

sup S |h| e Φ r -1 sup S (|h| + | d /h|), h e Φ L 2 (S)
r -1 h h 1 (S) . (9.1.18)

Elliptic Hodge lemma

We shall often make use of the results of Proposition 

1. If f ∈ s 1 (S) d /f h k (S) + f h k (S) r d / 1 f h k (S) . 2. If f ∈ s 2 (S) d /f h k (S) + f h k (S) r d / 2 f h k (S) . 3. If f ∈ s 0 (S) d /f h k (S) r d / 1 f h k (S) . 4. If f ∈ s 1 (S) f h k+1 (S) r d / 2 f h k (S) + r -2 S e Φ f . 5. If f ∈ s 1 (S) f -S f e Φ S e 2Φ e Φ h k+1 (S) r d / 2 f h k (S) .
We shall often make use fo the following non-sharp product estimate on S, see Proposition 2.1.40.

Lemma 9.1.5. The following estimates hold true on a given polarized surface S ⊂ R, for any contraction between two reduced scalars ψ 1 , ψ 2 , k ≥ 2,

ψ 1 • ψ 2 h k (S) r -1 ψ 1 h k (S) ψ 1 h k (S) .

Deformations of S surfaces 9.2.1 Deformations

Recall that

• S = S( • u,
• s) is a fixed sphere of the (u, s) outgoing geodesic foliation of a fixed

spacetime region R = R( • , • δ).
that is,

γ S (ψ(θ)) = γ(ψ(θ)) + ς 2 (ψ(θ)) Ω(ψ(θ)) + 1 4 (b(ψ(θ))) 2 γ(ψ(θ)) (U (θ)) 2 -2ς(ψ(θ))U (θ)S (θ) -γ(ψ(θ))ς(ψ(θ))b(ψ(θ))U (θ). 2. The Z-invariant vectorfield ∂ S θ := Ψ # (∂ θ ) is tangent to S and
∂ S θ | Ψ(p) = ∂ θ S - ς 2 Ω∂ θ U e 4 + ς 2 ∂ θ U e 3 + √ γ 1 - ς 2 b∂ θ U e θ Ψ (p) 
. (9.2.6)

3. If f ∈ s k (S) and P S is a geometric operator acting on f then,

(P S [f ]) # = P S,# [f # ] (9.2.7)
where, P S,# is the corresponding geometric operator on

• S with respect to the metric g / S,# and f # = ψ # f . 4. The L 2 norm of f # = ψ # f with respect to the metric g / S,# is the same as as the L 2 norm of f with respect to the metric g / S , i.e.,

• S |f # | 2 da g / S,# = S |f | 2 da g / S .
5. If f ∈ h k (S) and f # is its pull-back by ψ then,

f # h k ( • S, g / S,# ) = f h k (S) . Proof. If ∂ θ denotes the coordinate derivative ∂ θ = ∂ ∂θ then, at every point p ∈ • S, Ψ # (∂ θ )| Ψ(p) = ∂ θ U ∂ u | Ψ(p) + ∂ θ S∂ s | Ψ(p) + ∂ θ | Ψ(p) , Ψ # (∂ ϕ ) = ∂ ϕ .
In view of (9.1.4) we have

∂ s = e 4 , ∂ u = ς 2 e 3 -Ωe 4 -bγ 1/2 e θ , ∂ θ = √ γe θ .
Hence, at a point Ψ(p) on S we have,

Ψ # (∂ θ ) = ∂ θ S - ς 2 Ω∂ θ U e 4 + ς 2 ∂ θ U e 3 + √ γ 1 - ς 2 b∂ θ U e θ .
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We denote by g / # = Ψ # (g / S ) the pull back to

• S of the metric g / S on S, i.e. at any point

p ∈ • S, g / # (∂ θ , ∂ θ ) = g / S (Ψ # ∂ θ , Ψ # ∂ θ ) = g(∂ θ U ∂ u + ∂ θ S∂ s + ∂ θ , ∂ θ U ∂ u + ∂ θ S∂ s + ∂ θ ) = (∂ θ U ) 2 g uu + 2∂ θ U ∂ θ Sg us + 2∂ θ U g uθ + g θθ , g / # (∂ θ , ∂ ϕ ) = 0, g / # (∂ ϕ , ∂ ϕ ) = e 2Φ # ,
where,

g uu = ς 2 Ω + 1 4 γb 2 , g us = -ς, g uθ = - ς 2 γb, g ss = g sθ = 0, g θθ = γ.
Hence the pull-back metric Ψ # (g / S ) on

• S is given by,

γ S,# dθ 2 + e 2Φ # dϕ 2 where γ S,# = (γ S ) # , (9.2.8) 
with γ S is defined by,

(γ S ) # = γ # + (ς # ) 2 Ω + 1 4 b 2 γ # (U ) 2 -2ς # U S -(γςb) # U . (9.2.9) 
Note that the vectorfield,

e S θ := 1 (γ S ) 1/2 ψ # (∂ θ )
is tangent, Z invariant and forms together with e ϕ an orthonormal frame on S. Note that we can also write,

e S θ := ( • γ ) 1/2 (γ S ) 1/2 Ψ # (e θ )
where

• γ is the coefficient in front of dθ 2 of the metric induced by g on • S, • g / = • γ dθ 2 + e 2Φ dϕ 2 .
In general, any geometric calculation on S can be reduced to a geometric calculation on • S with respect to the metric g / S,# . Moreover the L 2 norm on S with respect to the metric g / S is the same as the L 2 norm of f # = ψ # f with respect to the norm g / S,# . This concludes the proof of the lemma. 

S -→ S a Z-invariant deformation in R( • , • δ) with U, V verifying the bounds sup 0≤θ≤π |U (θ)| + |S (θ)| • δ, (9.2.10) 
as well as the bound (9.1.15) for the coordinates system (u, s, θ, ϕ) of R. The following hold true 1. We have,

γ S,# - • γ • δ • r. (9.2.11)
2. For every f ∈ s k (S) we have,

f # L 2 ( • S,g / S,# ) = f # L 2 ( • S, • g / ) 1 + O(r -1 • δ) . (9.2.12) 
3. As a corollary of (9.2.12) (choosing f = 1) we deduce 2 ,

r S • r = 1 + O( • r -1 • δ) (9.2.13)
where r S is the area radius of S and

• r that of • S. Proof. Recall, γ S,# ( • u, • s, θ) = γ(ψ(θ)) + ς 2 (ψ(θ)) Ω(ψ(θ)) + 1 4 (b(ψ(θ))) 2 γ(ψ(θ)) (U (θ)) 2 -2ς(ψ(θ))U (θ)S (θ) -γ(ψ(θ))ς(ψ(θ)b(ψ(θ))U (θ).
In view of our assumptions on U and S as well as our estimates (9.1.15) for γ, Ω and b and ς, we infer

|γ S,# -γ| |γ # -γ| + • r • 1/2 • δ.
2 Recall also from (9.1.16) that r -

• r = O( • δ • -1/2
).
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γ # ( • u, • s, θ) -γ( • u, • s, θ) = γ( • u + U (θ), • s + S(θ), θ) -γ( • u, • s, θ) = 1 0 d dλ γ( • u + λU (θ), • s + λS(θ), θ) dλ = U (θ) 1 0 ∂ u γ( • u + λU (θ), • s + λS(θ), θ)dλ +S(θ) 1 0 ∂ s γ( • u + λU (θ), • s + λS(θ), θ)dλ.
In view of our estimates (9.1.15) for γ, the assumption (9.2.10) on (U , V ) and the fact that

∂ s = e 4 , ∂ u = ς 2 e 3 -Ωe 4 -bγ 1/2 e θ , we infer 3 |γ # -γ| • r • δ.
We have finally, obtained

|γ S,# -γ| |γ # -γ| + • r • δ • r • δ.
To prove the second part of the lemma we write,

• S |f # | 2 da g / S,# = • S |f # | 2 γ S,# • γ da• g / = • S |f # | 2 da• g / + • S |f # | 2   γ S,# • γ -1   da• g /
which yields, in view of the first part,

• S |f # | 2 da g / S,# = • S |f # | 2 da• g / 1 + O( • r -1 • δ) .
This concludes the proof of the lemma.

Remark 9.2.4. In view of (9.2.13) and (9.1.16),

• r , r S and the value of r along S are all comparable.

Corollary 9.2.5. Under the assumptions of Lemma 9.2.3 the following estimate4 holds true for an arbitrary scalar f ∈ s 0 (R),

S f -• S f • δ • r sup R |d ≤1 f | + sup R r|e 3 f | . Proof. We have, S f -• S f = • S f # γ S,# • γ -• S f = • S f #   γ S,# • γ -1   + • S (f # -f ).
Hence,

S f -• S f • δ • r sup S |f | + • S f # -f .
Now, proceeding as in the proof of (9.2.11),

f ( • u + U (θ), • s + S(θ)) -f ( • u, • s) 1 0 d dλ f ( • u + λU (θ), • s + λS(θ), θ) dλ = U (θ) 1 0 ∂ u f ( • u + λU (θ), • s + λS(θ), θ)dλ +S(θ) 1 0 ∂ s f ( • u + λU (θ), • s + λS(θ), θ)dλ. Therefore , S f -• S f • r • δ sup S |f | + • δ • r sup R |d f | + sup R r|e 3 f | • δ • r sup R |d ≤1 f | + sup R r|e 3 f | as stated.
To compare higher order Sobolev spaces, we will need the following lemma.

Lemma 9.2.6.

Let • S ⊂ R = R( • ,
• δ) as in Definition 9.1.1 verifying the assumptions

A1-A3. Let Ψ : • S -→ S be Z-invariant deformation. Assume the bound (U , S ) L ∞ ( • S) + ( • r ) -1 (U , S ) h smax-1 ( • S, • g / ) • δ. (9.2.14) 
Then, we have for any reduced scalar h defined on R

h hs(S) r sup R |d ≤s h|, for 0 ≤ s ≤ s max .
Also, if f ∈ h s (S) and f # is its pull-back by ψ, we have

f hs(S) = f # hs( • S, g / S,# ) = f # hs( • S, • g / ) (1 + O(r -1 • δ)) for 0 ≤ s ≤ s max -1. CHAPTER 9. GCM PROCEDURE Proof. See appendix C.1.
Corollary 9.2.7. Under the same assumptions as Lemma 9.2.6, we have, for all j, k ≥ 0 with 0 ≤ j + k ≤ s max ,

d ≤j Γ g h k (S) • r -1 , d ≤j Γ b h k (S) • , (9.2.15) 
d ≤j (α, β, ρ, μ) h k (S) • r -2 , d ≤j β h k (S) • r -1 , d ≤j α h k (S) • , (9.2.16 
)

d ≤j γ r 2 -1, b, e Φ r sin θ -1 h k (S)
• ,

d ≤j (Ω + Υ) h k (S) + d ≤j (ς -1) h k (S) • r. (9.2.17) 
Proof. In view of Lemma 9.2.6 and assumptions A1-A3 we have, for j, k ≥ 0 with 0 ≤ j + k ≤ s max ,

d ≤j Γ g h k (S) r sup R d ≤k d ≤j Γ g r sup R d ≤smax Γ g r -1 • .
The other estimates are proved in the same manner.

Adapted frame transformations

We consider general null transformations introduced in Lemma 2.3.1, • S -→ S we say that a new frame (e 3 , e 4 , e θ ), obtained from the standard frame (e 3 , e 4 , e θ ) via the transformation (9.2.18), is S-adapted if we have,

e 4 = λ e 4 + f e θ + 1 4 f 2 e 3 , e θ = 1 + 1 2 f f e θ + 1 2 f e 4 + 1 2 f 1 + 1 4 f f e 3 , e 3 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 . ( 9 
e θ = e S θ = 1 (γ S ) 1/2 ψ # (∂ θ ). (9.2.19) 
Proposition 9.2.9. Consider a deformation Ψ :

• S -→ S in R = R( • ,
• δ) verifying the assumption A3. The following statements hold true.

1. A new frame e 3 , e θ , e 4 generated by (f, f , λ = e a ) according to (9.2.18) is adapted to

S = S( • u + U, • s + S) provided that, at all points θ ∈ [0, π], γ # 1 - ς 2 b # U = (γ S ) # 1/2 1 + 1 2 (f f ) # , ςU = (γ S ) # 1/2 f # 1 + 1 4 (f f ) # , 2 S - ς 2 Ω # U = (γ S ) # 1/2 f # , (9.2.20) 
where,

(γ S ) # = γ # + (ς # ) 2 Ω + 1 4 b 2 γ # (∂ θ U ) 2 -2ς # ∂ θ U ∂ θ S -(γςb) # ∂ θ U
and # denotes the pull back by ψ of the corresponding reduced scalars, i.e. for example, f # (θ) = f (

• u + U (θ), • s + S(θ), θ).
2. There exists a small enough constant 5 δ 1 such that for given f, f on R satisfying

sup R |f | + |f | ≤ r -1 δ 1 ,
we can uniquely solve the system (9.2.20) for U, S subject to the initial conditions, U (0) = 0, S(0) = 0.

5 In later applications, we will have sup

R (|f | + |f |) r -1 • δ. 564 CHAPTER 9. GCM PROCEDURE Thus, if ( • u,
• s, 0) corresponds to the south pole of • S and f, f are given there exists a unique deformation S ⊂ R, given by U, S : [0, π] -→ R, adapted to frames generated by 6 (f, f ) which passes through the same south pole. Moreover,

sup [0,π] |(U , S )| • r sup S |f | + |f | (9.2.21)
and, for 2

≤ s ≤ s max -1, (U , S ) L ∞ ( • S) + ( • r ) -1 (U , S ) hs( • S, • g / ) f, f hs(S) (9.2.22) 
with f, f hs(S) = f hs(S) + f hs(S) .

3. As a consequence of (9.2.22) the deformation thus obtained verifies the conclusions of Lemmas 9.2.3-9.2.6 and Corollary 9.2.7. In particular, (a) We have,

γ S,# - • γ δ 1 • r . (b) We have r S • r -1 • r -1 δ 1 .
Proof. In view of Lemma 9.2.2, The Z-invariant vectorfield e S θ := 1 (γ S ) 1/2 Ψ # (∂ θ ) can be expressed by the formula,

e S θ = 1 (γ S ) 1/2 ∂ θ S - ς 2 Ω∂ θ U e 4 + ς 2 ∂ θ U e 3 + √ γ 1 - ς 2 b∂ θ U e θ .
where ψ(p) = (

• u + U (θ), • s + S(θ), θ) and U = ∂ θ U (θ), S = ∂ θ S(θ).
On the other hand, according to (9.2.18), at Ψ(p) ∈ S,

e θ = 1 + 1 2 f f e θ + 1 2 f 1 + 1 4 f f e 3 + 1 2 f e 4 .
We deduce, at every θ ∈ [0, π],

γ # 1 - ς # 2 b # U = (γ S ) # 1/2 1 + 1 2 (f f ) # , ς # U = (γ S ) # 1/2 f # 1 + 1 4 (f f ) # , 2 S - ς # 2 Ω # U = (γ S ) # 1/2 f # ,
according to the Definition 9.2.1. Estimate (9.2.22) can be easily derived by taking higher derivatives and using Lemma 9.2.6 and A1-A3. This concludes the proof of the lemma.

We now provide a lemma analogous to Proposition 9.2.9 in the particular case when f is only bounded in r, unlike the rest of the chapter where it decays like r -1 . This lemma is not needed for the construction of GCM spheres in this chapter. It is used in the proof of Theorem M0 in the region (ext) L 0 ∩ (ext) M of the initial data layer, see Step 8 in section 4.1.

Lemma 9.2.10. There exists a small enough constant δ 1 such that for given f, f on R satisfying

f h smax-1 (S) + (r S ) -1 f h smax-1 (S) ≤ δ 1 ,
the following holds 1. We have

U L ∞ ( • S) + ( • r ) -1 S L ∞ ( • S) + ( • r ) -1 U h smax-1 ( • S, • g / ) + ( • r ) -2 S h smax-1 ( • S, • g / ) δ 1 .
In particular, we have

sup S |u - • u| δ 1 , sup S |s - • s| • rδ 1 .
2. We have,

γ S,# - • γ δ 1 ( • r ) 2 .
3. We have

r S • r -1 + sup S r S r -1 δ 1 .
4. The following estimate holds true for an arbitrary scalar h ∈ s 0 (R),

h # -h δ 1 sup R |d ≤1 h|.

The following estimate holds true for an arbitrary scalar

h ∈ s 0 (R), S h -• S h δ 1 ( • r) 2 sup R |d ≤1 h|.
9.2. DEFORMATIONS OF S SURFACES 567 6. We have for any reduced scalar h defined on R h hs(S) r sup R |d ≤s h|, for 0 ≤ s ≤ s max .

7. If h ∈ h s (S) and h # is its pull-back by ψ, we have

f hs(S) = f # hs( • S, g / S,# ) = f # hs( • S, • g / ) (1 + O(δ 1 )) for 0 ≤ s ≤ s max -1.
Proof. Recall from (9.2.20) that we have in particular

ςU = (γ S ) # 1/2 f # 1 + 1 4 (f f ) # , 2 S - ς 2 Ω # U = (γ S ) # 1/2 f # .
In view of the assumptions on (f, f ), and the control of the background foliation of R, we immediately obtain the first claim of the lemma concerning the control of (U, S). Note that the estimate for u - The first claim then yields the second and third claim by a straightforward adaptation of the proof of Proposition 9.2.9. Also, the fifth claim follows from the second and the fourth claim, by a simple adaptation of the proof of Corollary 9.2.5. The sixth and seventh claim follow from the other claims by a simple adaptation of Lemma 9.2.6.

Finally, we focus on the fourth claim. We have for an arbitrary scalar h ∈ s 0 (R),

h # ( • u, • s, θ) -h( • u, • s, θ) = h( • u + U (θ), • s + S(θ), θ) -h( • u, • s, θ) = 1 0 d dλ h( • u + λU (θ), • s + λS(θ), θ) dλ = U (θ) 1 0 ∂ u h( • u + λU (θ), • s + λS(θ), θ)dλ +S(θ) 1 0 ∂ s h( • u + λU (θ),
• s + λS(θ), θ)dλ.
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In view of our estimates (9.1.15) for γ, the assumption (9.2.10) on (U , V ) and the fact that

∂ s = e 4 , ∂ u = ς 2 e 3 -Ωe 4 -bγ 1/2 e θ ,
we infer7 together with the first claim

|h # -h| sup • S |U | sup R |dh| + r -1 sup • S |S| sup R |re 4 (h)| δ 1 sup R |dh| as desired.
Lemma 9.2.10 yields the following corollaries.

Corollary 9.2.11. Assume that there exists a small enough constant δ 1 such that we have

U L ∞ ( • S) + ( • r ) -1 S L ∞ ( • S) + ( • r ) -1 U h smax-1 ( • S, • g / ) + ( • r ) -2 S h smax-1 ( • S, • g / ) ≤ δ 1 .
Then, we have, for all j, k ≥ 0 with 0 ≤ j + k ≤ s max ,

d ≤j Γ g h k (S) • r -1 , d ≤j Γ b h k (S) • , (9.2.25) 
d ≤j (α, β, ρ, μ) h k (S) • r -2 , d ≤j β h k (S) • r -1 , d ≤j α h k (S) • , (9.2.26) 
d ≤j γ r 2 -1, b, e Φ r sin θ -1 h k (S)
• ,

d ≤j (Ω + Υ) h k (S) + d ≤j (ς -1) h k (S) • r. (9.2.27) 
Proof. First, in view of (9.2.20), the assumptions on (U, S) yield for (f, f )

f h smax-1 (S) + (r S ) -1 f h smax-1 (S) δ 1 .
We may thus apply Lemma 9.2.10. The proof is then similar to the one of Corollary 9.2.7 and relies on property 6 of Lemma 9.2.10 and the control A1-A3 of the background foliation.

Corollary 9.2.12. Let 3 ≤ s ≤ s max . There exists a small enough constant δ 1 such that given f, f on R satisfying

f hs(S) + (r S ) -1 f hs(S) ≤ δ 1 , then sup S K S - 1 (r S ) 2 δ 1 + • (r S ) 2 , K S - 1 (r S ) 2 h s-1 (S) δ 1 + • r S ,
and

S e 2Φ = 4π 3 (r S ) 4 (1 + O(δ 1 + • )).
Proof. Using

K S = -ρ S - 1 4 κ S κ S + 1 4 ϑ S ϑ S , K = -ρ - 1 4 κκ + 1 4 ϑϑ,
the change of frame formulas for ρ S , κ S , κ S , ϑ S and ϑ S , and the assumptions (9.4.23) for8 (f, f ), we infer sup

S K S -K δ 1 (r S ) 2 , K S -K h s-1 (S) δ 1 r S .
Together with the control A1-A3 for the background foliation, we deduce sup

S K S - 1 r 2 δ 1 (r S ) 2 + • r 2 , K S - 1 r 2 h s-1 (S) δ 1 r S + • r .
Also, in view of the assumptions (9.4.23) for (f, f ), we may apply Lemma 9.2.10. Using properties 3 of that lemma on the control of rr S , we easily infer sup

S K S - 1 (r S ) 2 δ 1 + • (r S ) 2 , K S - 1 (r S ) 2 h s-1 (S) δ 1 + • r S .
Also, using properties 5 of that lemma, we have

S e 2Φ -• S e 2Φ δ 1 (r S ) 4
which together with the control A3 for the background foliation implies

S e 2Φ = 4π 3 (r S ) 4 (1 + O(δ 1 + • )).
This concludes the proof of the corollary.

Corollary 9.2.13. Let 2 ≤ s ≤ s max . There exists a small enough constant δ 1 such that given f, f on R satisfying

f hs(S) + (r S ) -1 f hs(S) ≤ δ 1 ,
then, for any scalar function D = D(u, s) on R depending only on the coordinates (u, s) of the background foliation, we have

D -D S hs(S) r f hs(S) + r -1 f hs(S) sup R |d ≤s D|.
Proof. We have, using a Poincaré inequality,

D -D S hs(S)
r S e S θ (D) h s-1 (S) , s ≥ 1.

Thus, we need to compute e S θ (D). Decomposing e S θ on the background frame, we have

e S θ (D) = 1 + 1 2 f f e θ (D) + 1 2 f e 4 (D) + 1 2 f 1 + 1 4 f f e 3 (D) = 1 2 f e 4 (D) + 1 2 f 1 + 1 4 f f e 3 (D)
where we have used in the last inequality D = D(u, s) and e θ (u) = e θ (s) = 0. We infer, for 2 ≤ s ≤ s max ,

D -D S hs(S) r S 1 2 f e 4 (D) + f 1 + 1 4 f f e 3 (D) h s-1 (S)
f hs(S) e 4 (D) h s-1 (S)

+ f hs(S) 1 + r -2 f hs(S) f hs(S) e 3 (D) h s-1 (S) r f hs(S) + r -1 f hs(S) sup R |d ≤s D|,
where we have used in the last inequality the control on (f, f ), as well as property 6 of Lemma 9.2.10 with h = e 4 (D) and h = e 3 (D).

Corollary 9.2.14. Assume that (f, f ) given on R satisfy

f h smax-1 (S) + (r S ) -1 f h smax-1 (S) ≤ • .
Then, we have

|m S - • m| • .
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Proof. According to the identity (2.2.12), we have

S ρ S = - 8πm S r S + 1 4 S ϑ S ϑ S , • S ρ = - 8π • m • r + 1 4 S ϑϑ.
In view of the transformation formulas for ϑ S and ϑ S , and noticing that the product ϑ S ϑ S only involves (f, f ) but not λ, we infer from the assumptions A1-A3 for the background foliation of R, and the assumptions on (f, f ) that

|ϑ S ϑ S | + |ϑϑ| • 2 r 3 . We infer S ρ S = - 8πm S r S + O • r , • S ρ = - 8π • m • r + O • r ,
and hence

m S - • m r S S ρ S - • r • S ρ + • .

Next, provided

• has been chosen small enough, we may apply Lemma 9.2.10 with δ 1 =

• and infer in particular

|r S - • r| • r • , S ρ -• S ρ • • r .
We deduce

m S - • m r S ρ S -ρ + • .
Together with the transformation formula for ρ S , which only involves (f, f ) but not λ, we infer from the assumptions A1-A3 for the background foliation of R, and the assumptions on (f, f ) that

m S - • m • as desired.
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Frame transformations

For the convenience of the reader we start by recalling the transformation formulas recorded in Proposition 2.3.4.

Proposition 9.3.1 (Transformation formulas-GCM). Under a general transformation of type (9.2.18) with λ = e a the Ricci coefficients and curvature components transform as follows:

ξ = λ 2 ξ + 1 2 λ -1 e 4 (f ) + ωf + 1 4 f κ + λ 2 Err(ξ, ξ ), Err(ξ, ξ ) = 1 4 f ϑ + l.o.t., ξ = λ -2 ξ + 1 2 λe 3 (f ) + ω f + 1 4 f κ + λ -2 Err(ξ, ξ ), Err(ξ, ξ ) = - 1 8 λf 2 e 3 (f ) + 1 4 f ϑ + l.o.t., (9.3.1) 
ζ = ζ -e θ (log(λ)) + 1 4 (-f κ + f κ) + f ω -f ω + Err(ζ, ζ ), Err(ζ, ζ ) = 1 2 f e θ (f ) + 1 4 (-f ϑ + f ϑ) + l.o.t., η = η + 1 2 λe 3 (f ) + 1 4 κf -f ω + Err(η, η ), Err(η, η ) = 1 4 f ϑ + l.o.t., η = η + 1 2 λ -1 e 4 (f ) + 1 4 κf -f ω + Err(η, η ), Err(η, η ) = - 1 8 f 2 λ -1 e 4 (f ) + 1 4 f ϑ + l.o.t., (9.3.2) 
κ = λ (κ + d / 1 (f )) + λErr(κ, κ ), Err(κ, κ ) = f (ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t., κ = λ -1 κ + d / 1 (f ) + λ -1 Err(κ, κ ), Err(κ, κ ) = - 1 4 f 2 e θ (f ) + f (-ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t., (9.3.3) 
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573 ϑ = λ (ϑ -d / 2 (f )) + λErr(ϑ, ϑ ), Err(ϑ, ϑ ) = f (ζ + η) + f ξ + 1 4 f f κ + f f ω -f 2 ω + l.o.t. ϑ = λ -1 ϑ -d / 2 (f ) + λ -1 Err(ϑ, ϑ ), Err(ϑ, ϑ ) = - 1 4 f 2 e θ (f ) + f (-ζ + η) + f ξ + 1 4 f f κ + f f ω -f 2 ω + l.o.t., (9.3.4 
)

ω = λ ω - 1 2 λ -1 e 4 (log(λ)) + λErr(ω, ω ), Err(ω, ω ) = 1 4 f e 4 (f ) + 1 2 ωf f - 1 2 f η + 1 2 f ξ + 1 2 f ζ - 1 8 κf 2 + 1 8 f f κ - 1 4 ωf 2 + l.o.t., ω = λ -1 ω + 1 2 λe 3 (log(λ)) + λ -1 Err(ω, ω ), Err(ω, ω ) = - 1 4 f e 3 (f ) + ωf f - 1 2 f η + 1 2 f ξ - 1 2 f ζ - 1 8 κf 2 + 1 8 f f κ - 1 4 ωf 2 + l.o.t. (9.3.5) 
The lower order terms we denote by l.o.t. are linear with respect to ξ, ξ,

ϑ and quadratic or higher order in f, f , and do not contain derivatives of these latter.

Also,

α = λ 2 α + λ 2 Err(α, α ), Err(α, α ) = 2f β + 3 2 f 2 ρ + l.o.t., β = λ β + 3 2 ρf + λErr(β, β ), Err(β, β ) = 1 2 f α + l.o.t., ρ = ρ + Err(ρ, ρ ), Err(ρ, ρ ) = 3 2 ρf f + f β + f β + l.o.t., β = λ -1 β + 3 2 ρf + λ -1 Err(β, β ), Err(β, β ) = 1 2 f α + l.o.t., α = λ -2 α + λ -2 Err(α, α ), Err(α, α ) = 2f β + 3 2 f 2 ρ + l.o.t. (9.3.6) 
The lower order terms we denote by l.o.t. are linear with respect to the curvature quantities α, β, ρ, β, α and quadratic or higher order in f, f , and do not contain derivatives of these latter.
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In the following lemma we rewrite a subset of these transformations in a more useful form, Lemma 9.3.2. Under a general transformation of type (9.2.18) with λ = e a we have, in particular,

ζ = ζ -e θ (a) -f ω + f ω - 1 2 f χ + 1 2 f χ + Err(ζ, ζ ), Err(ζ, ζ ) = 1 2 f 1 + 1 4 f f e θ (f ) - 1 16 f 2 e θ (f 2 ) + 1 4 (-f ϑ + f ϑ) + l.o.t. (9.3.7) 
κ = e a (κ + d / 1 f ) + e a Err(κ, κ ),

Err(κ, κ ) = 1 2 f f e θ (f ) - 1 4 f e θ (f 2 ) + f (ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t. (9.3.8) κ = e -a κ + d / 1 f + e -a Err(κ, κ ), Err(κ, κ ) = - 1 2 f e θ f f + 1 8 f 2 f 2 + 3 4 f f + 1 8 (f f ) 2 e θ (f ) + 1 4 1 + 1 2 f f f e θ f f - 1 4 f 1 + 1 4 f f e θ f 2 + f (-ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t. (9.3.9) 
Also,

ϑ = λ (ϑ -d / 2 (f )) + λErr(ϑ, ϑ ), Err(ϑ, ϑ ) = 1 2 f f e θ (f ) - 1 4 f e θ (f 2 ) + f (ζ + η) + f ξ + 1 4 f f κ + f f ω -f 2 ω + l.o.t. ϑ = λ -1 ϑ -d / 2 (f ) + λ -1 Err(ϑ, ϑ ), Err(ϑ, ϑ ) = - 1 2 f e θ f f + 1 8 f 2 f 2 + 3 4 f f + 1 8 (f f ) 2 e θ (f ) + 1 4 1 + 1 2 f f f e θ f f - 1 4 f 1 + 1 4 f f e θ f 2 + f (-ζ + η) + f ξ + 1 4 f f κ + f f ω -f 2 ω + l.o.t., (9.3.10) 
The lower order terms we denote by l.o.t. are cubic or higher order in the small quantities ξ, ξ, ϑ, η, η, ζ, ϑ as well as f, f , and do not contain derivatives of these quantities.
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Hence,

µ = µ + d / 1 -( d / 1 ) a + f ω -f ω + 1 4 f κ - 1 4 f κ + Err(µ, µ )
where,

Err(µ, µ ) = -d / 1 Err(ζ, ζ ) -Err(ρ, ρ ) + 1 4 ϑ ϑ -ϑϑ + f e 3 ζ + f e 4 ζ + l.o.t.
In view of the transformation formulas for ϑ, ϑ and the structure of the error terms Err(ζ, ζ ), Err(ρ, ρ ), Err(ϑ, ϑ ), Err(ϑ, ϑ ) in Lemma 9.3.2 we easily deduce that the error term Err(µ, µ ) depends only on at most two angular derivatives e θ of f and one angular derivative e θ of a, f .

We shall also make use of the following, Lemma 9.3.4. We have the transformation equations,

e θ (κ ) = e θ κ + e θ d / 1 f + κe θ a - 1 4 κ(f κ + f κ) + κ(f ω -ωf ) + f ρ + Err(e θ κ , e θ κ), e θ (κ ) = e θ κ + e θ d / 1 f -κe θ a - 1 4 κ(f κ + f κ) + κ(f ω -ωf ) + f ρ + Err(e θ κ , e θ κ), e θ (µ ) = e θ µ + e θ ( d / 1 ) -( d / 1 ) a + f ω -f ω + 1 4 f κ - 1 4 f κ + 3 4 ρ(f κ + f κ) + Err(e θ µ , e θ µ), (9.3.12) 
where,

Err(e θ κ , e θ κ) = (e a -1)

e θ κ + e θ d / 1 f + 1 2 f e 4 κ + 1 2 f e 3 κ + e a e θ Err(κ, κ ) + e θ (a) d / 1 f + Err(κ, κ ) + 1 2 f f e θ κ + 1 8 f 2 f e 3 κ + 1 2 f 2 d / 1 η - 1 2 ϑ ϑ + 2(ξξ + η 2 ) + 1 2 f f e θ κ + 1 8 f 2 f e 3 κ + 1 2 f 2 d / 1 ξ - 1 2 ϑ 2 + 2(η + η + 2ζ)ξ ,
Err(e θ κ , e θ κ) = (e -a -1)

e θ κ + e θ d / 1 f + 1 2 f e 3 κ + 1 2 f e 4 κ + e -a e θ Err(κ, κ ) + e θ (a) d / 1 f + Err(κ, κ ) + 1 2 f f e θ κ + 1 8 f f e 3 κ + 1 2 f 2 d / 1 η - 1 2 ϑ ϑ + 2(ξξ + η 2 ) + 1 2 f f e θ κ + 1 8 f 2 f e 3 κ + 1 2 f 2 d / 1 ξ - 1 2 ϑ 2 + 2(η + η -2ζ)ξ ,

and,

Err(e θ µ , e θ µ) = e θ Err(µ,

µ ) + 1 2 f f e θ µ + 1 8 f 2 f e 3 µ - 1 2 f d / 1 β - 1 2 ϑ α -ζ β + 2(η β + ξ β) - 1 2 f d / 1 β - 1 2 ϑ α + ζ β + 2(η β + ξ β) + 1 2 f e 4 -d / 1 ζ + 1 4 ϑϑ + 1 2 f e 3 -d / 1 ζ + 1 4 ϑϑ .
Proof. Applying the vectorfield e θ to κ = e a (κ + d / 1 f + Err(κ, κ ))

we deduce, e θ (κ ) = e a e θ κ + e θ d / 1 f + e θ (Err(κ, κ ) + e a e θ (a) κ + d / 1 f + Err(κ, κ ) .

Hence,

e -a e θ (κ ) = e θ κ + e θ d / 1 f + e θ (Err(κ, κ ) + e θ (a) κ + d / 1 f + Err(κ, κ )
and thus

e θ (κ ) = e θ κ + e θ (a)κ + e θ d / 1 f + 1 2 f e 4 κ + 1 2 f e 3 κ + Err 1 [e θ (κ), e θ (κ )]
with error term,

Err 1 [e θ (κ), e θ (κ )] = (e a -1) e θ κ + e θ d / 1 f + 1 2 f e 4 κ + 1 2 f e 3 κ + e a e θ (Err(κ, κ ) + e θ (a) d / 1 f + Err(κ, κ ) + 1 2 f f e θ κ + f 2 f e 3 κ .
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Now, making use of

e θ κ = 1 + 1 2 f f e θ κ + 1 2 f e 4 κ + 1 2 f 1 + 1 4 f f e 3 κ = e θ κ + 1 2 f e 4 κ + 1 2 f e 3 κ + 1 2 f f e θ κ + 1 8 f 2 f e 3 κ
and the null structure equations,

e 3 (κ) + 1 2 κ κ -2ωκ = 2 d / 1 η + 2ρ - 1 2 ϑ ϑ + 2(ξξ + η 2 ), e 4 κ + 1 2 κ 2 + 2ωκ = 2 d / 1 ξ - 1 2 ϑ 2 + 2(η + η + 2ζ)ξ,
we deduce,

e θ κ = e θ κ + 1 2 f - 1 2 κ 2 -2ωκ + 1 2 f - 1 2 κ κ + 2ωκ + 2ρ + 1 2 f f e θ κ + 1 8 f 2 f e 3 κ + 1 2 f 2 d / 1 ξ - 1 2 ϑ 2 + 2(η + η + 2ζ)ξ + 1 2 f 2 d / 1 η - 1 2 ϑ ϑ + 2(ξξ + η 2 ) .
Hence,

e θ (κ ) = e θ κ + e θ (a)κ + e θ d / 1 f + κe θ a - 1 4 κ(f κ + f κ) + κ(f ω -ωf ) + f ρ + Err(e θ κ , e θ κ)
where,

Err(e θ κ , e θ κ) = Err 1 (e θ κ , e θ κ)

+ 1 2 f 2 d / 1 η - 1 2 ϑ ϑ + 2(ξξ + η 2 ) + 1 2 f f e θ κ + 1 8 f 2 f e 3 κ + 1 2 f 2 d / 1 ξ - 1 2 ϑ 2 + 2(η + η + 2ζ)ξ
as desired. The formula for e θ (κ ) is easily derived by symmetry from the one on e θ (κ ). Note however that a becomes -a in the transformation.

Applying the operator e θ = 1 + 1 2 f f e θ + 1 2 f e 4 + 1 2 f 1 + 1 4 f f e 3 to the transformation formula for µ,

µ = µ + ( d / 1 ) -( d / 1 ) a + f ω -f ω + 1 4 f κ - 1 4 f κ + Err(µ, µ ) 9.3. FRAME TRANSFORMATIONS 579 we derive, e θ (µ ) = e θ (µ) + e θ ( d / 1 ) -( d / 1 ) a + f ω -f ω + 1 4 f κ - 1 4 f κ + e θ Err(µ, µ ) = e θ (µ) + 1 2 f e 4 µ + 1 2 f e 3 µ + e θ ( d / 1 ) -( d / 1 ) a + f ω -f ω + f κ - 1 4 f κ + e θ Err(µ, µ ) + 1 2 f f e θ µ + 1 8 f 2 f e 3 µ. Recalling that µ = -d / 1 ζ -ρ + 1 4 ϑϑ we find, 1 2 f e 4 µ + 1 2 f e 3 µ = - 1 2 (f e 3 + f e 4 )ρ + 1 2 f e 4 -d / 1 ζ + 1 4 ϑϑ + 1 2 f e 3 -d / 1 ζ + 1 4 ϑϑ .
Recalling the Bianchi equations for e 3 ρ, e 4 ρ e

4 ρ + 3 2 κρ = d / 1 β -1 2 ϑ α + ζ β + 2(η β + ξ β), e 3 ρ + 3 2 κρ = d / 1 β -1 2 ϑ α -ζ β + 2(η β + ξ β), we further deduce, 1 2 f e 4 µ + 1 2 f e 3 µ = 3 4 ρ(f κ + f κ) - 1 2 f d / 1 β - 1 2 ϑ α -ζ β + 2(η β + ξ β) - 1 2 f d / 1 β - 1 2 ϑ α + ζ β + 2(η β + ξ β) + 1 2 f e 4 -d / 1 ζ + 1 4 ϑϑ + 1 2 f e 3 -d / 1 ζ + 1 4 ϑϑ .
Therefore,

e θ (µ ) = e θ (µ) + 3 4 ρ(f κ + f κ) + e θ ( d / 1 ) -( d / 1 ) a + f ω -f ω + 1 4 f κ - 1 4 f κ + Err(e θ µ, e θ µ)
with,

Err(e θ µ , e θ µ) = e θ Err(µ,

µ ) + 1 2 f f e θ µ + 1 8 f 2 f e 3 µ - 1 2 f d / 1 β - 1 2 ϑ α -ζ β + 2(η β + ξ β) - 1 2 f d / 1 β - 1 2 ϑ α + ζ β + 2(η β + ξ β) + 1 2 f e 4 -d / 1 ζ + 1 4 ϑϑ + 1 2 f e 3 -d / 1 ζ + ϑϑ
where the lower order terms denoted l.o.t. are cubic with respect to a, f, f , Γ, Ř and may involve fewer angular (along S) derivatives of a, f, f . Remark 9.3.9. Note that Err 2 behaves worse in powers of r than Err 1 . The reason is the presence of the terms f e θ ξ, e θ (f ξ) in the formula for e S θ (Err(κ , κ)).

Proof. Note that in the spacetime region R of interest r and r S are comparable. Recall, see (9.3.14),

Err 1 = Err(e θ κ , e θ κ) = e θ Err(κ, κ ) + ae θ d / 1 f + e θ (a) d / 1 f + a e θ κ + 1 2 f e 4 κ + f e 3 κ + f d / 1 η + f d / 1 ξ + l.o.t., Err 2 = Err(e θ κ , e θ κ) = e θ Err(κ, κ ) -ae θ d / 1 f -e θ (a) d / 1 f -a e θ κ + 1 2 f e 4 κ + f e 3 κ + f d / 1 η + f d / 1 ξ + l.o.t., Err 3 = Err(e θ µ , e θ µ) = e θ Err(µ, µ ) - 1 2 f d / 1 β + f d / 1 β - 1 2 (f e 3 + f e 4 ) d / 1 ζ + l.o.t., and 10 , Err(κ 
, κ ) = 1 2 f f e θ (f ) - 1 4 f e θ (f 2 ) + f (ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t., Err(κ, κ ) = - 1 2 f e θ f f + 1 8 f 2 f 2 + 3 4 f f + 1 8 (f f ) 2 e θ (f ) + 1 4 1 + 1 2 f f f e θ f f - 1 4 f 1 + 1 4 f f e θ f 2 + f (-ζ + η) + f ξ - 1 4 f 2 κ + f f ω -f 2 ω + l.o.t. Also, Err(µ, µ ) = -e θ Err(ζ, ζ ) -Err(ρ, ρ ) + 1 4 ϑ ϑ -ϑϑ , Err(ζ, ζ ) = 1 2 f 1 + 1 4 f f e θ (f ) - 1 16 f 2 e θ (f 2 ) + 1 4 (-f ϑ + f ϑ) + l.o.t., Err(ρ, ρ ) = 3 2 ρf f + f β + f β + l.o.t.
10 Recall also the outgoing geodesic conditions i.e. ξ = 0, ζ + η = 0, ζη = 0, ω = 0.

FRAME TRANSFORMATIONS

585

We write schematically 11 ,

Err 1 = (f, f , a)(r -2 d / S ) 2 (f, f , a) + (r -1 d / S (f, f , a)) 2 + r -1 d / S (f, f , a)Γ g + r -2 d / S (f 2 ) + 1 2 a f e 4 κ + f e 3 κ + l.o.t.
Making use of

e 3 (κ) + 1 2 κ κ -2ωκ = 2 d / 1 η + 2ρ - 1 2 ϑ ϑ + 2(ξξ + η 2 ), e 4 κ + 1 2 κ 2 + 2ωκ = 2 d / 1 ξ - 1 2 ϑ 2 + 2(η + η + 2ζ)ξ,
and treating the curvature terms that appear as Γ g we easily derive,

r 2 Err 1 = ( d / S ) 2 (f, f , a) 2 + d / S (f, f , a)(rΓ g ) .
We obtain a worse estimate for Err 2 because of the presence e θ (f ξ), since ξ ∈ Γ b . In fact,

rErr 2 = r -1 ( d / S ) 2 (f, f , a) 2 + d / S (f, f , a) Γ .
For Err 3 we write similarly, treating the curvature terms that appear as Γ g ,

e θ (µ, µ ) = r -3 ( d / S ) 3 (f, f , a) 2 + r -3 ( d / S ) 2 (f, f , a)Γ g + l.o.t.
Using the null structure equations for ζ we infer that,

Err 3 = e θ (µ, µ ) - 1 2 f d / 1 β + f d / 1 β - 1 2 (f e 3 + f e 4 ) d / 1 ζ + l.o.t. = r -3 ( d / S ) 3 (f, f , a) 2 + r -3 ( d / S ) 2 (f, f , a)Γ g + l.o.t.
as stated.

Making use of the above lemma and the assumptions A1-A3 we can derive the following.

Lemma 9.3.10. Assume given a deformation Ψ :

• S -→ S in R and adapted frame (e 3 , e 4 , e θ ) with e θ = e S θ with transition parameters a, f, f defined on S. Assume that there exists a small enough constat δ 1 such that the following holds true

( • r ) -1 U h smax-1 ( • S, • g / ) + ( • r ) -2 S h smax-1 ( • S, • g / ) δ 1 .
11 The last term r -2 d / S (f 2 ) on the right of the identity below is due to the term e θ (f 2 ω) in the expression of e θ Err(κ, κ ).

Equation for the average of a

In the proof of existence and uniqueness of GCMS, see Theorem 9.4.1 we will need, in addition of the equations derived so far, an equation for the average of a. To achieve this we make use of the transformation formula for κ of Lemma 9.3.2

κ = e a (κ + d / 1 f ) + e a Err(κ, κ ), Err(κ, κ ) = f (ζ + η) + f ξ + 1 2 f e 4 f + 1 2 f e 3 f + 1 4 f f κ + f f ω -ωf 2 + l.o.t.
which we rewrite in the form,

κ S = e a 2 r + κ + κ - 2 r + d / S f + Err(κ, κ ) .
We deduce,

(e a -1) 2 r = κ S - 2 r -e a κ + κ - 2 r + d / S f -e a Err(κ, κ ) = κ S - 2 r S + 2 r S - 2 r -κ + κ - 2 r + d / S f -e a Err(κ, κ ) -(e a -1) κ + κ - 2 r + d / S f or, a 2 r = κ S - 2 r S + 2 r S - 2 r -κ + κ - 2 r + d / S f -e a Err(κ, κ ) -(e a -1) κ + κ - 2 r + d / S f -(e a -1 -a) 2 r .
We deduce,

a = r S 2 κ S - 2 r S + 1 - r S r - r S 2 κ + κ - 2 r + d / S f + Err 6 Err 6 = - r S 2 e a Err(κ, κ ) -(e a -1) κ + κ - 2 r + d / S f -(e a -1 -a) 2 r -a r S r -1 .
Taking the average on S we infer that,

a S = r S 2 κ S S - 2 r S + 1 - r S r S - r S 2 κ + κ - 2 r S + Err 6 S (9.3.22)
where h S denotes the average of h on S.

Transversality conditions

Lemma 9.3.11. Assume given a deformed sphere S ⊂ R with adapted null frame e S 3 , e S 4 , e S θ and transition functions (a, f, f ). We can extend a, f, f , and thus the frame e S 3 , e S 4 , e S θ , in a small neighborhood of S such that the following hold true

ξ S = 0, ω S = 0, η S + ζ S = 0. (9.3.23)
Proof. According to Proposition 9.3.1 we have,

ξ S = e 2a ξ + 1 2 e -a e S 4 (f ) + 1 4 f κ + f ω + e 2a Err(ξ, ξ S ), ζ S = ζ -e S θ (a) -f ω + f ω - 1 4 f κ + 1 4 f κ + Err(ζ, ζ S ), η S = η + 1 2 e -a e S 4 f -f ω + 1 4 f κ + Err(η, η S ), ω S = e a ω - 1 2
e -a e S 4 a + e a Err(ω, ω S ).

Clearly the conditions ξ S = 0, ω S = 0 allows us to determine e S 4 f and e S 4 a on S while the condition η S + ζ S = 0 allows us to determine e S 4 f on S. Remark 9.3.12. According to Proposition 9.3.1 we also have,

ξ S = e -2a ξ + 1 2 e a e S 3 (f ) + 1 4 f κ + f ω + e -2a Err(ξ, ξ S ), ω S = e -a ω + 1 2
e a e S 3 a + e -a Err(ω, ω S ), so that we may impose, in addition, vanishing conditions on ξ S and ω S along S. Indeed these are determined by e S 3 f and e S 3 a.

Existence of GCM spheres

We now impose the GCM conditions on the deformed sphere S We are ready to state the first main result of this chapter.

d / S, 2 d / S, 1 κ S = d / S, 2 d / S, 1 µ S = 0, κ S = 2 r S , S f e Φ = Λ, S f e Φ = Λ, (9.4 
Theorem 9.4.1 (Existence of GCM spheres). Let

• S = S( • u,
• s) be a fixed sphere of the (u, s) outgoing geodesic foliation of a fixed spacetime region R. Assume in addition to A1-A3 that there exists scalar functions C = C(u, s), M = M (u, s), such that the following estimates hold true on R, for all k ≤ s max , with s max ≥ 6,

d k-1 d / 1 κ -Ce Φ • δr -3 , d k-1 d / 1 µ -M e Φ • δr -4 , κ - 2 r + d k κ • δr -2 . (9.4.2)
For any fix Λ, Λ ∈ R verifying,

|Λ|, |Λ|

• δr

there exists a unique GCM sphere S = S (Λ,Λ) , which is a deformation of • S, such that the GCM conditions (9.4.1) are verified. Moreover the following estimates hold true.

1. We have

r S • r -1 r -1 • δ. (9.4.4) 
In particular r,

• r and r S are all comparable in R.

2. The unique functions (λ, f, f ) on S, which relate the original frame e 3 , e 4 , e θ to the new frame on e S 3 , e S 4 , e S θ according to (9.2.18), verify the estimates

f, f , log λ h k (S) • δ, k ≤ s max + 1. (9.4.5)
3. The parameters U, S of the deformation, see Definition 9.2.1, verify the estimate 5. The curvature components (α S , β S , ρ S , β S , α S ), as well as µ S and the Ricci coefficients 12 (κ S , ϑ S , ζ S , κ S , ϑ S ) on S, verify, for all k ≤ s max ,

(U , S ) L ∞ ( • S) + max 0≤s≤smax-1 r -1 (U , S ) hs( • S, • g / ) • δ. ( 9 
κS , ϑ S , ζ S , κS h k (S) • r -1 , ϑ S h k (S) • , α S , β S , ρS , μS h k (S) • r -2 , β S h k (S) • r -1 , α S h k (S)
• .

(9.4.8)

6. The functions, (λ, f, f ) uniquely defined above, can be smoothly extended to a small neighborhood of S in such a way that the corresponding Ricci coefficients verify the following transversality conditions

ξ S = 0, ω S = 0, η S + ζ S = 0. (9.4.9) 
In that case, the following estimates hold 13 for all k ≤ s max -1

e S 4 (f, f , log λ) h k (S) r -1 • δ + r -3 (|Λ| + |Λ|) , (9.4.10) 
and,

e S 4 (κ S , ϑ S , ζ S , κS ) h k (S) • r -2 , e S 4 (ϑ S ) h k (S) • r -1 , e S 4 α S , β S , ρS , μS h k (S) • r -3 , e S 4 (β S ) h k (S) • r -2 , e S 4 (α S ) h k (S) • r -1 . (9.4.11) 
To prove Theorem 9.4.1, it will be useful, using the fact that the kernel of d / S, 2 is spanned by e Φ , to rewrite the GCM conditions (9.4.1) in the following form

d / S, 1 κ S = C S e Φ , d / S, 1 µ S = M S e Φ , κ S = 2 r S , S f e Φ = Λ, S f e Φ = Λ, (9.4.12) 
12 All other Ricci coefficients involve the transversal derivatives e S 3 , e S 4 of the frame. 13 To be more precise one should replace r by 
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where C S and M S are constants. Proposition 9.4.2. Assume that there exists constants C S , M S , such that the deformed sphere S verifies the GCM conditions (9.4.12). Then, the deformation parameters (a, f, f ) verify the system

A S + V f = 3 4 κ(A S ) -1 ρz -d / κ -κ(A S ) -1 -M S e Φ + d / μ + Err 4 , A S + V f = - 3 4 κ(A S ) -1 ρz + C S e Φ -d / κ + κ(A S ) -1 -M S e Φ + d / μ + Err 5 , d / S, a = - 3 4 (A S ) -1 ρz + f ω -f ω + 1 4 f κ - 1 4 f κ + (A S ) -1 -M S e Φ + d / μ -(A S ) -1 Err 3 , a S = 1 - r S r S - r S 2 κ + κ - 2 r S + Err 6 S , (9.4.13) 
and

S e Φ f = Λ, S e Φ f = Λ, (9.4.14) 
where we recall that

z = κf + κf , V = 1 2 κκ -ρ, Err 4 = Err 1 + κ(A S ) -1 Err 3 , Err 5 = Err 2 -κ(A S ) -1 Err 3 , Err 6 = - r S 2 e a Err(κ, κ ) -(e a -1) κ + κ - 2 r + d / S f -(e a -1 -a) 2 r -a r S r -1 .
with the error terms Err 1 , Err 2 , Err 3 , defined in Lemma 9.3.5.

Conversely, if there exists constants C S , M S , such that the deformation parameters (a, f, f ) verify the system (9.4.13) (9.4.14), then, the deformed sphere S verifies the GCM conditions (9.4.12).

The linearized GCM system

We start with the following linearized version of the equations (9.4.13)

B S f = - 6m S (r S ) 5 (A S ) -1 f -Υ S f + 2 r S M S -M S (A S ) -1 e Φ + F 1 , B S f = - 6m S Υ S (r S ) 5 (A S ) -1 f -Υ S f + C S -C S e Φ + 2Υ S r S M S -M S (A S ) -1 e Φ + F 2 , d / S, a = F 3 , a S = b 0 , (9.4.16) 
where F 1 , F 2 , and F 3 are given reduced scalar on S, b 0 is a given constant, and where we have introduced the notation

B S := d / S 2 d / S 2 + 6m S (r S ) 3 . (9.4.17) 
Remark 9.4.4. Recalling that we have

A S + V = d / S 2 d / S 2 -3ρ + 1 2
ϑϑ, the GCM system (9.4.13) corresponds, in view of the definition of B S , to the linearized GCM system (9.4.16) with the following choices for F 1 , F 2 , F 3 , b 0 ,

F 1 = - 3m S (r S ) 4 (A S ) -1 κ - 2 r S f + κ + 2Υ S r S f + 3 4 κ - 2 r S (A S ) -1 ρz - 3 2r S (A S ) -1 ρ + 2m S (r S ) 3 z -d / κ -κ - 2 r S (A S ) -1 -M S e Φ + d / μ - 2 r S (A S ) -1 d / μ -M S e Φ + Err 4 , F 2 = - 3m S Υ S (r S ) 4 (A S ) -1 κ - 2 r S f + κ + 2Υ S r S f - 3 4 κ + 2Υ S r S (A S ) -1 ρz + 3Υ S 2r S (A S ) -1 ρ + 2m S (r S ) 3 z -d / κ -C S e Φ + κ + 2Υ S r S (A S ) -1 -M S e Φ + d / μ - 2Υ S r S (A S ) -1 d / μ -M S e Φ + Err 5 , F 3 = - 3 4 (A S ) -1 ρz + f ω -f ω + 1 4 f κ - 1 4 f κ +(A S ) -1 -M S e Φ + d / μ -(A S ) -1 Err 3 , b 0 = 1 - r S r S - r S 2 κ + κ - 2 r S + Err 6 S .
Remark 9.4.5. To motivate the introduction of the system (9.4.16), let us note that the above particular choices for F 1 and F 2 in Remark 9.4.4 correspond to the terms in the first two equations of (9.4.13) which14 

• either depend on κ, d / κ -Ce Φ , and d / μ -M e Φ ,

• or are nonlinear.

The following result plays a main role in the proof of Theorem 9.4.1.

Proposition 9.4.6. Let a fixed spacetime region R verifying assumptions A1 -A3 and (9.4.2). Assume S is a given surface in R such that, for a small enough constant δ 1 > 0 and for any 2

≤ s ≤ s max + 1, sup S K S - 1 (r S ) 2 ≤ δ 1 (r S ) 2 , K S h s-2 (S) 1 r S , S e 2Φ = 4π 3 (r S ) 4 (1 + O(δ 1 )).
Then, for every Λ, Λ,

• Existence and uniqueness. There exists unique constants (C S , M S ) and a unique solution (f, f , λ) of the system (9.4.16) (9.4.14) verifying the estimates

C S -C S + r S M S -M S (r S ) -7 |Λ| + |Λ| + (r S ) -2 F 1 L 2 (S) + (r S ) -2 F 2 L 2 (S) , (9.4.18) 
(f, f ) hs(S) (r S ) -2 |Λ| + |Λ| + (r S ) 2 F 1 h s-2 (S) + (r S ) 2 F 2 h s-2 (S) , (9.4.19) 
ǎS hs(S) As a corollary, we derive the following rigidity result for GCM spheres.

r S F 3 h s-1 (S) (9 
Corollary 9.4.7. Let a fixed spacetime region R verifying assumptions A1 -A3 and (9.4.2). Assume that S is a deformed sphere in R which verifies the the GCM conditions

κ S = 2 r S , d / 2 S d / 1 S κ S = d / 2 S d / 1 S µ S = 0 (9.4.22)
and such that for a small enough constant δ 1 > 0, the transition functions (f, f , λ) from the background frame of R to that of S verifies, for some 4 ≤ s ≤ s max , the bound

f hs(S) + (r S ) -1 (f , a) hs(S) ≤ δ 1 . (9.4.23) 
Then (f, f , λ) verify the estimates The proof of Proposition 9.4.6 will be given in section 9.5.1 while the proof of Corollary 9.4.7 will be given in section 9.5.2.

(f, f , ǎS ) h s+1 (S) • δ + r -2 S f e Φ + S f e Φ + • + δ 1 sup

Comparison of the Hawking mass

We establish the estimate (9.4.7) concerning the Hawking mass m S . Recall that,

m S = r S 2 1 + 1 16π S κ S κ S , • m = • r 2 1 + 1 16π • S • κ • κ . 596 CHAPTER 9. GCM PROCEDURE We write 2 m S r S - • m • r = 1 16π S κ S κ S -κκ + S κκ -• S κκ -• S κκ - • κ • κ = I 1 + I 2 + I 3 .
In view of Proposition 9.2.9 we have |r S -

• r | • δ and γ S,# - • γ • δ •
r . Making use of Corollary 9.2.5 and the assumptions A1-A3 for κ, κ we deduce,

I 2 = S κκ -• S κκ • δr -1 .
Similarly, taking into account the definition of R := |u -

• u| ≤ • δ, |s - • s| ≤ • δ , I 3 • δr -1 .
Finally, making also use of the transformation formula from the original frame (e 4 , e 3 , e θ ) to the frame (e S 4 , e S 3 , e S θ ) of S

κ S κ S = κ + d / S f + Err(κ, κ S ) κ + d / S f + Err(κ, κ S )
and the estimates for (f, f , a = log λ) we deduce,

κ S κ S -κκ r -3 • δ.
Hence,

I 1 • δr -1 .
We infer that,

m S r S - • m • r • δr -1
from which the desired estimate (9.4.7) easily follows.

9.4.3 Iteration procedure for Theorem 9.4.1

We solve the coupled system of equations (9.4.13) (9.4.14) (9.4.15) by an iteration argument as follows.
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Starting with the septets

Q (0) := (U (0) , S (0) , a (0) , f (0) , f (0) , C (0) , M (0) ) = (0, 0, 0, 0, 0, C( • u, • s), M ( • u, • s)), Q (1) 
:= (U (1) , S (1) , a (1) , f (1) , f (1) , C (1) , M (1) ) = (0, 0, 0, 0, 0, C(

• u, • s), M ( • u, • s)),
corresponding to the undeformed sphere

• S, we define iteratively the quintet

Q (n+1) = (U (n+1) , S (n+1) , a (n+1) , f (n+1) , f (n+1) , C (n+1) , M (n+1) )
from 1) , S (n-1) , a (n-1) , f (n-1) , f (n-1) , C (n-1) , M (n-1) ),

Q (n-1) = (U (n-
Q (n) = (U (n) , S (n) , a (n) , f (n) , f (n) , C (n) , M (n) ),
as follows.

1. The pair (U (n) , S (n) ) defines the deformation sphere S(n) and the corresponding pull back map # n given by the map Ψ (n) :

• S -→ S(n), ( • u, • s, θ, ϕ) -→ ( • u + U (n) (θ), • s + S (n) (θ), θ, ϕ). (9.4.24) 
By induction we assume that the following estimates hold true:

r 4 |C (n) -C S(n-1) | + r 5 |M (n) -M S(n-1) | + (a (n) , f (n) , f (n) ) h smax-1 (S(n-1)) • δ, (9.4.25) 
and

∂ θ U (n-1) , S (n-1) L ∞ ( • S) + max 0≤s≤smax-1 r -1 ∂ θ U (n-1) , S (n-1) hs( • S, • g / ) (9.4.26) + ∂ θ U (n) , S (n) L ∞ ( • S) + max 0≤s≤smax-1 r -1 ∂ θ U (n) , S (n) hs( • S, • g / ) • δ.
2. We then define the quintet (a (n+1) , f (n+1) , f (n+1) , C (n+1) , M (n+1) ) by solving the sys-CHAPTER 9. GCM PROCEDURE where, we repeat, the pull back # n is defined with respect to the map

Ψ (n) ( • u, • s, θ) = ( • u + U (n) (θ), • s + S (n) (θ), θ), and 
γ (n) := γ S(n),#n .
The equation (9.4.36) admits a unique solution (U (n+1) , S (n+1) ) according to Proposition 9.4.10 below. The new pair (U (n+1) , S (n+1) ) defines the new polarized sphere S(n + 1) and we can proceed with the next step of the iteration.

Existence and boundedness of the iterates

Existence and boundedness of (f (n+1) , f (n+1) , a (n+1) , C (n+1) , M (n+1) ) Proposition 9.4.9. The system of equations (9.4.27), (9.4.34) and (9.4.35) admits a unique solution (f (1+n) , f (1+n) , a (n+1) , C (n+1) , M (n+1) ) verifying the estimates

r 4 |C (n+1) -C S(n) | + r 5 |M (n+1) -M S(n) | + (a (n+1) -a (n+1) S(n) , f (n+1) , f (n+1) ) h smax-1 (S(n)) • δ and r a (n+1) S(n) • δ + ∂ θ U (n) , S (n) L ∞ ( • S)
uniformly for all n ∈ N.

Proof. The system (9.4.27), (9.4.34) and (9.4.35) corresponds to the linearized GCM system (9.4.16) (9.4.14) with the following choice for F 1 , F 2 , F 3 and b 0

F 1 = E (n+1) , F 2 = E (n+1) , F 3 = E (n+1) , b 0 = 1 - r S(n) r S(n) - r S(n) 2 κ + κ - 2 r S(n) + Err (n+1) 6 S(n) 
.

Also, the induction assumptions (9.4.26) for (U (n) , S (n) ) together with Corollary 9.2.12 implies that the sphere S(n) satisfies in particular the assumptions of Proposition 9.4.6.

We infer from that proposition the existence and uniqueness of the quintet solution (f (1+n) , f (1+n) , a (n+1) , C (n+1) , M (n+1) ) to (9.4.27), (9.4.34) and (9.4.35), as well as the following a priori estimate

(r S(n) ) 4 |C (n+1) -C S(n) | + (r S(n) ) 5 |M (n+1) -M S(n) | + (f (n+1) , f (n+1) ) h smax-1 (S(n)) (r S(n) ) -2 |Λ| + |Λ| + (r S(n) ) 2 E (n+1) h smax-3 (S(n)) +(r S(n) ) 2 E (n+1) h smax-3 (S(n)) , (9.4.37) 
a (n+1) -a (n+1) S(n) h smax-1 (S(n)) r S(n) E (n+1) h smax-2 (S(n)) , (9.4.38) 
and

a (n+1) S(n) 1 - r S(n) r S(n) + r S(n) 2 κ + κ - 2 r S(n) + Err (n+1) 6 S(n) 
.

We need to control the RHS of the inequalities (9.4.37) (9.4.38) (9.4.39). We start with the control of the error terms Err

The induction assumptions (9.4.26) for (U (n) , S (n) ) implies that the sphere S(n) satisfies in particular the assumptions of Lemma 9.3.10 with δ 1 = • δ. We deduce from that lemma

Err (n+1) 1 , Err (n+1) 2 h smax-3 (S(n)) • r -2 (f (n) , f (n) , a (n) ) h smax-1 (S(n-1)) r -2 • • δ, Err (n+1) 3 h smax-4 (S(n)) • r -3 (f (n) , f (n) , a (n) ) h smax-1 (S(n-1)) r -3 • • δ, Err (n+1) 4 
, Err

(n+1) 5 h smax-3 (S(n)) • r -2 (f (n) , f (n) , a (n) ) h smax-1 (S(n-1)) r -2 • • δ,
where we have also used the induction assumptions (9.4.25) for (f (n) , f (n) , a (n) ), as well as Lemma 9.2.6 which implies for a reduced scalar h on S(n -1)

h • Ψ (n-1) • (Ψ (n) ) -1 hs(S(n)) = h hs(S(n-1)) (1 + O(r -1 • δ)), 0 ≤ s ≤ s max -1.
Also, recall that Err

(n+1) 6
is given by

Err (n+1) 6 = - r S(n) 2 e a (n) Err(κ, κ ) -(e a (n) -1) κ + κ - 2 r + d / S(n-1) f (n) -e a (n) -1 -a (n) 2 r -a (n) r S(n) r -1 • Ψ (n-1) • (Ψ (n) ) -1
which together with the control A1-A3 of the background foliation, the induction assumptions (9.4.25) for (f (n) , f (n) , λ (n) ), the control of r-r S(n) following from the induction assumptions (9.4.26) for (U (n) , S (n) ) and Lemma 9.2.3, and Sobolev, yields sup

S(n) |Err (n+1) 6 | r -1 • (f (n) , f (n) , a (n) ) h 3 (S(n-1)) r -1 • • δ.
In view of

• the definition (9.4.28) (9.4.29) (9.4.30) of E (n+1) , E (n+1) and E (n+1) ,

• the control of the background foliation on S(n) provided by Corollary 9.2.7,

• the assumption (9.4.2) for κ, d / 1 κ -Ce Φ and d / 1 µ -M e Φ ,

• the control of C -C S(n) and M -M S(n) using Corollary 9.2.13, the control of the background foliation, as well as the induction assumptions (9.4.26) for (U (n) , S (n) ),

• the control of r-r S(n) following from the induction assumptions (9.4.26) for (U (n) , S (n) ) and Lemma 9.2.3,

• the control of mm S(n) thanks to section 9.4.2 which uses the control of S(n) provided by the induction assumptions (9.4.26) for (U (n) , S (n) ), as well as the the induction assumptions (9.4.25) for (f (n) , f (n) , λ (n) ),

• the above estimates for Err we infer

E (n+1) h smax-3 (S(n)) + E (n+1) h smax-3 (S(n)) max k≤smax-2 sup R d k κ + r d k-1 d / 1 κ -Ce Φ + r 2 d k-1 d / 1 µ -M e Φ + r -2 • • δ, E (n+1) h smax-2 (S(n)) r 3 max k≤smax-3 sup R d k-1 d / 1 µ -M e Φ + r 4 |M (n) -M S(n-1) | +r -1 (f (n) , f (n) ) h smax-1 (S(n-1)) + r -1 • • δ, and 
1 - r S(n) r S(n) + r S(n) 2 κ + κ - 2 r S(n) + Err (n+1) 6 
S(n) r sup R κ - 2 r + |κ| + r -1 sup S(n) |r -r S(n) | + r -1 • • δ.
Together with (9.4.37), (9.4.38) and (9.4.39), as well as the assumption (9.4.2) for κ, d / 1 κ-Ce Φ and d / 1 µ -M e Φ , the induction assumptions (9.4.25) for (f (n) , f (n) , λ (n) , M (n) ), and the control of rr S(n) following from the induction assumptions (9.4.26) for (U (n) , S (n) ) and Lemma 9.2.3, this implies, uniformly in n,

r 4 |C (n+1) -C S(n) | + r 5 |M (n+1) -M S(n) | + (a (n+1) -a (n+1) S(n) , f (n+1) , f (n+1) ) h smax-1 (S(n)) • δ and r a (n+1) S(n) • δ + ∂ θ U (n) , S (n) L ∞ ( • S)
.

This concludes the proof of Proposition 9.4.9.

Existence and boundedness of (U (n+1) , S (n+1) )

Proposition 9.4.10. The equation (9.4.36) admits a unique solution U (1+n) , S (1+n) verifying the estimate,

∂ θ U (n+1) , S (n+1) L ∞ ( • S) + r -1 ∂ θ U (n+1) , S (n+1) h smax-1 ( • S, • g / ) • δ
uniformly for all n ∈ N.

Proof. The existence and uniqueness part of the proposition is an immediate consequence of the standard results for ODE's.

To prove the desired estimate, we use the equations for (U (1+n) , S (1+n) ) and infer, for s = s max -1,

∂ θ U (n+1) hs( • S, • g / ) (γ (n) ) 1/2 ς #n -1 (f (1+n) ) #n 1 + 1 4 f (1+n) f (1+n) #n hs( • S, • g / )
.

Together with the non sharp product estimate on (

• S,

• g / ), see Lemma 9.1.5, we infer that, for s = s max -1,

∂ θ U (n+1) hs( • S, • g / ) r -1 (f (n+1) ) #n , (f (n+1) ) #n h smax-2 ( • S, • g / ) ς #n -1 (γ (n) ) 1/2 hs( • S, • g / ) × 1 + (f (1+n) ) #n , (f (1+n) ) #n 2 hs( • S, • g / ) .
In view of Lemma 9.2.6, Corollary 9.2.7, and the bound for (f (n+1) , f (n+1) ) provided by Proposition 9.4.9, we deduce

∂ θ U (n+1) hs( • S, • g / ) • δr -1 ς #n -1 (γ (n) ) 1/2 hs( • S, • g / ) .
We recall that,

γ (n) = γ #n + ς #n 2 Ω + 1 4 b 2 γ #n (∂ θ U (n) ) 2 -2ς #n ∂ θ U (n) -γςb #n ∂ θ U (n) .
In view of our assumptions on the Ricci coefficients and the non-sharp product estimates of Lemma 9.1.5

ς Ω + 1 4 b 2 γ #n h smax-1 ( • S, • g / ) + γb #n h smax-1 ( • S, • g / ) • r
we deduce,

ς #n -1 γ (n) h smax-1 ( • S, • g / ) γ #n h smax-1 ( • S, • g / ) + • δr 2 .
Together with Lemma 9.2.6 and Corollary 9.2.7, we deduce

ς #n -1 γ (n) 1/2 h smax-1 ( • S, • g / ) r 2
and therefore,

∂ θ U (n+1) h smax-1 ( • S, • g / ) • δr.
Proceeding in the same manner with equation

∂ θ S (1+n) - 1 2 ς #n Ω #n ∂ θ U (1+n) = 1 2 (γ (n) ) 1/2 (f (1+n) ) #n
we infer that,

r -1 ∂ θ U (n+1) , ∂ θ S (n+1) h smax-1 ( • S, • g / ) • δ.
This, together with the Sobolev inequality, concludes the proof of Proposition 9.4.10.
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Convergence of the iterates

To finish the proof of Theorem 9.4.1, it remains to prove convergence of the iterates.

Step 1. In order to prove the convergence of the iterative scheme, we introduce the following septets P (n)

P (0) = (0, 0, 0, 0, 0, M ( • u, • s), C( • u, • s)), P (1) 
= (0, 0, 0, 0, 0, M (

• u, • s), C( • u, • s)), P (n) = U (n) , S (n) , (a (n) ) # n-1 , (f (n) ) # n-1 , (f (n) ) # n-1 , C (n) , M (n) , n ≥ 2.
Since (a (n) , f (n) , f (n) ) are defined on S(n-1), their respective pullback by Ψ (n-1) is defined on • S so that P (n) consists of a quintet of functions on

• S, together with two constants, for any n, and we may introduce the following norms to compare the elements of the sequence

P (n) k : = r -1 ∂ θ U (n) , S (n) h k-1 ( • S) + r 4 |C (n) -C S(n-1) | + r 5 |M (n) -M S(n-1) | + (a (n) ) # n-1 , (f (n) ) # n-1 , (f (n) ) # n-1 h k-1 ( • S) . (9.4.40) 
Here are the steps needed to implement a convergence argument.

1. The quintets P (n) are bounded with respect to the norm (9.4.40) for the choice k = s max .

2. The quintets P (n) are contractive with respect to the norm (9.4.40) for the choice k = 2.

The precise statements are given in the following propositions.

Proposition 9.4.11. We have, uniformly for all n ∈ N,

P (n) smax • δ.
Proof. The proof is an immediate consequence of Propositions 9.4.6, 9.4.10 and the estimate,

(Ψ (n-1) ) # f (n) , f (n) , a (n) h smax-1 ( • S) f (n) , f (n) , a (n) h smax-1 (S(n-1)) (9.4.41)
which is a consequence of Lemma 9.2.6. so that a (∞) , f (∞) , f (∞) are defined on S(∞) and

a (∞) 0 = (a (∞) ) #∞ , f (∞) 0 = (f (∞) ) #∞ , f (∞) 0 = (f (∞) ) #∞ .
From these definitions, the above control of P (∞) and Lemma 9.2.6, we infer

r -1 (∂ θ U (∞) , ∂ θ S (∞) ) h smax-1 ( • S) + (a (∞) , f (∞) , f (∞) ) h smax-1 (S(∞)) • δ.
In particular, applying Corollary 9.4.7 twice, first with s = s max -1, and then with s = s max , we deduce

(a (∞) , f (∞) , f (∞) ) h smax+1 (S(∞)) • δ.
Together with the above control for (U (∞) , S (∞) ), we finally obtain

r -1 (U (∞) , S (∞) ) h smax-1 ( • S) + (a (∞) , f (∞) , f (∞) ) h smax+1 (S(∞))
• δ. (9.4.44)

Step 3. We proceed to control the area radius r S(∞) and the Hawking mass m S(∞) of the sphere S(∞). First, note from (9.4.44) and the Sobolev embedding on , e

S(∞) θ ) of S(∞) κ S(∞) κ S(∞) = κ + d / S(∞) f (∞) + Err(κ, κ S(∞) ) κ + d / S(∞) f (∞) + Err(κ, κ S(∞) ) .
Together with the estimate (9.4.44) for f (∞) and f (∞) and the assumptions A1-A3 for Γ corresponding to the original frame (e 4 , e 3 , e θ ), we infer

κ S(∞) κ S(∞) -κκ • δr -3 .
15 Here, we also use the fact that, on S (∞) , we have |r -

• r| (U (∞) , S (∞) ) L ∞ ( • S) • δ.
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Recall that (see (9.4.2))

κ - 2 r • δr -2 , κ + 2 1 -2m r r • δ.
Thus, since κ = κ + κ,

κκ = - 4 1 -2m r r 2 + 2 r κ + O( • δ)r -2 .
We deduce,

κ S(∞) κ S(∞) + 4 1 -2m r r 2 - 2 r κ • δr -3 .
Thus, in view of (9.4.46),

S(∞) κ S(∞) κ S(∞) = - S(∞) 4 1 -2m r r 2 + O( • δ)r -1 .
Making use of the definition of the Hawking mass m S(∞) = r S(∞)

2 1 + 1 16π S(∞) κ S(∞) κ S(∞) we easily deduce 16 m S(∞) -m • δ.
(9.4.47)

Step 4. We make use of Lemma 9.3.11 to extend (a (∞) , f (∞) , f (∞) ) as well as the frame e S(∞) 3

, e S(∞) 4

, e S(∞) θ in a small neighborhood of S(∞) such that we have,

ξ S(∞) = 0, ω S(∞) = 0, η S(∞) + ζ S(∞) = 0, (9.4.48) 
and then provide estimates for the corresponding Ricci coefficients and curvature components ΓS(∞) , ŘS(∞) . More precisely we make use of the assumption A1, the estimates in (9.4.44) for (a (∞) , f (∞) , f (∞) ), and the transformation formulae to derive the desired estimates (9.4.8) for s max derivative of the Ricci coefficients and curvature components of S(∞).

