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Quasi-Static Homogenization of
Glide-Symmetric Holey Parallel-Plate Waveguides

with Ultra-Wideband Validity
Boris Fischer, and Guido Valerio, Senior Member, IEEE

Abstract—Glide-symmetric waveguides made of metallic meta-
surfaces are a wideband, low-loss, low-cost, and conformable
alternative to dielectric materials for the design of antenna
lenses at millimeter waves. However, computing the effective
refractive index of glide-symmetric waveguides with existing
full-wave analysis techniques results in cumbersome parametric
studies for each new design. This paper presents a new analytic
homogenization technique for glide-symmetric holey parallel-
plate waveguides. The dispersion equation of these structures,
found by way of mode-matching, is simplified at low frequency
using the properties of the modes resonating within the holes,
independently of the hole shape. This simplified equation yields
a closed-form expression of the effective refractive index, relying
on the eigenmodes of the hole cross-section. This formula avoids
solving a three-dimensional full-wave problem, and is fully
analytic in the case of canonical hole shapes. Although derived
in the quasi-static regime, it characterizes propagation over an
ultra-wide band, due to the low dispersive properties of glide
symmetric structures. It is a function of the angle of propagation
within the waveguide, and can thus be used to study anisotropic
properties. Its efficiency is demonstrated with the example of
glide-symmetric parallel-plate waveguides with rectangular and
circular holes.

Index Terms—Metasurfaces, glide symmetry, mode-matching,
periodic problems, analytic methods, homogenization

I. INTRODUCTION

IN the advent of the internet of things and 5G/6G mobile
networks, modern wireless communication systems must

meet the needs of increasingly many connected users and de-
vices [1]–[4]. High data rates in relation to limited space-time-
frequency ressources involve the need for millimeter wave
antennas with dynamically orientable beam [5], [6]. Existing
beam-forming arrays are bulky and tend to be expensive at mil-
limeter waves [7], [8], which motivates the use of near-optical
solutions such as lens antennas [9]. Such lenses have been built
by adding different dielectric layers in an onion-like manner
to gradually change the refractive index [10]–[12]. Compact
and conformable designs can be obtained with planar lenses,
which can be further compressed by applying transformation

Boris Fischer and Guido Valerio are with Sorbonne Université, CNRS, Lab-
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Electrique et Electronique de Paris, 91192, Gif-sur-Yvette, France (e-mail:
boris.fischer@sorbonne-universite.fr, guido.valerio@sorbonne-universite.fr).

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible. This work was supported by the French government
under the ANR grant HOLeYMETA ANR JCJC 2016 ANR-16-CE24-0030.
This publication is based upon work from COST Action Symat (CA18223),
supported by COST (European Cooperation in Science and Technology).

(a) Perspective view

S

unit cell

pz

px

z

x

kθ

θy

glide
symmetry

pz
2

px
2

(b) Top view

Fig. 1. Holey glide-symmetric parallel-plate waveguide. To highlight the
glide-symmetric shift between the two plates, the upper holes are outlined
with red, in opposition to dashed blue for the lower holes. In the top view
(b), one unit cell of this metasurface waveguide is framed, and the propagation
direction of angle θ is indicated with the wavenumber kθ .

optics [13], [14]. However, these lenses are lossy, expensive,
and have limited performances due to the use of dielectric
materials. An alternative is to build integrated lenses using
planar waveguides made of metasurfaces [15]. Due to the sub-
wavelength geometry of the periodically repeated unit cells,
a smooth profile of the effective refractive index can be ac-
curately controlled by varying their characteristic dimensions
[16]–[20]. To avoid dielectric losses, all-metallic designs are
preferable, where a parallel-plate waveguide (PPW) is formed
of two metasurfaces facing each other, shielding and confining
the waves propagating between them [21].

In recent years, it has been shown that the dispersive
behavior and the refractive index range of such PPW can be
improved using glide symmetry (GS) [22]. GS is a special type
of higher symmetry, where the geometry of the waveguide is
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invariant after a translation of half-a-unit-cell and a reflection
with respect to a plane. As such, compared to previous non-
glide designs, it is enough to shift the upper metasurface by
half-a-period with respect to the lower metasurface to obtain
GS, as illustrated in Fig. 1. Glide-symmetric (GS) waveguides
have first been studied in the late 1960s and early 1970s in
the context of high-power slow-wave structures [23]–[25]. Not
only has this added symmetry been shown to enhance the
refractive index of the all-metallic waveguide, but also the
dispersive behavior of the structure is mitigated, due to the
disappearance of the bandgap between the first and second
propagating modes [26]. GS also offers a higher anisotropic
behavior than non-glide designs, leading to wideband lenses
compressed with transformation optics [27]. Wideband low-
loss lenses have been designed using various metasurface
unit cells [22], [27]–[30]. Nevertheless, these designs rely on
cumbersome parametric studies: for each set of dimensions,
the effective refractive index of the unit cell is computed
numerically, either with commercial solvers, or with the afore-
mentioned semi-analytical methods [31]–[33].

The interesting features of GS PPWs reach their full poten-
tial when the gap between the two metasurfaces is very small
compared to the other characteristic dimensions of the unit
cell. This contrast in size leads to the wideband properties
of the waveguide, but also makes numerical commercial
solvers prohibitively slow to analyze them. Existing analytic
methods for metasurfaces, like the homogenization of the
two independent metasurfaces [34], [35] fail to capture the
coupling of higher modes between the variations of the upper
and lower metasurfaces [36], which cannot be neglected due
to the small gap. Equivalent circuit methods are limited to
geometries where the upper and lower geometrical variations
do not overlap [37], [38]. Recently, a semi-analytic method
based on the multimodal transfer matrix of one cell was able
to accurately derive the dispersion equation of GS waveguides
[39]. By combining it with a generalization of the Floquet
theorem for GS [25], this method reduces the problem to one
half (1D GS) or one quarter (2D GS) of the total unit cell.
The resulting fast analysis method has since been used in
various applications [33], [40]–[42]. While this multimodal
transfer matrix method can be applied to any non-canonical
cell geometry, it relies on commercial solvers to compute the
transfer matrix. An alternative method applicable to holey GS
PPWs is presented in [43] for square holes, based on a mode-
matching method (MMM). It is generalized in [44] for any
hole cross-section, and has since been applied to triangular
[45] and elliptical [46] holes in the context of anisotropic
waveguides. This method is based on ensuring the continuity
of the fields between different regions of the waveguide. Both
the multimodal transfer matrix method and the MMM are
much faster than full-wave solvers, and have the advantage
of computing not only the real but also the imaginary part
of the effective wavenumber. Nevertheless, these multimodal
methods yield a complicated dispersion equation that must
be solved numerically to obtain this wavenumber. If a large
number of modes are needed to describe the fields, which is
often the case due to the strong interaction between the close
metasurfaces, finding this complex solution can still require

extensive computational ressources.
In this paper, the core idea is to rely on the dispersive

properties of GS waveguides to find a closed-form solution of
the effective refractive index of a holey GS PPW. In Section II,
the structure under study is presented, and its dispersion
equation is derived by means of the MMM presented in [44].
In Section III, this dispersion equation is simplified at low
frequencies, and is shown to have a closed-form solution for
the effective refractive index, given in (34). Due to the low-
dispersive behavior of the waveguide, this low-frequency index
is valid over a large frequency band. In Section IV, this method
is applied to holey GS PPWs with rectangular and circular
holes.

