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ABSTRACT:

High precision triple oxygen isotope data on 40 water samples (5 to 10,923 m
depth) collected at the Challenger Deep of Mariana Trench are reported in this
study. The analyses at Laboratoire des Sciences du Climat et 'Environnement
(LSCE) yield mean isotope values 680 =—-0.084 + 0.224 %o, 'O =—-0.061 £ 0.117
%o, and 7O-excess = —17 + 5 per meg, with standard deviations reported at 1o.
The range of §'80 (—0.480 to 0.544 %o) falls within records of Global Seawater
Oxygen-18 Database at Mariana Trench. Average '"O-excess value at Mariana
Trench is more negative than the average 7O-excess value of -5 + 4 (10) per meg
in the only prior dataset including deep ocean samples. The slope (1) of the three-
isotope-plot of Mariana Trench water is 0.521 + 0.003 (10), lower than 4 of 0.528+
0.001 (10) for ocean water in the prior study. The new dataset matches the
prediction of ocean isotope mass balance model, suggesting it may represent a
more appropriate ocean endmember for triple oxygen isotope thermometry. The
70O-excess of ocean water with respect to VSMOW is recognized to be a
necessary correction in quantifying gross oxygen productivity of euphotic regions

and relative humidity of moisture source regions.

1. INTRODUCTION

Oxygen isotopic compositions are reported in delta notation’:

x0/1605ample
5o

16
xO/ Ostandard

_ 1) x 1000 Eq.(1)
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where x is 17 or 18 and 0 is reported in permil (%o).

Small 7O anomalies arise from fundamental differences between individual
mass dependent fractionation mechanisms (equilibrium vs. kinetic). The basic
theory for mass-dependent triple oxygen isotope fractionation was established
early on%3, however its application relies on high precision isotope analytical
techniques, which are recently available for minerals and water*. Novel research
related to the meteoric water cycle has been inspired by resolving differences
between equilibrium and kinetic isotope effects for water®$, to depict continental
moisture recycling’, snow formation® °, and reconstruct paleoenvironments'% 11,
The '7O-excess relevant to studies on the hydrological cycle is calculated by

Eq.(2), with a reference slope A value of 0.528'2-13 and expressed in per meg:

170 - excess = [In (1 + 6170/1000) —AIn (1 + 6'80/1000)] x 10°  Eq. (2)

To be consistent with “permil” for delta notation where “milli” is Latin origin meaning
one thousand, we use “per meg” for '7O-excess in this study since “mega” is Greek

origin meaning one million. However, “ppm” is often also used in the literature.

Conventional oxygen isotope thermometry, which draws on the information
of equilibrium oxygen isotopic signatures ('¥0/'60 ratios) between minerals and
water, has been applied to estimate temperatures in modern and past climates
and infer glacial history'#-17. Recently, triple oxygen isotope system ('80/'®O and

17Q/180 ratios) is developed to distinguish mass dependent equilibrium and kinetic

3
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processes by analyzing oxygen-bearing silicates, carbonates, sulfates,
phosphates etc. at low T environments and hydrothermal altered, igneous and
metamorphic rocks at high T environments?. The implementation of an extra
dimension to 6'®0 scale quantitatively constrains geological processes and
accurately reconstructs paleoclimate and paleoenvironment, manifested in: a)
rigorous tests of assumptions such as equilibrium in palaeothermometry; b) tests
of proposed kinetic reaction mechanisms'819; c¢) constraints of pristine oxygen
isotopic composition of water, water/rock ratio, or T in water-rock interaction??; d)
providing insights into diagenesis processes?'-?2; e) explanation of the secular

sedimentary trends?3; f) identification of effects of evaporation and aridity?-.

Well-constrained modern and ancient oxygen isotopic compositions of
ocean water serve as an anchor for wide applications in climate sciences and Earth
sciences. There’s a good amount of ocean water 6'80 records including deep
oceans?®. However, there’s a lack of triple oxygen data for ocean water, especially
from the deep oceans, inhibiting the confidence in the potential applications of
triple oxygen isotopes. A prior triple oxygen isotope study of seawater analyzed 38
water samples from the Atlantic Ocean, the Pacific Ocean, E. Mediterranean and
northern Red Sea at variable depths (2-5196 m)'3. In the current study, 40 water
samples were collected from Mariana Trench by researchers from the Deep-sea

Institute of Science and Engineering, Chinese Academy of Sciences.

