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Differential calculus 1.1 The field equations in GR (short overview)

In general relativity (GR), the line element on the 4-pseudo-Riemannian manifold (M,g) is given by : ds² = gab dx a dx b . By varying the action S = LE d 4 x with respect to the gab where the Lagrangian density is given by is the (symmetric) Ricci tensor whose contraction gives the curvature scalar R .

(the { e ab} denote the Christoffel symbols of the second kind) 1 patrick.marquet @manaty.net 2 Jean-pierre.petit@manaty.net

-Twin Universes confirmed by General Relativity -

The 10 source free field equations are :

(1.4) Gab = k [Rab -½ gab (R -2L)] = 0 (k : const. always taken as 1)

L is usually named cosmological constant . The second rank tensor Gab is symmetric and is only function of the metric tensor components gab and their first and second order derivatives. Due to the Bianchi 's identities the Einstein tensor is conceptually conserved :

(1.5) Ña G a b = 0 (Ña : Riemann covariant derivative)

When a massive source is present, the field equations become :

(1.6)

Gab = Rab -½ gab (R -2L) =  Tab
If r is the matter density, T ab is here the tensor describing a pressure free fluid :

(1.7) T ab = r ua ub

The general structures on a manifold

Let us now consider a 4-manifold M referred to a vector basis ea . The dual basis q b of one-forms (Pfaffian forms) are related to the local coordinates by :

(1.8) q b = a b a dx a
These are called vierbein or tetrad fields [START_REF] Marquet | Lichnerowicz 's Theory of Spinors in General Relativity : The Zelmanov Approach[END_REF] .

On this manifold, it is well known that the connection coefficients G g ab can be decomposed in the most general sense as :

(1.9) G g ab = { g ab } + K g ab + (G g ab)s

K g ab is the contorsion tensor which is built from the torsion tensor

T g ab = ½[G g [ba ] -G g [ab ] ]. (1.10) (G g ab)S = ½ g gm (Db gam + Da gbm -Dm gab)
is the segment connection formed with the general covariant derivatives of the metric tensor (denoted here by D instead of the Riemann symbol Ñ) :

(1.11) Dg gab = ¶g gab -Gag b -Gbg a ¹ 0 .
The connection (G g ab)S characterizes a particular property of the manifold related to a second type of structure, called the segment curvature. This additional curvature results from the variation of the parallel transported vector around a small closed path.

In a dual basis θ a , to any parallel transported vector along the closed path, can be then associated the following 2-forms :

-A rotation curvature form :

(1.12) W a b = ½ R a bgd q g Ù q d

-A torsion form :

(1.13) W a = ½ T a gd q g Ù q d

-A segment curvature form :

(1.14) W = -½ R a agd q g Ù q d

These are the maximum admissible mathematical structures defining a general manifold.

The Cartan structure equations

We now introduce the Cartan procedure. This is a powerful coordinates free calculus which is extensively used in the foregoing.

Let us first define the connection forms :

(1.15) G a b = { a g b}q g
The first Cartan structure equation is related to the torsion by [2 p.40] :

(1.16) W a = ½ T a gd q g Ùq d = dq a + G a g Ù q g

The second Cartan structure equation is defined as [2, p.42] :

(1.17

) W a b = ½ R a bgd q g Ù q d = d G a b + G a g Ù G g b
R a bgd are here the components of the curvature tensor in the most general sense.

Within the Riemannian framework alone (torsion free), R a bgd reduce to the Riemann curvature tensor components and the first structure equation (1.16) becomes :

(1.18) dq a = -G a g Ù q g
We shall now define the absolute exterior differential D of a tensor valued p-form of type (r,s) :

(D f)j1...js i1..ir = dfj1...js i1..ir + Gk i1 Ù fj1...js k i2...ir +... -Gj1 k Ù f k j2...js i1...ir -...

