

Triple Oxygen Isotopic Compositions of Ocean Water from the Mariana Trench

Ying Lin, Nanping Wu, Kaiwen Ta, Amaelle Landais, Xiaotong Peng

▶ To cite this version:

Ying Lin, Nanping Wu, Kaiwen Ta, Amaelle Landais, Xiaotong Peng. Triple Oxygen Isotopic Compositions of Ocean Water from the Mariana Trench. ACS Earth and Space Chemistry, 2021, 5 (11), pp.3087-3096. 10.1021/acsearthspacechem.1c00187 . hal-03427784

HAL Id: hal-03427784 https://hal.science/hal-03427784v1

Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Triple oxygen isotopic compositions of ocean water from Mariana Trench

Journal:	ACS Earth and Space Chemistry
Manuscript ID	sp-2021-001872.R3
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Lin, Ying; Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Luhuitou Road No. 28, Sanya, Hainan 572000, China, Wu, Nanping; Chinese Academy of Sciences, Ta, Kaiwen; Sanya Institute of Deep-sea Science and Engineering Chinese Academy of Sciences Landais, Amaelle; LSCE Peng, Xiaotong; Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Deep Sea Research Department

SCHOLARONE[™] Manuscripts

2 3		
4 5 6	1	Triple oxygen isotopic compositions of ocean water from Mariana
7 8	2	Trench
9 10 11 12	3	
13 14 15 16	4	Ying Lin ^{1,2,*} , Nanping Wu ^{1*} , Kaiwen Ta ¹ , Amaelle Landais ³ , Xiaotong Peng ¹
17 18	5	¹ Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences,
20 21	6	Sanya, Hainan, China 572000
22 23 24	7	² Department of Earth and Planetary Sciences, University of California, Riverside,
25 26 27	8	CA 92521
28 29 30	9	³ Laboratoire des Sciences du Climat et l'Environnement, UMR 8212, IPSL,
31 32 33	10	CEA/CNRS/UVSQ, 91190 Gif sur Yvette, France
34 35 36	11	
37 38 39	12	*Ying Lin, Nanping Wu
40 41 42	13	Email: yinglin@ucr.edu, wunp@idsse.ac.cn
43 44 45 46	14	
47 48 49	15	Keywords: Mariana Trench, Triple Oxygen Isotopes, Isotope Thermometry,
50 51 52	16	Ocean Isotope Mass Balance Model, Gross Oxygen Productivity
53 54 55 56 57 58		1
59		

ABSTRACT:

High precision triple oxygen isotope data on 40 water samples (5 to 10.923 m depth) collected at the Challenger Deep of Mariana Trench are reported in this study. The analyses at Laboratoire des Sciences du Climat et l'Environnement (LSCE) yield mean isotope values $\delta^{18}O = -0.084 \pm 0.224$ ‰, $\delta^{17}O = -0.061 \pm 0.117$ ‰, and ¹⁷O-excess = -17 ± 5 per meg, with standard deviations reported at 1σ . The range of $\delta^{18}O$ (-0.480 to 0.544 ‰) falls within records of Global Seawater Oxygen-18 Database at Mariana Trench. Average ¹⁷O-excess value at Mariana Trench is more negative than the average ¹⁷O-excess value of -5 ± 4 (1 σ) per meg in the only prior dataset including deep ocean samples. The slope (λ) of the three-isotope-plot of Mariana Trench water is 0.521 ± 0.003 (1 σ), lower than λ of $0.528 \pm$ 0.001 (1 σ) for ocean water in the prior study. The new dataset matches the prediction of ocean isotope mass balance model, suggesting it may represent a more appropriate ocean endmember for triple oxygen isotope thermometry. The ¹⁷O-excess of ocean water with respect to VSMOW is recognized to be a necessary correction in quantifying gross oxygen productivity of euphotic regions and relative humidity of moisture source regions.

1. INTRODUCTION

Oxygen isotopic compositions are reported in delta notation¹:

$$\delta^{x}O = \left(\frac{{}^{x}O/{}^{16}O_{sample}}{{}^{x}O/{}^{16}O_{standard}} - 1\right) \times 1000$$
 Eq.(1)

37 where *x* is 17 or 18 and δ is reported in permil (‰).

Small ¹⁷O anomalies arise from fundamental differences between individual mass dependent fractionation mechanisms (equilibrium vs. kinetic). The basic theory for mass-dependent triple oxygen isotope fractionation was established early on²⁻³, however its application relies on high precision isotope analytical techniques, which are recently available for minerals and water⁴. Novel research related to the meteoric water cycle has been inspired by resolving differences between equilibrium and kinetic isotope effects for water⁵⁻⁶, to depict continental moisture recycling⁷, snow formation^{8, 9}, and reconstruct paleoenvironments^{10, 11}. The ¹⁷O-excess relevant to studies on the hydrological cycle is calculated by Eq.(2), with a reference slope λ value of 0.528¹²⁻¹³, and expressed in per meg:

48
$${}^{17}O - excess = [\ln(1 + \delta^{17}O/1000) - \lambda \ln(1 + \delta^{18}O/1000)] \times 10^6$$
 Eq. (2)

To be consistent with "permil" for delta notation where "milli" is Latin origin meaning one thousand, we use "per meg" for ¹⁷O-excess in this study since "mega" is Greek origin meaning one million. However, "ppm" is often also used in the literature.

