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Learning human like driving policies from real interactive driving
scenes

Yann Koeberle1,2,Stefano Sabatini2,Dzmitry Tsishkou2 and Christophe Sabourin1

Abstract— Traffic simulation has gained a lot of interest
for massive safety evaluation of self-driving systems in a
risk free setting but the reality gap remains a big challenge.
Adversarial Imitation learning (AIL) already proved that it
is possible to learn driving policies from real demonstrations
and more specifically on Highways (NGSIM dataset). However
traffic interactions remains very restricted on those scenarios
and it is necessary to cope with various and multiple real
traffic participants to get real insight of human driving style.
INTERACTION dataset was specifically designed for those
concerns with complex and rich interactions on a variety
of scenes like intersections, roundabouts, ramp merging in
different countries. In this paper we introduce our training
pipeline that is built upon the Lanelet2 road map format for
learning human like driving policies based on most recent
implementations of Adversarial Imitation Learning (AIL) algo-
rithms. We compare different AIL algorithms and Behavioural
Cloning (BC) baseline on various driving scenes and investigate
how realistic driving policies can become as well as their ability
to generalise on new scenes. We show that driving policies not
only follow expert trajectories but also get safer with less off-
road driving and collisions than BC baseline. This work opens
new possibilities for multi agent traffic learning based on AIL
techniques with real and highly interactive traffic data.

I. INTRODUCTION

Traffic simulation is a powerful tool to evaluate mas-
sively a candidate driving policy in a risk free setting on a
large set of scenarios. Quantitative safety evaluation through
simulation may become a new standard for Autonomous
driving industry before real world deployment of self driving
vehicles [38]. However simulating a realistic traffic that
could interact consistently with a candidate driving policy is
still an open challenge [48]. Heuristic based simulators [39]
enables to capture reactive behaviours but hand crafted rules
limit traffic interaction diversity especially when road lanes
intersect or merge. Learning based approached are more
flexible but suffer from several different weaknesses. Rein-
forcement learning enables to learn general driving policies
based on domain knowledge [35],[2] but are not guaranteed
to behave as real human driver which is critical for practical
safety evaluation in realistic context. In contrast, imitation
learning [34],[32] directly leverages demonstrations but lacks
common sense and are not robust to distributional drift. As
traffic simulation involves multiple agents, it is possible to
learn joint traffic plans to animate agents in a supervised way
as in [38] but joint policies cannot easily scale to various
scenarios with variable number of agents and specific goal
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and driving style specifications. Learning single agent driving
policy shared among agents has already proved its efficiency
[22],[9] and could even benefit from expert demonstrations
supposing that true environment reward is available thanks to
offline reinforcement learning [15]. Practically, rewards are
not available even if sparse signals can be incorporated [31]
as an incentive to visit expert state distributions which reveals
insufficient to find an appropriate balance between imitation
and domain rules. Indeed, a traffic simulator is expected to be
realistic with respect to real demonstrations regarding met-
rics as average distance error or other occupancy measures
[4] however it should also avoid catastrophic failures like
off-road driving and collisions on scenarios unseen during
training. One promising way to balance imitation and safety
is based on Adversarial Imitation Learning (AIL) [6] with
early attempts [22] that already proved that human like
driving policies could be learnt on highway environments
from NGSIM 80 and 101. Later improvements of original
GAIL algorithm [16], enabled to speed up and stabilize the
training process [4], as well as extending it to a multi agent
setting [6]. Additionally, [7] showed that domain rules can be
enforced as a complement to the AIL objective such a way
to avoid undesired behaviors on the specific case of highway
environments. In this paper, in the light of most recent AIL
progress [27] we investigate to which extent AIL can be
used for learning single agent driving policy from various
and highly interactive real demonstrations from Interaction
Dataset [45]. The driving policy is intended for animating
traffic agents in simulation and is expected to behave safely
as a human driver on new driving scenarios. Additionally,
we leverage the Lanelet2 [30] road map format to provide
explicit representations of the driving scene to the policy
as well as a route based action space that enables to ease
exploration during learning. We evaluate performance of the
driving policy with regard to imitation metrics that quantify
how policy reproduce expert and safety metrics that quantify
how safe the driving policy behaves. In our experiments
we show that AIL can recover expert behaviour in highly
interactive scenes with additional safety improvements on
unseen driving scenarios. In summary, our main contributions
are:

• A comparison between performance of most recent AIL
algorithms on real and highly interactive driving data
from Interaction Dataset with regard to imitation and
safety metrics,

• An analysis of how driving policy trained with AIL
can generalize to new driving scenario unseen during



training,
• A specific driving policy architecture based on a high

level command that specify the task and an action space
in curvilinear coordinates locally conditioned on a the
route to follow.