II. MODE-MATCHING TECHNIQUE USING THE
GENERALIZED FLOQUET THEOREM

In this section, the structure under study is presented and
its fields are described as sums of modes and harmonics.
Boundary conditions are enforced by a MMM based on the
generalized Floquet theorem, which leads to a dispersion
equation describing the propagation within the waveguide [44].

A. Glide-symmetric holey parallel-plate waveguide

A holey GS PPW is considered in Fig. 1. It is made of
two metallic metasurfaces facing each other in the zx plane,
separated by an empty gap g (permittivity ε0 and permeability
µ0). The metasurfaces are assumed to be made of a per-
fect electric conductor (PEC) material (infinite permittivity).
Cylindrical holes with arbitrary cross-section of surface S are
repeated periodically in both upper and lower plates, forming
a rectangular lattice of periods pz and px, along the z and x
axis, respectively. These holes have a depth h and do not go
through the PEC plates. They may be filled with a dielectric
medium of relative permittivity εr and permeability µr. Finally,
two-dimensional GS is introduced in the structure by shifting
the upper holes by pz/2 in the z direction, and by px/2 in the
x direction. As such, one unit-cell of this waveguide comprises
a rectangle of size pz × px in the zx-plane, as indicated by
the dashed frame in Fig. 1.

A time-harmonic wave with frequency f = 2πω is prop-
agating in the zx-plane between the two metasurfaces. The
corresponding free-space wavenumber in vacuum is defined
as k = ω/c0, where c0 is the free-space velocity of light.
The wavelength λ = c0/f is large compared to the above-
mentioned dimensions of each unit cell. For a structure with
cells of a few millimeters, this implies operating frequencies
up to several tens of gigahertz.

The propagation of the wave between the two metasurfaces
is characterized by the angle θ between the propagation
direction and the z-axis, as shown in Fig. 1. At the operating
frequency, the effective wavenumber of the wave is called kθ,
with cartesian components kz and kx. In order for the wave to
be confined within the waveguide and to propagate in the θ-
direction, the effective wavenumber must satisfy kθ ≥ k. The
effective refractive index of the waveguide in the θ-direction
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is defined as nθ = kθ/k. This refractive index is related to the
cartesian components with

kz = knθ cos θ and kx = knθ sin θ . (1)

At a given frequency, the goal is to compute the corre-
sponding effective refractive index nθ. In order to do so, the
dispersion equation of the structure needs to be derived.

B. Mode-matching method

The MMM for a holey GS PPW has been introduced in
[44]. Here, it is briefly presented with the formalism suitable
for the homogenization discussed in Section III.The electric
and magnetic fields in the structure are decomposed as sums
of modes and harmonics, whose coefficients are unknown. The
MMM then enforces boundaries between different regions in
order to obtain a set of equations, that can be solved for the
coefficients of the fields. The structure is separated into three
regions: the holes in the lower metasurface, the gap between
the metasurfaces, and the holes in the upper metasurface. Due
to the periodicity of the waveguide, the fields in neighboring
cells can be related using the Floquet theorem [47, p. 607].
This theorem is generalized in [25] in order to relate the
fields between the upper and lower hole in a GS structure.
As such, it is enough to study the fields in half-a-unit-cell of
the waveguide.

On the one hand, in the gap, the periodicity of the structure
in both z and x directions enables the decomposition of
the fields as a sum of Floquet harmonics. Each harmonic is
defined by a pair of integer indices (s, `) with corresponding
wavenumbers

k(s)z = kz + s
2π

pz
and k(`)x = kx + `

2π

px
, (2)

which characterize the propagation of the harmonic in z
and x directions with respect to the fundamental harmonic
wavenumbers defined in (1).

On the other hand, the holes can be seen as cylindrical
waveguides with propagation in the y direction, where the
fields are decomposable as a sum of transverse magnetic
(TM) and transverse electric (TE) modes, designated by mode
orders m ∈ N. Because a PEC boundary closes the holes,
the modes are reflected at the bottom, resulting in standing
waves. At the surface of the hole, the tangential electric field
of each mode is eit,m(z, x) for the mth mode, where t stands
for transverse, and with i = e,h for TM and TE modes,
respectively. These modal functions are frequency-independent
and real. The corresponding cut-off frequency is kim. The wave
admittances for TM and TE modes are [48, pp. 100-101]

Y e
m =

kεr

η
√
k2εrµr − kem2

and Y h
m =

√
k2εrµr − khm2

ηkµr
, (3)

where η =
√
µ0/ε0 is the vacuum wave impedance. The

squared norm of each transverse waveguide mode is defined
as

I im =

∫∫
S

eit,m · eit,mds . (4)

In order to enforce the continuity of the tangential electric
and magnetic fields along the surface of the hole, the MMM
projects the waveguide modes onto the Floquet harmonics. For
each TM and TE mode of order m, one calls its projection
onto the Floquet harmonic (s, `) the projected modal function
(PMF), defined as

ẽ
i(s`)
t,m =

∫∫
S

eit,m (z, x)F (s`)ds , (5)

with F (s`) = e−jk
(s)
z z−jk(`)x x the propagation term of the Flo-

quet harmonic. The PMF can be interpreted as the Fourier
transform of the modal function with Fourier variables
(k

(s)
z , k

(`)
x ).

Combining the field continuity equations leads to a system
of equations involving the PMFs. In practice, a finite number
M e of TM modes and Mh of TE modes can be considered so
that the system matrix has finite dimensions. In order for this
system to have a non-trivial solution i.e., for the fields in the
structure to be non-zero, the determinant of this matrix must
be null. This yields the dispersion equation of the holey GS
PPW ∣∣∣∣∣M e,e

(
Mh,e

)H
Mh,e Mh,h

∣∣∣∣∣ = 0 , (6)

where ·H designates the hermitian of a matrix. Each row and
each column of the total square matrix in (6) corresponds to
a specific TM or TE mode. The equations have been arranged
such that this matrix can be divided in four parts. M e,e

and Mh,h are square matrices that involve only TM and TE
modes, respectively, and as such they have sizes M e ×M e and
Mh ×Mh, respectively. Mh,e has TE rows and TM columns,
and is square only if Mh = M e. The coefficients of these
matrices are

(
M i′,i

)
m′m

= δii′δmm′kηpxpzI
i
mY

i
mcot

(
h

√
k2εrµr − kim2

)

+
∑
`,s

f (s`)


k2
(
ẽ
i′(s`)
x,m′ ẽ

i(s`)∗
x,m + ẽ

i′(s`)
z,m′ ẽ

i(s`)∗
z,m

)
−
(
k(s)z ẽ

i′(s`)
x,m′ − k(`)x ẽ

i′(s`)
z,m′

)
·
(
k(s)z ẽi(s`)x,m − k(`)x ẽi(s`)z,m

)∗
 , (7)

where the Krœnecker symbol δmm′ takes the value 1 when
m′ = m, and 0 otherwise. The row and column indices m′

and m correspond to TM and/or TE modes, depending on
the considered quarter of the dispersion matrix. The cartesian
components of the PMFs are written ẽ

i(s`)
z,m and ẽ

i(s`)
x,m . For

conciseness,
∑

represents the double sum over all pairs of
harmonic indices (s, `) ∈ Z2. Although in theory, an infinite
number of harmonics (s, `) is involved, in practice it can be
truncated to a finite number N of dominant harmonics. The
terms in the sum associated to harmonics (s, `) are referred
to as harmonic terms. These harmonic terms are dependent
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on the vertical spectral function of each Floquet harmonic,
defined as

f (s`) =



cot

(
g
2

√
k2−k(s)z

2−k(`)x
2
)

√
k2−k(s)z

2−k(`)x
2

if s+ ` is even,

−
tan

(
g
2

√
k2−k(s)z

2−k(`)x
2
)

√
k2−k(s)z

2−k(`)x
2

if s+ ` is odd.