As a simple example, the Bianchi-identities can be simply written with the exterior differential as :

D W a = W a b Ù q b (1 st Bianchi identity) D W a b = 0 (2 nd Bianchi identity)

The Differential Einstein equations 2.1 The Einstein action

We first recall the Hodge star operator defnition for an oriented n-dimensional pseudo-riemannian manifold (M,g) with volume element determined by g :

h = Ö-g q 0 Ùq 1 Ù q 2 Ù q 3
Let Lk (E) be the subspace of completely antisymmetric multilinear forms on the real vector space E .

The Hodge star operator * is a linear isomorphism * :

Lk (M) ® L n -k (M) . (k £ n ).
If q 0 ,q 1 ,q 2 ,q 3 is an oriented basis of 1-forms, this operator is defined by :

*(q i1 Ù q i2 Ù ...q ik ) = Ö-g /(n-k)! e j1.
.jn g j1i1 ... g jkik q jk+1 Ù ..

. Ù q jn

With this preparation, the Einstein action simply reads :

(1.19) *R = R h
To show this, we express this action in terms of tetrads.

With h mn = *(q m Ù q n ) and taking into account (1.17) we have :

hbg Ù W bg = ½ h bg R bg mn q m Ù q n and *(q m Ù q n ) = ½ hbgsr g bm g an q s Ù q r i.e. (1.20) hbg = ½ hbgsr q s Ù q r

Thus : hbg Ù q m Ù q n = ½ hbgsr q s Ù q r Ù q m Ù q n = (db m dg ndg m db n )h and :

hbg Ù W bg = ½ (db m dg n -dg m db n ) R bg mn h = R h = *R
Taking also into account (1.20), we compute the absolute exterior differential : Dhbg = ½ D(hbgsr q s Ù q r ) In an orthonormal system hbgsr is constant and Dhbgsr = 0. This reflects the fact that in the Riemannian framework (metric connection), orthonormality is preserved under parallel transport. Therefore : Dhbg = hbgsr Dq s Ù q r Now, bearing in mind that the basis q s is a tensor valued 1-form of type (1,0), the first structure equation reads :

Dq s = W s and Dhbg = hbgsr W s Ù q r = W s Ù hbgr
The latter equation is zero for the Riemannian connection : Dhbg = 0 . In the same way, we can show that

(1.21) Dh bg a = dh bg a + G b d Ù h dg a + G c d Ù h bd a -G d a Ù h bg d = 0
with : h bg a = * (q b Ù q g Ù q a) (all indices are raised or lowered with gab from g = gab q a Ä q b )

The Einstein field equations

From (1.20), we infer :

(1.22) hbgd = hbgdl q l
Under the variation of dq b of the orthonormal tetrad fields, we have

d (hbg Ù W bg ) = dhbg Ù W bg + hbgd Ù d W bg
Now, using (1.20) and (1.22) yields :

dhbg = ½d (hbgdl q d Ù q l ) = dq d Ù hbgd
Hence, applying the varied second structure equation

d W bg = d dG bg + d G b h Ù G hg + G b h Ù d G hg we obtain (1.23) d (hbg Ù W bg ) = dq g Ù (hbgd Ù W bg ) + d (hbg Ù dG bg ) -dhbg Ù dG bg + hbg Ù (dG b h Ù G hg + G b h Ù d G hg )
and from the second line we extract : dhbg + hbg Ù (G h g + Gbh) which is just Dhbg .

However, we know that Dhbg = 0, and finally, the varied Einstein action is :

(1.24) d (hbg Ù W bg ) = dq b Ù (hbgd Ù W gd ) + d(hbg Ù d G bg ) (exact differential)
The global Lagrangian density with matter is written : L = -1/(2) *R + Lmat .