52 Conventional oxygen isotope thermometry, which draws on the information 53 of equilibrium oxygen isotopic signatures (¹⁸O/¹⁶O ratios) between minerals and 54 water, has been applied to estimate temperatures in modern and past climates 55 and infer glacial history¹⁴⁻¹⁷. Recently, triple oxygen isotope system (¹⁸O/¹⁶O and 56 ¹⁷O/¹⁶O ratios) is developed to distinguish mass dependent equilibrium and kinetic

analyzing oxygen-bearing silicates, carbonates, bv sulfates, processes phosphates etc. at low T environments and hydrothermal altered, igneous and metamorphic rocks at high T environments⁴. The implementation of an extra dimension to $\delta^{18}O$ scale quantitatively constrains geological processes and accurately reconstructs paleoclimate and paleoenvironment, manifested in: a) rigorous tests of assumptions such as equilibrium in palaeothermometry; b) tests of proposed kinetic reaction mechanisms¹⁸⁻¹⁹; c) constraints of pristine oxygen isotopic composition of water, water/rock ratio, or T in water-rock interaction²⁰; d) providing insights into diagenesis processes²¹⁻²²; e) explanation of the secular sedimentary trends²³; f) identification of effects of evaporation and aridity²⁴.

Well-constrained modern and ancient oxygen isotopic compositions of ocean water serve as an anchor for wide applications in climate sciences and Earth sciences. There's a good amount of ocean water δ^{18} O records including deep oceans²⁵. However, there's a lack of triple oxygen data for ocean water, especially from the deep oceans, inhibiting the confidence in the potential applications of triple oxygen isotopes. A prior triple oxygen isotope study of seawater analyzed 38 water samples from the Atlantic Ocean, the Pacific Ocean, E. Mediterranean and northern Red Sea at variable depths (2-5196 m)¹³. In the current study, 40 water samples were collected from Mariana Trench by researchers from the Deep-sea Institute of Science and Engineering, Chinese Academy of Sciences.

77 2. MATERIALS AND METHODS

Two hadal cruises R/V Xiangyanghong Jiuhao (37II) and Tansuo Yihao (TS09) were carried out between June 2016 and September 2018. During the cruises, a total of 22 stations, with water depths ranging from 5 to 10923 m, were investigated from the Challenger Deep and overlying water column. Water samples were collected in Niskin bottles from the southern (stations JL115, JL120, JL122, JL144, JL146, 37II-CTD01, 37II-CTD03, 37II-CTD05), middle (stations) Dive YW17, Dive YW18, Dive YW19, Dive YW20, Dive YW21, Dive YW22, Dive YW23, Dive WQ20, Dive WQ21, Dive WQ22, Dive WQ23, Dive WQ24 and TS09-CTD06) and northern (station JL150) regions of the Mariana Trench in the Western Pacific Ocean (Figure 1, Table S1). Niskin bottles (Sea-Bird, Bellevue, WA, USA) were attached to the Jiao Long Human Occupied Vehicle, Hadal landers (Wangguan and Tianya), and a CTD rosette to obtain water samples. All of the Dive samples were collected tens of centimeters above the sediment surface. Sampling depth was recorded by the Niskin bottle CTD rosette (SeaBird SBE 19plus V2 SEACAT). Water samples were filtered onboard through a 0.22 μ m pore size polytetrafluoroethylene membrane (Millipore, Massachusetts, USA)²⁶ and stored at -20 °C immediately afterward until further processing.

Triple oxygen isotope analyses of water samples were carried out in June 2019 at the Laboratoire des Sciences du Climat et l'Environnement (LSCE), Gif sur Yvette, France. The analytical procedure of CoF_3 fluorination of water followed by the measurement of product O_2 with a ThermoScientific MAT 253 gas source

99 isotope ratio mass spectrometer is described in Landais et al.²⁷ Water samples 100 were analyzed in duplicates. Three in-house standards were fluorinated and 101 measured along with three international standards (VSMOW2, GISP2, SLAP2). 102 Triple oxygen isotope values are normalized to SMOW2/SLAP2 scale (Table 2)²⁸. 103 Uncertainties for δ^{18} O, δ^{17} O, and ¹⁷O-excess are 0.020 ‰, 0.015 ‰, and 6 per meg 104 respectively, derived from 1 σ standard deviations of replicate samples. The 105 uncertainties derived from repeated standards are smaller.