(8)

This vertical spectral function is a consequence of the field
distribution along the y-axis between the two metasurfaces.

At a given frequency and propagation direction, the only
unknowns in (6) are kz and kx, which are both linked to
nθ in (1). As such, solving (6) for nθ makes it possible to
draw the Brillouin diagram of the waveguide, thus disclosing
the dispersive properties of the waveguide. In the following
sections, the goal is to find a closed-form solution of (6).

III. LOW-FREQUENCY EFFECTIVE REFRACTIVE INDEX

In this section, the dispersion equation (6) is simplified and
reformulated at low-frequency i.e., for k → 0, which implies
that kz → 0 and kx → 0 according to (1). The goal is to find
a closed-form solution of the effective refractive index in this
particular case, which remains valid at higher frequencies due
to the low dispersion of GS waveguides. As such, the challenge
is twofold. First, the dispersion matrix must be carefully
reduced at low-frequency such that the frequency-dependency
disappears but all relevant nθ-dependencies remain. Second,
a closed-form solution must be found for the resulting low-
frequency dispersion equation.

A. Distinction between fundamental- and higher-harmonic
terms at low frequency

At low-frequency, according to (1) and (2), harmonic
wavenumbers become

[
k
(s)
z

k
(`)
x

]
=

kz→0
kz→0



[
kz

kx

]
=

[
knθ cos θ

knθ sin θ

]
for s = ` = 0,

[
s2π
pz
`2π
px

]
= Γ(s`) for (s, `) 6= (0, 0).

(9)

as illustrated in Fig. 2. Cases where either s or ` is zero are a
particular case, but they can be shown to behave as the other
higher harmonics. Therefore, in the following, it is important
to distinguish between the fundamental-harmonic terms with
s = ` = 0, and higher-harmonic terms where s 6= 0 and ` 6= 0.

This difference between fundamental and higher harmonics
at low frequency is notable for the vertical spectral function
defined in (8). On the one hand, for ` = s = 0, the vertical
spectral function tends to

f (00) =
kz→0
kz→0

f̄ (00) =
2

gk2 (1− n2θ)
, (10)

where kz and kx are replaced by nθ according to (1).
On the other hand, when ` 6= 0 or s 6= 0, the vertical spectral

function tends to

f̄ (s`) =

{
−tanh

(
g
2Γ(s`)

)/
Γ(s`) if `+ s odd,

−coth
(
g
2Γ(s`)

)/
Γ(s`) if `+ s even,

(11)

− 2π
pz

0 2π
pz

4π
pz

− 2π
px

0

2π
px

4π
px

k
(s)
z

k
(`
)

x

Γ(−1,−1)

Γ(−1,1)

Γ(−1,2)

Γ(0,−1)

Γ(0,1)

Γ(0,2)

Γ(1,−1)

Γ(1,1)

Γ(1,2)

Γ(2,−1)

Γ(2,1)

Γ(2,2)

Γ(−1,0) Γ(1,0) Γ(2,0)Γ

Γ(s`)
kz → 0
kx → 0

θ

Fig. 2. Spectral domain of the Floquet harmonics. During the homogenization
process, the harmonics of orders (s, `) are evaluated at the blue points,
which are the periodic replicas of the Γ-point (kz , kx) = (0, 0). The latter is
approached from the propagation direction θ, as indicated by the red arrow.

where Γ(s`) =
∥∥Γ(s`)

∥∥ is the norm of the low-frequency
harmonic wavenumber defined in (9).

B. Low-frequency PMFs

The dispersion coefficients (7) are dependent on the PMFs
ẽ
i(s`)
t,m of the hole, defined in (5) as the Fourier transforms of

the transverse modal functions eit,m. Consequently, the PMFs
are functions of k(s)z and k

(`)
x , which are here simplified at

low frequency according to (9).
For TE modes, the low-frequency simplification of ẽh(s`)t,m is[
ẽ
h(s`)
z,m

ẽ
h(s`)
x,m

]
=

kz→0
kz→0

[
ē
(s`)
z,m

ē
(s`)
x,m

]
=

∫∫
S

eit,me
−j s2πpz z−j

`2π
px

x
ds , (12)

which is the Fourier transform of the transverse modal function
computed at the point Γ(s`).

For TM modes, Appendix A relates the transverse fields
to the longitudinal electric modal function ey,m. The latter’s
Fourier transform at low frequency is computed at the point
Γ(s`) as

ē(s`)y,m =

∫∫
S

ey,me
−j s2πpz z−j

`2π
px

x
ds . (13)

Inserting (13) in (40) yields the low-frequency simplification
of ẽe(s`)t,m [

ẽ
e(s`)
z,m

ẽ
e(s`)
x,m

]
=

kz→0
kz→0

j

kem
Γ(s`)ē(s`)y,m , (14)

for (s, `) 6= (0, 0), and[
ẽ
e(00)
z,m

ẽ
e(00)
x,m

]
=

kz→0
kz→0

jknθ
kem

[
cos θ

sin θ

]
ē(00)y,m . (15)

All low-frequency coefficients ē
(s`)
z,m, ē(s`)x,m and ē

(s`)
y,m are

independent of kz and kx.
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C. Low-frequency simplification of the matrix coefficients

In the following paragraphs, the coefficients of the dis-
persion matrix are simplified at low frequency, depending
on whether TM or TE modes are involved. In (7), these
coefficients can be separated in three parts: the diagonal
waveguide term, which is only present in the diagonal coef-
ficients of M e,e and Mh,h, the fundamental-harmonic term,
where s = ` = 0, and higher-harmonic terms. These terms are
simplified separately in the following paragraphs.

1) Diagonal waveguide term: The first term out of the
summation in (7) is proportional to the Krœnecker symbols
δii′δmm′ , which means that it is non-zero only in the diagonal
of M e,e, and in the diagonal of Mh,h. Due to the absence
of transverse electromagnetic (TEM) modes in the holes,
k2εrµr − kim

2 → −kim
2 6= 0 at low frequency, which reduces

the admittance expressions (3) and the cotangent terms. There-
fore, the low frequency diagonal terms of M e,e are

−k2εrpxpzIem
coth(hkem)

kem
, (16)

appearing to be proportional to k2. On the other hand, the
diagonal terms of Mh,h become the frequency-independent
constants

pxpz
µr

Ihmk
h
mcoth

(
hkhm

)
. (17)

2) Fundamental-harmonic term: As explained in paragraph
III-A, the fundamental-harmonic term in (7) with s = ` = 0
must be isolated from higher-harmonic terms. At low fre-
quency, occurrences of kz and kx as well as the vertical
spectral function can be expressed as functions of nθ according
to (1) and (10). The nθ-dependencies can then be isolated after
reformulating the fundamental-harmonic term as

2

g (1− n2θ)