Setting *Tb as the energy-momentum 3-form for bare matter we have the varied matter lagrangian density :

d Lmat = -dq b Ù *Tb , and taking into account (1.24) the global variation is :

d L = -dq b Ù [1/(2)hbgd Ù W gd + *Tb ] + (exact differential)
We eventually arrive at the field equations under the differential form :

(1.25) -½hbgd Ù W gd =  *Tb
where Ta is related to the energy-momentum tensor Tab by Ta = Tab q b . In the same manner, one has for the Einstein tensor (see appendix A) : Ga = Gab q b .

The energy-momentum tensor

It is well known however, that Gab is intrinsically conserved while the massive tensor Tab is not. This is because the gravitational field is not included in Tab .

To restore conservation for the energy-momentum tensor, we start by reformulating (1.25) as :

(1.25)bis -½Wbg Ù h bg a =  *Ta Then, we use the second structure equation under the following form (1.26) Wbg = d Gbg -Gmb Ù G m g so as to obtain :

(1.27)

d Gbg Ù h bg a = d ( Gbg Ù h bg a ) + Gbg Ù h bg a
Then using (1.21) in (1.26), we infer :

(1.28)

d Gbg Ù h bg a = d ( Gbg Ù h bg a ) + Gbg Ù ( -G b d Ù h d g a -G g d Ù h bd a + G d a Ù h b g d )
Adding the second contribution of (1.26) to (1.28), we obtain the Einstein field equations in a new form:

(1.29) -½ d ( Gbg Ù h bg a ) =  (*Ta + *ta ) where (1.30) *ta = (-1/2) Gbg Ù ( Gda Ù h b g d -G g d Ù h bd a)
*ta should be interpreted as the (pseudo) energy-momentum 3-form of the gravitational field generated by this matter.

Equation (1.29) readily implies the conservation law : As expected, from (1.30) we verify that tab is not symmetric.

To remedy this problem, we shall not apply the Belinfante symmetrization procedure [START_REF] Rosenfeld | Sur le tenseur d'impulsion-énergie[END_REF]. Instead, we will modify the field differential equations . We first revert to the field equations (1.25) in which we insert : h abg = h abgd qd With (1.26) this yields :

(1.33) -½ h abgd qd Ù (d Gbg -Gmb Ù G m g ) =  *Ta leading to (1.34) -½ h abgd d (Gbg Ùqd ) =  (*Ta + * ta ) where : (1.35) *t a = ( -1/2) h abgd ( Gmb Ù G m g Ù qd -Gbg Ù Gmd Ùq m )
We see that *t a is unaffected by the exterior product terms in the bracket, therefore tab is now symmetric.

In that case, we idendify *t a with the Landau-Lifshitz 3-form *t a L-L which yields the corresponding pseudo-tensor t ab L-L .

The 4 th rank tensor equation

The first set of Einstein's field equations

Now let us multiply (1.34) by Ö-g , then taking into account : h abgd = (-1/2Ö-g) e abgd , we find a new form for the field equations :

(1.36) -d (Ö-g h abgd Gbg Ù qd ) = 2 Ö-g (*T a + * t a L-L ) or (1.37) d (Ö-g G bg Ù h a bg ) = 2 Ö-g (*T a + * t a L-L )
From these equations follows immediately the differential conservation law :

(1.38) d [Ö-g (*T a + * t a L-L )] = 0
A tedious calculation eventually shows that :

(1.39) d (Ö-g G bg Ù h a bg ) = (1/Ö-g) H abg ,bg hn where (1.40) H abg = -g (g a g bg -g b g ga )
is the "Landau-Lifshitz superpotential" . (eq. 101.2 [START_REF] Landau | The Classical Theory of Fields[END_REF])

Therefore the field equations read here :

(1.41) H abg ,bg = 2 [-g (T a + t a L-L )]

Explicitly :

(1.42) H abg ,bg = ∂b { ∂ g [ -g (g a g bg -g b g ga )] }

Remark : It is essential to note that the quantities t a L-L do not represent a true tensor. Indeed, the gravitational field can be transformed away at any point and its energy is not localizable. This explains why the left hand side of equations (1.41) and (1.42) exhibits ordinary derivatives instead of covariant ones.