2. MATERIALS AND METHODS
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Two hadal cruises R/V Xiangyanghong Jiuhao (371l) and Tansuo Yihao
(TS09) were carried out between June 2016 and September 2018. During the
cruises, a total of 22 stations, with water depths ranging from 5 to 10923 m, were
investigated from the Challenger Deep and overlying water column. Water
samples were collected in Niskin bottles from the southern (stations JL115, JL120,
JL122, JL144, JL146, 371I-CTDO1, 371I-CTDO03, 371I-CTD05), middle (stations
Dive YW17, Dive YW18, Dive YW19, Dive YW20, Dive YW21, Dive YW22, Dive
YW23, Dive WQ20, Dive WQ21, Dive WQ22, Dive WQ23, Dive WQ24 and TS09-
CTDO06) and northern (station JL150) regions of the Mariana Trench in the Western
Pacific Ocean (Figure 1, Table S1). Niskin bottles (Sea-Bird, Bellevue, WA, USA)
were attached to the Jiao Long Human Occupied Vehicle, Hadal landers
(Wangquan and Tianya), and a CTD rosette to obtain water samples. All of the
Dive samples were collected tens of centimeters above the sediment surface.
Sampling depth was recorded by the Niskin bottle CTD rosette (SeaBird SBE
19plus V2 SEACAT). Water samples were filtered onboard through a 0.22 um pore
size polytetrafluoroethylene membrane (Millipore, Massachusetts, USA)?*® and

stored at —20 °C immediately afterward until further processing.

Triple oxygen isotope analyses of water samples were carried out in June
2019 at the Laboratoire des Sciences du Climat et 'Environnement (LSCE), Gif
sur Yvette, France. The analytical procedure of CoF; fluorination of water followed

by the measurement of product O, with a ThermoScientific MAT 253 gas source
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isotope ratio mass spectrometer is described in Landais et al.?” Water samples
were analyzed in duplicates. Three in-house standards were fluorinated and
measured along with three international standards (VSMOW2, GISP2, SLAP2).
Triple oxygen isotope values are normalized to SMOW2/SLAP2 scale (Table 2)28.
Uncertainties for 680, 6'70, and 7O-excess are 0.020 %o, 0.015 %o, and 6 per meg
respectively, derived from 1o standard deviations of replicate samples. The

uncertainties derived from repeated standards are smaller.

3. RESULTS

The 6'80 values vary from —0.480 to 0.544 %o, 6'7O values vary from —0.267
to 0.270 %o, and '"O-excess values range from —29 to —6 per meg for water
samples in this study (Table 1, Figure 2). No apparent depth variations are
observed except for relatively low 7O-excess down to —29 per meg at 5-7 km and
more variable §'80 and §'70 at ~11 km than at shallower depths. In the three-
isotope plot, our data define a slope A= 0.521+0.003 (10) (Figure 3A). In contrast,
the dataset of Luz and Barkan'? yields slopes A= 0.521+0.010 (10) for 16 Pacific
deep waters (500-5196 m) (Figure 3B), A= 0.531+0.004 (1 0) for 14 Atlantic surface
waters (0-2 m) (Figure 3C), and A= 0.528+0.001 (10) for all samples (Figure 3D).
The three-isotope plots are generated by MATLAB_R2021a, Natick,
Massachusetts: The MathWorks Inc., slopes and the 1o standard errors of linear

least square fits are calculated by JMP®, Version <716>. SAS Institute Inc., Cary,

NC, 1989-2021.
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Our data fall within the range of §'80 from Global Seawater Oxygen-18
Database?® 2%-30 in vicinity of our sampling locations (-0.3 to 0.87 %o and one

sample of 2.8 %o, Table S2).

In order to evaluate how triple oxygen isotopic compositions of water
samples varied over the large depth range in this study, we binned our data into
varying depth ranges (Table S3) and compared those average values to the un-
binned averages. The results do not reveal an obvious depth-dependent structure
to the isotopic measurements, so we applied simple average '80, 'O, and 7O-
excess values —0.084 + 0.224 (1) %o, —0.061 + 0.117 (10) %0 and —17 £ 5 (10) per

meg throughout this study.