(sin θẽ
i′(00)
x,m′ + cos θẽ

i′(00)
z,m′

)
·
(

sin θẽi(00)x,m + cos θẽi(00)z,m

)∗


+
2

g

(cos θẽ
i′(00)
x,m′ − sin θẽ

i′(00)
z,m′

)
·
(

cos θẽi(00)x,m − sin θẽi(00)z,m

)∗
 . (18)

In Mh,h, only TE modes appear. The PMFs in (18) can
be simplified according to (12). As such, the low-frequency
fundamental-harmonic term yields

2

g (1− n2θ)


(

sin θē
(00)
x,m′ + cos θē

(00)
z,m′

)
·
(

sin θē(00)x,m + cos θē(00)z,m

)∗


+
2

g


(

cos θē
(00)
x,m′ − sin θē

(00)
z,m′

)
·
(

cos θē(00)x,m − sin θē(00)z,m

)∗
 , (19)

where the complex conjugate can be removed because ē(00)z,m

and ē(00)x,m are real.
In the lower-left matrix quarter Mh,e, only the order m′

corresponds to TE modes, and so the corresponding PMFs
can be simplified according to (12). On the other hand, m is
a TM order, therefore the low-frequency simplification (15) is

used. The low-frequency fundamental-harmonic term in Mh,e

becomes

− j

kem

knθ
1− n2θ

2

g

(
sin θē

(00)
x,m′ + cos θē

(00)
z,m′

)
ē(00)y,m , (20)

where the complex conjugate is removed because ē(00)y,m is real.
Finally, in M e,e, all orders correspond to TM modes. Given

(41), the third and fourth line in (18) vanish. The remaining
PMFs can be replaced by the TM simplification (15), leading
to a (knθ)

2 factor. The reduced fundamental-harmonic term is

k2

kem′k
e
m

n2θ
1− n2θ

2

g
ē
(00)
y,m′ ē

(00)
y,m . (21)

3) Higher-harmonic terms: When s 6= 0 or ` 6= 0 at low
frequency, the vertical spectral function and the harmonic
wavenumbers become frequency-independent, according to
(11) and (9), respectively. Then, the low-frequency higher-
harmonic terms in (7) yield

lim
k→0

f̄ (s`)


k2
(
ẽ
i′(s`)
x,m′ ẽ

i(s`)∗
x,m + ẽ

i′(s`)
z,m′ ẽ

i(s`)∗
z,m

)
−
(
s2π
pz
ẽ
i′(s`)
x,m′ − `2π

px
ẽ
i′(s`)
z,m′

)
·
(
s2π
pz
ẽi(s`)x,m − `2π

px
ẽi(s`)z,m

)∗
 . (22)

In Mh,h, when k → 0, the first line in (22) vanishes. As
such, given (12), its higher-harmonic terms are reduced to

−f̄ (s`)

(
s2π
pz
ē
(s`)
x,m′ − `2π

px
ē
(s`)
z,m′

)
·
(
s2π
pz
ē(s`)x,m − `2π

px
ē(s`)z,m

)∗
 . (23)

On the other hand, in M e,e, m′ and m are TM orders.
Therefore, the cartesian components of the PMFs satisfy (41),
meaning that the second and third line in (22) vanish. Keeping
in mind that in M e,e, the harmonic terms are summed to the
diagonal term defined in (17) – which is proportional to k2 –
the first line of (22) is not dismissed at k → 0. Therefore the
reduced higher-harmonic terms are

k2

kem′k
e
m

f̄ (s`)Γ(s`)2ē
(s`)
y,m′

[
ē(s`)y,m

]∗
. (24)

Finally, in Mh,e, the second and third line of (22) vanish
as in M e,e, because m is a TM order. The remaining k2-
proportional terms are dismissed, because there are no diag-
onal terms in Mh,e. Consequently, higher-harmonic terms of
Mh,e completely vanish at low frequency.

D. Low-frequency dispersion matrix

Considering the simplifications of the previous paragraphs,
the total low-frequency dispersion matrix can be written ask2

(
Σe +

n2
θ

1−n2
θ

2
gu

e[ue]
H
)

jk nθ
1−n2

θ

2
gu

e
[
uh
]H

−jk nθ
1−n2

θ

2
gu

h[ue]
H

Σh + 1
1−n2

θ

2
gu

h
[
uh
]H
 , (25)
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where ·H designates the conjugate transpose of the vectors. In
the matrix (25), according to (16), (21), and (24),

(Σe)m′m = −δmm′εrpxpzIem
coth(hkem)

kem

+
∑

`,s6=(0,0)

f̄ (s`)
Γ(s`)2

kem′k
e
m

ē
(s`)
y,m′

[
ē(s`)y,m

]∗
, (26)

and uem =
1

kem
ē(00)y,m , (27)

and, according to (17), (19), and (23),(
Σh
)
m′m

= δmm′
pxpz
µr

Ihmk
h
mcoth

(
hkhm

)
+

2

g


(

cos θē
(00)
x,m′ − sin θē

(00)
z,m′

)
·
(

cos θē(00)x,m − sin θē(00)z,m

)∗


−
∑

`,s 6=(0,0)

f̄ (s`)


(
s2π
pz
ē
(s`)
x,m′ − `2π

px
ē
(s`)
z,m′

)
·
(
s2π
pz
ē(s`)x,m − `2π

px
ē(s`)z,m

)∗
 , (28)

and uhm = sin θē(00)x,m + cos θē(00)z,m . (29)

The low-frequency Fourier transforms of the electric field are
defined in (12), (14) and (15): ē(s`)z,m and ē

(s`)
x,m correspond to

transverse TE modes, ē(s`)y,m to the longitudinal TM field. The
squared TM norm Iem can be expressed as a function of the
longitudinal modal function ey,m according to (36), such that
the transverse fields need not be computed.

Each coefficient uem can be interpreted as the average of the
longitudinal electric field component for a TM mode of order
m, whereas uhm is the norm of the projection of the average
transverse TE field onto the propagation direction.

E. Closed-form solution of the dispersion equation
Given the dispersion equation (6), the determinant of the

matrix (25) must be null. This implies that knθ can be
factored out of the first row and of the first column of the
dispersion matrix. Additionally, (1− n2θ) is multiplied to the
whole matrix. The resulting low-frequency dispersion equation
can be written as∣∣∣∣∣∣∣
(
1− n2θ

) 1
n2
θ
Σe 0

0 Σh

+
2

g

jue

uh

jue

uh

H
∣∣∣∣∣∣∣ = 0 . (30)

The determinant involved in (30) applies to the sum of a
rank-2 matrix with a diagonal matrix that is assumed to be
invertible. As such, this determinant can be reformulated using
the determinant lemma [49, p. 416], which states that∣∣Σ + uvH

∣∣ =
(
1 + vHΣ−1u

)
|Σ| , (31)

with Σ a square invertible matrix and u and v vectors of
appropriate sizes. Applied to (30), this yields the reformulated
scalar dispersion equation

1− n2θ +
2

g

jue

uh

H  1
n2
θ
Σe 0

0 Σh

−1 jue

uh

 = 0 . (32)

After developing the matrix-vector products, this yields

1− n2θ + n2θ
2
g [ue]

H
[Σe]

−1
ue + 2

g

[
uh
]H[

Σh
]−1

uh = 0. (33)

Expression (33) is a first-order equation of unknown n2θ.
Therefore, a closed-form solution of this equation is found,
namely

nθ =

√√√√1 + 2
g [uh]

H
[Σh]

−1
uh

1− 2
g [ue]

H
[Σe]

−1
ue

, (34)

where Σe, ue and Σh and uh are defined in (26), (27), (28)
and (29), respectively.