Step 5. Thanks to (9.4.43), we can pass to the limit in (9.4.27) (9.4.34) (9.4.35). In view of Remark 9.4.4, we deduce that equations (9.4.13) (9.4.14) hold true. Thus, we may apply Proposition 9.4.2 which implies that (9.4.12) holds true. In particular, the desired GCM conditions (9.4.1) hold true which concludes the proof of Theorem 9.4.1.

16 See also section 9.4.2. Step 1. We start with the proof of existence. Note first that the existence of a S and ǎS is immediate in view of the last two equations of (9.4.16). We thus focus on the existence of (f, f ). In view of the first two equation of (9.4.16), we have

B S f = - 6m S (r S ) 5 (A S ) -1 f -Υ S f + 2 r S (M S -M S )(A S ) -1 e Φ + F 1 , B S f = - 6m S Υ S (r S ) 5 (A S ) -1 f -Υ S f + (C S -C S )e Φ + 2Υ S r S (M S -M S )(A S ) -1 e Φ + F 2 .
(9.5.1)

In particular, subtracting Υ S times the first equation to the second equation, we infer that the existence of (f, f ) is equivalent to the existence of

B S f -Υ S f = F 2 -Υ S F 1 + (C S -C S )e Φ , B S f = - 6m S (r S ) 5 (A S ) -1 f -Υ S f + 2 r S (M S -M S )(A S ) -1 e Φ + F 1 . (9.5.2) 
Step 2. Next, we differentiate (9.5.2) w.r.t. d / S 2 which yields the system

d / S 2 d / S 2 + 3m S (r S ) 3 d / S 2 f -Υ S f = d / S 2 F 2 -Υ S F 1 , d / S 2 d / S 2 + 3m S (r S ) 3 d / S 2 f = d / S 2 - 6m S (r S ) 5 (A S ) -1 f -Υ S f + 2 r S (M S -M S )(A S ) -1 e Φ + F 1 , (9.5.3) 
where we have used the fact that d / S 2 e Φ = 0. Since the operator d / S 2 d / S 2 is coercive and invertible, so is d / S 2 d / S 2 + 3m S (r S ) 3 . Thus, using also the fact that e Φ generates the kernel of d / S 2 and that d / S 2 is surjective, there exists f -Υ S f solution to

d / S 2 f -Υ S f = d / S 2 d / S 2 + 6m S (r S ) 3 -1 d / S 2 F 2 -Υ S F 1 , S f -Υ S f e Φ = Λ -Υ S Λ.
(9.5.4)

Step 3. Next, we have, using in particular the assumptions on K S ,

A S (e Φ ) = d / S 1 d / S 1 (e Φ ) = d / S 2 d / S 2 + 2K S e Φ = 2K S e Φ = 2 (r S ) 2 e Φ + K S - 2 (r S ) 2 e Φ
and hence

(A S ) -1 (e Φ ) = (r S ) 2 2 e Φ - (r S ) 2 2 (A S ) -1 K S - 2 (r S ) 2 e Φ .
(9.5.5)

In particular, we have, in view of the assumptions of the proposition,

S e 2Φ = 4π 3 (r S ) 4 (1 + O(δ 1 )), S e Φ (A S ) -1 (e Φ ) = 2π 3 (r S ) 6 (1 + O(δ 1 )) (9.5.6)
so that these quantities do note vanish. We may thus choose C S and M S as follows

C S = C S + 6m S (r S ) 3 (Λ -Υ S Λ) + S Υ S F 1 -F 2 e Φ S e 2Φ -1 , (9.5.7) 
M S = M S + r S 2 6m S (r S ) 3 Λ + S 6m S (r S ) 5 (A S ) -1 (f -Υ S f ) -F 1 e Φ S e Φ (A S ) -1 (e Φ ) -1
, where f -Υ S f appearing on the RHS of the above choice of M S is the solution of (9.5.4).

Step 4. Next, with f -Υ S f is chosen as in (9.5.4) and M S chosen as in (9.5.7), and arguing as in Step 2, there exists f solution to we infer that (f, f ) satisfies (9.5.2), and hence (9.5.1), which concludes the existence part of the proof.

d / S 2 f = d / S 2 d / S 2 + 6m S (r S ) 3 -1 d / S 2 - 6m S (r S ) 5 (A S ) -1 f -Υ S f + 2 r S (M S -M S )(A S ) -1 e Φ + F 1 , S f e Φ = Λ. ( 9 
Step 5. Next, we focus on the proof of the a priori estimates. Note first that the last two equations of (9.4.16) immediately yield the a priori estimates for a S and ǎS . We then focus on the a priori control of (C S , M S ) and (f, f ). We multiply the first two equations of (9.5.1) by e Φ and integrate on S. Using the fact that e Φ generates the kernel of d / S 2 , and that d / S 2 is the adjoint of d / S 2 , we deduce that the constants C S and M S are given by (9.5.7). Together with (9.5.6), we infer the following control for the constants C S and

M S |C S -C S | (r S ) -7 |Λ| + |Λ| + (r S ) -2 F 1 L 2 (S) + (r S ) -2 F 2 L 2 (S) , |M S -M S | (r S ) -8 |Λ| + |Λ| + (r S ) -6 f -Υ S f L 2 (S) + (r S ) -3 F 1 L 2 (S) .
(9.5.9)

Step 6. Next, we multiply the first equation of (9.5.2) by (f -Υ S f ), integrate on S, and integrate by parts the term B S (f -Υ S f ). We obtain

r S d / S 2 (f -Υ S f ) 2 L 2 (S) (r S ) 2 F 1 L 2 (S) + (r S ) 2 F 2 L 2 (S) f -Υ S f L 2 (S) +(r S ) 2 |C S -C S |(|Λ| + |Λ|).
Together with a Poincaré inequality for d / S 2 and the estimate for C S -C S in (9.5.9), we deduce

f -Υ S f h 1 (S) (r S ) -2 |Λ| + |Λ| + (r S ) 2 F 1 L 2 (S) + (r S ) 2 F 2 L 2 ( 
S) . (9.5.10)

In particular, together with (9.5.9), we infer (9.5.11) which is the desired a priori estimate for (C S , M S ).

|C S -C S |+r S |M S -M S | (r S ) -7 |Λ|+|Λ| +(r S ) -2 F 1 L 2 (S) +(r S ) -2 F 2 L 2 (S)
Step 7. Next, we multiply the second equation of (9.5.2) by f , integrate on S, and integrate by parts the term B S f . We obtain

r S d / S 2 f 2 L 2 (S) (r S ) -1 f -Υ S f L 2 (S) + (r S ) 2 F 1 L 2 (S) + (r S ) 5 |M S -M S | f L 2 (S)
which together with a Poincaré inequality for d / S 2 , (9.5.10), and (9.5.11) yields

f h 1 (S) (r S ) -3 |Λ| + |Λ| + (r S ) 2 F 1 L 2 (S) + (r S ) 2 F 2 L 2 (S) .
Together with (9.5.10), we obtain

f h 1 (S) + f h 1 (S) (r S ) -2 |Λ| + |Λ| + (r S ) 2 F 1 L 2 (S) + (r S ) 2 F 2 L 2 ( 
S) . (9.5.12)

Step 8. Finally, using the identity d / S 2 d / S 2 = d / S 1 d / S 1 -2K S , we rewrite (9.5.1) as follows

d / S 1 d / S 1 f = 2K S - 6m S (r S ) 3 f - 6m S (r S ) 5 (A S ) -1 f -Υ S f + 2 r S (M S -M S )(A S ) -1 e Φ + F 1 , d / S 1 d / S 1 f = 2K S - 6m S (r S ) 3 f - 6m S Υ S (r S ) 5 (A S ) -1 f -Υ S f + (C S -C S )e Φ + 2Υ S r S (M S -M S )(A S ) -1 e Φ + F 2 .
Together with (9.5.12), (9.5.11) and the asumptions for

K S sup S |K S | 1 (r S ) 2 , K S h s-2 (S) 1 r S ,
we deduce by iteration,

(f, f ) hs(S) (r S ) 2 F 1 h s-2 (S) + (r S ) 2 F 2 h s-2 (S) + (r S ) -2 (|Λ| + |Λ|)
which concludes the part on a priori estimates. The part on uniqueness follows from the linearity of the equations and the a priori estimates. This ends the proof of Proposition 9.4.6. 9.5.2 Proof of Corollary 9.4.7

Step 1. First, we introduce for convenience the notation

Λ := S f e Φ , Λ := S f e Φ .
Then, in view of the assumptions of Corollary 9.4.7, (f, f , λ) satisfies (9.4.1), and hence, there exists constants (C S , M S ) such that (f, f , λ) satisfies (9.4.12). In particular, from Proposition 9.4.2, (f, f , λ) satisfies (9.4.13) (9.4.14). In view of Remark 9.4.4, we deduce that (f, f , λ) satisfies the linearized GCM system (9.4.16) with the following choices for

F 1 , F 2 , F 3 , b 0 , F 1 = - 3m S (r S ) 4 (A S ) -1 κ - 2 r S f + κ + 2Υ S r S f + 3 4 κ - 2 r S (A S ) -1 ρz - 3 2r S (A S ) -1 ρ + 2m S (r S ) 3 z -d / κ -κ - 2 r S (A S ) -1 -M S e Φ + d / μ - 2 r S (A S ) -1 d / μ -M S e Φ + Err 4 , F 2 = - 3m S Υ S (r S ) 4 (A S ) -1 κ - 2 r S f + κ + 2Υ S r S f - 3 4 κ + 2Υ S r S (A S ) -1 ρz + 3Υ S 2r S (A S ) -1 ρ + 2m S (r S ) 3 z -d / κ -C S e Φ + κ + 2Υ S r S (A S ) -1 -M S e Φ + d / μ - 2Υ S r S (A S ) -1 d / μ -M S e Φ + Err 5 , F 3 = - 3 4 (A S ) -1 ρz + f ω -f ω + 1 4 f κ - 1 4 f κ +(A S ) -1 -M S e Φ + d / μ -(A S ) -1 Err 3 , b 0 = 1 - r S r S - r S 2 κ + κ - 2 r S + Err 6 S .
Step 2. In view of Corollary 9.2.12, we may apply Proposition 9.4.6. In particular, the following a priori estimates hold Step 3. In view of the a priori estimates of Step 2, we need to estimate F 1 , F 2 , F 3 and b 0 . We start with the control of the error terms Err j , j = 3, 4, 5, 6. In view of Lemma 9.3.10, we have, since 4 ≤ s ≤ s max ,

|C S -C S | + r S |M S -M S | (r S ) -7 |Λ| + |Λ| + (r S ) -2 F 1 L 2 (S) + (r S ) -2 F 2 L 2 (S) , (9.5.13) 
(f, f ) h s+1 (S) (r S ) -2 |Λ| + |Λ| + (r S ) 2 F 1 h s-1 (S) + (r S ) 2 F 2 h s-1 (S) , (9 
Err 1 , Err 2 h s-1 (S) r -2 (f, f , a) h s+1 (S) • + r -1 f, f , a hs(S) , Err 3 h s-2 (S) r -3 (f, f , a) h s+1 (S) • + r -1 f, f , a hs(S) ,
Err 4 , Err 5 h s-1 (S) r -2 (f, f , a) h s+1 (S)

• + r -1 f, f , a hs(S) .
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In particular, in view of the assumptions (9.4.23) for (f, f , λ), we deduce

Err 1 , Err 2 h s-1 (S) r -2 (f, f , a) h s+1 (S) • + δ 1 , Err 3 h s-2 (S) r -3 (f, f , a) h s+1 (S) • + δ 1 , Err 4 , Err 5 h s-1 (S) r -2 (f, f , a) h s+1 (S) • + δ 1 .
(9.5.17) Also, recall that Err 6 is given by

Err 6 = - r S 2 e a Err(κ, κ ) -(e a -1) κ + κ - 2 r + d / S f -(e a -1 -a) 2 r -a r S r -1
which together with the control A1-A3 of the background foliation, the assumptions (9.4.23) for (f, f , λ), the control of rr S , and Sobolev, yields

sup S |Err 6 | r -1 ( • + δ 1 ) (f, f , a) h 3 (S) .
Step 4. We now estimate F 1 , F 2 , F 3 and b 0 . In view of

• the definition of F 1 , F 2 , F 3 and b 0 in Step 1,

• the control A1-A3 for the background foliation,

• the assumption (9.4.2) for κ, d / 1 κ -Ce Φ and d / 1 µ -M e Φ ,

• the control of C -C S and M -M S using Corollary 9.2.13 and the control of the background foliation,

• the control of rr S in property 3 of Lemma 9.2.10,

• the control of mm S thanks to Corollary 9.2.14 and property 4 of Lemma 9.2.10,

• property 6 of Lemma 9.2.10,

• the estimates for Err j , j = 3, 4, 5, 6 of Step 3, we infer

F 1 h s-1 (S) + F 2 h s-1 (S) r -2 • δ + r 3 |M S -M S | + r -2 (f, f , a) h s+1 (S) • + δ 1 , F 3 hs(S) r -1 • δ + r 4 |M S -M S | + r -1 (f, f ) h s+1 (S) + r -1 • + δ 1 a h s+1 (S) ,
and

r|b 0 | • δ + sup S |r -r S | + ( • + δ 1 ) (f, f , a) h 3 (S) .
Step 5. In view of the estimates of Step 2 for (C S , M S ) and (f, f , λ), and the estimate for F 1 , F 2 , F 3 and b 0 in Step 4, we deduce

|C S -C S | + r S |M S -M S | (r S ) -4 • δ + (r S ) -7 |Λ| + |Λ| + • + δ 1 r S |M S -M S | + (r S ) -4 (f, f , a) h s+1 (S) , (f, f ) h s+1 (S) • δ + (r S ) -2 |Λ| + |Λ| + • + δ 1 (r S ) 5 |M S -M S | + (f, f , a) h s+1 (S) , ǎS h s+1 (S) • δ + (r S ) 5 |M S -M S | + (f, f ) h s+1 (S) + • + δ 1 a h s+1 (S)
and

r|a S | • δ + sup S |r -r S | + ( • + δ 1 ) (f, f , a) h 3 (S) .
The above estimates for (C S , M S ) and (f, f ) yields for δ 1 and

• small enough (r S ) 4 |C S -C S | + (r S ) 5 |M S -M S | + (f, f ) h s+1 (S) • δ + (r S ) -2 |Λ| + |Λ| + • + δ 1 a h s+1 (S)
.

Plugging in the above estimate for ǎS , we infer for δ 1 and

• small enough (r S ) 4 |C S -C S | + (r S ) 5 |M S -M S | + (f, f , ǎS ) h s+1 (S) • δ + (r S ) -2 |Λ| + |Λ| + • + δ 1 r a S .
Finally, plugging in the above estimate for a S , we infer for δ 1 and

• small enough (r S ) 4 |C S -C S | + (r S ) 5 |M S -M S | + (f, f , ǎS ) h s+1 (S) • δ + (r S ) -2 |Λ| + |Λ| + • + δ 1 sup S |r -r S | and r|a S | • δ + (r S ) -2 |Λ| + |Λ| + sup S |r -r S |
which are the desired estimates. This concludes the proof of Corollary 9.4.7.

We will derive in section 9.6.3 the following estimates n+1) , δh (n+1) , δe (n+1)δe (n+1)

r 4 |δC (n+1) | + r 5 |δM (n+1) | + δh ( 
• S,g / (n) h 1 (

• S)

• P (n) -P (n-1) 2 + P (n-1) -P (n-2) 2 , (9.6.5)

r δe (n+1) • S,g / (n) r -1 ∂ θ δU (n) , δS (n) h 1 ( • S) + • P (n) -P (n-1)
2 + P (n-1) -P (n-2) 2 , (9.6.6) and

r -1 ∂ θ δU (n+1) , δS (n+1) h 1 ( • S) δh (n+1) , δh (n+1) h 1 ( • S)

+

• P (n) -P (n-1) 2 . (9.6.7) Proposition 9.4.12 is then an immediate consequence of (9.6.5) (9.6.6) (9.6.7). Thus, from now on, we focus on the proof of (9.6.5) (9.6.6) (9.6.7). To this end, we will rely on the following lemmas.

Basic lemmas

Lemma 9.6.1. Let F be a reduced scalar function defined in a neighborhood of

• S in R
and define its pull back

F (n) = (Ψ (n) ) # F to • S, i.e., F (n) (θ) = F ( • u + U (n) (θ), • s + S (n) (θ), θ), F (n-1) (θ) = F ( • u + U (n-1) (θ), • s + S (n-1) (θ), θ).
Then 17 , for all 1 ≤ p ≤ ∞, with

δ n U = U (n+1) -U (n) , δ n S = S (n+1) -S (n) δ n F L p ( • S) δ n U L p ( • S) + δ n S L p ( • S) sup R ∂ s F + ∂ u F . (9.6.8)
Also,

δ n F h 1 ( • S) δ n U h 1 ( • S) + δ n S h 1 ( • S) sup R d ≤1 ∂ s F + d ≤1 ∂ u F (9.6.9)
where

δ n U = U (n+1) -U (n) , δ n S = S (n+1) -S (n) .
Proof. We write, 1) ,

δ n F := F (u 0 + U (n) (θ), s 0 + S (n) (θ), θ) -F (u 0 + U (n-1) (θ), s 0 + S (n-1) (θ), θ) = 1 0 d dt F u 0 + tU (n) (θ) + (1 -t)U (n-1) (θ), s 0 + tS (n) (θ) + (1 -t)S (n-1) (θ), θ , i.e., denoting δ n U = U (n) -U (n-1) , δ n S = S (n) -S (n-
|δ n F | δ n U 1 0 ∂ u F u 0 + tU (n) (θ) + (1 -t)U (n-1) (θ), s 0 + tS (n) (θ) + (1 -t)S (n-1) (θ), θ + δ n S 1 0 ∂ s F u 0 + tU (n) (θ) + (1 -t)U (n-1) (θ), s 0 + tS (n) (θ) + (1 -t)S (n-1) (θ), θ i.e., |δ n F | U (n) (θ) -U (n-1) (θ) sup • S+ • δ • S |∂ u F | + S (n) (θ) -S (n-1) (θ) sup • S+ • S |∂ s F |
from which (9.6.8) easily follows.

Similarly,

d /δ n F L 2 ( • S) δ n U h 1 ( • S) + δ n S h 1 ( • S) sup R d ≤1 ∂ s F + d ≤1 ∂ u F .
Hence,

δ n F h 1 ( • S) δ n U h 1 ( • S) + δ n S h 1 ( • S) sup R d ≤1 ∂ s F + d ≤1 ∂ u F
as desired.

Lemma 9.6.2. Let ψ, h ∈ s 1 (

• S), and δB 1) . The following formula holds true.

(n) = B (n) -B (n-
( • S,g / (n) ) ψδB (n) h r -3 ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) ψ h 1 ( • S) h h 2 ( • S)
.

Proof. Recall that the metric g / (n) is given by

g / (n) = γ (n) dθ 2 + e 2Φ #n dϕ 2 so that the operator B (n) = d / (n) 2 d / 2 (n) , applied to s 1 tensors h on • S is given by B (n) h = 1 γ (n) ∂ θ + 2∂ θ (Φ #n ) 1 γ (n) -∂ θ h + ∂ θ (Φ #n )h . 1 γ (n) -∂ θ + ∂ θ (Φ #n ) γ (n) γ (n-1) ψ 1 γ (n-1) ∂ θ Φ #n -Φ # n-1 h + ( • S,g / (n) ) 2 γ (n-1) ∂ θ (Φ #n -Φ # n-1 )ψ∂ θ (Φ # n-1 )h.
We now make us of the bounds (9.1.15) for (Ω, b, γ) involved in the definition of γ (n-1) and γ (n) , the uniform bound of P (n) provided by Proposition 9.4.11 and the Sobolev inequality to deduce,

( • S,g / (n) ) ψδB (n) h r -5 γ (n) -γ (n-1) h 1 ( • S) ψ h 1 ( • S) h h 2 ( • S) +r -2 ∂ θ Φ #n -Φ # n-1 h L 2 ( • S) ψ h 1 ( • S)
, (9.6.10)

where we have also used Lemma 9.1.3 to estimate

∂ θ (Φ # n-1 )ψ L 2 ( • S,g / (n) ) r ψ e Φ L 2 ( • S,g / (n) ) r ψ e Φ L 2 ( • S) ψ h 1 ( • S)
.

To estimate the term γ (n)γ (n-1) we recall that, 1) .

γ (n) = γ #n + ς #n 2 Ω #n + 1 4 (b #n ) 2 γ #n (∂ θ U (n) ) 2 -2ς #n ∂ θ U (n) ∂ θ S (n) -γ #n ς #n b #n ∂ θ U (n) γ (n-1) = γ # n-1 + ς # n-1 2 Ω # n-1 + 1 4 (b # n-1 ) 2 γ # n-1 (∂ θ U (n-1) ) 2 -2ς # n-1 ∂ θ U (n-1) ∂ θ S (n-1) -γ # n-1 ς # n-1 b # n-1 ∂ θ U (n-
The principal term γ #nγ # n-1 can be estimated with the help of Lemma 9.6.1, the uniform bound of P (n) provided by Proposition 9.4.11, and the bounds provided18 by A3.

All other terms can be estimated in a similar fashion. We derive,

γ (n) -γ (n-1) h 1 ( • S) r ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) (9.6.11)
where,

∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) := ∂ θ (U (n) -U (n-1) ) h 1 ( • S) + ∂ θ (S (n) -S (n-1) ) h 1 ( • S)
.

We deduce,

( • S,g / (n) ) ψδB (n) h r -4 ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) ψ h 1 ( • S) h h 2 ( • S) +r -2 ∂ θ Φ #n -Φ # n-1 h L 2 ( • S) ψ h 1 ( • S)
.

(9.6.12)

The proof of 9.6.2. is now an immediate consequence of the following.

Lemma 9.6.3. The following estimate holds true for a reduced scalar h ∈ s 1 (

• S) ∂ θ Φ #n -Φ # n-1 h L 2 ( • S) r -1 ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) h h 2 ( • S)
. (9.6.13) 622 CHAPTER 9. GCM PROCEDURE Proof. We write,

∂ θ Φ #n -Φ # n-1 = ∂ θ S (n) - 1 2 Ω∂ θ U (n) e 4 Φ + 1 2 ∂ θ U (n) e 3 Φ + √ γ 1 - 1 2 b∂ θ U (n) e θ Φ #n - ∂ θ S (n-1) - 1 2 Ω∂ θ U (n-1) e 4 Φ + 1 2 ∂ θ U (n-1) e 3 Φ + √ γ 1 - 1 2 b∂ θ U (n-1) e θ Φ # n-1 = ∂ θ S (n) - 1 2 Ω #n ∂ θ U (n) (e 4 Φ) #n + 1 2 ∂ θ U (n) (e 3 Φ) #n + √ γ #n 1 - 1 2 b #n ∂ θ U (n) (e θ Φ) #n -∂ θ S (n-1) - 1 2 Ω # n-1 ∂ θ U (n-1) (e 4 Φ) # n-1 - 1 2 ∂ θ U (n-1) (e 3 Φ) # n-1 - √ γ # n-1 1 - 1 2 b # n-1 ∂ θ U (n-1) (e θ Φ) # n-1
i.e., grouping the terms appropriately,

∂ θ Φ #n -Φ # n-1 = J 1 + J 2 + J 3 , J 1 = ∂ θ S (n) - 1 2 Ω #n ∂ θ U (n) (e 4 Φ) #n -∂ θ S (n-1) - 1 2 Ω #n-1 ∂ θ U (n-1) (e 4 Φ) # n-1 , J 2 = 1 2 ∂ θ U (n) (e 3 Φ) #n - 1 2 ∂ θ U (n-1) (e 3 Φ) # n-1 , J 3 = √ γ #n 1 - 1 2 b #n ∂ θ U (n) (e θ Φ) #n - √ γ # n-1 1 - 1 2 b # n-1 ∂ θ U (n-1) (e θ Φ) # n-1 ,
and,

J 3 = J 31 + J 32 , J 31 = (e θ Φ) # n-1 √ γ #n 1 - 1 2 b #n ∂ θ U (n) - √ γ # n-1 1 - 1 2 b # n-1 ∂ θ U (n-1) , J 32 = √ γ #n 1 - 1 2 b #n ∂ θ U (n) (e θ Φ) #n -(e θ Φ) # n-1 .
The contribution to the estimate of of Lemma 9.6.3 given by J 1 , J 2 , J 31 can be easily estimated by making use of the uniform bound of P (n) provided by Proposition 9.4.11, the bound (9.1.15) for (Ω, b, γ), Lemma 9.2.6 as well as Lemma 9.6.1. We thus derive,

(J 1 , J 2 , J 31 )h L 2 ( • S) r -1 ∂ θ Ψ (n) -∂ θ Ψ (n-1) h 1 ( • S) h h 2 ( • S)
.

It remains to estimate the term J 32 h

L 2 ( • S)
which presents a difficulty at the axis of symmetry where sin θ = 0. Clearly, J 32 h

L 2 ( • S) r (e θ Φ) #n -(e θ Φ) # n-1 h L 2 ( • S)
. We . Proceeding as in the proof of Lemma 9.6.1 we write, for F = e θ Φ,

|δ n F | δ n U 1 0 ∂ u F u 0 + tU (n) (θ) + (1 -t)U (n-1) (θ), s 0 + tS (n) (θ) + (1 -t)S (n-1) (θ), θ + δ n S 1 0 ∂ s F u 0 + tU (n) (θ) + (1 -t)U (n-1) (θ), s 0 + tS (n) (θ) + (1 -t)S (n-1) (θ), θ .
We need to pay special attention on the axis 19 , where sin θ = 0, to the integral term involving

∂ u (e θ Φ) = 1 2 e 3 -Ωe 4 -bγ 1/2 e θ e θ Φ.
This leads us to consider the integral,

1 0 [be θ (e θ (Φ))] ( • u + tU (n) (θ) + (1 -t)U (n-1) (θ), • s, θ)dt
and the L 2 norm of its product with h on • S. We recall (see Lemma 2.1.13) that / Φ = -K. and Therefore, e θ (e θ Φ) r -2 + |e θ Φ| 2 The contribution due to K does not present any difficulties on the axis therefore we are led to consider the integral

I(θ) := 1 0 b(e θ (Φ)) 2 ( • u + tU (n) (θ) + (1 -t)U (n-1) (θ),
• s, θ)dt and the L 2 norm of its product with h on • S. Making use of (9.1.17) and then the first estimate of (9.1.18) of Lemma 9.1.3 together with our assumption A3 we derive the bound,

r 2 I(θ)h(θ) 1 sin 2 θ 1 0 b( • u + tU (n) (θ) + (1 -t)U (n-1) (θ), • s, θ) dt |h(θ)| h(θ) sin θ sup R b sin θ r 2 h(θ) e Φ sup R b e Φ • h(θ) e Φ .
Making use of the second estimate in (9.1.17) we then derive,

I • h L 2 ( • S) • r -2 h e Φ L 2 (S) r -3 • h h 1 (S) .
This shows that the behavior along the axis in (9.6.13) is not an issue. This ends the proof of both Lemma 9.6.3 and Lemma 9.6.2.
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CHAPTER 9. GCM PROCEDURE Lemma 9.6.4. Let δh (n+1) and δh (n+1) reduced scalars on

• S satisfying 
B (n) δh (n+1) = - 6m S(n) (r S(n) ) 5 (A (n) ) -1 δh (n+1) -Υ S(n) δh (n+1) + 2 r S(n) δM (n+1) (A (n) ) -1 e Φ #n -(δB (n) )h (n) + H (n+1) , B (n) δh (n+1) = - 6m S(n) Υ S(n) (r S(n) ) 5 (A (n) ) -1 δh (n+1) -Υ S(n) δh (n+1) + δC (n+1) e Φ #n + 2Υ S(n) r S δM (n+1) (A (n) ) -1 e Φ #n -(δB (n) )h (n) + H (n+1) , (9.6.14) 
as well as

• S,g / (n) δh (n+1) e Φ #n = D (n+1) , • S,g / (n) δh (n+1) e Φ #n = D (n+1) .
Also, assume the bounds

(h (n) , h (n) ) h 2 ( • S) • δ.
Then we have,

r 4 |δC (n+1) | + r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) h 1 ( • S) • δr -1 ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) + r 2 H (n+1) L 2 ( • S) + r 2 H (n+1) L 2 ( • S) + r -2 D (n+1) + D (n+1) .
(9.6.15)

Proof. We proceed exactly as for the a priori estimates in Step 5 to Step 7 of the proof of Proposition 9.4.6, see section 9.5.1, with the exception of the terms involving δB (n) for which we do not use Cauchy Schwarz. We obtain the following analog of (9.5.12) (9.5.9)

r 4 |δC (n+1) | + r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) h 1 ( • S) 2 r 2 H (n+1) L 2 ( • S) + r 2 H (n+1) L 2 ( • S) + r -2 D (n+1) + D (n+1) (δh (n+1) , δh (n+1) ) L 2 ( • S) +r 2 ( • S,g / (n) ) (δh (n+1) -Υ (S(n) δh (n+1) )δB (n) (h (n) -Υ S(n) h (n) ) + r 2 ( • S,g / (n) ) δh (n+1) δB (n) h (n) + ( • S,g / (n) ) e Φ (δB (n) h (n) ) + ( • S,g / (n) ) e Φ (δB (n) h (n) ) 2 .
9.6. PROOF OF PROPOSITION 9.4.12 625 Next, we estimate the terms involving δB (n) . Using Lemma 9.6.2 with the choices

• ψ = δh (n+1) -Υ (S(n) δh (n+1) and h = h (n) -Υ S(n) h (n) ,
• ψ = δh (n+1) and h = h (n) ,

• ψ = e Φ and h = h (n) ,

• ψ = e Φ and h = h (n) , which yields, together with the assumption on the h 2 (

• S) norm of h (n) and h (n) ,

( • S,g / (n) ) (δh (n+1) -Υ (S(n) δh (n+1) )δB (n) (h (n) -Υ S(n) h (n) ) + ( • S,g / (n) ) δh (n+1) δB (n) h (n) r -3 • δ ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) (δh (n+1) , δh (n+1) ) h 1 ( • S)
and

( • S,g / (n) ) e Φ (δB (n) h (n) ) + ( • S,g / (n) ) e Φ (δB (n) h (n) ) 2 r -1 • δ ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) 2 .
Plugging in the above estimate, we infer

r 4 |δC (n+1) | + r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) h 1 ( • S) 2 r 2 H (n+1) L 2 ( • S) + r 2 H (n+1) L 2 ( • S) + r -2 D (n+1) + D (n+1) (δh (n+1) , δh (n+1) ) L 2 ( • S) +r -1 • δ ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) (δh (n+1) , δh (n+1) ) h 1 ( • S) + r -1 • δ ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) 2 
and hence

r 4 |δC (n+1) | + r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) h 1 ( • S) • δr -1 ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S) + r 2 H (n+1) L 2 ( • S) + r 2 H (n+1) L 2 ( • S) + r -2 D (n+1) + D (n+1)
as desired. 9.6.3 Proof of the estimates (9.6.5) (9.6.6) (9.6.7)

We are now in position to prove (9.6.5) (9.6.6) (9.6.7).

Step 1. With start by estimating δh (n+1) , δh (n+1) . To this end, we need to apply Lemma 9.6.4 to the equations for δh (n+1) , δh (n+1) , derived from the first two equations in (9.6.1) and (9.6.2), and estimate the corresponding terms H (n+1) , H (n+1) , D (n+1) and D (n+1) on the right-hand side. This is tedious but straightforward and one derives

r 2 H (n+1) L 2 ( • S) + r 2 H (n+1) L 2 ( • S) + r -2 D (n+1) + D (n+1) • P (n) -P (n-1)
2 + P (n-1) -P (n-2) 2 .

Remark 9.6.5. Note that the presence of the inverse operators (A (n) ) -1 in the righthand side of the equations for δh (n+1) , δh (n+1) do not create any difficulties when taking differences. Indeed we can write,

(A (n) ) -1 -(A (n-1) ) -1 = (A (n) ) -1 A (n-1) -A (n) (A (n-1) ) -1
and estimate the difference 1) similarly to the estimate for δB (n) in the proof of Lemma 9.6.2.

δA (n) = A (n) -A (n-
We infer from Lemma 9.6.4 and the above estimates

r 4 |δC (n+1) | + r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) h 1 ( • S)
• P (n) -P (n-1) 2 + P (n-1) -P (n-2) 2 .

(9.6.16)

Step 2. Next, we estimate d / δe (n+1) . Recall (9.6.1)

d / (n) e (n+1) = (Ψ (n) ) # E (n+1) ,
where

E (n+1) = - 3 4 (A S(n) ) -1 ρz (n+1) + f (n+1) ω -f (n+1) ω + 1 4 f (n+1) κ - 1 4 f (n+1) κ + (A S(n) ) -1 -M (n+1) e Φ + d / μ -(A S(n) ) -1 Err (n+1) 3 . This yields d / (n) δe (n+1) = -1 - γ (n) γ (n-1) d / (n) e (n) + H (n+1) .
The control of H (n+1) is tedious but straightforward and one derives, using in particular Remark 9.6.5,

r H (n+1) L 2 ( • S) r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) L 2 ( • S) + • P (n) -P (n-1) 2 + P (n-1) -P (n-2) 2 .
Also, in view of the boundedness of e (n) and γ (n) , we have

r 1 - γ (n) γ (n-1) d / (n) e (n) L 2 ( • S) r -3 • δ γ (n) -γ (n-1) L 2 ( • S) r -2 • δ ∂ θ Ψ (n) -Ψ (n-1) h 1 ( • S)
where we have used (9.6.11) in the last inequality. We deduce

r d / (n) δe (n+1) L 2 ( • S) r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) L 2 ( • S) + • P (n) -P (n-1) 2 + P (n-1) -P (n-2) 2
and hence, using a Poincaré inequality

δe (n+1) -δe (n+1) • S,g / (n) h 1 ( • S) r 5 |δM (n+1) | + (δh (n+1) , δh (n+1) ) L 2 ( • S) + • P (n) -P (n-1) 2 + P (n-1) -P (n-2) 2 .
Together with (9.6.16), we deduce

r 4 |δC (n+1) | + r 5 |δM (n+1) | + δh (n+1) , δh (n+1) , δe (n+1) -δe (n+1) • S,g / (n) h 1 ( • S) • P (n) -P (n-1) 2 + P (n-1) -P (n-2) 2 ,
which is the desired estimate (9.6.5).

Step 3. Next, we estimate the average of δe (n+1) . Recall from (9.6.3)

e (n+1) • S,g / (n) = 1 - r S(n) r (n) • S,g / (n) - r S(n) 2 κ + κ - 2 r (n) • S,g / (n)
+ Err = 1 -r S(n-1) r

(n-1)

• S,g / (n-1) -r S(n-1) 2 κ + κ -2 r

(n)

• S,g / (n-1)

+ Err

(n) 6

• S,g / (n-1)

.

Taking the difference, recalling that we have in the (θ, ϕ) coordinates system

dvolg / (n) = γ (n) e Φ #n dθdϕ, 4π(r S(n) ) 2 = 2π 0 π 0 γ (n) e Φ #n dθdϕ and dvolg / (n-1) = γ (n-1) e Φ # n-1 dθdϕ, 4π(r S(n-1) ) 2 = 2π 0 π 0 γ (n-1) e Φ # n-1 dθdϕ
and using the uniform bound of P (n) provided by Proposition 9.4.11 and the bounds A1 for Γ, we infer r δe (n+1)

• S r -2 γ (n) -γ (n-1) L 2 ( • S) + r -1 e Φ #n -e Φ # n-1 L 2 ( • S) + δErr (n+1) 6 L 2 ( • S)
.

Arguing as above, we deduce

r δe (n+1) • S,g / (n) r -1 ∂ θ δU (n) , δS (n) h 1 ( • S) + • P (n) -P (n-1) 2 + P (n-1) -P (n-2)
2 which is the desired estimate (9.6.6).

Step 4. Finally, we focus on (9.6.7). Recall (9.6.4)

ς #n ∂ θ U (1+n) = (γ (n) ) 1/2 h (1+n) 1 + 1 4 h (1+n) h (1+n) , ∂ θ S (1+n) - 1 2 ς #n Ω #n ∂ θ U (1+n) = 1 2 (γ (n) ) 1/2 h (1+n) , γ (n) = γ #n + ς #n 2 Ω #n + 1 4 (b #n ) 2 γ #n (∂ θ U (n) ) 2 -2ς #n ∂ θ U (n) ∂ θ S (n) -γ #n ς #n b #n ∂ θ U (n) , U (1+n) (0) = S (1+n) (0) = 0.
Taking the difference and arguing as above, we derive

r -1 ∂ θ δU (1+n) h 1 ( • S) δh (n+1) , δh (n+1) h 1 ( • S) + r -3 • γ (n) -γ (n-1) h 1 ( • S) + • P (n) -P (n-1) 2 , r -1 ∂ θ δS (1+n) h 1 ( • S) ∂ θ δU (1+n) h 1 ( • S) + δh (n+1) , δh (n+1) h 1 ( • S) +r -3 • γ (n) -γ (n-1) h 1 ( • S)

+

• P (n) -P (n-1) 2 .

Estimating γ (n)γ (n-1) as above, we infer

r -1 ∂ θ δU (n+1) , δS (n+1) h 1 ( • S)
δh (n+1) , δh (n+1)

h 1 ( • S) + • P (n) -P (n-1)
2 which is the desired estimate (9.6.7). This concludes the proof of Proposition 9.4.12. In what follows we prove an important corollary of Theorem 9.4.1 which makes use of the arbitrariness of Λ, Λ to ensure the vanishing of the = 1 modes of β and κ. The result requires stronger assumptions than those made in A1. Namely we assume that Γ b has the same behavior as Γ g , i.e. where F 1 , F 2 are continuous 20 in Λ, Λ, verifying, provided A1-Strong holds, the estimates,

A1-Strong. For k ≤ s max , Γ g k,∞ • r -2 , Γ b k,∞ • r -1 , Γ b k,∞ ( • ) 1 3 r -2 . ( 9 
F 1 | + F 2 ( • ) 1 3 • δr 2 , ∂ Λ,Λ F 1 | + ∂ Λ,Λ F 2 ( • ) 1 3 r 2 .
(9.7.5)

Proof. To prove (9.7.4), we start with the change of frame formula,

β S = e a β + 3 2 ρf + e a Err(β, β S ), Err(β, β S ) = 1 2 f α + l.o.t.
We write 21

β S = β + 3 2 ρf + (e a -1) β + 3 2 ρf + e a Err(β, β S ) = β + 3 2 - 2m r 3 f + 3 2 ρ + 2m r 3 f + (e a -1) β + 3 2 ρf + e a Err(β, β S )
and deduce, Clearly,

β S + 3m S (r S ) 3 f = β + Err (β,
S Err (β, β S )e Φ r -1 • δ • .
Also, proceeding exactly as in Corollary 9.2.5 we deduce,

S βe Φ -• S βe Φ • δ sup R • r d ≤1 (βe Φ ) + sup R • r 2 e 3 (βe Φ | .
Thus, in view of the assumptions A1-A3,

S βe Φ -• S βe Φ • δ • r -1 . (9.7.6) 
We deduce,

Λ = r 3 3m • S βe Φ - S β S e Φ + F 1 (Λ, Λ)
where the error term F 1 (Λ, Λ) is a continuous function of Λ, Λ verifying the estimate,

F 1 (Λ, Λ) • • δr 2 .
We also recall, see Lemma 9.3.4, 

e S θ (κ S ) = e θ κ -d / S, 1 d / S 1 f -κe S θ a - 1 4 κ(f κ + f κ) + κ(f ω -ωf ) + f ρ + Err(
Writing, κ = 2 r + (κ -2 r ), κ = -2Υ r + (κ + 2Υ r ), ρ = -2m r 3 + (ρ + 2m r 3 ), K = 1 r 2 + (K -1 r 2 ) 1 4 κκ -ρ + 2K = 1 r 2 + 4m r 3 + 1 2r κ + 2Υ r - Υ 2r κ - 2 r + ρ + 2m r 3 + 2 K - 1 r 2 = 1 r 2 + 4m r 3 + O( • r -3 ).
Also, using A1-Strong,

κ = - 2Υ r + κ + 2Υ r = - 2Υ r + O(r -2 • ), κ ω = - 2mΥ r 3 + O r -3 ( • ) 1 3 
, and, in view of A1-Strong, and since a, f, f

= O(r -1 • δ),
Err(e S θ κ S , e θ κ) = O(r -4 • δ(

• ) 1 3 
).

We deduce,

e S θ (κ S ) + 1 r 2 + 4m r 3 f = e θ κ -d / 2 d / 2 f + 2Υ r e S θ a - Υ 1 -4m r r 2 f + Err 1 with error term Err 1 ( • ) 1 3 • δr -4 .
Projecting on e Φ and proceeding as before, where the error term I 1 is continuous in Λ, Λ and verifies the estimate

I 1 r -1 ( • ) 1 3 
• δ. 

f f e θ κ + 1 8 f 2 f e 3 κ + 1 2 f 2 d / 1 η - 1 2 ϑ ϑ + 2(ξξ + η 2 ) + 1 2 f f e θ κ + 1 8 f 2 f e 3 κ + 1 2 f 2 d / 1 ξ - 1 2 ϑ 2 + 2(η + η + 2ζ)ξ .
Using again the identity d / S,

1 d / S 1 = d / S 2 d / S,
2 + 2K S and proceeding as above, we infer, using also the GCM condition for κ S which yield e S θ (κ S ) = 0,

0 = e θ κ -d / S 2 d / S 2 f + 2 r S e S θ a - 1 4 κ 2 f + 1 4 κκ + κω + 3ρ f + κ - 2 r S e S θ a -2(K S -K)f - 1 2
ϑϑf + Err(e S θ κ S , e θ κ).

Integrating over S, we deduce where, using in particular A1-Strong,

I 2 (Λ, Λ) r -1 ( • ) 1 3 • δ.
Indeed, using once more Corollary 9.2.5, we note that

S e θ (κ)e Φ -• S e θ (κ)e Φ r -1 • • δ 1 + r 4 sup R |e 3 (e θ (κ))| r -1 ( • ) 1 3 • δ,
where we used A1-Strong, the transport equation for e 3 (κ) and a commutator formula for [e 3 , e θ ] to estimate e 3 (e θ (κ)). All other error terms are easily estimated.

Back to (9.7.7) we deduce, with error term F 2 (Λ, Λ) continuous in Λ, Λ and verifying the estimate,

F 2 (Λ, Λ) ( • ) 1 3 
• δr 2 .

To check the second part in (9.7.5) one needs to revisit the proof of Theorem 9.4.1 and check the dependence of U, S, f, f , λ on the parameters Λ, Λ. It is tedious but standard to check the following estimates for the derivatives with respect to Λ, Λ.

∂ Λ,Λ f, f , log λ h k (S) 1, k ≤ s max . (9.7.8) ∂ Λ,Λ U , S L ∞ ( • S) + max 0≤s≤smax-1 r -1 ∂ Λ,Λ U , S hs( • S, • g / )
1.

(9.7.9)

Using these estimates and taking into account the structure of the error terms F 1 , F 2 we derive the second inequality in (9.7.5). This ends the proof of the lemma.

Under the assumptions of the theorem, the system

Λ = r 3 3m • S βe Φ + F 1 (Λ, Λ), Λ = r 3 6m • S e θ (κ)e Φ -Υ • S e θ (κ)e Φ + ΥΛ + F 2 (Λ, Λ),
has a unique solution Λ 0 , Λ 0 verifying the estimate

|Λ 0 | + |Λ 0 | • δr 2 .
Taking Λ = Λ 0 , Λ = Λ 0 in (9.7.4) we deduce, and such that, for a small enough constant δ 1 > 0, the transition functions (f, f , λ) from the background frame of R to that of S verifies, for some 4 ≤ s ≤ s max , the bound

f hs(S) + (r S ) -1 (f , log λ) hs(S) ≤ δ 1 .
Assume in addition that we have Then the transition functions (f, f , λ) from the background frame of R to that of S verify the estimates

(f, f , λS ) h s+1 (S) r • δ + rδ 1 ( • + δ 1 )
and r|λ S -1| r and hence

(f, f , λS ) h smax+1 (S) • δ + r -2 (|Λ| + |Λ|) + rδ 1 ( • + δ 1 ), r|λ S -1| • δ + r -2 (|Λ| + |Λ|) + sup S r -r S .
Thus, to conclude, it suffices to prove the estimate

|Λ| + |Λ| r 3 • δ.
Now, revisiting the proof of Lemma 9.7.2 without assuming that A1-Strong holds, we obtain the following analog of (9. The desired estimate for (Λ, Λ) follows then immediately.

Construction of GCM hypersurfaces

We are ready to state our main result concerning the construction of GCM hypersurfaces. 

2 ς + Ω SP -1 - 2m r • δ (9.8.2)
where SP denotes the South pole, i.e. θ = 0 relative to the adapted geodesic coordinates u, s, θ.

Let S 0 = S 0 [ • u,
• s, Λ 0 , Λ 0 ] be a fixed GCMS provided by Theorem 9.4.1. Then, there exists then a unique, local 22 , smooth, Z-invariant spacelike hypersurface Σ 0 passing through S 0 , a scalar function u S defined on Σ 0 , whose level surfaces are topological spheres denoted by S, and a smooth collection of constants Λ S , Λ S verifying,

Λ S 0 = Λ 0 , Λ S 0 = Λ 0 ,
such that the following conditions are verified:

1. The surfaces S of constant u S verifies all the properties stated in Theorem 9.4.1 for the prescribed constants Λ S , Λ S . In particular they come endowed with null frames (e S 4 , e S θ , e S 3 ) such that i. For each S the GCM conditions (9.4.1) with Λ = Λ S , Λ = Λ S , are verified.

ii. The transition functions (f, f , a = log λ) verify the estimates (9.4.5).

iii. The transversality conditions (9.4.9) are verified.

iv. The corresponding Ricci and curvature coefficients verify the estimates (9.4.8) and (9.4.11).

2. Denoting r S to be the area radius of the spheres S we have, for some constant c * , u S + r S = c * , along Σ 0 . (9.8.3)

3. Let ν S be the unique vectorfield tangent to the hypersurface Σ 0 , normal to S, and normalized by g(ν S , e S 4 ) = -2. There exists a unique scalar function a S on Σ 0 such that ν S is given by

ν S = e S 3 + a S e S 4 .
The following normalization condition holds true at the South Pole SP of every sphere S, i.e. at θ = 0, 6. The following estimates hold true for all k ≤ s max ,

a S SP = -1 - 2m S r S . ( 9 
η S h k (S)
• , (9.8.7)

ξ S h k (S)
• , (9.8.8)

a S + 1 + 2m S r S h k (S)
• . (9.8.9)

The e S 3 derivatives of κS , ϑ S , ζ S , κS , ϑ S , α S , β S , ρS , µ S , β S are well defined on Σ 0 and we have, for all k ≤ s max -1

e S 3 (κ S , ϑ S , ζ S , κS ) h k (S) • r -1 , e S 3 (ϑ S ) h k (S) • , e S 3 α S , β S , ρS , µ S h k (S) • r -2 , e S 3 (β S ) h k (S) • r -1 , e S 3 (α S ) h k (S)
• .

(9.8.10)

7. The transition functions from the background foliation to that of Σ 0 verify ξ S e Φ = 0.

d ≤smax+1 (f, f , log λ) L 2 (S) • δ. ( 9 
1. If we assume in addition that for a specific sphere S 0 on Σ 0 , the transition functions f, f from the background foliation to S 0 verify (f, f , log(λ)) h smax+1 (S 0 )

• δ, (9.8.12)

then,

d ≤smax+1 (f, f , log(λ)) L 2 (S 0 ) • δ.
2. If we assume in addition that for a specific sphere S 0 on Σ 0 , the transition functions f, f from the background foliation to S 0 verify

f h smax+1 (S 0 ) + (r S 0 ) -1 (f , log λ) h smax+1 (S 0 ) • δ, (9.8.13) 
then,

d ≤smax+1 f L 2 (S 0 ) + r -1 d ≤smax+1 (f , log λ) L 2 (S 0 ) + d ≤smax e S 3 (f , log λ) L 2 (S 0 ) • δ.
We give below the proof of Theorem 9.8.1 and of Corollary 9.8.2.

Definition of Σ 0

As stated in the theorem we assume given a spacetime region R = {|u - (9.1.6)) endowed with a background foliation such that the condition A1-A3 hold true. We also assume given a deformation sphere

• u| ≤ δ R , |s - • s| ≤ δ R } (see definition
S 0 := S[ • u, • s, Λ 0 , Λ 0 ]
of a given sphere

• S = S( • u,
• s) of the background foliation which verify the conclusions of Theorem 9.4.1. We then proceed to construct, in a small neighborhood of S 0 , a spacelike hypersurface Σ 0 initiating at S 0 verifying all the desired properties mentioned above. In what follows we outline the main steps in the construction.

Step 1. According to Theorem 9.4.1, for every value of the parameters (u, s) in R (i.e. such that the background spheres S(u, s) ⊂ R) and every real numbers (Λ, Λ), there exists a unique GCM sphere S[u, s, Λ, Λ], as a Z-polarized deformation of S(u, s). In particular the following are verified:

Step 7. Note that the GCM condition κ S = 2 r S together with the definition of the Hawking mass implies that,

κ S = - 2Υ S r S , Υ S = 1 - 2m S r S
, where the average is taken with respect to S. Thus in view of Lemma 9.8.3 we deduce

e S 3 (r S ) + a S = ν S (r S ) = r S 2 (ς S ) -1 ς S (κ S + a S κ S ) = r S 2 (ς S ) -1 ς S κ S + ςS κS + (ς S ) -1 ς S a S = -Υ S (ς S ) -1 ς S + r S 2 (ς S ) -1 ςS κS + (ς S ) -1 ς S a S .
Since according to (9.8.20) e S 3 (r S ) = -Υ S + r S 2 A S , we deduce

A S = 2 r S Υ S -a S -Υ S (ς S ) -1 ς S + r S 2 (ς S ) -1 ςS κS + (ς S ) -1 ς S a S .
In particular, multiplying by ς S and taking the average, we infer ς S A S = ςS κS , and hence

A S = 1
ς S ςS κS -ςS ǍS . (9.8.26)

Step 8. We summarize the results in Steps 1-7 in the following.

Proposition 9.8.4. Let Σ 0 be a smooth spacelike hypersurface foliated by framed26 spheres (S, e S 4 , e S θ .e S 3 ) whose Ricci coefficients verify the GCM condition κ S = 2 r S and transversality condition (9.4.9). Define u S as in (9.8.17) such that u S + r S is constant on Σ 0 with r S the area radius of the spheres S. Extend u S and r S in a neighborhood of Σ 0 such that the transversality conditions (9.8.18) are verified. Then, defining the scalars ς S , A S as in (9.8.19), (9.8.20) we establish the following relations between η S , ξ S and ς S , A S and a S , where the latter scalar is defined in Step 1,

e S θ (log ς S ) = (η S -ζ S ), e S θ (A S ) = - 2Υ S r S (ζ S -η S ) - 2 r S ξ S + (ζ S -η S )A S , A S = 1 ς S ςS κS -ςS ǍS , a S = - 2 ς S + Υ S - r S 2 A S .
(9.8.27)

and not e S 3 or e S 4 . We also note that the error terms r - 

r 3 S C 1 h k (S) + r C 2 h 3+k (S) + • r -1 S + r -1 S Γ S g h 4+k (S) + Γ S b • Γ S b h 4+k (S) + l.o.t., d / S, 2 ξ S h 4+k (S) r 4 S C 3 h k (S) + r 3 S C 1 h 3+k (S) + • r -1 S + r -1 S Γ S g h 4+k (S) + Γ S b • Γ S b h 4+k (S) + l.o.t., d / S, 1 ω S h 2+k (S) r -1 S η S h 4+k (S) + r -1 S ξ S h 2+k (S) + r C 2 h 2+k (S) + r -1 S Γ S g h 3+k (S) + Γ S b • Γ S b h 3+k (S) + l.o.t.
(9.8.31)

3. If in addition the GCM conditions (9.8.14) hold true along Σ 0 and the estimates (9.4.11) are also verified then, for k ≤ s max -7,

C 1 h k-2 (S) • r -5 a S + 1 + 2m S r S + r -1 ǎS h k-2 (S) , C 2 h k-1 (S) • r -3 a S + 1 + 2m S r S + r -1 ǎS h k-1 (S) , C 3 h k-4 (S) • r -5 a S + 1 + 2m S r S + r -1 ǎS h k-4 (S) , (9.8.32) 
where a S was defined in Step 1 and can be expressed in terms of ς S and A S by formula (9.8.23).

Proof. The proof 28 of the first two identities in (9.8.29) were derived in Proposition 7.3.5 in connection to the proof 29 of Theorem M4, starting with the following 30Similarly,

e S 4 ( d / S, 2 d / S 2 + 2K S ) d / S, 2 d / S, 1 κ S ) h k-4 (S)
• r -5 .

Writing a S = a S + ǎS and making use of product estimates we deduce

C 1 h k-2 (S) • r -5 a S + 1 + 2m S r S + r -1 ǎS h k-2 (S) , C 2 h k-1 (S) • r -3 a S + 1 + 2m S r S + r -1 ǎS h k-1 (S) , C 3 h k-4 (S) • r -5 a S + 1 + 2m S r S + r -1 ǎS h k-4 (S) ,
as stated.

Step 10. Propositions 9.8.4 and 9.8.6 provide us with potential31 estimates for d / S, 2 η S , d / S, 2 ξ S , d / S, 1 ω S , d / S, 1 ς S . To close we also need to control the = 1 modes of η S , ξ S the average of ω S and the average 32 of a S . Note that the average of ω S can in fact be derived form the equation,

e S 3 (κ S ) + 1 2 κ S κ S -2ω S κ S = 2 d / S 1 η S + 2ρ S -1 2 ϑ S ϑ S + 2(η S ) 2
in terms of A S and η S . Indeed, making use of the GCM condition κ S = 2 r S ,

ω S = 1 2κ S e S 3 (κ S ) + 1 2 κ S κ S -2 d / S 1 η S -2ρ S + 1 2 ϑ S ϑ S -2(η S ) 2 = - 1 2 e 3 (r S ) - Υ S 2r S + r S 4 -2 d / S 1 η S -2ρ S + 1 2 ϑ S ϑ S -2(η S ) 2 = - 1 4 A S + r S 4 -2 d / S 1 η S -2ρ S + 1 2 ϑ S ϑ S -2(η S ) 2 .
Thus, recalling the definition of µ S ,

ω S = - 1 4 A S + r S 2 µ S -(η S ) 2 648 CHAPTER 9. GCM PROCEDURE or, ω S - m S (r S ) 2 = - 1 4 A S + r S 2 µ S - m S (r S ) 3 -η S • η S .
(9.8.34)

Step 11. In view of the above we can determine η S , ξ S , ω S , ς S , A S provided that we control the = 1 modes of η S , ξ S and the average of ς S . For this reason we introduce 33 , along Σ 0 , .8.35) We are now ready to prove the following Proposition 9.8.7. Let Σ 0 be a smooth spacelike hypersurface foliated by framed spheres (S, e S 4 , e S θ .e S 3 ) which verify the GCM conditions (9.8.14), transversality condition (9.4.9) and the estimates (9.4.8)-(9.4.11) of Theorem 9.4.1. Let u S as in (9.8.17) such that u S + r S is constant on Σ 0 . Extend u S and r S in a neighborhood of Σ 0 such that the transversality conditions (9.8.18) are verified. As shown above these allow us to define η S , ξ S , ω S , ς S , A S , a S and the constants B S , B S , D S as in (9.8.35). Finally we assume that,

B S = S η S e Φ , B S = S ξ S e Φ , D S = a S SP + 1 + 2m S r S . ( 9 
r -2 |B S | + |B S | + |D S | ≤ • 1/2 .
(9.8.36)

Under these assumptions the following estimates hold true for all k ≤ s max -7,

1. The Ricci coefficients η S , ξ S , ω S verify η S h 5+k (S) 3. We also have

• + r -2 S |B S |, ξ S h 5+k (S) • + r -2 S |B S |, ωS h 3+k (S) • + r -2 S |B S | + |B S | , ω S - m S (r S ) 2 • + r -2 S |B S | + |B S | . ( 9 
A S h k+1 (S) • + r -2 S |B S | + |B S | + |D S |, r -1 S ςS h k+1 (S) + ς S -1 • + r -2 S |B S | + |B S | + |D S |.
(9.8.39)

4. We also have, for all k ≤ s max -4

e S 3 (κ S , ϑ S , ζ S , κS ) h k (S) • r -1 S , e S 3 (ϑ S ) h k (S) • , e S 3 α S , β S , ρS , µ S h k (S) • r -2 S , e S 3 (β S ) h k (S) • r -1 S , e S 3 (α S ) h k (S) • .
Proof. To simplify the exposition below we make the auxiliary bootstrap assumptions,

η S h 5+k (S) + ξ S h 5+k (S) • 1/2 . ( 9.8.40) 
We start with the following lemma. Proof. Since a S = a S + ǎS we deduce a S SP = a S + ǎS SP . Hence,

a S = D S -1 - 2m S r S -ǎS SP . (9.8.42) 
We also have (see Proposition 9.8.4)

a S = - 2 ς S + Υ S - r S 2 A S .
Hence,

a S = - 2 ς S + ςS + Υ S - r S 2 A S = - 2 ς S 1 - ςS ς S + O ςS ς S 2 + Υ S - r S 2 A S .
Taking the average on S we deduce, where l.o.t. denotes higher order terms in ςS and ς S -1. Indeed

a S = - 2 ς S + Υ S - r S 2 A S + O ςS ς S 2 . ( 9 
ǎS = a S -a S = - 2 ς S + Υ S - r S 2 A S -- 2 ς S + Υ S - r S 2 A S = - 2 ς S + 2 ς S - r S 2 ǍS = 2ς S ς S ς S - r S 2 ǍS = 2ς S - r S 2 ǍS + l.o.t.
Thus to estimate ǎS and a S we first need to estimate A S , ςS and ς S . Using the equations (see Proposition 9.8.4 )

e S θ (A S ) = - 2Υ S r S (ζ S -η S ) - 2 r S ξ S + (ζ S -η S )A S , A S = 1 ς S ςS κS -ςS ǍS ,
and the auxiliary assumption we derive,

A S h k+1 (S) η S h k (S) + ξ S h k (S) + • r -1 1 + ςS h k (S) + ς S -1 . (9.8.45)
From the equation e S θ (log ς S ) = (η Sζ S ).

we also derive,

r -1 S ςS h k+1 (S) η S h k (S) + • + • ς S -1 . (9.8.46) 
To estimate ς S -1 we derive from (9.8.43) and (9.8.44), 2 where l.o.t. denote higher order terms in ςS and ς S -1.Thus,

ς S = -a S + Υ S - r S 2 A S = -D S -1 - 2m S r S -ǎS SP + Υ S -
ς S -1 |D S | + ςS L ∞ (S) + r S A S L ∞ (S) .
Hence, back to (9.8.46) we derive,

r -1 S ςS h k+1 (S) + ς S -1 |D S | + r S A S L ∞ (S) + r η S h k (S) + • .
Combining with (9.8.45) we deduce,

A S h k+1 (S) η S h k (S) + ξ S h k (S) + • , r -1 S ςS h k+1 (S) + ς S -1 r η S h k (S) + • . (9.8.47)
In view of (9.8.44) we also deduce,

r -1 S ǎS h k+1 (S) r -1 S ςS h k+1 (S) + A S h k+1 (S) η S h k (S) + ξ S h k (S) + • .
From (9.8.42) we further deduce

a S + 1 + 2m S r S D S + ǎS L ∞ (S) D S + η S h k (S) + ξ S h k (S) + • .
Hence,

r -1 S ǎS h k+1 (S) + a S + 1 + 2m S r S D S + η S h k (S) + ξ S h k (S) + • (9.8.48)
as stated.

In view of the lemma above and the assumption

|D S | • 1/2
the estimates (9.8.32) become,

C 1 h k (S) • r -4 S η S h k (S) + ξ S h k (S) + • 1/2 , C 2 h k+3 (S) • r -2 S η S h k+3 (S) + ξ S h k+3 (S) + • 1/2 , C 3 h k (S) • r -4 S η S h k (S) + ξ S h k (S) + • 1/2 . (9.8.49)
To prove the desired estimate for η S , ξ S , ω S we make use of (9.8.31) and the following lemma.

CHAPTER 9. GCM PROCEDURE Lemma 9.8.9. The error term

E k = r -1 S Γ S g h 4+k (S) + Γ S b • Γ S b h 4+k (S) , k ≤ s max -7,
appearing in (9.8.31) verifies the estimate

E k r -1 S • + r -1 S • 1/2 (η S , ξ S ) h 4+k (S) + ωS h k+3 (S) .
Proof. Since Γ S g contains only terms estimated by (9.4.8),

Γ S g h 4+k (S) r -1 S •
Γ S b contains ϑ S , which is estimated by (9.4.8), as well as η S , ξ S , ωS , ω Sm S (r S ) 2 . Thus, in view of the auxiliary estimates η S , ξ S h 5+k (S)

• 1/2

and the fact that the quadratic error terms contain one less derivative of ωS , we deduce,

Γ S b • Γ S b h 4+k (S) r -1 S • 1/2 η S , ξ S h 4+k (S) + ωS h k+3 (S) + r S ω S - m S (r S ) 2 .
In view of equation (9.8.34),

ω S -m S (r S ) 2 = -1 4 A S + r S 2 µ S -m S (r S ) 3 -η S • η S , ω S - m S (r S ) 2 A S + r S µ - m S (r S ) 3 + |η S | 2 r -1 S • |D S | + r -1 • 1/2 η S h 2 (S) + ξ S h 2 (S) + • r -2 r -1 S • 1/2 η S h 2 (S) + ξ S h 2 (S) + • .
Hence,

Γ S b • Γ S b h 4+k (S) r -1 S • 1/2 η S , ξ S h 4+k (S) + ωS h k+3 (S) + •
and,

E k = r -1 S Γ S g h 4+k (S) + Γ S b • Γ S b h 4+k (S) r -1 S • + r -1 S • 1/2 η S , ξ S h 4+k (S) + ωS h k+3 (S)
as stated. 

r -1 S • + r -1 S • 1/2 η S , ξ S h 4+k (S) + ωS h k+3 (S) , d / S, 2 ξ S h 4+k (S) r -1 S • + r -1 S • 1/2 η S , ξ S h 4+k (S) + ωS h k+3 (S) , d / S, 1 ω S h 2+k (S) r -1 S η S h 4+k (S) + r -1 S ξ S h 2+k (S) + r -1 S • + r -1 S • 1/2
η S , ξ S h 3+k (S) + ωS h 2+k (S) .

(9.8.50)

From the last equation we derive, ωS

h 3+k (S) η S h 4+k (S) + ξ S h 2+k (S) + • .
Thus the first two equations in (9.8.50) become

r S d / S, 2 η S h 4+k (S) • + • 1/2 η S h 4+k (S) + ξ S h 4+k (S) , r S d / S, 2 ξ S h 4+k (S) • + • 1/2 η S h 4+k (S) + ξ S h 4+k (S) , (9.8.51) 
from which we deduce, η S h 5+k (S)

• + r -2 S |B S |, ξ S h 5+k (S) • + r -2 S |B S |, ωS h 3+k (S) • + r -2 S |B S | + |B S | ,
as stated. We can then go back to the preliminary estimates obtained above for ς S , A S and a S to derive the remaining statements (1-4) of Proposition 9.8.7. To prove the last part of the Proposition we make use of the corresponding Ricci and Bianchi equations in the e S 3 direction. B S e Φ h 5+k (S)

• , ξ S - 1 d(S)
B S e Φ h 5+k (S)

• .
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Note also that,

d(S) = (r S ) 4 8π 3 + O( • ) .
Proof. In view of (9.8.51), (9.8.37) and auxiliary assumption (9.8.36) we deduce,

η S - S η S e Φ S e 2Φ e Φ h 5+k (S) r d / S, 2 η S h 4+k (S) • + • 1/2 η S h 4+k (S) + ξ S h 4+k (S) • + • 1/2 • + r -2 |B S | + |B S | • .
We deduce,

η S -B S 1 S e 2Φ e Φ h 5+k (S)
• .

Similarly,

ξ S -B S 1 S e 2Φ e Φ h 5+k (S)
• as desired.

Construction of Σ 0

To construct the spacelike hypersurface of Theorem 9.8.1 we proceed as follows.

Step 12. Let Ψ(s), Λ(s), Λ(s) real valued functions that will be carefully chosen later. We look for the hypersurface Σ 0 in the form, Step 13. We expect Σ 0 to be a perturbation of the spacelike hypersurface u + s = c 0 for some constant c 0 . We thus introduce the notation ψ(s) := Ψ(s) + sc 0 , so that Ψ(s) = -s + c 0 + ψ(s)

and expect ψ(s) = O( • δ).
Step 14. In view of (9.8.16) we can express the collection of spheres Σ 0 in the form where,

Σ 0 = Ξ(s, θ), s ≥ • s, θ ∈ [0, π] (9 
∂ P U (•)P (s) = Ψ (s)∂ u U (•) + ∂ s U (•) + Λ (s)∂ Λ U (•) + Λ (s)∂ Λ U (•), ∂ P S(•)P (s) = Ψ (s)∂ u S(•) + ∂ s S(•) + Λ (s)∂ Λ S(•) + Λ (s)∂ Λ S(•).
Given f a function on Σ 0 we have, 

d ds f Ξ(s, θ) = Ψ (s) + ∂ P U (θ, P (s))P (s) ∂ u f + 1 + ∂ P S(θ, P (s))P (s) ∂ s f = X * f, d dθ f Ξ(s, θ) = ∂ θ U (θ, P (s))∂ s f + ∂ θ S(θ, P (s))∂ s + ∂ θ f = Y * f,
a S SP = 2λ 2 Ψ (s)ς 1 - 1 2 Ψ (s)ςΩ | SP , (9.8.62) 
or, more precisely,

a S (Ψ(s), s, 0) = 1 Ψ (s) 2λ 2 ς 1 - 1 2 Ψ (s)ςΩ (Ψ(s), s, 0).
Here f, f , λ are the transition functions and ς, Ω correspond to the background foliation. On the other hand, since the transition functions f, f vanish at the South Pole,

e S 4 = λe 4 , e S 3 = λ -1 e 3 .
Hence,

X * (s, 0) = λ 1 - 1 2 Ψ (s)ςΩ e S 4 + 1 2 λ -1 Ψ (s)ςe S 3 = 1 2 λ -1 Ψ (s)ς e S 3 + 2λ 2 Ψ (s)ς 1 - 1 2 Ψ (s)ςΩ e S 4 .
In view of the definition of ν S we deduce,

X * (s, 0) = 1 2 λ -1 Ψ (s)ς ν S SP and 34 , a S (s, 0) = 2λ 2 Ψ (s)ς 1 - 1 2 Ψ (s)ςΩ
as stated.

Step 16. The transition functions (f, f , λ) are uniquely determined on S by the results of Theorem 9.4.1 in terms of Λ, Λ. The same holds true for all curvature components and the Ricci coefficients κ S , ϑ S , ζ S , κ S , ϑ S . One can easily see from the transformation and error terms,

E(s) = 1 2 S(s) 3κ S -ϑ S -a S ϑ S + 3 r S (a S + (1 + 2m S r S ) f e Φ + (ς S ) -1 SP S(s) ς S -ς S SP ν S (f ) - 6 r S Λ(s) e Φ + l.o.t., E(s) = 1 2 S(s) 3κ S -ϑ S -a S ϑ S + 3 r S (a S + (1 + 2m S r S ) f e Φ + (ς S ) -1 SP S(s) ς S -ς S SP ν S (f ) - 6 r S Λ(s) e Φ + l.o.t.
Proof. According to Lemma 9.8.3 we have

ν S S h = (ς S ) -1 S ς S ν S (h) + (κ S + a S κ S )h .
Thus, applying the vectorfield ν S SP = 2λ ςΨ X * SP to the formulas (9.8.15), 1 Ψ (s)

2λ ς SP d ds Λ(s) = ν S SP (Λ) = ν S (Λ) SP = ν S S f e Φ SP = (ς S ) -1 SP S(s)
ς S ν S (f e Φ ) + (κ S + a S κ S )f e Φ .

Introducing J(f ) = e -Φ ν S (f e Φ ) + (κ S + a S κ S )f (9.8.66)

we deduce,

c(s) 1 Ψ (s) = (ς S ) -1 SP S(s) ς S J(f )e Φ = S(s) J(f )e Φ + (ς S ) -1 SP S(s) ς S -ς S SP J(f ).
On the other hand, since

e 3 Φ = 1 2 (κ -ϑ), e 4 Φ = 1 2 (κ -ϑ) J(f ) = ν S (f ) + e S 3 Φ + a S e S 4 Φ + κ S + a S κ S f = ν S (f ) + 1 2 3κ S -ϑ S + a S (3κ S -ϑ S ) f = ν S (f ) + 3 2 κ S + a S κ S - 1 2 ϑ S + a S ϑ S .
Since κ S = 2 r S and κ S = κ S + κS = -2Υ S r S + κS we deduce,

J(f ) = ν S (f ) + 3 r S -Υ S + a S f + 1 2 3κ S -ϑ S -a S ϑ S f = ν S (f ) + 3 r S -Υ S -(1 + 2m S r S ) f + 1 2 3κ S -ϑ S -a S ϑ S + 3 r S (a S + (1 + 2m S r S ) f = ν S (f ) - 6 r S Λ(s) + 1 2 3κ S -ϑ S -a S ϑ S + 3 r S (a S + (1 + 2m S r S ) f.
We deduce,

c(s) 1 Ψ (s) = S ν S (f )e Φ - 6 r S Λ(s) + E(s)
where,

E(s) = 1 2 S(s) 3κ S -ϑ S -a S ϑ S + 3 r S (a S + (1 + 2m S r S ) f e Φ + (ς S ) -1 SP S(s) ς S -ς S SP J(f ) = 1 2 S(s) 3κ S -ϑ S -a S ϑ S + 3 r S (a S + (1 + 2m S r S ) f e Φ + (ς S ) -1 SP S(s) ς S -ς S SP ν S (f ) - 6 r S Λ(s) e Φ + l.o.t.
The proof for Λ is exactly the same.

Step 18. We make use of the estimates for F = (f, f , log λ) and e S 4 (F ) derived in Theorem 9.4.1 as well as the estimates for a S , ς S , η S , ξ S , ω S derived in Proposition 9.8.7 to evaluate the right hand sides of (9.8.65). Recall that in Proposition 9.8.7 we have made the auxiliary assumption (9.8.36) i.e. 

B(s) = Λ(Ψ(s), s, 0)), B(s) = Λ(Ψ(s), s, 0)), r(s) = r(Ψ(s), s, 0), 1 -1 + ψ (s) Λ (s) = B(s) - 1 2 r(s) -1 Λ(s) - 7 2 r(s) -1 Λ(s) + O(r -1 )Λ(s) + N (B, B, D, Λ, Λ, ψ)(s), 1 -1 + ψ (s) Λ (s) = B(s) - 7 2 r(s) -1 Λ(s) + 1 2 r(s) -1 Λ(s) + O(r -1 ) Λ(s) + Λ(s)
+ N (B, B, D, Λ, Λ, ψ)(s).

(9.8.67)

The expressions N, N verify the following properties.

• They depend on B, B, D, Λ, Λ, ψ, F = (f, f , λ -1), the background Ricci coefficients Γ b , Γ g and curvature Ř = {α, β, ρ, β, α}.

• N, N vanish at (B, B, D, Λ, Λ, ψ) = (0, 0, 0, 0, 0, 0). In fact,

|N, N | r 2 • δ.
• The linear part in B, B, D has O( • ) coefficients, i.e. coefficients which depend on the quantities Γ b , Γ g , Ř, F and Λ, Λ, ψ.

• The linear part in Λ, Λ, ψ has O( • ) coefficients.

Proof. To prove the desired result we make use of (9.8.64) to check the following,

S(s) ν S (f )e Φ = 2B(s) -r -1 Λ(s) -r -1 Λ(s) + O(r -1 )Λ(s) + O(r 2 • δ), S (s) 
ν S (f )e Φ = 2B(s)r -1 Λ(s) + r -1 Λ(s) + O(r -1 ) Λ(s) + Λ(s) + O(r 2 • δ).

(9.8.68)

Combining this with (9.8.65),

c(s) 1 Ψ (s) Λ (s) = S ν S (f )e Φ - 6 r S Λ(s) + E(s), c(s) 1 Ψ (s) Λ (s) = S(s) ν S (f )e Φ - 6 r S Λ(s) + E(s),
and the following estimates for the error terms E, E,

|E(s)| + |E(s)| r 2 • δ, (9.8.69) 
we deduce,

1 Ψ (s) Λ (s) = 1 c(s) 2B(s) -r -1 Λ(s) -7r -1 Λ(s) + O(r -1 )Λ(s) + O(r 2 • δ) , 1 Ψ (s) Λ (s) = 1 c(s) 2B(s) -7r -1 Λ(s) + r -1 Λ(s) + O(r -1 ) Λ(s) + Λ(s) + O(r 2 • δ) .
According to our assumptions ς = 1 + O( • ). Also according to Theorem 9.4.