3. RESULTS

The δ^{18} O values vary from -0.480 to 0.544 ‰, δ^{17} O values vary from -0.267 to 0.270 ‰, and ¹⁷O-excess values range from –29 to –6 per meg for water samples in this study (Table 1, Figure 2). No apparent depth variations are observed except for relatively low ¹⁷O-excess down to –29 per meg at 5-7 km and more variable δ^{18} O and δ^{17} O at ~11 km than at shallower depths. In the threeisotope plot, our data define a slope λ = 0.521±0.003 (1 σ) (Figure 3A). In contrast, the dataset of Luz and Barkan¹³ yields slopes λ = 0.521±0.010 (1 σ) for 16 Pacific deep waters (500-5196 m) (Figure 3B), λ = 0.531±0.004 (1 σ) for 14 Atlantic surface waters (0-2 m) (Figure 3C), and $\lambda = 0.528 \pm 0.001$ (1 σ) for all samples (Figure 3D). The three-isotope plots are generated by MATLAB R2021a, Natick. Massachusetts: The MathWorks Inc., slopes and the 1σ standard errors of linear least square fits are calculated by JMP[®], Version <16>. SAS Institute Inc., Cary, NC, 1989–2021.

120 Our data fall within the range of δ^{18} O from Global Seawater Oxygen-18 121 Database^{25, 29-30} in vicinity of our sampling locations (-0.3 to 0.87 ‰ and one 122 sample of 2.8 ‰, Table S2).

123 In order to evaluate how triple oxygen isotopic compositions of water 124 samples varied over the large depth range in this study, we binned our data into 125 varying depth ranges (Table S3) and compared those average values to the un-126 binned averages. The results do not reveal an obvious depth-dependent structure 127 to the isotopic measurements, so we applied simple average δ^{18} O, δ^{17} O, and 17 O-128 excess values $-0.084 \pm 0.224 (1\sigma) \%$, $-0.061 \pm 0.117 (1\sigma) \%$ and $-17 \pm 5 (1\sigma)$ per 129 meg throughout this study.

The average ¹⁷O-excess value of -17 ± 5 per meg from this study is more negative than -5 ± 4 (1 σ) per meg from Luz and Barkan¹³. While there are potential analytical biases, we expect these to be significantly smaller than the difference in mean values reported here (discussed below). Therefore, the differences in ¹⁷Oexcess from this study and the prior study are likely to be environmentally meaningful in using triple oxygen isotopes as a tracer of physical processes in the ocean.

4. DISCUSSION

138 There are analytical challenges in water fluorination and triple oxygen 139 isotope measurement, which may result in significant inter-laboratory offsets of

¹⁷O-excess¹¹. For O₂ analytes, the lower abundance of ¹⁷O relative to ¹⁶O and ¹⁸O may result in the larger scaling of ¹⁷O-excess values and this pressure baseline (PBL) effect worsens as the difference in isotope compositions between sample and reference gas increases³¹. Wostbrock et al.³² found no PBL effect in analyzing two gases with δ^{18} O values differ by 25 ‰ at 3, 5, 10 V intensities of m/z 32, thus suggested that the artifact is instrument-specific. This PBL effect was not evaluated at LSCE. However, scale distortion should have a negligible effect on the ¹⁷O-excess values of ocean water for it is close to VSMOW in isotopic composition. Potential interlaboratory difference in ¹⁷O-excess may also arise from different standardization regimes. Isotope values from this study are normalized to VSMOW2/SLAP2 scale, whereas Luz and Barkan¹³ chose not to normalize their isotope values to the VSMOW/SLAP scale but instead recorded a 0.4 ‰ difference between their measured and consensus values of δ^{18} O of SLAP. As potential analytical biases are small compared to the differences between this dataset and that of Luz and Barkan¹³, we believe these differences represent real environmental variations. Thus we further interpret our data and discuss potential applications.

Oxygen isotope fractionation exponent, θ , is defined by Eq. (3):

 $\theta = \frac{\ln^{17}\alpha}{\ln^{18}\alpha}$

Eq. (3)

159 where α is the oxygen isotope fractionation factor. For liquid-vapor equilibrium, α_{L-V} 160 is defined by Eq. (4):

$${}^{x}\alpha_{L-V} = \frac{\binom{{}^{x}O/{}^{16}O)_{L}}{\binom{{}^{x}O/{}^{16}O)_{V}}}$$
Eq. (4)

162 where *x* is 18 or 17.

163 We compare the slope (λ) of the three-isotope plot of data from this study 164 and those from the study of Luz and Barkan¹³ to the θ values characterizing distinct 165 processes. The λ may represent multiple processes while θ represents a specific 166 process² and λ is replaceable by θ for equilibrium or reproducible kinetic isotope 167 fractionations³³.

The isotopic composition of Mariana Trench waters reflects their source waters in the surface ocean, and subsequent physical processes during water mass transport. The oxygen isotope fractionation slopes for liquid-vapor equilibrium of water at air-sea interface and water liquid-liquid self-diffusion endmembers are discussed briefly below. We demonstrate that the slope of threeisotope plot for the measured Mariana Trench waters is intermediate between those expected process endmembers.