This closed-form formula of the effective refractive index is
frequency-independent, and can be computed with only low-
frequency information about the PMFs of TE modes, namely
the coefficients ē(s`)z,m, ē(s`)x,m, and the longitudinal electric modal
functions of TM modes, namely the coefficients ē(s`)y,m. When
analytic expressions of these modal functions are available, the
computation of the index can be accelerated by dismissing all
the modes whose contributions vanish in (34). Conditions for
this dismissal are given in Appendix C. The resulting speeding
up of parametric studies will be illustrated with numerical
examples in the next section. Additionally, it is shown that
this formula is valid over a large bandwidth, despite being
computed at low frequency, due to the low-dispersive behavior
of GS waveguides.

IV. NUMERICAL RESULTS

In this section, the closed-form formula of the effective
refractive index (34) is applied to two canonical examples
of holey GS PPWs: with empty rectangular holes, and with
circular holes filled with a dielectric. Both structure are like
in Fig. 1, with different hole cross-sections. In Fig. 3a, the
holes are rectangular waveguides of size az × ax, oriented
along the z- and x-directions. In Fig. 3b, the holes are
circular waveguides of radius r, filled with a dielectric of
relative permittivity εr and relative permeability µr = 1. In
all cases, the metasurfaces have a square grid of unit cells
pz = px = 4 mm.

All the terms in the refractive index formula (34) can be de-
rived from the modal functions of the holes, which are known
analytically. These modal functions are given in Appendix
B, along with all the other related terms, notably the low-
frequency coefficients of the PMFs. Because some of these
coefficients are zero, it can be shown that the corresponding
modes do not contribute to the refractive index in (34), and
can thus be dismissed. These dispensable modes are given for
rectangular and circular holes at the end of Appendix C.

Once all the terms in (34) are known, the formula can be
applied to various geometries and compared to other analysis
methods. First, considering rectangular modes, the speed-up of
this homogenization method is highlighted through the study
of mode convergence. Second, efficient parametric studies
are performed, by varying the geometrical parameters of the
GS PPW with rectangular holes, and for circular holes filled
with different dielectrics. Finally, the bandwidth in which the
formula is valid is studied.
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(a) Rectangular holes

(b) Circular holes

Fig. 3. Holey GS PPWs with canonical hole cross-sections used for numerical
results. (a) Empty rectangular holes of size az × ax. (b) Circular holes with
radius a, filled with a dielectric of relative permittivity εr.

A. Rectangular holes: convergence analysis

The low-frequency modal terms for rectangular holes (42)-
(45) and (48)-(50) are used in the closed-form formula (34)
to compute the effective refractive index of the structure for
various geometrical parameters. In the MMM formulation
in II-B, higher-order harmonics and modes have a reduced
impact on the effective wave propagation, and can therefore
be truncated, such that the dispersion matrix in (6) has a finite
size [39].

However, this truncation depends on geometry and on the
desired accuracy. Solving the dispersion equation (6) itera-
tively can then become prohibitively long, not to say tricky.
Indeed, for hundreds of TM and TE modes in the holes,
the determinant of the dispersion matrix easily reaches the
machine’s numerical precision if no specific measures are
taken. In the following, instead of solving (6) directly, we
consider the log-determinant of the dispersion matrix, and use
a golden-section-search [50] to iteratively determine when the
log-determinant tends towards −∞.

In the following, we study the convergence of the low-
frequency refractive index for increasingly many modes. This
study is performed with two techniques in parallel. On the
one side, by solving the dispersion equation (6) at 1 MHz
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(d) Execution time

Fig. 4. Study of the refractive index convergence as the number of modes
increases. Each marker shape corresponds to a different number of Floquet
harmonics. The structures under study are GS PPWs with rectangular holes,
as illustrated in Fig. 3a. The low-frequency refractive index nlow is computed
in two ways: the MMM approximation (dashed curves) and the closed-form
formula (34) (solid curves). A reference result is also computed with CST,
and is indicated by the dotted lined. (a-c) Refractive index as a function of
the maximum mode order. (d) Corresponding computation time of each point.
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with the use of the log-determinant and a golden-search-
technique. We refer to this as the MMM approximation, for
which around 20 iterations are performed to obtain an index
convergence of 10−5. On the other side, the low-frequency
refractive index is computed with the closed-form formula
(34). While the precision chosen in this comparison is much
higher than the one required for applications, our aim is the
rigorous validation of the accuracy of (34). Additionally, a
CST simulation validates the convergence value of both meth-
ods. Holey GS PPWs with three different holes cross-sections
and depth h = 5 mm are considered. The metasurfaces have
a periodicity pz = px = 4 mm and are separated by a gap
g = 0.1 mm. The waves propagate in the direction θ = 0°.

In Figs. 4a-4c , the computed low-frequency refractive
index is plotted as a function of the maximum mode order
mmax = qmax. The maximum mode order designates both
q and m, for both TM and TE modes. As such, the total
number of considered modes is 2mmax(mmax + 1) (no TE00,
TMq0 and TM0m modes). The highest abscissa point in Fig. 4,
mmax = 40, corresponds to 3280 modes in the square holes.
Additionally, each curve corresponds to a different number of
Floquet harmonics, where orders s and ` range within ±5,
±20 or ±80. This latter case represents more than 25 000
Floquet harmonics. For each number of harmonics, the average
computation time over the three structures is plotted in Fig. 4d.

On a computer with a Quad-Core Intel Core i5 @2.4 GHz
processor and with 8 GB of RAM, running the algorithms on
Matlab without any parallelization effort, the total execution
time to obtain the MMM curves up to mmax = 20 for each
structure is around 4 hours, whereas the closed-form formula
requires only 106 seconds. The higher the number of modes,
the higher the disparity in time between the two methods.
That is why the MMM approximation was not computed
for orders higher than mmax = 20. In this latter case, with
harmonics ±80, the closed-form formula is 250 times faster
then the MMM method. There are several reasons for this
speed-up. First, the MMM approximation is iterative, and
must evaluate the matrix determinant several dozen times,
depending on the search interval and the desired accuracy.
Second, the low-frequency method developed in this paper
enables the dismissal of many modes that have no impact on
propagation. As such, for 2mmax(mmax + 1) modes with the
MMM approximation, only 3

4 (mmax + 1)2 are kept for the
closed-form formula, as described in Appendix C. Finally, the
matrices in (34) have a much simpler form than the original
dispersion matrix, and can be formed in more efficient ways.

On top of the speed of execution, the implementation
complexity is an other advantage of the closed-form formula.
No iterative root-finding algorithm is involved, and so no
parameters such as convergence limit or interval of search must
be tuned. Additionally, no matrix determinants are computed,
and so there are no problems with machine precision as with
the direct MMM method.

For all subsequent numerical results, the number of modes
and harmonics is high enough to achieve sufficient conver-
gence of the effective refractive index.