1 λ = 1 + O(r -1 • ). Thus, c(s) = 2λ ς SP (s) = 2(1 + Or -1 ( • ) 1 + O( • ) = 2 + O( • ).
Hence,

1 Ψ (s) Λ (s) = 1 2 2B(s) -r -1 Λ(s) -7r -1 Λ(s) + O(r -1 )Λ(s) + O(r 2 • δ) = B(s) - 1 2 r -1 Λ(s) - 7 2 r -1 Λ(s) + O(r -1 )Λ(s) + O(r 2 • δ).
Setting Ψ(s) = -s + ψ(s) + c 0 and recalling the structure of the error terms we have denoted by O(r 2

• δ)

1 -1 + ψ (s) Λ (s) = B(s) - 1 2 r -1 Λ(s) - 7 2 r -1 Λ(s) + O(r -1 )Λ(s) + N (B, B, D, Λ, Λ, ψ)(s)
where N verifies the properties mentioned in the proposition. In the same manner we derive

1 -1 + ψ (s)) Λ (s) = B(s) - 7 2 r -1 Λ(s) + 1 2 r -1 Λ(s) + O(r -1 ) Λ(s) + Λ(s) + N (B, B, D, Λ, Λ, ψ)(s)
as stated in the proposition.

It remains to check (9.8.68) and (9.8.69) According to (9.8.64) and our assumptions on the Ricci coefficients κ, κ, ω, we have along the sphere S

ν S (f ) = 2(η S -η) - 1 2 2 r f -a S 2Υ r f + f m r 2 + F • Γ b + l.o.t. = 2(η S -η) -r -1 f + r -1 m r + a S (1 - 2m r f + F • Γ.
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According to (9.8.41) and auxiliary assumption (9.8.36)

a S + 1 + 2m S r S • + r -2 |B S | + |B S | + |D S | • 1/2 .
Thus,

ν S (f ) = 2(η S -η) -r -1 f -r -1 1 - m r - m 2 r 2 f + r -2 O • δ • 1/2 .
Since r and r S are comparable along S, i.e. |r -r S | ≤

• δ, we deduce, recalling the definition of B,

S(s) ν S (f )e Φ = 2B(s) -2 S(s) ηe Φ -r -1 Λ(s) -r -1 1 - m r - m 2 r 2 Λ(s) + rO • δ • 1/2 .
Making use of the assumption (9.8.1) for η as well as Corollary 9.2.5 we easily deduce,

S(s) ηe Φ r 2 • δ. (9.8.70) 
Hence,

S(s) ν S (f )e Φ = 2B(s) -r -1 Λ(s) -r -1 1 + O(r -1 ) Λ(s) + O(r 2 • δ) = 2B(s) -r -1 Λ(s) -r -1 Λ(s) + O(r -1 )Λ(s) + O(r 2 • δ).
Similarly, starting with,

ν S (f ) = 2(ξ S -ξ) -1 2 κ + 4ω)(f -a S f ) + a S 2e S θ (log λ) -f κ + F • Γ b + l.o.t.
we deduce, e S θ (log λ)e Φ r 2 • δ.

S(s) ν S (f )e Φ = 2B(s) -2 S(s) ξe Φ + r -1 1 + 8m r Λ(s) + r -1 1 - 2m r - 8m 2 r 2 Λ(s) -2 1 + 2m r S(s) e S θ (log λ)e Φ + rO • δ • 1/2
We deduce,

S(s) ν S (f )e Φ = 2B(s) -r -1 (1 + O(r -1 ))Λ(s) + r -1 1 + O(r -1 ) Λ(s) + O(r 2 • δ)
as stated. The estimates for E, E in (9.8.69) can also be easily checked. This ends the proof of Proposition 9.8.13.

Step 19. We derive an equation for ψ. The main result is stated in the proposition below. 

• δr(s) -1 .

Proof. In view of (9.8.62) and the definition of c(s) = 2λ ς SP

(s) we have,

Ψ (s) = 1 a S SP (s) • 2λ 2 ς 1 - 1 2 Ψ ςΩ SP (s) or Ψ (s) = 2λ 2 ς 1 a S + λ 2 Ω SP . (9.8.73) Now, we have 2λ 2 ς 1 a S + λ 2 Ω = 2 ς 1 a S + Ω + O(λ -1) = -1 + a S + 2 ς + Ω a S + Ω + O(λ -1).
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Hence,

ψ (s) = Ψ (s) + 1 = a S + 2 ς + Ω a S + Ω SP + O(λ -1) = a S + 2 ς + Ω a S + Ω SP + O(r -1 • δ).
We have, see (9.8.35),

a S SP (s) = D(s) -1 - 2m S r S . Hence, a S + Ω SP (s) = D(s) -1 - 2m S r S + Ω SP (s) = D(s) -1 - 2m S r S -(1 - 2m r ) + O( • ) = D(s) -2 + O( • ).
In view of the assumption (9.8.2)

2 ς + Ω SP -1 - 2m r r -1 • δ we deduce a S + 2 ς + Ω SP (s) = a S SP + 1 + 2m r + O(r -1 • δ) = D(s) + 2m r - 2m S r S + O(r -1 • δ) = D(s) + O(r -1 • δ).
Hence,

ψ (s) = a S + 2 ς + Ω a S + Ω SP + O(r -1 • δ) = - 1 2 D(s) + O(D(s) 2 ) + O(r -1 • δ)
as stated.

Step 20. We combine Propositions 9.8.13 and 9.8.14 to derive the closed system of equations in Λ, Λ, ψ, Recall also that r(s) is a smooth function of ψ(s).

1 -1 + ψ (s) Λ (s) = B(s) - 1 2 r(s) -1 Λ(s) - 7 2 r(s) -1 Λ(s) + O(r -1 )Λ(s) + N (B, B, D, Λ, Λ, ψ)(s), 1 -1 + ψ (s) Λ (s) = B(s) - 7 2 r(s) -1 Λ(s) + 1 2 r(s) -1 Λ(s) + O(r -1 ) Λ(s) + Λ(s) + N (B, B, D, Λ, Λ, ψ)(s), ψ (s) = - 1 2 D(s) + O(D(s) 2 ) + M (s),
The system (9.8.74) is verified for all choices of (Λ, Λ, Ψ). We now make a suitable particular choice for (Λ, Λ, Ψ) as follows.

Consider in particular the system obtained from(9.8.74) by setting B, B, D to zero

ψ (s) = M (s), 1 -1 + ψ (s)) Λ (s) = - 1 2 r(s) -1 Λ(s) - 7 2 r(s) -1 Λ(s) + O(r -1 )Λ(s) + N (Λ, Λ, ψ)(s), 1 -1 + ψ (s)) Λ (s) = - 7 2 r(s) -1 Λ(s) + 1 2 r(s) -1 Λ(s) + O(r -1 ) Λ(s) + Λ(s) + N (Λ, Λ, ψ)(s), (9.8.76) 
where, N (Λ, Λ, ψ) = N (0, 0, 0, Λ, Λ, ψ), N (Λ, Λ, ψ) = N (0, 0, 0, Λ, Λ, ψ).

We initialize the system at s = • s as in (9.8.75), i.e., Λ(

• s) = ψ( • s) = 0, Λ 0 , Λ( • s) = Λ 0 .
The system admits a unique solution ψ(s) defined in a small neighborhood

• I of • s.
The function Ψ(s) = -s + ψ(s) + c 0 defines the desired hypersurface Σ 0 .

Step 21. It remain to show that the function B, B, D vanish on the hypersurface Σ 0 defined above. Since the system (9.8.74) is verified for all functions Λ, Λ, ψ we deduce, along Σ 0 ,

D = 0, B = N (B, B, D, Λ, Λ, ψ)(s) -N (0, 0, 0, Λ, Λ, ψ)(s), B = N (B, B, D, Λ, Λ, ψ)(s) -N (0, 0, 0, Λ, Λ, ψ)(s).
In view of the properties of N, N we deduce, N (B, B, D, Λ, Λ, ψ)(s) -N (0, 0, 0, Λ, Λ, ψ)(s)

• sup Hence B, B, D vanish identically on Σ 0 .

Step 22. We have, 

dr ds -1 • . ( 9 
= (-1 + ψ (s)) 1 2λ ςν S (r S ) SP = (-1 + ψ (s)) 1 2λ ς r S 2 (ς S ) -1 ς S (κ S + a S κ S ) SP .
In view of Proposition 9.8.14, with D = 0, ψ r -1

• δ. We deduce,

d ds r(s) = - 1 2λ ς r S 2 (ς S ) -1 ς S (κ S + a S κ S ) SP + O( • δ).
Step where,

∂ P U (•)P (s) = Ψ (s)∂ u U (•) + ∂ s U (•) + Λ (s)∂ Λ U (•) + Λ (s)∂ Λ U (•), ∂ P S(•)P (s) = Ψ (s)∂ u S(•) + ∂ s S(•) + Λ (s)∂ Λ S(•) + Λ (s)∂ Λ S(•).
Thus to prove the smoothness of Ξ we need to appeal to the smoothness of U, S with respect to the parameters Λ, Λ and u, s. Though tedious, this can be easily done, by 674 CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS

Basic Morawetz estimates

Recall

• the definitions in section 5.1.1 of (trap) M, (trap ) M, τ , Σ(τ ) and (trap) Σ,

• the main quantities involved in the energy and Morawetz estimates, e.g. 

E[ψ](τ ), Mor[ψ](τ 1 , τ 2 ), Morr[ψ](τ 1 , τ 2 ), F [ψ](τ 1 , τ 2 ), J δ [ψ, N ](τ 1 , τ 2 )
2 ψ = V ψ + N, V = -κκ.
Let δ > 0 be a fixed small constant verifying 0 < δ. The following estimates hold true in

M(τ 1 , τ 2 ), 0 ≤ τ 1 < τ 2 ≤ τ * , E[ψ](τ 2 ) + Mor[ψ](τ 1 , τ 2 ) + F [ψ](τ 1 , τ 2 ) E[ψ](τ 1 ) + J δ [ψ, N ](τ 1 , τ 2 ) + O( ) Ḃδ ; 4m 0 [ψ](τ 1 , τ 2 ). (10.1.1) 
Also, ) cannot yet be absorbed on the left hand side of the inequality. To do that we will rely on the r p weighted estimates of Theorem 10.2.1.

E[ψ](τ 2 ) + Morr[ψ](τ 1 , τ 2 ) + F [ψ](τ 1 , τ 2 ) E[ψ](τ 1 ) + J δ [ψ, N ](τ 1 , τ 2 ) + Ḃδ ; 4m 0 [ψ](τ 1 , τ 2 ). ( 10 
Remark 10.1.3. In addition to and δ, the proof of Theorem 10.1.1 will involve several smallness constants: C -1 , δ, δ 1 , δ H , H , Λ -1 H and Λ -1 . These smallness constants will be chosen such that

0 < δ, δ H , H , Λ -1 H , Λ -1 δ 1 C -1 . (10.1.3)
In addition, δ, H , Λ -1 H and Λ -1 will in fact be chosen towards the end of the proof as explicit powers of δ H , see (10.1.63), (10.1.65) and Proposition 10.1.30.

The goal of this section is to prove Theorem 10.1.1. This will be achieved in section 10.1.15.

• Finally, in section 10.1.15, we add a correction to upgrade the control of Mor[ψ] to the control of the quantity Morr[ψ], hence concluding the proof of Theorem 10.1.1.

A simplified set of assumptions

To prove Theorem 10.1.1, it suffices to make a simplified set of assumptions. Define

u trap = 1 + τ for r ∈ [ 5m 0 2 , 7m 0 2 ], 1 for r / ∈ [ 5m 0 2 , 7m 0 2 ].
(10.1.4)

For k = 0, 1, we assume the following.

Mor1. The renormalized Ricci coefficients Γ≤k verify on

M = (int) M ∪ (ext) M, | Γ≤k | r -1 u -1-δ dec trap , d ≤k ω + m r 2 , ξ r -2 u -1-δ dec trap . (10.1.5) 
Mor2. The Gauss curvature K of S and ρ verify, In order to prove Theorem 10.1.1, we will adapt the derivation of the Morawetz estimate for the wave equation in Schwarzschild. In particular, we will need to consider various scalar functions, used to define suitable analogs of the vectorfields in Schwarzschild, which depend on m and r. Now, m is now a scalar function unlike the Schwarzschild case where it is constant. To take this into account, we will rely on the following lemma.

d ≤k ρ + 2m r 3 r -2 u -1-δ dec trap , d ≤k K - 1 r 2 r -2 u -1-δ dec trap . ( 10 
Lemma 10.1.5. Let f = f (r, m) a C1 function of r and m. Then, we have

e 4 f (r, m) = ∂ r f (r, m)e 4 (r) + O( r -2 u -1-δ dec trap |∂ m f |), e 3 f (r, m) = ∂ r f (r, m)e 3 (r) + O( u -1-δ dec trap |∂ m f |), e 4 e 3 f (r, m) = ∂ 2 r f (r, m)e 4 (r)e 3 (r) + ∂ r f (r, m)e 4 (e 3 (r)) +O( r -2 u -1-δ dec trap (r|∂ r ∂ m f | + |∂ 2 m f |)), e 3 e 4 f (r, m) = ∂ 2 r f (r, m)e 4 (r)e 3 (r) + ∂ r f (r, m)e 3 (e 4 (r)) +O( r -2 u -1-δ dec trap (r|∂ r ∂ m f | + |∂ 2 m f |)), e θ f (r, m) = 0.
Proof. Straightforward verification using (10.1.7).

Remark 10.1.6. Note that in the sequel, ∂ r f will not denote a spacetime coordinate vectorfield applied to f , but instead the partial derivative with respect to the variable r of the function f (r, m). Note that,

-g(T, T ) = g(R, R) = Υ, g(T, R) = 0.
Note also that,

R(r) = 1 - 2m r + O( u -1-δ dec trap ), T (r) = O( u -1-δ dec trap
).

Lemma 10.1.7. The following hold true.

1. The components of the deformation tensor of R = 1 2 (e 4 -Υe 3 ) are given by

(R) π 34 + 4m r 2 r -1 u -1-δ dec trap , (R) π(e A , e B ) - 2 r Υδ AB r -1 u -1-δ dec trap , (R) π 33 r -1 u -1-δ dec trap , (R) π 3θ r -1 u -1-δ dec trap , (R) π 4θ r -1 u -1-δ dec trap . Moreover, (R) π 44 r -2 u -1-δ dec trap . 2. If V := -κ κ, we have e 3 (V ) = 8 r 3 1 - 3m r + O( )r -3 u -1-δ dec trap , e 4 (V ) = - 8Υ r 3 1 - 3m r + O( )r -3 u -1-δ dec trap , (10.1.8) 
and 

R(V ) = - 8Υ r 3 1 - 3m r + O( )r -3 u -1-δ dec trap , T (V ) = O( )r -3 u -1-δ dec trap . 3 
1+3) χ AB -Υ (1+3) χ AB = 1 2 (κ -Υκ)δ AB + (1+3) χ AB -Υ (1+3) χ AB . ( 
Note that,

e 3 (Υ) = e 3 1 - 2m r = 2m r 2 e 3 (r) - 2e 3 m r = m r (κ + A) + O( r -1 u -1-δ dec trap ) = m r κ + O( r -1 u -1-δ dec trap ) = - 2m r 2 + O( r -1 u -1-δ dec trap ), e 4 (Υ) = e 4 1 - 2m r = 2m r 2 e 4 (r) - 2e 4 m r = m r (κ + A) + O( r -2 u -1-δ dec trap ) = m r κ + O( r -2 u -1-δ dec trap ) = 2m r 2 Υ + O( r -2 u -1-δ dec trap ). Thus (R) π 44 = O( r -2 u -1-δ dec trap ), (R) π 33 = O( r -1 u -1-δ dec trap ), (R) π 34 = -4 m r 2 + O( r -1 u -1-δ dec trap ), (R) π AB = 2Υ r δ AB + O( r -1 u -1-δ dec trap ). Also, in view of, ξ, ξ, η, η, ζ r -1 u -1-δ dec trap , we deduce, (R) π 3θ , (R) π 4θ r -1 u -1-δ dec trap as desired.
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To prove the second part of the lemma we write,

e 3 (V ) = -e 3 (κ)κ -κe 3 (κ) = -- 1 2 κκ + 2ωκ + 2ρ + O( r -2 u -1-δ dec trap ) κ -κ - 1 2 κ 2 -2ω κ + O( r -2 u -1-δ dec trap ) = (κκ -2ρ)κ + O( r -3 u -1-δ dec trap
).

On the other hand,

κκ -2ρ = - 2Υ r + O( )r -1 u -1-δ dec trap 2 r + O( )r -1 u -1-δ dec trap + 4m r 3 + O( r -3 u -1-δ dec trap ) = - 4 r 2 1 - 3m r + O( r -2 u -1-δ dec trap ).
Hence,

e 3 (V ) = (κκ -2ρ)κ + O( r -3 u -1-δ dec trap ) = 8 r 3 1 - 3m r + O( r -3 u -1-δ dec trap )
and similarly for e 4 (V ). Thus,

R(V ) = 1 2 (e 4 -Υe 3 )V = - 8Υ r 3 1 - 3m r + O( r -3 u -1-δ dec trap ), T (V ) = 1 2 (e 4 + Υe 3 )V = O( )r -3 u -1-δ dec trap ,
as desired.

To prove the last part of the lemma we write, 

1+3) χ AB + Υ (1+3) χ AB = 1 2 (κ + Υκ)δ AB + (1+3) χ AB + Υ (1+3) χ AB , ( 
and the proof continues as above in view of our assumptions.
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Consider now X = f (r, m)R and (X) π its deformation tensor. Ve have the following lemma.

Lemma 10.1.8. Let X = f (r, m)R and (X) π its deformation tensor. We have,

(X) π = (X) π + (X) π
where2 

• The only nonvanishing components of (X) π are

(X) π33 = 2∂ r f, (X) π44 = 2∂ r f Υ 2 , (X) π34 = - 4m r 2 f -2∂ r f Υ, (X) πAB = f 2Υ r δ AB .
• All components of (X) π verify,

(X) π r -1 u -1-δ dec trap (|f | + r|∂ m f | + r 2 |∂ r f |).
Moreover,

(X) π44 r -2 u -1-δ dec trap (|f | + r|∂ m f | + r 2 |∂ r f |). Proof. Clearly, (X) π µν = f (R) π µν + e µ f R ν + e ν f R µ .
Therefore, since g(R, e 3 ) = -1, g(R, e 4 ) = Υ and,

e 4 (r) -Υ, e 3 (r) + 1 u -1-δ dec trap , 1. The energy momentum tensor Q = Q[Ψ]
given by,

Q µν : = Ḋµ Ψ • Ḋν Ψ - 1 2 g µν Ḋλ Ψ • Ḋλ Ψ + V Ψ • Ψ = Ḋµ Ψ • Ḋν Ψ - 1 2 g µν L(Ψ)
verifies,

D ν Q µν = Ḋµ Ψ • N [Ψ] + Ḋν Ψ A R ABνµ Ψ B - 1 2 D µ V Ψ • Ψ.
2. The null components of Q are given by,

Q 33 = |e 3 Ψ| 2 , Q 44 = |e 4 Ψ| 2 , Q 34 = |∇ / Ψ| 2 + V |Ψ| 2 ,
and, 

g µν Q µν = -L(Ψ) -V |Ψ| 2 . Also, |L ( 

Introducing

Q 34 := Q 34 -V |Ψ| 2 = |∇ / Ψ| 2
we have,

-Q 34 + Q θθ + Q ϕϕ = -L(Ψ).
4. Let X = ae 3 + be 4 . Then, since R AB34 = 0 in an axially symmetric polarized spacetime,

D µ (Q µν X ν ) = 1 2 Q • (X) π + X(Ψ) • N [Ψ] - 1 2 X(V )Ψ • Ψ.
Proof. In view of Lemma 10.1.8, we have

Q • (X) π = 1 2 Q 34 π34 + 1 4 Q 44 π33 + 1 4 Q 33 π44 + Q AB πAB = - 2m r 2 f Q 34 -∂ r f ΥQ 34 + 1 2 Q 44 ∂ r f + 1 2 Q 33 Υ 2 ∂ r f + 2Υ r f δ AB Q AB = - 2m r 2 f Q 34 + 2Υ r f δ AB Q AB + 1 2 ∂ r f Q 44 -2ΥQ 34 + Υ 2 Q 33 Note that, Q 44 -2ΥQ 34 + Υ 2 Q 33 = 4Q RR and, since g µν Q µν = -L(Ψ) -V |Ψ| 2 , δ AB Q AB = Q 34 -L -V |Ψ| 2 = Q 34 -L. Hence, Q • (X) π = - 2m r 2 f Q 34 + 2Υ r f Q 34 -L + 2∂ r f Q RR = - 2m r 2 f Q 34 + V |Ψ| 2 + 2Υ r f Q 34 -L + 2∂ r f Q RR = f - 2m r 2 + 2Υ r Q 34 + 2∂ r f Q RR - 2Υ r f L - 2m r 2 f V |Ψ| 2 .
Finally,

Q RR = |RΨ| 2 - 1 2 g(R, R)L = |RΨ| 2 - 1 2 ΥL. Hence, Q • (X) π = 2f - m r 2 + Υ r Q 34 + 2∂ r f |RΨ| 2 - 1 2 ΥL - 2Υ r f L - 2m r 2 f V |Ψ| 2 = 2f - m r 2 + Υ r |∇ / Ψ| 2 + 2∂ r f |RΨ| 2 - 2Υ r f + ∂ r f Υ L - 2m r 2 f V |Ψ| 2 .
This concludes the proof of the lemma.

We shall also make use of the following lemma.

Lemma 10.1.11.

If f = f (r, m), then g (f (r, m)) = r -2 ∂ r (r 2 Υ∂ r f ) + O( r -2 u -1-δ dec trap ) r 2 |∂ 2 r f (r, m)| + r|∂ r f (r, m)| +r|∂ r ∂ m f (r, m)| + |∂ 2 m f (r, m)| .
Proof. Recall from Lemma 2.4.1 that, for a general scalar f ,

g f = - 1 2 (e 3 e 4 + e 4 e 3 )f + / f + (1+3) ω - 1 2 (1+3) trχ e 4 f + (1+3) ω - 1 2 (1+3) trχ e 3 f.
Recall that,

(1+3) trχ = 2χ -ϑ, (1+3) trχ = 2χ -ϑ, (1+3) ω = ω, (1+3) ω = ω and / f = e θ e θ f + (e θ Φ) 2 e θ f.
Using Lemma 10.1.5, we deduce, for a function f = f (r, m),

g f = - 1 2 (e 3 e 4 + e 4 e 3 )f + ω - 1 2 κ e 4 f + ω - 1 2 κ e 3 f = -∂ 2 r f (r, m)e 3 (r)e 4 (r) - 1 2 ∂ r f (r, m) (e 3 e 4 (r) + e 4 e 3 (r)) - 1 2 κ∂ r f (r, m)e 4 r + ω - 1 2 κ ∂ r f (r, m)e 3 (r) + O( r -2 u -1-δ dec trap ) r 2 |∂ 2 r f (r, m)| +r|∂ r f (r, m)| + r|∂ r ∂ m f (r, m)| + |∂ 2 m f (r, m)| = -∂ 2 r f (r, m) -Υ + O( u -1-δ dec trap + ∂ r f (r, m) m r 2 + ∂ r f (r, m) Υ r + r -m r 2 ∂ r f (r, m) + O( r -2 u -1-δ dec trap ) r 2 |∂ 2 r f (r, m)| + r|∂ r f (r, m)| + r|∂ r ∂ m f (r, m)| + |∂ 2 m f (r, m)| = Υ∂ 2 r f (r, m) + ∂ r f (r, m) 2 r - 2m r 2 + O( r -2 u -1-δ dec trap ) r 2 |∂ 2 r f (r, m)| + r|∂ r f (r, m)| + r|∂ r ∂ m f (r, m)| + |∂ 2 m f (r, m)| = r -2 ∂ r (r 2 Υ∂ r f ) + O( r -2 u -1-δ dec trap ) r 2 |∂ 2 r f (r, m)| + r|∂ r f (r, m)| + r|∂ r ∂ m f (r, m)| + |∂ 2 m f (r, m)| as desired.
According to equation (10.1.14) we have,

E[X, w](Ψ) = 1 2 Q • (X) π - 1 2 X(V )|Ψ| 2 + 1 2 wL(Ψ) - 1 4 |Ψ| 2 g w.
In the next proposition we choose X to be of the form X = f (r, m)R and make a choice of w as a function of f . Proposition 10.1.12. Assume X = f (r, m)R and w(r, m) = r -2 Υ∂ r (r 2 f ).

Then,

E[X, w](Ψ) = Ė[X, w] + E [X, w]
where, with 

Q 34 := Q 34 -V |Ψ| 2 = |∇ / Ψ| 2 , Ė[f R, w](Ψ) = 1 r 1 - 3m r f Q 34 + ∂ r f |R(Ψ)| 2 - 1 4 r -2 ∂ r (r 2 Υ∂ r w)|Ψ| 2 + 4Υ r -4m r 4 f |Ψ| 2 , E [f R, w](Ψ) = 1 2 Q • (X) π + O r -3 u -1-δ dec trap |f | + r 2 |∂ r w| + r 3 |∂ 2 r w| + r 2 |∂ r ∂ m w| + r|∂ 2 m w| |Ψ| 2 . ( 10 
(Ψ) = 1 2 Q • ( (X) π + (X) π) - 1 2 X(V )|Ψ| 2 + 1 2 wL(Ψ) - 1 4 |Ψ| 2 g w.
Hence, in view of lemmas 10.1.8 and 10.1.10,

E[X, w](Ψ) - 1 2 Q • (X) π = 1 2 Q • (X) π - 1 2 X(V )|Ψ| 2 + 1 2 wL(Ψ) - 1 4 |Ψ| 2 g w = f - m r 2 + Υ r |∇ / Ψ| 2 + ∂ r f |RΨ| 2 - Υ r f + 1 2 Υ∂ r f L(Ψ) - m r 2 f V |Ψ| 2 - 1 2 X(V )|Ψ| 2 + 1 2 wL(Ψ) - 1 4 |Ψ| 2 g w. Thus, assuming w = r -2 Υ∂ r (r 2 f ) = 2Υ r f + ∂ r f Υ, E[X, w](Ψ) - 1 2 Q • (X) π = r -1 f 1 - 3m r |∇ / Ψ| 2 + ∂ r f |RΨ| 2 - m r 2 f V + 1 2 X(V ) + 1 4 g w |Ψ| 2 .
Note that, in view of Lemma 10.1.7,

X(V ) = f R(V ) = -8Υf r -3m r 4 + O( r -3 u -1-δ dec trap |f |) and, m r 2 f V + 1 2 X(V ) = f 4m r 4 Υ -4Υ r -3m r 4 + O( r -3 u -1-δ dec trap |f |) = -4f Υ r -4m r 4 + O( r -3 u -1-δ dec trap |f |).
Note also that, in view of Lemma 10.1.11

g (w) = r -2 ∂ r (r 2 Υ∂ r w) + O( r -2 u -1-δ dec trap ) r 2 |∂ 2 r w| + r|∂ r w| + r|∂ r ∂ m w| + |∂ 2 m w| . Thus, m r 2 f V + 1 2 X(V ) + 1 4 g w = -4Υ r -4m r 4 f + 1 4 r -2 ∂ r (r 2 Υ∂ r w) +O( r -3 u -1-δ dec trap ) |f | + r 3 |∂ 2 r w| + r 2 |∂ r w| +r 2 |∂ r ∂ m w| + r|∂ 2 m w| and hence E[X, w](Ψ) - 1 2 Q • (X) π = r -1 f 1 - 3m r |∇ / Ψ| 2 + ∂ r f |RΨ| 2 - 1 4 |Ψ| 2 r -2 ∂ r (r 2 Υ∂ r w) + 4Υ r -4m r 4 f |Ψ| 2 + O r -3 u -1-δ dec trap |f | + r 2 |∂ r w| + r 3 |∂ 2 r w| +r 2 |∂ r ∂ m w| + r|∂ 2 m w| |Ψ| 2
as desired.

A first estimate

We concentrate our attention on the principal term

Ė[f R, w](Ψ) = 1 r 1 - 3m r f Q 34 + ∂ r f |R(Ψ)| 2 - 1 4 r -2 ∂ r (r 2 Υ∂ r w)|Ψ| 2 + 4Υ r -4m r 4 f |Ψ| 2
and choose f = f (r, m) such that the right hand side is positive definite.

Consider the quadratic forms, Ė0

Ψ) : = A Q 34 + B|RΨ| 2 + r -2 W |Ψ| 2 , Ė(Ψ) : = Ė0 (Ψ) + 4Υ r -4m r 4 f |Ψ| 2 , ( ( 
.1.16)
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so that w is indeed C 1 . Furthermore, we also have

r -2 ∂ r (r 2 Υ∂ r w) = Υ∂ 2 r w(r) + ∂ r w(r) 2 r - 2m r 2 = Υ 4 r 3 - 24m r 4 + - 2 r 2 + 8m r 3 2 r - 2m r 2 = - 4m r 4 3 - 8m r so that, for r ≥ 4m, W = - 1 4 ∂ r (r 2 Υ∂ r w) = m r 2 3 - 8m r as desired.
Once w is defined we can evaluate f as follows.

Lemma 10.1.14. Let w(r, m) defined as in Lemma 10.1.13. Then, the function f (r, m) given by, 

r 2 f (r, m) := 2m 2 log r-2m m + (r -3m) r 2 +6mr+30m 2 12m , for r ≤ 4m, C * m 2 + r 2 -(4m)
∂ r (r 2 f ) = r 2 Υ -1 w, f = 0 on r = 3m.
Proof. By direct check7 , we have for r ≤ 4m

∂ r (r 2 f )(r, m) = 2m 2 (r -2m) + r 2 + 6mr + 30m 2 12m + (r -3m) 2r + 6m 12m = r 3 4m(r -2m) = r 2 Υ 1 4m
and for r ≥ 4m

∂ r (r 2 f )(r, m) = 2r,
as well as f = 0 on r = 3m so that, in view of the definition of w(r) in Lemma 10.1.13, we infer

∂ r (r 2 f ) = r 2 Υ -1 w, f = 0 on r = 3m as desired. Note also that w being C 1 , f is thus indeed C 2 .
Next, we derive a lower bound on ∂ r f for r ≤ 4m.

Lemma 10.1.15. We have for all r and m

r 3 ∂ r f ≥ 16m 2 .
Also, there exists a constant C > 0 such that for all r and m

1 - 3m r f ≥ C -1 1 - 3m r 2 .
Proof. We have

∂ r (r 3 ∂ r f ) = ∂ r (r∂ r (r 2 f )) -2∂ r (r 2 f ). Using the identity ∂ r (r 2 f ) = r 2 Υ -1 w, we infer ∂ r (r 3 ∂ r f ) = ∂ r (r 3 Υ -1 w) -2r 2 Υ -1 w.
For r ≤ 4m, we have w = (4m) -1 and hence

∂ r (r 3 ∂ r f ) = 1 4m ∂ r (r 3 Υ -1 ) -2r 2 Υ -1 = 1 4m r 3 ∂ r (Υ -1 ) = - r 2Υ 2 
In particular, r 3 ∂ r f is decreasing in r on r ≤ 4m and hence 

r 3 ∂ r f ≥ (4m) 3 ∂ r f (r = 4m, m) on r ≤ 4m.
∂ r (r 2 f )(r = 4m, m) = (4m) 2 ∂ r f (r = 4m, m) + 8mf (r = 4m, m) = (4m) 2 ∂ r f (r = 4m, m) + m 2 C * and hence (4m) 2 ∂ r f (r = 4m, m) = 8 - C * 2 m so that r 3 ∂ r f ≥ 2(16 -C * )m 2 on r ≤ 4m.
Since C * ∼ 7.22 < 8, we deduce

r 3 ∂ r f ≥ 16m 2 on r ≤ 4m.
Also, for r ≥ 4m, we have

f = 1 - (16 -C * )m 2 r 2 so that ∂ r f = 2(16 -C * )m 2 r 3 .
Since C * ∼ 7.22 < 8, we deduce

r 3 ∂ r f ≥ 16m 2 on r ≥ 4m
which together with the case r ≤ 4m above yields for all r and m the desired estimate for ∂ r f

r 3 ∂ r f ≥ 16m 2 .
In particular, ∂ r f > 0 and hence is strictly increasing. On the other hand, f = 0 on r = 3 and converges to 1 as r → +∞. We deduce the existence of a constant C > 0 such that

1 - 3m r f ≥ C -1 1 - 3m r 2 
as desired.
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We summarize the results in the following.

Proposition 10.1.16. There exist functions f ∈ C 2 , w ∈ C 1 verifying the relation w = r -2 Υ∂ r (r 2 f ) and such that,

r 2 f = 2m 2 log r-2m m + (r -3m) r 2 +6mr+30m 2 12m , for r ≤ 4m, C * m 2 + r 2 -(4m) 2 ,
for r ≥ 4m, (10.1.21) where C * is a constant satisfying 7 < C * < 8. In particular, and, for some C > 0 and all r ≥ 2m and,

f = 2m 2 r 2 log r-2m m + O( r-3m m ), for r ≤ 4m, 1 + O( m 2 r 2 ), for r ≥ 4m, ( 10 
1 - 3m r f ≥ C -1 1 - 3m r 2 , ∂ r f ≥ 16m 2 r 3 . ( 10 
Moreover W = -1 4 ∂ r (r 2 Υ∂ r w) verifies, W = 0, if r < 4m, m r 2 3 -8m r , if r > 4m, ( 10 
Ė0 [f R, w](Ψ) = ∂ r f |R(Ψ)| 2 + r -2 W |Ψ| 2 + r -1 1 - 3m r f Q 34 , Ė[f R, w](Ψ) = E 0 [f R, w](Ψ) + 4Υ r -4m r 4 f |Ψ| 2 . (10.1.26)
Recall also that,

Q 34 = |∇ / Ψ| 2 .
Remark 10.1.17. The estimates obtained so far have two major deficiencies 1. The quadratic form Ė0 [f R, w](Ψ) + 4Υ r-4m r 4 f |Ψ| 2 fails to be positive definite in the region 3m ≤ r ≤ 4m because of the potential term Υ r-4m r 4 f |Ψ| 2 . 2. The function f blows up logarithmically at r = 2m in (int) M.

In the next section we deal with the first issue. We handle the second problem in the following two sections.

D µ (hR µ ) = R(h) + h(D µ R µ ) = 1 2 (e 4 (h) -Υe 3 (h)) + h 1 2 tr ( (R) π) = 1 2 (e 4 (r) -Υe 3 (r))∂ r h + O( u -1-δ dec trap |∂ m h|) + 1 2 h -(R) π 34 + (R) π θθ + (R) π ϕϕ = Υ∂ r h + 1 2 4m r 2 + 4 Υ r h + O u -1-δ dec trap |∂ r h| + r -1 |h| + |∂ m h| = r -2 ∂ r (Υr 2 h) + O u -1-δ dec trap |∂ r h| + r -1 |h| + |∂ m h| as desired.
In view of the lemma we write,

E[f R, w, 2hR](Ψ) = Ė[f R, w, 2hR](Ψ) + E [f R, w, 2hR](Ψ), Ė[f R, w, 2hR](Ψ) : = Ė[f R, w](Ψ) + 1 2 r -2 ∂ r (Υr 2 h)|Ψ| 2 + hΨR(Ψ), E [f R, w, 2hR](Ψ) : = E [f R, w](Ψ) + O r -1 u -1-δ dec trap r|∂ r h| + |h| + r|∂ m h| |Ψ| 2 . (10.1.30) 
The main result of this section is stated below.

Proposition 10.1.20. There exists a function h = h(r, m) with bounded derivative h , supported in r ≥ 3m such that h = O(r -2 ), h = O(r -3 ) for for r ≥ 4m such that,

E[f R, w, 2hR](Ψ) = Ė[f R, w, 2hR](Ψ) + E [f R, w, 2hR](Ψ), E [f R, w, 2hR](Ψ) = 1 2 Q • (X) π + O r -3 u -1-δ dec trap (|f | + 1) |Ψ| 2 , (10.1.31) 
and, for sufficiently large universal constant C > 0, in the region r 

≥ 5m 2 , S Ė[f R, w, 2hR](Ψ) ≥ C -1 S m 2 r 3 |R(Ψ)| 2 + r -1 1 - 3m r 2 |∇ / Ψ| 2 + m r 4 |Ψ| 2 . ( 10 
3m r f (r, m)|∇ / Ψ| 2 ≥ S (2 -O( ))r -3 1 - 3m r f (r, m)|Ψ| 2 .
The result will the easily follow by writing instead, with a sufficiently small µ > 0,

S r -1 1 - 3m r f (r, m)|∇ / Ψ| 2 = µ S r -1 1 - 3m r f (r, m)|∇ / Ψ| 2 + (1 -µ) S r -1 1 - 3m r f (r, m)|∇ / Ψ| 2 ≥ µ S r -1 1 - 3m r f (r, m)|∇ / Ψ| 2 + (1 -µ) S 2r -3 1 - 3m r f (r, m)|Ψ| 2
and then proceeding exactly as below.

We start with,

Ė[f R, w, 2hR](Ψ) = Ė[f R, w](Ψ) + 1 2 r -2 ∂ r (Υr 2 h)|Ψ| 2 + hΨR(Ψ).
Recalling the definition of Ė1 in (10.1.28),

Ė1 := ∂ r f |R(Ψ)| 2 + r -2 W |Ψ| 2 + 2r -3 1 - 3m r f |Ψ| 2 + 4Υ r -4m r 4 f |Ψ| 2
and setting,

Ė2 := Ė1 + 1 2 r -2 (Υr 2 h) |Ψ| 2 + hΨR(Ψ) (10.1.33) = ∂ r f |R(Ψ)| 2 + 2r -3 1 - 3m r f |Ψ| 2 + 4Υ r -4m r 4 f |Ψ| 2 + r -2 W |Ψ| 2 + 1 2 r -2 (Υr 2 h) |Ψ| 2 + hΨR(Ψ)
we deduce, from (10.1.28)

S Ė[f R, w, 2hR](Ψ) ≥ S Ė2 -O( r -3 ) S |Ψ| 2 
.

We now substitute, h = 4Υr -4 h.
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Hence,

1 2 r -2 ∂ r (Υr 2 h)|Ψ| 2 + hΨR(Ψ) = 1 2 r -2 ∂ r (4Υ 2 r -2 h)|Ψ| 2 + 4Υr -4 hΨR(Ψ) = 1 2 r -2 ∂ r (4Υ 2 r -2 ) h|Ψ| 2 + 2r -4 Υ 2 ∂ r h|Ψ| 2 + 4Υr -4 hΨR(Ψ) or, since 1 2 r -2 ∂ r (4Υ 2 r -2 ) = -4r -2 Υ r-4m r 4 , 1 2 r -2 ∂ r (Υr 2 h)|Ψ| 2 + hΨR(Ψ) = -4r -2 Υ r -4m r 4 h|Ψ| 2 + 2r -4 Υ 2 ∂ r h|Ψ| 2 + 4Υr -4 hΨR(Ψ).
Thus we have,

Ė2 = ∂ r f |R(Ψ)| 2 + 2r -3 1 - 3m r f |Ψ| 2 + 4Υ r -4m r 4 (f -r -2 h)|Ψ| 2 + 2r -4 Υ 2 ∂ r h|Ψ| 2 + 4Υr -4 hΨR(Ψ) + r -2 W |Ψ| 2 .
We also express,

4Υr -4 hΨR(Ψ) = 2 h r 3 (R(Ψ) + Υr -1 Ψ) 2 - 2 h r 3 |R(Ψ)| 2 - 2 h r 5 Υ 2 |Ψ| 2 and therefore, Ė2 = (∂ r f -2r -3 h)|R(Ψ)| 2 + 2 h r 3 (R(Ψ) + Υr -1 Ψ) 2 + r -2 W |Ψ| 2 + 2r -3 1 - 3m r f + 4Υ r -4m r 4 (f -r -2 h) + 2r -4 Υ∂ r h -2r -5 Υ 2 h |Ψ| 2 .
We choose h(r, m) as the following continuous and piecewise C 1 function,

h =                0, r ≤ 5m 2 , δ h 5m 2 -r , 5m 2 ≤ r ≤ 11m 4 , δ h (r -3m), 11m 4 ≤ r ≤ 3m, r 2 f, 3m ≤ r ≤ 4m, (4m) 2 f (4m, m), r ≥ 4m.
where the constant δ h > 0 will be chosen small enough. We consider the following cases:
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Case 1 ( 5m 2 ≤ r ≤ 3m). In view of the definition of h and since W = 0, we deduce,

Ė2 = ∂ r f |R(Ψ)| 2 + 2r -3 1 - 3m r f + 4Υ r -4m r 4 (f -r -2 h) +2δ h r -4 Υ 2 1 11m 4 ≤r≤3m -1 5m 2 ≤r≤ 11m 4 |Ψ| 2 + δ h O(1)ΨR(Ψ)15m 2 ≤r≤3m .
In view of (10.1.23), we may assume, choosing for δ h > 0 small enough, that

f -h ≤ - 1 2 |f | on r ≤ 3m. (10.1.34)
We infer, using also that f < 0 on r ≤ 3m,

Ė2 ≥ ∂ r f |R(Ψ)| 2 + 2r -3 1 - 3m r f + 2Υ r -4m r 4 f +2δ h r -4 Υ 2 1 11m 4 ≤r≤3m -1 5m 2 ≤r≤ 11m 4 |Ψ| 2 + δ h O(1)ΨR(Ψ)15m 2 ≤r≤3m .
Since we have

∂ r f 1, 2r -3 1 - 3m r + 4Υ r -4m r 4 -1, f -1 - 3m r on r ≤ 3m,
where we have used in particular Lemma 10.1.15 and Proposition 10.1.16, we infer

Ė2 |R(Ψ)| 2 + 1 - 3m r + δ h 111m 4 ≤r≤3m -O(1)δ h 15m 2 ≤r≤ 11m 4 |Ψ| 2 -δ h O(1)ΨR(Ψ)15m 2 ≤r≤3m ≥ 1 2 |R(Ψ)| 2 + 1 - 3m r + δ h 1 -O(1)δ h 1 11m 4 ≤r≤3m -O(1)δ h 15m 2 ≤r≤ 11m 4 |Ψ| 2 .
Thus, for δ h > 0 small enough, the exists some large C > 0 such that Proof. Recall from Proposition 10.1.16 that w = r -2 Υ∂ r (r 2 f ) = 1 4m in the interval [3m, 4m]. Using also f = 0 on r = 3m, we deduce

E 2 ≥ C -1 |R(Ψ)| 2 + |Ψ| 2 on 5m 2 ≤ r ≤ 3m. (10.1.35) Case 2 (3m ≤ r ≤ 4m). Since h = r 2 f and W = 0, using in particular h ≥ 0 on 3m ≤ r ≤ 4m, we deduce, Ė2 ≥ (∂ r f -2r -3 (r 2 f ))|R(Ψ)| 2 + 2r -3 1 - 3m r f + 2r -4 Υ∂ r (r 2 f ) -2r -5 Υ 2 (r 2 f ) |Ψ| 2 = (∂ r f -2r -1 f )|R(Ψ)| 2 + 2r -3 1 - 3m r f + 2r -4 Υ 2 (2rf + r 2 ∂ r f ) -2r -3 Υ 2 f |Ψ| 2 = (∂ r f -2r -1 f )|R(Ψ)| 2 + 2r -3 1 - 3m r f + 2r -2 Υ 2 ∂ r f + 2r -3 Υ 2 f |Ψ| 2 .
∂ r (r 2 f ) = r 2 Υ 1 4m .
We compute

∂ r r 2 f - (r -3m)r 2 4mΥ = - (r -3m) 4m ∂ r r 2 Υ = - (r -3m)(r -4m) 2mΥ 2 ≤ 0 on 3m ≤ r ≤ 4m, so that the differentiated quantity decays in r on [3m, 4m]. Since it vanishes on r = 3m, we infer f ≤ (r -3m) 4mΥ on 3m ≤ r ≤ 4m.
Thus, we deduce, using again ∂ r (r

2 f ) = r 2 Υ 1 4m , ∂ r f - 2 r f = r -2 ∂ r (r 2 f ) -4rf = 1 4mΥ - 4 r f ≥ 1 4mΥ - (r -3m) rmΥ ≥ 1 4mΥ 1 -4 1 - 3m r > 0 on 3m ≤ r < 4m.
On the other hand, we have by direct check at r = 4m, using (10.1.21),

∂ r f - 2 r f r=4m = 1 2m - 1 m f r=4m = 1 2m 1 - C * 8 > 0 since C * < 8. Hence, we infer ∂ r f -2r -1 f > 0 on 3m ≤ r ≤ 4m
as desired.
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We thus conclude, for some C > 0, in the interval [3m, 4m] Case 3 (r ≥ 4m). Since h is constant and positive on r ≥ 4m, we deduce,

Ė2 ≥ C -1 |R(Ψ)| 2 + |Ψ| 2 . ( 10 
Ė2 ≥ (∂ r f -2r -3 h)|R(Ψ)| 2 + 2r -3 1 - 3m r f + 4Υ r -4m r 4 (f -r -2 h) -2r -5 Υ 2 h + r -2 W |Ψ| 2 .
We examine the first term. In view of the formula for f for r ≥ 4m, see (10.1.21),

∂ r f = 2 r 3 (16 -C * )m 2 , h = (4m) 2 f (4m, m) = C * m 2 and hence ∂ r f -2r -3 h = 2(16 -2C * )m 2 r 3
and hence, since C * < 8, we have

∂ r f -2r -3 h m 2 r 3 for r ≥ 4m.
It remains to analyze the sign of

2r -3 1 - 3m r f + 4Υ r -4m r 4 (f -r -2 h) -2r -5 Υ 2 h = 2r -3 1 - 3m r + 4Υ r -4m r 4 (f -r -2 h) + 2r -3 1 - 3m r -2r -3 Υ 2 r -2 h.
The first term, which can be written in the form,

2r -3 1 - 3m r + 4Υ r -4m r 4 r -2 r 2 f (r, m) -(4m) 2 f (4m, m)
is manifestly positive for r ≥ 4m. To evaluate the sign of the second term we calculate,

2r -3 1 - 3m r -2r -3 Υ 2 = 2mr -5 (r -4m).
Thus, for r ≥ 4m,

2r -3 1 - 3m r f + 4Υ r -4m r 4 (f -r -2 h) -2r -5 Υ 2 h ≥ 0. 10.1. BASIC MORAWETZ ESTIMATES 701 Also, since W = m r 2 3 -8m r , we have r -2 W 1 r 4 .
Thus, in view of the above, we have for some C > 0 and for r ≥ 4m, 

Ė2 ≥ C -1 1 r 3 |R(Ψ)| 2 + 1 r 4 |Ψ| 2 . ( 10 
C > 0, Ė2 ≥ C -1 1 r 3 |R(Ψ)| 2 + 1 r 4 |Ψ| 2 on r ≥ 5m 2 . Recalling S Ė[f R, w, 2hR](Ψ) ≥ S Ė2 -O( r -3 ) S |Ψ| 2 , we infer S Ė[f R, w, 2hR](Ψ) ≥ C -1 S 1 r 3 |R(Ψ)| 2 + 1 r 4 |Ψ| 2 -O( r -3 ) S |Ψ| 2 
and hence, for > 0 small enough,

S Ė[f R, w, 2hR](Ψ) ≥ 1 2 C -1 S 1 r 3 |R(Ψ)| 2 + 1 r 4 |Ψ| 2 on r ≥ 5m 2 
as desired.

It remains to analyze the error term,

E [f R, w, 2hR](Ψ) = E [f R, w](Ψ) + O r -1 u -1-δ dec trap (r|∂ r h| + |h| + r|∂ m h|) |Ψ| 2 = 1 2 Q (X) π + O( r -3 u -1-δ dec trap (|f | + r 2 |∂ r w| + r 3 |∂ 2 r w| +r 2 |∂ r ∂ m w| + r|∂ 2 m w|))|Ψ| 2 +O r -3 u -1-δ dec trap (r 3 |∂ r h| + r 2 |h| + r 3 |∂ m h|) |Ψ| 2 .
Recall that, w = 

r ≥ 2m + e -1 3 δ ∪ u ≥ - m 2 δ , r ≤ 2m + e -2 δ ⊂ u ≤ - 3m 2 
δ .

This yields

f δ = f w δ = w, W δ = W for r ≥ 5m 2 .
Also, we have

f δ = -2m 2 δr 2 , for r ≤ 2m + e -2 δ , f, for r ≥ 2m + e -1 3 δ , and 
f δ 1 δ on 2m + e -2 δ ≤ r ≤ 2m + e -1 3 δ ,
and thus, there exists C > 0 such that, for all r > 0,

r -1 f δ 1 - 3m r ≥ C -1 r -1 1 - 3m r 2 which is (10.1.39). For u ≤ -3m 2 δ , ∂ r (f δ ) = ∂ r (r -2 u δ ) = -2r -3 u δ + r -2 ∂ r (u δ ) = 4m 2 δ r -3 . For -3m 2 δ ≤ u ≤ -m 2 δ ∂ r (f δ ) = ∂ r (r -2 u δ ) = -2r -3 u δ + r -2 ∂ r (u δ ) = -2r -3 u δ + r -2 F - δ m 2 u ∂ r u = -2r -3 u δ + r -2 F - δ m 2 u r 2 Υ -1 w,
and since w ≥ 0 and F ≥ 0, we deduce

∂ r (f δ ) ≥ -2r -3 u δ ≥ 2 δ -1 m 2 r -3 .
For u ≥ -m 2 δ , using Lemma 10.1.15, we have

∂ r (f δ ) = ∂ r f ≥ 16m 2 r 3 .
Hence, for all r ≥ 2m, δ > 0 sufficiently small,

∂ r (f δ ) ≥ 16m 2 r 3
which is (10.1.40).

It remains to evaluate W δ . This is done in the following lemma. Proof. Recall that we have chosen w = 1 4m to be constant in the region r ≤ 4m. Hence, in that region,

w δ = 1 4m F - δ m 2 u , ∂ r w δ = 1 4m ∂ r F - δ m 2 u .
Hence,

W δ = - 1 4 r -2 ∂ r 1 4m r 2 Υ∂ r F - δ m 2 u = - 1 16m r -2 ∂ r r 2 Υ∂ r F - δ m 2 u . Now, setting δ 0 = δ m 2 for convenience below, r -2 ∂ r r 2 Υ∂ r (F (-δ 0 u)) = -δ 0 F (-δ 0 u)r -2 ∂ r r 2 Υ∂ r u + δ 2 0 F (-δ 0 u)Υ(∂ r u) 2 .
Note that, since r -2 Υ∂ r u = w and w = (4m) -1 is constant in r in the region of interest

r -2 ∂ r r 2 Υ∂ r u = r -2 ∂ r r 4 r -2 Υ∂ r u = r -2 ∂ r r 4 4m = r m .
Hence,

r -2 ∂ r r 2 Υ∂ r (F (-δ 0 u)) = -δ 0 F (-δ 0 u)r -2 ∂ r r 2 Υ∂ r u + δ 2 0 F (-δ 0 u)Υ(∂ r u) 2 = -δ 0 F (-δ 0 u) r m + δ 2 0 F (-δ 0 u)Υ(∂ r u) 2 .
Hence, for r ≤ 4m, with

δ 0 = δ m 2 , |W δ | δ 2 0 |Υ||F (-δ 0 u)|(∂ r u) 2 + δ 0 |F (-δ 0 u)| or, since |∂ r u| 1 r-2m , in the region of interest, |W δ | δ 2 0 |r -2m| |F (-δ 0 u)| + δ 0 |F (-δ 0 u)|.
Since F (-δ 0 u), F (-δ 0 u) are supported in the region 1 ≤ -δ 0 u ≤ 3, i.e.

-3 δ 0 ≤ u ≤ -1 δ 0 , for δ > 0 sufficiently small e -2 δ ≤ r -2m ≤ e -1 3 δ ≤ m 4 .
Hence,

W δ = 1 r≤ 5 2 m |W δ | δ δ r -2m + 1 κ δ (r -2m) with κ δ (x) the characteristic function of the interval [e -2 δ , e -1 3 δ ]. Note that the primitive of W δ , i.e. W δ (r, m) = r 2m W δ (r , m)dr , is a positive, increasing function. Moreover, W δ (r) 4m 2m W δ (r)dr δ + δ 2 e -1 3 δ e -2 δ 1 x dx δ
as desired.
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We now recall that, see (10.1.16),

Ė[f R, w](Ψ) = Ė0 [f R, w](Ψ) + 4Υ r -4m r 4 f |Ψ| 2 , Ė0 [f R, w](Ψ) = ∂ r f |R(Ψ)| 2 + r -2 W |Ψ| 2 + r -1 1 - 3m r f Q 34 .
Using the functions f δ , w δ and W δ introduced in definition 10.1.22, we have

Ė0 [f δ R, w δ ](Ψ) = 1 r f δ 1 - 3m r Q 34 + ∂ r (f δ )|RΨ| 2 + W δ |Ψ| 2 .
Note that in view of the estimates (10.1.39) (10.1.40), and Lemma 10.1.24, we immediately deduce the existence of a constant C > 0 independent of δ such that

Ė[f δ R, w δ ](Ψ) ≥ C -1 |RΨ| 2 + |∇ / Ψ| 2 + Υ|Ψ| 2 -W δ |Ψ| 2 on r ≤ 5m 2 . (10.1.44)
where W δ is a non-negative potential supported in the region 2m + e -2 δ ≤ r ≤ 9m 4 , whose primitive W δ (r) = r 2m W δ (r m)dr verifies W δ δ. Combining this with estimates of the previous section we derive the following. Proposition 10.1.25. There exists a constant C > 0, and for any small enough δ > 0, there exists functions f δ ∈ C 2 (r > 0), w δ ∈ C 1 (r > 0) and h ∈ C 2 (r > 0) verifying, for all r > 0,

|f δ (r)| δ -1 , w δ r -1 , h r -4 , such that E[f δ R, w δ , 2hR](Ψ) = Ė[f δ R, w δ , 2hR] + E [f δ R, w δ , 2hR](Ψ) satisfies S Ė[f δ R, w δ , 2hR] ≥ C -1 S m 2 r 3 |R(Ψ)| 2 + r -1 1 - 3m r 2 |∇ / Ψ| 2 + m 2 r 2 |T Ψ| 2 + m r 4 |Ψ| 2 - S W δ |Ψ| 2 , E [f δ R, w δ , 2hR] = 1 2 Q • (f δ R) π + O(r -3 u -1-δ dec trap (1 + |f δ |))|Ψ| 2 ,
where W δ is non-negative, supported in the region 2m + e -2 δ ≤ r ≤ 9m 4 , and such that its primitive W δ (r) = r 2m W δ verifies W δ δ.

Proof. We choose h to be the function of (r, m) introduced in Proposition 10.1.20, f δ to be the function of (r, m) introduced in definition 10.1.22, and W δ , introduced in Lemma 10.1.24. Also, by an abuse of notation, we denote by w δ,0 the function denoted by w δ in definition 10.1.22. Then, combining Proposition 10.1.20 in the region r ≥ 5m 2 with the estimate (10.1.44) in the region r ≤ 5m 2 , we immediately obtain 

S Ė[f δ R, w δ,0 , 2hR] ≥ C -1 S m 2 r 3 |R(Ψ)| 2 + r -1 1 - 3m r 2 |∇ / Ψ| 2 + m r 4 |Ψ| 2 - S W δ |Ψ| 2 . ( 10 
w δ := w δ,0 -δ 1 w 1 , (10.1.46) 
for a small parameter δ 1 > 0 to be chosen later, where w δ,0 is our previous choice introduced in definition 10.1.22, and where We evaluate (modulo the same type of error terms as before which we include in E ),

w 1 (r, m) := r -1 m 2 r 2 Υ 1 - 3m r 2 . ( 10 
Ė[f δ R, w δ , 2hR](Ψ) = Ė[X δ , w δ,0 , 2hR] - 1 2 δ 1 w 1 L(Ψ) + δ 1 4 |Ψ| 2 r -2 ∂ r (r 2 Υ∂ r w 1 ). Now, since L(Ψ) = -e 3 Ψ • e 4 Ψ + |∇ / Ψ| 2 + V |Ψ| 2 = Υ -1 -|T Ψ| 2 + |RΨ| 2 + |∇ / Ψ| 2 + V |Ψ| 2 ,
we have,

- 1 2 δ 1 w 1 L(Ψ) + δ 1 4 |Ψ| 2 r -2 ∂ r (r 2 Υ∂ r w 1 ) = - 1 2 δ 1 r -1 m 2 r 2 Υ 1 - 3m r 2 L(Ψ) + δ 1 4 |Ψ| 2 r -2 ∂ r r 2 Υ∂ r r -1 m 2 r 2 Υ 1 - 3m r 2 = 1 2 δ 1 r -1 1 - 3m r 2 m 2 r 2 |T Ψ| 2 + O(δ 1 ) m 2 r 3 |R(Ψ)| 2 + r -1 1 - 3m r 2 |∇ / Ψ| 2 + m r 4 |Ψ| 2 and hence Ė[f δ R, w δ , 2hR](Ψ) = Ė[X δ , w δ,0 , 2hR] + 1 2 δ 1 r -1 1 - 3m r 2 m 2 r 2 |T Ψ| 2 (10.1.48) +O(δ 1 ) m 2 r 3 |R(Ψ)| 2 + r -1 1 - 3m r 2 |∇ / Ψ| 2 + m r 4 |Ψ| 2 .
The desired estimate now follows from (10.1.45) and (10.1.48) provided δ 1 > 0 is chosen small enough compared to the constant C > 0 of (10.1.45) so that the last term O(δ 1 ) in the above identity can be absorbed.

The red shift vectorfield

Note that the vectorfields T and R become both proportional to e 4 for Υ = 0 which means that the estimate of Proposition 10.1.25 degenerates along Υ = 0, i.e. it does not control e 3 (Ψ) there. In this section we make use of the Dafermos-Rodnianski red shift vectorfield to compensate for this degeneracy. The crucial ingredient here is the favorable sign of ω in a small neighborhood of r = 2m.

Lemma 10.1.26. Let π (3) , π (4) denote the deformation tensors of e 3 , e 4 . In the region r ≤ 3m all components are O( ) with the exception of, π

= -8ω = 8m r 2 + O( ), π

θθ = κ + ϑ = - 2 r + O( ), π (3) ϕϕ = κ -ϑ = - 2 r + O( ), π (3) 
= 4ω = - 4m r 2 + O( ), π (4) 34 
θθ = κ + ϑ = 2Υ r + O( ), π (4) ϕϕ = κ -ϑ = 2Υ r + O( ). (4) 
Proof. Immediate verification in view of our assumptions. we have, for r ≤ 3m,

Q αβ (Y ) π αβ = 2m r 2 a -Υ∂ r a Q 33 + ∂ r bQ 44 + ∂ r a - 2m r 2 b -Υ∂ r b Q 34 + 2 r (bΥ -a)e 3 Ψ • e 4 Ψ + 8 Υ r 3 (a -Υb)|Ψ| 2 + O( ) |Q(Ψ)| + r -2 |Ψ| 2 .
Moreover, with the notation (10. 1.14), 

E[Y, 0](Ψ) = 1 2 Q αβ (Y ) π αβ + 4 r -3m r 4 (-a + bΥ)|Ψ| 2 + O( )r -2 |Ψ| 2 . ( 10 
αβ + bQ αβ π (4) αβ -Q 33 Υ∂ r a -Q 34 (-∂ r a + Υ∂ r b) + Q 44 ∂ r b + O( )|Q(Ψ)|. Note that, Q θθ + Q ϕϕ = e 3 Ψ • e 4 Ψ -V |Ψ| 2 = e 3 Ψ • e 4 Ψ -4 Υ r 2 |Ψ| 2 + O( )r -2 |Ψ| 2 . (10.1.51) Hence, Q αβ π (3) αβ = Q 44 π (3) 44 + Q θθ π (3) θθ + Q ϕϕ π (3) ϕϕ + O( )|Q(Ψ)| = 1 4 Q 33 8m r 2 - 2 r (Q θθ + Q ϕϕ ) + O( )|Q(Ψ)| = 2m r 2 Q 33 - 2 r e 3 Ψ • e 4 Ψ + 8 Υ r 3 |Ψ| 2 + O( ) |Q(Ψ)| + r -2 |Ψ| 2 , Q αβ π (4) αβ = 2Q 34 π (4) 34 + Q θθ π (4) θθ + Q ϕϕ π (4) ϕϕ + O( )|Q(Ψ)| = 1 2 Q 34 (-4 m r 2 ) + 2Υ r (Q θθ + Q ϕϕ ) + O( )|Q(Ψ)| = - 2m r 2 Q 34 + 2Υ r e 3 Ψ • e 4 Ψ -8 Υ 2 r 3 |Ψ| 2 + O( ) |Q(Ψ)| + r -2 |Ψ| 2 .
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Therefore,

Q αβ (Y ) π αβ = a 2m r 2 Q 33 - 2 r e 3 Ψe 4 Ψ + 8 Υ r 3 |Ψ| 2 + b - 2m r 2 Q 34 + 2Υ r e 3 Ψ • e 4 Ψ -8 Υ 2 r 3 |Ψ| 2 -Q 33 Υ∂ r a -Q 34 (-∂ r a + Υ∂ r b) + Q 44 ∂ r b + O( ) |Q(Ψ)| + r -2 |Ψ| 2 = 2m r 2 a -Υ∂ r a Q 33 + Q 44 ∂ r b + 2 r (bΥ -a)e 3 Ψe 4 Ψ + ∂ r a - 2m r 2 b -Υ∂ r b Q 34 + 8 Υ r 3 (a -Υb)|Ψ| 2 + O( ) |Q(Ψ)| + r -2 |Ψ| 2 .
To prove the second part of the lemma we recall (see (10.1.14)),

E[Y, 0](Ψ) = 1 2 Q αβ (Y ) π αβ - 1 2 Y (V )|Ψ| 2
and, relying on Lemma 10.1.5, we have on r ≤ 3m

Y (V ) = (-a + bΥ)∂ r V + O( ) = (-a + bΥ) -8 r -3m r 4 + O( )
which concludes the proof of the lemma. 

Q αβ (Y ) π αβ ≥ 1 4m (|e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 ) + O( ) |Q(Ψ)| + r -2 |Ψ| 2 (10.1.52)
and,

E[Y, 0](Ψ) ≥ 1 8m |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + 1 m 2 |Ψ| 2 +O( ) |Q(Ψ)|+r -2 |Ψ| 2 . (10.1.53)
Moreover the estimates remain true if we add to Y a multiple of T = 1 2 (e 4 + Υe 3 ).

Proof. Recall from Lemma 10.1.27 that we have, for r ≤ 3m,

Q αβ (Y ) π αβ = 2m r 2 a -Υ∂ r a Q 33 + ∂ r bQ 44 + ∂ r a - 2m r 2 b -Υ∂ r b Q 34 + 2 r (bΥ -a)e 3 Ψ • e 4 Ψ + 8 Υ r 3 (a -Υb)|Ψ| 2 + O( ) |Q(Ψ)| + r -2 |Ψ| 2 .
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Hence, at r = 2m, using Υ = 0, a = 1, b = 0, ∂ r a ≥ (4m) -1 and ∂ r b ≥ 5(4m) -1 , we deduce

Q αβ (Y ) π αβ = 1 2m Q 33 + ∂ r bQ 44 + ∂ r aQ 34 - 1 m e 3 Ψ • e 4 Ψ + O( ) |Q(Ψ)| + r -2 |Ψ| 2 ≥ 1 2m |e 3 (Ψ)| 2 + 5 4m |e 4 (Ψ)| 2 + 1 4m Q 34 - 1 m e 3 Ψ • e 4 Ψ + O( ) |Q(Ψ)| + r -2 |Ψ| 2
from which the desired lower bound in (10.1.52) follows.

Also, at r = 2m, using (10.1.50), Υ = 0, a = 1, and b = 0, we have

E[Y, 0](Ψ) = 1 2 Q αβ (Y ) π αβ + 4 r -3m r 4 (-a + bΥ)|Ψ| 2 + O( )r -2 |Ψ| 2 = 1 2 Q αβ (Y ) π αβ + 1 4m 3 |Ψ| 2 ≥ 1 8m |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + 1 m 2 |Ψ| 2 + O( ) |Q(Ψ)| + r -2 |Ψ| 2
which yields (10.1.53).

We are now ready to prove the following result.

Proposition 10.1.29. Given a small parameter δ H > 0 there exists a smooth vectorfield Y H supported in the region |Υ| ≤ 2δ

1 10

H such that the following estimate holds,

E[Y H , 0](Ψ) ≥ 1 16m 1 |Υ|≤δ 1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 - 1 m δ -1 10 H 1 δ 1 10 H ≤Υ≤2δ 1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 + O( )1 |Υ|≤2δ 1 10 H |Q(Ψ)| + m -2 |Ψ| 2 .
Moreover, for |Υ| ≤ δ We have

E[Y H , 0](Ψ) = Q • (Y H ) π -Y H (V )|Ψ| 2 = κ H Q • (Y 0 ) π + Q(Y (0) , dκ H ) + κ H Y (0) (V )|Ψ| 2 = κ H E[Y (0) , 0](Ψ) + O(δ -1 10 
H )1 δ 1 10 H ≤Υ≤2δ 1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 .
Note from the definition of Y (0) and the choice of a and b that Corollary 10.1.28 applies to Y (0) . In particular, we deduce from (10.1.53) for δ H > 0 small enough,

E[Y H , 0](Ψ) ≥ 1 16m 1 |Υ|≤δ 1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 - 1 m δ -1 10 H 1 δ 1 10 H ≤Υ≤2δ 1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 + O( )1 |Υ|≤2δ 1 10 H |Q(Ψ)| + m -2 |Ψ| 2
as desired.

Combined estimate

We consider the combined Morawetz triplet 

(X, w, M ) := (X δ , w δ , 2hR) + H (Y H , 0, 0), ( 10 
:= Ė[f δ R, w δ , 2hR](Ψ) verifies, S Ė δ ≥ C -1 S m 2 r 3 |R(Ψ)| 2 + 1 - 3m r 2 r -1 Q 34 + m 2 r 2 |T Ψ| 2 + Υ m r 4 |Ψ| 2 - S W δ |Ψ| 2 .
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According to Proposition 10.1.29, we write for E H = E(Y H , 0, 0)(Ψ),

E H = ĖH + E H, , ĖH ≥ 1 8m 1 |Υ|≤δ 1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 - 1 m δ -1 10 H 1 δ 1 10 H ≤Υ≤2δ 1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 , E H, = O( ) |Q(Ψ)| + m -2 |Ψ| 2 1 |Υ|≤2δ 1 10 H . Note that, for |Υ| ≥ δ 1 10
H we have,

|RΨ| 2 + |T Ψ| 2 = 1 2 (|e 4 Ψ| 2 + Υ 2 |e 3 Ψ| 2 ) ≥ 1 2 δ 1 5 H (|e 4 Ψ| 2 + |e 3 Ψ| 2 ).
We now proceed to find a lower bound for the expression Ė δ + H ĖH . For brevity the S integration is omitted below.

Region δ 1 10 H ≤ |Υ| ≤ 2δ 1 10 H . Ė δ + H ĖH ≥ m -1 C -1 δ 1 5 H (|e 4 Ψ| 2 + |e 3 Ψ| 2 ) + m -2 |Ψ| 2 + |∇ / Ψ| 2 -W δ |Ψ| 2 -H 1 m δ -1 10 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + m -2 |Ψ| 2 .
Therefore, choosing H ≤ (2C) -1 δ 3 10

H , we deduce,

Ė δ + H ĖH ≥ m -1 δ 1 5 H (2C) -1 |e 4 Ψ| 2 + |e 3 Ψ| 2 + |∇ / Ψ| 2 + m -2 |Ψ| 2 -W δ |Ψ| 2 . Region |Υ| ≤ δ 1 10
H .

H ĖH + Ė δ ≥ H 1 16m |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 -W δ |Ψ| 2 .
Region Υ ≥ 2δ H . In this region Ė δ + H ĖH = Ė δ . Hence (ignoring the S-integration), H , and where

Ė δ + H ĖH ≥ C -1 m 2 r 3 |R(Ψ)| 2 + 1 - 3m r 2 r -1 Q 34 + m 2 r 2 |T Ψ| 2 + m r 4 |Ψ| 2 -W δ |Ψ| 2 .
θ = θ + Υ -1 (1 -θ) = 1, for |Υ| ≤ δ 1 10 H , Υ -1 , for |Υ| ≥ 2δ 1 10 H . Note that 2(| ȒΨ| 2 + | T Ψ| 2 ) = |e 3 Ψ| 2 + θ2 |e 4 Ψ| 2 .

Thus in the region

|Υ| ≤ δ 1 10 H we have |e 3 Ψ| 2 + |e 4 Ψ| 2 = 2(| ȒΨ| 2 + | T Ψ| 2 ) and therefore, Ė δ + H ĖH ≥ H 1 16m |e 3 Ψ| 2 + |e 4 Ψ| 2 + Q 34 + m -2 |Ψ| 2 -W δ |Ψ| 2 = H 1 16m | ȒΨ| 2 + | T Ψ| 2 + Q 34 + m -2 |Ψ| 2 -W δ |Ψ| 2 .
In the region δ H , we deduce,

Ė δ + H ĖH ≥ m -1 δ 1 5 H (2C) -1 |e 4 Ψ| 2 + |e 3 Ψ| 2 + |∇ / Ψ| 2 + m -2 |Ψ| 2 -W δ |Ψ| 2 ≥ m -1 δ 1 5 H (2C) -1 δ 1 5 H | ȒΨ| 2 + | T Ψ| 2 + |∇ / Ψ| 2 + m -2 |Ψ| 2 -W δ |Ψ| 2 .
Finally, for Υ ≥ 2δ 

H we have Ȓ = Υ -1 R, T = Υ -1 T . Hence, Ė δ + H ĖH ≥ C -1 m 2 r 3 |R(Ψ)| 2 + 1 - 3m r 2 r -1 Q 34 + m 2 r 2 |T Ψ| 2 + Υ m r 4 |Ψ| 2 -W δ |Ψ| 2 ≥ C -1 δ 1 5 H m 2 r 3 | Ȓ(Ψ)| 2 + 1 - 3m r 2 r -1 Q 34 + δ 2 10 H m 2 r 2 | T Ψ| 2 + Υ m r 4 |Ψ| 2 -W δ |Ψ| 2 .
We deduce the following. 

H

with δ H > 0 sufficiently small, independent of δ. Let Ė δ , ĖH be the principal parts of E[f δ R, w δ , 2hR](Ψ) and respectively E H [Y H , 0, 0](Ψ) and E δ, , E H, the corresponding error terms, i.e.,

E[f δ R, w δ , 2hR](Ψ) = Ė δ + E δ, , E H [Y H , 0, 0](Ψ) = ĖH + E H, .
Then, provided δ H > 0 is sufficiently small, we have 1. In the region -2δ

1 10 H ≤ Υ, r ≤ 5m 2 , we have with a constant Λ -1 H := C -1 δ 2 5 H > 0 S ( Ė δ + H ĖH ) ≥ m -1 Λ -1 H S | Ȓ(Ψ)| 2 + | T Ψ| 2 + |∇ / Ψ| 2 + m -2 |Ψ| 2 - S W δ |Ψ| 2 .
2. In the region r ≥ 5m 2 , where Ė δ + H ĖH = Ė δ and W δ = 0, we have the same estimate as in Proposition 10.1.25, i.e.

S ( Ė

δ + H ĖH ) ≥ C -1 S m 2 r 3 |R(Ψ)| 2 + r -1 1 - 3m r 2 |∇ / Ψ| 2 + m 2 r 2 |T Ψ| 2 + m r 4 |Ψ| 2 .
3. The -error terms verify the upper bound estimate,

E δ, + H E H, C δ -1 u -1-δ dec trap r -2 |e 3 Ψ| 2 + r -1 (|e 4 Ψ| 2 + |∇ / Ψ| 2 ) + C δ -1 u -1-δ dec trap r -1 |e 3 Ψ| (|e 4 Ψ| + |∇ / Ψ|) + C δ -1 u -1-δ dec trap r -3 |Ψ| 2 .
Proof. It only remains to check the last part. In view of Proposition 10.1.20 we have,

E δ, = E [f δ R, w δ , 2hR](Ψ) = 1 2 Q • (X δ ) π + O r -3 u -1-δ dec trap (|f δ | + 1) |Ψ| 2 and |f δ | δ -1 . Hence, E δ, = E [f δ R, w δ , 2hR](Ψ) = 1 2 Q • X δ π + O( δ -1 r -3 u -1-δ dec trap )|Ψ| 2 .
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We write with π = (X δ ) π for simplicity,

Q • π = 1 4 (Q 33 π44 + 2Q 34 π34 + Q 44 π33 ) - 1 2 (Q A3 πA4 + Q A4 πA3 ) + Q AB πAB .
Thus, recalling part 1 and 2 of Proposition 10.1.9, and Lemma 10.1.8,

Q • π r -2 u -1-δ dec trap |e 3 Ψ| 2 + r -1 u -1-δ dec trap |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + r -1 u -1-δ dec trap |e 3 Ψ| (|e 4 Ψ| + |∇ / Ψ|) .
Finally, since r ∼ 2m and u trap = 1 on |Υ| ≤ 2δ

1 10
H , the error terms generated by the red shift vectorfield Y H ,

E H, = O( )1 |Υ|≤2δ 1 10 H |Q(Ψ)| + m -2 |Ψ| 2
can easily be absorbed on the right hand side to derive the desired estimate.

Elimination of W δ

We now proceed to eliminate the potential W δ by a procedure analogous to that used in section 10.1.8. More precisely we set, in view of (10.1.14),

E δ = E[f δ R, w δ , 2hR](Ψ), E δ = E[f δ R, w δ , 2(hR + h 2 Ȓ)](Ψ),
and,

E δ = E δ + h 2 Ψ ȒΨ + 1 2 D µ (h 2 Ȓµ )|Ψ| 2 ,
where h 2 is a smooth, compactly supported function supported8 in the region r ≤ 9m 4 .