The next section discusses related work. Subsequent sections,
explain our method and present experiments results.

II. RELATED WORKS

We first review main approaches used to simulate locally
a traffic and main challenges associated. In a second part, we
review related works that specifically tackle driving policy
learning from demonstration and justify our choice based on
AIL. Finally we review main design choices of the driving
policy architecture.

A. Traffic simulation

Traffic simulation has experienced substantial progress
since first development of simulators such as SUMO [21]
originally designed to study urban mobility or TORCS [42]
for racing cars. For autonomous driving applications like
driving policy safety evaluation, rule based simulator [21]
cannot provide realistic and diverse multi agent interactions
to quantitatively estimate safety of a candidate driving policy.
Learning a driving policy gives more flexibility and is made
possible through Reinforcement learning [28],[35],[2] with
high fidelity simulator such as CARLA (Car Learning to
Act) [11]. It is even possible to learn simultaneously multiple
driving policies for animating each traffic agent in the scene
thanks to Multi Agent Reinforcement Learning (MARL)
which gave rise to the SMARTS project [48]. Nevertheless
MARL reveals much more challenging [8] than RL espe-
cially in mixed setting like urban traffic scenes where agents
neither fully compete neither fully cooperate. Leveraging
human demonstration is crucial to gain sample efficiency and
obtain realistic behaviours but SMARTS does not provide
a convenient support to exploit common driving data set
even if some prior knowledge can be incorporated during
learning [19]. In contrast, the BARK project [5] provides
a simulator designed specifically to exploit real data from
Interaction Dataset [45] but lacks the efficient multi-agent
learning interface of SMARTS based on the Ray framework
[26] that makes possible massive parallel and distributed
simulation crucial to traffic simulation. Indeed, any agent in
the scene needs to be controlled by a policy even if it is not
learning and multiple episode need to be collected on a single
driving scenario before any improvement can be observed
which implies massive computational load. Alternatively it
is also possible to learn a joint behaviour model for agents
in the scene directly from data as in [38] but the ability to
scale to various scenarios with changing number of agents
with different driving style is weaker than MARL oriented
approaches that could adopt the same centralized perspective
with for example a centralized critic [14]. Based on those
considerations and the limits of aforementioned approaches
we motivate the design of our own pipeline that combines
bests of SMART and BARK and shortly detail it in III-B.

B. Learning to drive from demonstration

In order to learn human like driving policies we consider
several approaches that enables to learn from demonstrations.
One of the earliest formulation is Behavioural Cloning (BC)
[33] that consists in regressing actions from state features
based on expert demonstrations, later extended to condi-
tional imitation learning [10] that direct the policy toward
a destination. However BC ignores the temporal effect of
each action and thus suffers from covariate shift [37] when
evaluated with states which are not covered by the training
data contrary to model free RL that [35] can handle long term
interactions but often differently from expert. An alternative
is to learn the reward function that yields the distribution over
all expert trajectories with the maximum entropy through
Inverse Reinforcement Learning [50]. IRL applications for
self driving vehicles remain limited to specific structured
scenarios [18] and often relies on importance sampling which
introduce estimate with high variance [13]. Combining best
of RL and IRL methods, Generative Adversarial Imitation
Learning (GAIL) [16] solves the causal entropy-regularized
apprenticeship learning problem thanks to a bi level op-
timization formulation. Overall, the algorithm consist in
learning a policy that imitate an expert policy based on a
surrogate reward provided by a discriminator that tries to
distinguish expert and apprentice transitions. One of the first
application of GAIL was imitating a human driver [22] later
extended to a Multi Agent Learning (MAL) setting where
the policy is shared among agents during training [6]. To
reduce training instabilities proper to MAL, H-GAIL [4]
introduced an horizon curriculum to control the complexity
of the driving task. Despite the emergence of realistic traffic
patterns in [7] it remains very challenging to solve the
multi agent imitation learning problem in a whole because
multiple sub problems interweave like credit assignment, non
stationnarity issues, behaviour multi modality, coordination
etc [8], [48]. An alternative [22] is to start training a single
agent driver in a simplified environment where the dynamics
of other agents is based on a combination of episode replay
behaviour and rule based policy like IDM [35]. To avoid that
interactions turns unrealistic when apprentice tends to deviate
too far from expert reference trajectory one can enforce early
episode termination [29] or insert absorbing states [20] in
case of undesired events like collision. Additionally, it also
possible to enforce domain knowledge during learning with
additional cost [7] or directly with semantic signal injected in
the discriminator [41]. Despite aforementioned key strengths,
the main drawback of GAIL is the original objective of the
discriminator which consists in Jensen Shannon divergence
that cannot handle distributions that are located in lower
dimensional manifolds without overlaps contrary to Wasser-
stein distances that can still provide a meaningful and smooth
representation of the distance in-between. WGAIL [44] use
WGAN [3] to estimate a smooth distance between apprentice
and expert distribution and could theoretically handle larger
policy exploration. Nevertheless, as pointed out in a recent
survey [27] the performance of AIL is often evaluated on