1 2 3 4 5
1

1.2

1.4

1.6

Hole depth h in mm

R
ef

ra
ct

iv
e

in
de

x
n
lo
w

g = 0.1mm CST
g = 0.2mm Eq. (34)
g = 0.3mm

az

ax kθ

(a) pz = px = 4mm, a = 3mm, θ = 0°

1 2 3
1

1.2

1.4

1.6

Hole size a in mm

R
ef

ra
ct

iv
e

in
de

x
n
lo
w

g = 0.1mm

g = 0.2mm

g = 0.3mm

CST
Eq. (34)

az

ax kθ

(b) pz = px = 4mm, h = 5mm, θ = 0°

Fig. 5. Parametric study of the low-frequency refractive index for GS PPWs
with rectangular holes, as illustrated in Fig. 3a. The low-frequency refractive
index nlow computed with the closed-form formula (34) (solid curves) is
compared to CST data (dashed curves). (a) As a function of h, for different
g ; a = 3mm. (b) As a function of a, for different g ; h = 5mm.

B. Rectangular holes: parametric studies

A motivation for a fast analysis method of holey GS PPWs
is the cumbersome parametric studies needed for the design
of lens antennas. Here, the low-frequency refractive index is
computed with the closed-form formula (34) as a function
of the structure’s dimensions or the propagation direction. In
all cases, the GS PPW has cells of size pz = px = 4 mm. All
results are compared to CST data, computed for kθ = 0.4 m−1,
which corresponds to a frequency of approximately 15 MHz.

In Fig. 5, the propagation direction is θ = 0°, and the
holes are squares of size a. In each subfigure, the low-
frequency refractive index is plotted as a function of a different
geometrical parameter: the hole depth h in 5a, and the hole
size in 5b. The parametric curves depend on the gap g. Fig. 5a
shows that beyond a certain depth, h does not impact the
effective refractive index of the holey waveguide. Indeed,
the hole’s electrical size is tiny, therefore the rectangular
waveguide modes are attenuated in the holes. The bottom of
the holes barely interacts with the fields if it lies beyond a
certain distance. This can be verified by considering the low-
frequency matrices Σe in (26) and Σh in (28), which are the
only h-dependent terms in the refractive index formula (34).
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Fig. 6. Study of the low-frequency refractive index as a function of the
propagation direction θ, for GS PPWs with rectangular holes, as illustrated
in Fig. 3a. The low-frequency refractive index nlow is computed with two
techniques: CST’s eigensolver (dashed curves) and the closed-form formula
(34) (solid curves). The latter uses mode orders up to 24 and harmonic orders
up to ±100. (a) Square holes with a = 3mm, for different g. (b) Rectangular
holes with az = 3.5mm and ax = 1.5mm, for different g.

Given km the smallest cut-off wavenumber of the modes in the
holes, the term coth

(
hkim

)
tends towards 1 when h increases.

This behavior does not depend on the hole cross-section. The
impact of the hole size in Fig. 5b is more intricate, but a large
range of refractive indexes can be achieved by changing the
size of the holes. For a Luneburg lens, indexes up to

√
2 are

needed, which is achieved here when g = 0.1 mm.
The closed-form formula (34) is a θ-dependent function. As

such, it can be used to study the isotropy of the holey GS PPW,
by computing the low-frequency refractive index as a function
of the propagation direction. This is done in Fig. 6 for two
different structures: square holes of size a = 3 mm in Fig. 6a,
and rectangular holes with az = 3.5 mm and ax = 1.5 mm in
Fig. 6a. The hole depth is fixed at h = 5 mm.

Interestingly, the GS PPW with square holes is isotropic.
This might seem counter-intuitive, given that the metasurface
is made of a square lattice of holes. As such, the periodicity
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Fig. 7. Parametric study of the low-frequency refractive index for circular
holes. The low-frequency refractive index nlow computed with the closed-
form formula (34) (solid curves) is compared to CST data (dashed curves).
The structure under study is illustrated in Fig. 3b, with pz = px = 4mm,
g = 0.1mm and different values of εr. (a) For different hole radii a. (b) For
different hole depths h.

in different directions is not the same. Nevertheless, Fig. 6a
displays a constant refractive index as function of the propaga-
tion angle. Indeed, a deeper study of the closed-form formula
(34) for square holes reveals that the θ-dependency vanishes
for az = ax. On the other hand, rectangular holes result in a
θ-dependent refractive index, as show in Fig. 6b, yielding an
anisotropic waveguide. As such, the closed-form index formula
(34) enables the fast design of isotropic and anisotropic wave-
guides, for example for ultra-wideband compressed lenses as
illustrated in [27].

C. Circular holes: parametric studies

In order to illustrate the adaptability of this method to differ-
ent hole shapes, additional parametric studies are performed
for holes with circular cross-section of radius a, filled with
a dielectric material of relative permittivity εr. The modal
terms for circular holes (51)-(57) and (60)-(65) are used in the
closed-form formula (34) to compute the effective refractive
index of the different structures. All results are compared to
CST data computed at approximately 15 MHz.

In Fig. 7a the refractive index is plotted as a function of
the hole depth h, and in Fig. 7a it is plotted as a function
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Fig. 8. Error between the low-frequency refractive index nlow – computed
with the closed-form formula (34) – and the refractive index obtained with
CST as a function of frequency. The error is normalized and given in dB
i.e., e = 10 log

∣∣∣n(f)−nlow
n(f)

∣∣∣. The propagation direction is θ = 0° i.e., along
the z-axis. The refractive indexes are computed for both GS and non-glide
holey PPWs, as illustrated in Fig. 3. The holes are rectangular in (a) and
(b), square in (c), and circular in (d). All structures have cells of size of
pz = px = 4mm.

of the hole radius a. Each curve corresponds to a different
dielectric filling. As it did for rectangular holes, the closed-
form formula matches CST data for all geometries, and for
all hole fillings. In practice, circular holes are easier to drill
than rectangular holes. The closed-form formula can be used
to rapidly manufacture dense waveguides depending on the
dielectric material that fills the holes.

D. Rectangular and circular holes: wideband validity

Despite being computed in the quasi-static regime, the
closed-form formula (34) characterizes holey GS PPWs over
a large frequency band, due to the low-dispersive behavior of
GS waveguides. In Fig. 8, the low-frequency index nlow (34)
is compared to the refractive index n(f) computed at higher
frequencies f through the eigenmode solver of CST Studio
Suite. The normalized error e = 10 log

∣∣∣n(f)−nlow

n(f)

∣∣∣ is plotted
as a function of frequency. Different holey GS PPW cases from
the parametric studies in Figs. 5 to 7 are considered, along
with their non-glide counterpart structures. Indeed, the MMM
can also be applied when the upper holes are the reflection
of the lower holes with respect to the propagation plane. The
resulting matrix equation has the same coefficients as in (7),
where only the vertical spectral functions change. The closed-
form expression of the non-glide dispersion equation can then
be derived following the same steps as for the GS structure.

The analytic low-frequency index nlow fits the CST results.
There remains a relative error at low frequencies, less than a
fraction of percent, which can be attributed to the accuracy
of the CST meshing: the unit cells of each structures have
been decomposed in around 180 thousand mesh cells, but
more would be needed to obtain a better accuracy with such
a small gap between the plates. This, however, would require
simulations lasting several hours or days.