Thus, we have in view of Proposition 10.1.30, ignoring the integration on S,

Ė δ + H ĖH = Ė δ + H ĖH + h 2 Ψ ȒΨ + 1 2 D µ (h 2 Ȓµ )|Ψ| 2 ≥ I(Ψ) + m -1 Λ -1 H 1 2 | Ȓ(Ψ)| 2 + | T Ψ| 2 + |∇ / Ψ| 2 + m -2 |Ψ| 2 (10.1.57)
where,

I(Ψ) : = 1 2 Λ -1 H m -1 | Ȓ(Ψ)| 2 + Ψh 2 ȒΨ + 1 2 D µ (h 2 Ȓµ )|Ψ| 2 -W δ |Ψ| 2
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CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS so that we have We focus on the coefficient in front of |Ψ| 2 on the RHS of (10.1.58). Ignoring the error terms in (which can easily be incorporated in the upper bound for E δ, + H E H, of the previous proposition), we have,

I(Ψ) ≥ 1 2 D µ (h 2 Ȓµ ) -2W δ -mΛ H h 2 2 |Ψ| 2 . ( 10 
Div Ȓ = 1 2 D µ ( θ(e 4 ) µ ) -D µ ((e 3 ) µ = 1 4 θtrπ (4) -trπ (3) + 1 2 e 4 ( θ) = O(δ -1 10 
H )
and, using in particular Lemma 10.1.5,

D µ (h 2 Ȓµ ) = Ȓh 2 + h 2 Div Ȓ = 1 2 ∂ r h 2 ( θe 4 r -e 3 r) + h 2 Div Ȓ = 1 2 ∂ r h 2 ( θΥ + 1) + h 2 O(δ -1 10 
H ) ≥ 1 2 ∂ r h 2 + h 2 O(δ -1 10 
H ).

Together with (10.1.58), we infer 

I(Ψ) ≥ 1 4 ∂ r h 2 -4W δ -4mΛ H h 2 2 + h 2 O(δ -1 10 
H ) |Ψ| 2 . ( 10 
I(Ψ) ≥ - 1 4 O m -1 δ + Λ H m -1 δ 2 + δ(δ H ) -1 10 |Ψ| 2 .
Hence, for δ δ

1 10 H Λ -1 H , i.e. δ δ 1 2 H (recall that Λ -1 H = C -1 δ 2 5
H ) and h 2 defined as above, we infer

I(Ψ) ≥ - 1 2 m -1 Λ -1 H m -2 |Ψ| 2
which together with (10.1.57) finally yields

S ( Ė δ + H ĖH ) ≥ S I(Ψ) + m -1 Λ -1 H S 1 2 | Ȓ(Ψ)| 2 + | T Ψ| 2 + |∇ / Ψ| 2 + m -2 |Ψ| 2 ≥ m -1 Λ -1 H S 1 2 | Ȓ(Ψ)| 2 + | T Ψ| 2 + |∇ / Ψ| 2 + 1 2 m -2 |Ψ| 2 .

Summary of results so far

We summarize the result in the following, We choose the small strictly positive parameters H , δ H , δ such that 9 ,

H = δ 7 20
H , δ = δ Then, there holds 10

S E[X, w, M ](Ψ) ≥ δ 1 2 H S m 2 r 3 | ȒΨ| 2 + r -1 1 - 3m r 2 Q 34 + m 2 r 2 | T Ψ| 2 + m r 4 |Ψ| 2 , E [X, w, M ](Ψ) ≤ δ -1 H u -1-δ dec trap r -2 |e 3 Ψ| 2 + r -1 (|e 4 Ψ| 2 + |∇ / Ψ| 2 ) + δ -1 H u -1-δ dec trap r -1 |e 3 Ψ| (|e 4 Ψ| + |∇ / Ψ|) + δ -1 H u -1-δ dec trap r -3 |Ψ| 2 .
(10.1.64) 9 Note that (10.1.63) verifies all the restrictions we have encountered so far, i.e. δ H . 10 Note that δ

1 2 H Λ -1 H (recall that Λ -1 H = C -1 δ 2 5 
H ) and δ -1 H δ -1 in view of (10.1.63).

10.1.12 Lower bounds for Q

In this section we prove lower bounds for for Q(X + 2ΛT, e 3 ) and Q(X + 2ΛT, e 4 ) in the region r H ≤ r, for r H to be determined and Λ sufficiently large. the following inequalities hold true for r ≥ 2m 0 (1δ H ).

1. For the region such that r ≥ 2m 0 (1δ H ) and Υ ≤ δ H , we have

Q(X + ΛT, e 3 ) ≥ 1 4 H Q 33 + 1 2 ΛQ 34 , Q(X + ΛT, e 4 ) ≥ 1 4 H Q 34 + 1 2 ΛQ 44 .
2. For the region δ

1 10 H ≤ Υ ≤ 1 3 , we have Q(X + ΛT, e 3 ) ≥ δ -1 2 H (Q 33 + Q 34 ) , Q(X + ΛT, e 4 ) ≥ δ -1 2 H (Q 44 + Q 34 ) .
3. For the region r ≥ 3m, we have

Q(X + ΛT, e 3 ) ≥ 1 4 Λ (Q 33 + Q 34 ) , Q(X + ΛT, e 4 ) ≥ 1 4 Λ (Q 44 + Q 34 ) .
4. The null components of Q are given by (recall Proposition 10.1.9),

Q 33 = |e 3 Ψ| 2 , Q 44 = |e 4 Ψ| 2 , Q 34 = |∇ / Ψ| 2 + 4Υ r 2 (1 + O( ))|Ψ| 2 . Proof. Since X = f δ R + H Y H and T = 1 2 (e 4 + Υe 3 ), R = 1 2 (e 4 -Υe 3 ), we write, Q(X + 2ΛT, e 3 ) = Q(X, e 3 ) + ΛQ(e 4 + Υe 3 , e 3 ) = Q(X, e 3 ) + Λ (Q 34 + ΥQ 33 ) = H Q(Y H , e 3 ) + Λ (Q 34 + ΥQ 33 ) + 1 2 f δ (Q 34 -ΥQ 33 ) .
In the region 2m 0 (1δ H ) ≤ r ≤ 2m we have Y H = e 3 + e 4 + O(δ H )(e 3 + e 4 ), Υ ≥ 0 and f δ < 0. Hence, in that region,

Q(X + 2ΛT, e 3 ) ≥ 1 2 H (Q 33 + Q 34 ) + Λ - 1 2 |f δ | Q 34 -|Υ| Λ + 1 2 |f δ | Q 33 ≥ 1 2 H -|Υ| Λ + 1 2 |f δ | Q 33 + 1 2 H + Λ - 1 2 |f δ | Q 34 .
Thus, we need to choose Λ such that

1 2 |f δ | ≤ Λ ≤ 1 4 H δ H - 1 2 |f δ |
Now, recall (10.1.63) as well as the fact that |f δ | is of size O(( δ) -1 ). Thus it suffices to choose Λ such that O(δ

-3 5 
H ) ≤ Λ ≤ 1 2 δ - 13 20 

H

-O(δ

-3 5 
H ),

i.e. it suffices to choose, for δ H > 0 small enough,

Λ = 1 4 δ -13 20 
H , to deduce the inequality,

Q(X + 2ΛT, e 3 ) ≥ 1 4 H Q 33 + 1 2 ΛQ 34 .
Next, in the region 0 ≤ Υ ≤ δ

1 10
H , the sign of Υ is more favorable and we have

Q(X + 2ΛT, e 3 ) ≥ 1 2 H (Q 33 + Q 34 ) + Λ - 1 2 |f δ | Q 34 + |Υ| Λ + 1 2 |f δ | Q 33 ≥ 1 2 H + |Υ| Λ + 1 2 |f δ | Q 33 + 1 2 H + Λ - 1 2 |f δ | Q 34 .
In particular, we simply need Λ δ -1 , which is in particular satisfied by (10.1.65), to deduce the same inequality,

Q(X + 2ΛT, e 3 ) ≥ 1 4 H Q 33 + 1 2 ΛQ 34 .
In the region δ H ≤ Υ ≤ 1 3 , where f δ ≤ 0, and using the fact that

|f δ | is of size O(( δ) -1 ) Q(X + 2ΛT, e 3 ) = H Q(Y H , e 3 ) + Λ (Q 34 + ΥQ 33 ) + 1 2 f δ (Q 34 -ΥQ 33 ) ≥ Λ Q 34 + δ 1 10 H Q 33 -O( δ -1 )Q 34 .
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given in Proposition 10.1.30. Replacing X by X = X + ΛT in the calculation above we deduce,

Pµ = P µ [ X, w, M ] = Q µν Xν + 1 2 wΨ Ḋµ Ψ - 1 4 |Ψ| 2 ∂ µ w + 1 4 |Ψ| 2 M µ .
By the divergence theorem we have,

A P • N A + Σ 2 P • N Σ + M(τ 1 ,τ 2 ) E + Σ * P • N Σ * = Σ 1 P • N Σ - M(τ 1 ,τ 2 ) ( X(Ψ) + 1 2 wΨ)N [Ψ] (10.1.68) where E = E[ X, w, M ](Ψ). Now, E[ X, w, M ](Ψ) = E[X, w, M ](Ψ) + 1 2 ΛQ • (T ) π - 1 2 T (V )|Ψ| 2 .
According to Lemma 10.1.7

T (V ) = O( )r -3 u -1-δ dec trap
, and all components of (T ) π are O( r -1 u -1-δ dec trap ) except for (T ) π 44 which is O( r -2 u -1-δ dec trap ). We easily deduce, Λ|Q

• (T ) π| + |T (V )||Ψ| 2 ΛE .
Thus in view of to Proposition 10.1.31, we have 11 , 

M(τ 1 ,τ 2 ) E ≥ δ 1 2 H M(τ 1 ,τ 2 ) m 2 r 3 | ȒΨ| 2 + r -1 1 - 3m r 2 |∇ / Ψ| 2 + m 2 r 2 | T Ψ| 2 + m r 4 |Ψ| 2 -O δ -1 H M(τ 1 ,τ 2 ) E i.e., M(τ 1 ,τ 2 ) E ≥ δ 1 2 H Mor[Ψ](τ 1 , τ 2 ) -O δ -1 H Err (τ 1 , τ 2 ). ( 10 

Boundary term along A

Along the spacelike hypersurface A, i.e. r = 2m 0 (1δ H ), the unit normal N A is given by

N A = 1 2 e 4 (r) e 3 (r) e 4 + e 4 (r) e 3 (r) e 3 = 1 2 δ H + O( ) e 4 + (δ H + O( ))e 3 ,
and we have h, h 2 = 0 as well as w = -δ 1 w 1 where δ 1 > 0 is a small constant and w 1 is given by (10.1.47)

w 1 (r, m) = r -1 m 2 r 2 Υ 1 - 3m r 2 .
In particular, we have on A in view of the formula for w 1 and for

N A |w 1 | δ H , |N A (w 1 )| δ H .
Hence,

P • N A = Q(X + ΛT, N A ) - δ 1 2 w 1 ΨN A (Ψ) + δ 1 4 |Ψ| 2 N A (w 1 ) = 2 δ H + O( ) Q(X + ΛT, e 4 ) + 2 δ H + O( )Q(X + ΛT, e 3 ) -O( δ H )Ψe 4 (Ψ) -O(δ 3 2 
H )Ψe 3 (Ψ) -O( δ H )|Ψ| 2 .
Thus, in view of Proposition 10.1.32, we infer

P • N A ≥ 2 δ H + O( ) 1 4 H Q 34 + 1 2 ΛQ 44 + 2 δ H + O( ) 1 4 H Q 33 + 1 2 ΛQ 34 -O( δ H )Ψe 4 (Ψ) -O(δ 3 2 H )Ψe 3 (Ψ) -O( δ H )|Ψ| 2
Using in particular (10.1.63) and (10.1.65), we deduce

P • N A ≥ 2 δ H + O( ) 1 4 δ 7 20 H |∇ / Ψ| 2 + O(δ H )|Ψ| 2 + 1 8 δ -13 20 H |e 4 Ψ| 2 +2 δ H + O( ) 1 4 δ 7 20 H |e 3 Ψ| 2 + 1 8 δ -13 20 H |∇ / Ψ| 2 + O(δ H )|Ψ| 2 -O( δ H )Ψe 4 (Ψ) -O(δ 3 2 H )Ψe 3 (Ψ) -O( δ H )|Ψ| 2 ≥ 1 2 δ -3 20 
H |∇ / Ψ| 2 + 1 8 δ -23 20 
H |e 4 Ψ| 2 + 1 4 δ 17 20 H |e 3 Ψ| 2 -O( δ H )Ψe 4 (Ψ) -O(δ 3 2 H )Ψe 3 (Ψ) -O( δ H )|Ψ| 2 .
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Recalling the Poincaré inequality (10.1.27),

S |∇ / Ψ| 2 ≥ 2r -2 1 -O( ) S Ψ 2 da S ,
we deduce, in this region,

A(τ 1 ,τ 2 ) P • N A ≥ 1 8 A(τ 1 ,τ 2 ) δ -1 H |e 4 Ψ| 2 + δ H |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2
as desired in view of the definition of the flux along A.

Boundary terms along Σ(τ 1 ), Σ(τ 2 )

Along a hypersurface Σ(τ ) with timelike unit future normal N Σ(τ ) = ae 3 + be 4 , we have,

P • N Σ = Q(X + ΛT, N Σ ) + 1 2 wΨN Σ (Ψ) - 1 4 N Σ (w)|Ψ| 2 + 1 2 N Σ • (hR + h 2 Ȓ)|Ψ| 2 and E[Ψ](τ ) = Σ(τ ) 2b 2 |e 4 Ψ| 2 + 2a 2 |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 .
1. In the region r ≥ 2m 0 (1δ H ), Υ ≤ δ H we have h = 0, h 2 = O( δ) and N Σ = e 3 (i.e. a = 1, b = 0). Also, we have w = -δ 1 w 1 , where δ 1 > 0 is a small constant and w 1 is given by (10.1.47)

w 1 (r, m) = r -1 m 2 r 2 Υ 1 - 3m r 2 .
In particular, we have in the region of interest, in view of the formula for w 1 and for N Σ

|w 1 | δ 1 10 H , |N Σ (w 1 )| = |e 3 (w 1 )| 1.
We infer

P • N Σ = Q(X + ΛT, e 3 ) - δ 1 2 w 1 Ψe 3 (Ψ) + δ 1 4 e 3 (w 1 )|Ψ| 2 + 1 2 h 2 e 3 • Ȓ|Ψ| 2 = Q(X + ΛT, e 3 ) -O(δ 1 10 
H )w 1 Ψe 3 (Ψ) -O(1)|Ψ| 2 .
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where we used the fact that Ȓ = 1 2 (e 4 -e 3 ) in the region of interest. Thus, according to Proposition 10.1.32,

P • N Σ ≥ 1 4 H Q 33 + 1 2 ΛQ 34 -O(δ 1 10 
H )|Ψ||e 3 (Ψ)| -O(1)|Ψ| 2 .
Using in particular (10.1.63) and (10.1.65), we deduce

P • N Σ ≥ 1 4 δ 7 20 H |e 3 Ψ| 2 + 1 8 δ -13 20 
H (|∇ / Ψ| 2 + O( )|Ψ| 2 ) -O(δ 1 10 
H )|Ψ||e 3 Ψ| -O(1)|Ψ| 2
Together with the Poincaré inequality (10.1.27), we deduce

Σ r≥2m 0 (1-δ H ), Υ≤δ 1 10 H (τ ) P • N Σ ≥ 1 8 δ 7 20 H Σ r≥2m 0 (1-δ H ), Υ≤δ 1 10 H (τ ) |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 ≥ 1 8 δ 7 20 H E r≥2m 0 (1-δ H ), Υ≤δ 1 10 H 
[Ψ](τ ).

2. In the region Υ ≥ δ

1 10 H , we have w = O(r -1 ), N Σ (w) = O(r -2 ), h = O(r -4
) and h 2 = O(r -4 ). We infer

P • N Σ = aQ(X + ΛT, e 3 ) + bQ(X + ΛT, e 4 ) -O(r -1 )|Ψ|(a|e 3 Ψ| + b|e 4 Ψ|) -O(r -2 )|Ψ| 2 .
Thus, according to Proposition 10.1.32,

P • N Σ ≥ δ -1 2 H (aQ 33 + bQ 44 + (a + b)Q 34 ) -O(1)(a 2 |e 3 Ψ| 2 + b 2 |e 4 Ψ| 2 ) -O(r -2 )|Ψ| 2 = δ -1 2 H a|e 3 Ψ| 2 + b|e 4 Ψ| 3 + (a + b) |∇ / Ψ| 2 + 4Υ r 2 |Ψ| 2 -O(1) a 2 |e 3 Ψ| 2 + b 2 |e 4 Ψ| 2 + r -2 |Ψ| 2 ≥ δ -1 2 H a|e 3 Ψ| 2 + b|e 4 Ψ| 3 + (a + b) |∇ / Ψ| 2 + 4δ 1 10 H r 2 |Ψ| 2 -O(1) a 2 |e 3 Ψ| 2 + b 2 |e 4 Ψ| 2 + r -2 |Ψ| 2 .
Hence, for δ H > 0 sufficiently small, and since a 2 ≤ a, b 2 ≤ b and a + b ≥ 1, we infer in this region H , we deduce, everywhere, 

P • N Σ ≥ δ -1 5 H Σ Υ≥δ 1 10 H (τ ) 2b 2 |e 4 Ψ| 2 + 2a 2 |e 3 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 = δ -1 5 H E[Ψ]
Σ(τ ) P • N Σ ≥ 1 8 δ 7 20 H E[Ψ](τ ). ( 10 
N Σ * = T + O + m r (e 3 + e 4 ), w = O(r -1 ), N Σ * (w) = O( r -2 ), h = O(r -4
) and h 2 = 0.

Proceeding as before, we have along Σ * ,

P • N Σ = 1 2 + O + m r Q(X + ΛT, e 3 ) + 1 2 + O + m r Q(X + ΛT, e 4 ) -O(r -1 )|Ψ|(|e 3 Ψ| + |e 4 Ψ|) -O(r -2 )|Ψ| 2 ≥ 1 4 Q(X + ΛT, e 3 ) + 1 4 Q(X + ΛT, e 4 ) -O |e 3 Ψ| 2 + |e 4 Ψ| 2 + r -2 |Ψ| 2 .
Thus, according to Proposition 10.1.32, we have

P • N Σ ≥ 1 16 Λ (Q 33 + Q 44 + 2Q 34 ) -O |e 3 Ψ| 2 + |e 4 Ψ| 2 + r -2 |Ψ| 2 = 1 16 Λ |e 3 Ψ| 2 + |e 4 Ψ| 2 + 2 |∇ / Ψ| 2 + 4Υ r 2 |Ψ| 2 -O |e 3 Ψ| 2 + |e 4 Ψ| 2 + r -2 |Ψ| 2 ≥ 1 64 δ -13 20 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 -O |e 3 Ψ| 2 + |e 4 Ψ| 2 + r -2 |Ψ| 2 ≥ δ -1 2 H |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2
and hence 

Σ * (τ 1 ,τ 2 ) P • N Σ * ≥ δ -1 2 H Σ * (τ 1 ,τ 2 ) |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 . ( 10 
M(τ 1 ,τ 2 ) ( X(Ψ) + 1 2 wΨ)N [Ψ]
Recall that, X = X + ΛT = f δ R + Y H + ΛT . We easily check, recalling the properties of f δ , w and Λ and the definition of J[N, Ψ], 

M(τ 1 ,τ 2 ) X(Ψ) + 1 2 wΨ N [Ψ] ≤ δ -3 4 H M(τ 1 ,τ 2 ) | ȒΨ| + | T Ψ| + r -2 |Ψ| 2 |N (Ψ)| = δ -3 4 H J[N, Ψ](τ 1 , τ 2 ). ( 10 
E[Ψ](τ 2 ) + M(τ 1 ,τ 2 ) E + F [Ψ](τ 1 , τ 2 ) ≤ δ -7 20 H (E[Ψ](τ 1 ) + J[N, Ψ](τ 1 , τ 2 )) .
In view of (10.1.69) we obtain,

E[Ψ](τ 2 ) + Mor[Ψ](τ 1 , τ 2 ) + F [Ψ](τ 1 , τ 2 ) ≤ δ -1 H E[Ψ](τ 1 ) + J[N, Ψ](τ 1 , τ 2 ) +O δ -3 2 H Err (τ 1 , τ 2 ).
This concludes the proof of Theorem 10.1.33.

Analysis of the error term E

Recall that Err (τ 1 , τ 2 ) = M(τ 1 ,τ 2 ) E where,

E u -1-δ dec trap r -2 |e 3 Ψ| 2 + r -1 |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + |e 3 Ψ| (|e 4 Ψ| + |∇ / Ψ|) .
• In the trapping region M trap , i.e. 5m 2 ≤ r ≤ 7m 2 , where u trap = 1 + τ and Σ(τ ) is strictly spacelike, we have

Σtrap(τ ) E τ -1-δ dec trap Σtrap(τ ) |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + |Ψ| 2 τ -1-δ dec trap E[Ψ](τ ).
Thus,

Mtrap(τ 1 ,τ 2 ) E τ 2 τ 1 τ -1-δ dec trap E[Ψ](τ ) τ 2 τ 1 (1 + τ ) -1-δ sup τ ∈[τ 1 ,τ 2 ] E[Ψ](τ ) sup τ ∈[τ 1 ,τ 2 ] E[Ψ](τ )
and therefore, for small > 0, the integral Mtrap(τ 1 ,τ 2 ) E can be absorbed on the left hand side of (10.1.67).

• In the non trapping region M trap we write, with a fixed δ > 0,

E r -1-δ |e 3 Ψ| 2 + r -1+δ |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 .
Hence,

M trap (τ 1 ,τ 2 ) E M r≥4m 0 (τ 1 ,τ 2 ) r -1-δ |e 3 Ψ| 2 + M r≥4m 0 (τ 1 ,τ 2 ) r -1+δ |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + (trap ) M r≤4m 0 (τ 1 ,τ 2 ) |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + |Ψ| 2 .
Note that for > 0 sufficiently small, the last integral, on (trap ) M r≤4m 0 , can be absorbed by the left hand side of (10.1.67).

As a consequence we deduce the following. 

= M r≥4m 0 (τ 1 ,τ 2 ) E , E r -1-δ |e 3 Ψ| 2 + r -1+δ |e 4 Ψ| 2 + |∇ / Ψ| 2 + |r -2 |Ψ| 2 ,
for a fixed δ > 0.
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Also,

e 3 (f ) = f e 3 (r) = -f + O( r -1-δ ), e 4 (f ) = f e 4 (r) = Υf + O( r -1-δ ).
Thus, modulo error terms of the form O

( )r -1-δ |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 , we have Q • (X) π = 2Q αβ T α D β f = 2 Q 3β T β e 3 f + Q 4β T β e 4 f = -Q(e 4 , T )e 3 f -Q(e 3 , T )e 4 f = 1 2 Q(e 4 , e 4 + Υe 3 )f - 1 2 f ΥQ(e 3 , e 4 + Υe 3 ) = 1 2 f |e 4 Ψ| 2 -Υ 2 |e 3 Ψ| 2 .
We now apply Proposition 10.1.9, as well as (10.1.13) (10.1.14), with X = f -δ (r)T , w = 0, M = 0 so that

P µ [f -δ T, 0, 0] = f -δ Q αµ T µ , E[f -δ T, 0, 0] := D µ P µ [f -δ T, 0, 0] -f -δ T (Ψ)N and E[f -δ T, 0, 0] = 1 2 Q • (X) π - 1 2 f -δ T (V )|Ψ| 2 = 1 4 f -δ (r) |e 4 Ψ| 2 -Υ 2 |e 3 Ψ| 2 + O r -1-δ |DΨ| 2 + r -2 |Ψ| 2 with |DΨ| 2 = |e 3 Ψ| 2 + |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 . Since f -δ (r) = r -δ for r ≥ 4m 0 , we deduce, for r ≥ 4m 0 , E[f -δ T, 0, 0] = Υ 2 4 δr -1-δ |e 3 Ψ| 2 - 1 4 δr -1-δ |e 4 Ψ| 2 + O r -1-δ |DΨ| 2 + r -2 |Ψ| 2 .
On the other hand,

P[f -δ T, 0, 0] • e 4 = f -δ Q(T, e 4 ) ≥ 0, P[f -δ T, 0, 0] • e 3 = f -δ Q(T, e 3 ) ≥ 0,
as desired. This concludes the proof of Proposition 10.1.36.

Dafermos-Rodnianski r p -weighted estimates

For convenience, we work in this section with the renormalized frame (e 3 , e 4 ) defined in (10.2.7) instead of the original frame (e 3 , e 4 ). To simplify the exposition, we still denote it as (e 3 , e 4 ). Recall that the two are frames are equivalent up to lower terms in m/r.

DAFERMOS-RODNIANSKI R P -WEIGHTED ESTIMATES

735

In this section we rely on the Morawetz estimates proved in the previous section to establish r p -weighted estimates in the spirit of Dafermos-Rodnianski [START_REF] Dafermos | A new physical-space approach to decay for the wave equation with applications to black hole spacetimes[END_REF]. The following theorem claims r p -weighted estimates for the solution ψ of the wave equation (5.3.5).

Theorem 10.2.1 (r p -weighted estimates). Consider a fixed δ > 0 and let R m 0 δ , δ. The following estimates hold true and for all δ ≤ p ≤ 2δ, 

Ėp ; R [ψ](τ 2 ) + Ḃp ; R [ψ](τ 1 , τ 2 ) + Ḟp [ψ](τ 1 , τ 2 ) E p [ψ](τ 1 ) + J p [ψ, N ](τ 1 , τ 2
≤ p ≤ 2 -δ, sup τ ∈[τ 1 ,τ 2 ] E p [ψ](τ ) + B p [ψ](τ 1 , τ 2 ) + F p [ψ](τ 1 , τ 2 ) E p [ψ](τ 1 ) + J p [ψ, N ](τ 1 , τ 2 ), (10.2.2)
which corresponds to Theorem 5.3.4 in the case s = 0. Theorem 10.2.1 will be proved in section 10.2.3. We will need in this section stronger assumptions in the region r ≥ 4m 0 , away from trapping, than those in (10.1.5)-(10.1.7) of the previous section. For convenience we express our conditions with respect to the weights 13 , w p,q (u, r) = r -p (1 + τ ) -q-δ dec +2δ 0 . RP0. The assumptions Mor1-Mor3 made in the previous section hold true. Relative to the new frame (e 3 , e 4 , e θ ) we have,

RP1. The Ricci coefficients verify, for r

≥ 4m 0 ξ, ϑ, ϑ, η, η, ζ, ω w 1,1 , κ + 2 r , χ + 1 r , e 3 Φ -χ w 1,1 , κ - 2Υ r , χ - Υ r , e 4 Φ -χ min{w 1,1 , w 2,1/2 }, ω + m r 2 , |ξ| min{w 2,1 , w 3,1/2 }. ( 10 
ξ = Υ -2 ξ, ξ = Υ 2 ξ, ζ = ζ, η = η, χ = Υ -1 χ, χ = Υχ and, ω = Υ -1 ω + 1 2 e 4 (log Υ) = Υ -1 ω + Υ -1 m r 2 e 4 (r) -Υ -1 e 4 (m) r = Υ -1 ω + m r 2 + Υ -1 m r 2 (e 4 (r) -Υ) -Υ -1 e 4 (m) r , ω = Υ ω - 1 2 e 3 (log Υ) = Υ ω -Υ -1 m r 2 e 3 (r) + Υ -1 e 3 (m) r = m r 2 + Υ ω -Υ -1 m r 2 (e 3 (r) + 1) + Υ -1 e 3 (m) r .
Thus in the new frame we have, for r ≥ 4m 0 , RP1'. The Ricci coefficients with respect to the null frame (e 3 , e 4 , e θ ) verify, for r ≥ 4m 0 : (10.2.9)

ξ , ϑ , ϑ, η , η , ζ , ω - m r 2 w 1,1 , κ + 2Υ r , χ + Υ r , e 3 Φ -χ w 1,1 , κ - 2 r , χ - 1 r , e 4 Φ -χ min{w 1,1 , w 2,1/2 }, ω , |ξ | min{w 2,1 , w 3,1/2 }.
RP3'. The Gauss curvature K of S and ρ verify, 

ρ + 2m r 3 r -3 , K - 1 r 2 r -2 . ( 10 
Remark 10.2.3. In the far region r ≥ 4m 0 all norms we are using in our estimates are equivalent when expressed relative to the null frame (e 3 , e 4 , e θ ) or (e 3 , e 4 , e θ ).

Convention. For the remaining of this section we shall do all calculations with respect to the renormalized frame (e 3 , e 4 , e θ ). For convenience we shall drop the primes, throughout this section, since there is no danger of confusion. Note however that the main results, which include the interior region r ≤ R, are always expressed with respect the original frame. 1. We have the decomposition,

(X) π = (X) Λg + (X) π, (X) Λ = 2 r f 738 CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS
with symmetric tensor (X) π which verifies

(X) π 43 = -2f + 4f r + O( )w 1,1 (|f | + r|f |) (X) π 33 = 4f Υ -4Υ + O( )w 1,1 (|f | + r|f |) (X) π 4θ = O( )w 2,1/2 |f | (X) π AB = O( )w 2,1/2 |f | (X) π 3θ = O( )w 1,1 |f | (10.2.12)
2. We have, We start with the following proposition. 1. We have,

(X) Λ = 2 r f + O m r 4 + w 3,1 |f | + r|f | + r 2 |f | ( 
E = 1 2 f |e 4 Ψ| 2 + 1 2 -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 - 1 2r f |Ψ| 2 + Err , m r , f (Ψ)
where,

Err , m r , f (Ψ) = O m r 2 (|f | + r|f |)|e 4 Ψ| 2 + O m r 4 + w 3,1 |f | + r|f | + r 2 |f | |Ψ| 2 + O( )w 1,1 (|f | + r|f |) |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + O( )w 2,1/2 |f | |e 3 Ψ|(|e 4 Ψ| + r -1 |∇ / Ψ|) + |∇ / Ψ| 2 + r -2 |Ψ| 2 .

The current,

P µ = P µ [X, w] = Q µν X ν + 1 2 wΨ • D µ Ψ - 1 4 |Ψ| 2 ∂ µ w 10.2. DAFERMOS-RODNIANSKI R P -WEIGHTED ESTIMATES 739 verifies, P • e 4 = f e 4 Ψ + 1 r Ψ 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + O( r -3 )f |Ψ| 2 , P • e 3 = f Q 34 + 1 2 r -2 e 3 rf ψ 2 ) + r -1 f ψ 2 + O(mr -3 + r -2 )|rf | |Ψ| 2 .
3. Let θ = θ(r) supported for r ≥ R/2 with θ = 1 for r ≥ R such that f p = θ(r)r p . Let (p) P := P[f p e 4 , w p ]. Then, for all r ≥ R,

(p) P • e 4 + p 2 r -2 e 4 (θr p+1 |Ψ| 2 ) ≥ 1 8 r p-2 (p -1) 2 |Ψ| 2 .
Before proceeding with the proof of Proposition 10.2.5, we first establish the following lemma.

Lemma 10.2.6. We have,

Q • (X) π = f + O m r 2 (|f | + r|f |) |e 4 Ψ| 2 + -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 + O( )w 1,1 (|f | + r|f |) |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + O( )w 2,1/2 |f | |e 3 Ψ|(|e 4 Ψ| + r -1 |∇ / Ψ|) + |∇ / Ψ| 2 + r -2 |Ψ| 2 .
Proof. Recall from Proposition 10.1.9 that we have

Q 33 = |e 3 Ψ| 2 , Q 44 = |e 4 Ψ| 2 , Q 34 = |∇ / Ψ| 2 + V |Ψ| 2 ,
and,

|Q AB | ≤ |e 3 Ψ||e 4 Ψ| + |∇ / Ψ| 2 + |V ||Ψ| 2 , |Q A3 | ≤ |e 3 Ψ||∇ / Ψ|, |Q A4 | ≤ |e 4 Ψ||∇ / Ψ|.
Hence, in view of Lemma D.3.1 for (X) π, we have

Q • (X) π = 1 4 Q 44 (X) π 33 + 1 2 Q 34 (X) π 34 - 1 2 Q 4A (X) π 3A - 1 2 Q 3A (X) π 4A + Q AB (X) π AB = f Υ -Υ f + O( )w 1,1 (|f | + r|f |) Q 44 + -f + 2f r + O( )w 1,1 (|f | + r|f |) Q 34 + O( )w 1,1 |f | Q 4A + O( )w 2,1/2 |f | (Q 3A + Q AB ) = f + O m r 2 (|f | + r|f |) Q 44 + -f + 2f r Q 34 + O( )(|f | + r|f |)w 1,1 (Q 44 + Q 4A ) + O( )w 2,1/2 |f | (Q AB + Q 34 ) +O( )w 3,1/2 |f |Q 3A CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS from which we deduce, Q • (X) π = f + O m r 2 (|f | + r|f |) |e 4 Ψ| 2 + -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 + O( )w 1,1 (|f | + r|f |) |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + O( )w 2,1/2 |f | |e 3 Ψ|(|e 4 Ψ| + r -1 |∇ / Ψ|) + |∇ / Ψ| 2 + r -2 |Ψ| 2
as desired.

We are now ready to prove Proposition 10.2.5.

Proof of Proposition 10.2.5.

If Q = Q[Ψ] is the energy momentum tensor of Ψ (recall ˙ Ψ = V Ψ + N ) and ( 
X) π = (X) Λ g + (X) π we deduce, Q • (X) π = (X) ΛtrQ + Q • (X) π = (X) Λ (-L(Ψ) -V |Ψ| 2 ) + Q • (X) π.
Hence, for X = f e 4 and w =

(X) Λ = 2f r , 1 2 Q • (X) π + 1 2 wL[Ψ] = - 1 2 (X) ΛV |Ψ| 2 + 1 2 Q • (X) π.
In view of (10.1.14), we infer

E : = E[X, w = (X) Λ, M = 0] = 1 2 Q • (X) π - 1 4 |Ψ| 2 g (X) Λ - 1 2 (X(V ) + (X) ΛV )|Ψ| 2 .
Recall that V = -κκ. Hence,

X(V ) + (X) ΛV = f e 4 (V ) + 2f r V = -f e 4 (κκ) + 2 r κκ = f κ 2 κ -2κρ - 2 r κκ + O( )w 3,1 = O m r 4 + w 3,1 f.
Hence, in view of the computation (10.2.13) of (X) Λ

- 1 4 |Ψ| 2 g (X) Λ - 1 2 (X(V ) + (X) ΛV )|Ψ| 2 = - 1 2r f |Ψ| 2 + O m r 4 + w 3,1 |f | + r|f | + r 2 |f | |Ψ| 2 .
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We deduce,

E = 1 2 Q • (X) π - 1 2r f |Ψ| 2 + O m r 4 + w 3,1 |f | + r|f | + r 2 |f | |Ψ| 2
Using Lemma 10.2.6, we deduce,

E = 1 2 f |e 4 Ψ| 2 + 1 2 -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 - 1 2r f |Ψ| 2 + Err , m r , f (Ψ)
where,

Err , m r , f (Ψ) = O m r 2 (|f | + r|f |)|e 4 Ψ| 2 + O m r 4 + w 3,1 |f | + r|f | + r 2 |f | |Ψ| 2 + O( )w 1,1 (|f | + r|f |) |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + O( )w 2,1/2 |f | |e 3 Ψ|(|e 4 Ψ| + r -1 |∇ / Ψ|) + |∇ / Ψ| 2 + r -2 |Ψ| 2
which is the first part of Proposition 10.2.5.

To prove the second part of Proposition 10.2.5, we compute

P • e 4 = f Q 44 + 1 r f Ψ • e 4 Ψ - 1 2 e 4 (r -1 f )|Ψ| 2 = f |e 4 Ψ| 2 + 1 r Ψ • e 4 Ψ - 1 2 e 4 (r -1 f )|Ψ| 2 = f e 4 Ψ + 1 r Ψ 2 - 1 r f Ψ • e 4 Ψ -r -2 f |Ψ| 2 - 1 2 e 4 (r -1 f )|Ψ| 2 = f e 4 Ψ + 1 r Ψ 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + 1 2 r -2 e 4 (rf )|Ψ| 2 -r -2 f |Ψ| 2 - 1 2 e 4 (r -1 f )|Ψ| 2 = f e 4 Ψ + 1 r Ψ 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + r -2 (e 4 (r) -1)f |Ψ| 2 . Since e 4 (r) = r 2 (κ + A),
we have14 e 4 (r) -1 = O( r -1 ).
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Thus, as desired,

P • e 4 = f e 4 Ψ + 1 r Ψ 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + O( r -3 )f |Ψ| 2 .
Also,

P • e 3 = f Q 34 + r -1 f Ψ • e 3 Ψ - 1 2 e 3 (r -1 f )|Ψ| 2 = f Q 34 + 1 2 r -1 f e 3 (|Ψ| 2 ) - 1 2 e 3 (r -1 f )|Ψ| 2 = f Q 34 + 1 2 r -2 e 3 rf |Ψ| 2 ) -r -2 e 3 (rf )|Ψ| 2 - 1 2 e 3 (r -1 f )|Ψ| 2 = f Q 34 + 1 2 r -2 e 3 rf |Ψ| 2 ) + r -1 f Υ|Ψ| 2 -r -1 f (e 3 (r) + Υ)|Ψ| 2 = f Q 34 + 1 2 r -2 e 3 rf |Ψ| 2 ) + r -1 f |Ψ| 2 + O mr -3 + r -2 (r|f |)|Ψ| 2
as desired.

It remains to prove the last part of Proposition 10.2.5. We have, for r ≥ R 

+ (p -1) 2 4r 2 |Ψ| 2 + p 2 + 1 2 (e 4 (r) -1)r p-2 |Ψ| 2 ≥ r p-2 (p -1) 2 4 |Ψ| 2 -O( ) p 2 + 1 2 r p-3 |Ψ| 2 .
This concludes the proof of Proposition 10.2.5.

In applications we would like to apply Proposition 10.2.5 to f = r p , 0 < p < 2. We note however that the presence of the term -1 2 r -1 f |Ψ| 2 on the right hand side of the E identity requires an additional correction if p > 1. This additional correction is taken into account by the following proposition.
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and we compute

D µ M µ = D µ (2r -1 f e 4 ) µ = D µ 2f rf X µ = 2f rf DivX + X 2f rf = f rf tr (X) π + X 2f rf = f rf (2e 4 f -4f ω + 2f κ) + 2f e 4 f rf = f rf 2e 4 (r)f + 4f r + O m r 3 + w 2,1 + 2f f rf -f (f + rf ) r 2 f 2 e 4 (r) = 4f r 2 + 2(f ) 2 rf + 2 f r - 2f r 2 - 2(f ) 2 rf + O m r 4 + w 3,1 (|f | + r|f | + r 2 |f |) = 2f r 2 + 2f r + O m r 4 + w 3,1 (|f | + r|f | + r 2 |f |).
We also have

1 2 Ψ • D µ ΨM µ = r -1 f Ψ • D 4 Ψ. Since we have E[X, w, M ] = E[X, w] + 1 4 (D µ M µ )|Ψ| 2 + 1 2 Ψ • D µ ΨM µ , we infer E[X, w, M ] = E[X, w] + f 2r 2 + f 2r + O m r 4 + w 3,1 (|f | + r|f | + r 2 |f |) |Ψ| 2 + r -1 f Ψ • D 4 Ψ.
Together with Proposition 10.2.5, this yields

E[X, w, M ] = 1 2 f |e 4 Ψ| 2 + 2r -1 Ψ • D 4 Ψ + r -2 |Ψ| 2 + 1 2 -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 +Err , m r , f (Ψ) + O m r 4 + w 3,1 (|f | + r|f | + r 2 |f |)|Ψ| 2 = 1 2 f |e 4 Ψ + r -1 Ψ| 2 + 1 2 -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 +Err , m r , f (Ψ) + O m r 4 + w 3,1 (|f | + r|f | + r 2 |f |)|Ψ| 2 = 1 2 f |ě 4 Ψ + r -1 (1 -e 4 (r))Ψ| 2 + 1 2 -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 +Err , m r , f (Ψ) + O m r 4 + w 3,1 (|f | + r|f | + r 2 |f |)|Ψ| 2
and hence

E[X, w, M ] = 1 2 f |ě 4 Ψ| 2 + 1 2 -f + 2f r |∇ / Ψ| 2 + V |Ψ| 2 + Err , m r , f (Ψ)
where

Err , m r , f (Ψ) = O m r 2 (|f | + r|f |)|e 4 Ψ| 2 + O m r 4 + w 3,1 |f | + r|f | + r 2 |f | |Ψ| 2 + O( )w 1,1 (|f | + r|f |) |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + O( )w 2,1/2 |f | |e 3 Ψ|(|e 4 Ψ| + r -1 |∇ / Ψ|) + |∇ / Ψ| 2 + r -2 |Ψ| 2 .
This is the desired estimate (10.2.14).

Next, we consider the second part of Proposition 10.2.7.

P µ [X, w, M ] = P µ [X, w] + 1 4 |Ψ| 2 M µ = P µ [X, w] + 1 2 r -1 f |Ψ| 2 e 4 .
Hence, in view of the results in part 2 of Proposition 10.2.5,

P 4 [X, w, M ] = P 4 [X, w] = f ě4 Ψ + (1 -e 4 (r))Ψ 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + O( r -3 )f |Ψ| 2 = f |ě 4 Ψ| 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + O( r -1 )f (|e 4 Ψ| 2 + r -2 |Ψ| 2 ), P 3 [X, w, M ] = P 3 [X, w] -r -1 f |Ψ| 2 = f Q 34 + 1 2 r -2 e 3 rf |Ψ| 2 ) + r -1 f |Ψ| 2 -r -1 f |Ψ| 2 + O( r -2 )(|f | + r|f |)|Ψ| 2 = f Q 34 + 1 2 r -2 e 3 rf |Ψ| 2 ) + O( r -2 )(|f | + r|f |)|Ψ| 2
as desired. The last part follows from the third part of Proposition 10.2.5.

Lemma 10.2.8. On Σ * , we have

P • N Σ * = 1 2 f Q 34 + 1 2 f (ě 4 Ψ) 2 + 1 2 div Σ * r -1 f |Ψ| 2 ν Σ * +O(mr -1 + )(|f | + r|f |)(|e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 )
Proof. Recall that there exists a constant c * such that u + r = c * on Σ * . In particular, the unit normal N Σ * is collinear to In particular, we have 

P • N Σ * = e 4 (
P • e 4 = f (ě 4 Ψ) 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + O( r -1 )f (|e 4 Ψ| 2 + r -2 |Ψ| 2 ), P • e 3 = f Q 34 + 1 2 r -2 e 3 rf |Ψ| 2 ) + O(mr -3 + r -2 )(|f | + r|f |)|Ψ| 2 .
We deduce

P • N Σ * = e 4 (r) 2 e 3 (u) + e 3 (r) f Q 34 + 1 2 r -2 e 3 rf |Ψ| 2 ) + O(mr -3 + r -2 )(|f | + r|f |)|Ψ| 2 + e 3 (u) + e 3 (r) 2 e 4 (r) f (ě 4 Ψ) 2 - 1 2 r -2 e 4 (rf |Ψ| 2 ) + O( r -1 )f (|e 4 Ψ| 2 + r -2 |Ψ| 2 ) = e 4 (r) 2 e 3 (u) + e 3 (r) f Q 34 + e 3 (u) + e 3 (r) 2 e 4 (r) f (ě 4 Ψ) 2 + e 4 (r) 2 e 3 (u) + e 3 (r) 1 2 r -2 e 3 rf |Ψ| 2 ) - e 3 (u) + e 3 (r) 2 e 4 (r) 1 2 r -2 e 4 (rf |Ψ| 2 ) +O(mr -3 + r -2 )(|f | + r|f |)|Ψ| 2 + O( r -1 )f (|e 4 Ψ| 2 + r -2 |Ψ| 2 ) = 1 2 √ 2 -Υ (1 + O( ))f Q 34 + √ 2 -Υ 2 (1 + O( ))f (ě 4 Ψ) 2 + 1 2 r -2 ν Σ * rf |Ψ| 2 ) +O(mr -3 + r -2 )(|f | + r|f |)|Ψ| 2 + O( r -1 )f (|e 4 Ψ| 2 + r -2 |Ψ| 2 ) = 1 2 f Q 34 + 1 2 f (ě 4 Ψ) 2 + 1 2 r -2 ν Σ * rf |Ψ| 2 ) +O(mr -1 + )(|f | + r|f |)(|e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 )
where we used Next, note from the formula that ν Σ * is unitary and orthogonal to N Σ * so that ν Σ * is a unit vectorfield, tangent to Σ * and normal to e θ . Furthermore, since (ν Σ * , e θ , e ϕ ) is an orthonormal frame of Σ * , we have

div Σ * (ν Σ * ) = g(D ν Σ * ν Σ * , ν Σ * ) + g(D e θ ν Σ * , e θ ) + g(D eϕ ν Σ * , e ϕ ).
Since ν Σ * is a unit vector, the first term vanishes, and hence κ -e 3 (u) + e 3 (r) 2 e 4 (r) κ.

In particular, we have

div Σ * r -1 f |Ψ| 2 ν Σ * = r -2 ν Σ * rf |Ψ| 2 ) + ν Σ * (r -2 )rf |Ψ| 2 + div Σ * (ν Σ * )r -1 f |Ψ| 2 = r -2 ν Σ * rf |Ψ| 2 ) + div Σ * (ν Σ * ) - 2ν Σ * (r) r r -1 f |Ψ| 2 = r -2 ν Σ * rf |Ψ| 2 ) + e 4 (r) 2 e 3 (u) + e 3 (r) κ - 2e 3 (r) r - e 3 (u) + e 3 (r) 2 e 4 (r) κ - 2e 4 (r) r r -1 f |Ψ| 2 and hence r -2 ν Σ * rf |Ψ| 2 ) = div Σ * r -1 f |Ψ| 2 ν Σ * + O( r -2 )f |Ψ| 2
We finally obtain

P • N Σ * = 1 2 f Q 34 + 1 2 f (ě 4 Ψ) 2 + 1 2 r -2 ν Σ * rf |Ψ| 2 ) +O(mr -1 + )(|f | + r|f |)(|e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 ) = 1 2 f Q 34 + 1 2 f (ě 4 Ψ) 2 + 1 2 div Σ * r -1 f |Ψ| 2 ν Σ * +O(mr -1 + )(|f | + r|f |)(|e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 )
which concludes the proof of the lemma.

Proof of Lemma 10.2.9. The terms Σ ≤R (τ ) P • N Σ and M ≤R (τ 1 ,τ 2 ) E on the right can be estimated as follows

Σ ≤R (τ 1 ) P • N Σ R p E[Ψ](τ 1 ), Σ ≤R (τ 2 ) P • N Σ R p E[Ψ](τ 2 ), M ≤R (τ 1 ,τ 2 ) E R p+2 Mor[Ψ](τ 1 , τ 2 ).
Hence,

K ≤R (τ 1 , τ 2 ) - M ≤R (τ 1 ,τ 2 ) E R p+2 (E[Ψ](τ 1 ) + E[Ψ](τ 2 ) + Mor[Ψ](τ 1 , τ 2 )) .
In view of the improved Morawetz Theorem 10.1.1 we have, for fixed δ > 0,

E[Ψ](τ 2 ) + Morr[Ψ](τ 1 , τ 2 ) + F [Ψ](τ 1 , τ 2 ) E[Ψ](τ 1 ) + J δ [N, ψ](τ 1 , τ 2 ) +O( ) Ḃδ ; 4m 0 [ψ](τ 1 , τ 2 )
which implies

K ≥R (τ 1 , τ 2 ) + M ≥R (τ 1 ,τ 2 ) E R p+2 E[Ψ](τ 1 ) + J δ [N, ψ](τ 1 , τ 2 ) + O( ) Ḃδ ; 4m 0 [ψ](τ 1 , τ 2 ) + M(τ 1 ,τ 2 ) f p ě4 Ψ • N .
Together with the definition (5.3.7) of J p and the fact that p ≥ δ, we infer

K ≥R (τ 1 , τ 2 ) + M ≥R (τ 1 ,τ 2 ) E R p+2 E[Ψ](τ 1 ) + J p [N, ψ](τ 1 , τ 2 ) + O( ) Ḃδ ; 4m 0 [ψ](τ 1 , τ 2 )
which concludes the proof of Lemma 10.2.9.

The proof of Theorem 10.2.1 now proceeds according to the following steps.

Step 1. (Bulk terms for r ≥ R) We prove the following lower bound for M ≥R (τ 1 ,τ 2 ) E.

Lemma 10.2.10. Given a fixed δ > 0 we have for all δ ≤ p ≤ 2δ and R m δ , δ,

M ≥R (τ 1 ,τ 2 ) E ≥ 1 4 M ≥R (τ 1 ,τ 2 ) r p-1 p|ě 4 (Ψ)| 2 + (2 -p)(|∇ / Ψ| 2 + r -2 |Ψ| 2 ) -O( )Morr[Ψ](τ 1 , τ 2 ). ( 10 

.2.17)

Proof of Lemma 10.2.10. We make use of Proposition 10.2.7 according to which,

E[X, w, M ] = 1 2 f p |ě 4 (Ψ)| 2 + 1 2 2f p r -f p Q 34 + Err , m r ; f p [Ψ] = r p-1 p 2 |ě 4 (Ψ)| 2 + 1 2 (2 -p)(|∇ / Ψ| 2 + V |Ψ| 2 ) + Err , m r ; f p [Ψ] ≥ r p-1 p 2 |ě 4 (Ψ)| 2 + 1 2 (2 -p)(|∇ / Ψ| 2 + r -2 |Ψ| 2 ) + Err , m r ; f p [Ψ]
where,

Err , m r , f p (Ψ) = r p O m r 2 |e 4 Ψ| 2 + r -2 Ψ| 2 + r p O( )w 1,1 |e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + r p O( )w 2,1/2 |e 3 Ψ|(|e 4 Ψ| + r -1 |∇ / Ψ|) + |∇ / Ψ| 2 + r -2 |Ψ| 2 Err m r + Err( ), Err m r = O m r r p-1 |ě 4 Ψ| 2 + r -2 |Ψ| 2 , Err( ) = O( )r p-1 |ě 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 + r -2 |e 3 Ψ| 2 .
Thus,

M ≥R (τ 1 ,τ 2 ) E ≥ M ≥R (τ 1 ,τ 2 ) r p-1 p 2 |ě 4 (Ψ)| 2 + 1 2 (2 -p)(|∇ / Ψ| 2 + r -2 |Ψ| 2 ) -O m R M ≥R (τ 1 ,τ 2 ) r p-1 |ě 4 Ψ| 2 + r -2 |Ψ| 2 -O( ) M ≥R (τ 1 ,τ 2 ) r p-1 |ě 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 -O( ) M ≥R (τ 1 ,τ 2 ) r p-3 |e 3 Ψ| 2 . For δ ≤ p ≤ 2 -δ, R
m δ and δ we can absorb all error terms except the last, i.e.

M ≥R (τ 1 ,τ 2 ) E ≥ 1 4 M ≥R (τ 1 ,τ 2 ) r p-1 p|ě 4 (Ψ)| 2 + (2 -p)(|∇ / Ψ| 2 + r -2 |Ψ| 2 ) -O( ) M ≥R (τ 1 ,τ 2 ) r p-3 |e 3 Ψ| 2 .
Note also that for all δ ≤ p ≤ 2δ we have, 

M ≥R (τ 1 ,τ 2 ) r p-3 |e 3 Ψ| 2 Morr(τ 1 , τ 2 ).
M ≥R (τ 1 ,τ 2 ) E ≥ 1 4 M ≥R (τ 1 ,τ 2 ) r p-1 p|ě 4 (Ψ)| 2 + (2 -p)(|∇ / Ψ| 2 + r -2 |Ψ| 2 ) -O( )Morr[Ψ](τ 1 , τ 2 )
as desired.

Combining (10.2.17) with Lemma 10.2.9, we deduce,

K ≥R (τ 1 , τ 2 ) + Ḃp,R [Ψ](τ 1 , τ 2 ) R p+2 E[Ψ](τ 1 ) + J p [N, ψ](τ 1 , τ 2 ) (10.2.18) +O( ) Ḃδ ; 4m 0 [ψ](τ 1 , τ 2 ) .
Step 2. (Boundary terms for r ≥ R.) Recall that according to Proposition 10.2.7,

P • e 4 = f p |ě 4 Ψ| 2 - 1 2 r -2 e 4 (rf p |Ψ| 2 ) + O( r -1 )f p (|e 4 Ψ| 2 + r -2 |Ψ| 2 ),
and according to Lemma 10.2.8

P • N Σ * = 1 2 f Q 34 + 1 2 f (ě 4 Ψ) 2 + 1 2 div Σ * r -1 f |Ψ| 2 ν Σ * +O(mr -1 + )(|f | + r|f |)(|e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 )
Recalling the definition of

K ≥R = Σ ≥R (τ 2 ) P • e 4 + Σ * (τ 1 ,τ 2 ) P • N Σ * - Σ ≥R (τ 1 ) P • e 4
we write,

K ≥R = Σ ≥R (τ 2 ) f p |ě 4 Ψ| 2 + 1 2 Σ * (τ 1 ,τ 2 ) r p Q 34 + (ě 4 Ψ) 2 - Σ ≥R (τ 1 ) f p (ě 4 Ψ) 2 - 1 2 Σ ≥R (τ 2 ) r -2 e 4 (rf p |Ψ| 2 ) + 1 2 Σ * (τ 1 ,τ 2 ) div Σ * r -1 f |Ψ| 2 ν Σ * + 1 2 Σ ≥R (τ 1 ) r -2 e 4 (rf p |Ψ| 2 ) + Σ * (τ 1 ,τ 2 ) O(mr -1 + )r p-2 (|e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 ) + O( ) Σ ≥R (τ 2 ) r p-1 (|e 4 Ψ| 2 + r -2 |Ψ| 2 ) - Σ ≥R (τ 1 ) r p-1 (|e 4 Ψ| 2 + r -2 |Ψ| 2 ) .

CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS

Now, the following integrations by parts hold true

Σ ≥R (τ ) r -2 e 4 (rf p |Ψ| 2 ) = r≥R Sr r -2 e 4 (rf p |Ψ| 2 ) 1 e 4 (r) = r≥R 1 e 4 (r) e 4 Sr r -1 f p |Ψ| 2 - Σ ≥R (τ ) e 4 r -2 + κr -2 rf p |Ψ| 2 = S * (τ ) r p-1 |Ψ| 2 - S R (τ ) r p-1 |Ψ| 2 - Σ ≥R (τ ) κ - 2e 4 (r) r r -1 f p |Ψ| 2 = S * (τ ) r p-1 |Ψ| 2 - S R (τ ) r p-1 |Ψ| 2 + O( ) Σ ≥R (τ ) r p-3 |Ψ| 2 and Σ * (τ 1 ,τ 2 ) div Σ * r -1 f |Ψ| 2 ν Σ * = S * (τ 2 ) r p-1 |Ψ| 2 - S * (τ 1 ) r p-1 |Ψ| 2
where S * (τ ) denotes the 2-sphere Σ * ∩ Σ(τ ). Note that the boundary terms cancel, except the one on r = R, and hence

K ≥R = Σ ≥R (τ 2 ) f p |ě 4 Ψ| 2 + 1 2 Σ * (τ 1 ,τ 2 ) r p Q 34 + (ě 4 Ψ) 2 - Σ ≥R (τ 1 ) f p |ě 4 Ψ| 2 + Σ * (τ 1 ,τ 2 ) O(mr -1 + )r p-2 (|e 4 Ψ| 2 + |∇ / Ψ| 2 + r -2 |Ψ| 2 ) + O( ) Σ ≥R (τ 2 ) r p-1 (|e 4 Ψ| 2 + r -2 |Ψ| 2 ) - Σ ≥R (τ 1 ) r p-1 (|e 4 Ψ| 2 + r -2 |Ψ| 2 ) + 1 2 S R (τ 2 ) r p-1 |Ψ| 2 - 1 2 S R (τ 1 ) r p-1 |Ψ| 2 . Using Q 34 + |ě 4 Ψ| 2 = |∇ / Ψ| 2 + 4Υ r 2 |Ψ| 2 + e 4 Ψ + 1 r Ψ 2 = |∇ / Ψ| 2 + 4Υ r 2 |Ψ| 2 + (e 4 Ψ) 2 + 1 r 2 |Ψ| 2 + 2 r Ψ • e 4 (Ψ) ≥ |∇ / Ψ| 2 + 4Υ -3 r 2 |Ψ| 2 + 2 3 |e 4 Ψ| 2
where we also used the fact that p ≤ 2δ so that p -3 ≤ -1δ. Together with the fact that

Ėp,R [Ψ](τ ) ≥ Ė1-δ,R [Ψ](τ ) for p ≥ 1 -δ and (10.2.20), we infer Ėp,R [Ψ](τ 2 ) + Ḟp [Ψ](τ 1 , τ 2 ) + Ḃp,R [Ψ](τ 1 , τ 2 ) R p+2 (E p [Ψ](τ 1 ) + J p [N, ψ](τ 1 , τ 2 ))
for all δ ≤ p ≤ 2δ as desired. This concludes the proof of Theorem 10.2.1.

Higher weighted estimates

We use a variation of the method of [START_REF] Angelopoulos | A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes[END_REF] to derive slightly stronger weighted estimates. This allows us to prove Theorem 5.3.5 for s = 0 in section 10.4.6. The proof for higher order derivatives s ≤ k small + 29 will be provided in section 10.4.6.

As in the previous section we rely on the assumptions (10. 

The r p weighted estimates for ψ

The goal of this section is to prove Theorem 5.3.5 in the case s = 0. The proof for higher order derivatives s ≤ k small + 29 will be provided in section 10.4.6.

Proof of Theorem 5.3.5 in the case s = 0. We write, in accordance to Proposition 10. We apply the first part of Proposition 10.2.7 to ψ replaced by ψ. This yields, using also (10.1.13),

DivP q ( ψ) = E q ( ψ) + f q ě4 ψ • Ň + f q ě4 ψ • f 2 e 4 + 3 r N,

where, with f = f q , X q = f q e 4 , w q = 2fq r , M q = 2r -1 f q e 4 , E q ( ψ) = E[X q , w q , M q ] = 1 2 f q |ě 4 ( ψ)| 2 + 1 2 2f q r f q Q 34 ( ψ) + Err q ( ψ), Err q ( ψ) : = Err , m r ; f q [ ψ]

= O m r 2 r q |e 4 ψ| 2 + O m r 4 + w 3,1 r q | ψ| 2 + O( )w 1,1 r q |e 4 ψ| 2 + |∇ / ψ| 2 + r -2 | ψ| 2 + O( )w 2,1/2 r q |e 4 ψ| + r -1 |∇ / ψ| |e 3 ψ| + |∇ / ψ| 2 + r -2 | ψ| 2 , P k ( ψ) = P[X q , w q , M q ]( ψ).

We then integrate on the domain M(τ 1 , τ 2 ) to derive, exactly as in the proof of Theorem 10.2.1 (see section 10. (E q + r q ě4 ( ψ) Ň ) + Ḟq [ ψ](τ 1 , τ 2 )

E q [ ψ](τ 1 ) + J q ψ, f 2 e 4 + 3 r N (τ 1 , τ 2 ).

Since all terms for r ≤ R can be controlled by one derivative of ψ, we infer E 1 max(q,δ) [ψ](τ ) + B 1 max(q,δ) [ψ](τ 1 , τ 2 ) E 1 max(q,δ) [ψ](τ 1 ) + J 1 max(q,δ) [ψ, N ](τ 1 , τ 2 ), (

In view of (10.3.4) and (10.3.5), it thus only remains to estimate the integral M ≥R (τ 1 ,τ 2 ) (E q + r q ě4 ( ψ) Ň ),

i.e. we need to derive the analog of (10.2.17 (E q + r q ě4 ( ψ) Ň ) ≥ 1 8 M ≥R (τ 1 ,τ 2 ) r q-1 (2 + q)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 2r -2 | ψ| 2

-O( ) sup

τ 1 ≤τ ≤τ 2 Ėq,R [ ψ](τ )
-O(1) E 1 max(q,δ) [ψ](τ 1 ) + J 1 max(q,δ) [ψ, N ] . Also, recall that we have for r ≥ R E q ( ψ) = E[X q , w q , M q ] = q 2 r q-1 |ě 4 ( ψ)| 2 + 2q 2 r q-1 Q 34 ( ψ) + Err q ( ψ).

Consequently, we write, (E q + r q ě4 ( ψ) Ň ) = I 0 + I 1 + I 2 , I 0 : = 1 2 r q-1 q|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 4(2q)r -2 ψ2 + 2r q-1 ě4 ψ(ě 4 ψr -1 ψ) = 1 2 r q-1 (q + 4)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 4(2q)r -2 ψ2 -4r -1 ě4 ψ ψ , I 1 : = r q-2 ě4 ( ψ) -6me 4 ψ + O(1)d ≤1 ψ + O m r r q-3 ( ψ) 2 , I 2 : = Err q ( ψ) + r q ě4 ( ψ)A 2 .

(10.3.7)

We will rely on the following two lemmas.

Lemma 10.3.3. The following lower bound estimate holds true for q ≤ 1δ and r ≥ R, where R is sufficiently large,

I 0 + I 1 ≥ 1 4
r q-1 (2 + q)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 2r -2 | ψ| 2 -O(1)r q-3 (d ≤1 ψ) (E q + r q ě4 ( ψ) Ň ) =

M ≥R (τ 1 ,τ 2 )

(I 0 + I 1 ) + M ≥R (τ 1 ,τ 2 ) I 2 ≥ 1 4 M ≥R (τ 1 ,τ 2 )
r q-1 (2 + q)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 2r -2 | ψ| 2

-O(1)

M ≥R (τ 1 ,τ 2 )
r q-3 (d ≤1 ψ) 2

-O( ) sup

τ 1 ≤τ ≤τ 2 Ėq,R [ ψ](τ ) + O m 0 R + Ḃq,R [ ψ](τ 1 , τ 2 )
-O( ) sup

τ 1 ≤τ ≤τ 2 E 1 q [ψ](τ ) + B 1 q [ψ](τ 1 , τ 2 ) + J q [ψ, N ](τ 1 , τ 2 )
so that, since 1δ < q ≤ 1δ, and for R sufficiently large and small 16 ,

M ≥R (τ 1 ,τ 2 )
(E q + r q ě4 ( ψ) Ň ) ≥ 1 8 M ≥R (τ 1 ,τ 2 ) r q-1 (2 + q)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 2r -2 | ψ| 2

-O( ) sup

τ 1 ≤τ ≤τ 2 Ėq,R [ ψ](τ ) -O( ) sup τ 1 ≤τ ≤τ 2 E 1 q [ψ](τ ) + B 1 q [ψ](τ 1 , τ 2 ) + J q [ψ, N ](τ 1 , τ 2 ) .
In view of (10.3.5), we infer M ≥R (τ 1 ,τ 2 ) (E q + r q ě4 ( ψ) Ň ) ≥ 1 8 M ≥R (τ 1 ,τ 2 ) r q-1 (2 + q)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 2r -O(1) E 1 max(q,δ) [ψ](τ 1 ) + J 1 max(q,δ) [ψ, N ] which concludes the proof.

It finally remains to prove Lemma 10.3.3 and Lemma 10.3.4.

Proof of Lemma 10.3.3. Note that, (q + 4)|ě 4 ψ| 2 -4r -1 (ě 4 ψ) ψ + 4(2q)r -2 | ψ| 2 = (q + 2)|ě 4 ψ| 2 + (6 -4q)r -2 | ψ| 2 + 2 ě4 ψr -1 ψ 2 ≥ (q + 2)|ě 4 ψ| 2 + (6 -4q)r -2 | ψ| 2 ≥ (q + 2)|ě 4 ψ| 2 + 2r -2 | ψ| 2 , where we used the fact that q ≤ 1δ. Hence, I 0 ≥ 1 2 r q-1 (2 + q)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 2r -2 | ψ| 2 .

We also have,

I 1 ≤ O m r r q-1 |ě 4 ψ| 2 + r -2 | ψ| 2 + O(1) r q-1 (ě 4 ψ) 2 1 2 r q-3 (d ≤1 ψ) 2 1 2 .
Thus if m 0 /R is sufficiently small, and since q ≤ 1δ, we deduce, for r ≥ R, I 0 + I 1 ≥ 1 4 r q-1 (2 + q)|ě 4 ψ| 2 + (2q)|∇ / ψ| 2 + 2r -2 | ψ| 2 -O(1)r q-3 (d ≤1 ψ) 2 as desired.

Proof of Lemma 10.3.4. Recall that I 2 = Err q ( ψ) + r q ě4 ( ψ)A + m r + r q-1 |ě 4 ψ| 2 + |∇ / ψ| 2 + r -2 | ψ| 2 + r q-2 τ -1 2 -δ dec |e 4 ψ||e 3 ψ| + r q-3 |∇ / ψ||e 3 ψ|. This yields, using q ≤ 1δ,

M ≥R (τ 1 ,τ 2 ) |I 2 | sup τ 1 ≤τ ≤τ 2 Ėq,R [ ψ](τ ) 1 2 sup τ 1 ≤τ ≤τ 2 E 1 q [ψ](τ ) + B 1 q [ψ](τ 1 , τ 2 ) 1 2 + m 0 R + Ḃq,R [ ψ](τ 1 , τ 2 )
+ sup M ≥R (τ 1 ,τ 2 ) r q-4 |e 3 ψ| 2 + sup

τ 1 ≤τ ≤τ 2 E 1 q [ψ](τ ) + B 1 q [ψ](τ 1 , τ 2 ) + M ≥R (τ 1 ,τ 2 )
r q-4 |e 3 ψ| 2 .
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Next, we estimate the term involving e 3 ψ. For this we need to appeal to the formula in Lemma 5.3.7 which we recall below, Since q ≤ 1δ, we infer

M ≥R (τ 1 ,τ 2 )
r q-4 |e 3 ψ| 2

(trap ) M(τ 1 ,τ 2 )

r 1-δ |N | 2 + B 1 q [ψ](τ 1 , τ 2 ) J q [ψ, N ](τ 1 , τ 2 ) + B 1 q [ψ](τ 1 , τ 2 )
and thus

M ≥R (τ 1 ,τ 2 ) |I 2 | sup τ 1 ≤τ ≤τ 2 Ėq,R [ ψ](τ ) + m 0 R + Ḃq,R [ ψ](τ 1 , τ 2 )
+ sup

τ 1 ≤τ ≤τ 2 E 1 q [ψ](τ ) + B 1 q [ψ](τ 1 , τ 2 ) + M ≥R (τ 1 ,τ 2 )
r q-4 |e 3 ψ| 2 + sup

τ 1 ≤τ ≤τ 2 E 1 q [ψ](τ ) + B 1 q [ψ](τ 1 , τ 2 ) + J q [ψ, N ](τ 1 , τ 2 ) .
which concludes the proof of Lemma 10.3.4.

CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS

Higher derivative estimates

We have proved, respectively in section 10.2 and section 10.3.2, Theorem 5.3.4 on basic weighted estimates (see Remark 10.2.2) and Theorem 5.3.5 on higher weighted estimates only in the case s = 0. In this section, we conclude the proof of these theorems by recovering higher order derivatives 17 one by one.

Basic assumptions

Recall that any Ricci coefficient either belongs to Γ g or Γ b , where Γ g and Γ b are defined in section 5.1.2. We make use of the following non sharp consequence of the estimates of Lemma 5. where we recall that δ dec and δ 0 are such that we have in particular 0 < 2δ 0 < δ dec .

Strategy for recovering higher order derivatives

So far, we have proved Theorem 5.3.4 in the case s = 0 18 in section 10.2, and Theorem 5.3.5 on higher weighted estimates in the case s = 0 in section 10.3. We now conclude the proof of these theorems by recovering higher order derivatives one by one. Since going from s = 0 to s = 1 is analogous to going from s to s + 1, we will in fact consider only the former. More precisely, we assume the following bounds proved respectively in section section 10.2 and section 10. E q [ ψ](τ ) + B q [ ψ](τ 1 , τ 2 ) E q [ ψ](τ 1 ) + Jq [ ψ, N ](τ 1 , τ 2 ) + E 1 max(q,δ) [ψ](τ 1 ) + J 1 max(q,δ) [ψ, N ],

(10.4.2)

and our goal is to prove the corresponding estimates for s = 1. We will proceed as follows 

+1 Υ≤2δ H 2 ψ + dT ψ + d ≤1 (Γ g )d 2 ψ + 1 δ 2 H d ≤1 ψ + 1 δ H 1 δ H ≤Υ≤2δ H d ≤2 ψ.
In particular, to derive weighted estimates for r d / 2 , we need to derive weighted estimates for solutions φ to wave equations of the type

( 1 -V 1 )φ = N,
where φ is a reduced 1-scalar and the potential V 1 is given by V 1 = V + K = -κκ + K. This is done in the following theorem.

Theorem 10.4.11. Let φ a reduced 1-scalar solution to

( 1 -V 1 )φ = N, V 1 = -κκ + K.
Then, φ satisfies for all δ ≤ p ≤ 2δ, 

and φ = f 2 ě4 φ satisfies for all 1δ < q ≤ 1δ,

sup τ ∈[τ 1 ,τ 2 ]
E q [ φ](τ ) + B q [ φ](τ 1 , τ 2 )

E q [ φ](τ 1 ) + Jq [ φ, N ](τ 1 , τ 2 ) + E 1 max(q,δ) [φ](τ 1 ) + J 1 max(q,δ) [φ, N ] + M(τ 1 ,τ 2 ) r q-3 | φ|(| φ| + |d φ|). (10.4.5)

Remark 10.4.12. Although we will not need it, we expect that the last 2 terms in the right-hand side of (10.4.4) and the last term in the right-hand side of (10.4.5) could be removed.

Proof. We start with the following observations.

• (10.4.5) is the analog of (10.4.1), i.e. of Theorem 5.3.5 in the case s = 0, with V replaced by V 1 , and with the reduced 2-scalar ψ replaced by the reduced 1-scalar φ.

The proof is in fact significantly easier in view of the presence of the term

M(τ 1 ,τ 2 )
r q-3 | φ|(| φ| + |d φ|) on the right-hand side of (10.4.5).
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• (10.4.4) is the analog of (10.4.2), i.e. of Theorem 5.3.4 in the case s = 0, with V replaced by V 1 , and with the reduced 2-scalar ψ replaced by the reduced 1-scalar φ.

The proof is in fact significantly easier in view of the presence of the terms on the right-hand side of (10.4.4).

• The boundary terms can be treated as in the proof of (10.4.1) and (10.4.2) in view of the fact that V 1 is a positive potential 20 .

• The only place where there might a potential difficulty concerns the proof of (10.4.5) in (trap) M where the second to last term on the right-hand side is required to have a more precise structure.

In view of the above observations, and in particular of the last one, we focus on recovering the bulk term leading to (10. We now choose a smooth h, compactly supported in [5/2m 0 , 7/2m 0 ], such that h(3m) = 0 and h (3m) = 1 22 . We infer r -2 (Υr 2 h) (3m) = 1/3 > 0 and hence

Ė[f R, w, M ](Ψ) ≥ f |R(Ψ)| 2 + r -1 1 - 3m r f |∇ / Ψ| 2 + Υ r 3 |Ψ| 2 +O 1 -3m r r 3 |Ψ|(|Ψ| + |R(Ψ)|)
. 20 We have

V 1 = -κκ + K = 4Υ + 1 + O( )
r 2 in view of the assumptions so that V 1 is indeed a positive potential.

1. as in section 10.2.3, we use the vectorfield f p e 4 as a multiplier, where f p = θ r 0 (r)r p e 4 and the cut-off θ r 0 (r) is equal to one in the region r ≥ r 0 and vanishes in the region r ≤ r 0 /2, 2. we rely on Proposition 10.2.7 to control the bulk and the boundary terms, 3. we use the fact that the prefactor of the term ě4 (re 4 ψ) on the right-hand side is positive for r ≥ 4m 0 , i.e. which is Theorem 5.3.4 in the case s = 1. We have thus deduced Theorem 5.3.4 in the case s = 1 from the case s = 0, i.e. (10.4.1). Since going from s = 0 to s = 1 is analogous to going from s to s + 1, higher order derivatives k ≤ k small + 30 are recovered in the same fashion. This concludes the proof of Theorem 5.3.4.

10.4.6 Proof of Theorem 5.3.5

We now conclude the proof of Theorem 5.3.5 for all 0 ≤ s ≤ k small + 29 by recovering higher derivatives s ≥ 1 one by one starting from the estimate s = 0 provided by (10.4.2). As explained in section 10.4.2, it suffices to recover the estimates for s = 1 from the one for s = 0 as the procedure to recover the estimate for s+1 from the one for s is completely analogous. We now follow the strategy outlined in section 10.4.2.

Recovering estimates for T ψ

Recall from Proposition 10. E q [T ψ](τ ) + B q [T ψ](τ 1 , τ 2 )

E q [T ψ](τ 1 ) + J q T ψ, N T + T f 2 e 4 + 3 r N (τ 1 , τ 2 ) +E 1 max(q,δ) [T ψ](τ 1 ) + J 1 max(q,δ) [T ψ, T N ] E q [T ψ](τ 1 ) + J1 q ψ, N (τ 1 , τ 2 ) + J q T ψ, N T (τ 1 , τ 2 ) +E 2 max(q,δ) [ψ](τ 1 ) + J 2 max(q,δ) [ψ, N ], so that it remains to estimate J q [T ψ, N T ](τ 1 , τ 2 ) = J q,4m 0 T ψ, N T (τ 1 , τ 2 ) = M ≥4m 0 (τ 1 ,τ 2 ) r q (ě 4 (T ψ))N T . 24 Here, unlike the proof of Theorem 5.3.4 above, the non sharp estimates of section 10.4.1 are not enough, and we need instead to rely on the stronger estimates provided by Lemma 5.1.1.
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We have, in view of the definition of N T , J q [T ψ, N T ](τ 1 , τ 2 ) M ≥4m 0 (τ 1 ,τ 2 ) r q (ě 4 (T ψ)) 1 τ 1+δ dec -2δ 0 e 4 d 2 ψ + r -1 d ≤2 ψ + M ≥4m 0 (τ 1 ,τ 2 ) r q (ě 4 (T ψ) ) 1

rτ 1 2 +δ dec -2δ 0 e 3 d ≤1 ψ + M ≥4m 0 (τ 1 ,τ 2 )
r q (ě 4 (T ψ)) 1

r 2 d ≤3 ψ + M ≥4m 0 (τ 1 ,τ 2 )
r q (ě 4 (T ψ))

r 2 d ≤2 ψ sup [τ 1 ,τ 2 ] Σ(τ )
r q (ě 4 (T ψ)) 2

1 2 sup [τ 1 ,τ 2 ] Σ(τ )
r q (e 4 d 2 ψ) 2 + r -2 (d ≤2 ψ) 2

1 2 + M r≥4m 0 (τ 1 ,τ 2 )
r q-2 (e 3 d ≤1 ψ) 2

1 2 + M(τ 1 ,τ 2 ) r q-3 (d ≤2 ψ) 2 + M(τ 1 ,τ 2 )
r q-1 (ě 4 (T ψ)) M(τ 1 ,τ 2 )

r q-3 (d ≤3 ψ) 2 1 2
which yields, using in particular the fact that q ≤ 1δ, J q [T ψ, N T ](τ 1 , τ 2 ) sup

[τ 1 ,τ 2 ]
E q [T ψ](τ )

1 2 sup [τ 1 ,τ 2 ]
E 2 max(q,δ) [ψ](τ ) + B 1 max(q,δ) [ψ](τ 1 , τ 2 )

1 2 + B 1 q [ ψ](τ 1 , τ 2 ) + B q [T ψ](τ 1 , τ 2 ) 1 2 B 2 max(q,δ) [ψ](τ 1 , τ 2 ) 1 2 .
We deduce

sup τ ∈[τ 1 ,τ 2 ] E q [T ψ](τ ) + B q [T ψ](τ 1 , τ 2 ) E q [T ψ](τ 1 ) + J1 q ψ, N (τ 1 , τ 2 ) + B 1 q [ ψ](τ 1 , τ 2 ) + sup [τ 1 ,τ 2 ]
E 2 max(q,δ) [ψ](τ ) + B 2 max(q,δ) [ψ](τ 1 , τ 2 ) + J 2 max(q,δ) [ψ, N ].