synthetic demonstrations but the performance on real data
are often poorer. This motivates a deeper analysis of AIL
algorithms performance on real driving demonstrations

C. Driving policy architecture

We review main aspects of driving policy design. Con-
cerning action space, a recent survey [49] proposes a classi-
fication of driving policies based on the level at which they
generate actions with respect to the full self driving system.
There are primarily driving policies that operate at the control
level with acceleration and turn rate command based on
a bicycle model [22],[7] which makes exploration harder
because a naive policy can quickly irreversibly diverge from
expert. Another method proposed in [17] and [47] decompose
the driving task into a high level decision policy that output
abstract motion primitives i.e change to left lane, keep current
lane etc and a downstream planning and control module that
generate corresponding trajectory. Despite a reduced search
space, it is often difficult to recover various type of fined
grained real trajectories with a fixed planner conditioned on
abstract command. As for observation space, we can mainly
distinguish raster embedding based on multi level semantic
maps obtained with convolutionnal architectures [32], [35]
and embedding extracted from specific environment compo-
nents based on semantic features i.e lane corridor geometry,
local neighborhood, most recent trajectory history etc [22]
that are lighter to generate for simulation. Another key aspect
of general driving policy is its ability to perform various
task conditioned on goal specification [32]. Conditioning low
level decisions on top level abstract plans seems most suited
for autonomous driving because routing module can easily
produce a traffic free path to follow as in [40] and [34].
Based on those considerations, we introduce our observation
space inspired from [22] and our new action space that we
detail in section III-B.

III. LEARNING TO SIMULATE FROM TRAFFIC DATA

We tackle the problem that consist in learning a realistic
and safe driving policy from real demonstrations. We first
formulate the learning objective (section III-A) before intro-
ducing the driving environment and the policy architecture
design (section III-B). Lastly, we detail the full training
process in (section III-C).

A. Formulation

The driving task can be modeled as a partially
observable infinite horizonγ discounted MDP M =
(S,A, T , R, µ0, γ,O,Ω). We aim to learn a single agent
driving policy πθ that output at each decision step an action
a ∼ π(.|o, c) ∈ A given current observation o ∈ O such
a way to follow a high level command c provided by a
routing module. The observation is generated according to a
deterministic model o = Ω(s). Note that the policy has to
interpret the context encoded in o according to the command
c to derive a safe action a. The driving scene state s ∈ S
evolves according to initial state distribution µ0 and the
transition dynamic T . In order to enforce the apprentice

policy πθ to behave as an expert policy πe we aim to
reduce the measure of discrepancy denoted dφ between their
respective occupancy measures ρπ and ρE induced by the
Markov chain ofM as detailed in [43] while maximising the
causal entropy H(πθ) of πθ. Note that the discrepancy has to
be learned as well and estimated from expert and apprentice
trajectories hence it is parametrized by φ. We obtain the
following general objective:

argminπdφ(ρπ, ρE)−H(πθ) (1)

On one hand, the GAIL algorithm [16] use the Jensen-
Shannon divergence as a discrepancy measure DJS(ρφ, ρE)
which practically results in the following objective based on
finite set of transitions samples that are sampled from an
online apprentice buffer Bπ and an offline expert buffer Be:

maxφE(s,a)∼Bπ log(D(s, a)) + E(s,a)∼Be log(1−D(s, a)
(2)

The above objective finds parameters φ of a binary classifier
called discriminator and denoted D that best distinguish
expert and apprentice transitions. On the other hand WGAIL
[46], [43] estimate 1-Wasserstein distance between occu-
pancy measure W d

1 (ρφ, ρE) where d is a valid distance
metric over S ×A. The practical objectives express as :

maxDφ∈1−Lip(S×AR)E(s,a)∼BeD(s, a)− E(s,a)∼BπD(s, a)
(3)