As expected, the validity range of the low-frequency index
nlow is larger in the GS case than for the non-glide structure,
due to the low dispersion of GS waveguides and the absence
of bandgap between the first and second modes [26]. The fre-
quency validity of the closed-form formula (34) is not inherent
to its derivation, but is a consequence of the low-dispersive
behavior of holey GS waveguides. These structures have a
dispersion curve which is close to linear in the first Brillouin
zone [22]. As such, once nlow is computed, a rough estimate
of the frequency validity is given by fmax ≤ c0/(2pznlow),
which corresponds to the frequency at the right-end of the first
Brillouin zone i.e., kz = π/pz . Still, this limit presumes a
quasi-linear dispersion curve in the first Brillouin zone. Fig. 8
illustrates that when the effective density of the waveguide
increases, frequency dispersion is higher, and therefore the
accuracy of (34) at fmax is reduced. If high accuracy is
of importance for a given application, the validity of the
closed-form formula (34) should be checked with numerical
analyses in the band of operation, especially for dense effective
media, as (34) does not bear information about the frequency
dispersion.

According to the results shown in Fig. 8, the low-frequency
index nlow accurately characterizes the GS waveguide over an
ultra-wide band. Tolerating an error of less than 1%, this index
can be used up to 31 GHz, 12 GHz, 8 GHz and 7 GHz for the
structures in (a), (b) (c) and (d), respectively. If an error or 10%
is acceptable, this range rises up to 58 GHz, 34 GHz, 25 GHz
and 13 GHz. As expected, the larger the effective refractive
index, the smaller the valid frequency range.
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V. CONCLUSION

The low-frequency behavior of holey GS waveguides is
studied. By simplifying the dispersion equation derived by
means of the MMM, a closed-form formula of the refractive
index is found at low frequency. This formula can be adapted
to any GS PPW with holes of canonical cross-section, follow-
ing simple steps:

1) Compile the longitudinal TM and transverse TE electric
field expressions of the modes that propagate inside the
hole, together with their norms, their cut-off wavenum-
bers, and their Fourier transforms.

2) Retain the low-frequency values of these Fourier trans-
forms.

3) Eliminate all modes which do not impact low-frequency
propagation, as illustrated in Appendix C.

4) Insert the remaining terms in the closed-form formula
(34) for the refractive index.

Compared to previous numerical or semi-analytic methods:
• The refractive index can be computed analytically for var-

ious geometries and cross-sections. No iterative process
is needed.

• The low-frequency approach makes it easier to find out
which modes have an impact and which are dispensable:
as such, dismissing these modes considerably accelerates
computations.

• Applying the closed-form formula is much faster than
any existing technique, to the point where it enables an
accuracy that could previously only be obtained after
hours or even days of computations.

• A closed-form formula gives a better physical insight into
the influence of some parameters. For square holes, it can
be shown that there is no angular dependency, proving the
isotropy of such structures.

Therefore, the closed-form formula derived in this paper is a
powerful tool for this design of microwave devices such as
lens antennas. For non-canonical hole cross-sections, whose
modal functions are not known analytically, the formula can
be associated to a two-dimensional finite element method in
order to compute the eigensolutions of the holes.

APPENDIX A
LOW-FREQUENCY REDUCTION OF TM PMFS

Here, we derive the properties of TM modes that are used
in III to simplify the dispersion matrix at low frequency.
According to cylindrical waveguide field theory [48, p. 100],
the transverse modal functions of TM modes can be related
to the longitudinal electric field component ey,m with

eet,m(z, x) =

[
eez,m(z, x)
eex,m(z, x)

]
=

1

kem
∇tey,m(z, x) , (35)

such that both transverse and longitudinal modal functions are
real and frequency-independent. Thereby, the squared norm of
TM modes (4) can be expressed as a function of ey,m as

Iem =
1

kem
2

∫∫
S

∇tey,m(z, x) ·∇tey,m(z, x)ds . (36)

From Green’s theorem [51, p. 431], it can be shown that∫∫
S

∇tey,m(z, x)dzdx =

∫
∂S

ey,m(z, x)nd` , (37)

where ∂S is the hole contour and n is the exterior normal at
each contour point. Given this result, the PMF defined in (5)
is then equal to

ẽ
e(s`)
t,m =

∫∫
S

[
∇t

{
ey,m
kem

F (s`)

}
− ey,m

kem
∇t

{
F (s`)

}]
ds (38)

=

∮
∂S

ey,m
kem

F (s`)nd`+ j

[
k
(s)
z

k
(`)
x

]∫∫
S

ey,m
kem

F (s`)ds (39)

=
j

kem

[
k
(s)
z

k
(`)
x

]∫∫
S

ey,mF
(s`)ds , (40)

where the last line is obtained considering that the longitudinal
electric field vanishes on the hole contour. Therefore,{

k
(`)
x ẽ

e(s`)
z,m = k

(s)
z ẽ

e(s`)
x,m in general ,

sin θẽ
e(00)
z,m = cos θẽ

e(00)
x,m for s = ` = 0 ,

(41)

where (1) is used in the case of the fundamental harmonic to
introduce the propagation angle θ. Equations (41) are true for
all TM modes, whatever the cross-section of the holes.

APPENDIX B
PROJECTED MODAL FUNCTIONS EXAMPLES

In Section IV, the low-frequency effective refractive in-
dexes of GS PPWs with rectangular and circular holes are
computed with the closed-form formula (34). This formula is
a function of the low-frequency PMFs of the holes. In this
appendix, these PMFs are computed and reduced in the limit
(kz, kx)→ (0, 0).

A. Rectangular holes

The GS PPW with rectangular holes presented in Fig. 3a is
considered. Rectangular waveguide modes are derived in [48,
p. 117]. Each mode depends on a pair of orders (q,m). The
cut-off frequencies of both TM and TE modes are

kqm =

√(
mπ
az

)2
+
(
qπ
ax

)2
. (42)

For propagation in the y-direction, the longitudinal TM
modal functions are

ey,qm(z, x) = sin
(
mπ
az
z
)

sin
(
qπ
ax
x
)
, (43)

with both mode orders q > 0 and m > 0. The transverse
modal functions in the TE case are

eht,qm =

 qπ
axkqm

cos
(
mπ
az
z
)

sin
(
qπ
ax
x
)

− mπ
azkqm

sin
(
mπ
az
z
)

cos
(
qπ
ax
x
)
 , (44)

where (q,m) 6= (0, 0). The vectors are given along the
cartesian coordinates (z, x).
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From (4), the norms of both TM and TE modes are

Iqm =
1

k2qm

π2

21+min(1,q,m)

(
ax
az
m2 + az

ax
q2
)
. (45)

For TE modes, the PMFs of (44) are computed according
to (5). Introducing

ζzm(k) = 1−(−1)me−jkaz

(mπ
az

)
2−k2

, (46)

the PMFs are

ẽh(s`)qm =

[
ẽ
h(s`)
z,qm

ẽ
h(s`)
x,qm

]
=

 jπ2q2

a2x

k(s)z
kqm

ζzm(k
(s)
z )ζxq (k

(`)
x )

π2m2

ja2z

k(`)x
kqm

ζzm(k
(s)
z )ζxq (k

(`)
x )

 , (47)

leading to the low-frequency coefficients defined in (12)

ē(s`)z,qm =


j2π3sq2

kqmpza2x
ζzm(s2πpz )ζxq (`2πpx ) if s 6= 0 or m 6= 0,

πqaz
ax

ζxq (`2πpx ) if s = m = 0,
(48)