Together with Theorem 5. E q [T ψ](τ ) + B q [T ψ](τ 1 , τ 2 ) E q [T ψ](τ 1 ) + J1 q ψ, N (τ 1 , τ 2 ) + B 1 q [ ψ](τ 1 , τ 2 ) +E 2 max(q,δ) [ψ](τ 1 ) + J 2 max(q,δ) [ψ, N ]. (10.4.12) The estimate follows along the same lines as the above one for J q [T ψ, N T ](τ 1 , τ 2 ) so we leave the details to the reader. In the end, we arrive at the following analog of (10.4.12)

sup τ ∈[τ 1 ,τ 2 ]
E q [r d / 2 ψ](τ ) + B q [r d / 2 ψ](τ 1 , τ 2 )

E q [r d / 2 ψ](τ 1 ) + B q [ ψ](τ 1 , τ 2 ) + J1 q ψ, N (τ 1 , τ 2 ) + B 1 q [ ψ](τ 1 , τ 2 ) +E 2 max(q,δ) [ψ](τ 1 ) + J The rest follows along the same lines as the estimate for T ψ and we arrive at the following analog of (10.4.12)

sup τ ∈[τ 1 ,τ 2 ]
E q [re 4 ψ](τ ) + B q [re 4 ψ](τ 1 , τ 2 ) (10.4.14)

E q [re 4 ψ](τ 1 ) + B q [ ψ](τ 1 , τ 2 ) + B q [T ψ](τ 1 , τ 2 ) + B q [r d / 2 ψ](τ 1 , τ 2 ) + J1 q ψ, N (τ 1 , τ 2 ) + B 1 q [ ψ](τ 1 , τ 2 ) + E 2 max(q,δ) [ψ](τ 1 ) + J 2 max(q,δ) [ψ, N ]. 25 Notice that the coefficient in front of the term e 4 (re 4 ψ) in the RHS of the wave equation for re 4 ψ differs from the one in front of the term e 4 ψ in the RHS of the wave equation for ψ. Nevertheless, we may apply (10.4.2) with re 4 ψ instead of ψ since the only property of this coefficient which is used in that it is positive on r ≥ 4m 0 , i.e. Gathering the estimates (10.4.12), (10.4.13) and (10.4.14), we infer for any -1 + δ < q ≤ 1δ,

sup τ ∈[τ 1 ,τ 2 ] E 1 q [ ψ](τ ) + B 1 q [ ψ](τ 1 , τ 2 ) E 1 q [ ψ](τ 1 ) + J1 q [ ψ, N ](τ 1 , τ 2 ) + B q [ ψ](τ 1 , τ 2 )
+ B 1 q [ ψ](τ 1 , τ 2 ) + E 2 max(q,δ) [ψ](τ 1 ) + J 2 max(q,δ) [ψ, N ] and hence

sup τ ∈[τ 1 ,τ 2 ] E 1 q [ ψ](τ ) + B 1 q [ ψ](τ 1 , τ 2 ) E 1 q [ ψ](τ 1 ) + J1 q [ ψ, N ](τ 1 , τ 2 ) + B q [ ψ](τ 1 , τ 2 )
+E 2 max(q,δ) [ψ](τ 1 ) + J 2 max(q,δ) [ψ, N ].

In view of (10.4.2), we deduce

sup τ ∈[τ 1 ,τ 2 ] E 1 q [ ψ](τ ) + B 1 q [ ψ](τ 1 , τ 2 ) E 1 q [ ψ](τ 1 ) + J1 q [ ψ, N ](τ 1 , τ 2 )
+E 2 max(q,δ) [ψ](τ 1 ) + J 2 max(q,δ) [ψ, N ] which is Theorem 5.3.5 in the case s = 1. We have thus deduced Theorem 5.3.5 in the case s = 1 from the case s = 0, i.e. (10.4.2). Since going from s = 0 to s = 1 is analogous to going from s to s + 1, higher order derivatives k ≤ k small + 29 are recovered in the same fashion. This concludes the proof of Theorem 5.3.5.

More weighted estimates for wave equations

The goal of this section is to derive Theorem 10.5.2 and Proposition 10.5.4, see below, which is needed for the proof of Theorem M8 in Chapter 8. Recall that we have used so far in Chapter 10 the global frame of Proposition 3.5.5. For this last section of Chapter 10, we rely instead on the global frame used in Theorem M8, i.e. the one of Proposition 3.5.2, as it is more regular and allows us to derive estimates for up to k large derivatives. Note that the assumptions on the frame used in Chapter 10 are all consistent with η ∈ Γ b , so that all results in this chapter apply for the frame of Proposition 3.5.2.

Theorem 10.5.2. Let ψ a reduced 2-scalar, and φ a reduced 0-scalar satisfying respectively

( 2 + V 2 )ψ = N 2 , ( 0 + V 0 )φ = N 0 , V 2 = - 2 r 2 1 + 2m r , V 0 = 8m r 3 .
Also, assume that the Ricci coefficients and curvature components associated to the global null frame we are using satisfy the estimates of section 10. The proof of Theorem 10.5.2 relies on the following theorem.

Theorem 10.5.3. Let ψ a reduced scalar, and φ a reduced 0-scalar satisfying respectively T (φ)N 0 .

( 2 + V 2 )ψ = N 2 , ( 0 + V 0 )φ = N 0 , V 2 = -
Proof. The proof of Theorem 10.5.3 is analogous to the one of Theorem 10.4.11. The only differences are

• The treatment of the right-hand sides N 0 and N 2 in the spacetime region (trap) M.

• The boundary term on A(τ 1 , τ 2 ) ∪ Σ(τ 2 ) ∪ Σ * (τ 1 , τ 2 ) appearing in the right-hand side of27 (10.5.4).

The treatment of N 0 and N 2 is similar, so we focus on the one of N 2 . The only estimate in which N 2 appear in the trapping region is the Morawetz estimate. More precisely, it appear under the form, see (10.1.72),

(trap) M(τ 1 ,τ 2 )

f δ R(Ψ) + ΛT (Ψ) + 1 2 wΨ N 2 ,
where we recall that Λ is a constant, and f δ , w are functions which are in particular bounded on (trap) M. We infer T (Ψ)N 2 which yields the desired control provided λ > 0 is chosen small enough so that the term λB δ [ψ](τ 1 , τ 2 ) can be absorbed by the LHS in (10.5.3).

Concerning the boundary terms on A(τ 1 , τ 2 ) ∪ Σ(τ 2 ) ∪ Σ * (τ 1 , τ 2 ) appearing in the righthand side of (10.5.4), the potential V 0 does not appear in the boundary term of the r p weighted estimates, but it does appear in the boundary term of the energy estimates 28 . More precisely, it appears in and the control of the boundary terms follows. This concludes the proof of 10.5.3.

We are now in position to prove Theorem 10.5.2. Note first that we have , that one would a priori would expect in view of (10.5.4), is not present on the right-hand side of (10.5.2). Also, the estimates for ψ and φ are similar, so we focus on the estimate for ψ.

Proof of Theorem 10.5.2. The proof of Theorem 10.5.2 follows along the same lines as the one of Theorem 5.3.4. More precisely, following the strategy in section 10.4.2, we recover derivatives one by one starting from Theorem 10.5.3 and use it iteratively in conjonction with the commutator estimates of section 10.4.3. The only difference is the treatment of the derivatives for s ≥ k small + 1 as we assume that the estimates of section 10.4.1 for the Ricci coefficients and curvature components only hold for k ≤ k small derivatives. Thus, to conclude, we need to consider the terms for which at least k small + 1 derivatives fall on the Ricci coefficients and curvature components. Since on the other hand we have s ≤ k large -1, in view of the definition (3.3.7) of k small in terms of k large , and in view of the commutator estimates of section 10. Also, assume that the Ricci coefficients and curvature components associated to the global null frame we are using satisfy the estimates of section 10.4.1 for k ≤ k small derivatives. Then, for any 1 ≤ s ≤ k large -1, we have To estimate ψ in (int) M, we consider

ψ := κ r -2m 0 (1 + 2δ H ) 2m 0 δ H
where κ is a positive bump function κ = κ(r), supported in the region in (-∞, 1] and equal to 1 for (-∞, 0]. Since (int) M is included in r ≤ 2m 0 (1+2δ H ), we infer in particular ψ = ψ on (int) M, supp( ψ) ⊂ (int) M(τ 1 , τ 2 ) ∪ (ext) M r≤2m 0 (1+3δ H ) .

APPENDIX A. APPENDIX TO CHAPTER 2

Next, let ∂ u the coordinates vectorfield in the (u, s, θ, ϕ) coordinates system. We have In particular, choosing f = 1, we infer

1 |S| e 3 (|S|) = κ -ς -1 ς κ + ς -1 ςκ + Ω + ς -1 Ως κ -ς -1 Ω ς κ -ς -1 Ω ς κ = κ -ς -1 ς κ + ς -1 ς κ + Ω + ς -1 Ως κ -ς -1 Ω ς κ -ς -1 Ω ς κ.
Hence, since |S| = 4πr 2 , recalling the definition of A,

2e 3 (r) r = κ -ς -1 ς κ + ς -1 ς κ + Ω + ς -1 Ως κ -ς -1 Ω ς κ -ς -1 Ω ς κ = κ + A.
This concludes the proof of Proposition 2.2.9.

A.2 Proof of Proposition 2.2.16

We start with the proof for e 4 (m). Recall that the Hawking mass m is given by the formula 2m r = 1 + Err[e 3 (κκ)] = κ 2η 2 -1 2 ϑϑ + 2κ η -3ζ ξ -1 2 κϑ 2 .

We infer We first derive the transformation formulae for κ. We have, under a transformation of type (2. We recall that the lower order terms we denote by l.o.t., here and throughout the proof, are linear with respect Γ = {ξ, ξ, ϑ, κ, η, η, ζ, κ, ϑ} and quadratic or higher order in f, f , and do not contain derivatives of these latter. We also recall that χ = 1 2 (κ + ϑ), χ = 1 2 (κ + ϑ).

E 1 + m r A = -ς -
+ Ω + ς -1 Ως 1 2 κ 2 - 1 4 ϑ 2 -κ 2 -ς -1 Ω ς 1 2 κ 2 - 1 4 ϑ 2 -ς κ κ -ς -
Next, we compute This yields 2ξ = -

1 2 λ -1 f e 3 f f + 1 8 f 2 f 2 + λ -1 1 + 1 2 f f e 3 f 1 + 1 4 f f - 1 4 λ -1 f 1 + 1 4
f f e 3 (f 2 ) + λ -1 g D e 3 e 3 , e θ + λ -1 f g D e 3 e θ , e θ + l.o.t.

= -

1 2 λ -1 f e 3 f f + 1 8 f 2 f 2 + λ -1 1 + 1 2 f f e 3 f 1 + 1 4 f f - 1 4 λ -1 f 1 + 1 4
f f e 3 (f 2 ) + 2λ -2 ξ + λ -2 f χ + 2λ This yields 4ω = 2e 3 (log(λ))e 3 f f + 1 8 If ξ = 0, we infer 2ξ + e 4 + f e θ + 1 4

f 2 f 2 + f e 3 f 1 + 1 4 f f - 1 8 f 2 e 3 (f 2 ) +4λ -1 1 + 1 2 f f ω -2λ -1 f ζ -λ -1 f 2 ω + 2λ -1 f f ω +2λ -1 f ξ + λ -1 f f χ -2λ -1 f η -λ -
f 2 e 3 f + 1 2 f 2 η + 1 4 f 3 χ + 1 8 f 4 ξ + 1 2 f 4ω + 2f ζ -f 2 ω -2ηf -f 2 χ - 1 2 f 3 ξ = λ 2 2ξ + e 4 + f e θ + 1 4 f 2 e 3 f + f χ + 2f ω + 1 2 f 2 η - 1 2 f 2 η + f 2 ζ - f 3 χ - 1 2 f 3 ω - 1 
f 2 e 3 f + f χ + 2f ω + 1 2 f 2 η - 1 2 f 2 η + f 2 ζ - 1 4 f 3 χ - 1 2 f 3 ω - 1 8 f 4 ξ = 0
and hence

λ -1 e 4 (f ) + κ 2 + 2ω f = -2ξ - 1 2 ϑf - 1 2 f 2 η + 1 2 f 2 η -f 2 ζ + 1 8 f 3 κ + 1 2 f 3 ω + 1 8 f 3 ϑ + 1 8 f 4 ξ
which yields the desired transport equation for f λ -1 e 4 (f ) + κ 2 + 2ω f = -2ξ + E 1 (f, Γ),

E 1 (f, Γ) = - 1 2 ϑf - 1 2 f 2 η + 1 2 f 2 η -f 2 ζ + 1 8 f 3 κ + 1 2 f 3 ω + 1 8 f 3 ϑ + 1 8 f 4 ξ.
Also, if ξ = 0 and ω = 0, we infer 0 = 4ω -2 e 4 + f e θ + 1 4

f 2 e 3 log(λ) + 2f ζ -f 2 ω -2ηf -f 2 χ - 1 2 f 3 ξ
and hence

λ -1 e 4 (log(λ)) = 2ω + f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ - 1 4 f 2 ϑ - 1 4 f 3 ξ
which yields the desired transport equation for log(λ)

λ -1 e 4 (log(λ)) = 2ω + E 2 (f, Γ), The second equation is the desired identity for log(λ).

E 2 (f, Γ) = f ζ - 1 2 f 2 ω -ηf - 1 4 f 2 κ - 1 4 f 2 ϑ - 1 4 f 3 ξ.
We still need to derive the first and the third identities. We start with the first one. We have This concludes the proof of Corollary 2.3.7.

A.9 Proof of Lemma 2.3.5

Recall that we have obtained in section A.7 2ξ = λ 2 2ξ + e 4 + f e θ + 1 4

f 2 e 3 f + 1 2 κ + 2ω f + 1 2 ϑf + 1 2 f 2 η - 1 2 f 2 η + f 2 ζ - 1 4 f 3 χ - 1 2 f 3 ω - 1 8 f 4 ξ , 4ω = λ 4ω -2 e 4 + f e θ + 1 4 f 2 e 3 log(λ) + 2f ζ -f 2 ω -2ηf -f 2 χ - 1 2 f 3 ξ +λ -1 f ξ .
In the case where λ = 1 and f = 0, we immediately infer 2ξ = 2ξ + e 4 + f e θ + 1 4

f 2 e 3 f + 1 2 κ + 2ω f + 1 2 ϑf + 1 2 f 2 η - 1 2 f 2 η + f 2 ζ - 1 4 f 3 χ - 1 2 f 3 ω - 1 8 f 4 ξ, 4ω = 4ω + 2f ζ -f 2 ω -2ηf -f 2 χ - 1 2 f 3 ξ,
and hence The equation for α can then be easily inferred by symmetry.

ξ = ξ + 1 2 e 4 (f ) + 1 4 κ + ω f + 1 4 ϑf + 1 4 f 2 η - 1 4 f 2 η + 1 2 f 2 ζ - 1 8 f 3 χ - 1 4 f 3 ω - 1 16 f 4 ξ, ω = ω + 1 2 f ζ - 1 4 f 2 ω - 1 2 ηf - 1 8 f 2 κ - 1 8 f 2 ϑ - 1 8 f 3 ξ.
Proof. We make use of the Bianchi identities Proof. We calculate (X) π αβ = g(D eα X, e β ) + g(D e β X, e α ), (X) π 44 = 0 (X) π 43 = -2e 4 f + 4f ω (X) π 4θ = 2f ξ (X) π AB = 2f (1+3) χ AB (X) π 3θ = 2f (η + ζ) (X) π 33 = -8f ω -4e 3 (f )

We deduce, for (X) π = (X) π -(X) Λg = (X) π -2f r g, 
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1. 1 .

 1 BASIC NOTIONS IN GENERAL RELATIVITY 29 outer communication r > 2m, which is thus entirely free of singularities. The same holds true in any Kerr solution with 0 ≤ |a| ≤ m.
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 19 Figure 1.9: Behavior of null geodesics outside and inside the black hole
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 2 (a) At the level of the metric itself, i.e. if G denotes the Einstein tensor, G αβ = R αβ -1 Rg αβ , G (g 0 ) δg = 0. (1.2.1) (b) Via the Newman-Penrose (NP) formalism, based on null frames.
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 110 Figure 1.10: The GCM admissible space-time M

.1. 7 ) 2 . 1 . 3 .

 7213 Remark The wave equation in (2.1.4) is equivalent to g Φ = 0.(2.1.8)

Lemma 2 . 1 . 5 .

 215 Setting (Λ α ) βγ := g(D α e γ , e β ) we have,(Λ ϕ ) aϕ = -D a Φ, (Λ ϕ ) ab = (Λ a ) bϕ = 0, ∀a = 0, 1, 2, (2.1.9) and, D a e b = D a e b , D a e ϕ = 0, D ϕ e a = (Λ ϕ ) ϕa e ϕ = (D a Φ)e ϕ , D ϕ e ϕ = (Λ ϕ ) aϕ e a = -D a Φe a .

CHAPTER 2 .

 2 PRELIMINARIESwe consider all frame components of DU with respect to our adapted equivariant frame e 1 , e 2 , e 3 , e ϕ . Assume first that the components of DU contain only one e ϕ . These are,D ϕ U a , D a U bϕcwith various combinations of horizontal indices a, b, c. Now, in view of the polarization property of U and the relations D a e b = D a e b , D a e ϕ = 0 we easily deduce, D a U bϕc = e a U bϕc -U Dabϕc -U bDaϕc -U bϕc = 0.

2 .

 2 1+3) f ) θ...θ = e θ (f ) + ke θ (Φ)f.(2.1.18) If f ∈ S 0 we have,d / 1 f = -e θ (f ). 3. If (1+3) f ∈ S k-1 , k ≥ 2, such that (1+3) f θ...θ = f we have, 2( D / k (1+3) f ) θ...θ = -e θ (f ) + (k -1)e θ (Φ)f. (2.1.19) 

Remark 2 . 1 . 22 .

 2122 The operator d

Remark 2 . 1 . 24 .∂Proposition 2 . 1 . 25 .

 21242125 The duality between the operators d / k and d / k follows in view of the duality of D / k and D / k . It can also be interpreted directly in terms of the area element√ γe Φ dθdϕ, S ( d / k f gf d / k g)da S = S e θ (f g) + e θ (Φ)f g = θ (f g) + e θ (Φ)f g) √ γe Φ dθdϕ = θ (e Φ f g)dθdϕ = 0.The following identities hold true,

2 = 2 =

 22 e θ (f )) + e θ (Φ)e θ f + k -Ke θ (Φ)2 fk(k -1) e θ (Φ) e θ (e θ (f )) + e θ (Φ)e θ f -kKfk 2 e θ (Φ) / k f -kKf. Similarly, for a (k -1)-reduced f , d / k d / k f = (e θ + ke θ (Φ))(e θ (f ) -(k -1)e θ (Φ)f ) = e θ (e θ (f )) + ke θ (Φ)e θ f -(k -1)(e θ e θ Φ)f -(k -1)e θ (Φ)e θ (f ) k(k -1) e θ (Φ) 2 f = e θ (e θ (f )) + e θ (Φ)e θ f -(k -1) -Ke θ (Φ) 2 fk(k -1) e θ (Φ) 2 f = e θ (e θ (f )) + e θ (Φ)e θ f + (k -1)Kf -(k -1) 2 e θ (Φ) 2 f = / k-1 f + (k -1)Kf.

Hence, 2 - 1 S 2 S∂e

 212 |∇ / F | 2 da S = S (e θ f -2e θ (Φ)f ) 2 da S + e θ (f 2 )e θ (Φ) √ γe Φ dθdϕ. Now, S e θ (f 2 )e θ (Φ) √ γe Φ dθdϕ = θ (f 2 )e θ (Φ)e Φ dθdϕ =θ e θ Φ + (e θ Φ) 2 f 2 e Φ √ γdθdϕ = S Kf 2 da S .CHAPTER 2. PRELIMINARIESHigher derivative operators and spaces Definition 2.1.36. Given f a k-reduced scalar and s a positive integer we define,

( 2 . 1 . 40 )a( 1 -

 21401 Proof. Assume a ≥ b and c ≤ a-b 2 . We write,d / a+b-2c (f g) = f d / b g + g (e θ f + (a -2c)e θ (Φ)f ) .We look for reals A, B wit A + B = 1 such thate θ f + (a -2c)e θ (Φ)f = A d / a f -B d / a+1 f = e θ f + a(A -B)e θ Φf.Therefore, 2B) = a -2ci.e. B = c a , A = 1 -c a and we derive,d / a+b-2c (f g) = f d / b g + g 1 -a+b-2c+1 (f g) = f d / b+1 g + g (-e θ (f ) + (a -2c)e θ (Φ)f ) .As before we write, withA + B = -1 -e θ (f ) + (a -2c)e θ (Φ)f = A d / a f -B d / a+1 f = -e θ f + a(A -B)e θ Φf.Hence,a(-1 -2B) = a -2c i.e. B = -1 + c a , A = -c a . Hence, d / a+b-2c+1 (f g) = f d / b+1 g + g -

χinterchanging e 3 , e 4 ,χ

 34 AB : = g(D A e 4 , e B ), AB : = g(D A e 3 , e B ), 3 e 3 , e 4 ).

Definition 2 . 1 . 45 (D θ e θ = 1

 21451 Ricci coefficients). Let e 3 , e 4 , e θ be a reduced null frame. The following scalars χ = g(D θ e 4 , e θ ), χ = g(D θ e 3 , e θ ), are called the Ricci coefficients associated to our canonical null pair. Lemma 2.1.46. The following lemma follows easily from the definitions, D 4 e 4 = -2ωe 4 + 2ξe θ , D 3 e 3 = -2ωe 3 + 2ξe θ , D 4 e 3 = 2ωe 3 + 2ηe θ , D 3 e 4 = 2ωe 4 + 2ηe θ , D 4 e θ = ηe 4 + ξe 3 , D 3 e θ = ξe 4 + ηe 3 , D θ e 4 = -ζe 4 + χe θ , D θ e 3 = ζe 3 + χe θ ,

  θ = η, (1+3) η θ = η, (1+3) ζ θ = ζ, (1+3) ξ θ = ξ, (1+3) ξ θ = ξ,

[e θ , e 3

 3 ϑ)e θ + (ζη)e 3ξe 4 , [e θ , e 4 ] = 1 2 (κ + ϑ)e θ -(ζ + η)e 4ξe 3 , [e 3 , e 4 ] = 2ωe 4 -2ωe 3 + 2(ηη)e θ .

1 )ηe 4

 14 Φf + ξ(e 3 f -(k -1)e 3 (Φ)f ) -(k -1)βf.(2.1.47) Proof. We write,[e θ + ke θ (Φ), e 3 ]f = [e θ , e 3 ]fk(e 3 e θ Φ)f. Recall that (see (2.1.4)), D a D b Φ = R ab -D a ΦD b Φ. Hence, e 3 e θ Φξe 4 Φηe 3 Φ = D 3 D θ Φ = R 3θ -D 3 ΦD θ Φ = βe 3 Φe θ Φ.Thus, e 3 e θ Φ = βe 3 Φe θ Φ + ηe 3 (Φ) + ξe 4 Φ.We deduce, since e 3 Φ =1 2 (κϑ),[e θ + ke θ (Φ), e 3 ]f = [e θ , e 3 ]fk βe 3 Φe θ Φ + ηe 3 (Φ) + ξe 4 Φ f ϑ)e θ f + (ζη)e 3 fξe 4 fk βe 3 Φe θ Φ + ηe 3 (Φ) + ξe 4 Φ f ϑ)e θ f + k 1 2 (κϑ)e θ Φf + (ζη)e 3 fkηe 3 Φfξ(e 4 f + ke 4 (Φ)f )kβf θ fke θ Φf ) + (ζη)e 3 fkηe 3 Φfξ(e 4 f + ke 4 (Φ)f )kβf i.e.,recalling the definition of d / k+1 , [e θ + ke θ (Φ), e 3

e 3 ( 2 2 +

 322 = 2div / ξ -2ωtrχ + 2ξ • (η + η -2ζ)χ • χ 2ω κ = 2(e θ ξ + e θ (Φ)ξ) + 2(η + η -2ζ)ξ -∇ / ⊗η + 2ω χ -1 2 trχ χ + ξ ⊗ξ + η ⊗η becomes, e 4 ϑ + 1 2 κ ϑ -2ωϑ = 2(e θ ηe θ (Φ)η) -1 2 trχ ϑ + 2(ξ ξ + η 2 ).

Applying the vectorfield [e 4 3

 43 , e θ ] = (η + ζ)e 4 + ξe 3χe θ to s, and since e 4 (s) = 1 and e θ (s) = 0, we derive, η + ζ = 0. Next, note that e 3 (u) = g(e 3 , -L) = -ς -1 g(e 3 , e 4 , e θ ] = ξe 4 + (ηζ)e 3χe θ to u and making use of the relation e 4 (u) = e θ (u) = 0 we deduce, (ηζ)e 3 (u) = e 3 (e θ u)e θ e 3 (u) = -e θ e 3 (u) CHAPTER 2. PRELIMINARIES which together with the identity ς = 2/e 3 (u) yields ηζ = -e θ log(e 3 u) = -e θ log 2 ς = e θ (log ς) and hence e θ (log ς) = ηζ. Applying the vectorfield [e 3 , e θ ] = ξe 4 + (ηζ)e 3χe θ to s we deduce, since e 4 (s) = 1, e θ (s) = 0 and e 3 (s) = Ω, e θ (Ω) = -ξ -(ηζ)Ω. Finally applying [e 4 , e 3 ] = -2ωe 4 -2(ηη)e θ + 2ωe 3

e 4 S f e Φ = S e 4 e 3 3 S f e Φ = S e 3 3 S

 443333 (f e Φ ) + κf e Φ = S e 4 (f ) + (κ + e 4 Φ)f e Φ (f e Φ ) + κf e Φ + Err e (f ) + (κ + e 3 Φ)f e Φ + Err e

( 2 . 2 . 25 )

 2225 Proof. We have, recalling Lemma 2.1.42 and |S| = 4πr 2 , e 4 (f ) = e 4 S f |S| = 1 |S| S (e 4 (f ) + κf ) -e 4 (|S|) |S| f = e 4 (f ) + κf -2 e 4 r r f = e 4 (f ) + κ fκ f = e 4 (f ) + κ f . This also yields e 4 ( f ) = e 4 (f )e 4 (f ) = e 4 (f )e 4 (f )κ f as desired.

. 2 [e 3 + 3 +

 233 Recall that [e 3 , e 4 ] = 2ωe 4 + 2(η + ζ)e θ . Thus, [T, e 4 ] = 1 Υe 4 , e 4 ] = 1 2 2ωe 4 + 2(η + ζ)e θe 4 1 -Υe 4 , e 3 ] = 1

[e 4

 4 , e θ ] = (η + ζ)e 4 + ξe 3χe θ = -χe θ so that e 4 e θ (θ) = [e 4 , e θ ](θ) = -χe θ (θ) = -χγ -1/2 .

CHAPTER 2 .

 2 PRELIMINARIES(u, r, θ, ϕ) coordinates Proposition 2.2.23. Consider, in addition to the functions u, r, ϕ an additional Z invariant function θ. Relative to the coordinates (u, r, θ, ϕ) the following hold true, 1. The spacetime metric takes the form,

Lemma 2 . 2 . 30 . 3

 22303 The quantity a defined in (2.2.54) vanishes on the axis of symmetry and verifies the following identities in an outgoing geodesic foliation, e 4 (a) = (κϑ)e 2Φ r 2 + 2e θ (e Φ ) βe 4 (Φ)ζ e Φ , e θ (a) = 2e θ (Φ)e 2Φ ρ (a) = κ -Aϑ e 2Φ r 2 + 2e θ (e Φ ) β + e 3 (Φ)η + ξe 4 (Φ) e Φ , and analog identities hold in an ingoing geodesic foliation.

( 3 )Remark 2 . 3 . 2 .

 3232 • type(1) • type[START_REF] Aksteiner | Gaugeinvariant perturbations of Schwarzschild spacetime[END_REF] where the type 1 transformations fix e 3 , i.e.(λ = 1, f = 0), type 2 transformations fix e 4 , i.e. (λ = 1, f = 0) and type 3 transformations keep the directions of e 3 , e 4 i.e. (f = f = 0). Note that f, f are reduced from spacetime 1 forms while λ is reduced from a scalar. Remark 2.3.3. A transformation consistent with O( )-Schwarzschild spacetimes must have f, f = O( ) and a := log λ = O( ). Proposition 2.3.4 (Transformation formulas). Under a general transformation of type (2.3.3), the Ricci coefficients and curvature components transform as follows:

trχe 4 ψ, D 3 D

 3 4 ψ = e 3 e 4 ψ -2ωe 4 ψ -2ηe θ ψ, D 4 D 3 ψ = e 4 e 3 ψ -2ωe 3 ψ -2ηe θ ψ.

Definition 2 . 4 . 2 . 2 (e 3 e 4 +

 24224 Given a reduced k-scalar ψ ∈ s k we define,k ψ = -1 e 4 e 3 ) ψ + / k ψ + (ω -1 2 trχ)e 4 ψ + (ω -12trχ)e 3 ψ + (η + η)e θ ψ.

Remark 2 . 4 . 4 .

 244 Recall that (recall Definition 2.1.20), / k f := e θ (e θ f ) + e θ (Φ)e θ fk 2 e θ (Φ) 2 f.

.4. 3 )

 3 with V a scalar potential. In what follows we give simple spacetime interpretation of the equation (see Appendix D for more details).

  a) The past outgoing null boundary of the far region (ext) L 0 is denoted by C (0,L 0 ) . (b) The past incoming null boundary of the near region (int) L 0 is denoted by C (0,L 0 ) . (c) (ext) L 0 is unbounded in the future outgoing null directions. (d) The future outgoing null boundary of the far region (ext) L 0 is denoted by C (2,L 0 ) .

dϕ 2 .Figure 3 . 1 :

 231 Figure 3.1: The initial data layer L 0

2 .

 2 where (a) The past boundary C 1 ∪ C 1 is included in the initial data layer L 0 , defined in section 3.1.1, in which the metric on M is specified to be a small perturbation of the Schwarzschild data. (b) The future spacelike boundary of the far region (ext) M is denoted by Σ * . (c) The future outgoing null boundary of the far region (ext) M is denoted by C * . (d) The future incoming null boundary of the near region (int) M is denoted by C * . (e) The future spacelike boundary of the near region (int) M is denoted by A. (f ) The time-like boundary T , separating (ext) M from (int) M, starts at C 1 ∩ C 1 and terminates at C * ∩ C * . Foliations of M and adapted null frames. The spacetime M = (ext) M∪ (int) M is foliated as follows (a) The far region (ext) M is foliated by two functions (u, (ext) s) such that • u is an outgoing optical function on (ext) M, initialized on Σ * , whose leaves are denoted by C(u). • (ext) s is an affine parameter along the level hypersurfaces of u, i.e. L( (ext) s) = 1 where L := -g ab ∂ b u∂ a .

.3. 1 ) 3 )

 13 CHAPTER 3. MAIN THEOREM Then, and 0 are chosen such that 0 , min δ H , δ dec , δ B , Using the definition of 0 , we may now precise the behavior (3.1.2) of r on Σ * inf

.4. 10 ) 4 = e 4 + f e θ + 1 4 f 2 e 3 , e θ = e θ + 1 2 f e 3 ,e 3 = e 3 ,

 10443333 Let (e 4 , e 3 , e θ ) the outgoing geodesic null frame of (ext) M. There exists another frame (e 4 , e 3 , e θ ) of (ext) M provided by e such that the Ricci coefficients and curvature components with respect to that frame satisfy ξ = 0,10 Recall from (3.3.1) and (3.3.7) that we have 0

  (a) In(ext) M \ Match, we have ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ . CHAPTER 3. MAIN THEOREM (b) In (int) M \ Match, we have ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (int) e 4 , (int) e 3 , (int) e θ .

3 . 3 )

 33 (3.3.4), we have [1, 1 + δ 0 ] ⊂ U.

Figure 3 . 3 :

 33 Figure 3.3: The Penrose diagram of the space-time M

  S(u, s) denote the 2-spheres of the outgoing geodesic foliation (u, s) on R.

3 .

 3 The area radius r S and Hawking mass m S of S verify,

2 . 3 .

 23 The transition functions (f, f , log λ) verify the estimates (3.7.26). The area radius r S and Hawking mass m S of S verify (3.7.27).

.7. 32 ) 4 . 5 . 6 .

 32456 Under the additional transversality condition 20 on Σ 0 e S 4 (u S ) = 0, e 4 (r s ) = r S 2 κ S = 1. (3.7.33) the Ricci coefficients η S , ξ S are well defined and verify, S η S e Φ = S ξ S e Φ = 0. (3.7.34) The transition functions (f, f , log λ) verify the estimates (3.7.26). The area radius r S and Hawking mass m S of S verify (3.7.27).

3. 8 . 1 Step 1 .

 811 Discussion of Theorem M0 Recall our GCM conditions on S * = Σ * ∩ C * S * e θ (κ)e Φ = 0, S * βe Φ = 0.

Lemma

  

2 . 26 .

 226 So we only focus on the third claim, i.e. on estimating Ω, Ω, ς, ς, γ, b, b and e Φ . The proof of Propositions 3.4.3 and 3.4.4 thus reduces to the proof of the following lemma.

CHAPTER 4 . 4 . 3 . 1 .

 4431 CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONSLemma Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (2.2.52), i.e.

4

 4 and ν is tangent to Σ * , with c Σ * a constant, and SP denoting the south pole of the spheres of Σ * . We deduce on the south poles of Σ * 0 = ν(u + r) = e 3 (u) + e 3 (r) + ae 4 (r) = 2 ς + e 3 (r) -1 + 2m r e 4 (r) 218 CHAPTER 4. CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS and hence 2

Lemma 4 . 3 . 3 .

 433 Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (2.2.52). Then, we have on M re θ (Φ) = sin θ where is a reduced 1-scalar satisfying sup M | | ≤ 2.

Lemma 4 . 3 . 4 .

 434 Let θ ∈ [0, π] be the Z-invariant scalar on M defined by (2.2.52). Then, for any reduced 1-scalar h, we have on any 2-sphere S on (ext) M and of(int) 

4. 6 . 1

 61 Proof of Proposition 3.5.2

Remark 4 . 6 . 3 .

 463 Recall that the smooth cut-off function ψ in Definition 3.5.1, allowing to define ψ m 0 ,δ H , is such that we have in particular ψ = 0 on (-∞, 0] and ψ = 1 on [1, +∞). The following two special cases correspond to the properties (d) i. and (d) ii. of Proposition 3.5.2.

6 . 3 )

 63 on C * ∩Match and (4.6.4) on C * ∩ Match, we have r = r, m = m on T ∪ Match. (4.6.5)

  M∩Match u 1+δ dec d k (e 4 (r) -1, e 3 (r) + Υ, e θ (r), e 4 (m), e 3 (m), e θ (m)) , max 0≤k≤k large -1 (int) M∩Match d k (e 4 (r) -1, e 3 (r) + Υ, e θ (r), e 4 (m), e 3 (m), e θ (m))

.6. 6 )

 6 CHAPTER 4. CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONSRemark 4.6.10. Recall that the smooth cut-off function ψ in Definition 3.5.4, allowing to define ψ m 0 ,δ H , is such that we have in particular ψ = 0 on (-∞, 0] and ψ = 1 on [1, +∞). The following two special cases correspond to the properties (d) i. and (d) ii. of Proposition 3.5.5.

Lemma 5 . 1 . 1 .

 511 Consider the global frame of Proposition 3.5.5 and the above definition 3 of Γ g and Γ b . Let an integer k loss and a small constant

2 (e 4 + 2 (e 4 -

 2424 Υe 3 ) , R := 1 Υe 3 ) . (5.1.10) Let θ a smooth bump function equal 1 on |Υ| ≤ δ 1 10

  Remark 5.1.4. Note that Ȓ + T = e 4 , -Ȓ + T = e 3 in (int) M and Ȓ + T = Υ -1 e 4 , -Ȓ + T = e 3 in M >4m 0 . CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1)

( 5 . 1 . 20 )

 5120 CHAPTER 5. DECAY ESTIMATES FOR Q (THEOREM M1) and E p [ψ](τ ) := E[ψ](τ ) + Ėp ; 4m 0 [ψ](τ ). (5.1.21) Here ě4 denotes the first order operator ě4 ψ = r -1 Υ -1 e 4 (rψ). (5.1.22) Remark 5.1.6. To control the weighted quantities (5.1.21), it will be convenient to introduce in (ext) M(r ≥ 4m 0 ) the following renormalized frame e 4 = Υ -1 e 4 , e 3 = Υe 3 , e θ = e θ .

270CHAPTER 5 .

 5 DECAY ESTIMATES FOR Q (THEOREM M1) Proposition 5.2.4. On any S = S(τ, r) ⊂ Σ(τ ), for s ≤ k small + 25,

  3.1. (5.3.21) and (5.3.22) yield k≤s

re 3 e 4 ψ 2

 42 = e 3 (re 4 ψ) -(e 3 r)e 4 ψ = e 3 (e 4 (rψ)e 4 (r)ψ) -(e 3 r)e 4 ψ = e 3 e 4 (rψ)e 4 (r)e 3 ψ -(e 3 r)e 4 ψ -(e 3 e 4 r)ψ. Hence, r 2 ψ = -e 3 e 4 (rψ) + e 4 (r)e 3 ψ + (e 3 r)e 4 ψ + (e 3 e 4 r)ψ + r / 2 ψ + r 2ω -1 2 κ e 4 ψ -1 2 rκe 3 ψ + 2rηe θ ψ = -e 3 e 4 (rψ) + r / ψ + e 4 r -1 2 rκ e 3 ψ + e 3 r -1 2 rκ + 2rω e 4 ψ + 2rηe θ ψ = -e 3 e 4 (rψ) + r / ψ + r Ae 3 ψ + r 2 (A + 4ω) e 4 ψ + 2rηe θ ψ i.e., e 3 e 4 (rψ) = -r 2 ψ + r / 2 ψ + r 2 Ae 3 ψ + r 2 (A + 4ω) e 4 ψ + 2rηe θ ψ.

  Also, we have [re 4 , e 4 r] = [re 4 , e 4 ]r + e 4 [re 4 , r] = -e 4 (r)e 4 re 4 re 4 (r) = -2e 4 r + r -1 d and we infer by induction, schematically, [(re 4 ) j , e 4 r] = e 4 r(re 4 ) ≤j-1 + r -1 d ≤j so that, together with [d k-j , e 4 r] = r -1 d ≤k-j , we infer [d k , e 4 r] = [(re 4 ) j d k-j , e 4 r] = e 4 r(re 4 ) ≤j-1 d k-j + r -1 d ≤k .

Lemma 6 . 1 . 1 .

 611 Consider the global null frame (e 3 , e 4 , e θ ) constructed in Proposition 3.5.5.

Lemma 6 . 1 . 3 . 1 γ[p] 1 r 2+l u 1 2 +δextra + r 1+l u 1+δextra 1 r 1 2

 61311111 Let p ∈ (ext) M. Let γ[p] the unique integral curve of e 3 starting from a point on C 1 terminating at p. Then, we have for l ≥ 1+l (2r + u) +δextra + r l (2r + u) 1+δextra

Corollary 6 . 1 . 4 .r 2+l u 1 2

 6141 Let ψ a solution of the following transport equation e 3 (ψ) = h on (ext) M. Let also 0 < u 1 ≤ u * . Then • If h and ψ satisfy for l ≥ 1 |h| 0 +δextra + r 1+l u 1+δextra on (ext) M(u ≤ u 1 ) and |ψ| 0 r l+ 3 2 +δextra on C 1 , we have sup (ext) M(u≤u 1 )

6. 1 .

 1 PROOF OF THEOREM M2 319 6.1.4 Decay estimates for α

Lemma 6 . 1 . 8 . 3 e 3 d / k e j 4 α κ 2 -/ k ,e j 4 = F 2

 61834242 For 0 ≤ k + j ≤ k small + 20, we have e F 1, d

2

 2 d /, e 3 ) k (re 4 ) j α| + r|( d /, e 3 ) k (re 4 ) j e 3 α| 0 and hence max 0≤k≤k small +20 sup (ext) M(u≤u 1 ) r 2 (2r + u) 1+δextra log(1 + u) + r 3 (2r + u) 1 +δextra |d k α| + r|d k e 3 α| 0 .

3 . 15 )r 4 ρ κe 4 - 2 r 4 ρ κe 4 -

 315424 that we have e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) = r 7 d / 2 d / 1 d / 1 d / 2 α + 3 2 ρ κe 4κe 3 α + Err[T S]. κe 3 α + r 4 d / 2 d / 1 d / 1 d / 2 α = 1 r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq)r -3 Err[T S]. Now, we have in view of the definition of T 3 κe 3 -6m T

r 2 e 3 2 r 4 ρ κe 4 -

 324 (rq)) + 2ωr 2 e 3 (rq)r -3 Err[T S]. Now, we have in view of the definition of ν 3 κe 3 -6m ν

3 .0 4 ) 6 . 7 . 8 . 2 A

 346782 Let ν * = e 3 + a * e 4 be the unique vectorfield tangent to the hypersurface Σ * , perpendicular to the foliation S(u) induced on Σ * and normalized by the condition g(ν * , e 4 ) = -2. The following normalization condition holds true at the South Pole SP of every sphere S, u 1+δ dec * on Σ * . (7.1.2) 5. The following GCM conditions hold on Σ * Moreover on S * = Σ * ∩ C * , According to the definition of the Hawking mass, i.e. 1 -2m r = -r 2 4 κκ, and the GCM assumption for κ we also have, In view of the definition of ν * and and that of ς we we easily deduce 1 the following relation between a * and ς on Σ * . Since on Σ * we have r = s we deduce, Ω = e 3 (r) = -Υ + r on Σ * . (7.1.9) 1 Indeed, since ν * is tangent to Σ * along which u = -r + c * , using also (7.1.7), 2 ς = e 3 (u) = ν * (u) = -ν * (r) = -e 3 (r)a * e 4 (r) = -a * + Υ -r 2 A.

( 7 . 1 . 11 ) 7 . 1 . 2 . 2 . 1 .

 711171221 Remark It is important to note that η belongs to Γ b rather than Γ g as it may have been expected. Note also that A ∈ Γ b in view of Proposition 2.2.9 and the fact that (ς, Ω) ∈ rΓ b . We also note that the averaged quantities κ -2 r , κ + 2Υ r and ωm r 2 , r -1 (ς -1), r -1 (Ω + Υ) are actually better behaved in view of Lemmas 3.4.1, 3.4.Ref According to our bootstrap assumptions BA-D, and the pointwise estimates of Proposition 3.4.5, which themselves follow from BA-E, as well as the control of averages in Lemma 3.4.1 and the control of the Hawking mass in Lemma 3.4.2, we have on (ext) M,

.1. 13 )

 13 CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)

.1. 16 )|d k α| 2 2 0Ref 3 .

 1623 According to Theorem M3, the component α verifies the following estimate 4 holds on T , for 0 ≤ k ≤ k small + 16, sup T u 1+δ dec |d k α| 0 , (7.1.17)and on the last slice Σ * for all k ≤ k small + 18Σ * (τ,τ * ) (1 + τ ) -2-2δ dec . (7.1.18) In view of the bootstrap assumptions BA-D and the pointwise estimates of Proposition 3.4.5 for the curvature components, which themselves follow from BA-E , we have in (ext) M, i. For all 0

.1. 20 ) 7 . 1 . 3 .

 20713 Remark In view of the control of averages Lemma 3.4.1 we have in fact better estimates for the scalars,

4 = Υ e 4 + f e θ + 1 4 f 2 e 3 , e θ = e θ + 1 2 f e 3 , e 3 = Υ -1 e 3 .Proposition 7 . 1 . 9 .

 443333719 [START_REF] An | Trapped surfaces in vacuum arising dynamically from mild incoming radiation[END_REF].12 with respect to the global frame of Proposition 3.5.5 (see Remark 2.4.9). The passage from the geodesic frame (e 3 , e θ , e 4 ) of(ext) M to the global frame (e 3 , e θ , e 4 ) is given by e (7.1.26) with a reduced scalar f which was constructed in Proposition 3.4.6. We recall below the main relevant statements of Proposition 3.4.6 in connection to the construction of the global frame. CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5) Under assumptions Ref 1-2 on (ext) M there exists a frame transformation of the form, (7.1.26) verifying the following properties 6 :

CHAPTER 7 .

 7 DECAY ESTIMATES (THEOREMS M4, M5) Remark 7.1.15. Here, as in the remark following Proposition 7.1.12, Γ g = {κ, ϑ, ζ, κ, r ρ} and Γ b = {ϑ, η, ξ, ω, rβ, α}. The quadratic terms denoted l.o.t. are lower order both in terms of decay in r, u as well in terms of number of derivatives. They also contain only angular derivatives d / and not e 3 nor e 4 .

  (a) In Proposition 7.3.6, we derive flux type estimates along Σ * for the quantities β and Γ b . These estimates take advantage in an essential way of the improved flux estimates for q and α, see(7.1.15) and(7.1.18). This step also makes use of Proposition 7.1.11 and the identities of Proposition 7.3.5 for η, ξ. Moreover, as a byproduct of the flux estimates, we obtain the desired estimates on Σ * for β and Γ b .(b) We next estimate the = 1 modes of the Ricci and curvature coefficients in Proposition 7.3.10. Besides the information provided by the estimates for q, α, α and the GCM conditions, an important ingredient in the proof is the vanishing of the = 1 mode of e θ (K), i.e. e θ (K)e Φ = 0. The flux estimates derived in Proposition 7.3.6 play an essential role in deriving the desired estimate for the = 1 mode of β.

Lemma 7 . 1 .

 71 [START_REF] Bieri | An extension of the stability theorem of the Minkowski space in general relativity[END_REF] and the control we have for the = 1 modes from Lemma 7.4.6 derived earlier. We obtain estimates for η, ϑ, ϑ as well. This establishes all the estimates of Proposition 7.5.1 on T . (f) The estimates mentioned above on T can now be propagated by integrating forward the e 4 null structure and null Bianchi equations. This ends the proof of Proposition 7.5.1 in (ext) M. 4. In Proposition 7.6.1 we derive improved decay estimates for e 3 (β, ϑ, ζ, κ, ρ) and estimates for ξ, ω, Ω, ς in terms of u -1-δ dec decay. The estimates for ω and ξ are propagated from the last slice using their e 4 propagation equations. The estimate for ω can be easily derived by integrating e 4 (ω) = ρ + Γ g • Γ b form the last slice Σ * . The estimate for ξ follows by integrating e 4 (ξ) = -e 3 (ζ) + βκζ + Γ b • Γ b and making use of the previously derived estimates for e 3 ζ, β, ζ. The estimates for Ω, ς follow easily from the equations (2.2.19).

.3. 1 )

 1 Recall that ν * = ν Σ * = e 3 + a * e 4 , is the tangent vector to Σ * and (see (7.1.8) (7.1.9)), along Σ * ,

.3. 2 )Lemma 7 . 3 . 1 .

 2731 Since ς -1 and Ω + Υ belong to rΓ b in view of(7.1.11), we deducea * + 1 + 2m r ∈ rΓ b . (7.3.3)As immediate consequence of the commutation Corollary 7.1.5 we derive the following, We have, schematically,[ d /, ν * ]ψ = rΓ b (ν * ψ) + d ≤1 Γ b • dψ. (7.3.4) 7.3. DECAY ESTIMATES ON THE LAST SLICE Σ * 365 Proof. Indeed, see Lemma 7.1.5, [ d /, e 4 ]ψ = Γ g d ψ, [ d /, e 3 ]ψ = rΓ b e 3 ψ + Γ b d ψ + l.o.t. (7.3.5) Hence, since d /a * ∈ r d /Γ b , [ d /, ν * ]ψ = [ d /, e 3 + a * e 4 ]ψ = rΓ b e 3 ψ + Γ

Lemma 7 . 3 . 3 .

 733 Given ψ ∈ s 1 , we have the formula, Err[ψ, ν * ] = r 4 Γ b ν * (ψ) + r 3 Γ b ψ. CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)

.3. 10 )

 10 Also, on S * , the last cut of Σ * ,

.3. 16 ) 7 . 3 . 7 .

 16737 Remark The flux estimates (7.3.15) will be used in the proof of Proposition 7.3.10 on the control of the = 1 mode of various quantities. They also improve the bootstrap assumption on the flux estimate for η on Σ * which is part of the decay norm (ext) D k [η].

7. 3 .

 3 DECAY ESTIMATES ON THE LAST SLICE Σ * 375 The flux estimate for ω follows easily from the above identity, the flux estimates for η and ξ derived in Step 4 and Step 5, the interpolation estimate of Lemma 7.1.6 for ζ, as well the dominance property of r on Σ * . The flux estimates for ς and Ω follow easily from the equations ς -1 e θ (ς) = ηζ, e θ ( Ω) = -ξ -(ηζ)Ω, the flux estimate for η and ξ derived in Step 4 and Step 5, the interpolation estimate of Lemma 7.1.6 for ζ, as well the dominance property of r on Σ * .

Proposition 7 . 3 . 10 .

 7310 The following estimates hold true S e θ (ρ)e Φ + S e θ (µ)e Φ + max

2 SCHAPTER 7 .

 27 DECAY ESTIMATES (THEOREMS M4, M5)

1 4 κ κ + 1 4

 4 ϑϑ. Using the GCM condition for κ we derive, e θ (ρ) = -e θ (K) -1 2r e θ (κ) + 1 4 e θ (ϑϑ).We make use of the vanishing of the = 1 mode of e θ (K) (see Lemma 2.1.29) to derive S e θ (ρ)e Φ = -1 2r S e θ (κ)e Φ + 1 4 S e θ (ϑϑ)e Φ . (7.3.33)

1 2 . 7 . 3 .

 1273 DECAY ESTIMATES ON THE LAST SLICE Σ * 379 Using the flux estimate in Proposition 7.3.6, we infer u * u S e θ (ρ)e Φ du 0 u -2-δ dec . (7.3.34)

1 S

 1 3.33), we have S e θ (ρ)e Φ r -e θ (κ)e Φ + S | d / ≤1 (Γ g • Γ b )|. (7.3.42) 7.3. DECAY ESTIMATES ON THE LAST SLICE Σ * 383 Using the improved estimate of Step 4 for the = 1 mode of e θ (κ) and the control of Γ b and Γ g , we infer S e θ (ρ)e

7. 4 . 7 . 4 2 (e 3 + 4 +

 474234 CONTROL IN (EXT ) M, PART I 391 Control in (ext) M, Part I 7.4.1 Preliminaries Commutation lemmas Here and below we write schematically d / = r d /, d = {re 4 , d /}, d = (e 3 , re 4 , r d /), T = 1 Υe 4 ) . Lemma 7.4.1. We have, schematically, [T, e 4 ] = r -1 Γ b d , [ d /, e 4 ] = Γg d + Γ g . r -1 Γ b . Proof. The identity for [ d /, e 4 ] has already been discussed in Corollary 7.1.5. According to lemma 2.2.14 we have, (η + ζ)e θ , In view of Ref 4 and bootstrap assumptions Ref 2 the factors of e 4 and e θ , on the right hand side behave at worst like Γ b . Thus schematically [T, e 4 ] = r -1 Γ b d .

  estimating the corresponding commutators using our assumptions Ref 1, we deduce for all 0 ≤ k ≤ k large -5,e 4 (r p | d ≤k f |) r p | d ≤k F | + r -2 r p | d ≤k f |and the desired estimates follow by integration.

7. 4 .Lemma 7 . 4 . 4 . 4 S

 47444 CONTROL IN (EXT ) M, PART I 393 Transport equations for = 1 modes To estimate = 1 modes we make use of the following. The following equation holds true for reduced scalars ψ ∈ s 1 ( (ext) M).e

(e 4 4 (

 44 (ψe Φ ) + κψe Φ ) = S e

( 7 . 4 . 6 ) 7 . 4 . 3

 746743 Estimates for κ, μ in (ext) M

.4. 10 )

 10 In view of(7.4.4) and the Bianchi identity for e 4 (β) + ϑ)β e Φ , CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)

S 2 S

 2 e θ (ρ)e Φ + 1 4 S e θ (κκ)e Φ -1 4 S e θ (ϑϑ)e Φ = 0. CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5) We infer S e θ (κ)e Φ = -2r S e θ (ρ)e Φr κe θ (κ)e Φ + r 2 S e θ (ϑϑ)e Φ -

400CHAPTER 7 .

 7 DECAY ESTIMATES (THEOREMS M4, M5) Estimate (7.4.20) follows then easily, according to the part 4 of the elliptic Hodge Lemma 7.1.7.

.4. 25 )

 25 making use of the equation e 3 β + (κ -2ω)β =d / 1 ρ + 3ζρ + Γ g β + Γ b α and the estimates derived above for β, d / 1 ρ, ζ. Hence,

7. 5 . 7 . 5 . 1

 5751 CONTROL IN (EXT ) M, PART II 403 Estimate for η

7. 5 .

 5 CONTROL IN (EXT ) M, PART II 405 Definition 7.5.3.

.5. 20 ) 7 . 5 . 3

 20753 Proof of Proposition 7.5.1, Part I We first prove Proposition 7.5.1 in the region where the estimate α 2,k 0 r -1 u -1-δ dec , k ≤ k small + 16, (7.5.21) holds true.

.5. 23 )

 23 CHAPTER 7. DECAY ESTIMATES (THEOREMS M4, M5)

7. 5 .

 5 CONTROL IN (EXT ) M, PART II 415 and hence,

.5. 29 )

 29 Indeed in view of the Codazzi equationd / 2 ϑ + 2βe θ (κ) + κζ ∈ r -3 Good 20 ,

  .5.30) This ends the proof of Proposition 7.5.1 in the region for which the desired estimate (7.5.21) for α holds true. Since (7.5.21) for α holds true on T in view of 20 Theorem M3, this ends the proof of Proposition 7.5.1 on T . 7.5.4 Proof of Proposition 7.5.1, Part II

.5. 34 )

 34 Alternatively we can make use of the estimate for Ξ = r 2 (e θ (κ) + 4r d / 1 d / 1 ζ -2r 2 d / 1 d /1β) in Lemma 7.5.2, which holds everywhere on (ext) M, and the above estimates for ζ, β.

6 . 6 )

 66 by making use of the transport equation e 4 (ξ) = F := -e 3 (ζ) + β -1 2 κ(ζ + η) + Γ b • Γ b . In view of the previously derived estimates for e 3 ζ, β, ζ, η we derive,

.6. 7 )

 7 This follows immediately from the the equation e θ (Ω) = -ξ -(ηζ)Ω, see (2.2.19), and the previous estimate for ξ. Note that Ω has been estimated in Lemma 3.4.1.

  ν T (int) e 4 , (int) e θ ) = λg(D ν T (ext) e 4 , (ext) e θ ), g(D ν T (int) e 4 , (int) e 3 ) = g(D ν T (ext) e 4 , (ext) e 3 ),g(D ν T (int) e 3 , (int) e θ ) = λ -1 g(D ν T (ext) e 3 , (ext) e θ ).

  θ (κ S * )e Φ = 0 on S * . Remark 8.1.1.

where∆

  ext := d 0 r * u * δ ext , r * := r(S * ), S * := Σ * ∩ C * ,

1 µ 1 κ

 11 = 0, and since e Φ generates the kernel of d / 2 , we infer d / 1 κ = -S e θ (κ)e Φ S e 2Φ e Φ , d / 1 µ = -S e θ (µ)e Φ S e 2Φ e Φ , on Σ (extend) * . Thus, introducing the following two scalar functions C(u) := -S e θ (κ)e Φ S e 2Φ , M (u) := -S e θ (µ)e Φ S e 2Φ , on Σ (extend) * , = C(u)e Φ , d / 1 µ = M (u)e Φ , S ηe Φ = S ξe Φ = 0. Propagating these GCM quantities in the e 4 direction from Σ (extend) * , and propagating the scalar functions C and M by e 4 (r 4 C) = 0 and e 4 (r 5 M ) = 0 so that we have 2 C = C(u, s) and M = M (u, s) in R, we obtain for all k

-2 3 0 2 302

 32 (u(S * )) 1+δ dec in view of (3.3.4) and u(S * ) = u * , we infer r ∼ u 1+δ dec on Σ (extend) * (u * ≤ u ≤ u * + δ ext ) and hence ν S βe Φ + ν S e θ (κ)e Φ 0 ru 1+δ dec on Σ (extend) * (u * ≤ u ≤ u * + δ ext ). We integrate from S * where we have We now integrate in the e 4 direction from Σ (extend) * (u * ≤ u ≤ u * + δ ext ) where we have the above estimate as well as e θ (κ) = 0. We obtain sup More precisely, we have C = r -4 C and M = r -5 M , with C and M given by the restriction of r 4 C and r 5 M to Σ (extend) * so that C = C(u) and M = M (u). Note also that r = r(u, s). 438 CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M6, M7, M8) Also, recall that ν = e 3 + a * e 4 denotes the unique tangent vectorfield to Σ * which is orthogonal to e θ and normalized by g(ν, e 4 ) = -2. Then, one has, since u + r is constant on Σ * and s = r on Σ * 0 = ν(u + s) = e 3 (u) + ae 4 (u) + e 3 (s) + ae 4 (

2 30

 2 ≤ u ≤ u * + δ ext ), we have r ∼ u 1+δ dec on R ∩ {u ≥ u * } and hence sup

. 6 )

 6 coincides with the south poles of the sphere S of Σ * and the constant c Σ * is fixed by the condition ψ( • s) = 0. The fact that ψ( • s) = 0 together with the bounds of Step 6 implies that (8.2.3) (8.2.4) (8.2.5) hold for u 1 < • u with u 1 close enough to • u. By a continuity argument based on reapplying Theorem GCMH, it suffices to show that we may improve the bounds (8.2.4) (8.2.5) independently of the value of u 1 .

and for all k ≤ k small + 4 sup R r 2 d k κ - 2 r + r 2

 42 |d k-2 (r 2 d / 2 d / 1 κ)| + r 3 |d k-2 (r

2 . 4 )

 24 , we have | r -r| + | m -m| sup S r(|f | + |f |) 8.2.5) for D ≥ 1 large enough.

  .2.10) i.e. S 1 is the unique sphere of Σ * such that its south pole intersects the south pole of one of the sphere of the outgoing null cone C (1,L 0 ) of the initial data layer. Now that u is calibrated, we define ũ * := ũ( S * ).(8.2.11) 

  Since we have by the condition (3.3.4) of r on Σ *

1 √g

 1 (Dr,Dr) d{r = r 0 }dr 0 and the fact that, for r ∈ I m0,δ H , g(Dr, Dr) = -e 3 (r)e 4 (r) = Υ + O(

Proposition 8 . 3 . 3 .

 833 Assume (8.3.6). Then, there exists a global null frame defined on (int) M ∪ (ext) M and denoted by ( (glo) e 4 , (glo) e 3 , (glo) e θ ) such that (a) In(ext) M \ Match, we have ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (ext) Υ (ext) e 4 , (ext) Υ -1(ext) e 3 , (ext) e θ .(b) In (int) M \ Match, we have ( (glo) e 4 , (glo) e 3 , (glo) e θ ) = (int) e 4 , (int) e 3 , (int) e θ .

8. 4 6 8. 4 . 1 A wave equation for ρ Proposition 8 . 4 . 1 . 1 .

 46418411 Proof of Proposition 8.3.The following wave equations hold true. The curvature component ρ verifies the identity g ρ = κe 4 ρ + κe 3 ρ +

8. 4 .

 4 PROOF OF PROPOSITION 8.3.6 463 with ψ : R → R a smooth cut-off function such that 0 ≤ ψ ≤ 1, ψ = 0 on (-∞, 0] and ψ = 1 on [1, +∞).

Corollary 8 . 4 . 5 .

 845 Let N 0 the RHS of the wave equation for ρ provided by Proposition 8.4.1, i.e.

  3 e 4 , e 4 ) + g(D θ e 4 , e θ ) + g(D ϕ e 4 , e ϕ ) = κ -2ω 8.7. PROOF OF PROPOSITION 8.3 e 3 , e 4 ) + g(D θ e 3 , e θ ) + g(D ϕ e 3 , e ϕ ) = κ -2ω.

8. 8 .

 8 PROOF OF PROPOSITION 8.3.10 509 with the above convention for the lower order terms. Also, relying on the null equation for e 4 (ζ), i.e. e 4 (ζ) = -κζβϑζ

  e θ (κ)e Φ = -2r S e θ (ρ)e Φr 2 S κ -2 r e θ (κ)e Φr 2 S κe θ (κ)e Φ + r 2 S e θ (ϑϑ)e Φ .

8. 8 . 10 515Together with the transport equation e 4

 8104 PROOF OF PROPOSITION 8.3.(ξ) = -e 3 (ζ) + βκζζϑ, we infer in view of the the estimates for ζ of Step 4, the estimates for β, and the bootstrap assumptions

8. 8 . 10 517 8 . 8 . 2 Lemma 8 . 8 . 4 .

 810882884 PROOF OF PROPOSITION 8.3.Weighted estimates for transport equations along e 4 in (ext) M Let the following transport equation in (ext) M e 4 (f ) + a 2 κf = h

  r 0 du, and dM = (1 + O( 0 ))dµ u,r dudr. Integrating (8.8.1) in u ∈ [1, u * ], and relying on Remark 8.8.5 we deduce for r 0 ≥ 4m 0 r 2a-2

8. 8 . 10 529

 810 PROOF OF PROPOSITION 8.3.In view of Corollary 8.8.8 with a = 1 and b = 2-δ B which satisfy the constraint b > 2a-2, we have for any r 0 ≥ 4m 0 max k≤J+1 sup

e 4 (

 4 e 3 (ζ)) + [e 3 , e 4 ]ζ + κe 3 (ζ) + e 3 (κ)ζ = -e 3 (β)ϑζ.

  and Codazzi for ϑ to estimate the terms of the RHS with one angular derivative of ϑ, • the estimates of Step 2 to estimate the terms of the RHS with one derivative of κ, • the fact that d /ζ = d / d / -1 1 d / 1 ζ and the definition of µ to estimate terms of the RHS with one angular derivative of ζ, • the estimate for ζ of Step 3. Together with the estimate of Step 11, we infer max

e 4 (

 4 ω) = ρ + Err[e 4 ω].

2

  where we have used a trace estimate and the estimate for ζ and ξ respectively in Step 3 and Step 8. The above estimates, together with the estimates for ω ofStep 6 and (8.8.3), imply max k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 }

8. 8 . 10 539

 810 PROOF OF PROPOSITION 8.3.In view of Corollary 8.8.10, we have max k≤J+1 sup r T ≤r 0 ≤4m 0 {r=r 0 }

κf 2 + r b Su,r hf 8 . 9 .

 89 PROOF OF PROPOSITION 8.3.11 545

  S(u, s) denote the 2-spheres of the outgoing geodesic foliation (u, s) on R.• In adapted coordinates (u, s, θ, ϕ) with b = 0, see Proposition 2.2.20, the spacetime metric g in R takes the form, with Ω = e 3 (s), b = e 3 (θ),

.1. 13 )

 13 CHAPTER 9. GCM PROCEDURE A2. We have, with m 0 denoting the mass of the unperturbed spacetime,

16 ) 4 . 9 . 1 . 3 . 1 sin θ ≤ 2 (

 16491312 in view of the definition (9.1.6) of R, We will make use of the following lemma, see Lemmas 4.3.3 and 4.3.Lemma Under the assumption A3 for the metric coefficients we have, r e θ (Φ) ≤ 2 sinθ , r|e θ Φ| + 1) .

9. 2 .

 2 DEFORMATIONS OF S SURFACES 559 9.2.3 Comparison of norms between deformations Lemma 9.2.3. Let Ψ : •

. 1 ) 9 . 4 .

 194 EXISTENCE OF GCM SPHERES 589 where (f, f ) belong to the triplet (f, f , λ = e a ) which denote the change of frame coefficients from the frame of • S to the one of S.

4 .

 4 The Hawking mass m S verifies the estimate,

•r

  in the estimates below. Of course r and • r are comparable in R, in particular on S.

•

  A priori estimates. If (f, f , λ) verifies the system (9.4.16) (9.4.14) for some constant (C S , M S ), then (M S , C S ) satisfies (9.4.18) and (f, f , λ) satisfies (9.4.19),(9.4.20), and (9.4.21).

Remark 9 . 4 . 8 .

 948 As mentioned before Lemma 9.3.10, the anomalous behavior for (f , a) in the assumption (9.4.23) does not appear in the construction of GCM spheres in this chapter. It appears however in the proof of Theorem M0 in the region (ext) L 0 ∩ (ext) M of the initial data layer, see Step 8 in section 4.1.

•SS

  that we have (U(∞) , S (∞) ) denote by Γ S(∞) the connection coefficients of S(∞). We have in view of the transformation formula from the original frame (e 4 , e 3 , e θ ) to the frame (e

9. 5 . 7 609 9 . 5 7 9. 5 . 1

 5795751 PROOF OF PROPOSITION 9.4.6 AND OF COROLLARY 9.4.Proof of Proposition 9.4.6 and of Corollary 9.4.Proof of Proposition 9.4.6

.5. 8 )Now, in view of 1 .

 81 the fact that (f, f ) satisfies (9.5.3) in view of (9.5.4) (9.5.8), 2. the choice (9.5.7) for the constants C S and M S , 3. the fact that e Φ generates the kernel of d / S 2 ,

F 1 , F 2 ,

 12 F 3 and b 0 are given in Step 1.

9. 6 .

 6 PROOF OF PROPOSITION 9.4.12 623 are thus left to estimate the term (e θ Φ) #n -(e θ Φ) # n-1 h

9. 7 A

 7 corollary to Theorem 9.4.1

.7. 1 ) 9 . 7 . 1 ( 2 )βLemma 9 . 7 . 2 .S

 19712972 Theorem Existence of GCM spheres). In addition to the assumptions of Theorem 9.4.1, we assume that A1-Strong holds, and that, for any background sphere S in R, Then there exists a unique GCM sphere S, which is a deformation of • S, such that the following GCM conditions hold true d S e Φ = 0, S e S θ (κ S )e Φ = 0. (9.7.3) Moreover, all other estimates of Theorem 9.4.1 hold true. Proof. The proof of the theorem follows easily in view of Theorem 9.4.1 and the following lemma. Let S be a deformation of • S as in Theorem 9.4.1 with Λ = S f e Φ , Λ = S f e Φ . The following identities hold true e θ (κ)e Φ -S (e S θ κ S )e Φ -Υ • S e θ (κ)e Φ + ΥΛ + F 2 (Λ, Λ), (9.7.4)

r 3 f20

 3 β S ) with error term Err (β, β S ), Err (β, β S ) = 3m S (r S ) 3 -+ (e a -1) β + 3 2 ρf + e a Err(β, β S ). Making use of the assumptions A1-A3 , the estimates of Theorem 9.4.1 for (f, f , a) as well as the bounds for • rr S , • mm S we deduce Err (β, β S ) r In fact smooth. 21 Here (r, m) represents the area radius and Hawking mass of • S, while (r S , m S ) represent the area radius and Hawking mass of S. Since | r S r -1| • δ and |m S -m| • δ, we can interchange freely r S with r and m S with m.

1 r 2 + 4m r 3 S

 3 

2 r

 2 S e S θ a -2(K S -K)f -1 2ϑϑf + Err(e S θ κ S , e θ κ) e Φ

  κ)e Φ -S (e S θ κ S )e Φ -Υ • S e θ (κ)e Φ + Υ r 2 Λ + 6mΥ r 3 Λ + I 1 (Λ, Λ) + ΥI 2 (Λ, Λ). Hence, 6m r 3 Λ = • S (e θ κ)e Φ -S (e S θ κ S )e Φ -Υ • S e θ (κ)e Φ + 6mΥ r 3 Λ + I 1 (Λ, Λ) + ΥI 2 (Λ, Λ). θ κ S )e Φ -Υ • Se θ (κ)e Φ + ΥΛ + F 2 (Λ, Λ)

SβCorollary 9 . 7 . 3 . 10 )

 97310 S e Φ = 0, S e S θ (κ S )e Φ = 0, as stated. Let a fixed spacetime region R verifying assumptions A1 -A3 and (9.4.2), as well as, for any background sphere S in R, Assume that S is a sphere in R which verifies the the GCM conditions

  Applying Corollary 9.4.7, we have(f, f , λS ) h smax+1 (S) • δ + r -2 (|Λ| + |Λ|) + ( • + δ 1 ) sup S rr S , r|λ S -1| • δ + r -2 (|Λ| + |Λ|) + sup S rr S .Furthermore, the assumptions on (f, f ) imply in view of Lemma 9.2.10 sup S rr S rδ 1

  κ)e Φ -S (e S θ κ S )e Φ -Υ • S e θ (κ)e Φ + ΥΛ + O • • δr 3 .

.8. 4 ) 4 . 5 .

 445 We extend u S and r S in a small neighborhood of Σ 0 such that the following transversality conditions are verified23 on Σ 0 , In view of (9.8.5) the Ricci coefficients η S , ξ S are well defined for every S ⊂ Σ 0 and verify S η S e Φ = S ξ S e Φ = 0. (9.8.6)

Lemma 9 . 8 . 8 . 1 S

 9881 The following estimates hold truer -ǎS h k+1 (S) + a S + 1 + 2m S r S D S + η S h k (S) + ξ S h k (S) + • . (9.8.41) 

Corollary 9 . 8 . 10 .

 9810 Under the same assumptions as in the proposition above we have the more precise estimates, with d(S) = S e 2Φ ,

  s), s, Λ(s), Λ(s)] (9.8.52) where P (s) is a curve in the parameter space P given by, P (s) = (Ψ(s), s, Λ(s), Λ(s)).(9.8.53)9.8. CONSTRUCTION OF GCM HYPERSURFACES655In order for Σ 0 to start at S 0 = S[

  .8.55) where the map Ξ(s, θ) = Ξ(Ψ(s), s, θ) is defined as Ξ(s, θ) := Ψ(s) + U (θ, P (s)), s + S(θ, P (s)), θ . (9.8.56) At the South Pole, i.e. θ = 0, where U (0, P ) = S(0, P ) = 0 Ξ(s, 0) = Ψ(s), s, 0 . (9.8.57) Clearly, ∂ s Ξ(s, θ) = Ψ (s) + ∂ P U (θ, P (s))P (s), 1 + ∂ P S(θ, P (s))P (s), 0 , ∂ θ Ξ(s, θ) = ∂ θ U (θ, P (s)), ∂ θ S(θ, P (s)), 1 ,

XLemma 9 . 8 . 11 . 4 )

 98114 where X * , Y * are the following tangent vectorfields along Σ 0 , X * (s, θ) : = Ψ (s) + ∂ P U (θ, P (s))P (s)∂ u + 1 + ∂ P S(θ, P (s))P (s) ∂ s , Y * (s, θ) : = ∂ θ U (θ, P (s))∂ s + ∂ θ S(θ, P (s))∂ s + ∂ θ , * (s, θ) : = Ψ (s) + Ȃ(s, θ) ∂ u + 1 + B(s, θ)P (s) ∂ s , Y * (s, θ) : = C(s, θ)∂ u + D(s, θ)∂ s + ∂ θ , , θ) : = ∂ P U (θ, P (s))P (s) = ∂ u U (θ, P (s))Ψ (s) + ∂ s U (θ, P (s)) + ∂ Λ U (θ, P (s))Λ (s) + ∂ Λ U (θ, P (s))Λ (s), B(s, θ) : = ∂ P S(θ, P (s))P (s) = ∂ u S(θ, P (s))Ψ (s) + ∂ s S(θ, P (s)) + ∂ Λ U (θ, P (s))Λ (s) + ∂ Λ S(θ, P (s))Λ (s), C(s, θ) : = ∂ θ U (θ, P (s)), D(s, θ) : = ∂ θ S(θ, P (s)).Step 15. Define the vectorfield, along the South Pole of each S ⊂ Σ 0 , At the South Pole we have the relations (recall ν S = e S 3 + a S e S

9. 8 . 2 ς e 3 - 2 ς (e 3 -

 82323 CONSTRUCTION OF GCM HYPERSURFACES657Proof. Note that Ȃ(s, 0) = B(s, 0) = C(s, 0) = D(s, 0) = 0. Thus, at the South Pole SP,X * (s, 0) = Ψ (s)∂ u + ∂ s .Recall that∂ s = e 4 , ∂ u = 1 Ωe 4bγ 1/2 e θ , ∂ θ = √ γe θ ,or, since b vanishes at the South Pole,X * (s, 0) = Ψ 1 Ωe 4 ) + e 4 = (1 -1 2 Ψ (s)ςΩ)e 4 + 1 2 Ψ (s)ςe 3 .

r - 2 S• 1 / 2 . 9 . 8 . 13 .