The discriminator can be interpreted as a hard margin
Lipschitz classifier and the constrains over the Lipschitz
constant of the discriminator is practically enforced thanks
to a gradient penalty term added to the loss [3] which
results in so called WGAIL-GP algorithm or by controlling
the spectral norm of each layer of D [25] which results in
WGAIL-SN algorithm. The main advantage of WGAIL is the
smoothness of reward function r(s, a) directly obtained by
the discriminator Dφ that matches the Kantorovich potential
in the dual form of optimal transport (OT) with the cost
c(x, y) = |x − y| [43]. For GAIL algorithm, we use the
following reward function log(D(s, a)) − log(1 − D(s, a))
as suggested in [20] in order to reduce reward bias inherent
to strictly positive/negative reward. As for the policy πθ,
we optimize PPO objective [36] with weightings coefficients
cv, ce for the value loss and the entropy bonus.

maxθE(st,at,ÂGAEt )∼Γ[Lclip(θ) + cV .LV (θ) + ce.H[πθ](st)
(4)

First two terms of the losses are based on up to date reward
recomputed by discriminator from the training batch denoted
Γ in figure 2 which enables to re estimate the Generalized
Advantage Estimator (GAE) denoted ÂGAEt as defined in
[36]. The policy term expresses as:

Lclip(θ) = min(rt(θ).Â
GAE
t , clip(rt(θ), 1−ε, 1+ε).ÂGAEt )

(5)
where rt(θ) = πθ(st,at)

πold(st,at)
and the value function Vθ loss term

expresses as (Vθ(st)−Vtarget)2) with a target values Vtarget
computed as suggested in [1].



B. Driving Environment and policy

We train the driving policy in simulation based on a set
of driving scenarios S = (m, f, h) generated by an expert
database editor. A driving scenario is defined on a bounded
map m endowed with a road network in Lanelet2 format
[30] extracted from Interaction Dataset. The main structure
involved in decision making is the lanelet that constitute
semantic peace of road and the lanelet graph that relates
all the lanelets of the scene (Fig. 1). The traffic flow of the
episode denoted f defines which traffic participants to spawn
on the map up to a maximum temporal horizon h at which
simulation is artificially terminated. As we focus on a single
agent learning, we denote as workers all traffic participants
that populate the scene but that don’t learn. The dynamics
of the scene is mainly based on workers behaviours that
consist in replaying original real episode except in emergency
situations near collision where it could be replaced by an
IDM model [35]. Replaying other agent trajectories is how-
ever very likely to lead to collisions with inexperienced ego
agents and episode should be terminated earlier thanks to the
insertion of an associate absorbing state [20] in the original
MDPM. This trick enables to avoid the episodes turns very
unrealistic due to side effects on the traffic induced by IDM
models that locally adapt to the context and consequently
change their future trajectory. Concerning the learning policy,
it receives at each decision step an observation o that consists
in an egocentric representation of the local neighborhood
and a command provided as a traffic free reference path
to follow (Fig. 1). Each observation contains several fields
like ego trajectory history for last 2 seconds, n-nearest
neighbors configurations, local reference route, local lane
corridor geometry based on lanelet graph and indicators like
being off-road. The command is a high level description of
the driving task to perform at least up to next transition of the
MDP and is intended to lead to final destination. The action
space consists in longitudinal and lateral shifts a = (ds, dn)
with respect to the local route to follow (Fig. 1) provided
by a routing module which considerably reduce exploration
complexity compared to egocentric displacements. Actions
are sampled from a diagonal Gaussian distribution whose
mean and variance are computed by the policy πθ.

C. Training process

The algorithm use an expert database composed of a set of
driving scenarios and their associate expert demonstrations
stored in an offline buffer Be. In order to optimize the training
objective we alternate between training the discriminator
and training the policy with a specific training interplay
balance[27]. Depending on the algorithm used for training
i.e, GAIL,WGAIL-GP,WGAIL-SN, the discriminator Dφ

maximize the distribution discrepancy as detailed in III-
A between policy samples stored in an online buffer Bπ
and expert samples stored in Be where samples consist in
observation action pairs. Parallel data collection enables to
collect multiple apprentice episodes on different scenarios
to feed the online buffer. The policy is trained based on
PPO algorithm [36] as detailed in III-A based on the current

Fig. 1. Driving Scene: Ego agent takes its decision based on the
configurations of the 5 nearest neighbors, local reference route, ego mo-
tion state,ego last 2 seconds trajectory,lanelet corridor geometry and the
command encoded as the traffic free path to follow. Ego action encode
longitudinal ds and lateral shift dn with respect to the local reference route.

training batch − built during data collection with rewards
computed after discriminator update. In order to stabilize
the training we use an horizon curriculum inspired from [4]
that enables to increase progressively the simulation horizon
based on an imitation cost threshold. Additionally, absorbing
states inserted in the MDP as explained in III-B based
on failure criteria like collision or distance threshold with
respect to center lane prevents unrealistic transitions from
filling the replay buffer.