175 4.1 PROCESSES AT OCEAN SURFACE

176	Oxygen isotope mass balance of open-ocean surface water can be
177	described by Craig-Gordon model with recharge, discharge, and evaporation ³⁴⁻³⁷ .
178	The air-sea interface is characterized by liquid-vapor equilibrium of water. Triple
179	oxygen isotope exponent θ_{eq} =0.529±0.001 (1 σ) was experimentally determined for
180	liquid-vapor equilibrium of water from 11.4 to 41.5 °C5. It is very close to 0.530
181	calculated based on quantum statistical mechanics and ~0.529 calculated based
182	on vapor pressure isotope effects in condensed systems ^38-39. The $\theta_{\rm eq}$ between
183	liquid water/ice and water vapor has extremely small temperature dependence of
184	~4×10 ⁻⁶ K ⁻¹ over the range of –20 to +20 $^{\circ}C^{39}$. Over the temperature range –25 to
185	40 °C, the slope λ value that characterizes Rayleigh distillation and rainout process
186	is 0.527-0.529 ^{6, 12-13} , slightly higher at warmer temperatures and slightly lower at
187	cooler temperatures ²⁷ . At a sea surface temperature of 10 °C, the equilibrium
188	fractionation factor ¹⁸ α_{eq} =1.01073 ⁴⁰ and θ_{eq} =0.529 translate into λ =(¹⁷ α_{eq} -1)/(¹⁸ α_{eq} -
189	1)=0.528 for Rayleigh distillation ⁶ . Atlantic surface water sample subset from Luz
190	and Barkan ¹³ exhibits a λ of 0.531±0.004 (Figure 3C), suggesting near-equilibrium
191	exchange at Atlantic ocean surface.

192 4.2 PROCESSES IN OCEAN INTERIOR

Advection, molecular diffusion, and turbulent diffusion are major processes in ocean interior regulating seawater masses. Turbulent mixing in the interior of the ocean is produced by planetary Rossby waves, mesoscale eddies (generated by baroclinic instability slumping the horizontal density gradient), and internal

2			
2			
4			
5			
6			
-			
7			
8			
g			
1	^		
I	U		
1	1		
1	2		
1	2		
1	2		
1	4		
1	5		
1	6		
1	7		
1	/		
1	8		
1	9		
2	ი		
2	1		
2	1		
2	2		
2	3		
ົ	л Л		
2	+		
2	5		
2	6		
2	7		
2	'n		
2	ð		
2	9		
3	0		
2	1		
2	1		
3	2		
3	3		
3	4		
2			
5	С		
3	6		
3	7		
2	Q		
2	0		
3	9		
4	0		
4	1		
۸	י ר		
4	2		
4	3		
4	4		
4	5		
۸	c		
4	0		
4	7		
4	8		
Λ	å		
4	2		
5	0		
5	1		
5	2		
F	2		
5	3		
5	4		
5	5		
5	6		
ר ר	5		
5	/		
5	8		
5	9		

60

waves (generated by winds and tides)⁴¹⁻⁴². Molecular diffusion including
concentration/chemical diffusion (self-diffusion for chemically identical species)
and Soret diffusion can be driven by small-scale variabilities in salinities and
temperatures, respectively⁴³⁻⁴⁴.

201 Self-diffusion coefficient (*D*) of liquids is predicted by kinetic gas theory⁴⁵⁻⁴⁷. 202 For self-diffusion of water, the relevant exponent θ_k has a value of 0.514 based on 203 the ratios of self-diffusivities (Eqs.S1-2).

For vertical eddy diffusion, Fick's first law can be applied as the ocean is generally vertically stratified with large concentration gradients with depth⁴⁸. Theoretically, kinetic isotope effect of Fick's diffusion is given by the kinetic massdependent fractionation law as Eq.(S3)³. The θ_k value of 0.516 is calculated by Eq.(S3) with atomic masses of oxygen, while θ_k =0.514 using molecular masses of water⁴⁹.

210

4.3 OBSERVATION AT MARIANA TRENCH

The observed λ =0.521±0.003 (1 σ) for Mariana Trench waters and λ = 0.521±0.001 (1 σ) for Pacific deep waters from Luz and Barkan¹³ (Figure 3) imply that the interior ocean processes modify signals from the surface ocean with θ_{eq} =0.529±0.001(1 σ) and is consistent with additional diffusion and its associated kinetic fractionation along the interior flow path. Other than intrinsic kinetic processes, water mass of the deep Mariana Trench is originated from upwelling of the southern Circumpolar Deep Water⁵⁰, and kinetic isotope effect associated with
diffusion process was found to be present with sea-ice formation at Antarctica⁵¹.