ē(s`)x,qm =


2π3`m2

jkqmpxa2z
ζzm(s2πpz )ζxq (`2πpx ) if ` 6= 0 or q 6= 0,

−πmax
az

ζzm(s2πpz ) if ` = q = 0.
(49)

Similarly, for the TM modes (43), the low-frequency coef-
ficients are computed for any (s, `) according to (13) as

ē(s`)y,qm = qmπ2

azax
ζzm(s2πpz )ζxq (`2πpx ) . (50)

B. Circular holes

The GS PPW with circular holes presented in Fig. 3b is
considered. Circular waveguide modes are derived in [48,
pp. 124-126]. Each mode depends on three positive integers
(q,m, t), standing for the mth root pqm of the qth Bessel
function of first kind Jq , or for the mth root p′qm of its
derivative J ′q . The third order t = 1, 2 designates whether
the mode has a cosine or sine azimuthal profile. For both TM
and TE modes, q > 0 and m > 0 for t = 1, and m > 0 for
t = 2. The cut-off frequencies kqm and k′qm of TM and TE
modes are

kqm =
pqm
a

and k′qm =
p′qm
a

. (51)

A cylindrical coordinate system (ρ, φ) is placed at the center
of the hole cross-section. For propagation in the y-direction,
the longitudinal TM modal functions are

ey,qm1(ρ, φ) = sin (qφ) Jq (kqmρ) (52)
and ey,qm2(ρ, φ) = cos (qφ) Jq (kqmρ) . (53)

On the other hand, the modal functions in the TE case in
cylindrical coordinates are[

ehρ,qm1

ehφ,qm1

]
=

[
− cos (qφ) q

k′qmρ
Jq
(
k′qmρ

)
sin (qφ) J ′q

(
k′qmρ

) ]
(54)

and

[
ehρ,qm2

ehφ,qm2

]
=

[
sin (qφ) q

k′qmρ
Jq
(
k′qmρ

)
cos (qφ) J ′q

(
k′qmρ

) ]
. (55)

From (4), the norm of these modes are

Ieqm =
πa2

2min(1,q)
J ′2q (pqm) , (56)

and Ihqm = − πa2

2min(1,q)
Jq
(
p′qm

)
J ′′q
(
p′qm

)
. (57)

The PMFs of (52), (53), (54) and (55) are computed in
cartesian coordinates according to (5). Introducing

C(s`)q = cos
(
q atan

[
`pz
spx

])
, S(s`)q = sin

(
q atan

[
`pz
spx

])
, (58)

and J(α) = Γ(s`)Jq+α
(
p′qm

)
Jq

(
Γ(s`)a

)
−k′qmJq

(
p′qm

)
Jq+α

(
Γ(s`)a

)
, (59)

where it is reminded that Γ(s`) =

√
(s2π/pz)

2
+ (`2π/px)

2,
then the low-frequency PMFs of the TE modes are

ē
(s`)
z,qm1 =

πa (−j)
q−1

k′2qm − Γ(s`)2

[
C(s`)q−1J(−1) + C(s`)q+1J(1)

]
, (60)

ē
(s`)
z,qm2 =

πa (−j)
q−1

k′2qm − Γ(s`)2

[
S(s`)q−1J(−1) + S(s`)q+1J(1)

]
, (61)

ē
(s`)
x,qm1 =

πa (−j)
q−1

k′2qm − Γ(s`)2

[
S(s`)q+1J(1) − S

(s`)
q−1J(−1)

]
, (62)

ē
(s`)
x,qm2 =

πa (−j)
q−1

k′2qm − Γ(s`)2

[
C(s`)q+1J(1) − C

(s`)
q−1J(−1)

]
. (63)

For the TM modes (52) and (53), the low-frequency coef-
ficients are computed for any (s, `) according to (13) as

ē
(s`)
y,qm1 =

2πpqm
jq

J ′q (pqm) Jq
(
Γ(s`)a

)
Γ(s`)2 − k2qm

S(s`)q , (64)

ē
(s`)
y,qm2 =

2πpqm
jq

J ′q (pqm) Jq
(
Γ(s`)a

)
Γ(s`)2 − k2qm

C(s`)q . (65)

APPENDIX C
DISPENSABLE MODES

Here, we show that the closed-form solution of the refractive
index (34) discloses which modes have no influence on low-
frequency propagation. A sufficient condition on the PMF of
dispensable modes is derived. In the derivation, i = e,h is
used.

When considering the vector ui in the refractive index
formula (34), for a given order m, if uim = 0, then all inverse
matrix coefficients (Σi)−1m′m disappear from (34). However,
this is not enough to completely dismiss the corresponding
mth mode. Indeed, other coefficients of

(
Σi
)−1

may be
dependent on the mth mode, due to the inverse operation.
Nevertheless, there is a sufficient condition for this mode to
be dispensable.

Let M0 be the set of all orders m0 that are dispensable.
Let M1 be the remaining orders m1 of modes that are kept.
A sufficient condition for a mode m0 to belong to M0 is

uim0
= 0 , and ∀m1 ∈M1, Σi

m0m1
= Σi

m1m0
= 0 . (66)

Condition (66) implies that m0 is dispensable. Indeed, given
that (6) requires the determinant of the dispersion matrix to
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be null, the modes can be put in an arbitrary order, meaning
that the lines and columns of Σi can be permuted at will. As
such, Σi can be rearranged such that its first rows and columns
correspond to orders in M0, whereas the remaining rows and
columns correspond to orders inM1. Given the second part of
the condition (66), the rearranged matrix is a block diagonal
matrix. Therefore, its inverse is made of the inverse of its
blocks [52, p. 123], namely

(
Σi
)−1

=

[
Σi

0 0
0 Σi

1

]−1
=

[(
Σi

0

)−1
0

0
(
Σi

1

)−1
]
, (67)

where Σi
0 and Σi

1 are the blocks of Σi that relate only to
mode orders in M0 and M1, respectively. Similarly, ui is
divided in two subvectors ui

0 and ui
1. Given the first part of

the condition (66), the product with ui yields

[ui]
H [

Σi
]−1

ui =

[
0
ui
1

]H [(
Σi

0

)−1
0

0
(
Σi

1

)−1
] [

0
ui
1

]
. (68)

As such, if (66) is satisfied, all modes with orders in M0 can
be dismissed.

a) Rectangular holes: For rectangular holes, (27) and
(50) indicate that ueqm = 0 for all TM modes where either q
or m is even. All these modes belong to M0, as they satisfy
the condition (66). Consequently, they can be dismissed when
computing the low-frequency refractive index, keeping only
TM modes where both q and m are odd.

For TE modes, considering (29),(48) and (49), one must be
more careful, because some of the modes where uhqm = 0

still have an impact on the inverse matrix
[
Σh
]−1

i.e., they
do not satisfy the second part of the condition (66). The full
conditions is satisfied only by TE modes where q+m is even
i.e., when q and m are both even or both odd.

b) Circular holes: In the case of circular holes, according
to (27), (64) and (65), ueqmt 6= 0 only for q = 0 or t = 2.
However, not all the modes where q > 0 or t = 1 satisfy the
condition (66). After considering the complete matrix Σe, all
TM modes with t = 1 are dispensable, as well as the TM
modes with q odd.

Similarly, according to (29) and (60)-(63), uhqmt = 0 when
q 6= 1. But not all these modes belong to M0: condition (66)
is only fully satisfied for TE modes where q is even. Therefore,
all TE modes with q odd are kept.
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