The average 7O-excess value of —17 + 5 per meg from this study is more
negative than -5 + 4 (15) per meg from Luz and Barkan'3. While there are potential
analytical biases, we expect these to be significantly smaller than the difference in
mean values reported here (discussed below). Therefore, the differences in 7O-
excess from this study and the prior study are likely to be environmentally
meaningful in using triple oxygen isotopes as a tracer of physical processes in the

ocean.

4. DISCUSSION

There are analytical challenges in water fluorination and triple oxygen

isotope measurement, which may result in significant inter-laboratory offsets of
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70O-excess'!. For O, analytes, the lower abundance of 17O relative to 0 and 80O
may result in the larger scaling of 7O-excess values and this pressure baseline
(PBL) effect worsens as the difference in isotope compositions between sample
and reference gas increases?'. Wostbrock et al.3? found no PBL effect in analyzing
two gases with 5'80 values differ by 25 %o at 3, 5, 10 V intensities of m/z 32, thus
suggested that the artifact is instrument-specific. This PBL effect was not
evaluated at LSCE. However, scale distortion should have a negligible effect on
the '7O-excess values of ocean water for it is close to VSMOW in isotopic
composition. Potential interlaboratory difference in 77O-excess may also arise from
different standardization regimes. Isotope values from this study are normalized to
VSMOW?2/SLAP2 scale, whereas Luz and Barkan'® chose not to normalize their
isotope values to the VSMOW/SLAP scale but instead recorded a 0.4 %o difference
between their measured and consensus values of 680 of SLAP. As potential
analytical biases are small compared to the differences between this dataset and
that of Luz and Barkan'3, we believe these differences represent real
environmental variations. Thus we further interpret our data and discuss potential

applications.

Oxygen isotope fractionation exponent, 6, is defined by Eq. (3):

InYa

0=, Eq. (3)
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where «is the oxygen isotope fractionation factor. For liquid-vapor equilibrium, ¢ v
is defined by Eq. (4):

(0/*0),

x =
Co/'0)y

ap_y Eq. (4)

where xis 18 or 17.

We compare the slope (A1) of the three-isotope plot of data from this study
and those from the study of Luz and Barkan'3 to the @values characterizing distinct
processes. The A may represent multiple processes while @represents a specific
process? and A is replaceable by @ for equilibrium or reproducible kinetic isotope

fractionations33.

The isotopic composition of Mariana Trench waters reflects their source
waters in the surface ocean, and subsequent physical processes during water
mass transport. The oxygen isotope fractionation slopes for liquid-vapor
equilibrium of water at air-sea interface and water liquid-liquid self-diffusion
endmembers are discussed briefly below. We demonstrate that the slope of three-
isotope plot for the measured Mariana Trench waters is intermediate between

those expected process endmembers.

4.1 PROCESSES AT OCEAN SURFACE
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Oxygen isotope mass balance of open-ocean surface water can be
described by Craig-Gordon model with recharge, discharge, and evaporation34-37,
The air-sea interface is characterized by liquid-vapor equilibrium of water. Triple
oxygen isotope exponent 6,,=0.529+0.001 (1c) was experimentally determined for
liquid-vapor equilibrium of water from 11.4 to 41.5 °C5. It is very close to 0.530
calculated based on quantum statistical mechanics and ~0.529 calculated based
on vapor pressure isotope effects in condensed systems38-3°. The 6., between
liquid water/ice and water vapor has extremely small temperature dependence of
~4x10% K1 over the range of —20 to +20 °C39. Over the temperature range —25 to
40 °C, the slope A value that characterizes Rayleigh distillation and rainout process
is 0.527-0.5296. 1213 glightly higher at warmer temperatures and slightly lower at
cooler temperatures?’. At a sea surface temperature of 10 °C, the equilibrium
fractionation factor 8¢eq=1.01073° and 6.,=0.529 translate into A=("7 cteq—1)/('3 dteq—
1)=0.528 for Rayleigh distillation®. Atlantic surface water sample subset from Luz
and Barkan'3 exhibits a 4 of 0.531+£0.004 (Figure 3C), suggesting near-equilibrium
exchange at Atlantic ocean surface.