 2129813 |B S | + |B S | + |D S | ≤ Proposition The following equations hold true for the functions 35 Λ(s) = Λ(Ψ(s), s, 0)), Λ(s) = Λ(Ψ(s), s, 0),

Proposition 9 . 8 . 14 .

 9814 The function ψ(s) = Ψ(s) + sc 0 defined in Step 13 verifies the following equationψ (s) = -1 2 D(s) + O(D(s) 2 ) + M (s) (9.8.72)where M (s) is a function which depends only on Γ, R of the background foliation, ψ and (f, f , λ -1) such that, M

  )| + |B(s)| , N (B, B, D, Λ, Λ, ψ)(s) -N (0, 0, 0, Λ, Λ, ψ)(s)

23 .

 23 Therefore the functions B, B, D vanish identically on the hypersurface Σ 0 defined by the function Ψ(s) = -s + ψ(s) + c 0 which accomplishes the main task of Theorem 9.8.1. More precisely we have produced a local hypersurface Σ 0 , as defined in Step 12, foliated by the function u S , defined in Step 2 and extended in Step 3, such that the items 2-5 of the theorem are verified. The estimates in items 6-7 are an immediate consequence of Proposition 9.8.7. It only remains to prove the smoothness of the function Ξ(s, θ) in (9.8.55), Step 14 and the estimates for F = (f, f , log λ) in the last part of the theorem. To check the differentiability properties recall that, ∂ s Ξ(s, θ) = Ψ (s) + ∂ P U (θ, P (s))P (s), 1 + ∂ P S(θ, P (s))P (s), 0 , ∂ θ Ξ(s, θ) = ∂ θ U (θ, P (s)), ∂ θ S(θ, P (s)), 1 ,

  and Ḃs p;R [ψ](τ 1 , τ 2 ), introduced in section 5.1.4. The following theorem claims basic Morawetz estimates for the solution ψ of the wave equation (5.3.5). Theorem 10.1.1 (Morawetz). Let ψ a reduced 2-scalar solution to

.1. 6 ). ( 10 . 1 . 7 ) 10 . 1 . 4 .

 610171014 Mor3. We also assume|mm 0 | m 0 , |d ≤k (e 3 m, r 2 e 4 m)| u -1-δ dec trapRemark Note that in the case when the bootstrap constant = 0, i.e.in Schwarzschild, the assumptions made above are consistent with the behavior relative to the regular frame (near horizon)e 3 = Υ -1 ∂ t -∂ r , e 4 = ∂ t + Υ∂ r .10.1. BASIC MORAWETZ ESTIMATES 10.1.3 Functions depending on m and r

10. 1 . 4 4 -

 144 Deformation tensors of the vectorfields R, T, XRecall the definition (5.1.10) of the regular vectorfields 1 , Υe 3 ) .

10 . 1 . 3 (e 4 - 2 g(D 4 (e 4 -

 10134244 . All components of the deformation tensor of T = 1 2 (e 4 + Υe 3 ) can be bounded by O( r -1 u -1-δ dec trap ). Moreover, (T ) π 44 r -2 u -1-δ dec trap . BASIC MORAWETZ ESTIMATES 679 Proof. Ve have (R) π 44 = g(D 4 (e 4 -Υe 3 ), e 4 ) = 2e 4 (Υ) + 4Υω, Υe 3 ), e 4 ) + 1 Υe 3 ), e 3 ) = e 3 (Υ) -2Υω + 2ω, (R) π 33 = g(D 3 (e 4 -Υe 3 ), e 3 ) = -4ω, (R) π AB = 1 2 g(D A (e 4 -Υe 3 ), e B ) + 1 2 g(D B (e 4 -Υe 3 ), e A ), =

(T ) π 44 = 3 (e 4 + 2 g(D 4 (e 4 +

 4434244 g (D 4 (e 4 + Υe 3 ), e 4 ) = -2e 4 (Υ) -4Υω, Υe 3 ), e 4 ) + 1 Υe 3 ), e 3 ) = -e 3 (Υ) + 2Υω + 2ω, (T ) π 33 = g (D 3 (e 4 + Υe 3 ), e 3 ) = -4ω, (T ) π AB = 1 2 g (D A (e 4 + Υe 3 ), e B ) + 1 2 g (D B (e 4 + Υe 3 ), e A ) , =

692CHAPTER 10 .

 10 REGGE-WHEELER TYPE EQUATIONSOn the other hand, we have, in view of the definition 10.1.20 of f

  .1.22) 

  .1.25) 

10. 1 .

 1 BASIC MORAWETZ ESTIMATES 699 Note that the second term is strictly positive. It remains to analyze the first term. Lemma 10.1.21. In the interval [3m, 4m] we have, ∂ r f -2r -1 f > 0.

  .1.36) 

2 r 1

 21 -2m r , for r ≥ 4m, CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS Also, according to (10.1.22) u = 2m 2 log r-2m m + O(m(r -3m)), for r ≤ 4m, r 2 + O(m 2 ), for r ≥ 4m, and hence, for δ > 0 sufficiently small

Lemma 10 . 1 . 4 .

 1014 24. Let W δ (r, m) := 1 r≤ 5m 2 |W δ |. (10.1.41) Then, W δ is supported, for δ > 0 small enough, in the region 2m + e -2 δ ≤ r ≤ 9m Moreover its primitive, W δ (r, m) := r 2m W δ (r , m)dr (10.1.42) verifies the pointwise estimate W δ (r, m) δ. (10.1.43)

  .1.47) 

Lemma 10 . 1 . 27 .

 10127 Given the vectorfield, Y = a(r, m)e 3 + b(r, m)e 4 , (10.1.49) and assuming sup r≤3m |a| + |∂ r a| + |∂ m a| + |b| + |∂ r b| + |∂ m b| 1,

.1. 50 )

 50 Proof. In view of |e 4 (r) -Υ, e 3 (r) + 1| Lemma 10.1.5, and the assumptions on the derivatives of a and b w.r.t. (r, m), we have e 4 (a) = Υ∂ r a + O( ), e 3 (a) = -∂ r a + O( ), e 4 (b) = Υ∂ r b + O( ), e 3 (b) = -∂ r b + O( ), e θ (a) = e θ (b) = 0. We infer, Q αβ (Y ) π αβ = aQ αβ π (3) αβ -(Q 33 e 4 a + Q 43 e 3 a) + bQ αβ π (4) αβ -(Q 34 e 4 b + Q 44 e 3 b) + O( )|Q(Ψ)| = aQ αβ π (3)

Corollary 10 . 1 . 28 .

 10128 If we choose, a(2m, m) = 1, b(2m, m) = 0, ∂ r a(2m, m) ≥ 1 4m , ∂ r b(2m, m) ≥ 5 4m , then, at r = 2m, we have

1 10 H , we have Y H = e 3 + e 4 + O(δ 1 10 Hwith T = 1 2 (e 4 +

 110341024 )(e 3 + e 4 ).Proof. We introduce the vectorfieldY (0) := ae 3 + be 4 + 2T, a(r, m) := 1 + 5 4m (r -2m), b(r, m) := 5 4m (r -2m),10.1. BASIC MORAWETZ ESTIMATES713 Υe 3 ). Also, we pick positive bump function κ = κ(r), supported in the region in [-2, 2] and equal to 1 for [-1, 1] and define, for sufficiently small δ H > 0.Y H := κ H Y (0) , κ H := κ Υ

10. 1 .Ȓ := θ 1 2 (e 4 - 2 θe 4 -e 3 ,T := θ 1 2 (e 4 + 2 θe 4 + e 3 , 10 H

 1242432424310 BASIC MORAWETZ ESTIMATES715To combine these three cases together we modify the vectorfields R, T near r = 2m according to(5.1.11), i.e. e 3 ) + (1θ)Υ -1 R = 1 e 3 ) + (1θ)Υ -1 T = 1where θ a smooth bump function equal 1 on |Υ| ≤ δ 1 vanishing for |Υ| ≥ 2δ 1 10

1 10 H ≤ |Υ| ≤ 2δ 1 10 H 1 5H

 110101 , we have | ȒΨ| 2 + | T Ψ| 2 |e 3 Ψ| 2 + δ -|e 4 Ψ| 2 . Hence, for H ≤ (2C) -1 δ 3 10

CHAPTER 10 .-1 δ 2 5 Hδ 3 10 H

 10510 REGGE-WHEELER TYPE EQUATIONS Proposition 10.1.30. Let C > 0 the constant of Proposition 10.1.25. Consider the combined Morawetz triplet (X, w, M ) := (X δ , w δ , 2hR) + H (Y H , 0, 0), (10.1.56) with C ≤ H ≤ (2C) -1 where, for given fixed δ > 0, (X δ , w δ , 2hR) is the triplet of Proposition 10.1.25 and Y H the vectorfield of Proposition 10.1.29, supported in |Υ| ≤ 2δ 1 10

  .1.58) 

Proposition 10 . 1 . 31 .

 10131 Consider the combined Morawetz triplet(X, w, M ) := (f δ R, w δ , 2hR) + H (Y H , 0, 0) + (0, 0, 2h 2 Ř) (10.1.62) with (f δ R, w δ , 2hR) the triplet of Proposition 10.1.25, Y H the red shift vectorfield of Proposition 10.1.29 (corresponding to the small parameter δ H ) and h 2 the C 1 function above satisfying (10.1.60) (10.1.61). Let Ė[X, w, M ] the principal part of E[X, w, M ] (independent of ) and E [X, w, M ] the error term in such that E = Ė + E .

Proposition 10 . 1 . 32 .

 10132 Under the assumptions of Proposition 10.1.31, and with the choice

Υ≥δ

  

CHAPTER 10 . 10 H

 1010 REGGE-WHEELER TYPE EQUATIONSIn view of the above estimates in r ≥ 2m 0 (1δ H ), Υ ≤ δ 1 and in Υ ≥ δ 1 10

.1. 70 )

 70 Boundary terms along Σ *On Σ * , we have

( 10 . 2 . 8 )

 1028 10.2. DAFERMOS-RODNIANSKI R P -WEIGHTED ESTIMATES 737 RP2'. The derivatives of r verify, e 3 (r) + Υ w 0,1 , e 4 (r) -1 w 1,1 , e 3 e 4 (r), e 4 e 3 (r) + 2m r 2 w 1,1 .

  .2.10) RP4'. We also assume |mm 0 | , |e 3 m, r 2 e 4 m| w 0,1 , |e 3 e 4 (m), e 4 e 3 (m)| w 1,1 .

10. 2 . 1 4 Lemma 10 . 2 . 4 .

 2141024 Vectorfield X = f (r)e Consider the vectorfield X = f (r)e 4 .

Proposition 10 . 2 . 5 .

 1025 Assume Ψ verifies the equation ˙ g Ψ = V Ψ + N and let X = f e 4 and w = (X) Λ = 2f r and let E := E[X, w] = E[X = f e 4 , w = 2f r ].

- 4 CHAPTER 10 .

 410 2g αβ ∂ α (u + r)∂ β = e 4 (u + r)e 3 + e 3 (u + r)e 4 = e 4 (r)e 3 + (e 3 (u) + e 3 (r))e REGGE-WHEELER TYPE EQUATIONS and since g e 4 (r)e 3 + (e 3 (u) + e 3 (r))e 4 , e 4 (r)e 3 + (e 3 (u) + e 3 (r))e 4 = -4e 4 (r)(e 3 (u) + e 3 (r)), we infer N Σ * = e 4 (r) 2 e 3 (u) + e 3 (r) e 3 + e 3 (u) + e 3 (r) 2 e 4 (r) e 4 .

e 4

 4 (r) = 1 + O( ), e 3 (r) = -Υ + O( ), e 3 (u) = 2 + O( ), 10.2. DAFERMOS-RODNIANSKI R P -WEIGHTED ESTIMATES 747 and where ν Σ * denotes the vectorfield ν Σ * = e 4 (r) 2 e 3 (u) + e 3 (r) e 3 -e 3 (u) + e 3 (r) 2 e 4 (r) e 4 .

  div Σ * (ν Σ * ) = g(D e θ ν Σ * , e θ ) + g(D eϕ ν Σ * , e ϕ ) = e 4 (r) 2 e 3 (u) + e 3 (r) g(D θ e 3 , e θ ) -e 3 (u) + e 3 (r) 2 e 4 (r) g(D θ e 4 , e θ ) + ν Σ * (Φ) = e 4 (r) 2 e 3 (u) + e 3 (r)

10. 2 .

 2 DAFERMOS-RODNIANSKI R P -WEIGHTED ESTIMATES 751 Hence, for all δ ≤ p ≤ 2δ and R m δ , δ,

1 .( 2 + 4 ( 2 .( 2 +

 12422 2.8)-(10.2.11) to which we add, RP5. The assumptions RP0-RP4 hold true for one extra derivative with respect to d. RP6. e 4 (m) satisfies the following improvement of RP4 |d ≤2 e 4 (m)| w 2,1 . (10.3.1) 10.3.1 Wave equation for ψ Proposition 10.3.1. Assume ψ verifies 2 ψ = -κκψ + N . Then ψ = f 2 ě4 ψ verifies: In the region r≥ 6m 0 , κκ) ψ = r 2 e + O(r -2 )d ≤1 ψ +rΓ b e 4 dψ + d ≤1 (Γ b )d ≤1 ψ + rd ≤1 (Γ g )e 3 ψ + d ≤1 (Γ g )d 2 ψ. In the region 4m 0 ≤ r ≤ 6m 0 , κκ) ψ = f 2 e 4 (N ) + 3 r N + O(1)d ≤2 ψ.The proof of Proposition 10.3.1 is postponed to Appendix D.4.

3 . 1 ψ 2 r 1

 3121 -V ψ = Ň + f 2 e 4 -3m r e 4 ψ + O(r -2 )d ≤1 ψ +rΓ b e 4 dψ + d ≤1 (Γ b )d ≤1 ψ + rd ≤1 (Γ g )e 3 ψ + d ≤1 (Γ g )d 2 ψ, r ≥ 6m 0 , O(1)d ≤2 ψ, 4m 0 ≤ r ≤ 6m 0 .(10.3.2)

  2.3), Σ(τ 2 ) P q • e 4 + Σ * (τ 1 ,τ 2 ) P q • N Σ * + M(τ 1 ,τ 2 ) E q + f q ě4 ψ Ň = Σ(τ 1 ) P q • e 4 -M(τ 1 ,τ 2 )f q ě4 ψ • f 2 e 4 be treated exactly as in the proof of Theorem 10.2.1, except for the bulk term, i.e. we obtain the following analog of (10.2.1)Ėq ; R [ ψ](τ 2 ) + M(τ 1 ,τ 2 )

Ėq [ ψ](τ 2 )

 2 + Morr[ ψ](τ 1 , τ 2 ) + M ≥R (τ 1 ,τ 2 ) (E q + r q ě4 ( ψ) Ň ) + Ḟq [ ψ](τ 1 , τ 2 ) E q [ ψ](τ 1 ) + Jq [ ψ, N ](τ 1 , τ 2 ) + R q+3 (E 1 [ψ](τ 2 ) + Morr 1 [ψ](τ 1 , τ 2 )). (10.3.4) Also, since δ ≤ max(q, δ) ≤ 1δ,we have in view of Theorem 5.3.4 in the case s = 1 15 sup τ ∈[τ 1 ,τ 2 ]

  ) used in the proof of Theorem 10.2.1. This is achieved in Proposition 10.3.2 below, which together with (10.3.4) and (10.3.5) immediately yields the proof of Theorem 5.3.5 in the case s = 0. Proposition 10.3.2. The following estimate holds true, M ≥R (τ 1 ,τ 2 )

( 10 . 3 . 6 ) 1 + A 2 , 4 ψ

 1036124 We now focus on the proof of Proposition 10.3.2. In view of the definition of Ň , we have for r ≥ R,Ň = A 0 + Ar -1 ψ), A 1 = -6m r 2 e 4 ψ + O(r -2 )d ≤1 ψ, A 2 = Err[ g ψ], Err[ g ψ] = r 2 Γ g e 4 dψ + rd ≤1 (Γ g )d ≤1 ψ + d ≤1 (Γ g )d 2 ψ.

2 , A 2 =

 22 Err[ g ψ], Err[ g ψ] = rΓ b e 4 dψ + d ≤1 (Γ b )d ≤1 ψ + rd ≤1 (Γ g )e 3 ψ + d ≤1 (Γ g )d 2 ψ, Err q ( ψ) = O m r 2 r q |e 4 ψ| 2 + O m r 4 + w 3,1 r q | ψ| 2 + O( )w 1,1 r q |e 4 ψ| 2 + |∇ / ψ| 2 + r -2 | ψ| 2 + O( )w 2,1/2 r q |e 4 ψ| + r -1 |∇ / ψ| |e 3 ψ| + |∇ / ψ| 2 + r -2 | ψ| 2 .Hence,|I 2 | r q |ě 4 ( ψ)| τ -1-δ dec |ě 4 d ≤1 ψ| + |d ≤1 ψ| + r -1 τ -1 2 -δ dec |e 3 ψ| + r -1 |d 2 ψ|

τ 1 ≤τ ≤τ 2

 2 Ėq,R [ ψ](τ ) + Ḃq [ ψ](τ 1 , τ 2 ) 1 2

  [ ψ](τ 1 , τ 2 )

2 ψ = -e 3 e 4 ψ 3 ψ 2 κ e 4 ψ - 1 2 κe 3 ψ 2 M

 43232 + / 2 ψ + 2ω -+ 2ηe θ ψ We have for r ≥ 6m 0 e 3 ψ = e 3 (re 4 (rψ)) = re 3 (re 4 ψ) + e 3 (r)e 4 (rψ) = r 2 e 3 e 4 ψ + 2re 3 (r)e 4 ψ + e 3 (r)e 4 (r)ψ = r 2 -2 ψ + / 2 ψ + 2ω -1 + 2ηe θ ψ + 2re 3 (r)e 4 ψ + e 3 (r)e 4 (r)ψ so that |e 3 ψ| r 2 |N | + r|e 3 ψ| + |d ≤2 ψ| and henceM ≥R (τ 1 ,τ 2 ) r q-4 |e 3 ψ| ≥R (τ 1 ,τ 2 ) r q-4 r 4 |N | 2 + r 2 |e 3 ψ| 2 + |d ≤2 ψ| 2 .

sup τ 1 ≤τ ≤τ 2 Ėq

 2 [ ψ](τ 1 , τ 2 )

1 . 1 .

 11 We assume, concerning the Ricci coefficients|d k (Γ g )| r 2 u 1+δ dec -2δ 0 trap for k ≤ k small + 30, |d k (Γ b )| ru 1+δ dec -2δ 0 trap for k ≤ k small + 30, |d k (α, β, ρ)| r 3 u 1+δ dec -2δ 0 trap for k ≤ k small + 30,|d k α| + r|d k β| ru 1+δ dec -2δ 0 trap for k ≤ k small + 30,

3 , sup τ ∈[τ 1 ,τ 2 ]

 312 E p [ψ](τ ) + B p [ψ](τ 1 , τ 2 ) + F p [ψ](τ 1 , τ 2 ) E p [ψ](τ 1 ) + J p [ψ, N ](τ 1 , τ 2 ), (10.4.1)17 Respectively s ≤ k small + 30 in the case of Theorem 5.3.4, and s ≤ k small + 29 in the case of Theorem 5.3.5.18 Recall that Theorem 5.3.4 in the case s = 0 is obtained as a consequence of Theorem 10.1.1 on Morawetz and energy estimates, and Theorem 10.2.1 on r p -weighted estimates, see Remark 10.2.2.

10. 4 .

 4 HIGHER DERIVATIVE ESTIMATES 763 and sup τ ∈[τ 1 ,τ 2 ]

1 .Lemma 10 . 4 . 1 . 3 = Υ 2ωe 4 -2 ω + 1 2 Υ 3 = -2ωe 4 + 2 ω - 1 2 e 3 ( 2 Υ 1 .m r e 3 =- 1 2 κ 2 -Corollary 10 . 4 . 7 . 2 r 2 κe 4 ψ + r 2 - 1 2 κ + 2ω e 3 ψ + 2rηre θ ψ and hence R(r 2 2 ψ) = r 2 2 (e 3 ψ + r 2 - 1 2 κr 0 r 2 2 ( 1 2 e 4 (r 2 )trap d 2 ψ= 2 r- 1 2 κe 4 ψ + - 1 2 κ 3 Lemma 10 . 4 . 9 .δ 2 H 1 δ 2 e 3 2 e 4 2 e 3 (a) - 1 2 e 4 δ 2 Hd ≤1 ψ + 1 δ H 1 δ

 11041342343213210472222221422223104921232423421 we first commute the wave equation for ψ and ψ with T and derive (10.4.1) for T ψ instead of ψ, and (10.4.2) for T ψ instead of ψ, 2. we then commute the wave equation for ψ and ψ with r d / 2 and derive (10.4.1) for r d / 2 ψ instead of ψ, and (10.4.2) for r d / 2 ψ instead of ψ, 3. we then use the wave equation satisfied by ψ to derive an estimate for R 2 ψ in r ≤ 6m 0 19 with a degeneracy at r = 3m, 4. we then commute the wave equation for ψ with R and remove the degeneracy at r = 3m for R 2 ψ, 5. we then commute the wave equation for ψ with the redshift vectorfield Y H and derive (10.4.1) for Y H ψ instead of ψ, 6. we then commute the wave equation for ψ and ψ with f 1 e 4 and derive (10.4.1) for re 4 ψ instead of ψ, and (10.4.2) for f 1 e 4 ψ instead of ψ, where f 1 = r for r ≥ 6m 0 and f 1 = 0 for r ≤ 4m 0 , 7.we finally gather all estimates and conclude.We will follow the above strategy in section 10.4.5 to prove Theorem 5.3.4, and in section 10.4.6 to prove Theorem 5.3.5. To this end, we first derive several commutator identities and estimates.10.4.3 Commutation formulas with the wave equationCommutation with T We have, schematically, the following commutator formulae[T, e 4 ] = Γ g d, [T, e 3 ] = Γ b d, [T, d / k ] = Γ b d + Γ b , [T, d / k ] = Γ b d + Γ b .764 CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS Proof. Recall that we have [e 3 , e 4 ] = 2ωe 4 -2ωe 3 + 2(ηη)e θ . We infer 2[T, e 4 ] = [e 4 + Υe 3 , e 4 ] = Υ[e 3 , e 4 ]e 4 (Υ)e 3 = Υ 2ωe 4 -2ωe 3 + 2(ηη)e θe 4 (Υ)e -1 e 4 (Υ) e 3 + 2(ηη)e θ = (r -1 Γ b + Γ g )d = Γ g d, and 2[T, e 3 ] = [e 4 + Υe 3 , e 3 ] = [e 4 , e 3 ]e 3 (Υ)e 3 = -2ωe 4 + 2ωe 3 -2(ηη)e θe 3 (Υ)e Υ) e 3 -2(ηη)e θ = -2ωe 4+ 2 ω + 1 -1 e 4 (Υ) -1 2Υ T (Υ) e 3 -2(ηη)e θ = (Γ g + Γ b )d = Γ b d.Next, recall in view of Lemma 2.1.51, the following commutation formulae for reduced scalars. If f ∈ s k , k+1 f + (ζη)e 3 fkηe 3 Φfξ(e 4 f + ke 4 (Φ)f )kβf, k+1 f -(ζ + η)e 4 fkηe 4 Φfξ(e 3 f + ke 3 (Φ)f )kβf. 1 f -(ζη)e 3 f -(k -1)ηe 3 Φf + ξ(e 4 f -(k -1)e 4 (Φ)f ) 1 f + (ζ + η)e 4 f -(k -1)ηe 4 Φf + ξ(e 3 f -(k -1)e 3 (Φ)f ) -(k -1)βf.We infer, schematically,2[T, d / k ] = [e 4 + Υe 3 , d / k ] = [e 4 , d / k ] + Υ[e 3 , d / k ]e θ (Υ)e 3 Υκ) d / k + Γ b d + r -1 Γ b + 2e θ Γ b d + Γ b .The estimate for [T, d/ k ] is similar and left to the reader. This concludes the proof of the lemma.Lemma 10.4.2. We haveT (κ) = d ≤1 Γ g , T 2ω -1 2 κ = d ≤1 Γ b , T (K) = d ≤1 Γ g .Proof. We have2T (κ) = (e 4 + Υe 3 )κ = 2ωκ + 2 d / 1 ξ + 2(η + η + 2ζ)ξξξ + η 2 ) = r -1 dΓ b + r -1 Γ b = d ≤1 Γ g .Together with the definition for R, we deduce[r d / k , R]f, [r d / k , R]f = O u 1+δ dec -2δ 0 trap d ≤1 f, [r 2 / k , R]f = O u 1+δ dec -2δ 0 trap d ≤2 f.This concludes the proof of the lemma. We have in the region r ≤ r 02 (Rψ) = 1 -3m r d 2 ψ + O u 1+δ dec -2δ 0 trap d 2 ψ + O(1)d ≤1 ψ + O(1)d ≤1 N.Proof. Recall that we have2 ψ = -e 4 (e 3 (ψ)) + / 2 ψ -1 2 κe 4 ψ + -1 2 κ + 2ω e 3 ψ + 2ηe θ ψ.Multiplying by r 2 , we inferr 2 2 ψ = -r 2 e 4 (e 3 (ψ)) + r 2 / 2 ψ -1 Rψ) -[R, r 2 e 4 e 3 ]ψ + [R, r 2 / 2 ]ψ -+ 2ω [R, e 3 ]ψ + 2R(rη)re θ ψ +2rη[R, re θ ]ψ.Using the commutation identities of the previous lemma, we infer in the region r ≤ r 0R(r 2 2 ψ) = r 2 2 (Rψ) -[R, r 2 e 4 e 3 ]ψ + O u 1+δ dec -2δ 0 trap d 2 ψ + O(1)dψ. Also, since ψ satisfies 2 ψ = V ψ + N , we infer in the region r ≤ Rψ) = [R, r 2 e 4 e 3 ]ψ + O u 1+δ dec -2δ 0 trap d 2 ψ + O(1)d ≤1 ψ + O(1)d ≤1 N.Next, recall that we have [R, e 4 ] = O u 1+δ dec -2δ 0 trap d, [R, e 3 ] = -2m r 2 e 3 + O( )d. r 2 e 4 e 3 ]ψ = R(r 2 )e 4 e 3 + r 2 [R, e 4 ]e 3 + r 2 e 4 [R, e 3 ] = -Υe 3 (r 2 ) e 4 e 3 ψ + r 2 e 4 -2m r 2 e 3 ψ + O u 1+δ dec -2δ 0 -3m e 4 e 3 ψ + O u 1+δ dec -2δ 0 trap d 2 ψ + O(1)dψ and thus, in the region r ≤ r 0 ,2 (Rψ) = 1 -3m r d 2 ψ + O u 1+δ dec -2δ 0 trap d 2 ψ + O(1)d ≤1 ψ + O(1)d ≤1 Nas desired.Commutation with the redshift vectorfieldLet a positive bump function κ = κ(r), supported in the region in [-2, 2] and equal to 1 for [-1, 1]. Recall that the redshift vectorfield is given byY H = κ H Y (0) , κ H := κ Υ δ Hwhere Y (0) is defined byY (0) = ae 3 + be 4 + 2T, a = 1 + 5 4m (r -2m), b = 5 4m (r -2m).Lemma 10.4.8. We have[ 2 , e 3 ]ψ = -2ωe 3 (e 3 ψ) + κe 4 (e 3 ψ) + κ 2 ψ + d ≤1 (Γ g )d 2 ψ + r -2 d ≤1 ψ.Proof. Recall that we have2 ψ = -e 4 (e 3 (ψ)) + / 2 ψ + 2ω e 3 ψ + 2ηe θ ψ. Since we have [e 4 , e 3 ] = 2ωe 3 + r -1 Γ b d /, [ d / k , e 3 ] = 1 2 κ d / k + Γ b d + r -1 Γ b , [ d / k , e 3 ] = 1 2 κ d / k + Γ b d + r -1 Γ b CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS We infer [ 2 , e 3 ]ψ = -[e 4 , e 3 ](e 3 (ψ)) + [ / 2 , e 3 ] -(κ)e 4 (ψ)e 3 -1 2 κ + 2ω e 3 (ψ) + 2η[e θ , e 3 ]ψ -2e 3 (η)e θ (ψ) = -2ωe 3 (e 3 ψ) + κ / 2 ψ + d ≤1 (Γ g )d 2 ψ + r -2 d ≤1 ψ.Using again2 ψ = -e 4 (e 3 (ψ)) + / 2 ψe 3 ψ + 2ηe θ ψ, we deduce [ 2 , e 3 ]ψ = -2ωe 3 (e 3 ψ) + κ 2 ψ + e 4 (e 3 ψ) + d ≤1 (Γ g )d 2 ψ + r -2 d ≤1 ψ = -2ωe 3 (e 3 ψ) + κe 4 (e 3 ψ) + κ 2 ψ + d ≤1 (Γ g )d 2 ψ + r -2 d ≤1 ψ.This concludes the proof of the lemma. The exists a scalar function d 0 satisfying the boundd 0 = 1 2m 0 + O(δ H ) on the support of κ H ,such that we have, schematically[ 2 , Y H ]ψ = d 0 Y (0) (Y H ψ) + 1 Υ≤2δ H 2 ψ + dT ψ + d ≤1 (Γ g )d 2 ψ + 1 H ≤Υ≤2δ H d ≤2 ψ.Proof. We haveY (0) = ae 3 + be 4 + 2T = ae 3 + b(2T -Υe 3 ) + 2T = (a -Υb)e 3 + 2(1 + b)T.Thus, in view of the commutator identities[T, 2 ]ψ = d ≤1 (Γ g )d ≤2 ψ, [ 2 , e 3 ]ψ = -2ωe 3 (e 3 ψ) + κe 4 (e 3 ψ) + κ 2 ψ + d ≤1 (Γ g )d 2 ψ + r -2 d ≤1 ψ,10.4. HIGHER DERIVATIVE ESTIMATES 775 we deduce, schematically, [ 2 , Y (0) ]ψ = [ 2 , (a -Υb)e 3 ]ψ + [ 2 , 2(1 + b)T ]ψ = (a -Υb)[ 2 , e 3 ]ψ + g αβ D α (a)D β e 3 ψ + 2(1 + b)[ 2 , T ]ψ +2g αβ D α (b)D β T ψ + d ≤1 ψ = (a -Υb) -2ωe 3 (e 3 ψ) + κe 4 (e 3 ψ) + κ 2 ψ -1 (a)e 4 (e 3 ψ) -1 (a)e 3 (e 3 ψ) +dT ψ + d ≤1 (Γ g )d 2 ψ + d ≤1 ψ. Since e 4 = -Υe 3 + 2T , we infer schematically [ 2 , Y (0) ]ψ = (a -Υb)(-2ω -Υκ) + Υ 2 e 3 (a) -1 2 e 4 (a) e 3 (e 3 ψ) + 2 ψ + dT ψ + d ≤1 (Γ g )d 2 ψ + d ≤1 ψ. We deduce, [ 2 , Y H ]ψ = [ 2 , κ H Y (0) ]ψ = κ H [ 2 , Y (0) ]ψ + κ H d ≤2 ψ + κ H d ≤1 ψ = κ H (a -Υb)(-2ω -Υκ) + Υ (a) e 3 (e 3 ψ) +1 Υ≤2δ H 2 ψ + dT ψ + d ≤1 (Γ g )d 2 ψ + 1 H ≤Υ≤2δ H d ≤2 ψ. Now, we have κ H e 3 (e 3 ψ) = 1 a -Υb κ H Y (0) (e 3 ψ) + T dψ = 1 (a -Υb) 2 κ H Y (0) (Y (0) ψ) + dT ψ + d ≤1 ψ = 1 (a -Υb) 2 Y (0) (Y H ψ) + dT ψ + 1 δ H d ≤1 ψ and hence [ 2 , Y H ]ψ = (a -Υb)(-2ω -Υκ) + Υ 2 e 3 (a) -1 2 e 4 (a) (a -Υb) 2 Y (0) (Y H ψ)

  sup τ ∈[τ 1 ,τ 2 ] E p [φ](τ ) + B p [φ](τ 1 , τ 2 ) + F p [φ](τ 1 , τ 2 ) E p [φ](τ 1 ) + J p [φ, N ](τ 1 , τ 2 ) + (trap) M(τ 1 ,τ 2 ) 1 -3m r |φ|(|φ| + |Rφ|) + (trap ) M(τ 1 ,τ 2 ) r p-3 |φ|(|φ| + |dφ|),

(trap) M(τ 1 ,τ 2 ) 1 -

 11 3m r |φ|(|φ| + |Rφ|) + (trap ) M(τ 1 ,τ 2 ) r p-3 |φ|(|φ| + |dφ|)

4 . 5 )-3m r r 3 |Ψ| 2 .- 2 (

 45322 in(trap) M. To this end, we choose f ad w as in Proposition 10.1.16. This yields 21Ė[f R, w](Ψ) ≥ f |R(Ψ)| 2 + r -1 1 -3m r f |∇ / Ψ| 2 + O 1We infer Ė[f R, w, M = 2hR](Ψ) ≥ f |R(Ψ)| 2 + r -1 1 -3m r f |∇ / Ψ| 2 + O 1 -Υr 2 h) |Ψ| 2 + hΨR(Ψ).

3 . 1 1 - 3m r e 4 ( 1 τe 3 d 2 d

 3114132 that ψ = f 2 ě4 ψ satisfies ψ --2 )d ≤1 ψ + rΓ b e 4 dψ + d ≤1 (Γ b )d ≤1 ψ + rd ≤1 (Γ g )e 3 ψ + d ≤1 (Γ g )d 2 ψ, r ≥ 6m 0 , O(1)d ≤2 ψ, 4m 0 ≤ r ≤ 6m 0 ,and recall also from Corollary 10.4.3 that we have[T, 2 ] ψ = d ≤1 (Γ g )d ≤2 ψ.We infer(T ψ) -V T ( ψ) = 2 r T ψ) + N T + T f 2 e 4 + 3 r N ,where we have, in view of the estimates 24 of Lemma 5.1.1 ford k Γ g and d k Γ b with k ≤ k small + 30, 1+δ dec -2δ 0 e 4 d 2 ψ + r -1 d ≤2 ψ ≤1 ψ + O 1 r ≤3 ψ + d ≤2 ψ , r ≥ 6m 0 , O(1)d ≤3 ψ, 4m 0 ≤ r ≤ 6m 0 .In view of (10.4.2) with T ψ instead of ψ and withN T + T f 2 e 4 +3r N instead of Ň + f 2 e 4 + 3 r N , we deduce sup τ ∈[τ 1 ,τ 2 ]

2

 2 

  3.4, this yields supτ ∈[τ 1 ,τ 2 ]

1 + 2m rΥ 2 25 (rΥ 2 e 4 (re 4 ψ) + N re 4 +re 4 f 2 e 4 N re 4 =

 12254444 2 max(q,δ) [ψ, N ].(10.4.13) Recovering estimates for re 4 ψRecall from Proposition 10.3.1 that ψ = f 2 ě4 ψ satisfies ψ -V ψ = 2 r 1 -3m r e 4 ψ + Ň + f 2 e 4 + 3 r N.Recall also from Lemma 10.4.10 that we have[ 2 , re 4 ] ψ = Υ r ě4 (re 4 ψ) + 2 ψ + Γ g d 2 ψ + 1 Υ r -2 dT ψ + r -2 d / 2 ψ + r -2 d ψ.We infer re 4 ψ) -V re 4 ( re 4 ( Ň ) + Ň + Γ g d 2 ψ + 1 Υ r -2 dT ψ + r -2 d / 2 ψ + r -2 d ψ.

rΥ 2 ≥

 2 0 on r ≥ 4m 0 . 794 CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS Conclusion of the proof of Theorem 5.3.5

Remark 10 . 5 . 1 .

 1051 Recall that in the frame of Proposition 3.5.2, we only have 26 η ∈ Γ b .

4 . 1 1 2 +δ dec trap |d ≤k small ψ| 2 +M(τ 1 ,τ 2 )dec trap |d ≤k small φ| 2 +Σ(τ 2 )(d ≤s φ) 2 r 3 +M(τ 1 ,τ 2 ) 2 + sup r 0 ≥4m 0 r 0 {r=r 0 } |d ≤s Γ g | 2 + r - 1 0

 41121222312221 for k ≤ k small derivatives. Then, for any 1 ≤ s ≤ k large -1, we havesup τ ∈[τ 1 ,τ 2 ] E s δ [ψ](τ ) + B s δ [ψ](τ 1 , τ 2 ) + F s δ [ψ](τ 1 , τ 2 ) E s δ [ψ](τ 1 ) + sup τ ∈[τ 1 ,τ 2 ] E s-1 δ [ψ](τ ) + B s-1 δ [ψ](τ 1 , τ 2 ) + F s-1 δ [ψ](τ 1 , τ 2 ) +D s [Γ] sup M(τ 1 ,τ 2 ) ru r 1+δ |d ≤s N 2 | 2 + (trap) M(τ 1 ,τ 2 ) T (d s φ)d s N 2(10.5.1)andsup τ ∈[τ 1 ,τ 2 ] E s δ [φ](τ ) + B s δ [φ](τ 1 , τ 2 ) + F s δ [φ](τ 1 , τ 2 ) E s δ [φ](τ 1 ) + sup τ ∈[τ 1 ,τ 2 ] r 1+δ |d ≤s N 0 | 2 + (trap) M(τ 1 ,τ 2 ) T (d s φ)d s N 0 , (10.5.2) where D s [Γ] is defined by D s [Γ] := (int) M∪ (ext) M(r≤4m 0 ) (d ≤s Γ) {r=r 0 } |d ≤s Γ b | 2 .

1 ,τ 2 ]

 12 E δ [ψ](τ ) + B δ [ψ](τ 1 , τ 2 ) + F δ [ψ](τ 1 , τ 2 ) E δ [ψ](τ 1 ) + (trap) M(τ 1 ,τ 2 ) 1 -3m r |ψ|(|ψ| + |Rψ|) + (trap ) M(τ 1 ,τ 2 ) r δ-3 |ψ|(|ψ| + |dψ|) + M(τ 1 ,τ 2 ) r 1+δ |N 2 | 2 + (trap) M(τ 1 ,τ 2 ) T (ψ)N 2 ,(10.5.3)andsup τ ∈[τ 1 ,τ 2 ] E δ [φ](τ ) + B δ [φ](τ 1 , τ 2 ) + F δ [φ](τ 1 , τ 2 ) E δ [φ](τ 1 ) + A(τ 1 ,τ 2 )∪Σ(τ 2 )∪Σ * (τ 1 ,τ 2 ) + |Rφ|) + (trap ) M(τ 1 ,τ 2 ) r δ-3 |φ|(|φ| + |dφ|) + M(τ 1 ,τ 2 ) r 1+δ |N 0 | 2 + (trap) M(τ 1 ,τ 2 )

(trap) M(τ 1 ,τ 2 ) 2 (

 122 trap) M(τ 1 ,τ 2 ) (|R(Ψ)| + |Ψ|)|N 2 | + (trap) M(τ 1 ,τ 2 ) T (Ψ)N 2 λB δ [ψ](τ 1 , τ 2 ) + λ -1 (trap) M(τ 1 ,τ 2 ) |N 2 | 2 + (trap) M(τ 1 ,τ 2 )

A(τ 1 ,τ 2 )

 12 ∪Σ(τ 2 )∪Σ * (τ 1 ,τ 2 ) Q 34 = A(τ 1 ,τ 2 )∪Σ(τ 2 )∪Σ * (τ 1 ,τ 2 ) |∇ / φ| 2 + V 0 φ 2 .Now, we have in view of the definition ofV 0 A(τ 1 ,τ 2 )∪Σ(τ 2 )∪Σ * (τ 1 ,τ 2 ) Q 34 ≥ A(τ 1 ,τ 2 )∪Σ(τ 2 )∪Σ * (τ 1 ,τ 2 ) |∇ / φ| 2 -O(1) A(τ 1 ,τ 2 )∪Σ(τ 2 )∪Σ * (τ 1 ,τ 2 ) φ 2 r 3

A(τ 1 ,τ 2 )∪Σ * (τ 1 ,τ 2 )(d ≤s φ) 2 r 3 F s- 1 δ

 121231 [φ](τ 1 , τ 2 ) which explains why the termA(τ 1 ,τ 2 )∪Σ * (τ 1 ,τ 2 ) (d ≤s φ) 2 r 3

2 |d ≤k small ψ| 2 + 1 2dec trap |d ≤k small ψ| 2 D 2 D 2 |d ≤k small ψ| 2 +M(τ 1 ,τ 2 ) ru 1 2 +δ dec trap |d ≤k small ψ| 2 DProposition 10 . 5 . 4 .

 22122221121054 4.3, one easily checks that these terms are bounded in absolute value from above by|d ≤s (Γ g )| + r -1 |d ≤s (Γ b )| |d ≤k small ψ|.We thus need, in view of Theorem 10.5.3, to estimateM(τ 1 ,τ 2 ) r 1+δ |d ≤s (Γ g )| + r -1 |d ≤s (Γ b )| (trap) M(τ 1 ,τ 2 ) |T d s ψ||d ≤s ( Γ)||d ≤k small ψ| sup M(τ 1 ,τ 2 ) r 2 |d ≤k small ψ| 2 M(τ 1 ,τ 2 ) r -1+δ |d ≤s (Γ g )| + r -1 |d ≤s (Γ b )| 2 + sup (trap) M(τ 1 ,τ 2 ) u +δ dec |d ≤k small ψ| sup τ ∈[τ 1 ,τ 2 ] trap |d ≤k small ψ| sup τ ∈[τ 1 ,τ 2 ] E s δ [ψ](τ ) 1 s [Γ]where we have used the definition of D s [Γ]. We inferM(τ 1 ,τ 2 ) r 1+δ |d ≤s (Γ g )| + r -1 |d ≤s (Γ b )| (trap) M(τ 1 ,τ 2 ) |T d s ψ||d ≤s ( Γ)||d ≤k small ψ| λ -1 sup s [Γ] + λ sup τ ∈[τ 1 ,τ 2 ] E s δ [ψ](τ )for any λ > 0 and the last term is then absorbed from the left-hand side of the desired estimate by choosing λ > 0 small enough which concludes the proof of Theorem 10.5.2. Let ψ a reduced 2-scalar satisfying2 ψ = f 2 (r, m)Y (0) ψ + N 2 ,where the function f 2 is smooth and positive, and where the vectorfield Y (0) has been introduced in Proposition 10.1.29 in connection with the redshift vectorfield and is given by Y (0) := 1 + 5 4m (r -2m) + Υ e 3 + 1 + 5 4m (r -2m) e 4 .

(int) M(τ 1 ,τ 2 ) 5 2 m 0 (τ 1 ,τ 2 )(d s+1 ψ) 2 +D 5 2 m 0 r|d ≤k small ψ|   2 + 1 10 H,

 1250122502110 (d s+1 ψ) 2 E s δ [ψ](τ 1 ) + (ext) M r≤ M(τ 1 ,τ 2 )∪ (ext) M r≤ (int) M(τ 1 ,τ 2 )∪ (ext) M r≤ 5 2 m 0 (d ≤s ψ) 2 + (d ≤s+1 N 2 ) 2 .Proof. Recall from Proposition 10.1.29 that the redshift vectorfield is given byY H := κ H Y (0) , κ H := κ Υ δwhere κ is a positive bump function κ = κ(r), supported in the region in [-2, 2] and equal to 1 for [-1, 1].

∂ 4 Sf + ς - 1 S(e 4 1 S- 1 Sς(e 3 f 1 S 1 SS(e 3 f 1 Sς (e 3 f-ς - 1 S

 414113113131 u f + g(D e θ ∂ u , e θ )f + g(D eϕ ∂ u , e ϕ )f = S ∂ u f + g(D e θ ∂ u , e θ )fg(∂ u , D eϕ e ϕ )f = S ∂ u f + g(D e θ ∂ u , e θ )f + g(∂ u , D a (Φ)e a )fOn the other hand, we have we have, see(2.2.42), e θ ∂ u , e θ ) + g(∂ u , D a (Φ)e a ) ςe 3 f -ςΩe 4 f + ςκf -ςΩκfd / 1 (ς √ γbf ) . (f ) + κf ) + ς -ςe 3 f -ςΩe 4 f + ςκf -ςΩκf = ς + κf ) + Ω + ς -1 Ως S (e 4 f + κf ) -ς -1 Ω S ς(e 4 f + κf )ς -Ως(e 4 f + κf ).We further write,ς -ς(e 3 f + κf ) = ς -1 ς S (e 3 f + κf ) + ς -1 S ς (e 3 f + κf ) = S (e 3 f + κf ) + (ς -1 ς -1) S (e 3 f + κf ) + ς -1 S ς (e 3 f + κf ) = S (e 3 f + κf )ς -1 ς S (e 3 f + κf ) + ς -1 S ς (e 3 f + κf ). + κf ) + ς -+ κf ) + Ω + ς -1 Ως S (e 4 f + κf )ς -1 Ω S ς(e 4 f + κf )Ως(e 4 f + κf ) as desired.

Err[e 3 + 2η 2 -

 32 (κ)] = -ς -1 ς (e 3 κ + κκκκ) + ς -1 ς(e 3 κ + κκ)ς κ κ+ Ω + ς -1 Ως e 4 κ + κ 2κ 2ς -1 Ω ς(e 4 κ + κ 2 )ς κ κ ς -1 Ως(e 4 κ + κ 2 ) -Ως κ κ + κκ.Together with the null structure equations for e 3 (κ) and e 4 (κ), we infer Err[e 3 (κ)] = -ς ς κ κ

  3.3), χ = g(D e θ e 4 , e θ ) = g D e θ λ e 4 + f e θ + 1 4 f 2 e 3 , e θ = λg D e θ e 4 + f e θ + 1 4 f 2 e 3 , e θ = λg D e θ e 4 , e θ + λe θ (f )g(e θ , e θ ) + λ 4 e θ (f 2 )g(e 3 , e θ ) + λf g D e θ e θ , e θ + λ 4 f 2 g(D e θ e 3 , e θ ) = λg D e θ e 4 , e θ + λ 1 + 1 2 f f e θ (f ) -λ 4 f e θ (f 2 ) + λf g D e θ e θ , e θ + λ 4 f 2 χ + l.o.t.

g D e θ e 4 )eθ+ 1 2 f e 4 + 1 2 f e 3 e 4 , e θ + 1 2 f g D e θ + 1 2 f e 4 + 1 2 f e 3 e 4 2 f 2 g D e θ e θ , e 3 = - 1 2 f f χ - 1 2 f 2 χ 1 ( 2 κf 2 e 3 Φ= 2 ( 4 f 2 κ 2 ff 2 f 4 λ -1 f 2 g D e θ e 4 4 f 2 κ- 1 4 f 2 4 f 2 e 3 , e 3 = 4 f 2 e 3 , e 3 = 4 λf 2 g D e θ e 3 , e 3 = 1 2 f e 4 + 1 2 f e 3 e 4 , e 3 + f g D e θ + 1 2 f e 4 + 1 2 f e 3 e 4 1 2 f e 4 + 1 2 4 f 2 e 3 , e θ = λg D e 3 e 4 + f e θ + 1 4 f 2 e 3

 411114223212324222444224343423114311411443 , e θ = g D e θ e 4 , , e 3 + l.o.t. = 1 + f f χ + f ξ + f η + f ζ + f f ωf 2 ω + l.o.t., and f g D e θ e θ , e θ = 1 2 f f g D e θ e θ , e 4 + 1 + l.o.t. This yields χ = λg D e θ e 4 , e θ + λ 1 + 1 2 f f e θ (f ) -λ 4 f e θ (f 2 ) + λf g D e θ e θ , e θ + λ 4 f 2 χ + l.o.t. θ(f 2 ) + f (ζ + η) + f ξ -+ f f ωf 2 ω +l.o.t. . Hence, κ = χ + e 4 Φ = χ + λ e 4 + f e θ + 1 4 f 2 e 3 Φ = λ κ + e θ (f ) + e θ (Φ)f + 1 8 (κϑ)f 2 + 1 2 f f e θ (f ) -1 4 f e θ (f 2 ) + f (ζ + η) + f ξ + f f ωf 2 ω + l.o.t. = λ κ + d / + f (ζ + η) + f ξ + f f ωf 2 ω + l.o.t. and ϑ = χe 4 Φ = χλ e 4 + f e θ + 1 4 λ ϑ + e θ (f )e θ (Φ)f -1 8 (κϑ)f 2 + 1 2 f f e θ (f ) -1 4 f e θ (f 2 ) + f (ζ + η) + f ξ + f f ωf 2 ω + l.o.t. = λ ϑd / + f (ζ + η) + f ξ + f f ωf 2 ω + l.o.t. . This yields κ = λ (κ + d / 1 (f )) + λErr(κ, κ ), θ (f 2 ) + f (ζ + η) + f ξ + 1 + f f ωf 2 ω + l.o.t. = f (ζ + η) + f ξ + 1 4 f 2 κ + f f ωf 2 ω + l.o.t. and ϑ = λ (ϑd / 2 (f )) + λErr(ϑ, ϑ ), Err(ϑ, ϑ ) = 1 2 f f e θ (f ) -1 4 f e θ (f 2 ) + f (ζ + η) + f ξ + 1 4 f f κ + f f ωf 2 ω + l.o.t. = f (ζ + η) + f ξ + 1 4 f f κ + f f ωf 2 ω + l.o.t.Next, we derive the transformation formula for κ and ϑ. We have, under a transformation of type (2.3.3),χ = g(D e θ e 3 , e θ ) = g D e θ λ -1 2 g(e 3 , e θ ) + λ -1 e θ f 1 2 g D e θ e 3 , e θ + λ -1 f 1 + 1 4 f f g D e θ e θ , e θ + 1 θ f 2 + λ -1 1 + 1 2 f f g D e θ e 3 , e θ + λ -1 f g D e θ e θ , e θ + 1 4 λ -1 f 2 χ + l.o.t.Then, we easily derive by symmetry from the formula for κ and ϑκ = λ -1 κ + d / 1 (f ) + λ -1 Err(κ, κ ), Err(κ, κ ) =θ f 2 + f (-ζ + η) + f ξ -1 + f f ωf 2 ω + l.o.t. = -1 4 f 2 e θ (f ) + f (-ζ + η) + f ξ -1 4 f 2 κ + f f ωf 2 ω + l.o.t. and ϑ = λ ϑd / 2 (f ) + λ -1 Err(ϑ, ϑ ), Err(ϑ, ϑ ) =θ f 2 + f (-ζ + η) + f ξ + 1 4 f f κ + f f ωf 2 ω + l.o.t. = e θ (f ) + f (-ζ + η) + f ξ + 1 4 f f κ + f f ωf 2 ω + l.o.t.Next, we derive the transformation formula for ζ. We have, under a transformation of type (2.3.3), 2ζ = g(D e θ e 4 , e 3 ) = g D e θ λ e 4 + f e θ + 1 -2e θ (log(λ)) + λg D e θ e 4 + f e θ + 1 -2e θ (log(λ)) + λe θ (f )g (e θ , e 3 ) + 1 4 λe θ (f 2 )g (e 3 , e 3 ) + λg D e θ e 4 , e 3 +λf g D e θ e θ , e 3 + 1 -2e θ (log(λ)) + f 1 + 1 4 f f e θ (f ) -1 8 f 2 e θ (f 2 ) + λg D e θ e 4 , e 3 + λf g D e θ e θ , e 3 + l.o.t. We compute λg D e θ e 4 , e 3 = g D e θ e 4 , e 3 + f e θ + l.o.t. = g D e θ + , e θ + l.o.t. = 2ζ + 2ωf -2ωf + f χ + l.o.t. and λf g D e θ e θ , e 3 = f g D e θ e θ , e 3 + l.o.t. = f g D e θ + f e 3 e θ , e 3 + l.o.t. = -f χ + l.o.t. This yields 2ζ = -2e θ (log(λ)) + f 1 + 1 4 f f e θ (f ) -1 8 f 2 e θ (f 2 ) + λg D e θ e 4 , e 3 + λf g D e θ e θ , e 3 + l.o.t.= 2ζ -2e θ (log(λ))+ f 1 + 1 4 f f e θ (f ) -1 8 f 2 e θ (f 2 ) + 2ωf -2ωf + f χf χ + l.o.t.and henceζ = ζe θ (log(λ)) + 1 4 (-f κ + f κ) + f ωf ω + Err(ζ, ζ ), Err(ζ, ζ ) θ (f ) -1 16 f 2 e θ (f 2 ) + 1 4 (-f ϑ + f ϑ) + l.o.t. ϑ + f ϑ) + l.o.t.Next, we derive the transformation formulae for η. We have, under a transformation of type (2.3.3), 2η = g D e 3 e 4 , e θ = g D e 3 λ e 4 + f e θ + 1 , e θ = λg D e 3 e 4 , e θ + λe 3 (f )g (e θ , e θ ) + λf g D e 3 e θ , e θ + 1 4 λe 3 (f 2 )g (e 3 , e θ ) + 1 4 λf 2 g(D e 3 e 3 , e θ ) = λ 1 + 1 2 f f e 3 (f ) -1 4 λf e 3 (f 2 ) + λg D e 3 e 4 , e θ + λf g D e 3 e θ , e θ + l.o.t. We compute λg D e 3 e 4 , e θ = λg D e 3 e 4 , e θ + 1 2 f e 3 + l.o.t. = g D e 3 +f e θ e 4 , e θ + 1 2 f g (D e 3 e 4 , e 3 ) + l.o.t. = 2η + f χ -2ωf + l.o.t. and λf g D e 3 e θ , e θ = l.o.t.

  (f 2 ) + λ -1 g D e 3 e 3 , e θ + λ -1 f g D e 3 e θ , e θ + l.o.t. We compute λ -1 g D e 3 e 3 , e θ = λ -1 g D e 3 e 3 , e θ + 1 2 f e 4 + l.o.t. = λ -2 g D e 3 +f e θ e 3 , e θ + 1 2 λ -2 f g (D e 3 e 3 , e 4 ) + l.o.t. = 2λ -2 ξ + λ -2 f χ + 2λ -2 f ω + l.o.t. and λ -1 f g D e 3 e θ , e θ = l.o.t.

= 2e 3 2 λ -1 e 3 f f + 1 8 f 2 f 2 g (e 3 , e 4 ) + λ -1 1 + 1 2 f f g D e 3 e 3 , e 4 +λ -1 e 3 f 1 8 f 2 f 2 + f e 3 f 1 e 3 e 3 , e 4 + f e θ = λ - 1 f 2 e 4 e 3 , e 4 +

 32344182134134 (log(λ)) + 1 θ , e 4 ) + λ -1 f g D e 3 e θ , e 4 + 1 4 λ -1 e 3 (f 2 )g (e 4 , e 4 ) + l.o.t. = 2e 3 (log(λ))e 3 f f + 1 D e 3 e 3 , e 4 + λ -1 f g D e 3 e θ , e 4 + l.o.t. f e θ + l.o.t.= 4λ -1 1 + 1 2 f f ω -2λ -1 f ζλ -1 f 2 ω + 2λ -1 f f ω +2λ -1 f ξ + λ -1 f f χ + l.o.t.and λ -1 f g D e 3 e θ , e 4 = f g D e 3 e θ , e 4 + l.o.t. = λ -1 f g D e 3 +f e θ e θ , e 4 + l.o.t. = -2λ -1 f ηλ -1 f 2 χ + l.o.t.

Finally, we derive 4 f 2 e 3 f + 1 4 f 2 g D e 4 +f e θ + 1 4 f 2 e 3 e 3 4 f 2 e 3 , e 3 = 3 = g D e 4 +f e θ + 1 4 f 2 e 3 e 4 , e 3 +f e 3 = λ 2 2ξ + f χ + 1 2 f 2 η

 434334332 the formula for ρ. We haveρ = R(e 4 , e 3 ) = R e 4 + f e θ + 43 + f R 4θ + f R θ3 + f f R θθ + l.o.t. = ρ + 3 2 ρf f + f β + f β + l.o.t.and hence ρ = ρ + Err(ρ, ρ ), Err(ρ, ρ ) = Next, we compute g D λ -1 e 4 (λ -1 e 4 ), e θ = g D λ -1 e 4 e 4 + f e θ + 1 4 f 2 e 3 , e θ = g D λ -1 e 4 e 4 , e θ + λ -1 e 4 (f ) + 1 4 f 2 g D λ -1 e 4 e 3 , e θ = g D e 4 +f e θ + 1 4 f 2 e 3 e 4 , e θ + e 4 + f e θ + 1 , e θ = 2ξ + f χ + 1 2 f 2 η + e 4 + f e θ + g D λ -1 e 4 (λ -1 e 4 ), e 3 = g D λ -1 e 4 e 4 + f e θ + 1 g D λ -1 e 4 e 4 , e 3 + f g D λ -1 e 4 e θ , e f g D e 4 +f e θ + 1 4 f 2 e 3 e θ , e 3 = 4ω + 2f ζf 2 ω -2ηff 2 χ -2 g D λ -1 e 4 (λ -1 e 4 ), e θ + 1 2 + e 4 + f e θ + 1 4

8 f 4

 4 ξ 836 APPENDIX A. APPENDIX TO CHAPTER 2 and 4ω = -2e 4 (log(λ)) + λg(D λ -1 e 4 (λ -1 e 4 ), e 3 ) + λ -1 f ξ = λ 4ω -2 e 4 + f e θ + 1 4 f 2 e 3 log(λ) + 2f ζf 2 ω -2ηff 2 χ -

A. 8 .

 8 PROOF OF COROLLARY 2.3.7 837 Finally, we derive the transport equation for f . In view of the transformation formulas of Proposition 2.3.4 for ζ and η , and the fact that we assume ζ + η = 0, we have1 2 λ -1 e 4 (f ) = -(ζ + η) + e θ (log(λ))l.o.t.Together with the above identity for λ -1 e 4 (f ), we inferλ -1 e 4 (f ) + κ 2 f = -2(ζ + η) + 2e θ (log(λ)) + 2f ω + E 3 (f, f , Γ), E 3 (f, f , Γ) = -f e θ (f ) -1 2 f ϑ + l.o.t.,which yields the third identity of the statement. This concludes the proof of Lemma 2.3.6.A.8 Proof of Corollary 2.3.7In view of Lemma 2.3.6 and the fact that (e 3 , e 4 , e θ ) emanates from an outgoing geodesic foliation and hence ξ = 0, ω = 0, ζ + η = 0, we haveλ -1 e 4 (f ) + κ 2 f = E 1 (f, Γ), λ -1 e 4 (log(λ)) = E 2 (f, Γ),λ -1 e 4 (f ) + κ 2 f = 2e θ (log(λ)) + 2f ω + E 3 (f, f , Γ).

λ -1 e 4 f 2 f 3 f 2 f 4 e 3 (f 2 4 f 2 κf 2 f 2

 42324324222 (rf ) = r -κ 2 f + E 1 (f, Γ) + λ -1 e 4 (r)f = -r 2 κ -2λ -1 e 4 (r) r f + rE 1 (f, Γ).λ -1 e 4 = e 4 + f e θ + f + rE 1 (f, Γ) as desired.Next, we haveλ -1 e 4 rf -2r 2 e θ (log(λ)) + rf Ω = r -κ 2 f + 2e θ (log(λ)) + 2f ω + E 3 (f, f , Γ) -2r 2 e θ (E 2 (f, Γ)) + rΩ -κ 2 f + E 1 (f, Γ) +λ -1 e 4 (r)f -2r 2 [λ -1 e 4 , e θ ] log(λ) -4rλ -1 e 4 (r)e θ (log(λ)) + rλ -1 e 4 (Ω)f + λ -1 e 4 (r)f Ω = -r 2 κ -2λ -1 e 4 (r) r f + 2r 1 -2λ -1 e 4 (r) e θ (log(λ)) -2r 2 λ -1 [e 4 , e θ ] log(λ) +r λ -1 e 4 (Ω) + 2ω f -r 2 κ -2λ -1 e 4 (r) r Ωf -2r 2 e θ (log(λ))λ -1 e 4 (log(λ)) +rE 3 (f, f , Γ) -2r 2 e θ (E 2 (f, Γ)) + rΩE 1 (f, Γ).Since we have λ -1 e 4 = e 4 + f e θ + (r),λ -1 e 4 (Ω) = e 4 (Ω) + f e θ (Ω) + f 2 4 e 3 (Ω) = -2ω + f e θ (Ω) + f 2 4 e 3 (Ω).Together with the transport equation for log(λ) and the commutator identity for [e 4 , e θ ], we inferλ -1 e 4 rf -2r 2 e θ (log(λ)) + rf Ω + 2r 1rκ -e 3 (r) 2 f 2 e θ (log(λ)) + r 2 λ -1 (κ + ϑ )e θ (log(λ)) +r e θ (Ω) + f ΩfNow, recall the following transformation formulasλ -1 κ = κ + d / 1 (f ) + Err(κ, κ ), Err(κ, κ ) = f (ζ + η) -1 f 2 ω + l.o.t.We inferλ -1 e 4 rf -2r 2 e θ (log(λ)) + rf Ω + r 2 κκ -2 r -e 3 (r) r f 2 e θ (log(λ)) +r 2 d / 1 (f ) + Err(κ, κ ) + λ -1 ϑ e θ (log(λ)) +r e θ (Ω) + f 4 e 3 (Ω) f 2 -r 2 κ -e 3 (r) 2r f Ωf -2r 2 e θ (log(λ))E 2 (f, Γ) + rE 3 (f, f , Γ) -2r 2 e θ (E 2 (f, Γ)) + rΩE 1 (f, Γ).

Finally, we compute 3 = g D e θ e 4 + f e θ + 1 4 f 2 e 3 , e 3 = 3 = g D e θ + 1 2 f e 3 e 4 , e 3 += g D e 3 e 4 + f e θ + 1 4 f 2 e 3 4 e 3 2 f e 3 + f g D e 3 e θ , 1 2 f e 3 + 1 4 f 2 2 f 2 ξ 2 - 3 (2ρ 2 - 2 ρ

 343343434323222322 the change of frame formula for ζ and η when λ = 1, f = 0. We have in this case e 4 = e 4 + f e θ + 1 4 f 2 e 3 , e θ = e θ + 1 2 f e 3 , e 3 = e 3 , and hence 2ζ = g D e θ e 4 , e g D e θ e 4 , e 3 + f g D e θ e θ , e f g D e θ + 1 2 f e 3 e θ , e 3 = 2ζ -2ωfχfξf 2 g D e 3 e 4 , e θ , e θ = g D e 3 e 4 , e θ + e 3 (f )g (e θ , e θ ) + f g D e 3 e θ , e θ + 1 (f 2 )g (e 3 , e θ ) + 1 4 f 2 g(D e 3 e 3 , e θ ) = e 3 (f ) + g D e 3 e 4 , e θ + 1 g(D e 3 e 3 , e θ ) = 2η + e 3 (f ) -2f ω -1 which yields the desired change of frame formula for ζ and η . This concludes the proof of Lemma 2.3.5.andE 1 = r -4 Γ b • d / ≤1 Γ b + l.o.t. E 2 = r -4 Γ b • d / ≤1 Γ b + r -2 Γ b • β + l.o.t. E 3 = r -2 d / 2 (Γ g • Γ b ) + r -3 ( d /Γ g ) • ( d /Γ g ) E 41 = r -2 Γ g • ( d /Γ b ) + r -1 Γ b • d /β + r -2 Γ b d / • Γ g = r -2 d /(Γ g • Γ b ) + l.o.t. E 4 = r -3 d / 2 (Γ g • Γ b ) + l.o.t. Com * 2 ( d / 1 ρ) = r -3 Γ b • d ≤2 Γ g + r -2 d /Γ b • Γ g + l.o.t.and, since r -1 Γ b can be replaced by Γ g and d /β can be replaced by r -1 Γ g ,E = r -3 d / 2 (Γ g • Γ b ) + l.o.t.Taking into account the expression of Err[q] in Proposition 2.3.13 we writere 3 (Err[q]) + Err[q] = re 3 r 4 e 3 η • β + r 2 d ≤1 Γ b • Γ g ) + r 4 e 3 η • β + r 2 d ≤1 Γ b • Γ g ) = r 5 d ≤1 e 3 η • β + r 3 d ≤2 Γ b • Γ gand therefore, back to (A.11.7),Err[e 3 (rq)] = e 3 (rErr[q]) + Err[q] + rAq + r 5 E = r 5 d ≤1 e 3 η • β + r 3 d ≤2 Γ b • Γ g + rΓ b q + r 2 d / 2 (Γ g • Γ b ) + l.o.t. = rΓ b q + r 5 d ≤1 e 3 η • β + r 3 d ≤2 Γ b • Γ g .This concludes the proof of Proposition 2.3.14.A.12 Proof of the Teukolsky-Starobinski identityAccording to Proposition 2.3.14 we have e 3 (rq) = r 5 d / κκρ)ϑ + Err[e 3 q]. We infer that e 3 (r 2 e 3 (rq)) = r 7 e κκρ)ϑ + 7re 3 (r)e 3 (rq) + r 2 e 3 Err[e 3 q] + rErr[e 3 q] + l.o.t. + e θ (Φ)ϑβ -1 2 κ(ζ + 4η)β -(ζ + η)e 4 (β)ξe 3 (β) +e θ (Φ)(2ζ + η)α + β 2 + e 4 (Φ)ηβ + e 3 (Φ)ξβ -(ζ + 4η)e 4 (β) -(e 4 (ζ) + 4e 4 (η))β -2(κ + ω)(ζ + 4η)β + 2e θ (κ + ω)βe θ ((2ζ + η)α) -3ξe θ (ρ) + 2ηe θ (α) θ (β) + e θ (Φ)β) + 3ρ(η + η + 2ζ)ξ + (e θ (η) + e θ (Φ)η)α

e 2 - 2 -4ω e 4 ( 4 2 -4ω e 4 (e 4 2 -4ω e 4 ( 4 2 - 2 - 3 ( 4 2 - 4 +

 2244244244223424 θ (β)e θ (Φ)β = e 3 (α) + κ 4ω α + 3 2 ϑ ρ -(ζ + 4η)β, e 4 (β) + 2(κ + ω)β = e θ (α) + 2e θ (Φ)α + (2ζ + η)α + 3ξρ. to infer that e 4 (e 3 (α)) = e 4 (e θ (β))e θ (Φ)e 4 (β)e 4 (e θ (Φ))β -κ (ϑ)ρ + (ζ + 4η)e 4 (β) + (e 4 (ζ) + 4e 4 (η))β = e 4 (e θ (β))e θ (Φ) e θ (α) + 2e θ (Φ)α -2(κ + ω)β + (2ζ + η)α + 3ξρ -(D 4 D θ Φ + D D 4 e θ Φ)β -κ (ϑ)ρ + (ζ + 4η)e 4 (β) + (e 4 (ζ) + 4e 4 (η))β. Hence, e 4 (e 3 (α)) = e 4 (e θ (β))e θ (Φ)(e θ (α) + 2e θ (Φ)α) + 2e θ (Φ)(κ + ω)β -3e θ (Φ)ξρ +e 4 (Φ)e θ (Φ)β -κ (ϑ)ρe θ (Φ)(2ζ + η)αβ 2e 4 (Φ)ηβe 3 (Φ)ξβ +(ζ + 4η)e 4 (β) + (e 4 (ζ) + 4e 4 (η))β A.13. PROOF OF PROPOSITION 2.4.6 859 and e θ (e θ (α)) = e θ (e 4 (β)) + 2(κ + ω)e θ (β) + 2e θ(κ + ω)β -2e θ (Φ)e θ (α) -2e θ (e θ (Φ))α -e θ ((2ζ + η)α) -3e θ (ξρ) = e θ (e 4 (β)) + 2(κ + ω) e θ (Φ)β + e 3 (α) + κ 4ω α + 3 2 ϑ ρ -(ζ + 4η)β +2e θ (κ + ω)β -2e θ (Φ)e θ (α) -2(D θ D θ Φ + D D θ e θ Φ)αe θ ((2ζ + η)α) -3e θ (ξρ) = e θ (e 4 (β)) + 2(κ + ω)e θ (Φ)β + 2(κ + ω)e 3 (α) + 2(κ + ω) κ 4ω α + 3(κ + ω)ϑ ρ -2e θ (Φ)e θ (α) -2 ρe θ (Φ) Φ) α -3e θ (ξ)ρ -2(κ + ω)(ζ + 4η)β + 2e θ (κ + ω)βe θ ((2ζ + η)α) -3ξe θ (ρ).In view of Lemma 2.4.1, we haveg f = -e 4 (e 3 (f )) + e θ (e θ (f ))e 3 (f ) + e θ (Φ)e θ (f ) + 2ηe θ (f ).We infer g α = -e 4 (e 3 (α)) + e θ (e θ (α))e 3 (α) + e θ (Φ)e θ (α) + 2ηe θ (α) = [e θ , e 4 ](β)e 4 (Φ)e θ (Φ)β (ϑ)ρ + 3(κ + ω)ϑ ρ -3(e θ (ξ)e θ (Φ)ξ)ρ -4ωe 4 (α) + 3 2 κ + 4ω e 3 (α)+ e 4 (κ) 2 -4e 4 (ω) + κκ -8κω + κω -8ωω -2ρ + 4e θ (Φ) 2χe 4 (Φ)χe 3 (Φ) α +e θ (Φ)(2ζ + η)α + β 2 + e 4 (Φ)ηβ + e 3 (Φ)ξβ -(ζ + 4η)e 4 (β) -(e 4 (ζ) + 4e 4 (η))β -2(κ + ω)(ζ + 4η)β + 2e θ (κ + ω)βe θ ((2ζ + η)α) -3ξe θ (ρ) + 2ηe θ (α).Next, we have [e θ , e 4 ](β) = χe θ (β) -(ζ + η)e 4 (β)ξe 3 (β) = χ e θ (Φ)β + e 3 (α) + κ 4ω α + 3 2 ϑ ρ -(ζ + 4η)β -(ζ + η)e 4 (β)ξe 3 (β)• In particular, we have,(X) π 43 = -2f + 4f r + O( ) min{w 1,1 , w 2,1/2 } (|f | + r|f |) ,(X) π 4A = min{w 2,1 , w 3,1/2 }, (X) π AB = O( ) min{w 1,1 , w 2,1/2 }|f |, (X) π 3A = O( )w 1,1 |f |, (X) π 33 = 4f Υ -4Υ + O( )w 1,1 (|f | + r|f |). w 3,1 |f | + r|f | + r 2 |f | . (D.3.3)

(X) π 44 = 0 (X) π 43 =- 2m r 2 h 2 (e 3 e 4 + 3 h 2 (e 3 e 4 + 2 ( 2 ( 2 h (e 3 e 4 +=r 2 he 4 1 -3m r Υ e 4 (r 2 = r 2 Υ -1 e 4 (e 4 (r 2 e 4 = f 2 ě4 ψ = f 2 r 2 r 2 ě4 ψ, we infer ( 2 + κκ) ψ = f 2 r 2 ( 2 + 3 f 2 r 2 e 4 (r 2 ě4 ψ) -e 4 f 2 r 2 e 3 (r 2 ě4 ψ) +e θ f 2 r 2 d / 2 2 + 4 (e 4 (r 2 e 3 f 2 r 2 e 4 (r 2 ě4 ψ) -e 4 f 2 r 2 e 3 (r 2 ě4 ψ) +e θ f 2 r 2 d / 2 (r 2 ě4 ψ) -e θ f 2 r 2 d / 3 (r 2 ě4 ψ) + 0 f 2 r 2 r 2 ( 2 + 4 (e 4 (r 2 e 3 f 2 r 2 e 4 (r 2 ě4 ψ) -e 4 f 2 r 2 e 3 (r 2 ě4 ψ) +e θ f 2 r 2 d / 2 2 κ e 3 ψ - 1 2 κe 4 ψ + 2ηe θ ψ, we have r 2 Γ 2 κ e 3 ψ - 1 2 κe 4 ψ

 04322432422242414224424222343224424323224424322224 -2e 4 f + 4f ω + 4f r = -2 e 4 (f ) -2f r + 4f ω (X) π 4θ = 2f ξ (X) π AB = 2f (1+3) χ AB -2f r g / AB = 2f (1+3) χ AB -1 r δ AB (X) π 3θ = 2f (η + ζ) (X) π 33 = -8f ω -4e 3 (f )Under the assumptions (10.2.8)-(10.2.9) on the Ricci coefficients (with respect to the D.3. VECTORFIELD X F 917 frame (e 3 , e 4 )), we deduce,(X) π 43 = -2e 4 f + 4f ω = -2f + 4f r -2f (e 4 (r) -1) + 4f (ω -1) = -2f + 4f r + min{w 1,1 , w 2,1/2 } (|f | + r|f |) (X) π 4A = min{w 2,1 , w 3,1/2 }, (X) π AB = min{w 1,1 , w 2,1/2 }|f | (X) π 3A = min{w 1,1 , w 2,1/2 }|f | (X) π 33 = -8f ω -4e 3 (f ) = -8f m r 2 + w 1,1 -4f (-Υ + w 0,1 ) = 4f Υ -4Υ + w 1,1 (|f | + r|f |)To prove formula (D.3.3) we make use of the following (see alsoLemma 10.1.11),Lemma D.3.2. If h = h(r) then h = Υh (r) + 2 r + O( )w 2,1 |h| + r|h | + r 2 |h | Proof. For a general scalar h, h = -1 e 4 e 3 )h + / h + (1+3) ωwith / h = e θ e θ h + (e θ Φ) 2 e θ h = 0 if h is radial. Thus, h = -1 e 4 e 3 )h + ( (1+3) ω -1 1+3) trχ)e 4 h + ( (1+3) ω -1 1+3) trχ)e 3 h = -f (e 3 r)(e 4 r) -1 e 4 e 3 )r + h ( (1+3) ω --h (-Υ + O( )w 0,1 )(1 + O( )w 1,1 ) + m r 2 + O( )w 1,1 h + O( )w 2,1 |h| + r|h | + r 2 |h |which concludes the proof of Lemma D.3.2.we haverΥ -1 e 4 (r 2 ψ) + r 2 Υ -1 κ 2 ψ + 2r 1 -3m r Υ e 4 (ě 4 ψ) = rΥ -1 e 4 (r(Nκκψ)) + r 2 Υ -1 κ(Nκκψ) (r)ě 4 ψ = rΥ -1 e 4 (rN ) + r 2 Υ -1 κN + 2 r ě4 ψ) + 4m r ě4 ψ -2r 2 Υ -1 κρψ + d ≤1 (Γ b )d ≤1 ψ ě4 ψ) + O(r -2 )d ≤1 ψ + d ≤1 (Γ b )d ≤1 ψ,from which we deduce( 2 + κκ)(r 2 ě4 ψ) = r 2 Υ -1 e 4 ((r 2 ě4 ψ) + O(r -2 )d ≤1 ψ + Err. Since ψ κκ)(r 2 ě4 ψ)e (r 2 ě4 ψ)e θ f 2 r 2 d / 3 (r 2 ě4 ψ) + 0 f 2 r 2 r 2 ě4 ψ D.4. PROOF OF PROPOSITION 10.κκ) ψ = f 2 Υ -1 e ě4 ψ) + O(r -2 )d ≤1 ψ + Err -ě4 ψ.Now, recall that Err is defined byErr = r 2 Γ g e 4 e 3 ψ + rΓ b e 4 dψ + d ≤1 (Γ b )d ≤1 ψ + rd ≤1 (Γ g )e 3 ψ + d ≤1 (Γ g )d 2 ψ. so that κκ) ψ = f 2 Υ -1 e ě4 ψ) + O(r -2 )d ≤1 ψ + r 2 Γ g e 4 e 3 ψ +rΓ b e 4 dψ + d ≤1 (Γ b )d ≤1 ψ + rd ≤1 (Γ g )e 3 ψ + d ≤1 (Γ g )d 2 ψ -(r 2 ě4 ψ)e θ f 2 r 2 d / 3 (r 2 ě4 ψ) + 0 f 2 r 2 r 2 ě4 ψ.In view of 2 ψ = -e 4 e 3 ψ + / 2 ψ + 2ω -1 g e 4 e 3 ψ = r 2 Γ g -2 ψ + / 2 ψ + 2ω -1 + 2ηe θ ψ = -r 2 Γ g N + rΓ g e 3 ψ + Γ g d ≤2 ψ

  

  When applying the formulas of Lemma 2.2.14 to a k reduced scalar f ∈ s k , the term (η + ζ)e θ (f ) should correspond to a reduced scalar. In fact, recalling Remark 2.1.23, we can write, which can indeed be shown to be a k-reduced scalar in s k .
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	Remark 2.2.15. ζe θ (f ) =	1 2	ζ ( d / k f -d / k+1 f )
	Derivatives of the Hawking mass			
	Proposition 2.2.16 (Derivatives of the Hawking mass). We have the following identities
	for the Hawking mass,			
	e 4 (m) =	r 32π S	Err 1 ,	(2.2.29)
	and			
	e 3			

  Proof. First, from the fact that (e 3 , e 4 , e θ ) forms a null frame, we easily verify that (2.2.42) holds. Then, (2.2.40) immediately follows from (2.2.42) and the fact that (e 3 , e 4 , e θ ) forms a null frame.