The 4 th rank tensor H abg , bg can be regarded as a special choice of the Ricci tensor R a where all first derivatives of the metric tensor cancel out at this given point. The Landau-Lifshitz pseudo-tensor is :

(1.43) (-g) t a L-L = (1/2) { # g a , λ # g λ μ , μ -# g a λ , λ # g  μ , μ + ½ g a g λμ # g λθ ,  # g  μ , θ -(g a λ gμ θ # g  θ ,  # g μ  ,λ + g  λ gμ θ # g a θ , # g μ  , λ ) + gμ λ g θ # g aλ ,θ # g  μ , + 1/8 (2g aλ g μ -g a g λμ ) (2gθ  gd  -gd gθ) # g θ ,λ # g d ,μ }
where : # g a = Ö-g g a When the velocities are low and the gravitational field is weak (1.42) reduces to :

(1.44) H 0 i 0 j , i j = ∂i { ∂ j [ -g (g 00 g ij -g i0 g j0 )] } where now : i , j , … = 1,2,3 are the spatial indices

We may write this equation in mixed indices by lowering one of the space indices :

(1.45) H 0 i 0 j , i j = ∂i ∂ j (-g g 00 δ i j )

When i = j , the Newton law is retrieved through the weak potential : g 00 = 1 + 2ψ as (1.45) reduces to the laplacian :

(1.46) ∂i ∂i g 00 = Δ ψ so as to yield the well-known Poisson equation :

(1.46)bis Δ ψ = Gr (G : Newtons 's constant)

Therefore at the Newtonian approximation, we can write the generalized Poisson equation in the form :

(1.47)

H 0 i 0 j , i j = 2 (-g) (T 00 + t 00 L-L )
where the Newtonian pseudo-tensor t 00 L-L reads :

(1.48) (-g) t 00 L-L = (1/2) { # g 00 ,k # g k n ,n -# g 0k ,k # g 0n , n + ½ g 00 gk n # g kr ,l # g ln ,r -(g 0k gn r # g 0 r ,l # g nl ,k + g 0k gnr # g 0r ,l # g nl ,k ) + gnk g rl # g 0 k ,r # g 0 k ,l + 1/8(2g 0 k g 0 n -g 00 g k n ) (2grl gsm -gls grm) # g rm ,k # g ls ,n } Unlike the classical Newtonian theory, the static bare mass density generally produces a gravitational field described by t 00 L-L at the considered point. Remark : A sligthly variable cosmolgical term L term induces a stress energy tensor of vacuum which restores a conserved property of the r.h.s. of equation (1.6) thus avoiding the use of the ill-defined gravitational field pseudotensor as shown in [START_REF] Marquet | The Gravitational Field : A new Approach[END_REF][START_REF] Marquet | Vacuum Background Field in General Relativity[END_REF].

The second set of Einstein's field equations

The second rank tensor field equations have been inferred from a fourth rank tensor density like. It is then natural to consider a second set of field equations which is contained in the former.

A close inspection at the "Landau-Lifshitz superpotential" (1.40), leads to the obvious choice for this second field equation :

(1.49) d (Ö-g G ga Ù h b ga ) = (1/Ö-g) H abg ,ga hn (1.50) H abg ,ga = 2 (-g) (T b + t b L-L )
We notice that equations (1.41) and (1.50) are coupled with a common indice. Furthermore, each set of field equations differ from a sign.

Proof :

Let us label the "negative" equation as :

(1.51)

(-) (H abg ,ga ) = ∂a { ∂ g [ -g (g a g bg -g b g ga )] }
Now in the same manner as for (1.44), equation (1.51) reduces to :

(1.52)

(-) (H i00 j , ij ) = ∂i { ∂ j [ -g (g i0 g 0j -g 00 g ij )] }
Lowering one of the space indices we obtain (1.53) (-) (H i0 0 j , i j) = ∂i ( ∂ j g g 00 δ i j which is just the opposite to (1.45) : H 0 i 0 j , i j = ∂i (∂ j -g g 00 δ i j )

Had we set : i = j , we would have found :

(1.54) (-) (Δ ψ) = -Δ ψ
As a consequence, the right member of the Poisson equation (in our orthonormal frame) should also reverse sign :

(1.55) (-) 

(G r) = -G r
Since the Einstein constant is here a common factor, we infer that mass densities of each field equations differ from a sign as well as the gravitation potential.