4.2 PROCESSES IN OCEAN INTERIOR

Advection, molecular diffusion, and turbulent diffusion are major processes
in ocean interior regulating seawater masses. Turbulent mixing in the interior of
the ocean is produced by planetary Rossby waves, mesoscale eddies (generated

by baroclinic instability slumping the horizontal density gradient), and internal

10
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waves (generated by winds and tides)*'*2. Molecular diffusion including
concentration/chemical diffusion (self-diffusion for chemically identical species)
and Soret diffusion can be driven by small-scale variabilities in salinities and

temperatures, respectively*3-44.

Self-diffusion coefficient (D) of liquids is predicted by kinetic gas theory45-47.
For self-diffusion of water, the relevant exponent & has a value of 0.514 based on

the ratios of self-diffusivities (Eqs.S1-2).

For vertical eddy diffusion, Fick’s first law can be applied as the ocean is
generally vertically stratified with large concentration gradients with depth?.
Theoretically, kinetic isotope effect of Fick’s diffusion is given by the kinetic mass-
dependent fractionation law as Eq.(S3)3. The ¢ value of 0.516 is calculated by
Eq.(S3) with atomic masses of oxygen, while 4=0.514 using molecular masses of

water4,

4.3 OBSERVATION AT MARIANA TRENCH

The observed 1=0.521+0.003 (10) for Mariana Trench waters and A=
0.52110.001 (10) for Pacific deep waters from Luz and Barkan'?® (Figure 3) imply
that the interior ocean processes modify signals from the surface ocean with
6:q=0.529%0.001(10) and is consistent with additional diffusion and its associated
kinetic fractionation along the interior flow path. Other than intrinsic kinetic

processes, water mass of the deep Mariana Trench is originated from upwelling of

11
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the southern Circumpolar Deep Water%°, and kinetic isotope effect associated with

diffusion process was found to be present with sea-ice formation at Antarctica®.

While the direction of depletion in the Mariana samples is suggestive,
1=0.521 from our dataset (0.515 to 0.527, 95%CI) cannot be conclusively
distinguished from the other empirical and theoretical slopes, including for the
kinetic (6 =0.514 and/or 0.516) or equilibrium (6,4=0.529, 0.527 to 0.531 95%Cl)
fractionation, or the prior world ocean dataset (1=0.528, 0.526 to 0.530 95%Cl).
Combining Pacific deep water subset'® with Mariana waters, the average '7O-
excess is =138 (10) per meg. Combing world ocean data'’?® with Mariana waters,
the average 7O-excess is —11%8 (10) per meg.

Diapycnal mixing of different water masses has been known for ocean
bodies?5 and can explain the range of isotope values observed in depth profiles
(Figure 2). Plotting our data and W.Pacific data from the Global Seawater Oxygen-
18 Database?® (Figure 4), we can infer the mixing of Circumpolar Deep Water
(CPDW) including AABW (Antarctic Bottom Water, with 6'®0 of ~-0.6 %o and
salinity of ~34.65 g/kg) and AAIW (Antarctic Intermediate Water, with 5'80 of ~—
0.3 %o and salinity of ~34.2 g/kg) into the Pacific Ocean originally described by Big
and Rohling?®. The apparent variability in the bottom ocean waters may have to do
with higher sampling density and we may observe similar variability in the more

abundantly sampled upper ocean waters.

12
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We present the first published deep ocean profiles of the triple oxygen
isotopic composition of seawater. These reveal previously unmeasured 7O
depletions at depth that may imply a different bulk composition of water on Earth
than implied by the upper ocean and meteorological measurements to date. The
novel dataset allows scientists to test underlying assumptions for the interpretation
of triple oxygen isotopes in a number of applications. Specific implications for the

measured values are detailed in the next section.

5. APPLICATIONS

5.1 TRIPLE OXYGEN ISOTOPE THERMOMETRY

Traditional dual oxygen isotope thermometers were calibrated at various
temperature ranges for carbonates, silicates, oxides, hydroxides, phosphates,
sulfates, and salts between mineral phases and between minerals and waters,
based on experimental, empirical, and theoretical methods'* 17- 52, In the recent
years, triple oxygen isotope fractionation factors between silicates, carbonates,
phosphates, sulfates and water were computed theoretically and calibrated
experimentally and empirically?? 38 53-57 and applied in triple oxygen isotope
thermometers for Earth surface and low-T hydrothermal environments%8-5°. Our
study provides isotope values of the seawater endmember for many marine

mineral-water equilibrium systems.