IV. EXPERIMENTS

In this section we detail experiments we realised to eval-
uate if AIL can recover realistic and safe driving policies
from real data. We first details how we designed the training
pipeline and how we compute our metrics. In second time,
we give results about several experiments.

A. Implementation and metrics

1) Implementation of training pipeline : We use Rllib [24]
based on the Ray framework [26] to implement our training
pipeline (Fig. 2). We adopt the data flow perspective intro-
duced in [23] to adapt Rllib PPO trainer into an AIL trainer
endowed with a discriminator network that can recompute
the reward from apprentice transitions (ot, at) as depicted
on Fig. 2. Rllib enables to make massive parallel simula-
tions potentially distributed on several machines without the
burden of data transfer management which is crucial for
learning on multiple driving scenarios. The learning agent
is controlled through Rllib while other traffic participants
are controlled by simulator internal behaviour modules. The
driving simulator is based on the Lanelet2 road map format



Fig. 2. Pipeline architecture : The training loop starts with policy parallel
data collection on multiple workers from various driving scenarios and
collected episode trajectories are stored in a online replay buffer. Depending
on the interplay balance, discriminator training is launched on buffers and
stopped appropriately. Next the rewards of the collected trajectories are
updated with the discriminator. Finally, a PPO training step is applied on
the set of collected trajectories called training batch and the whole process
is repeated until convergence

[24] that is exploited by a routing module to provide a
traffic free reference path given a destination based on
the lanelet graph. It also enables to provide road structure
representations as the lane corridor (Fig. 1) for the driving
policy observation. As explained above, the expert database
is generated by our custom expert database editor and
contains a selection of driving scenarios with their associate
demonstrations converted in the same observation and action
space as the apprentice. We select driving scenarios based
on several criteria like average speed and average number of
traffic agents to avoid ambiguous or uninteresting situations
where the expert is alone in the scene or are idle because
parked on border of the road. Once extracted, demonstration
are stored on the disk leveraging Rllib offline data interface
and are selectively loaded through an offline buffer during
training.

2) Imitation and safety metrics : Traffic simulation is
concerned with realism and safety. In order to estimate
how realistic the apprentice behaves with respect to expert
demonstrations we use a set of imitation metrics inspired
from [6] which consists in Average Distance Error in me-
ters (ADE) with respect to associate expert trajectory and
Final Distance Error (FDE) with respect to associate expert
trajectory.Additionally, we evaluate safety of the apprentice
thanks to three other metrics: average number of collisions
per episode (C), average number of decision steps spent off
road per episode (OFD) and average number of decision
steps spent with safety distance broken per episode (SDB).
We compute SDB as follows : at each decision step we check
if the distance between ego and front or back neighbors
distance(aego, aF/R) is above a margin equal to dmargin =
6 meters.If the distance is lower than dmargin we assign

a penalty max(1−distance(aego, aF/R)/dmargin, 0 for the
decision step otherwise we assign 0.As long as safety margin
are kept, SDB equals 0 otherwise it grows up. For each
of those metrics, we compute the average over either the
whole training set either the whole evaluation set.Note that
the decision period is based on sampling period of Interaction
Dataset which is 100 ms.