	.	(2.2.43)

  t., CHAPTER 2. PRELIMINARIES Here, l.o.t. denote terms which are cubic or higher order in f, f (or in f only in the case of E 1 and E 2 ) and Γ and do not contain derivatives of these quantities, where Γ and Γ denotes the Ricci coefficients and renormalized Ricci coefficients w.r.t. the original null frame (e 3 , e 4 , e θ ). To avoid a potential log loss for the third equation in Lemma 2.3.6, i.e. the transport equation for f , we state the following renormalized version of the lemma. Corollary 2.3.7. Assume given a null frame (e 3 , e 4 , e θ ) associated to an outgoing geodesic foliation as in section 2.2.4, and let r denote the corresponding area radius. Assume that we have in the new null frame (e 3 , e 4 , e

	Proof. See section A.7.

θ ) of type

(2.3.3) 

  It is also a conformal invariant, i.e. invariant under transformations (2.3.3) with f = f = 0.Proof. Clearly the quantity vanishes in Schwarzschild and is an O( 2 ) invariant. For a conformal transformation, the result follows by a straightforward application of the transformation properties of Proposition 2.3.4 in the particular case where f = f = 0.

Remark 2.3.11. Alternatively one can also define the corresponding quantity obtained by interchanging e 3 , e 4 , i.e. e 4 (e 4 (α)) + (2κ -6ω)e 4 (α) + -4e 4

  The fact that f and λ display a r loss compared to f in (3.8.3) does not affect the desired estimates for the curvature components on C 1 ∪ C 1 , see Remark 4.1.4.

	the e 3 direction to propagate the estimates to C 1 , we finally obtain		
	sup C 1 ∪C 1	r|d ≤k large +1 f | + |d ≤k large +1 (f , log λ)| + |m -m 0 |	0 .	(3.8.3)
	Together with the control of the initial data layer foliation and the transformation formulas
	of Proposition 2.3.4, we then obtain the desired estimates on C 1 ∪ C 1 for the curvature components.
	Remark 3.8.1.			
				.8.2)
	Step 3. Relying on the transport equations 21 in e 4 for (f, f , λ), see Corollary 2.3.7, and
	Proposition 2.2.16 for m, we propagate (3.8.2) to C 1 , and then, proceeding similarly in

  Recall that δ extra has been introduced in Theorem M1 and satisfies δ extra > δ dec .

	where l.o.t. denotes terms which are quadratic of higher, and where all quantities are
	defined w.r.t. the global frame of Proposition 3.5.5. Then, introducing the vectorfield
	T = e 4 -	1 κ	κ + κ Ω -κ Ω e 3 ,
	we rewrite the identity as				
	6m T α + r 4 d / 2 d / 1 d / 1 d / 2 α =	1 r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) + l.o.t.	(3.8.5)
	As it turns out, see Remark 6.2.3, this is a forward parabolic equation on each hyper
	surface of contant r in (int) M.				
						Teukolsky-
	Starobinski identity, see (2.3.15),				
	e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) = r 7 d / 2 d / 1 d / 1 d / 2 α +	3 2	κρe 4 α -	3 2	κρe 3 (α) + l.o.t.
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  [START_REF] An | Trapped surfaces in vacuum arising dynamically from mild incoming radiation[END_REF]. It remains to control α on Σ * . Recall that ν denotes the unique tangent vectorfield to Σ * which can be written as ν = e 3 + ae 4 .

		The Teukolsky-Starobinski identity of Step
	1 can then be written as		
	6mνα + r 4 d / 2 d / 1 d / 1 d / 2 α =	1 r 3 e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq) + l.o.t.	(3.8.6)

  .8.7)Recall that T = {r = r T }, where r T ∈ I m 0 ,δ H , and note, see also Remark 3.6.3, that the results of Theorems M0-M7 hold for any r T ∈ I m 0 ,δ H . It is at this stage that we need to make a specific choice of r T in the context of a Lebesgue point argument. More precisely, we choose r T such that we have

	{r=r T }	|d ≤k large Ř| 2 =	inf r 0 ∈I m 0 ,δ H {r=r 0 }	|d ≤k large Ř| 2 .	(3.8.8)
	In view of this definition, and since T = {r = r T }, we infer that
	T	|d ≤k large Ř| 2	(ext) M r∈I m 0 ,δ H	|d ≤k large Ř| 2 .	(3.8.9)
	Remark 3.8.3. From now on, we may thus assume that the spacetime M satisfies the conclusions of Theorem M0 and Theorem M7, as well as (3.8.9), and our goal is to prove
	Theorem M8, i.e. to prove that N	(En) k large	0 holds.

  4.1.1. We have on (ext) M
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	Proof. We have in (ext) M, see Proposition 2.2.8, e 4 (κ) + 1 2 κ κ = -2 d / 1 ζ + 2ρ -1 2 ϑ ϑ + 2ζ 2 . Together with the following commutation relation [e θ , e 4 ] = 1 2 (κ + ϑ)e θ , we infer e 4 (e θ (κ)) + κe θ (κ) + 1 2 ϑe θ (κ) + 1 2 κe θ (κ) = 2 d / 1 d / 1 ζ + 2e θ (ρ) -Together with the above identities for e 4 (e θ (κ)) and e 3 (e θ (κ)), as well as the Bianchi 1 2 e θ (ϑ ϑ) + 2e θ (ζ 2 ). and Σ * identities of Proposition 2.2.8 for e 4 (β) and e 3 (β), we infer e 4 S e θ (κ)e Φ = S 1 2 κe θ (κ) -1 2 κe θ (κ) + 2 d / 1 d / 1 ζ + 2e θ (ρ) -1 2 e θ (ϑ ϑ) -ϑe θ (κ) + 2e θ (ζ 2 ) e Φ , e 4 S βe Φ = S -1 2 κβ + d / 2 α + ζα -1 2 ϑβ e Φ , e 3 S βe Φ = S 1 2 κβ + e θ (ρ) + 2ωβ + 3ηρ -ϑβ + ξα -1 2 ϑβ e Φ e 3 S e θ (κ)e Φ = κe 3 S ζe Φ -κ βe Φ e 4 S e θ (κ)e Φ 1 r S e θ (κ)e Φ + 1 r 2 S 2 ζe Φ + , r 2 u 1+δ dec S + S -κβ -1 2 κ 2 ζ + 6ρξ -2ωe θ (κ) -1 2 / 2 d / 2 ξ] e Φ e 4 S βe Φ 1 r S 2 βe Φ + r 2 u 1+δ dec , ϑ(e θ (κ) -κζ) + Err[ d +Err e 3 S e θ (κ)e Φ + S κ e 3 (ζ) + 3 2 κ -1 ϑ ζ e Φ e 3 S βe Φ S e θ (κκ)e Φ + r -3 S ηe Φ + 1 2 βe Φ + ru 1+δ dec , r S 2 -κ S e 3 (ζ) + 3 2 κ -1 2 ζe Φ . e 3 S e θ (κ)e Φ 1 r e 3 S ζe Φ + 1 r S βe Φ ϑ ζ e Φ -κErr e 3 S + 1 r 3 S ξe Φ + 1 r 2 S ζe Φ + 1 r 2 S 2 e θ (κ)e Φ + u 2+2δ dec .
	Also, we have in view of Proposition 2.2.19 the following identity +Err e 3 S βe Φ , Finally, from the identity (2.1.21) for e θ (K) and the formula for K, we have Recall the following GCM conditions
	e 3 (e θ (κ)) -κe 3 (ζ) = -2 d / 2 d / 2 ξ -κβ + κ 2 ζ -and e 3 S e θ (κ)e Φ -κe 3 S ζe Φ S e θ (ρ)e Φ = -1 4 S e θ (κκ)e Φ + 3 2 κ = 2 S r , ηe Φ = 0,	κe θ κ + 6ρξ -2ωe θ (κ) + Err[ d / 2 d / 2 ξ]. 1 4 S e θ (ϑϑ)e Φ .
	e 4 and e 3 Next, in view of Corollary 2.2.10, we have in (ext) M S e θ (κ)e Φ = S -κe θ (κ) + 4Kζ -ϑe θ (κ) + 2e θ (ζ 2 ) e Φ , e 4 S βe Φ = S -1 2 κβ + ζα -1 2 ϑβ e Φ , e 3 S βe Φ = -1 4 S e θ (κκ)e Φ + 3ρ S ηe Φ + 1 4 S e θ (ϑϑ)e Φ + S 1 2 κβ + 2ωβ + 3η ρ -ϑβ + ξα -1 2 ϑβ e Φ + Err e 3 S e θ (κ)e Φ = κe 3 S ζe Φ -κ S βe Φ + S -κβ -1 2 κ 2 ζ + 6ρξ -2ωe θ (κ) -1 2 ϑ(e θ (κ) -κζ) + Err[ d S βe Φ , / 2 d / 2 ξ] e Φ +Err e 3 S e θ (κ)e Φ + S κ e 3 (ζ) + 3 2 κ -1 2 ϑ ζ e Φ -κ S e 3 (ζ) + 3 2 κ -1 2 ϑ ζ e Φ -κErr e 3 S ζe Φ . e 4 S e θ (κ)e Φ = S e 4 (e θ (κ)) + 3 2 κ -1 2 ϑ e θ (κ) e Φ e 4 S βe Φ = S e 4 (β) + 3 2 κ -1 2 ϑ β e Φ , e 3 S βe Φ = S e 3 (β) + 3 2 κ -1 2 ϑ β e Φ + Err e 3 S βe Φ , and e 3 S e θ (κ)e Φ -κe 3 S ζe Φ = S e 3 (e θ (κ)) + 3 2 κ -1 ϑ e θ (κ) e Φ + Err e 3 e θ (κ)e Φ = S -2 d / 2 d / 2 ξ -κβ -1 2 κ 2 ζ + 6ρξ -2ωe θ (κ) -1 2 / 2 d / 2 ξ] e Φ We deduce We deduce on Σ * ϑ(e θ (κ) -κζ) + Err[ d +Err e 3 S e θ (κ)e Φ + S κ e 3 (ζ) + 3 2 κ -1 2 ϑ ζ e Φ -κ S e 3 (ζ) + 3 2 κ -1 2 ϑ ζ e Φ -κErr e 3 ζe Φ . e 4 S e θ (κ)e Φ = S e 4 S e θ (κ)e Φ 1 r 2 S 2 ζe Φ + , r 2 u 1+δ dec -κe θ (κ) + 4Kζ -ϑe θ (κ) + 2e θ (ζ 2 ) e Φ , e 4 S βe Φ 1 2 βe Φ + r 2 u 1+δ dec , r S S Using in particular the fact that d / 2 (e Φ ) = 0, that d / 2 is the adjoint of d / 2 , and the identity d / 1 d / 1 = d / 2 d and e 3 S βe Φ 1 r S e θ (κ)e Φ + 1 r S 2 βe Φ + , ru 1+δ dec / 2 + 2K, we deduce e 4 S e θ (κ)e Φ = S 1 2 κe θ (κ) -1 2 κe θ (κ) + 4Kζ + 2e θ (ρ) -1 2 e θ (ϑ ϑ) e 3 S βe Φ = -1 4 S e θ (κκ)e Φ + 3ρ S ηe Φ + 1 e θ (ϑϑ)e Φ e 3 S e θ (κ)e Φ 1 r e 3 S ζe Φ + 1 βe Φ r S 4 S + S 1 2 κβ + 2ωβ + 3η ρ -ϑβ + ξα -1 2 ϑβ e Φ + Err e 3 S βe Φ + 1 r 2 S ζe Φ + 1 r 2 2 e θ (κ)e Φ + . u 2+2δ dec S -ϑe θ (κ) + 2e θ (ζ 2 ) e Φ , 2 S -κ S e 3 (ζ) + 3 2 κ -1 2 ϑ ζ e Φ -κErr e 3 ζe Φ e 4 S βe Φ = S -1 2 κβ + ζα -1 2 ϑβ e Φ , Also, projecting both Codazzi on e Φ , using d / 2 (e Φ ) = 0 and the fact that d / 2 is the adjoint which concludes the proof of Lemma 4.1.1. of d / 2 , and using also the GCM condition for κ on Σ * , we have on Σ * S = S e 3 (e θ (κ)) -κe 3 (ζ) + 3 2 κ -1 2 ϑ (e θ (κ) -κζ) e Φ + Err e 3 S e θ (κ)e Φ + S κ e 3 (ζ) + 3 2 κ -1 2 ϑ ζ e Φ -κ S e 3 (ζ) + 3 2 κ -1 2 ϑ ζ e Φ -κErr e 3 S ζe Φ . e 3 S βe Φ = S e θ (ρ)e Φ + 3ρ S ηe Φ + S 1 2 κβ + 2ωβ + 3η ρ -ϑβ + ξα -1 ϑβ e Φ 2 +Err e 3 S on decay for k = 0, 1 derivatives in (ext) M, we infer in that region, and in particular on βe Φ , Step 2. Using the transport equations of Lemma 4.1.1 and the bootstrap assumptions S

S

ξe Φ = 0 on Σ * .

and curvature components of the outgoing part (ext) L 0 of the initial data layer, we infer, for k ≤ k large + 5,

  

	recall from Lemma 2.2.14 the following commutator identity
	[T, e 4 ] =	ω -	m r 2 -	m 2r	κ -	2 r	+	e 4 (m) r	e 4 + (η + ζ)e θ
	while from Lemma 2.2.13, we have schematically			
		[ d /, e 4 ] = κ, ϑ d / + ζ, rβ
	Together with the fact that								
		λ -1 e 4 = e 4 + f e θ +	f 2 4	e 3 ,
	the commutator above identities for [T, e 4 ] and [ d /, e 4 ], as well as the estimates (4.1.1) for
	the Ricci coefficients								

  3 , d /] and [e 4 , d /] of Lemma 2.2.13, the identities of Proposition 2.1.25 for commutation formulas involving d / k and d / k derivatives, and the commutator formula for [e 3 , e 4 ], we have schematically [e 3 , e 3

  Proposition 6.2.6. Let 0 ≤ k ≤ k small + 18. Then, α satisfies on Σ * Since ν is tangent to Σ * , and since ( ν, e θ ) spans the tangent space of Σ * , in view of Proposition 6.2.6, α and its derivatives satisfy on Σ * a forward parabolic equation. Furthermore, since we have ν(u) = 2 + O( ), u plays the role of time in this forward parabolic equation.We also derive estimates for the control of the parabolic equation appearing in the statement of Proposition 6.2.2.

	6m ν(d k α) + r 4 d / 2 d / 1 d / 1 d / 2 (d k α) = F k
	where F k satisfies		
	max 0≤k≤k small +18 Σ *	u 2+2δ dec |F k | 2	2 0 .
	Remark 6.2.7.		

Lemma 6.2.8. Let f and h reduced 2-scalars such that
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	as well as												
	[ T , re 4 ] = e 4 (r)e 4 -	1 κ	κ + A [e 3 , re 4 ] + re 4	1 κ	κ + A	e 3
	=	r 2	κ + A e 4 -	1 κ	κ + A		r 2	κe 4 + r -2ωe 3 + 4ζe θ
		+re 4	κ κ	e 3 + re 4	1 κ	A e 3
	=		2r κ		κ + A ω + re 4		κ κ	+ re 4	1 κ	A	e 3
		-	4r κ		κ + A ζe θ					
	=		-		2m r	κ κ	+ Υ +	2r κ	κ ω +	m r	-	2m(e 4 (r) -Υ) r	+ 2e 4 (m) + re 4	κ κ	+ Υ
		+	2r κ	Aω + re 4	1 κ	A		e 3 -	4r κ	κ + A ζe θ
	= d Γ + Γ d,							
	and												
	[ T , e 3 ] = [e 4 , e 3 ] + e 3		1 κ	κ + A		e 3	
	=	2ω + e 3	κ κ	+ e 3	1 κ	A		e 3 -4ζe θ

Note that we have schematically

[d, d /] = Γd, [ T , d /] = d Γ + Γ d,

  Proof. Follows from Lemma 2.2.13 and the symbolic notation introduced in (7.1.11), see alsoRemark 7.1.4. 

	7.1.3 Basic lemmas	
	Commutation identities	
	Lemma 7.1.5. We have, schematically,	
	[ d /, e 4 ]ψ = Γ g d ψ + l.o.t., [ d /, e 3 ]ψ = rΓ b e 3 ψ + Γ ≤1 b d ψ + l.o.t.	(7.1.21)

  2.1.30 and Lemma 2.1.35 which we rewrite as follows with respect to the L 2 based h

k (S) spaces introduced in Definition 2.1.36. Lemma 7.1.7. Under the assumptions Ref1 -Ref3 the following elliptic estimates hold true for the Hodge operators d / 1 , d / 2 , d / 1 , d / 2 , for all k ≤ k small + 20.

  d) We can combine the control of Ξ with all other available information mentioned above, to derive good estimates, simultaneously, for d / 2 d / 1 κ, d / 2 ζ and d / 2 β. This is achieved in a sequence of crucial Lemma in section 7.5.2. Unfortunately this step is heavily dependent on the estimate of Ref 2 for α and therefore the estimates we derive are only useful on T .

	(e) We also show that we have good estimates for d / 2 ζ, d / 1 κ, β, β, d / 1 ρ . To es-
	timate κ, ζ, β, β, ρ from d / 2 ζ, d / 1 κ, β, β, d / 1 ρ we rely on the elliptic Hodge

  .3.9)7.3. DECAY ESTIMATES ON THE LAST SLICE Σ

* 367

  the tangential derivatives to Σ * . Thus integrating on the last slice Σ * and making use of the assumptions (7.1.15) and (7.1.18), i.e.

Σ * (u,u * )

  .3.25) Finally, squaring, integrating on Σ * and taking into account the flux estimate for β in (7.3.23) we deduce, for k ≤ k small + 18,

	Σ * (u,u * )

  .5.4) Proof. To calculate e 4 Ξ we make use of the equations,

	e 4 (κ) +	1 2	κκ = -2 d / 1 ζ + 2ρ -	1 2	ϑϑ + 2ζ 2 ,
	e 4 (κ) +	1 2	κκ = -2µ -4 d / 1 ζ + 2ζ 2 .
	Commuting with d / 1 and making use of [ d / 1 , e 4 ] = 1 2 (κ + ϑ) d / 1 we derive,
	e 4 ( d / 1 κ) + κ d / 1 κ +	1 2	κ d / 1 κ = -d / 1 μ -4 d / 1 d / 1 ζ + 2 d / 1 (ζ 2 ) + ϑ d / 1 κ.	(7.5.5)
	Hence, since e 4 (r) = r 2 κ,				
	e 4 (r 2 d / 1				

e 4 ζ + κζ = -βϑζ, e 4 β + 2κβ = d / 2 α + ζα.

Since we already have an estimate for μ we re-express ρ = -µd / 1 ζ + 1 4 ϑϑ and derive,

  )c Σ * + 0 δ ext .
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	Together with (8.2.8), this yields
	u( S * ) -u * + 1 + r( S 1 Since c Σ * in (8.2.6) is a constant, we have in particular δ ext 2
	.2.13)

  .2.[START_REF] Caroll | Spacetime and geometry. An introduction to general relativity[END_REF] i.e. S 1 is the unique sphere of Σ * such that its south pole intersects the south pole of one of the sphere of the outgoing null cone C (1,L 0 ) of the initial data layer.Thus Σ * satisfies all the required properties for the future spacelike boundary of a GCM admissible spacetime, see item 3 of definition 3.1.2. Furthermore, we have on Σ *

	u( S * ) > u * ,	(8.2.17)
	and (f, f , λ) satisfy in view of (8.2.9) and Corollary 9.8.2	
	sup	
	Σ *	

  .3.1) Remark 8.3.1. Recall that the results of Theorems M0-M7 hold for any r T ∈ I m 0 ,δ H , see Remark 3.6.3. More precisely • they hold on (ext) M(r ≥ 2m 0 (1 + δ H 2

  .3.6) see section 3.2.3 for the definition of the combined norm on decay N

		(Dec) k	,
	• the estimate		
	(En) k large	0 ,	
	see section 3.2.3 for the definition of the combined norm on weighted energies N	(En) k	.

T |d ≤k large Ř| 2 (ext) M r∈I m 0 ,δ H |d ≤k large Ř| 2 . (8.3.7)

The goal of this section is to prove Theorem M8, i.e. to prove that the following bound holds on M for the weighted energies N

  Note that the terms on the RHS of the above estimate can not be estimated directly by(8.3.6) since δ dec < δ B . (|d ≤k small α| 2 + |d ≤k small β| 2 )

	8.3. PROOF OF THEOREM M8		455
	Next we claim the estimate			
	sup 1≤u≤u * Cu(r≥4m 0 )	r 4+δ B |d ≤k small α| 2 +	Σ *	r 4+δ B
				.3.11)

  .3.20) Proposition 8.3.10, (8.3.19) and (8.3.20) yield, for 0 > 0 small enough so that we can absorb some of the terms to the left,

  Step 3. Next, Proposition 8.3.11 implies in view of (8.3.23),
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	.3.23)

  r)κ. Let r the function on M associated to the global frame constructed in Proposition 8.3.3, see definition 4.6.4. Let J such that k small -2 ≤ J ≤ k large -1. Under the iteration assumption (8.3.13), we have
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	8.4.2 Control of g (r)
	Lemma 8.4.2.
	Proof. See appendix B.1.

  This is important as such a term would otherwise violate (8.4.2) at r = 3m. Recall that the global frame constructed in Proposition 8.3.3 and thus, in view of (8.4.1),(8.4.3) and(8.4.4), we have on the matching region

	Remark 8.4.4. Match

  2 .

	8.4. PROOF OF PROPOSITION 8.3.6	469
	Together with the control of d ≤k small ρ provided by the decay estimate (8.3.6), we infer
	from the above estimates	
	sup	
	τ ∈[1,τ * ]	

  .5. PROOF OFPROPOSITION 8.3.7 

	479
	we infer
	2

  We initiate the proof of Proposition 8.3.8 by deriving a suitable control for α and Υ 2 α. Recall from Lemma 8.5.2 that we have

	match)	2
	J+1	
	as desired. This concludes the proof of Proposition 8.3.7.
	8.6 Proof of Proposition 8.3.8

8.6.1 Control of α and Υ 2 α

  8.1 is postponed to section 8.8.1, the proof of Proposition 8.8.2 is postponed to section 8.8.4, and the proof of Proposition 8.8.3 is postponed to section 8.8.5. The proof of the two latter propositions will rely in particular on basic weighted estimates for transport equations along e 4 in (ext) M derived in section 8.8.2, as well as several renormalized identities derived in section 8.8.3 We now conclude the proof of Proposition 8.3.10. In view of Propositions 8.8.1, 8.8.2 and 8.8.3, we have, for J such that k small

  , re 4 ) J+1 (re θ (κ), e θ (κ)) + rϑ(e 3 , re 4 ) J+1 d / 1 α, (rζ, ξ)(e 3 , re 4 ) J+1 d / 1 β, (ζ, η)(e 3 , re 4 ) J+1 d / 1 β, ϑ(e 3 , re 4 ) J+1 d / 1 α + rα(e 3 , re 4 ) J+1 d / 1 ϑ, β(e 3 , re 4 ) J+1 d / 1 (rζ, ξ), β(e 3 , re 4 ) J+1 d / 1 (ζ, η), α(e 3 , re 4 ) J+1 d / 1 ϑ + l.o.t. (e 3 , re 4 ) J+2 ζ + l.o.t. = ζ(e 3 , re 4 ) J+1 d / 1 (rβ, β, η, r -1 ξ) + K -2 r 2 (e 3 , re 4 ) J+1 e θ (ω) + l.o.t. = ζ(e 3 , re 4 ) J+1 d / 1 rβ, β, η, r -1 ξ + K -2 r 2 (e 3 , re 4 ) J+1 e θ (ω) + l.o.t. (e 3 , re 4 ) J+1 ϑ, β d / 1 (e 3 , re 4 ) J+1 (rζ, ξ), β d / 1 (e 3 , re 4 ) J+1 (ζ, η), α d / 1 (e 3 , re 4 ) J+1 ϑ e Φ (e 3 , re 4 ) J+1 rβ, β, ζ, r -1 ξ e Φ + , re 4 ) J+1 α, d / 2 (rζ, ξ)(e 3 , re 4 ) J+1 β, d / 2 (ζ, η)(e 3 , re 4 ) J+1 β, d / 2 ϑ(e 3 , re 4 ) J+1 α e Φ , re 4 ) J+1 ϑ, d / 2 β(e 3 , re 4 ) J+1 (rζ, ξ), d / 2 β(e 3 , re 4 ) J+1 (ζ, η), d / 2 α(e 3 , re 4 ) J+1 ϑ e Φ

	• for the second term, in view of Bianchi (e 3 , re 4 ) J+2 e θ (ρ) = (e 3 , re 4 ) J+1 d / 1 d / 1 (rβ, β) -3 2 (e 3 , re 4 ) J+1 d / 1 (rκρ, κρ) = (e 3 , re 4 ) J+1 d / 2 d / 2 (rβ, β) + 3 2 ρ(e 3 = d / 2 (e 3 , re 4 ) J+1 d / 2 (rβ, β) + [(e 3 , re 4 ) J+1 , d / 2 ] d / 2 (rβ, β) + -3 2 ρ d / 1 (e 3 , re 4 ) J+1 (rκ, κ) + rϑ d / 1 (e 3 , re 4 ) J+1 α, (rζ, ξ) d / 1 (e 3 , re 4 ) J+1 β, (ζ, η) d / 1 (e 3 , re 4 ) J+1 β, ϑ d 3 2 ρ(e 3 , re 4 ) J+1 (re θ (κ), e θ (κ)) / 1 (e 3 , re 4 ) J+1 α + rα d / 510 CHAPTER 8. INITIALIZATION AND EXTENSION (THEOREMS M6, M7, M8) • for the third term (e 3 , re 4 ) J+2 K -2 r 2 ζ = ζ(e 3 , re 4 ) J+2 K -2 r 2 + K -2 r 2 We infer (e 3 , re 4 ) J+2 S e θ (µ)e Φ = 2 r 2 (e 3 , re 4 ) J+2 S ζe Φ + S d / 2 (e 3 , re 4 ) J+1 d / 2 (rβ, β)e Φ + S [(e 3 , re 4 ) J+1 , d / 2 ] d / 2 (rβ, β)e Φ + 3 2 ρ -3 2 S ρ d / 1 (e 3 , re 4 ) J+1 (rκ, κ)e Φ + S rϑ d / S rα d / 1 + S ζ d / 1 S K -2 r 2 d / 1 (e 3 , re 4 ) J+1 ωe Φ + S ϑ d / 1 d / 2 (e 3 , re 4 ) J+1 (ξ, rζ)e Φ + S ϑ d / 1 d / 2 (e 3 , re 4 ) J+1 ζe Φ + l.o.t. and after integrations by parts and the fact that d 511 we obtain (e 3 , re 4 ) J+2 S e θ (µ)e Φ = 2 r 2 (e 3 , re 4 ) J+2 S ζe Φ + S d / 1 [(e 3 , re 4 ) J+1 , d / 2 ] (rβ, β)e Φ + 3 2 ρ S (e 3 , re 4 ) J+1 (re θ (κ), e θ (κ))e Φ + 3 2 S d / 2 ρ(e 3 , re 4 ) J+1 (rκ, κ)e Φ / 8.8. PROOF OF PROPOSITION 8.3.10 + S r d / 2 ϑ(e 3 + S r d / 2 α(e 3 +

+(e 3 , re 4 ) J+1 d / 1 rϑα, (rζ, ξ)β, (ζ, η)β, ϑα + l.o.t. 1 (e 3 , re 4 ) J+1 ϑ, β d / 1 (e 3 , re 4 ) J+1 (rζ, ξ), β d / 1 (e 3 , re 4 ) J+1 (ζ, η), α d / 1 (e 3 , re 4 ) J+1 ϑ + l.o.t. = ζ d / 1 (e 3 , re 4 ) J+1 rβ, β, η, r -1 ξ + K -2 r 2 d / 1 (e 3 , re 4 ) J+1 ω + l.o.t., • for the fourth term (e 3 , re 4 ) J+2 e θ (ϑϑ) = (e 3 , re 4 ) J+1 e θ (ϑ d / 2 (ξ, rζ)) + (e 3 , re 4 ) J+1 e θ (ϑ d / 2 η) + l.o.t. = ϑ d / 1 d / 2 (e 3 , re 4 ) J+1 (ξ, rζ) + ϑ d / 1 d / 2 (e 3 , re 4 ) J+1 η + l.o.t. S (e 3 , re 4 ) J+1 (re θ (κ), e θ (κ))e Φ 1 (e 3 , re 4 ) J+1 α, (rζ, ξ) d / 1 (e 3 , re 4 ) J+1 β, (ζ, η) d / 1 (e 3 , re 4 ) J+1 β, ϑ d / 1 (e 3 , re 4 ) J+1 α e Φ + k (F e Φ ) = d / k+1 (F )e Φ , d / k (F e Φ ) = d / k-1 (F )e Φ , S d / 1 ζ(e 3 , re 4 ) J+1 rβ, β, ζ, r -1 ξ e Φ + S d / 2 K -2 r 2 (e 3 , re 4 ) J+1 ωe Φ + S d / 3 d / 2 ϑ(e 3 , re 4 ) J+1 (ξ, rζ)e Φ + S d / 3 d / 2 ϑ(e 3 , re 4 ) J+1 ζe Φ + l.o.t. Together with the above estimate for the = 1 mode of ζ and the estimate of Step 1 for κ, we infer max k≤J+2 u * 1

  2.1.30 and Lemma 2.1.35 which we rewrite as follows.

	Lemma 9.1.4. Under the assumptions A1, A3 the following elliptic estimates hold true
	for the Hodge operators d / 1 , d / 2 , d / 1 , d /

2 , for all k ≤ s max 9.2. DEFORMATIONS OF S SURFACES 555

  .8.11) 

	Corollary 9.8.2. Let a fixed spacetime region R verifying assumptions A1 -A3 and the small GCM conditions (9.4.2). Assume given a GCM hypersurface Σ 0 ⊂ R foliated by surfaces S such that
	κ S =	2 r S , d / 2	S d / 1	S κ S = d / 2	S d / 1	S µ S = 0,	S	η S e Φ = 0,

S

  .1.2) Remark 10.1.2. Note that the bulk term Ḃδ ; 4m 0 [ψ](τ 1 , τ 2

  .1.45) (10.1.45) corresponds to the desired estimate without the presence of the term |T Ψ| 2 on the right hand side. To get the improved estimate of Proposition 10.1.25, we set

  .1.55) with H > 0 sufficiently small to be determined later. Here (X δ = f δ R, w δ , 2hR) is the triplet given by Proposition 10.1.25 and Y H the vectorfield of Proposition 10.1.29.

	Recall, see Proposition 10.1.25, that Ė δ

  Corollary 10.1.34. The statement of Theorem 10.1.33 remains true if we replace Err in the statement of the theorem with Err

  ). (10.2.1) Remark 10.2.2. Note that Theorem 10.1.1 on Morawetz estimates and Theorem 10.2.1 on r p -weighted estimates immediately yield for all δ

  Since the estimates we are establishing are restricted to the far region r > R it is convenient, in this section, to work with the with renormalized frame e 3 = Υe 3 , e 4 = Υ -1 e 4 , e θ = e θ .

		CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS
	RP3. For r ≥ 4m 0 ,	ρ +	2m r 3	w 3,1 ,
		e θ (Φ) K -1 r 2	r -1 . r -2 ,	(10.2.5)
	RP4. We also assume, for r ≥ 4m 0 , |e 3 e 4 (m), e 4 e 3 (m)| |m -m 0 | |e 3 m, r 2 e 4 m|	, w 1,1 . w 0,1 ,	(10.2.6)
					(10.2.7)
					.2.3)
	RP2. The derivatives of r verify, for r ≥ 4m 0 ,
				e 3 (r) + 1	w 0,1 ,
		e 3 e 4 (r) +	e 4 (r) -Υ r 2 , e 4 e 3 (r) 2m	w 1,1 , w 1,1 .	(10.2.4)

  2 . (10.3.8) Lemma 10.3.4. The following estimate holds true for the error term I 2M ≥R (τ 1 ,τ 2 ) , τ 2 ) + J q [ψ, N ](τ 1 , τ 2 ) .We postpone the proof of Lemma 10.3.3 and Lemma 10.3.4 to finish the proof of Proposition 10.3.2. Proof of Proposition 10.3.2. In view of Lemma 10.3.3 and Lemma 10.3.4, we have M ≥R (τ 1 ,τ 2 )

	|I 2 |	sup τ 1 ≤τ ≤τ 2	Ėq,R [ ψ](τ ) +	m 0 R	+	Ḃq,R [ ψ](τ 1 , τ 2 )
		+	sup τ 1 ≤τ ≤τ 2	E 1 q [ψ](τ ) + B 1 q [ψ](τ 1

  r 1 + 2m rΥ 2 ≥ 0 for r ≥ 4m 0 . E p,r≥r 0 [re 4 ψ](τ ) + B p,r≥r 0 [re 4 ψ](τ 1 , τ 2 ) + F p,r≥r 0 [re 4 ψ](τ 1 , τ 2 ) E 1 p [re 4 ψ](τ 1 ) + J 1 p [ψ, N ](τ 1 , τ 2 ) + B 1 p,r 0 /2≤r<r 0 [ψ](τ 1 , τ 2 ) + B 1 p [ψ](τ 1 , τ 2 ) +B p [T ψ](τ 1 , τ 2 ) + B p [r d / 2 ψ](τ 1 , τ 2 ) + B p [ψ](τ 1 , τ 2 ). (10.4.11) Conclusion of the proof of Theorem 5.3.4 Gathering the estimates (10.4.6), (10.4.7), (10.4.9), (10.4.10) and (10.4.11), we infer for anyδ ≤ p ≤ 2δ, B 1 p [ψ](τ 1 , τ 2 ) + F 1 p [ψ](τ 1 , τ 2 ) E 1 p [ψ](τ 1 ) + J 1 p [ψ, N ](τ 1 , τ 2 ) + sup [τ 1 ,τ 2 ] E p [ψ](τ ) + B p [ψ](τ 1 , τ 2 ). , τ 2 ) + F 1 p [ψ](τ 1 , τ 2 ) E 1 p [ψ](τ 1 ) + J 1 p [ψ, N ](τ 1 , τ 2 )

	We easily infer
		sup
		τ ∈[τ 1 ,τ 2 ]
	and hence	
	sup τ ∈[τ 1 ,τ 2 ] p [ψ](τ ) + In view of (10.4.1), we deduce E 1
	sup τ ∈[τ 1 ,τ 2 ]	E 1 p [ψ](τ ) + B 1 p [ψ](τ 1

sup τ ∈[τ 1 ,τ 2 ] E 1 p [ψ](τ ) + B 1 p [ψ](τ 1 , τ 2 ) + F 1 p [ψ](τ 1 , τ 2 ) E 1 p [ψ](τ 1 ) + J 1 p [ψ, N ](τ 1 , τ 2 ) + 2 sup [τ 1 ,τ 2 ] E 1 p [ψ](τ ) + B 1 p [ψ](τ 1 , τ 2 ) + sup [τ 1 ,τ 2 ] E p [ψ](τ ) + B p [ψ](τ 1 , τ 2 ),

  1 16π S κκ. Differentiating in the e 4 direction, we deduce, 2e 4 (m) Now, making use of the e 4 transport equations of Proposition 2.2.8, Using the identity ρ = -2m r 3 + 1 16πr 2 S ϑϑ (see (2.2.12) of Proposition 2.2.4), we deduce (κκ) + κ 2 κ + E 1 , A.2. PROOF OF PROPOSITION 2.2.16 with E 1 the error term defined in Proposition 2.2.9 We make use of the e 3 transport equations of Proposition 2.2.8, It remains to calculate E 1 + m r A. Using the definitions of E 1 and A and grouping similar terms appropriately we find Now, we have from above calculations e 4 (κκ) + κκ 2 = 2κρ -2κ d / 1 ζ + Err[e 4 (κκ)],

	r e 4 (κκ) = κ --2me 4 (r) r 2 1 2 κ 2 -= = -κκ 2 + 2κρ -2κ d 1 16π e 4 1 2 ϑ 2 + κ -S κκ = 1 2 κκ + 2ρ -2 d 1 16π S / 1 ζ -e 4 (κκ) + κκ 2 . 1 2 ϑϑ + 2ζ 2 / 1 ζ -1 2 κϑ 2 -1 2 κϑϑ + 2κζ 2 . 2e 4 (m) we infer r -m r κ = 1 16π S 2κρ -2κ d / 1 ζ -1 2 κϑ 2 -1 2 κϑϑ + 2κζ 2 = 1 8π |S|κ ρ + 1 16π S 2κρ + 2e θ (κ)ζ -1 2 κϑ 2 -1 2 κϑϑ + 2κζ 2 = r 2 2 κ ρ + 1 16π S 2κρ + 2e θ (κ)ζ -1 2 κϑ 2 -1 2 κϑϑ + 2κζ 2 and hence e 4 (m) = r 3 4 κ ρ + 2m r 3 + r 32π S -1 2 κϑ 2 -1 2 κϑϑ + 2κρ + 2e θ (κ)ζ + 2κζ 2 . e 4 (m) = r 32π S -1 2 κϑ 2 -1 2 (κ -κ)ϑϑ + 2κρ + 2e θ (κ)ζ + 2κζ 2 = r 32π S -1 2 κϑ 2 -1 2 κϑϑ + 2κρ + 2e θ (κ)ζ + 2κζ 2 = r 32π S Err 1 as desired. In the same vein, 2e 3 (m) r -2me 3 (r) r 2 = 1 16π e 3 S κκ = 1 16π S 1 16π Err e 3 S κκ . e 3 (κκ) = κ -1 2 κ κ + 2ωκ + 2 d / 1 η + 2ρ -1 2 ϑ ϑ + 2η 2 + κ -1 2 κ 2 -2ω κ + 2 d / 1 ξ + 2(η -3ζ)ξ -1 2 ϑ 2 = -κκ 2 + 2κ d / 1 η + 2κ d / 1 ξ + 2ρκ + κ 2η 2 -1 2 ϑϑ + 2κ η -3ζ ξ -1 2 κϑ . Therefore, setting E 2 = 1 16π S κ 2η 2 -1 2 ϑϑ + 2κ η -3ζ ξ -1 2 κϑ 2 , 2e 3 (m) r -m r (κ + A) = 1 16π S 2κ d / 1 η + 2κ d / 1 ξ + 2ρκ + E 1 + E 2 + 1 16π S -2e We deduce 2e 3 (m) r = 1 16π S -2e θ (κ)η -2e θ (κ)ξ + 2ρ κ + 1 2 κϑϑ + E 1 + 1 16π S κ 2η 2 -1 2 ϑϑ + 2κ η -3ζ ξ -1 2 κϑ 2 + m r A = 1 16π S -2e θ (κ)η + 2κη 2 -2e θ (κ)ξ + 2κηξ -1 2 κϑ 2 + 1 16π S 2ρ κ -6κ ζ ξ -1 2 κϑ ϑ + E 1 + m r A, i.e., e 3 (m) = r 32π S -2e θ (κ)η + 2κη 2 -2e θ (κ)ξ + 2κηξ -1 2 κϑ 2 + r 32π S 2ρ κ -6κ ζ ξ -1 2 κϑ ϑ + r 2 E 1 + m r A . E 1 + m r A = -ς -1 ς 1 16π S (e 3 (κκ) + κκ 2 ) + m r κ + ς -1 1 16π S ς (e 3 (κκ) + κκ 2 ) + m r ς κ + Ω + ς -1 Ως 1 16π S (e 4 (κκ) + κ 2 κ) + m r κ -ς -1 Ω 1 16π S ς(e 4 (κκ) + κ 2 κ) + m r -ς -1 1 16π S Ως(e 4 (κκ) + κ 2 κ) + m r Ωςκ . e 3 E 1 = = 1 16π S -2e = 1 2 r 2 ρ κ + 1 16π S -2e = 1 2 r 2 κ -2m r 3 + 1 S 16πr 2 ϑϑ Err[e 4 (κκ)] = -1 2 1 2 κϑϑ + 2κζ 2 , κϑ 2 -e 3 (κκ) + κκ 2 = 2ρκ + 2κ d / 1 η + 2κ d /	ς κ

θ (κ)η -2e θ (κ)ξ + 2(ρ + ρ)(κ + κ) + E 1 + E 2 θ (κ)η -2e θ (κ)ξ + 2ρ κ + E 1 + E θ (κ)η -2e θ (κ)ξ + 2ρ κ + E 1 + E 2 . 1 ξ + Err[e 3 (κκ)],

  Err 2 = 2ρκ + Err[e 4 (κκ)], Err 2 = 2ρκ + Err[e 3 (κκ)]. In view of the definition of Err[e 4 (κκ)] and Err[e 3 (κκ)], this concludes the proof of Proposition 2.2.16. In view of Corollary 2.2.11 the error term Err[e 3 (κ)] is given by

	A.3. PROOF OF LEMMA 2.2.17		807
	and hence We infer and,				
	E 1 + e 3 κ -m r	A = -ς -1 ς +ς -1 1 1 16π S 16π S ς (2ρκ + 2ρκ + 2ρκ + 2κ d 2ρκ -2e θ (κ)η -2e θ (κ)ξ + / 1 η + 2κ d 1 2 κϑϑ + Err[e 3 (κκ)] / 1 ξ + Err[e 3 (κκ)]) + e 4 (κ) = e 4 (κ) + κ2 = -1 2 κ 2 -1 4 ϑ 2 + κ2 = -1 2 κ 2 -1 4 ϑ 2 + 2 r = e 3 (κ) + 2 r 2 r (κ + A) 2 1 2 κ2 = -1 2 κ κ + 2ω κ + 2ρ + 2ω κ -1 2 κ κ -1 2 ϑϑ + 2η 2 + 1 r κ + 1 r A + Err[e 3 κ] m r ς κ
	+ Ω + ς -1 Ως -ς -1 Ω 1 16π S 2 r = -1 2 κ 2 -16π S 1 ς(2ρκ + 2ρκ + 2ρκ -2κ d 2κρ + 2e θ (κ)ζ + / 1 ζ + Err[e 4 (κκ)]) + 1 2 κϑϑ + Err[e 4 (κκ)] m r 1 4 ϑ 2 + 1 2 κ2 + 2 r e 4 (r) r = -1 2 κ 2 + 1 r κ -1 4 ϑ 2 + 1 2 = -e 4 κ -and hence 1 2 κ κ -2 r + 2ω κ + 2ρ + 2ω κ -1 2 κ κ -1 ϑϑ + 2η 2 + 1 r A + Err[e 3 κ]. 2 κ2 Now, ς κ -ς -1 1 16π S Ως(2ρκ + 2ρκ + 2ρκ -2κ d / 1 ζ + Err[e 4 (κκ)]) + m Ωςκ . = -1 2 κ κ -2 r -1 4 ϑ 2 + 1 2 κ2 . 2ω κ + 2ρ = 2ω κ -2 r + 4 ω + 2ρ r r We deduce Next, using = 2ω κ -2 r + 4 r ω -m r 2 + 2 ρ + 2m r 3 .
	e 3 (m) = 1 -ς -1 ς +ς -1 r 32π S 32π S r ς 2ρκ + 2ρκ + 2κ d Err 1 + Ω + ς -1 Ως / 1 η + 2κ d r 32π S / 1 ξ + Err 2 Err 1 -ς -1 r -r ς -1 -ς κ + Ω ς κ + Ωςκ , e 4 ω -m r 2 = e 4 (ω) + 2me 4 (r) r 3 r 2 -e 4 (m) m 32π S (Ως + Ως) (2ρκ + 2ρκ -2κ d / 1 ζ + Err 2 ) e 3 κ -Hence, 2 r + 1 2 κ κ -2 r = 2ω κ -2 r + 4 r ω -m r 2 + 2 ρ + e and hence + 2η 2 + 2ω κ -1 2 κ κ -1 2 ϑϑ + 1 r A + Err[e 3 κ]. 2m r 3
	where we have introduced Err 1 = 2κρ + 2e θ (κ)ζ + = ρ + 2m r 3 + m r 2 κ -1 2 κϑϑ + Err[e 4 (κκ)], 2 r -e 4 (m) r 2 + 3ζ(2η + ζ) + κω Err 1 = 2ρκ -2e θ (κ)η -2e θ (κ)ξ + as stated. 1 2 κϑϑ + Err[e 3 (κκ)], Next, using
	we deduce	1 ς e 3 (κ) +	1 2	1 16π S κκ -2ωκ = 2 d (2ρκ + 2κ d / 1 η + 2κ d / 1 ξ + Err[e 3 (κκ)]) + / 1 η + 2ρ -1 ϑϑ + 2η 2 2	m r	κ
	+ς -1 1 16π S + Ω + ς -1 Ως A.3 Proof of Lemma 2.2.17 ς (2ρκ + 2κ d / 1 η + 2κ d / 1 ξ + Err[e 3 (κκ)]) + 1 16π S (2κρ -2κ d / 1 ζ + Err[e 4 (κκ)]) + m m r r κ ς κ e 3 (κ) = -1 2 κκ + 2ωκ + 2ρ -1 ϑϑ + 2η 2 2 = -1 2 κ κ + 2ω κ + 2ρ + 2ω κ -1 2 κ κ -1 2 ϑϑ + 2η 2 .
	-ς -1 Ω Making use of Corollary 2.2.11 16π S 1 -ς -1 1 16π S Ως(2κρ -2κ d ς(2κρ -2κ d / 1 ζ + Err[e 4 (κκ)]) + / 1 ζ + Err[e 4 (κκ)]) + Recall that we have e 3 (κ) = e 3 (κ) + Err[e 3 κ] e 4 (κ) = -1 2 κ 2 -1 4 ϑ 2 . = -1 2 κ κ + 2ω κ + 2ρ + 2ω κ -1 2 κ κ -1 2 ϑϑ + 2η 2 + Err[e 3 κ] m r ς κ m r Ωςκ

4 (ω) = ρ + ζ(2η + ζ) we infer that e 4 (ω) = e 4 (ω) + κω = ρ + ζ(2η + ζ) + κω,

  Ως κ κ + κκ.A.4 Proof of Proposition 2.2.18In view of Corollary 2.2.11 applied to e 4 (ω) = ρ + 3ζ 2 we deduce,e 4 ω = -κω + (ρ + 3ζ 2 ) -(ρ + 3ζ 2 ) = ρκω + 3(ζ 2ζ 2 ). Err[e 4 µ] -Err[e 4 µ].In view of Corollary 2.2.11 applied to e 4 (Ω) = -2ω we deduce, (κ) = e 3 (κ)e 3 (κ) -Err[e 3 (κ)] Err[e 3 κ]. Now, recall that we have in view of (A.3.1),

	we deduce, (2.3.3)
	1 Ως ϑ 2 -In view of Corollary 2.2.11 applied to 1 2 κ 2 -1 4 e 4 (κ) + 1 2 κ 2 = -we deduce, e 4 κ + κκ = -1 2 κ2 -1 2 κ2 -1 2 In view of Corollary 2.2.11 applied to e 4 (κ) + 1 2 κκ = -2 d / 1 ζ + 2ρ -ϑ 2 , 1 2 (ϑ 2 -ϑ 2 ). 1 2 ϑϑ + 2ζ 2 we deduce, e 4 κ + 1 2 κκ + 1 2 κκ = -1 2 κκ -1 2 κκ + F -F where, F -F = -2 d / 1 ζ + 2ρ -1 2 ϑϑ + 2ζ 2 --2 d / 1 ζ + 2ρ -= -2 d / 1 ζ + 2ρ + -1 2 ϑϑ + 2ζ 2 --1 2 ϑϑ + 2ζ 2 . 1 2 ϑϑ + 2ζ 2 Hence, e 4 κ + 1 2 κκ + 1 2 κκ = -2 d / 1 ζ + 2ρ + Err[e 4 κ] Err[e 4 κ] : = -1 2 κκ -1 2 κκ + -1 2 ϑϑ + 2ζ 2 --1 2 ϑϑ + 2ζ 2 . In view of Corollary 2.2.11 applied to e 4 (ρ) + 3 2 κρ = d / 1 β -1 2 ϑα -ζβ e 4 ρ + 3 2 κρ + 3 2 ρκ = -3 2 κρ + 1 2 κρ + d / 1 β -1 2 ϑα + ζβ + 1 2 ϑα + ζβ . e 4 µ + 3 2 κµ = Err[e 4 µ], we deduce e 4 μ + 3 2 κμ + 3 2 µκ = -3 2 κμ + 1 2 κμ + -e 4 ( Ω) = 2ω -κ Ω as stated. In view of Corollary 2.2.11 applied to the equation e 3 (κ) + 1 2 κκ = 2 d / 1 η + 2ρ + 2η 2 + 2ωκ -1 2 ϑϑ to deduce, e 3 = -1 2 κκ + 2 d / 1 η + 2ρ + 2η 2 + 2ωκ -1 2 ϑϑ + 1 2 κκ -2ρ -2η 2 -2ωκ + 1 2 ϑϑ -Err[e 3 κ] = 2 d / 1 η + 2ρ -1 2 (κκ + κκ) + 2 (ωκ + κω) +2 η 2 -η 2 -1 2 κκ + 2ωκ -1 2 1 2 κ κ + 2ω κ + 2ρ ς -1 2 κ 2 Ω + ς -1 Ως -ς -1 ς 1 2 κκ + 2ωκ -1 2 ϑϑ + 2η 2 + Ω + ς -1 Ως 1 2 κ2 -1 4 ϑ 2 -ς -1 Ω ς 1 2 κ 2 -1 4 ϑ 2 -ς κ κ -ς -1 Ως 1 2 κ 2 -1 4 ϑ 2 -Ως κ κ + κκ. We deduce e 3 (κ) = 2 d / 1 η + 2ρ -1 2 (κκ + κκ) + 2 (ωκ + κω) +ς -1 -1 2 κ κ + 2ω κ + 2ρ ς + 1 2 κ 2 Ω + ς -1 Ως +2 η 2 -η 2 -1 2 κκ + 2ωκ -1 2 ϑϑ -ϑϑ + ς -1 ς 1 2 κκ + 2ωκ -1 2 ϑϑ + 2η 2 -ς -1 ς 1 2 κκ + 2ωκ + 2ρ + 2 d / 1 η -1 2 ϑϑ + 2η 2 -ς κ κ -Ω + ς -1 Ως 1 2 κ2 -1 4 ϑ 2 + ς -1 Ω ς 1 2 κ 2 -1 4 ϑ 2 -ς κ κ +ς -1 Ως 1 2 κ 2 -1 4 ϑ 2 -Ως κ κ -κκ as desired. In view of Corollary 2.2.11 applied to the equation e 3 (κ) + 1 2 κ 2 = 2 d / 1 ξ -2ω κ + 2(η -3ζ)ξ -1 2 ϑ 2 we deduce, e 3 (κ) + κ κ = 2 d / 1 ξ -2 (ω κ + ω κ) -1 2 κ2 -2ω κ + 2(η -3ζ)ξ -2(η -3ζ)ξ -1 2 ϑ 2 -ϑ 2 -Err[e 3 κ] e 4 = λ e 4 + f e θ + 1 4 f 2 e 3 , e θ = 1 + 1 2 f f e θ + 1 2 f e 4 + 1 2 f 1 + 1 4 f f e 3 , ϑϑ -ϑϑ -Err[e 3 (κ)] = -ς -1 -+ς -1 ς 1 2 κκ + 2ωκ + 2ρ + 2 d / 1 η -1 2 ϑϑ + 2η 2 -ς κ κ e 3 = λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 .

  (f 2 ) + λg D e 3 e 4 , e θ + λf g D e 3 e θ , e θ + l.o.t. Next, we derive the transformation formulae for η. We have, under a transformation of type (2.3.3), 2η = g D e 4 e 3 , e θ -1 e 4 (f2 )g (e 4 , e θ ) + 1 4 λ -1 f 2 g D e 4 e 4 , e θ (f 2 ) + λ -1 g D e 4 e 3 , e θ + λ -1 f g D e 4 e θ , e θ + l.o.t. We compute λ -1 g D e 4 e 3 , e θ = λ -1 g D e 4 e 3 , e θ + 1 2 f e 4 + l.o.t. .6. PROOF OF PROPOSITION 2.3.4 827 and λ -1 f g D e 4 e θ , e θ = l.o.t. (f 2 ) + λ -1 g D e 4 e 3 , e θ + λ -1 f g D e 4 e θ , e θ + l.o.t. (f 2 ) + 2η + f χ -2f ω + l.o.t. Next, we derive the transformation formulae for ξ. We have, under a transformation of type (2.3.3), 2ξ = g D e 4 e 4 , e θ = g D e 4 λ e 4 + f e θ + 1 4 f 2 e 3 , e θ = λg D e 4 e 4 + f e θ + 1 4 f 2 e 3 , e θ = λg D e 4 e 4 , e θ + λe 4 (f )g (e θ , e θ ) + λf g D e 4 e θ , e θ + 1 4 λe 4 (f 2 )g (e 3 , e θ ) + 1 4 λf 2 g D e 4 e 3 , e θ (f 2 ) + λg D e 4 e 4 , e θ + λf g D e 4 e θ , e θ + l.o.t. We compute λg D e 4 e 4 , e θ = λg D e 4 e 4 , e θ + 1 2 f e 3 + l.o.t. = λ 2 g (D e 4 +f e θ e 4 , e θ ) + 1 2 λ 2 f g (D e 4 e 4 , e 3 ) + l.o.t. = 2λ 2 ξ + λ 2 f χ + 2λ 2 f ω + l.o.t. and λf g D e 4 e θ , e θ = l.o.t. (f 2 ) + λg D e 4 e 4 , e θ + λf g D e 4 e θ , e θ + l.o.t. (f 2 ) + 2λ 2 ξ + λ 2 f χ + 2λ 2 f ω + l.o.t. In the particular case when λ = 1, f = 0, see Remark 2.3.5, the error term takes the form, Next, we derive the transformation formulae for ξ. We have, under a transformation of A.6. PROOF OF PROPOSITION 2.3.4 f 2 g (e 3 , e θ ) + λ -1 g D e 3 e 3 , e θ +λ -1 e 3 f 1 + 1 4 f f g (e θ , e θ ) + λ -1 f g D e 3 e θ , e θ + 1 4 λ -1 e 3 (f 2 )g (e 4 , e θ ) + l.o.t.

	829
	This yields type (2.3.3),
	2η = λ 1 + 2ξ = g D e 3 e 3 , e θ 1 2 λf e 3 = λ 1 + f f e 3 (f ) -1 4 1 2 f f e 3 (f ) -1 4 λf e 3 (f 2 ) + 2η + f χ -2ωf + l.o.t. and hence η = η + 1 2 λe 3 (f ) + 1 4 κf -f ω + Err(η, η ), Err(η, η ) = 1 4 λf f e 3 (f ) -1 8 λf e 3 (f 2 ) + 1 4 f ϑ + l.o.t. = 1 4 f ϑ + l.o.t. = g D e 4 λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + = λ -1 g D e 4 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 , e θ 1 4 f 2 e 4 = 1 2 λ -1 e 4 f f + 1 8 f 2 f 2 g (e 3 , e θ ) + λ -1 1 + 1 2 f f + 1 16 f 2 f 2 g D e 4 e 3 , e θ , e θ +λ -1 e 4 f 1 + 1 4 f f g (e θ , e θ ) + λ -1 f 1 + 1 4 f f g D e 4 e θ , e θ + 1 4 λ = -1 2 λ -1 f e 4 f f + 1 8 f 2 f 2 + λ -1 1 + 1 2 f f e 4 f 1 + 1 4 f f -1 4 λ -1 f 1 + 1 4 = g D e 3 λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 , e θ f f e 4 This yields 2η = -1 2 λ -1 f e 4 f f + 1 8 f 2 f 2 + λ -1 1 + 1 2 f f e 4 f 1 + 1 = λ -1 g D e 3 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 , e θ f f 4 -1 4 λ -1 f 1 + 1 4 f f e 4 = -1 2 λ -1 f e 4 f f + 1 8 f 2 f 2 + λ -1 1 + 1 2 f f e 4 f 1 + 1 4 f f -1 4 λ -1 f 1 + 1 4 = 1 2 λ -1 e 3 f f + 1 8 f 2 = -1 2 λ -1 f e 3 f f + 1 8 f 2 f 2 + λ -1 1 + 1 2 f f e 3 f 1 + 1 f f 4 f f e 4 and hence η = η + 1 2 λ -1 e 4 (f ) + 1 4 κf -f ω + Err(η, η ), Err(η, η ) = 1 4 λ -1 f f e 4 (f ) -1 4 λ -1 f e 4 f f + 1 8 f 2 f 2 + λ -1 1 8 1 + 1 2 f f e 4 f f 2 -1 8 λ -1 f 1 + 1 4 f f e 4 (f 2 ) + 1 4 f ϑ + l.o.t. = -1 8 f 2 λ -1 e 4 (f ) + 1 4 f ϑ + l.o.t. = λ 1 + 1 2 f f e 4 (f ) -1 4 2ξ = λ 1 + 1 2 f f e 4 (f ) -1 4 λf e 4 = λ 1 + 1 2 f f e 4 (f ) -1 4 λf e 4 and hence ξ = λ 2 ξ + 1 2 λ -1 e 4 (f ) + ωf + 1 4 f κ + λ 2 Err(ξ, ξ ), Err(ξ, ξ ) = 1 4 λ -1 f f e 4 (f ) -1 8 λ -1 f e 4 (f 2 ) + 1 4 f ϑ + l.o.t. = 1 4 f ϑ + l.o.t. Err(ξ, ξ ) = 1 4 f ϑ + 1 4 f 2 η + 2ζ -η -1 4 f 3 ω + 1 2 χ -1 16 f 4 ξ. λf e 4 This yields -1 4 λ -1 f 1 + 1 4 f f e 3

= 2η + f χ -2f ω + l.o.t.

A

  -2 f ω + l.o.t. Next, we derive the transformation formulae for ω. We have, under a transformation of type (2.3.3), 4ω = g D e 4 e 4 , e 3 = g D e 4 λ e 4 + f e θ + 1 4 f 2 e 3 , e 3 = -2e 4 (log λ) + λg D e 4 e 4 + f e θ + 1 4 f 2 e 3 , e 3 = -2e 4 (log λ) + λg D e 4 e 4 , e 3 + λe 4 (f )g (e θ , e 3 ) + λf g D e 4 e θ , e 3 (f 2 ) + λg D e 4 e 4 , e 3 + λf g D e 4 e θ , e 3 + l.o.t. We compute λg D e 4 e 4 , e 3 = g D e 4 e 4 , 1 + 1 2 f f e 3 + f e θ + l.o.t. D e 4 +f e θ + 1 4 f 2 e 3 e 4 , e 3 + λf g (D e 4 +f e θ e 4 , e θ ) + l.o.t. + 2λf ζλf 2 ω + 2λf ξ + λf f χ + l.o.t. and λf g D e 4 e θ , e 3 = f g D e 4 e θ , e 3 + l.o.t. = λf g (D e 4 +f e θ e θ , e 3 ) + l.o.t. = -2λf ηλf 2 χ + l.o.t. (f 2 ) + λg D e 4 e 4 , e 3 + λf g D e 4 e θ , e 3 + l.o.t. + 2λf ζλf 2 ω +2λf ξ + λf f χ -2λf ηλf 2 χ + l.o.t. In the particular case, see Remark 2.3.5, when λ = 1, f = 0 we have the more precise formula, Next, we derive the transformation formulae for ω. We have, under a transformation of type (2.3.3), 4ω = g D e 3 e 3 , e 4

	and hence Err(ξ, ξ ) = -ξ = λ -2 ξ + 1 4 λf e 3 f f + 1 2 λe 3 (f ) + ω f + 1 8 f 2 f 2 + -1 8 λf 1 + 1 4 f f e 3 (f 2 ) + 1 4 1 4 1 f κ + λ -2 Err(ξ, ξ ), λf f e 3 (f ) + 1 8 λ 1 + 4 f ϑ + l.o.t. = -1 8 λf 2 e 3 (f ) + 1 4 f ϑ + l.o.t. + 1 4 λe 4 (f 2 )g (e 3 , e 3 ) + 1 4 λf 2 g D e 4 e 3 , e 3 = -2e 4 (log λ) + f 1 + 1 4 f f e 4 (f ) -1 8 f 2 e 4 = λ 1 + 1 2 f f g = 4λ 1 + 1 2 4ω = -2e 4 (log λ) + f 1 + 1 4 f f e 4 (f ) -1 8 f 2 e 4 = -2e 4 (log λ) + f 1 + 1 4 f f e 4 (f ) -1 8 f 2 e 4 (f 2 ) + 4λ 1 + 1 2 f f ω and hence 1 2 f f e 3 f f 2 ω = λ ω -1 2 λ -1 e 4 (log(λ)) + λErr(ω, ω ), Err(ω, ω ) = 1 4 f 1 + 1 4 f f e 4 (f ) -1 32 f 2 e 4 (f 2 ) + 1 2 ωf f -1 2 f η + 1 2 f ξ + 1 2 f ζ -1 8 κf 2 + 1 8 f f κ -1 4 ωf 2 + l.o.t. = 1 4 f e 4 (f ) + 1 2 ωf f -1 2 f η + 1 2 f ξ + 1 2 f ζ -1 8 κf 2 + 1 8 f f κ -1 4 ωf 2 + l.o.t. ω = ω + 1 2 f (ζ -η) -1 8 f 2 2ω + κ + ϑ + f ξ = g D e 3 λ -1 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 , e 4 = 2e 3 (log(λ)) f f ω This yields +λ -1 g D e 3 1 + 1 2 f f + 1 16 f 2 f 2 e 3 + f 1 + 1 4 f f e θ + 1 4 f 2 e 4 , e 4

  1 f 2 χ + l.o.t.Next we derive the formula for α. We haveα = R(e 4 , e 4 ) = λ 2 R e 4 + f e θ + 1 4 f 2 e 3 , e 4 + f e θ + 1 4 f 2 e 3 = λ 2 R 44 + 2f R 4θ + f 2 R θθ + 1 2 f 2 R 34 + l.o.t.The formula for α is easily derived by symmetry from the one on α.Next we derive the formula for β. We have β = R(e 4 , e θ ) = λR e 4 + f e θ +

	and hence											
										α = λ 2 α + λ 2 Err(α, α ),
						Err(α, α ) = 2f β +	3 2	f 2 ρ + l.o.t.
												1 4	f 2 e 3 , 1 +	1 2	f f e θ +	1 2	(f e 4 + f e 3 ) + l.o.t.
	= λ R 4θ + f R θθ +	1 2	f R 44 +	1 2	f R 43 + l.o.t.
	= λ β +	3 2	f ρ +	1 2	f α + l.o.t.
	and hence											
									β = λ β +	3 2	f ρ + λErr(β, β ),
				Err(β, β ) =		1 2	f α + l.o.t.
	and hence											
	ω = λ -1 ω +	1 2	λe 3 (log(λ)) + λ -1 Err(ω, ω ),
	Err(ω, ω ) = -	1 4	e 3 f f +	1 8	f 2 f 2 +	1 4	f e 3 f 1 +	1 4	f f	-	1 32	f 2 e 3 (f 2 )
	+ωf f -= -1 4 f e 3 (f ) + ωf f -1 2 f η + 1 2 f ξ -1 2 f η + 1 2 f ζ -1 2 f ξ -1 8 κf 2 + 1 2 f ζ -1 8 f f κ -1 8 κf 2 + 1 ωf 2 + l.o.t. 4 1 8 f f κ -1 4 ωf 2 + l.o.t.
	= λ 2 α + 2f β +	3 2	f 2 ρ + l.o.t.

The formula for β is easily derived by symmetry from the one on β.

We assume the space-time to be time oriented, i.e. there exists a globally defined non degenerate timelike vectorfield T . In particular, a causal vectorfield X is future oriented if g(T, X) < 0.

These allow one to cast the Einstein vacuum equations in the form of a system of nonlinear wave equations for which classical local existence results can be applied.

The precise result requires some minimal regularity for the initial data set. The optimal known result, the bounded L 2 curvature theorem, see[START_REF] Klainerman | The bounded L 2 curvature conjecture[END_REF], requires L 2 bounds for the curvature of the initial data set.

They must end in the singularity at r = 0, in Schwarzschild spacetime. Their behavior in Kerr is more complicated due to the presence of a Cauchy horizon at r = r -along which the spacetime remains smooth.

A vectorfield X is said to be Killing if its associated 1-parameter flow consists of isometries of g, i.e. the Lie derivative of the metric g with respect to X vanishes, L X g = 0.

With quadratic and higher order terms satisfying the null condition on the right-hand side.

That is free of trapped surfaces. See also more recent results in[START_REF] Klainerman | Rodnianski On the formation of trapped surfaces[END_REF],[START_REF] Klainerman | A fully anisotropic mechanism for formation of trapped surfaces in vacuum[END_REF] and[START_REF] An | Trapped surfaces in vacuum arising dynamically from mild incoming radiation[END_REF].

A more precise definition of complete future null infinity, which avoids the technical and murky issue of the precise degree of smoothness of the conformal compactification, was proposed by Christodoulou in[START_REF] Christodoulou | On the global initial value problem and the issue of singularities[END_REF].

This can be informally reformulated, for MFGHD spaces, by stating that there exists a sequence of relatively compact sets K n exhausting the initial hypersurface Σ (0) such that the proper future time of observers starting in K n+1 \ K n tends to infinity as n → ∞.

This presupposes the existence of an event horizon. Note that the existence of such an event horizon can only be established upon the completion of the proof of the conjecture.

It is irrelevant whether a specific linearization procedure needs to be implemented; what is important here is to identify the linear mechanism for decay, such as the Maxwell system in the case of the stability of Minkowski space mentioned above.

In the case of EVE the linearized equations are linear hyperbolic only after we mod out the linearized version of general coordinate transformations.

In the case of the stability of Kerr we have a 2 parameter family of solutions K(a, m).

This is responsible of the fact that a small perturbation of the fixed stationary solution φ 0 may not converge to φ 0 but to another nearby stationary solution.

In the case of EVE, any diffeomorphism has that property.

With respect to the so called principal null directions.

In the Schwarzschild case, these geodesics are located on the so-called photon sphere r = 3m.1.2. STABILITY OF KERR CONJECTURE

Method based on the symmetries of Minkowski space to derive uniform, robust, decay for nonlinear wave equations, see[START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equations[END_REF],[START_REF] Klainerman | The Null Condition and global existence to nonlinear wave equations[END_REF],[START_REF] Klainerman | Remarks on the global Sobolev inequalities[END_REF],[START_REF] Christodoulou | Asymptotic properties of linear field theories in Minkowski space[END_REF].

Note that the redshift vectorfield is also used as a multiplier in the derivation of the Energy-Morawetz estimate.

These replace the scaling and inverted time translation vectorfields used in[START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equations[END_REF] or their corresponding deformations used in[START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF]. A recent improvement of the method, relevant to our work here, allowing one to derive higher order decay can be found in[START_REF] Angelopoulos | A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes[END_REF]. See also[START_REF] Moschidis | The r p -weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications[END_REF] for further extensions of this method.

See section 2.1.1 for a precise definition of axial symmetry and polarization. This property is preserved by the Einstein equations, i.e. if the data is axially symmetric, polarized, so is its development.

A somewhat weaker version of linear stability of Schwarzschild was subsequently proved in[START_REF] Hung | Linear stability of Schwarzschild spacetime: the Cauchy problem of metric coefficients[END_REF] by using the original, direct, Regge-Wheeler, Zerilli approach combined with the vectorfield method and adapted gauge choices. See also[START_REF] Johnson | The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge[END_REF] for an alternate proof of linear stability of Schwarzschild using wave coordinates.

This is possible in Schwarzschild where the principal null directions are integrable.

Provided that one can deal with the nonlinear terms.

In the linear setting this was partially achieved in[START_REF] Dafermos | A scattering theory construction of dynamical black hole spacetimes[END_REF].

See[START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] for a similar situation.

See also[START_REF] Klainerman | The evolution problem in general relativity[END_REF].

This is an easy consequence of the equation (2.1.2).

Note that the component U ϕ must automatically vanish on S.

Note that the components U θϕ , U ϕθ must automatically vanish on S.

Note that the boundary term which appears from the last integration by parts has the form (∂ θ Φ) 2 e 2Φ (π) -(∂ θ Φ) 2 e 2Φ (0) and hence vanishes in view of the regularity condition (2.1.13), see also the computation in Remark 2.1.24.

Note that the expressions on the left of the inequalities below should be interpreted as applying to the spacetime tensor from which f is reduced.

Note the change of sign for the β component.

i.e. the null geodesics in the direction of L reach the horizon in finite proper time. Note that, on the other hand, the past null geodesics in the direction of L still meet the horizon in infinite proper time.

Note that (1+3) β = -β and d / 1 f = -e θ (f ).

Note that (1+3) β θ = -β, (1+3) χ = 1 2 ϑ.

In the frames we are using, we have in fact ξ = 0 for r ≥ 4m 0 so that it behaves in fact better than the other components of Γ (0) g .

This topology will be specified in our initial data layer assumptions, see (3.3.5) as well as section 3.2.4.

This topology will be specified in our bootstrap assumptions, see(3.3.6) as well as section

3.2. 

A specific choice of r T will be made in section 3.8.9, see(3.8.8), in the context of a Lebesgue point argument needed to recover the top order derivatives.

See (3.3.4) for the precise condition.

Recall that(ext) s satisfies on (ext) M the transport equation L( (ext) s) = 1 and thus needs to be initialized on a hypersurface transversal to L, chosen here to be Σ * .

More generally, a GCM hypersurface is one with the property that we can specify, using the full covariance of the Einstein equations, a number of vanishing conditions (equal to the number of degrees of freedom of the diffeomorphism group) for well-chosen components of Γ.

The existence of such hypersurfaces is an essential part of our construction.

Recall that the initial data layer foliations satisfy η + ζ = 0, as well as ξ = ω = 0 on (ext) L 0 and η = ζ as well as ξ = ω = 0 on (int) L 0 .

Note that the results of[START_REF] Klainerman | Peeling properties of asymptotic solutions to the Einstein vacuum equations[END_REF] are consistent with our initial data layer assumptions.

Here, r and m denote respectively the area radius and the Hawking mass of the outgoing geodesic foliation of (ext) M, i.e. r = (ext) r and m = (ext) m. In particular, while e θ (r) = e θ (m) = 0, we have in general e θ (r) = 0 and e θ (m) = 0.

In applications, s max = k small + 4 in Theorem M7, and s max = k large + 5 in Theorem M0 and Theorem M6.

Here the average of κ S is taken on S. In view of the GCM conditions(3.7.24) we deduce e S 4 (r S ) = 1.

The control of f on C 1 requires in fact a more subtle treatment, seeStep 10 and Step 11 of the proof of Theorem M0.

q + V q = N, V = κκ(3.8.4) 

At the linear level, on a Schwarzschild spacetime, this step was also treated (minus the improved decay) in the paper[START_REF] Dafermos | Linear stability of the Schwarzschild solution to gravitational perturbations[END_REF].

With respect to the foliation of (ext) M.

With respect to the foliation of (ext) M.

See also[START_REF] Holzegel | Ultimately Schwarzschildean Spacetimes and the Black Hole Stability Problem[END_REF] for a related strategy to recover higher order derivatives from the control of lower order ones.

See sections 3.2.1 and 3.2.2 for the definition of our norms measuring energies for curvature components and Ricci coefficients.