Mineral-water equilibrium is given by Eq. (5)%2:

13
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ax10® bx103
?-'_?-I-C

170 —excessminerar = 1000[Y7 0 —excess,yater + (

(05305 —7— )] Eq. (5)

where a, b, ¢, ¢ are constants and 1=0.528. The original equation uses “A"7Q”

terminology, however we use “170O-excess” for consistency.

For silicate-seawater equilibrium, a=4.28, b=-3.5, ¢=0, &1.85%. A chert
sample from Horizon Guyot, Pacific Ocean (168°52.3'W, 10°28.0'N, 1700 m water
depth) has a '70O-excess=—161 per meg®3. The "O-excess of 0, -5 per meg'3, and
—17 per meg (this study) of seawater with respect to VSMOW give temperature
estimations of 12, 14, and 20 °C, respectively, based on Eq. (5). For comparison,
the calculated temperature based on measured quartz-water fractionation factor

&"®Oquartz-water is 17 °C in the original study®3.
5.2 OCEAN ISOTOPE MASS BALANCE MODEL

A classic ocean isotope mass balance model was constructed by
Muehlenbachs and Clayton®® which demonstrated that oxygen isotopic
composition of ocean water has not changed in the phanerozoic. It was recently
expanded to include 70/160 ratio®'-62, Oxygen isotopic compositions of seawater
on a global scale are controlled by processes such as high-temperature alteration
of oceanic crust, low-temperature alteration of oceanic crust, continental

weathering, continental growth, and mantle recycling. Isotope-mass-balance

14
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calculations by Sengupta and Pack®? yielded a steady state after 2.6x108 years
with 6'80=-0.36+0.5 %0 and '"O-excess=-17+12 per meg for a modern ice-free
world. The 6'80 for modern world is about 1 %o. more positive than that of the ice-
free world®3, and the '7O-excess for modern world is about 1 per meg more
negative than that of the ice-free world®2. In order to achieve 7O-excess =—4 per
meg for the modern ice-free world ('7O-excess = -5 per meg of the modern world,
correspondingly), high-T ocean floor alteration flux would have to be lowered by
40 % or the continental weathering flux would have to be increased by 75 %, or a
combination of 25 % lower high-T ocean floor alteration flux and 25 % higher
continental weathering flux given by Muehlenbachs®. Thus, results from this study
with 70-excess= —17+5 per meg support the ocean isotope mass balance model
without quantitatively changing the major fluxes. While Sengupta and Pack®?
model used 1=0.5305, the ocean endmember recalculated with 1=0.528 is '7O-

excess=—18+12 per meg, again consistent with our observations.

5.3 RELEVANCE TO GROSS OXYGEN PRODUCTIVITY

Photosynthetic O, has an isotopic composition similar to the source water
and tropospheric O, is anomalously depleted in 7O due to O3 and CO,
photochemistry in the lower stratosphere. Mixed layer gross oxygen productivity
(GOP) can be estimated by mass balance equation that account for relative
contribution of these two end-members®>. Observation of this natural tracer '7A of

dissolved O, in the mixed layer to constrain marine productivity has been

15
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throughout the global ocean®. The ratio of GOP to gross Air-O, invasion, g, is

calculated by dual-delta method as Eq. (6)57-6°:

17 18
5175 5185

sat
(14 Yep) Ty yr(1 + Bep) ST s(Mep —yr'ep)

g= 17 18 (6)