B. Results

We first analyse performance of AIL algorithms on
two different datasets extracted from Interaction Dataset.
The First dataset is based on a map with a roundabout
DR_DEU_Roundabout_OF and the second on map with
a ramp Merging DR_DEU_Merging_MT . We included
images of a driving episode for both map on top of figure 3
where the color gradient indicates position of agent changing
along time. For each dataset, we trained AIL algorithms
and BC baseline on 100 base episodes of 15 seconds. We
consider relatively small dataset because we ultimatly aim to
generate new simulations on arbitrary target location which
may be visited only few times by self driving vehicles. We
subdivide base episodes into non overlapping episodes of
7.5 seconds for horizon curriculum that helps to stabilize
training improvements. We first start to train AIL algorithm
on episodes of 7.5 seconds and the metrics curve on figure
3 are computed relatively to this horizon for the first stage
of the training and relatively to horizon 15s for the second
stage of training. For all experiments the BC baseline is
trained directly with full length episodes of 15s and thus we
reported directly metrics of the BC baseline for horizon 15s
in all curves of figure 3. In order to increase the simulation
horizon we use an imitation cost that should stay bellow a
fixed threshold equal to 3.8 for at least 10 training steps.
The imitation cost consists in the sum of average distance
error and early ending which counts how many decision steps
are missing in the episode because agent failed prematurely.
For Roundabout dataset, training curves 3 show that horizon
15 seconds is reached after 1.3 M transitions for GAIL and
after 1.9 M transitions for WGAIL-SN while WGAIL-GP
required 5 M transitions, hence we did not report its curves
for clarity. On Ramp merging dataset,GAIL and WGAIL-SN
reach horizon 15s after 1.3M transitions sampled. For both
experiments, GAIL and WGAIL-SN outperformed the BC
baseline on training set and significantly reduce the average
number of collisions per episode by at least a factor two.
We observe in training curves of figure 3 that agent on the
roundabout tends to avoid collision while staying in the lane
corridor 1 and that agent on Ramp Merging tends to avoid
collision while keeping the safety distance margin which is
the expected strategy to stay in safety. Lastly we reported
evaluation results for both dataset in arrays at the bottom of
figure 3.We evaluate our algorithms on both datasets with 25
new episodes of 25 seconds for each of them. We observe
that GAIL and WGAIL-SN outperformed the BC baseline for
Ramp Merging whereas only WGAIL-SN outperformed the
baseline on Roundabout scenarios. We explain the relative
efficiency of BC baseline on new roundabout scenarios from



Fig. 3. Experiments Results

evaluation experimental results depicted on figure 4 that
shows that in average BC keeps a constant longitudinal
displacement ds without any update for lateral displacement
dn and with almost no reactions with respect to neighbors.
This strategy enables to avoid some collisions by chance
and our validation set reveals favorable for this strategy.
In contrast, AIL algorithms requires a lot of training steps
to properly control the lateral shift and need to experience
collisions to let the discriminator understand that those states
are undesirable .

Fig. 4. BC behaviour tends in average to go forward along route : on the
right side if we perturb its initial position, on an evaluation scenario it does
not fix lateral offset and on the left side if we start at original initial position
it does not avoid collision indicated by a red cross but goes straight

V. CONCLUSIONS
As demonstrated in experiments, AIL algorithms and more

specifically GAIL and WGAIL-SN are able to recover expert
behaviour on different type of interactive road networks

for a reasonable simulation horizon of 15 seconds. Over-
all,whereas WGAIL-GP reveals much slower, GAIL and
WGAIL-SN outperformed the BC baseline on the training
set. We also show that WGAIL-SN is able to behave real-
istically and safely on new scenarios while GAIL achieve
competitive results but sill collide too frequently. Future
works may consider the multi agent learning setting with
shared policies and a centralized critic such a way to obtain
a fully interactive driving simulation. As a multi agent traffic
often implies diverse behaviours we should also enforce
some diversity constrains over the set of learnt policies such
a way to capture various modes in demonstrations. As shown
by GAIL evaluation results, driving policy robustness to out-
of-training-distribution (OOD) [12] still constitute a main
challenges and need to be fixed before traffic simulation can
be reliably used for safety evaluation.

REFERENCES

[1] Marcin Andrychowicz et al. “What Matters In On-
Policy Reinforcement Learning? A Large-Scale Em-
pirical Study”. In: CoRR (2020).

[2] Szilárd Aradi. “Survey of Deep Reinforcement Learn-
ing for Motion Planning of Autonomous Vehicles”.
In: IEEE Transactions on Intelligent Transportation
Systems (2020), pp. 1–20.



[3] Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. “Wasserstein GAN”. In: arXiv:1701.07875 (Dec.
2017).

[4] Feryal Behbahani et al. “Learning From Demonstra-
tion in the Wild”. In: 2019 International Confer-
ence on Robotics and Automation (ICRA). May 2019,
pp. 775–781.

[5] Julian Bernhard et al. “BARK: Open Behavior Bench-
marking in Multi-Agent Environments”. In: 2020
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (Oct. 2020).

[6] Raunak P. Bhattacharyya et al. “Multi-Agent Imitation
Learning for Driving Simulation”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). Oct. 2018, pp. 1534–1539.