Therefore, at theNewtonian approximation we find two opposite field tensors which induce two opposite energy density tensors which we label as :

(1.56) (+) (T 00 + t 00 L-L ) and (-) (T 00 + t 00 L-L )

Two antagonist manifolds

Conservation properties lead to the evident corresponding equivalences :

(1.57) H abg ,bg  (+) G a =  [ (+) (T a + t a L-L )] (1.58) H abg ,ga  (-) G b =  [ (-) (T b + t b L-L )]
Hence, the field equation (1.57) can be regarded as being defined on a "positive" manifold with respect to the "negative" manifold on which is defined the field equation (1.58).

Remarks :

One should always bear in mind that both (+) G a and (-) G b n are coupled through the 4 th rank tensor H ba gm which necessarily imposes that indices must keep their respective label.

The "intertwined" metrics are then :

(159) (+) ds² = (+) gan dx a dx n

(1.60) (-) ds² = (-) gbn dx b dx n

In the "vierbein" (tetrad) formalism, we have : 

Conclusions and outlook

The twin universe hypothesis recently saw a revived interest.

Several astrophysicists conjectured that it could provide an appropriate explanation to the puzzling dark energy/matter issues and other unsolved observational data questions. [8-9-10-11-12-13] However, all these theories do not justify the origin of the double universe which remains a pure arbitrary statement, not relying on any sound physical grounds.

In here we showed that general relativity formally confirms the existence of two coupled Einstein's field equations characterizing two co-existing antagonist manifolds. This remarkable result lends support to the Janus cosmological model which accurately provides a solution to all unexplained astrophysical observations. [START_REF] Petit | Cosmological bi-metric model with interacting positive and negative mass and two different speed of light, in agreement with the observed acceleration of the universe[END_REF][START_REF] Petit | Negative mass hypothesis in cosmology and the nature of dark energy[END_REF] General relativity further shows that there exists at most two such field equations. [START_REF] Marquet | Twin Universes : A new Approach[END_REF] 10. Oct. 2021

(1. 1 )

 1 LE = g ab Ö(-g) [{ e ab}{ d de} -{ d ae}{ e bd}] one infers the symmetric Einstein tensor (1.2) Gab = Rab -½ gab R where (1.3) Rbc = ∂a{ a bc}-∂c{ a ba} + { d bc}{ a da} -{ d ba}{ a dc}

( 1 .

 1 31) d (*Ta + *ta) = 0 Writing (1.32 ) ta = tab q b tab describes the gravitational field which may be expressed for example by the Einstein-Dirac pseudo tensor [3 (p.61)].

gan = ea a e n b hab ( 1

 1 gbn = e b a e n b hab where hab is the Minkowski tensor. One thus writes the « Pfaffian » metrics as :(1.63) (+) ds² = hab (+) θ a θ b (1.64) (-) ds² = hab (-) θ a θ b (1.65) (+) θ a = e a a dx a , (1.66) (-) θ a = e b a dx b ,The common basis 1-form θ b = e n b dx n outlines the coupling between the metrics.

APPENDIX

Classical Einstein tensor retrieved from the differential equations

We first use the following relations :

Then, applying the following Riemannian identities -1/4 R mn st [dn t (dm s hadn s hm) +dm t (da s hndn s ha ) + da t (dn s hmdm s hn)] = -½ R mn mnha + R mn st hm = -½ R bn an hb -½ da b R mn mn hb = (R b a -½ da b R) hb