17 18
sp—17s 5p—185

sat

— VR

1+17 1+185

where 6, dsat, S refer to the dvalues of dissolved O, dissolved O at air saturation,
and photosynthetic O,, respectively, with respect to Air-O,, & is kinetic
fractionation in evasion from sea to air and s is relative supersaturation of dissolved
O,. The '85:4=0.707 %o, ""52=0.382 %o, '"&5=—1.463 %o, '85:=—2.800 %o. The
1==0.5179 characterizes respiratory fractionation. Photosynthetic process is
characterized by small isotope fractionation from source water. Taking '85y=—
23.647 %o and 7 5,=—12.107 %o of ocean water with respect to Air-O,, accounted
for the 5 per meg lower '7O/'®0O of ocean water compared to VSMOW,
photosynthetic O, has 185=—19.625 %o and 17 5=-9.980 %o, the average of a
strain of cyanobacterium and four phytoplankton species®. Using a dataset of
triple oxygen isotope measurements in the Southern Ocean’®, assuming
S=5Spio=A(O,/Ar) from the dataset, our calculation yielded similar results as Kaiser
and Abe®® (Figure 5). If accounting for the 17 per meg lower '70/'®0 of ocean water
compared to VSMOW from this study (taking as bulk ocean value), average

185=—19.625 %o and 7 5=—9.997 %o (the corresponding "O-excess=218

per meg calculated at A=0.5179 is closer to incubation experimental value of ~210
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per meg’'), g values are relatively smaller at the same §'80 and the differences
are more prominent at higher g values (Figure 5).

In the recent years, it is observed that the mixed layer has a component of
70-enriched O, accumulated in the less vented thermocline by either entrainment
of water or vertical turbulent flux from the thermocline, which results in an
overestimation of mixed layer GOP7278, Wurgaft et al.”* added a term for GOP
contribution from beneath the mixed layer to a simplified form of Eq.(6). Haskell et
al.”® divided the euphotic regions into mixed layer and below-mixed-layer (BML)
and constructed similar equations with GOP of the mixed layer influenced by the
BML, and GOP of BML influenced by the deep water column below the euphotic
depth. An implication of the results from this study is that deeper water may have
a different isotopic composition as surface water, thus isotopic compositions of
photosynthetic O, may differ in each layer, impacting the quantification of GOP in
euphotic regions including mixed layer and BML.

Isotopic compositions of water endmember is crucial for accurate estimation
of GOP and should be analyzed more prevalently by modern techniques such as
laser spectroscopy.

5.4 RELEVANCE TO PALEO-HUMIDITY STUDIES

The 7O-excess value of vapor and precipitation has been used as a unique
quantitative tracer for the relative humidity in oceanic moisture source regions and

thus a useful proxy for hydrology and paleoclimatology'® 7982, Convection and
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snow formation overprinting '7O-excess signature from ocean source regions are

reported for our complex nature® ° 83,

In the example below, we estimate kinetic fractionation factor for the
interfacial layer between sea surface and the atmosphere ('8ays), from the
correlation between 7O-excess and relative humidity of modern ocean. The agiis
applied to study paleo-humidity!" and is an important parameter in evaporation

models’.

The 7O-excess value of marine vapor is given by Eq. (7):

17

Eq. (7)

In Eq. (7), the '7O-excess of marine vapor is defined with respect to ocean
water, rather than VSMOW. Luz and Barkan'? took '7O-excess of ocean waters at
0-5390 m depth as 7O-excess of bulk ocean water relative to VSMOW for this
correction. Although our data mostly represent deep water, there’s no significant
depth variation and we cannot differentiate the A value of Mariana Trench data
from that of surface equilibrium or that of Luz and Barkan'?® at 95% confidence
level. Therefore our data may represent bulk ocean isotopic composition and may

also be suitable for studies of humidity at moisture source region.
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In Eq. (7), the exponent 6,,=0.529 is associated with equilibrium liquid
water-water vapor fractionation and 6;#=0.518 is associated with water vapor
diffusion into air. At a sea surface temperature of 10 °C, the equilibrium
fractionation factor 8¢, equals 1.01073%0. The "Bayy is estimated by fitting the
right side of Eq. (7) to the left side, measured '7O-excess of marine vapor over the
Southern Ocean’®. Samples with h,>80% are excluded for the same reasoning
(giving less errors in 8ay) as in the original study. Luz and Barkan'3 obtained a
Bagir=1.009 (RMSE=7.9 per meg) applying an average "Oeycess Of —5 per meg of
seawater with respect to VSMOW to each '"O-excess datum of marine vapor
measured with respect to VSMOW. Taking the similar approach with the average
7Qexcess=—17 per meg of Mariana Trench waters from this study, the best-fit value
is Bayir=1.0122 (RMSE=9 per meg) (Figure 6), in comparison to "®ag=1.008
taking seawater as VSMOW??, and "8gyus=1.005 based on wind tunnel
experiments®. If we apply seawater "Ogycess=14 per meg, with respect to
VSMOW, from 12 samples at 5-3000 m depth in this study, "8ay=1.0115

(RMSE=9 per meg).