[7] Raunak P. Bhattacharyya et al. “Simulating Emergent
Properties of Human Driving Behavior Using Multi-
Agent Reward Augmented Imitation Learning”. In:
2019 International Conference on Robotics and Au-
tomation (ICRA). May 2019, pp. 789–795.

[8] Lorenzo Canese et al. “Multi-Agent Reinforcement
Learning: A Review of Challenges and Applications”.
en. In: Applied Sciences 11.11 (Jan. 2021).

[9] Dong Chen et al. “Deep Multi-agent Reinforcement
Learning for Highway On-Ramp Merging in Mixed
Traffic”. In: arXiv preprint arXiv:2105.05701 (2021).

[10] Felipe Codevilla et al. “End-to-End Driving Via Con-
ditional Imitation Learning”. In: 2018 IEEE Inter-
national Conference on Robotics and Automation
(ICRA). May 2018, pp. 4693–4700.

[11] Alexey Dosovitskiy et al. “CARLA: An open urban
driving simulator”. In: Conference on robot learning.
PMLR. 2017, pp. 1–16.

[12] Angelos Filos et al. “Can Autonomous Vehicles Iden-
tify, Recover From, and Adapt to Distribution Shifts?”
In: arXiv:2006.14911 [cs, stat] (Sept. 2020).

[13] Chelsea Finn, Sergey Levine, and Pieter Abbeel.
“Guided Cost Learning: Deep Inverse Optimal Control
via Policy Optimization”. In: International Conference
on Machine Learning. PMLR, June 2016, pp. 49–58.

[14] Jakob Foerster et al. “Counterfactual multi-agent pol-
icy gradients”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. Vol. 32. 1. 2018.

[15] Yang Gao et al. “Reinforcement Learning from Im-
perfect Demonstrations”. In: (2019). arXiv: 1802.
05313 [cs.AI].

[16] Jonathan Ho and Stefano Ermon. “Generative Adver-
sarial Imitation Learning”. In: Advances in Neural
Information Processing Systems. Vol. 29. 2016.

[17] Junning Huang et al. “Learning a Decision Mod-
ule by Imitating Driver’s Control Behaviors”. In:
arXiv:1912.00191 [cs, eess] (May 2021).

[18] Zhiyu Huang, Jingda Wu, and Chen Lv. “Driving
Behavior Modeling Using Naturalistic Human Driving
Data With Inverse Reinforcement Learning”. In: IEEE
Transactions on Intelligent Transportation Systems
(2021), pp. 1–13.

[19] Zhiyu Huang, Jingda Wu, and Chen Lv. “Efficient
Deep Reinforcement Learning with Imitative Expert
Priors for Autonomous Driving”. In: arXiv preprint
arXiv:2103.10690 (2021).

[20] Ilya Kostrikov et al. “Discriminator-Actor-Critic: Ad-
dressing Sample Inefficiency and Reward Bias in
Adversarial Imitation Learning”. en. In: Sept. 2018.

[21] Daniel Krajzewicz et al. “SUMO (Simulation of Urban
MObility) - an open-source traffic simulation”. In: 4th
Middle East Symposium on Simulation and Modelling.
Ed. by A. Al-Akaidi. 2002, pp. 183–187.

[22] Alex Kuefler et al. “Imitating driver behavior with
generative adversarial networks”. In: 2017 IEEE Intel-
ligent Vehicles Symposium (IV). June 2017, pp. 204–
211.

[23] Eric Liang et al. “Distributed Reinforcement Learning
is a Dataflow Problem”. In: ArXiv (2020).

[24] Eric Liang et al. “RLlib: Abstractions for Distributed
Reinforcement Learning”. In: International Confer-
ence on Machine Learning. July 2018, pp. 3053–3062.

[25] Takeru Miyato et al. “Spectral Normalization for Gen-
erative Adversarial Networks”. en. In: Feb. 2018.

[26] Philipp Moritz et al. “Ray: A Distributed Framework
for Emerging {AI} Applications”. In: 2018, pp. 561–
577.

[27] Manu Orsini et al. “What Matters for Adversarial
Imitation Learning?” In: arXiv:2106.00672 [cs] (June
2021).

[28] Blazej Osinski et al. “CARLA Real Traffic Scenarios -
novel training ground and benchmark for autonomous
driving”. In: ArXiv abs/2012.11329 (2020).

[29] Fabio Pardo et al. “Time Limits in Reinforcement
Learning”. en. In: International Conference on Ma-
chine Learning. July 2018, pp. 4045–4054. (Visited
on 09/06/2021).