While the direction of depletion in the Mariana samples is suggestive, λ =0.521 from our dataset (0.515 to 0.527, 95%CI) cannot be conclusively distinguished from the other empirical and theoretical slopes, including for the kinetic (θ_{k} = 0.514 and/or 0.516) or equilibrium (θ_{eq} = 0.529, 0.527 to 0.531 95%CI) fractionation, or the prior world ocean dataset (λ =0.528, 0.526 to 0.530 95%CI). Combining Pacific deep water subset¹³ with Mariana waters, the average ¹⁷O-excess is -13 ± 8 (1 σ) per meg. Combing world ocean data¹³ with Mariana waters, the average ¹⁷O-excess is -11 ± 8 (1 σ) per meg.

Diapycnal mixing of different water masses has been known for ocean bodies²⁵ and can explain the range of isotope values observed in depth profiles (Figure 2). Plotting our data and W.Pacific data from the Global Seawater Oxygen-18 Database²⁹ (Figure 4), we can infer the mixing of Circumpolar Deep Water (CPDW) including AABW (Antarctic Bottom Water, with δ^{18} O of ~-0.6 ‰ and salinity of ~34.65 g/kg) and AAIW (Antarctic Intermediate Water, with δ^{18} O of ~-0.3 ‰ and salinity of ~34.2 g/kg) into the Pacific Ocean originally described by Big and Rohling²⁵. The apparent variability in the bottom ocean waters may have to do with higher sampling density and we may observe similar variability in the more abundantly sampled upper ocean waters.

We present the first published deep ocean profiles of the triple oxygen isotopic composition of seawater. These reveal previously unmeasured ¹⁷O depletions at depth that may imply a different bulk composition of water on Earth than implied by the upper ocean and meteorological measurements to date. The novel dataset allows scientists to test underlying assumptions for the interpretation of triple oxygen isotopes in a number of applications. Specific implications for the measured values are detailed in the next section.

5. APPLICATIONS

5.1 TRIPLE OXYGEN ISOTOPE THERMOMETRY

Traditional dual oxygen isotope thermometers were calibrated at various temperature ranges for carbonates, silicates, oxides, hydroxides, phosphates, sulfates, and salts between mineral phases and between minerals and waters, based on experimental, empirical, and theoretical methods^{14, 17, 52}. In the recent years, triple oxygen isotope fractionation factors between silicates, carbonates, phosphates, sulfates and water were computed theoretically and calibrated experimentally and empirically^{22, 38, 53-57} and applied in triple oxygen isotope thermometers for Earth surface and low-T hydrothermal environments⁵⁸⁻⁵⁹. Our study provides isotope values of the seawater endmember for many marine mineral-water equilibrium systems.

Mineral-water equilibrium is given by Eq. $(5)^{22}$:

257
$$1^{7}O - excess_{mineral} = 1000[1^{7}O - excess_{water} + \left(\frac{a \times 10^{6}}{T^{2}} + \frac{b \times 10^{3}}{T} + c\right)$$
258
$$\left(0.5305 - \frac{\varepsilon}{T} - \lambda\right)]$$
Eq. (5)

where *a*, *b*, *c*, ε are constants and λ =0.528. The original equation uses " Δ '¹⁷O" terminology, however we use "¹⁷O-excess" for consistency.

For silicate-seawater equilibrium, *a*=4.28, *b*=–3.5, *c*=0, *ε*=1.85⁵³. A chert sample from Horizon Guyot, Pacific Ocean (168°52.3'W, 10°28.0'N, 1700 m water depth) has a ¹⁷O-excess=–161 per meg⁵³. The ¹⁷O-excess of 0, –5 per meg¹³, and –17 per meg (this study) of seawater with respect to VSMOW give temperature estimations of 12, 14, and 20 °C, respectively, based on Eq. (5). For comparison, the calculated temperature based on measured quartz-water fractionation factor $\alpha^{18}O_{quartz-water}$ is 17 °C in the original study⁵³.

268 5.2 OCEAN ISOTOPE MASS BALANCE MODEL

A classic ocean isotope mass balance model was constructed by Muehlenbachs and Clayton⁶⁰ which demonstrated that oxygen isotopic composition of ocean water has not changed in the phanerozoic. It was recently expanded to include ¹⁷O/¹⁶O ratio⁶¹⁻⁶². Oxygen isotopic compositions of seawater on a global scale are controlled by processes such as high-temperature alteration of oceanic crust, low-temperature alteration of oceanic crust, continental weathering, continental growth, and mantle recycling. Isotope-mass-balance

calculations by Sengupta and Pack⁶² yielded a steady state after 2.6×10⁸ years with $\delta^{18}O = -0.36 \pm 0.5$ ‰ and ¹⁷O-excess = -17±12 per meg for a modern ice-free world. The δ^{18} O for modern world is about 1 ‰ more positive than that of the ice-free world⁶³, and the ¹⁷O-excess for modern world is about 1 per meg more negative than that of the ice-free world⁶². In order to achieve 17 O-excess = 4 per meg for the modern ice-free world (17 O-excess = -5 per meg of the modern world, correspondingly), high-T ocean floor alteration flux would have to be lowered by 40 % or the continental weathering flux would have to be increased by 75 %, or a combination of 25 % lower high-T ocean floor alteration flux and 25 % higher continental weathering flux given by Muehlenbachs⁶⁴. Thus, results from this study with ^{17}O -excess= -17 ± 5 per meg support the ocean isotope mass balance model without guantitatively changing the major fluxes. While Sengupta and Pack⁶² model used λ =0.5305, the ocean endmember recalculated with λ =0.528 is ¹⁷O-excess= -18 ± 12 per meg, again consistent with our observations.