The 8ayi spans the whole range from 1 (pure turbulent transport) to 1.0319
(pure molecular diffusion)3% 84 85 Kinetic fractionation factor "®agyr=1.014 of water
vapor diffusion into air is commonly used for lake systems?. Our estimations of

By of 1.0122 and 1.0115 based on Southern Ocean marine vapor data reflect
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differential contributions of turbulence and molecular diffusion. Those are choices

to estimate paleo-humidity with ice cores™.

6. CONCLUSIONS

Forty Mariana Trench water samples collected at 5-10923 m were analyzed
at LSCE, France. 1=0.521 + 0.003 (10) for Mariana Trench water samples is
consistent with surface equilibrium isotope signals modified by kinetic processes
in the ocean interior and sea-ice formation at the deep water source region: circum-
Antarctica. The 7O-excess=—17+5 per meg (10) from this new dataset is notably
lower than that of the global database of Luz and Barkan'3, mostly from shallower
depths at Eastern Pacific and Atlantic. The observation of 7O-excess at Mariana
Trench matches predicted ocean '7O-excess value by ocean isotope mass
balance model. Given the geographically constrained sampling in this study, the
consistency between our observation and model prediction should be further
tested and confirmed across deep ocean basins. Such an effort is justified because
ocean water triple oxygen isotopic compositions are important for the application
of triple oxygen isotope thermometry, quantification of gross oxygen productivity

in euphotic regions and relative humidity in oceanic moisture source regions.
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Figure 1. Bathymetry map and location of the sampling sites at the Mariana Trench. Red dot in A represents sampling site

that is further detailed in B.
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Figure 2. Depth profiles of seawater 580 (A), 570 (B), 1’O-excess (C) at Mariana Trench in this study, plotted with data
from Global Seawater Oxygen-18 Database records at Mariana Trench?® (reproduced from Schmidt G.A., Bigg G.R.,
Rohling E.J., 1999, "Global Seawater Oxygen-18 Database - v1.22", https://data.giss.nasa.gov/o18data/), and data from
world oceans in Luz and Barkan?s.

ACS Paragon Plus Environment



oNOYTULT D WN =

570 (%o)

570 (%o)

ACS Earth and Space Chemistry

1.5 T T T T T 1.5 T T T T T
5"70=0.5215"%0-0.017 §"70=10.5215"%0 - 0.004
1F 1+
0.5 r__o 0.5+
B
® Mariana Trench .
0r Least square fit 0 *+  Deep Pacific T
Least square fit
(A) (B)
_0.5 1 1 1 L _05 1 1 1 L 1
-0.5 0 0.5 | 1.5 2 2.5 -0.5 0 0.5 1 1.5 2 2.5
]..5 T T T T T 1.5 ¥ T T
570 =10.5316"%0 - 0.008 5"'70=10.528'"%0 - 0.005
1F 1+
0
S
05F o005
=
o
0 Surface Atlantic | ot ¢ World oceans i
Least square fit Least square fit
© D)
-0.5 : : : ! : -0.5 . . . . 1
-0.5 0 0.5 1 1.5 2 2.5 -0.5 0 0.5 1 1.5 2 2.5
5130 (%o) 580 (%o)
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Table 1. Triple oxygen isotopic compositions of Mariana Trench water samples.