The estimates for Ω and ς are proved later in Proposition 3.4.3. Since the proof does not rely on Theorem M0, we may use it here.

We use, here and in the remainder of the proof, property 6 of Lemma 9.2.10 to control the h j (S 1 ) norm of the Ricci coefficients and curvature components of the initial data foliation of (ext) L 0 in terms of their sup norm.

In fact, in view of the identity K = -ρ -1

κ κ + 1 4 ϑ ϑ , the GCM conditions for κ and κ , and the control of ρ in Step

[START_REF] Angelopoulos | A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes[END_REF], we only need the transformation formulas for ϑ and ϑ . These formulas involve at most one angular derivative of f and f , and no transversal derivative.

Note that the RHS of the transport equation does not depend on f .

It is to estimate k large derivatives of ω + m/r 2 that we made sure to control k large + 1 derivatives of κ + 2/r.

L 2 (S) r -1 h h 1 (S) .

We only need the first estimate for the proof of Proposition 3.5.2, but the second estimate will be needed in the proof of Theorem M8.

q + κκ q = N, (5.0.1)

This equivalence follows from the coarea formula and the fact that the lapse of the τ -foliation is controlled uniformly from above and below.

δ B

Recall that q is localized in r ≥ 4m 0 so that we don't need in(5.3.42) the cutoff function φ 0 (r) introduced in Proposition 5.3.6.

Note that the loss of derivative is due to the degeneracy of the bulk integral in the trapping region.

The loss of δ is due to the fact that we are on a perturbation of Schwarzschild rather than on Schwarzschild.

Note that it is important in what follows that the r q weighted estimates hold also for negative values of q.

|e 3 (u)| , 1 |e 3 (r)|.

Here we use (3.4.11) with k loss =

Note also that the estimates we claim here for f are slightly weaker that those in(3.4.11).

Based on bootstrap assumptions BA-D, BA-E, Theorems M1, M2, M3 and Lemmas

3.4.1, 3.4.2. 

Recall (see Remark 2.4.9) that the quantity q we are working with is defined relative to the global frame of Proposition 3.5.5.

In fact, the corresponding estimate in Theorem M3 holds on (int) M, and hence in particular on T since T ⊂ (int) M.

We denote by primes the Ricci and curvature components w.r.t. to the primed frame.

In fact, the estimates hold for k small + k loss , see Proposition 3.4.6, and we choose here k loss = 20.

Note that u and r here are the outgoing optical function and area radius of the foliation of (ext) M.

This is to avoid the presence of e 3 , e 4 derivatives in the error terms.

These estimates also provide weak decay in u, i.e. u -1 2 -δ dec decay.

It would work however if instead we would integrate from the interior, but we don't possess information about optimal u decay in the interior, for example on the timelike boundary T of (ext) M.

Note that in view of (7.3.3), we have d /a * ∈ rΓ b .

2 0 u -2-2δ dec , k ≤ k small + 18as desired.

Note that the schematic form of Proposition 7.1.12 is not suitable here.

Recall that r is bounded on T and that T ⊂ (int) M so that (7.5.21) holds true for (int) α on T in view of Theorem M3. Then, since we have (ext) α = ( (ext) Υ) 2 (int) α on T , (7.5.21) holds indeed true for (ext) α on T .

See also[START_REF] Holzegel | Ultimately Schwarzschildean Spacetimes and the Black Hole Stability Problem[END_REF] for a related strategy to recover higher order derivatives from the control of lower order ones.

κ κ + 2ρ ρ + Err[ g ρ],

The proof of Lemma 4.6.6 in section 4.6.2 is done in the particular case J = k large -1 but extends immediately to the case k small -2 ≤ J ≤ k large -1.

In applications, s max = k small + 4 in Theorem M7, and s max = k large + 5 in Theorem M0 and Theorem M6.

Note that we also use the assumption U (0) = S(0) = 0 to estimate (U, S) from (U , S ).

Recall that R := {|u -• u| ≤ δ R , |s -• s| ≤ δ R }, see (9.1.6).

Note that a is not restricted in this result.

Note that we also use the assumption U (0) = S(0) = 0 to estimate (U, S) from (U , S ).

Note that the change of frame formulas for ρ S , κ S κ S and ϑ S ϑ S do not involve λ, and involve at most one tangential derivative to S of (f, f ).

Note that the terms d / κ -C S e Φ and d / μ -M S e Φ can be decomposed as followsd / κ -C S e Φ = d / κ -Ce Φ + (C -C S )e Φ , d / μ -M S e Φ = d / μ -M e Φ + (M -M S )e Φ ,where C -C S and M -M S are nonlinear in view of Corollary 9.2.13 applied to D = C and D = M .

e

-Ωe

bγ 1/2 e θ .

Note in particular thatA3 implies ∂ u (γ) = ∂ u (r 2 )+O( • r) = O(r) and ∂ s (γ) = ∂ s (r 2 )+O( • r) = O(r).

Indeed the term e θ (e θ Φ) is quite singular on the axis.

i.e. in a neighborhood of S 0 .

Here the average of κ S is taken on S. In view of the GCM conditions(9.8.14) we deduce e S 4 (r S ) = 1.

It will also be used below to derive equations for Λ, Λ.

i.e. differentiable spheres S endowed with adapted null frames (e S 4 , e S θ , e S 3 ).

The equations used in the derivation of these identities only require the. transversality conditions (9.4.9).

Strictly speaking Proposition 7.3.5 requires the e 3 Ricci and Bianchi identities of a geodesic foliation. It is easy to justify the application of these equations in our context by using the transversality conditions to generate a geodesic foliation in a neighborhood of Σ 0 .

These identities were recorded in Proposition 7.1.12 which was itself a corollary Proposition 2.2.19.).Note also that d /(Γ S b • Γ S b ) does not contain derivatives of ω.

We cannot close the estimates without being also able to estimate the = 1 modes of η S , ξ S , ω S and the average a S .

Note that to prove our main theorem we have to construct our hypersurface Σ 0 such that in fact B = B = D = 0.

Note that a S (s, 0) = a S (Ξ(s, 0)).

In Schwarzschild, in standard coordinates, we have T = ∂ t , R = Υ∂ r which are regular near the horizon.

Recall from Remark 10.1.6 that ∂ r f does no denote a spacetime coordinate vectorfield applied to f , but instead the partial derivative with respect to the variable r of the function f (r, m).

See section 2.4.1 and Appendix D for the precise definition of the covariant derivative Ḋ and wave operator ˙ on S 2 (M)

Recall from Remark 10.1.6 that ∂ r f does no denote a spacetime coordinate vectorfield applied to f , but instead the partial derivative with respect to the variable r of the function f (r, m).

C * is chosen so that f is continuous across r = 4m.

Recall from Remark 10.1.6 that ∂ r f does no denote a spacetime coordinate vectorfield applied to f , but instead the partial derivative with respect to the variable r of the function f (r, m).

Recall that W δ is supported is supported in the region 2m < r ≤ 5m 2 .

in r ≥ 4m 0 .

The assumptions are consistent with the global frame used in Theorem M1, see Lemma 5.1.1. In particular, δ 0 > 0 is such that δ dec -2δ 0 > 0 which is the only needed property of δ dec -2δ 0 to derive the r p weighted estimates.

Note that so far we have only used the weaker version e 4 (r) -1 = O( ). This is the first time we need the stronger version of the estimate in this chapter.

The proof of Theorem 5.3.4 for higher derivatives s ≥ 1, even though proved later in section 10.4.5, is in fact independent of the proof of Theorem 5.3.5 and can thus be invoked here.

Using also the second bound on Morr from Theorem 10.1.1 and the bound on Ḃδ,4m0 from the r p estimates Theorem 10.2.1. See also Remark 10.2.2.

Note that any finite region in r strictly containing the trapping region would suffice.

Note that Proposition 10.1.16 does not use the particular form of the potential and the type of the reduced scalar φ and hence holds in our more general case.

This differs from the choice of h in the proof of (10.4.1) in order to avoid using a Poincaré inequality (which depends of the type of the reduced scalar) and the particular form of the potential V 1 .

Unlike the frame of Proposition 3.5.5 for which η ∈ Γ g .

This boundary term, as discussed below, is due to the fact that V 0 is positive, which explains why no such term is present in (10.5.3) due to the negativity of the potential V 2 for the wave equation satisfied by ψ.

The boundary term of the r p weighted estimates involves only Q 44 = (e 4 φ) 2 , while the one of the energy estimate involves also Q 34 = |∇ / φ| 2 + V 0 φ 2 .

ρf f + f β + f β + l.o.t.This concludes the proof of Proposition 2.3.4.

In particular we write β ∈ r -1 Γ b .

We also commute once more e 3 and e

with d / 1 , d / 1 , d / 2 , d / 2 and use Bianchi.

ψ + κκψ = N,

Since e 3 η ∈ r -1 Γ b and q ∈ Γ b , we deduce, Err [e 3 (r q)] = r 3 d ≤2 Γ b • Γ g . Now, in view of Proposition 2.3.4,

Proceeding in the same manner with all other terms we find,

from which the result easily follows.

Additional equations

The following proposition is an immediate corollary of Proposition 2.2.19.

Proposition 7.1.12. We have, schematically, The following corollary of Proposition 7.1.12 which will be very useful later on. Applying d / 2 and proceeding as in the derivation of (7.1.37), by making use of (7.1.39) and (7.1.38) Proof. In view of the improved control for α in Theorem M2, α in Theorem M3, and q in Theorem M1, the bootstrap assumptions and product lemma, and the control we have already derived for κ and μ in (ext) where we used Codazzi for the two first inequalities, Bianchi for the third and fourth inequalities, the definition of µ for the fifth one, and the identity relating q and d / 2 d / 1 ρ for the last one.

Combining the first statement with the third and the second with the fourth we infer that, Also, we have, using (j) = 2 (j + 1),

which concludes the proof of the lemma.

In view of (8.3.9), (8.3.13) holds for J = k small -2. The propositions below will allow us to prove Theorem M8 in the next section. Then, under the iteration assumption (8.3.13), we have

Proposition 8.3.7. Let J such that k small -2 ≤ J ≤ k large -1. Consider the global frame constructed in Proposition 8.3.3. In that frame, under the iteration assumption (8.3.13), we have

Proposition 8.3.8. Let J such that k small -2 ≤ J ≤ k large -1. Consider the global frame constructed in Proposition 8.3.3. In that frame, under the iteration assumption (8.3.13), we have

• coincides with the frame of (int) M in (int) M \ Match,

• coincides with a conformal renormalization of the frame of (ext) M in (ext) M\Match.

Thus, J + 1 derivatives of its Ricci coefficients and curvature components are controlled

in Match,

• by N Arguing similarly for (int) r, we obtain the following analog of (8.4.1)

Then, since

• on (ext) M \ Match, we have g (r) = g ( (ext) r), m = (ext) m,

• on (int) M \ Match, we have g (r) = g ( (int) r), m = (int) m, we immediately infer from (8.4.1), (8.4.2) and (8.4.3) which are the desired estimates outside of the matching region. Note that we have used the fact that (trap) M ∩ Match = ∅.

It remains to derive the desired estimates in the matching region. To this end, we need to estimate (ext) r - (int) r and (int) m - (ext) m in the matching region.

Step 7 or the proof of Lemma 4.6.6 in section 4.6.2 yields 6

(int) M d J+1 (ext) r -(int) r, (ext) m -(int) m 2 (N (En) J

) 2 + (N (match) J

) 2 .

We infer, in view of the iteration assumption (8.3.13),

Then, since we have on the matching region, r = (1ψ m 0 ,δ H ( (int) r)) (int) r + ψ m 0 ,δ H ( (int) r) (ext) r, m = (1ψ m 0 ,δ H ( (int) r)) (int) m + ψ m 0 ,δ H ( (int) r) (ext) m, g (r) = (1ψ m 0 ,δ H ( (int) r)) g ( (int) r) + ψ m 0 ,δ H ( (int) r) g ( (ext) r) +2ψ m 0 ,δ H ( (int) r)D α ( (int) r)D α ( (ext) r -(int) r)

+( (ext) r -(int) r) g (ψ m 0 ,δ H ), we deduce there

= (1ψ m 0 ,δ H ( (int) r)) g ( (int) r) -

Next we use the iteration assumption (8.3.13) which yields in particular

together with the control of d ≤k small α provided by the decay estimate (8.3.6), as well as the iteration assumption and the control for N 2 provided by Lemma 8.6.2 to deduce

Note that Υ 2 δ 2 H > 0 on (ext) M and hence

which together with the control of Υ 2 α provided by (8.6.1) yields

2 and hence

(int) M(1,τ * )

using again (8.6.1), we finally obtain 

Together with the control for α provided by (8.6.1) and the control for α provided by (8.6.2), we infer

Together with the Bianchi identities for e 4 (β), e 3 (β), d / 1 β, e 4 (β), e 3 (β), d / 1 β, as well as the iteration assumption (8.3.13), we infer

and hence

as desired. This concludes the proof of Proposition 8.3.8.

8.7

Proof of Proposition 8.3.9

First, note that, by definition of the norms B J -2 , (int) R J+1 [ Ř] and (ext) R J+1 [ Ř], we have for any r 0 ≥ 4m 0 (int) R J+1 [ Ř] + (ext) R ≤r 0 J+1 [ Ř] r 10 B J -2 [α, β, ρ, β, α](1, τ * ). Together with Proposition 8.3.8, this implies

Since we have

.

Thus, to prove Proposition 8.3.9, it suffices to establish the following inequality

.

This will follow from r p weighted estimates for the curvature components.

To obtain r p weighted estimates for higher order derivatives of the curvature components, we will need several lemmas.

Lemma 8.7.3. Let k ≥ 1 and s ≥ 1 two integers. Let ψ (1) ∈ s k and ψ (2) ∈ s k-1 . Then, we have

where

Proof. Recall our definition d / s for higher angular derivatives. Given f a k-reduced scalar and s a positive integer we define,

We start with the case s = 2p, i.e. s is even. Since ψ (1) ∈ s k and ψ (2) ∈ s k-1 , we have

.

Next, recall the commutation formulas

We infer

This yields

.

Hence, we infer

where

Next, we deal with the case s = 2p + 1, i.e. s odd. Since ψ (1) ∈ s k and ψ (2) ∈ s k-1 , we have
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In view of the case s = 2p above, we infer

Next, recall the commutation formula

We infer

.

Hence, we obtain

where

we obtain

and hence,

.

We have thus obtained the desired form for h (1),j,k,l and h (2),j,k,l .

The divergence identity now follows from the equations

together with Corollary 8.7.4. This concludes the proof of the lemma.

Corollary 8.7.6. Let r 0 ≥ 4m 0 and 1 ≤ u 0 ≤ u * . We introduce the spacetime region

Let j, k, l three integers. Assume that the frame of (ext) M satisfies sup

Consider a pair (ψ (1) , ψ (2) ) satisfying (8.7.1) or (8.7.2). Then, (ψ (1) , ψ (2) ) satisfies for any real number b

then, we have
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then, we have

then, we have

Proof. We multiply the pair (ψ (1) , ψ (2) ) by a smooth cut-off function in r supported in r ≥ r 0 2 and identically one for r ≥ r 0 . We obtain again a solution to (8.7.1) or (8.7.2) up to error terms that are supported in the region r 0 2 ≤ r ≤ r 0 . We then integrate the divergence identities of Lemma 8.7.5 on the region R u 0 and the corollary follows. 8.7.2 End of the proof of Proposition 8.3.9

Let r 0 ≥ 4m 0 . Recall that, to prove Proposition 8.3.9, it suffices to establish the following inequality

.

To this end, we will rely on the r p -weighted estimates derived in Corollary 8.7.6 applied to the Bianchi pairs, where we recall Remark 8.7.2.

Remark 8.7.7. For the Bianchi pair (β, ρ), we replace the Bianchi identities for e 4 (ρ) by its analog for e 4 (ρ), i.e.

while for the Bianchi pair (ρ, β), we replace the Bianchi identities for e 3 (ρ) by its analog for e 3 (ρ), i.e.

see Proposition 2.2.18 for the derivation of these equations.

Let j, k, l three integers such that

To derive r p weighted curvature estimates for d / j (re 4 ) k T l derivatives in the region r ≥ r 0 , we proceed as follows.

Step 1. We start with the case k = 0, i.e. we derive r p weighted curvature estimates for d / j T l derivatives with j + l = J + 1. First, we apply Corollary 8. 

Step 2. We derive additional r p weighted curvature estimates for d / j T l derivatives with j + l = J + 1. To this end, we apply Corollary 8.7.6

• to the Bianchi pair (β, ρ) with the choice b = 4,

• to the Bianchi pair (ρ, β) with the choice b = 2,

• to the Bianchi pair (β, α) with the choice b = 0.
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All the above choices are such that we have in case (c) of Corollary 8.7.6. In particular, we obtain

Using Proposition 8.3.8 to bound the first term on the right-hand side, and using also the definition of the norm (ext) G ≥r 0 k [ Γ], we infer that 

Together with (8.7.4), we deduce

(8.7.5)

Step 3. We now argue by iteration on k. For 0 ≤ k ≤ J, we consider the following 

(8.7.6) (8.7.6) holds true for k = 0 in view of (8.7.5). We now assume that (8.7.6) holds true for k such that 0 ≤ k ≤ J, and our goal is to prove that it also holds for k + 1.

First, note that the Bianchi identities for e 4 (β), e 4 (ρ), e 4 (β) and e 4 (α), together with (8.7.6), yields 

Together with (8. 

Hence, we have obtained

which concludes the proof of Proposition 8.3.9.

Proof of (8.3.12)

To prove (8.3.12), we argue as in the proof of Proposition 8.3.9. Let j, k, l three integers such that

To derive r p weighted curvature estimates for d / j (re 4 ) k T l derivatives of (α, β) in the region r ≥ 4m 0 , we proceed as follows.

Several identities

The goal of this section is to prove the identities below that will be used to avoid loosing derivatives when controlling the weighted energies of the Ricci coefficients. Lemma 8.8.11. We have
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Proof. Recall Raychadhuri

We commute with d / 1 d / 1 which yields

We have in view of Codazzi for ϑ

Together with Bianchi for e 4 (ρ), we infer 
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In view of the null structure equation for e 4 (ϑ), we infer

This yields

Next, recall that we have

We commute with e θ which yields
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Now, using the Bianchi identities for e 4 (β) and e 4 (ρ), we have We infer 

Finally, recall that we have

We commute with e θ which yields e 4 (e θ (κ)) + κe θ (κ) = 2e θ (µ) + 4e θ (ρ) -

Together with Bianchi for e 4 (β), we infer

This concludes the proof of the lemma.

Proof of Proposition 8.8.2

We introduce the following notation which will constantly appear on the RHS of the equalities below

Step 10. Recall that we have

In view of Corollary 8.8.6 with a = 4, we have max

where we have used

ϑ and Codazzi for ϑ to estimate the terms of the RHS with one angular derivative of ϑ,

• the estimates of Step 2 to estimate the terms of the RHS with one derivative of κ,

ζ and the definition of µ to estimate terms of the RHS with one angular derivative of ζ,

• the identity

to estimate the terms of the RHS with two angular derivatives of κ.
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Step 11. Recall that we have

In view of Corollary 8.8.6 with a = 4, we have max

where we have used

ϑ and Codazzi for ϑ to estimate the terms of the RHS with one angular derivative of ϑ,

• the estimates of Step 2 to estimate the terms of the RHS with one derivative of κ,

ζ and the definition of µ to estimate terms of the RHS with one angular derivative of ζ,

• the fact that e θ (κ) = (e θ (κ) -4β) + 4β to estimate the term with one angular derivative of κ,

• the identity 

Step 13. Recall that we have

In view of Corollary 8.8.10, we have max

where we have used

ϑ and Codazzi for ϑ to estimate the terms of the RHS with one angular derivative of ϑ,

• the estimates of Step 1 to estimate the terms of the RHS with one derivative of κ,

ζ and the definition of µ to estimate terms of the RHS with one angular derivative of ζ,

• the identity

to estimate the terms of the RHS with two angular derivatives of κ. 

In view of Corollary 8.8.10, we have max

where we have used

ϑ and Codazzi for ϑ to estimate the terms of the RHS with one angular derivative of ϑ,

• the estimates of Step 1 to estimate the terms of the RHS with one derivative of κ,

ζ and the definition of µ to estimate terms of the RHS with one angular derivative of ζ,

• the fact that e θ (κ) = (e θ (κ) -4β) + 4β to estimate the term with one angular derivative of κ,

• the identity

and the estimates of Step13 to estimate the terms of the RHS with two angular derivatives of κ.

Step 15. Recall that we have

In view of Corollary 8.8.10, we have max

where we have used 

In view of Step 1 to Step 15, of the definition (8.8.4) of N ≤4m 0 [J, Γ, Ř], and of the various norms, we infer 

where U, S are functions defined on the interval [0, π] of amplitude at most • , leading to a smooth surface S. We denote by ψ the reduce map defined on the interval [0, π],

We restrict ourselves to deformations which fix the South Pole, i.e.

Pull-back map

We recall that given a scalar function f on S one defines its pull-back on • S to be the function,

On the other hand, given a vectorfield X on • S one defines its push-forward Ψ # X to be the vectorfield on S defined by,

Given a covariant tensor U on S, one defines its pull back to • S to be the tensor

Lemma 9.2.2. Given a Z-invariant deformation Ψ :

• S -→ S, we have, 1. Let g / S the induced metric on S and g / S,# = γ S,# dθ 2 + e 2Φ # dϕ 2 its pull-back to

•

S.

The metric coefficients γ S and γ S,# are related by,

where γ S is defined implicitly by,

as desired.

To prove the second part of the lemma we first check for the compatibility of the three equations in (9.2.20). Note that, if we denote,

we have A 2 -BC = 1. Hence, squaring the first equation and subtracting the product of the other two we derive,

which coincides with the formula (9.2.5). It thus suffices to only consider the last two equations in (9.2.20) which we write in the form,

i.e.,

Thus under the assumption sup

δ 1 , with δ 1 sufficiently small, making also use of the expression (9.2.23) of γ S , and the estimates (9.1.15) for (γ, b, Ω), for

• sufficiently small, we can uniquely solve for U, S subject to the initial conditions,

Moreover the solution verifies, sup

We also have,

The lower order terms above denoted by l.o.t. are cubic or higher order in the small quantities ξ, ξ, ϑ, η, η, ζ, ϑ as well as a, f, f . Lemma 9.3.3. The following transformation formula holds true

The error term Err(µ, µ ) is quadratic or higher order with respect to (f, f , a, Γ, Ř) and depends only on at most two angular derivatives e θ of f and one angular derivative e θ of a, f .

Proof. Recall that

Therefore,

Note that, 

we recast the results of Lemma 9.3.4 in the following form.

Lemma 9.3.5. We have the transformation equations,

where,

where the terms denoted by l.o.t. are cubic or higher order in a, f, f , Γ, Ř and contain no derivatives of (a, f, f ).

Main GCM equations

Given a deformation Ψ :

• S -→ S and adapted frame (e 3 , e 4 , e θ ) with e θ = e S θ we derive an elliptic system for the transition parameters (a, f, f ). The system will later be used in the construction of GCM surfaces.

In 

or,

Since A S is invertible 9 we can write, setting z 
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We can thus eliminate d / S, a from the last two equations,

where,

Therefore the system (9.3.16) is equivalent to the system,

We summarize the results of the above calculation in the following lemma.

Lemma 9.3.6. The original system (9.3.13) in (a, f, f ) associated to a deformation sphere S is equivalent to the following

where,

The error terms are given by Err 1 , Err 2 , Err 3 , defined in Lemma 9.3.5, and

Remark 9.3.7. We note the following remarks concerning the system (9.3.17).

1. The right hand side of the equations is linear in the quantities,

The first group is to be constrained by our GCM conditions in the next section while the second group depends on assumptions regarding the background foliation of R.

2. The error terms contain only S-angular derivatives of (a, f, f ) of order at most equal to the order of the corresponding operators on the left hand sides, see Lemma 9.3.8 below. Thus the system is in a standard quasilinear elliptic system form.

3. In order to uniquely solve the equations for f and f , we need to the coercivity of the operator A S + V . One can easily show that the potential V is positive for small values of r, i.e. r near r H = 2m 0 (1+δ H ) but negative for large r. In fact A S +V has a nontrivial kernel for large r as one can easily see from the following calculation. Since,

we deduce,

Thus for large enough r the operator

2

which has a nontrivial kernel. 4. To be able to correct for the lack of coercivity of the system, we need to prescribe the = 1 modes of (f, f ).

5. The equations do not provide information on the average of a. For this we will need yet another equation derived in section 9.3.2.

Lemma 9.3.8. The error terms Err 1 , . . . , Err 5 can be written schematically as follows,

hs(S)

,

hs(S)

,

hs(S)

.

(9.3.21)

Proof. The proof follows easily from Lemma 9.3.8, Corollary 9.2.11, coercivity of A S and obvious product estimates on S. Consider for example the term

We write,

Thus, dividing the sum into terms with i ≥ [ k+2 2 ] and i < [ k+2 2 ] and using Sobolev estimates for the terms involving fewer derivatives we derive, for

Similarly, making use of our assumptions for Γ,

Thus, for all 3

i.e., for 5 ≤ s ≤ s max + 1,

hs(S)

.

All other terms can be treated similarly.
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Proof. The first statement is an immediate consequence of Lemma 9.3.6 and (9.3.22).

We then focus on the second statement, i.e. we assume that the deformation parameters (a, f, f ) verify the system (9.4.13) (9.4.14) for some constants C S , M S . Then, subtracting the first three equations of (9.4.13) from (9.3.17) and the last equation of (9.4.13) from (9.3.22), we obtain

which, together with (9.4.14), immediately implies (9.4.12).

Remark 9.4.3. In view of Propositions 9.2.9 and 9.4.2, to find a GCM sphere amounts to solve the following coupled system

where the inputs (a, f, f ) verifies (9.4.13) (9.4.14). Recall that for a reduced scalar h defined on S we write

We will solve the coupled system of equations (9.4.13) (9.4.14) (9.4.15) by an iteration argument which will be introduced below. Before doing this however it pays to observe that the system (9.4.13) can be interpreted as an elliptic system on a fixed surface S for (a, f, f ). In the next section we state a result which establishes the coercivity of the corresponding linearized system. The full proof of the theorem is detailed in section 9.4.3 to section 9.6.3.
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tem on S(n) consisting of the equations (9.4.27), (9.4.34) and (9.4.35) below.

with,

, (9.4.30)
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where

and the error terms, Err

, Err

, Err

, Err

, Err

are obtained from the error terms Err 1 , Err 2 , Err 3 , Err 4 , Err 5 by setting (a,

and their derivatives by the corresponding ones on S(n -1), and then composing by Ψ (n-1) • (Ψ (n) ) -1 so that the error terms in (9.4.33) are defined on S(n).

We also set,

and,

where Err (n+1) 6

is obtained from the error terms Err 6 as above in (9.4.33), by setting (a, f, f ) = (a (n) , f (n) , f (n) ) and their derivatives by the corresponding ones on the sphere S(n -1), and then composing by Ψ (n-1) • (Ψ (n) ) -1 so that Err (n+1) 6 is defined on S(n).

3. The system of equations (9.4.27), (9.4.34) and (9.4.35) admits a unique solution (f (1+n) , f (1+n) , a (n+1) , C (n+1) , M (n+1) ) according to Proposition 9.4.9 below.

4. We then use the new pair (f (n+1) , f (n+1) ) to solve the equations on
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The proof of Proposition 9.4.12 is postponed to section 9.6.

Step 2. In view of Proposition 9.4.12, we have

which in view of Proposition 9.4.11 yields

Together with a simple interpolation argument on

• S and Proposition 9.4.11, we infer

We infer the existence of a septet P (∞) such that

and

Also, we have

where the quintet of functions are defined on

) are two constants. The functions (U (∞) , S (∞) ) defines a sphere S(∞) and we introduce the map

9.4. EXISTENCE OF GCM SPHERES CHAPTER 9. GCM PROCEDURE 9.6 Proof of Proposition 9.4.12 9.6.1 Pull-back of the main equations According to Proposition 9.4.11 we may assume valid the uniform bounds for the quintets P (n) . To establish a contraction estimate we need to compare the quantities,

and,

According to Lemma 9.2.2 we have, n) are the corresponding Hodge operators on

• S defined with respect to the metric g / (n) := (Ψ (n) ) # (g / S(n) ) given by,

Consequently the system (9.4.27) takes the form,

(9.6.1) Equations (9.4.34) takes the form 

• S,g /

. (9.6.3)

Finally the system (9.4.36) takes the form,

We recall, see (9.4.40), the definition of the norm for the quintets P (n) in the particular case k = 2

.

To prove the estimate

we set,

and, 1) .
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This yields

Using the previous formula to integrate ψδB (n) h on • S with the volume of g / (n) , and after integration by parts, we infer
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• S coincides with S(u, s) at their south poles (i.e. for θ = 0 in the adapted coordinates).

• On S, the following GCMS conditions hold

where (f, f , λ) are the transition parameters of the frame transformation from the background frame (e 3 , e θ , e 4 ) to the adapted frame (e S 3 , e S θ , e S 4 ). The constants Λ S , Λ S depend smoothly on the surfaces S and

• There is a map Ξ : S(u, s) -→ S given by

with U, S vanishing at θ = 0.

• The transversality conditions (9.4.9) hold, i.e. ξ S = ω S = ζ S + η S = 0. Note that these specify the e S 4 derivatives of (f, f , λ) on S.

• The Ricci coefficients 24 κ S , κ S , ϑ S , ϑ S , ζ S are well defined on each sphere S of Σ 0 , and hence on Σ 0 . The same holds true for all curvature coefficients α S , β S , ρ S , β S , α S . Taking into account our transversality condition we remark that the only ill defined Ricci coefficients are η S , ξ S , ω S .

• Let ν S be the unique vectorfield tangent to the hypersurface Σ 0 , normal to S, and normalized by g(ν S , e S 4 ) = -2. There exists a unique scalar function a S on Σ 0 such that ν S is given by ν S = e S 3 + a S e S 4 . We deduce that the quantities

3 , e S 4 ) = 4ω S -4a S ω S = 4ω S , are well defined on Σ 0 . Thus the scalar a S allows us to specify the remaining Ricci coefficients, η S , ξ S , ω S along Σ 0 , which we do below.

Extrinsic properties of Σ 0

We analyze the extrinsic properties of the hypersurfaces Σ 0 defined in Step 1.

Step 2. We define the scalar function u S on Σ 0 as

where r S is the area radius of S and the contant c 0 is such that

Step 3. We extend u S and r S in a small neighborhood of Σ 0 such that the following transversality conditions are verified.

where the average of κ S is taken on S. In view of the GCM conditions (9.8.14) we deduce e S 4 (r S ) = 1.

Step 4. Note that e S 3 (u S , r S ) remain undetermined. On the other hand, since e S θ (u S ) = e S θ (r S ) = 0, we deduce in view of (9.8.18)

Thus introducing the scalars

and,

we deduce,

We infer that e S θ (log ς S ) and e S θ (A S ) are determined in terms of η, ξ.

Step 5. In view of the definition of ν S and ς S we make use of (9.8.18) to deduce

On the other hand, since

and therefore,

where,

Step 6. The following lemma will be used, in particular 25 , to determine the A S .

Lemma 9.8.3. For every scalar function h we have the formula

In particular

where the average is with respect to S.

Proof. We consider the coordinates u S , θ S along Σ 0 with ν S (θ S ) = 0. In these coordinates we have,

The lemma follows easily by expressing the volume element of the surfaces S ⊂ Σ 0 with respect to the coordinates u S , θ S (see also the proof of Proposition 2.2.9).
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Remark 9.8.5. Note that we lack equations for η S , ξ S and the average of a S . The latter can be fixed by fixing the value of a S SP and observing that

In what follows we state a result which ties η S , ξ S to the other GCM conditions in (9.8.14)-(9.8.15).

Step 9. To state the proposition below we split the Ricci coefficients into the following groups.

Proposition 9.8.6. The following statements hold true 27 , 1. Under the same assumptions as in Proposition 9.8.4, the Ricci coefficients η S , ξ S , ω S verify the following identities.

where,

The quadratic terms denoted l.o.t. are lower order both in terms of decay in as well as in terms of number of derivatives. They also contain only angular derivatives d / S
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The last identity in (9.8.29) follows by combining the first two identities in (9.8.33).

To prove the estimates for η S in the second part of the proposition we make use of the identity d / S, To prove the last part of the proposition we make use of the GCM conditions (9.8.14) on Σ 0 to deduce that

Hence, the quantities C 1 , C 2 , C 3 in (9.8.30) can be expressed in the form

Making use of our commutation formulas of Lemma 2.2.13 and the estimates (9.4.11) and (9.4.8) we easily deduce,

formulas that the values of the e S 3 derivatives of (f, f , λ) are determined by the transversal Ricci coefficients η S , ξ S , ω S . Indeed, schematically, from the transformation formulas for η, ξ, ω in Proposition 9.3.1,

where F = (f, f , log λ) and l.o.t. denotes terms which are linear in Γ g , Γ b and linear and higher order in F . Recall also that the e S 4 derivatives of F are fixed by our transversality condition (9.4.9) More precisely we have,

It follows that η S , ξ S , ω S can be determined by ν S (f, f , λ) and the scalar a S . More precisely,

(9.8.64)

Step 17. We derive equations for Λ(s) = Λ(Ψ(s), s, 0)), Λ(s) = Λ(Ψ(s), s, 0) as follows.

Lemma 9.8.12. We have the following identities

where,

appealing to the coupled system of equations (9.4.13) (9.4.14) (9.4.15), as in the proof of Theorem 9.4.1, and studying its dependence on these parameters.

Step 24. It only remains to derive the estimates (9.8.11) for the transition functions F = (f, f , log λ). To start with we have, in view of the construction of Σ 0 and the estimates for F = (f, f , log λ) of Theorem 9.4.1, for every S ⊂ Σ 0

To derive the remaining tangential derivatives of F along Σ 0 we the commute the GCM system (9.4.13) of Proposition 9.4.2 with respect to ν = ν S = e S 3 + a S e S 4 and then proceed, as in the proof of the apriori estimates of Theorem 9.4.6 to derive recursively the estimates, for K = s max + 1,

We already have estimates for the = 1 modes of F = (f, f ). To estimate the = 1 modes of ν l (f, f ), l ≥ 1, we make use of the equations (9.8.64) and the vanishing of the = 1 modes of η S , ξ S along Σ 0 to derive, recursively, for all 1

(9.8.80)

We can then proceed as in the proof of Proposition 9.8.7 derive, recursively, the estimates To complete the desired estimate for all derivatives we make use of the equations for e S 4 (F ), due to the transversality conditions (9.4.9). The e S 3 derivatives can then be derived from ν S = e S 3 + a S e S 4 and the estimates for a S . This concludes the proof of Theorem 9.8.1.

Step 25. We now prove Corollary 9.8.2. Consider first the simpler case where

so that the estimate (9.8.78) holds true for S 0 . We then proceed exactly as in Step 24 to derive the estimates (9.8.79) (9.8.80) (9.8.81) for our distinguished sphere S 0 . Note that S 0 can be viewed as a deformation of the unique background sphere sharing the same south pole.

It remains to prove Corollary 9.8.2 in the more difficult case where

In view of Lemma 9.2.10, with δ 1 =

• δ, we infer

• δ so that r and r S 0 are comparable, and hence

Next, we introduce as in Step 24 the notation K = s max + 1. We claim the following analog of (9.8.82)

To complete the desired estimate for all derivatives we then make use, as in Step 24, of the equations for e S 0 4 (F ), due to the transversality conditions (9.4.9), and recover the e S 0 3 derivatives from ν S 0 = e S 0 3 + a S 0 e S 4 , which concludes the proof of Corollary 9.8.2.
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It thus remains to prove (9.8.84). Note that S 0 can be viewed as a deformation of the unique background sphere sharing the same south pole. We proceed exactly as in Step 24 to derive the estimates (9.8.80) (9.8.81) for our distinguished sphere S 0 , which yields, for all 1

We now claim the following sharpened version of (9.8.79)

Then, (9.8.85), (9.8.86) and (9.8.87) imply

Together with (9.8.83), we deduce (9.8.84) by iteration.

Finally, it remains to prove (9.8.87). As for the proof of (9.8.79), we commute the GCM system (9.4.13) of Proposition 9.4.2 with respect to ν S = e S 3 + a S e S 4 and then proceed, as in the proof of the apriori estimates of Theorem 9.4.6 to derive (9.8.87) recursively. To obtain a stronger conclusion than (9.8.79), we need to analyze the differentiation w.r.t. ν S more carefully. First, note that the commutator [ d / S , ν S ]F satisfies, in view of Lemma 2.2.13,

where the important observation is that the first term on the right-hand side gains a power of r -1 which is consistent with (9.8.87). It remains to analyze the differentiation of the error terms Err 1 , . . . , Err 6 of the GCM system w.r.t. ν S . To this end, in what follows, we single out all the terms that loose one power of r -1 in view of the anomalous behavior of (f , log(λ)) compared to the one in Step 24, and denote by • • • all terms that behave as before. We have by direct check

Then, in view of the identities in Lemma 9.3.4

Err(e θ κ , e θ κ) = (e a -1)

In view of (9.3.14), we deduce

We infer, in view of the expression of Err 4 and Err 5 in section 9.3.1,

Finally, in view of the expression of Err 6 in section 9.3.2, we have

Thus, to conclude the proof of (9.8.87), it suffices to show that all terms singled out in the above expression of Err 1 , . . . , Err 6 gain a power of r -1 when differentiated w.r.t. ν S . Now, they are all quadratic expressions involving a, f , r and r S . Since ν S (a) and ν S (f ) gain r -1 compared to a and f in view of (9.8.84), the conclusion then follows from the straightforward estimate

Chapter 10
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The goal of this chapter is to prove Theorem 5.3.4 and Theorem 5.3.5 concerning the weighted estimates for the solution ψ to

Recall that these theorems where used in Chapter 5 to prove Theorem M1.

The structure of the chapter is as follows.

• In section 10.1, we prove basic Morawetz estimates for ψ.

• In section 10.2, we prove r p -weighted estimates in the spirit of Dafermos-Rodnianski [START_REF] Dafermos | A new physical-space approach to decay for the wave equation with applications to black hole spacetimes[END_REF] for ψ. In particular, we obtain as an immediate corollary the proof of Theorem 5.3.4 in the case s = 0 (i.e. without commutating the equation of ψ with derivatives).

• In section 10.3, we use a variation of the method of [START_REF] Angelopoulos | A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes[END_REF] to derive slightly stronger weighted estimates and prove Theorem 5.3.5 in the case s = 0 (i.e. without commutating the equation of ψ with derivatives).

• In section 10.4, commuting the equation of ψ with derivatives, we complete the proof of Theorem 5.3.4 by controlling higher order derivatives of ψ, i.e. for s ≤ k small + 30. Also, commuting the equation of ψ with derivatives, we complete the proof of Theorem 5.3.5 by controlling higher order derivatives of ψ, i.e. for s ≤ k small + 29. To prove Theorem 10.1.1, we proceed as follows

• In section 10.1.2, we introduce a simplified set of assumptions of the Ricci coefficients which is sufficient in order to prove Theorem 10.1.1.

• In section 10.1.3, we discuss notations concerning functions depending on m and r.

• In section 10.1.4, we compute the deformation tensor of the vectorfields R, T , and

• In section 10.1.5, we introduce the basic integral identities for wave equations that will be used repeatedly in the proof of Theorem 10.1.1.

• In section 10.1.6, we derive the main Morawetz identity.

• In section 10.1.7, we derive a first estimate. This estimate is insufficient due to a lack of positivity of the bulk in the region 3m ≤ r ≤ 4m, -a log divergence of a suitable choice of vectorfield at r = 2m,

a degeneracy at r = 2m.

• In section 10.1.8, we add a correction and rely on a Poincaré inequality to obtain a positive estimate also on the region 3m ≤ r ≤ 4m.

• In section 10.1.9, we perform a cut-off to remove above mentioned log divergence at r = 2m.

• In section 10.1.10, we introduce the red shift vectorfield to remove the above mentioned degeneracy at r = 2m.

• In section 10.1.11, we combine the previous estimates with the redshift vectorfield to obtain a bulk term suitable on the whole spacetime M.

• In section 10.1.12, we prove the positivity of the boundary terms arising from adding a large multiple of the energy estimate to the Morawetz estimate.

• In section 10.1.13, combining the good properties of the bulk and of the boundary terms established so far, we obtain a first Morawetz estimate providing in particular the control of the the quantity Mor[ψ].

• In section 10.1.14, we analyse an error term appearing in the right-hand side of the above mentioned Morawetz estimate.
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and using Lemma 10.1.5, we deduce,

This concludes the proof of the lemma.

Basic integral identities

We recall, see section 2.4.1, that wave equations for ψ ∈ s 2 (M) of the form

can be lifted to the spacetime version 3

where Ψ ∈ S 2 (M) and N [Ψ] ∈ S 2 (M) are defined according to Proposition 2.4.5. In fact,

All estimates for (10.1.10) derived in this section can be easily transferred to estimates for (10.1.9) and vice versa.

Consider wave equations of the form,

with Ψ ∈ S 2 (M) and N a given symmetric traceless tensor, i.e. N ∈ S 2 (M).

Proposition 10.1.9. Assume Ψ ∈ S 2 (M) verifies (10.1.10). Then, CHAPTER 10. REGGE-WHEELER TYPE EQUATIONS 5. Let X = ae 3 + be 4 as above, w a scalar function and M a one form. Define,

Then,

(10.1.12)

Proof. See sections D.1.4 and D.2 in the appendix.

Notation. For convenience we introduce the notation,

Thus equation (10.1.12) becomes,

When M = 0 we simply write E[X, w](Ψ).

Main Morawetz identity

Lemma 10.1.10. Let f (r, m) a function of r and m, and let X a vectorfield defined by

where (X) π has been defined in Lemma 10.1.8.

with the coefficients

The goal is to show that there exist choices of f, w verifying the condition of Proposition 10.1.12, i.e. w = r -2 ∂ r (r 2 f ), which makes Ė(Ψ) positive definite, for all smooth Svalued tensorfields Ψ defined in the region r ≥ 2m 0 (1δ H ), which decay reasonable fast at infinity. We look first for choices of f, w such that the coefficient A, B, W are nonnegative. Note in particular that f must be increasing as a function of r and f = 0 on r = 3m. Following J. Stogin [63] we choose w first to ensure that W is non-negative and then choose f , compatible with the equation,

To ensure that A = r -2 f (r -3m) is positive we need a non-negative w which verifies (modulo error terms

Stogin defines w based on the following lemma. 

Proof. For r ≥ 4m, we have

In particular, we have

5 i.e. terms which vanish in Schwarzschild. is negative for 3m ≤ r ≤ 4m and positive everywhere else. An improvement can be obtained by using the following Poincaré inequality.

Lemma 10.1.18. We have for Ψ ∈ S 2 (M),

(10.1.27)

Proof. See Proposition 2.1.32.

According to Proposition 10.1.16 we deduce,

with W defined in (10.1.25). It is easy to see however that Ė1 still fails to be positive for 3m < r < 4m. To achieve positivity we also need to modify the original energy density E[f R, w](Ψ) by considering instead the modified energy density E[f R, w, M ](Ψ) (see (10.1.12) and notation (10.1.13)) with M = 2hR for a function h = h(r, m) supported for r ≥ 3m and constant for r ≥ 4m.

To take into account the additional terms in the modified E[f R, w, M ](Ψ) we first derive the following.

Lemma 10.1.19. Let h(r, m) a C 1 function of r and m. We have, 

We deduce,

which concludes the proof of Proposition 10.1.20. In this section, we deal with the first problem, while the second problem will be treated in section 10.1.10. To correct for the first problem, i.e. the fact that f blows up logarithmically near r = 2m, we have to modify our choice of f and w there. Introducing

we have,

Warning. The auxiliary function u introduced here, and used only in this section, has of course nothing to do with our previously defined optical function on (ext) M.

Definition 10.1.22. For a given δ > 0 we define the following functions of (r, m)

where F : R -→ R is is a fixed, increasing, smooth function such that

We now derive useful properties satisfied by f δ , w δ and W δ .

Lemma 10.1.23. Let f δ , w δ and W δ introduced in definition 10.1.22. Then,

, and we have for δ > 0 sufficiently small

Also, we have for all r > 0 Proof. Note first that

In view of the definition of u δ , f δ , w δ and W δ , we have

δ .
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Hence, for the choice (10.1.65), and in view of (10.1.63), we infer

Finally, for r ≥ 3m where we have 0

and hence, (10.1.65) implies

as desired. The proof for Q(X + ΛT, e 4 ) is similar.

First Morawetz estimate

We are now ready to state our first Morawetz estimate which is simply obtained by integrating the pointwise inequality in Proposition 10.1.30 on our domain M = (int) M ∪ (ext) M described at the beginning of the section, with X replaced by X + ΛT for Λ > 0 sufficiently large. In view of the choice of τ , note that we have

We recall the following quantities for Ψ in regions M(τ 1 , τ 2 ) ⊂ M in the past of Σ(τ 2 ) and future of Σ(τ 1 ).

Morawetz bulk quantity

Mor
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The following theorem is our first Morawetz estimate.

Theorem 10.1.33. Consider the equation (10.1.10), i.e. ˙ Ψ = V Ψ + N , with V = -κκ and a domain M(τ 1 , τ 2 ) ⊂ M. Then, we have

where,

Proof. Recall that, see (10.1.13)

where,

Remark 10.1.35. Note that the error terms Err cannot yet be absorbed to the let hand side of (10.1.67). In fact we need additional estimates. The Morawetz bulk quantity (5.1.13),

is quite weak for r large with regard to the terms | ȒΨ| 2 and | T Ψ| 2 , while, using the Poincaré inequality, Mor[Ψ] controls the term

In the next section we show how we can estimate

and then, we provide estimates for the remaining terms. Note also that the weight r -1-δ is optimal in estimating e 3 Ψ in the wave zone region. 

In view of the Morawetz estimate (10.1.67) and corollary 10.1.34 we have

with error term, Err

We divide J[N ] = J[N, Ψ] as follows:

trap where,
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For the trapping region, where the hypersurfaces Σ(τ ) are strictly spacelike, we write,

Hence, for λ > 0 sufficiently small, we deduce,

On the other hand we have,

The first integral on the right can be divided further into integrals for r ≤ 4m 0 and r ≥ 4m 0 . The first integral can the be easily absorbed by the term M or[Ψ](τ 1 , τ 2 ), if λ > 0 is sufficiently small. We are thus led to the estimate,

where,

Recalling the definition of Err in Corollary 10.1.34, we deduce,

.1.74)

To eliminate the term in e 3 Ψ from the error term we appeal to the following proposition.
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Proposition 10.1.36. Assume Ψ = V Ψ + N and consider the vectorfield X = f -δ T with f -δ := r -δ for r ≥ 4m 0 and compactly supported in r ≥ 7m 0 2 . With the notation of Proposition 10.1.9, let

Then, 1. We have, for r ≥ 4m 0

2. We have,

We postponed the proof of Proof of Proposition 10.1.36 and continue the proof of Theorem 10.1.1. By integration, the proposition provides a bound for 12

(τ 1 ,τ 2 ) r -δ T (Ψ)N , as well as the error terms. The second bulk integral involving the inhomogeneous term N can be estimates exactly like before. Thus combining the new estimate with that in the corollary 10.1.34 we derive the desired estimatee, both (10.1.1) and (10.1.2), hence concluding the proof of Theorem 10.1.1.

Proof of Proposition 10.1.36

We consider vectorfields of the form X = f (r)T with T = 1 2 (Υe 3 + e 4 ). Recall, see Lemma 10.1.7, that all components of the deformation tensor (T ) π of T = 1 2 (e 4 + Υe 3 ) can be bounded by O( r -1 ). Since f = O(r -δ ), we deduce,

Proposition 10.2.7. Assume Ψ verifies the equation g Ψ = V Ψ+N and let X = f (r)e 4 , w = (X) Λ = 2f r and M = 2r -1 f e 4 . Then, 1. We have, with ě4 = r -1 e 4 (r•),

with error term,

The current,

3. Let θ = θ(r) supported for r ≥ R/2 with θ = 1 for r ≥ R such that f p = θ(r)r p . Let (p) P := P[f p e 4 , w p , M p ]. Then, for all r ≥ R,

Proof. We start with the first part of Proposition 10.2.7. To this end, we use Consider the function f p = f p,R defined by,

where R is a fixed, sufficiently large constant which will be chosen in the proof. We also consider

The proof relies on Proposition 10.2.7.

Step 0. (Reduction to the region r ≥ R) In view of the definition of E[X p , w p , M p ], see (10.1.13), and in view of the choice of X p and w p , we have

We integrate this identity on the domain M(τ 1 , τ 2 ) to derive,

Denoting the boundary terms,

we write,

(10.2.16)

We have the following lemma.

Lemma 10.2.9. For p ≥ δ, we have

DAFERMOS-RODNIANSKI R P -WEIGHTED ESTIMATES

and the fact that 4Υ ≥ 3 + 2/3 for r ≥ R and R large enough, we infer

Next, recall that according to Proposition 10.2.7, we have

We infer

Integrating by parts similarly as before, we infer

Arguing as for the proof of (10.2.19) except for the boundary term on Σ ≥R (τ 2 ) for which we use the above estimate, we deduce
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We first focus on the case δ ≤ p ≤ 1δ, in which case the previous estimate yields

Together with (10.2. [START_REF] Christodoulou | Asymptotic properties of linear field theories in Minkowski space[END_REF]) and the fact that δ 2 by assumption, we infer in view of the

Together with (10.2.18), we deduce for

In view of the improved Morawetz Theorem 10.1.1, and thanks also to the term Ḃp,R [Ψ](τ 1 , τ 2 )

on the left hand side, we may absorb the term O( ) Ḃδ ; 4m 0 [ψ](τ 1 , τ 2 ) and obtain

which is the desired estimate in the case δ ≤ p ≤ 1δ.

Finally, we focus on the remaining case, i.e. 

+O( ) We infer

This concludes the proof of the lemma.

Corollary 10.4.3. We have

Proof. Recall that we have

We infer

and hence, using also 

This concludes the proof of the corollary.

Commutation with angular derivatives Lemma 10.4.4. We have, schematically,

Proof. Recall from Lemma 2.2.13 that the following commutation formulae holds true,

where A = 2/re 4 (r)κ and A = 2/re 3 (r)κ. Now, we have

which together with the fact that A ∈ Γ g and A ∈ Γ b implies, schematically,

This concludes the proof of the lemma.

Corollary 10.4.5. We have
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Next, we rely on

This yields

where we used the fact that r-1d ≤1 Γ b is at least as good as d ≤1 Γ g . This concludes the proof of the corollary.

Commutation with R in the region r ≤ r 0

We derive in the following lemma commutator identities that are non sharp as far as decay in r is concerned. This is sufficient for our needs since we will commute the wave equation with R only in the region r ≤ r 0 for a fixed r 0 ≥ 4m 0 large enough. We will use in particular the following estimate Also, recall that max 

and that we have Also, recall that we have
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Now, we have in view of the definition of a and b,

where we used also our assumptions on ω and m. Thus, we have on the support of κ H

where we used the fact that δ H by assumption. Setting

this concludes the proof of the lemma.

Commutation with re 4

Lemma 10.4.10. We have, schematically,

Proof. Recall that we have 

Using again

we have

and hence

This concludes the proof of the lemma.

Some weighted estimates for wave equations

Recall from Corollary 10.4.5 that we have the following commutator identity
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In view of the choice of f in Proposition 10.1.16, we have

and hence, there exists two constants c 0 > 0 and C 0 > 0 such that

The last term above is responsible for the second to last term on the right-hand side of (10.4.5).

Next, we have the following consequence of (10.4.1) and Theorem 10.4.11.

Corollary 10.4.13. Let φ be a reduced k-scalar for k = 1, 2 such that φ satisfies 23

where φ 1 and φ 2 are given reduced scalars, and where W = V in the case k = 2 and W = V 1 in the case k = 1. Then, φ satisfies for all δ ≤ p ≤ 2δ,

Proof. The wave equation for φ satisfies the assumptions of (10.4.1) and Theorem 10.4.11 with

23 Recall that we have δ 0 δ dec in view of (5.1.1), and hence δ dec -2δ 0 > 0.
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We deduce

Now, in view of the definition

we have

and, for δ ≤ p ≤ 2δ, using also δ dec -2δ 0 > 0, we have
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We immediately deduce

This concludes the proof of the corollary.

Finally, we end this section with the following lemma.

Lemma 10.4.14. Let φ be a reduced k-scalar for k = 1, 2, and let X a vectorfield. We have for all δ ≤ p ≤ 2δ,

Proof. The proof follows immediately from the definition of B p [φ](τ 1 , τ 2 ).

Proof of Theorem 5.3.4

We now conclude the proof of Theorem 5.3.4 for all 0 ≤ s ≤ k small + 30 by recovering higher derivatives s ≥ 1 one by one starting from the estimate s = 0 provided by (10.4.1). As explained in section 10.4.2, it suffices to recover the estimates for s = 1 from the one for s = 0 as the procedure to recover the estimate for s+1 from the one for s is completely analogous. We now follow the strategy outlined in section 10.4.2.

Recovering estimates for T ψ

Recall that ψ satisfies

and recall also from Corollary 10.4.3 that we have
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We infer

In view of Corollary 10.4.13 with φ = T (ψ), φ 1 = d ≤1 ψ and φ 2 = T (N ), and in view of (10.4.3), we deduce

and hence, using Lemma 10.4.14 with X = T , we infer for any δ ≤ p ≤ 2δ,

Recovering estimates for r d / 2 ψ

Recall that ψ satisfies

and recall also from Corollary 10.4.5 that we have

We infer

and hence
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In view of Corollary 10.4.13 with φ = r d / 2 ψ, φ 1 = d ≤1 ψ and φ 2 = -rηN + r d / 2 (N ), and in view of (10.4.3), we deduce

and hence, using Lemma 10.4.14 with X = r d / 2 , we infer for any δ ≤ p ≤ 2δ,

Recovering estimates for Rψ in r ≤ r 0

We start with the following lemma.

Lemma 10.4.15. Let ψ satisfy

Proof. Recall that we have 
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We infer

and hence

where we used the fact that 2 ψ = V ψ + N and V = κκ = O(r -2 ). Also, we have 

This concludes the proof of the lemma.

We now estimate Rψ in r ≤ r 0 for a fixed r 0 ≥ 4m 0 that will be chosen large enough. First, in view of the identity of the previous lemma, i.e.

Next, we remove the degeneracy of the above estimate at r = 3m. Recall from Corollary 10.4.7 that we have in the region r ≤ 4m 0

Then,
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1. multiplying Rψ with a cut-off function equal to one on [5/2m 0 , 7/2m 0 ] and vanishing on [9/4m 0 , 4m 0 ] and inferring the corresponding wave equation from the above one for Rψ, 2. relying on the Morawetz estimate of Proposition 10.1.12 with the particular choice f (r) = r -3m, 3. adding a large multiple of the energy estimate, 4. using Proposition 10.1.32 for the boundary terms, we easily infer the following estimate

Together with (10.4.8), we infer sup

|R 2 ψ| 2 (10.4.9)

Recovering estimates for Y H ψ

Recall that ψ satisfies

and recall also from Lemma 10.4.9

where the scalar function d 0 satisfying the bound
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We infer

Then, We easily infer sup

Recovering estimates for re 4 ψ in r ≥ r 0

Recall that ψ satisfies

and recall also from Lemma 10.4.10

We infer

Then,
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Recovering estimates for r d / 2 ψ Recall from Proposition 10.3.

Recall also from Corollary 10.4.5 that we have

We infer

In view of (10.4.5) with r d / 2 ψ instead of ψ and with
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Also, we have, in view of the wave equation for ψ,

where N 2 satisfies

Since ψ = ψ on (int) M, it thus suffices to prove for ψ the following estimate

This estimate follows from first deriving the corresponding estimate for s = 0 by using the redshift as a multiplier, and then by recover derivatives one by one using commutation with T , d / and the redshift vectorfield. Note that

• ψ is supported on r ≤ 2m 0 (1 + 2δ H ) and hence is estimated on

so that the redshift vectorfield Y H has good properties, both as a multiplier and as a commutator, on the support of ψ.

• The term f 2 (r, m)Y (0) yields a good sign when using Y H as a multiplier since the function f 2 (r, m) is positive, and since

This concludes the proof of the proposition.

Appendix A APPENDIX TO CHAPTER 2

A.1 Proof of Proposition 2.2.9

In a neighborhood of a given sphere S, we consider a (u, s, θ, ϕ) coordinates system, where θ is such that e 4 (θ) = 0. Then, in this coordinates system, we have

Since we have

we infer

In particular, choosing f = 1, we deduce 

and hence

Err[e 3 (κ)] = -ς -1 -

so that, in view of the definition of A, we obtain

This concludes the proof of Lemma 2.2.17.

A.4. PROOF OF PROPOSITION 2.2.18

where,

In view of the null structure equations for e 3 (κ) and e 4 (κ), we infer

and hence

Err[e 3 (κ)] = - 

we deduce,

where

In view of the null structure equations for e 3 (ρ) and e 4 (ρ), we infer

and hence

Err[e 3 ρ] = -

which ends the proof of Proposition 2.2.18.

A.5 Proof of Proposition 2.2.19

In view of the null structure equation for e 3 (ζ), we have

and hence

which is the first desired identity.

To prove the second identity we start with

we infer that,

and hence

which is the second desired identity.

To prove the third identity we start with,

We make use again of the identity,

Grouping terms and using once more the identity K = -ρ -1 4 κκ + 1 4 ϑϑ we deduce,

which is the third desired identity. This concludes the proof of Proposition 2.2.19.

A.6 Proof of Proposition 2.3.4

The proof follows by straightforward calculations using the definition of Ricci coefficients and curvature components with respect to the two frames. Recall the transformation A.7 Proof of Lemma 2.3.6

For ξ and ω , we need more precise transformation formula than the ones of Proposition 2.3.4. We have

Also, we have In view of the change of frame formula for ξ , we infer 4ω = -2e 4 (log(λ)) + λg(D λ -1 e 4 (λ -1 e 4 ), e 3 ) + λ -1 f ξ .

A.10 Proof of Proposition 2.3.13

Recall that we have

which we write in the form q = r 4 J where,

We make use of the general 1 Bianchi equations, see Proposition 2.2.2

as well as the null structure equations (see Proposition 2.2.1)

where Err[e 3 (α)], Err[e 3 (β)], +Err[e 3 (ρ)], Err[e 3 (ϑ)], Err[e 3 (κ)] denote the corresponding quadratic terms in each equation. We also make use of the commutation formula (see Lemma 2.1.51)

1 In an arbitrary Z-invariant frame.

Thus, Now, ignoring cubic and higher order terms,

Also,
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Err[e 3 (κ)] Thus, back to (A.10.1),

In other words,

It remains to analyze the lower order terms according to our convention in Definition 2.3.8 Note that we can write the first line in the expression of Err

On the other hand,

Therefore, schematically,

and therefore,

Since e 3 ζ ∈ r -1 dΓ b and β ∈ r -1 Γ g we rewrite in the form,

This concludes the proof of Proposition 2.3.13.

A.11 Proof of Proposition 2.3.14

We start with the formula (2.3.11)

with Err[q] given by (2.3.12). Taking the e 3 derivative we deduce, 

We deduce,

where 

Hence, ignoring the higher order terms,

Now, in view of Lemma 2.1.51 we have (for

and

We deduce 

On the other hand, in view of (2.3.11), writing e 3 r = r 2 (κ + A),

Hence, in view of (A.11.1) and (A.11.6), e 3 (rq) = r 5 L + 5e 3 (r)q + e 3 (rErr) -5e 3 (r)

where,

Err[e 3 (rq)] = e 3 (rErr[q]) -5e 3 rErr[q] + 5rAq + r 5 E (A.11.7) = re 3 (Err[q]) + Err[q] + 5rAq + r 5 E (A.11.8)

and

with,

Note also that,

Using our schematic notation
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We first compute

In view of our general commutation formulas in Lemma 2.1.51 and our notation convention for error terms 2 we have 3 ,

Hence, schematically,

Using the Bianchi identity

Therefore, back to (A.12.3),

(A.12.4)

We next estimate the third term e 3 (κρ d / 2 ζ) on the right hand side of (A.12.1),

Using again the equations

12. PROOF OF THE TEUKOLSKY-STAROBINSKI IDENTITY 853 and the commutator formula,

we deduce

For the fourth term on the right hand side of (A.12.1) we have

Finally, for the fifth term on the right hand side of (A.12.1), using the e 3 equations for

Recalling (A.12.1) A.12. PROOF OF THE TEUKOLSKY-STAROBINSKI IDENTITY 855 and making use of (A.12.4)-(A.12.7) we deduce,

+ 7r -6 e 3 (r)e 3 (rq) + Err + r -7 r 2 e 3 Err[e 3 q] + rErr[e 3 q] + l.o.t..

where, the error term Err is given by

Denoting the expression of left hand side of the identity (2.3.15) by I, i.e.

I := e 3 (r 2 e 3 (rq)) + 2ωr 2 e 3 (rq)

we deduce,

where the new error term Err is given by Err = Err + r -7 r 2 e 3 Err[e 3 q] + rErr[e 3 q] + 2ωr -5 Err[e 3 q]

To calculate the term J := 7re 3 (r)e 3 (rq) + 2ωr 2 e 3 (rq) in the last row we make use once more of the identity of Lemma 2.3.14 to derive

i.e.,

Combining and simplifying,

where,

Using Bianchi to replace d / 2 β, we deduce

where,

Recall that, see (A.12.8),

Recall that, see Proposition 2.3.14,

which end the proof of Proposition 2.3.15.

A.13 Proof of Proposition 2.4.6

In this section we give a proof of Proposition 2.4.6, i.e. we derive the wave equation for the extreme curvature component α,

and hence

where,

Next, we make use of

to calculate the term

Hence,

Using also,
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and the identities, 2χ = κ + ϑ, as well as 2χ = κ + ϑ, we finally obtain

as desired.

We write schematically the error term,

This concludes the proof of Proposition 2.4.6.

A.14 Proof of Theorem 2.4.7

Recall the symbolic notation used in the statement of the theorem.

where A = 2 r e 4 (r)κ, A = 2 r e 3 (r)κ. We also denote, for s ≥ 2, We also recall Remark 2.3.9.

Remark A.14.1. According to the main bootstrap assumptions BA-E, BA-D (see section 3.4.1.) the terms Γ b behave worse in powers of r than the terms in Γ g . Thus, in the symbolic expressions below, we replace the terms of the form Γ g + Γ b by Γ b . We also replace r -1 Γ b by Γ g . We will denote l.o.t. all cubic and higher error terms in Γ, Ř. We also include in l.o.t. terms which decay faster in powers of r that those taking into account by the main quadratic terms.

Recall that

where Q is the operator

Lemma A.14.2. The quantity q is fully invariant with respect to the conformal frame transformations e 3 = λ -1 e 3 , e 4 = λe 4 , e θ = e θ .

Proof. The proof is an immediate consequence of Definition A.14.3 and Lemmas A.14.5, A.14.4 below.

We recall that under the above mentioned frame transformation we have

Definition A.14.3. We say that a reduced tensor is conformal invariant of type 4 a, i.e. a-conformal invariant, if under the conformal change of frames e 3 = λ -1 , e 4 = λe 4 it transforms by f = λ a f. 4 Note that for a given Ricci or curvature coefficient a coincides with the signature of the component.
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Lemma A.14.4. Let f be an a-conformal invariant tensor.

1. The tensor

2. The tensor

Proof. Immediate verification.

Lemma A.14.5. We have

Proof. We have,

Hence,

as stated.

Remark A.14.6. Using the definitions of ∇ 3 , ∇ 4 the null structure equations for κ, κ take the form,

Also, since ρ is 0-conformal

Definition A.14.7. Given f an a-conformal S-tangent tensor we define its a-conformal Laplacian to be

Lemma A.14.8. The following formula holds true for a 2-conformal tensor f

In particular we have,

Proof. Immediate verification.

The goal of this section is to prove Theorem 2.4.7 which we recall below for the convenience of the reader.

Theorem A.14.9. The invariant scalar quantity q defined in (2.3.10) verifies the equation,

where, schematically,
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Definition A.14.10. Given a quadratic or higher order E we say the following 1. E ∈ Good if r 4 E can be expressed in the form (2.4.8).

2. E ∈ Good 1 if after applying r 4 e 3 or r 3 it can be expressed in the form (2.4.8).

3. E ∈ Good 2 if after applying r 4 e 3 e 3 , r 4 e 3 or r 3 it can be expressed in the form (2.4.8).

In view of the definition we note that, (e 3 + r -1 )Good 1 = Good, QGood 2 = Good.

To prove the theorem we have to check that Err[ 2 q] = r 4 Good.

A.14.1 The Teukolsky equation for α

We recall below Proposition 2.4.6.

Lemma A.14.11. We have

where Err[ g α] is given schematically by Err( g α) := Γ g e 3 (α) + r -1 d ≤1 (η, Γ g )(α, β) + ξ(e 3 (β), r -1 dρ).

Remark A.14.12. Since ξ vanishes for r ≥ 4m 0 , η ∈ Γ g and e 3 α = r -1 dα we deduce, Err( g α) ∈ Good 2 .

Lemma A.14.13. The Teukolsky equation for α can be written in the form,

where L is the operator

We also note that, for a 0-conformal tensor f ,

Proof. Recall that we have (see Definition 2.4.2)

Therefore,

On the other hand,

Hence,

We deduce, with V = -4ρ + 1 2 κκ,

Hence,

as desired. The proof of the second part of the lemma follows in the same manner.
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A.14.2 Commutation lemmas

The goal of the following lemmas is to calculate the commutator of Q with L.

Lemma A.14.14. Give f an a-conformal tensor we have,

Proof. We have

f as stated.

Lemma A.14.15. Assume f a-conformal and g is b-conformal. Then f g is a + bconformal and

as stated. 5 Recall that η ∈ Γ g in the frame we are using.

Lemma A.14.16. We have,

(A.14.14)

Also,

(A.14.15)

and,

In view of Lemma A.14.14 we have,

6 Recall that r -1 Γ b = Γ g .
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We now note, using the equations for ∇ 4 ρ and ∇ 4 κ,

We first calculate, as above, for

In view of Lemma A.14.14, since f = ∇ 3 α is 1-conformal and ∇ 3 f is 0-conformal, we have

As above,

Note that
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Lemma A.14.17. Given f a 2-conformal tensor in s 2 we have

Proof. Recall that for a 2-conformal spacetime tensor f we have

Hence,

On the other hand, since

We deduce,

In the reduced form, for an s 2 tensor f ,

We now recall that / 2 =d / 2 d / 2 + 2K. Hence, applying the commutation Lemma 7 2.1.51,

7 Recall that we have

Note that, ignoring the quadratic terms,

We deduce,

Consequently,

Lemma A.14.18. We have,

Proof. We have

Note that

Hence, using the previous commutation Lemma,

Note that

Hence,

Lemma A.14.19. We have

Recall that,

Hence,

as stated.

A.14.3 Main commutation

Proposition A.14.20. The following identity holds true.

where,

Proof. In view of Lemma A.14.13, we have

Hence, we infer

with I, J, K, L, M denoting each of the commutators on the left of (A.14.20).

Expression for I

In view of Lemma A.14.16 we have, for

(A.14.21)

Expression for J

Using Lemma A.14.18,

We calculate the coefficients J 43 , J 4 , J 3 , J 0 as follows.

We finally derive, 

Hence,

We calculate the expression,

Hence,

We note that,

We deduce,
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In view of Lemma A.14.

We have thus derived 

Note that

Therefore,
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We deduce,

Therefore, 

We calculate,

We deduce,

It remains to calculate

Hence,

We conclude,

Indeed note that
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End of the proof of Proposition A.14.20

Using the equations (A.14.21)-(A.14.25) we deduce, back to (A.14.20),

We deduce,

with,

Finally we write, recalling the definition of

and,

Hence,

We deduce,

where,

Also,
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We have therefore checked that,

as stated in Proposition A.14.20.

A.14.4 Proof of Theorem 2.4.7

We start with the following, Lemma A.14.21. We have,

We postpone the proof of the lemma to the end of the section and continue below the proof of the theorem. According to Lemma A.14.13

where L is the operator

Applying Q and recalling the definition of the error terms Good we derive,

Thus, in view of Proposition A.14.20,

We deduce,

Therefore, modulo Good terms,

We deduce

In view of the expression for 2 in the second part of the Lemma A.14.13 we rewrite in the form

Finally, making use of Lemma A.14.21 and recalling that q = r 4 Q(α),

This ends the proof of Theorem 2.4.7.

Proof of Lemma A.14.21

We have,

2 fe 3 (r 4 )e 4 f + e 4 (r 4 )e 3 f + f (r 4 ) + r 4 Γ g df = r 4 2 f -4r 3 e 3 (r)e 4 f + e 4 (r)e

Also, (r 4 ) = -e 4 (e 3 (r 4 )) - Note that,

Hence, (r 4 ) = -5r 4 κκ + 4r 4 ωκ -

We conclude where

2. The small curvature quantity,

verifies the wave equation,

where

Proof. We prove the result in the following steps.

Step 1. We start by deriving the wave equation for ρ. From Bianchi, ρ satisfies

Differentiating with respect to e 3 , we obtain

Also, β satisfies from Bianchi

Differentiating with respect to d / 1 , we infer 

Next, we recall the following commutator identity

We infer 

Next, we make use of the Bianchi identities and the null structure equations to compute

This yields

where we used the fact that d / 1 d / 1 = -/ .

Next, recall the formula for the wave operator acting on a scalar ψ g ψ = -e 3 e 4 ψ + / ψ + 2ω -

We infer 
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Step 2. We derive the following, identity

Proof. r 2 ρ satisfies the following wave equation

). On the other hand, recall that we have

We deduce

as desired.

Step 3. We now derive the desired formula for g ρ. In view of the definition of ρ, we have

Together with B.1.1 we deduce,
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Next, we use r 2 ρ = ρ -2mr -1 . This yields

Note that in Schwarzschild,

and hence

Also, we have 

Finally, since

we obtain

Appendix C APPENDIX TO CHAPTER 9

C.1 Proof of Lemma 9.2.6

We start with the following Lemma C.1.1. Let k ≥ 0 an integer and let f ∈ s k (S). Then, we have

where for 0 ≤ λ ≤ 1, # λ denotes the pull back by

Proof. For p ∈

• S and f a Z-invariant scalar function on S, we have by definition of the push forward of a vectorfield

Next, we have

which we rewrite

where # λ denotes the pull back by the map ψ λ (

Next, recall that,

Hence, 

We deduce

This concludes the proof of the lemma.

We are ready to prove the higher derivative comparison Lemma 9.2.6 which we recall below.

• δ) as in Definition 9.1.1 verifying the assumptions A1-A3. Let Ψ :

• S -→ S be Z-invariant deformation. Assume the bound

Then, we have for any reduced scalar h defined on R

Also, if f ∈ h s (S) and f # is its pull-back by ψ, we have
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Remark C.1.3. Note that the estimates of the lemma are independent of the size . This yields

.

Together with the iteration assumption (C.1.3), we infer 

.

Together with a non sharp product rule in h s (

• S,

• g / ) and the repeated use of the iteration assumptions (C.1.2) (C.1.3), we can bound the right hand side of the above inequality by Therefore d / S k h hs(S) can be bounded by

where we used in the last inequality the assumption (9.2.14) on (U , S ). Together with (9.1.12) and (9.1.15), we infer

Also, for a reduced scalar v defined on R, we have in view of the assumption (9.2.14) on (U , S )

Together with (9.1.12) and (9.1.15), we infer

Together with a repeated application of the iteration assumptions and a non sharp product rule in h s (

• S,

• g / ) and (C.1.4), this yields 

where for 0 ≤ λ ≤ 1, # λ denotes the pull back by

For convenience, we rewrite some of the terms as follows

where we used the identities

This yields

Next, we take the h s ( 

.

Next, we use a non sharp product rule in h s (

.

Since s + 1 ≤ s max -1, we infer in view of (9.2.14) and the fact that U (0) = S(0) = 0,

.

Next, we have by the iteration assumption (C.1.3)

where the surface S λ is the image of • S by ψ λ . Since s ≤ s max -2, we infer in view of our iteration assumption (C.1.2) and our assumptions (9.1.12) (9.1.15) on the (u, s)-foliation
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• where we used our assumptions (9.1.12) (9.1.15) on the (u, s)-foliation and our assumption (9.2.14) on (U , S ). Therefore,

We deduce

.

Next, we estimate the term in the RHS involving γ and γ S # . From the proof of Lemma 9.2.3, we have
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Using a non sharp product rule, we infer Proof. Indeed,

Given an orthonormal frame e 1 , e 2 on S we have, 

D.1.2 Invariant Lagrangian

We introduce,

Proposition D.1.7. The Euler Lagrange equations are given by:

where ˙ Ψ A := g µν Ḋµ Ḋν Ψ A .

Proof. The variation of the action is given by, 

Lemma D.1.9. We have,

We have, Also, 1. The 1-form P µ = Q µν X ν verifies,

2. Let X as above, w a scalar and M a one form. Define,

Then, with |Ψ| 2 := Ψ • Ψ,

Proof. Let P µ [X, 0, 0] = Q µν X ν , Then,

Assume X = ae 3 + be 4 . Then, since only the middle components of R are relevant, and recalling that R AB43 =ρ ∈ AB = 0, we derive,

To prove the second part of the proposition we write with N [Ψ] := ˙ Ψ -V Ψ,

Hence,

as desired.

Remark D.2.2. As consequence of the proposition above we deduce that every time we use vectorfields of the form ae 3 + be 4 as multipliers, the equation Ψ -V Ψ = N is treated exactly in the same manner as the scalar equation ψ -V ψ = N .

Remark D.2.3. Note that in Schwarzschild our potential V = -κκ = 4Υr -2 verifies,

= -2 r -3m r 4 .

D.3 Vectorfield X f

Lemma D.3.1. Let X f := f e 4 . Then with (X) Λ = 2f r and (X) π = (X) π -(X) Λg = (X) π -2f r g,

• We have, (X) π 44 = 0, (X) π 4ϕ = 0, (X) π 3ϕ = 0, In particular, we have for r ≥ 6m 0