5.3 RELEVANCE TO GROSS OXYGEN PRODUCTIVITY

293 Photosynthetic O_2 has an isotopic composition similar to the source water 294 and tropospheric O_2 is anomalously depleted in ¹⁷O due to O_3 and CO_2 295 photochemistry in the lower stratosphere. Mixed layer gross oxygen productivity 296 (GOP) can be estimated by mass balance equation that account for relative 297 contribution of these two end-members⁶⁵. Observation of this natural tracer ¹⁷ Δ of 298 dissolved O_2 in the mixed layer to constrain marine productivity has been

throughout the global ocean⁶⁶. The ratio of GOP to gross Air-O₂ invasion, *g*, is calculated by dual-delta method as Eq. (6)⁶⁷⁻⁶⁹:

$$g = \frac{(1+{}^{17}\varepsilon_E)\frac{{}^{17}\delta_{-}{}^{17}\delta_{sat}}{1+{}^{17}\delta} - \gamma_R(1+{}^{18}\varepsilon_E)\frac{{}^{18}\delta_{-}{}^{18}\delta_{sat}}{1+{}^{18}\delta_{-}} + s({}^{17}\varepsilon_E - \gamma_R{}^{18}\varepsilon_E)}{\frac{{}^{17}\delta_{-}{}^{17}\delta_{-}}{1+{}^{17}\delta_{-}} - \gamma_R\frac{{}^{18}\delta_{-}{}^{18}\delta_{-}}{1+{}^{18}\delta_{-}}}$$
(6)

where δ , δ_{sat} , δ_{p} refer to the δ values of dissolved O₂ dissolved O₂ at air saturation, and photosynthetic O_2 , respectively, with respect to Air- O_2 , \mathcal{E}_E is kinetic fractionation in evasion from sea to air and s is relative supersaturation of dissolved O₂. The ${}^{18}\delta_{sat}$ =0.707 ‰, ${}^{17}\delta_{sat}$ =0.382 ‰, ${}^{17}\varepsilon_{E}$ =-1.463 ‰, ${}^{18}\varepsilon_{E}$ =-2.800 ‰. The $\gamma_{\rm R}$ =0.5179 characterizes respiratory fractionation. Photosynthetic process is characterized by small isotope fractionation from source water. Taking ${}^{18}\delta_W$ =-23.647 ‰ and ${}^{17}\delta_{W}$ =-12.107 ‰ of ocean water with respect to Air-O₂, accounted for the 5 per meg lower ¹⁷O/¹⁶O of ocean water compared to VSMOW, photosynthetic O₂ has $^{18}\delta_{\rm P}$ = -19.625 ‰ and $^{17}\delta_{\rm P}$ = -9.980 ‰, the average of a strain of cvanobacterium and four phytoplankton species⁶⁸. Using a dataset of triple oxygen isotope measurements in the Southern Ocean⁷⁰, assuming $s = s_{hio} = \Delta(O_2/Ar)$ from the dataset, our calculation yielded similar results as Kaiser and Abe⁶⁸ (Figure 5). If accounting for the 17 per meg lower ¹⁷O/¹⁶O of ocean water compared to VSMOW from this study (taking as bulk ocean value), average $^{18}\delta_{\rm P}$ =-19.625 ‰ and $^{17}\delta_{\rm P}$ =-9.997 ‰ (the corresponding 17 O-excess=218 per meg calculated at λ =0.5179 is closer to incubation experimental value of ~210

ACS Earth and Space Chemistry

per meg⁷¹), *g* values are relatively smaller at the same δ^{18} O and the differences are more prominent at higher *g* values (Figure 5).

In the recent years, it is observed that the mixed layer has a component of ¹⁷O-enriched O_2 accumulated in the less vented thermocline by either entrainment of water or vertical turbulent flux from the thermocline, which results in an overestimation of mixed layer GOP⁷²⁻⁷⁸. Wurgaft et al.⁷⁴ added a term for GOP contribution from beneath the mixed layer to a simplified form of Eq.(6). Haskell et al.⁷⁸ divided the euphotic regions into mixed layer and below-mixed-layer (BML) and constructed similar equations with GOP of the mixed layer influenced by the BML, and GOP of BML influenced by the deep water column below the euphotic depth. An implication of the results from this study is that deeper water may have a different isotopic composition as surface water, thus isotopic compositions of photosynthetic O₂ may differ in each layer, impacting the quantification of GOP in euphotic regions including mixed layer and BML.