Sample Latitude (N) | Longitude (E) | Depth (m) | 880 (%0) | 87O (%) 70-excess (per meg)
3711-CTD05-5m 10°51.875' 141°53.963’ 5 —0.049 —0.040 -14
3711-CTD05-1000m 10°51.875' 141°53.963’ 1000 0.005 -0.013 -15
3711-CTD05-2000m 10°51.875' 141°53.963’ 2000 -0.104 -0.075 =20
3711-CTD05-3000m 10°51.875' 141°53.963' 3000 -0.480 —0.267 -13
3711-CTD05-4000m 10°51.875' 141°53.963’ 4000 0.072 0.024 -14
3711-CTD05-5000m 10°51.875' 141°53.963’ 5000 0.039 0.006 -14
3711-CTD05-5900m 10°51.875' 141°53.963' 5900 —0.263 -0.155 -16
3711-CTD01-50m 10°52.178' 141°55.451' 50 -0.028 —0.031 -16
3711-CTD01-500m 10°52.178' 141°55.451' 500 0.234 0.106 =17
3711-CTD01-1000m 10°52.178' 141°55.451' 1000 -0.251 -0.143 -10
3711-CTD01-2000m 10°52.178' 141°55.451' 2000 —0.229 -0.135 -14
3711-CTD01-4000m 10°52.178' 141°55.451' 4000 -0.166 —0.109 22
3711-CTD03-1200m 10°50.480' 141°57.101’ 1200 —0.478 —0.258 —6
3711-CTD03-2100m 10°50.480' 141°57.101' 2100 -0.260 -0.153 -16
3711-CTD03-3000m 10°50.480' 141°57.101' 3000 -0.163 -0.100 -14
3711-CTD03-4000m 10°50.480' 141°57.101’ 4000 0.309 0.146 =17
3711-CTD03-4500m 10°50.480' 141°57.101' 4500 —0.206 -0.124 -16
3711-CTD03-5400m 10°50.480’' 141°57.101' 5400 0.010 -0.018 =23
JL115 10.85097° 141.9537° 5497 0.071 0.016 22
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JL120 10.5824° 141.8796° 6717 0043 | —0.032 10
122 10.8976° 142.2218° 6140 0.168 | 0073 16
JL144 10.8889° 142.2289° 6560 0.002 | —0.021 22
JL146 10.9166° 141.6984° 6539 0.065 | 0.008 26
JL150 11°34.850° | 141°52.930 6479 0431 | —0.237 9
Dive-YW17 11°10.7160' | 142°06.1020° 9320 0303 | 0.137 23
Dive-YW18 11°19.9844' | 142°12.4887' | 10910 | —0.024 | —0.034 21
Dive-YW19 11°10.0844' | 142°12.4887' | 10901 | -0395 | —0.226 17
Dive-YW20 11°20.0742' | 142°12.9313' | 10912 | —-0.077 | —0.059 _18
Dive-YW21 11°19.5011' | 142°10.7433' | 10902 | —0.004 | —0.012 ~10
Dive-YW22 11°19.8720' | 142°12.0900' | 10920 0082 | 0031 12
Dive-YW23 11°22.3440' | 142°35.7284' | 10922 | —0.083 | —0.060 16
Dive-WQ20 11°19.6882' | 142°11.5436' | 10910 | —0215 | —0.125 12
Dive-WQ21 11°20211' | 142°13.034' 10910 | -0.180 | -0.112 17
Dive-WQ22 11°19.9865' | 142°11.9294’ | 10908 0544 | 0270 _17
Dive-WQ23 11°20.3824' | 142°12.3219' | 10910 | -0.351 | —0.202 17
Dive-WQ24 11°20.1566' | 142°12.6868' | 10923 | —-0249 | —0.146 15
TS09-CTDO6-500M | 10c0 7840" | 140720 400" 500 0,097 | —0.068 17
TS09-CTD06-4500m | 10°50.7840" | 140°20.400’ 4500 | -0018 | —0.027 17
TS09-CTDO06-5400m | 10°50.7840' | 140°20.400' 5400 0016 | -0.020 29
TS09-CTD06-5800m | 10°50.7840" | 140°20.400’ 5800 | -0.443 | —0.255 21
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3'%0 (%o) rel. 870 (%o) rel. 70-excess (per | 830 (%o0) 80 (%0) VSMOW?2/SLAP2 | '70O-excess (per
VSMOW2 VSMOW2 meq) rel. VSMOW2/SLAP2 | norm. meg) VSMOW2/SLAP2
VSMOW?2 norm. norm.
EPBS8 —7.383 -3.89 15 —7.45 -3.926 15
HAWAI-1 0.516 0.272 0 0.521 0.275 0
VSMOW2 0 0 0 0 0 0
SLAP2 -55.001 —29.426 2 —-55.5 —29.6989 0
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