[30] Fabian Poggenhans et al. “Lanelet2: A high-definition
map framework for the future of automated driving”.
In: 2018 21st International Conference on Intelligent
Transportation Systems (ITSC) (2018).

[31] Siddharth Reddy, Anca D. Dragan, and Sergey Levine.
“SQIL: Imitation Learning via Reinforcement Learn-
ing with Sparse Rewards”. In: (2019). arXiv: 1905.
11108.

[32] Nicholas Rhinehart, Rowan McAllister, and Sergey
Levine. “Deep Imitative Models for Flexible Infer-
ence, Planning, and Control”. en. In: Sept. 2019.

[33] Stephane Ross, Geoffrey Gordon, and Drew Bag-
nell. “A Reduction of Imitation Learning and Struc-
tured Prediction to No-Regret Online Learning”. In:
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings, June 2011,
pp. 627–635.

[34] Axel Sauer, Nikolay Savinov, and Andreas Geiger.
“Conditional Affordance Learning for Driving in Ur-
ban Environments”. en. In: Conference on Robot
Learning. PMLR, Oct. 2018, pp. 237–252.



[35] Dhruv Mauria Saxena et al. “Driving in Dense Traf-
fic with Model-Free Reinforcement Learning”. In:
2020 IEEE International Conference on Robotics and
Automation (ICRA). ISSN: 2577-087X. May 2020,
pp. 5385–5392.

[36] John Schulman et al. “Proximal Policy Optimization
Algorithms”. In: arXiv:1707.06347 [cs] (Aug. 2017).

[37] Jonathan Spencer et al. “Feedback in Imitation Learn-
ing: The Three Regimes of Covariate Shift”. In:
arXiv:2102.02872 [cs, stat] (Feb. 2021).

[38] Simon Suo et al. “TrafficSim: Learning to
Simulate Realistic Multi-Agent Behaviors”. In:
arXiv:2101.06557 [cs] (Jan. 2021).

[39] Martin Treiber, Ansgar Hennecke, and Dirk Helbing.
“Congested traffic states in empirical observations and
microscopic simulations”. In: Physical Review E 62.2
(Aug. 2000).

[40] Jingke Wang et al. “Learning hierarchical behavior
and motion planning for autonomous driving”. In:
2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). Oct. 2020, pp. 2235–
2242.

[41] Pin Wang et al. “Decision Making for Autonomous
Driving via Augmented Adversarial Inverse Rein-
forcement Learning”. In: arXiv:1911.08044 [cs] (Mar.
2021).

[42] Bernhard Wymann et al. “Torcs, the open racing
car simulator”. In: Software available at http://torcs.
sourceforge. net 4.6 (2000), p. 2.

[43] Huang Xiao et al. “Wasserstein Adversarial Imita-
tion Learning”. In: arXiv:1906.08113 [cs, stat] (June
2019).

[44] Huang Xiao et al. “Wasserstein Adversarial Imitation
Learning”. In: CoRR abs/1906.08113 (2019).

[45] Wei Zhan et al. “INTERACTION Dataset: An IN-
TERnational, Adversarial and Cooperative moTION
Dataset in Interactive Driving Scenarios with Semantic
Maps”. In: arXiv:1910.03088 [cs, eess] (Sept. 2019).

[46] Ming Zhang et al. “Wasserstein Distance guided Ad-
versarial Imitation Learning with Reward Shape Ex-
ploration”. In: 2020 IEEE 9th Data Driven Control
and Learning Systems Conference (DDCLS). Nov.
2020, pp. 1165–1170.

[47] Guanjie Zheng et al. “Objective-aware Traffic Simu-
lation via Inverse Reinforcement Learning”. In: Pro-
ceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence. Montreal, Canada, Aug.
2021, pp. 3771–3777.

[48] Ming Zhou et al. “SMARTS: Scalable Multi-Agent
Reinforcement Learning Training School for Au-
tonomous Driving”. In: arXiv:2010.09776 [cs, eess]
(Oct. 2020).

[49] Zeyu Zhu and Huijing Zhao. “A Survey of Deep RL
and IL for Autonomous Driving Policy Learning”. In:
arXiv:2101.01993 [cs] (Jan. 2021).

[50] Brian D. Ziebart et al. “Maximum entropy inverse
reinforcement learning”. In: Proceedings of the 23rd

national conference on Artificial intelligence - Volume
3. AAAI’08. Chicago, Illinois, July 2008, pp. 1433–
1438.