Isotopic compositions of water endmember is crucial for accurate estimation
of GOP and should be analyzed more prevalently by modern techniques such as
laser spectroscopy.

335 5.4 RELEVANCE TO PALEO-HUMIDITY STUDIES

The ¹⁷O-excess value of vapor and precipitation has been used as a unique quantitative tracer for the relative humidity in oceanic moisture source regions and thus a useful proxy for hydrology and paleoclimatology^{10, 79-82}. Convection and snow formation overprinting ¹⁷O-excess signature from ocean source regions are
 reported for our complex nature^{8, 9, 83}.

In the example below, we estimate kinetic fractionation factor for the interfacial layer between sea surface and the atmosphere (${}^{18}\alpha_{diff}$), from the correlation between 17 O-excess and relative humidity of modern ocean. The α_{diff} is applied to study paleo-humidity¹¹ and is an important parameter in evaporation models⁷⁹.

The ¹⁷O-excess value of marine vapor is given by Eq. (7):

347
$${}^{17}O - excess = -\ln\left[{}^{18}\alpha_{eq}^{0.529}({}^{18}\alpha_{diff}^{0.518}(1-h_n) + h_n)\right] + 0.528\ln\left[{}^{18}\alpha_{eq}({}^{18}\alpha_{diff}(1-h_n) + h_n)\right]$$
348 Eq. (7)

In Eq. (7), the ¹⁷O-excess of marine vapor is defined with respect to ocean water, rather than VSMOW. Luz and Barkan¹³ took ¹⁷O-excess of ocean waters at 0-5390 m depth as ¹⁷O-excess of bulk ocean water relative to VSMOW for this correction. Although our data mostly represent deep water, there's no significant depth variation and we cannot differentiate the λ value of Mariana Trench data from that of surface equilibrium or that of Luz and Barkan¹³ at 95% confidence level. Therefore our data may represent bulk ocean isotopic composition and may also be suitable for studies of humidity at moisture source region.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
30	
30 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
۳7 ۸۵	
_0 ⊿0	
49 50	
JU 51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

357	In Eq. (7), the exponent θ_{eq} =0.529 is associated with equilibrium liquid
358	water-water vapor fractionation and θ_{diff} =0.518 is associated with water vapor
359	diffusion into air. At a sea surface temperature of 10 °C, the equilibrium
360	fractionation factor ${}^{18}lpha_{\rm eq}$ equals 1.01073 40 . The ${}^{18}lpha_{\rm diff}$ is estimated by fitting the
361	right side of Eq. (7) to the left side, measured ¹⁷ O-excess of marine vapor over the
362	Southern Ocean ⁷⁹ . Samples with $h_n > 80\%$ are excluded for the same reasoning
363	(giving less errors in $^{18}lpha_{ m diff}$) as in the original study. Luz and Barkan 13 obtained a
364	$^{18}\alpha_{diff}$ =1.009 (RMSE=7.9 per meg) applying an average $^{17}O_{excess}$ of -5 per meg of
365	seawater with respect to VSMOW to each ¹⁷ O-excess datum of marine vapor
366	measured with respect to VSMOW. Taking the similar approach with the average
367	¹⁷ O _{excess} =–17 per meg of Mariana Trench waters from this study, the best-fit value
368	is ${}^{18}\alpha_{\text{diff}}$ =1.0122 (RMSE=9 per meg) (Figure 6), in comparison to ${}^{18}\alpha_{\text{diff}}$ =1.008
369	taking seawater as VSMOW ⁷⁹ , and ${}^{18}lpha_{\rm diff}$ =1.005 based on wind tunnel
370	experiments ⁸⁴ . If we apply seawater ¹⁷ O _{excess} =-14 per meg, with respect to
371	VSMOW, from 12 samples at 5-3000 m depth in this study, $^{18}\alpha_{\rm diff}$ =1.0115
372	(RMSE=9 per meg).

The ¹⁸ α_{diff} spans the whole range from 1 (pure turbulent transport) to 1.0319 (pure molecular diffusion)^{35, 84, 85}. Kinetic fractionation factor ¹⁸ α_{diff} =1.014 of water vapor diffusion into air is commonly used for lake systems⁸⁶. Our estimations of ¹⁸ α_{diff} of 1.0122 and 1.0115 based on Southern Ocean marine vapor data reflect

differential contributions of turbulence and molecular diffusion. Those are choices
to estimate paleo-humidity with ice cores¹¹.

6. CONCLUSIONS

Forty Mariana Trench water samples collected at 5-10923 m were analyzed at LSCE, France. λ =0.521 ± 0.003 (1 σ) for Mariana Trench water samples is consistent with surface equilibrium isotope signals modified by kinetic processes in the ocean interior and sea-ice formation at the deep water source region: circum-Antarctica. The ¹⁷O-excess= -17 ± 5 per meg (1 σ) from this new dataset is notably lower than that of the global database of Luz and Barkan¹³, mostly from shallower depths at Eastern Pacific and Atlantic. The observation of ¹⁷O-excess at Mariana Trench matches predicted ocean ¹⁷O-excess value by ocean isotope mass balance model. Given the geographically constrained sampling in this study, the consistency between our observation and model prediction should be further tested and confirmed across deep ocean basins. Such an effort is justified because ocean water triple oxygen isotopic compositions are important for the application of triple oxygen isotope thermometry, quantification of gross oxygen productivity in euphotic regions and relative humidity in oceanic moisture source regions.

- - Author Contributions

ว	
2	
J ∧	
4 5	
5	
0	
/ 0	
0	
9 10	
10	
11 12	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 74	
25	
32	
30	
27 28	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 57	
55	
57	
52	
50	

59

60

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Ying Lin, Nanping Wu, Kaiwen Ta, Amaelle Landais, Xiaotong Peng contributed equally.

399 **Supporting Information:** Additional equations, and tables including temperatures

400 and salinities recorded by the CTD in sample collection.

401

402 **ACKNOWLEDGMENT**

The authors are grateful for the Deep-sea Institute of Science and Technology,
Chinese Academy of Sciences for sample collection and the financial support for
sample analyses (N.W., Grant no.E01X0301). The authors thank the Laboratory
of Climate and Environmental Sciences (LSCE), France for sample analyses. The
authors greatly appreciate extensive and constructive comments from reviewers.
Y. Lin memorializes Robert N. Clayton for his mentorship and she is thankful to
Marilyn Fogel for financial support.

410 References:

McKinney C.R., McCrea C.J., Epstein S., Allen H.A., Urey H.C., Improvements
 in mass spectrometers for the measurement of small differences in isotope
 abundance ratios. *The Review of scientific instruments* 21, 724-730 (1950).
 DOI: 10.1063/1.1745698.

ACS Earth and Space Chemistry

1

Page 22 of 44

2 3			
4 5	415	2.	Matsuhisa Y., Goldsmith J.R., Clayton R.N., Mechanisms of hydrothermal
6 7 8	416		crystallization of quartz at 250°C and 15 kbar. Geochimica et Cosmochimica
9 10	417		Acta 42, 173-182 (1978). DOI: 10.1016/0016-7037(78)90130-8.
11 12	418	3.	Young E.D., Galy A., Nagahara H., Kinetic and equilibrium mass-dependent
13 14 15	419		isotope fractionation laws in nature and their geochemical and cosmochemical
16 17	420		significance. Geochimica et Cosmochimica Acta 66, 1095-1104 (2002). DOI:
18 19	421		10.1016/S0016-7037(01)00832-8.
20 21 22	422	4.	Herwartz D., Triple Oxygen Isotope Variations in Earth's Crust. Reviews in
23 24	423		Mineralogy and Geochemistry 86, 291–322 (2021). DOI:
25 26	424		10.2138/rmg.2021.86.09.
27 28 29	425	5.	Barkan E., Luz B., High precision measurements of $^{17}\text{O}/^{16}\text{O}$ and $^{18}\text{O}/^{16}\text{O}$ ratios
30 31	426		in H_2O . Rapid Communications in Mass Spectrometry 19 , 3737-3742 (2005).
32 33	427		DOI: 10.1002/rcm.2250.
34 35 26	428	6.	Barkan E., Luz B., Diffusivity fractionations of $H_2^{16}O/H_2^{17}O$ and $H_2^{16}O/H_2^{18}O$
37 38	429		in air and their implications for isotope hydrology. Rapid Communications in
39 40	430		Mass Spectrometry 21, 2999-3005 (2007). DOI:10.1002/rcm.3180.
41 42	431	7.	Li S., Levin N.E., Chesson L.A., Continental scale variation in 17O-excess of
43 44 45	432		meteoric waters in the United States. Geochimica et Cosmochimica Acta 164,
46 47	433		110-126 (2015). DOI: 10.1016/j.gca.2015.04.047.
48 49	434	8.	Schoenemann S.W., Steig E.J., Ding Q., Markle B.R., Schauer A.J., Triple
50 51 52	435		water-isotopologue record from WAIS Divide, Antarctica: Controls on glacial-
53 54			
55 56			22
57 58			
59 60			ACS Paragon Plus Environment

2		
4	126	interclasial changes in ¹⁷ 0 of precipitation / Geophys Res
6	430	intergracial changes in Cexcess of precipitation. J. Geophys. Res.
/ 8	437	<i>Atmos.</i> 119 , 8741–8763 (2014). DOI:10.1002/2014JD021770.
9 10	438	9. Schoenemann S.W., Steig E.J., Seasonal and spatial variations
11 12 13	439	of ${}^{17}O_{excess}$ and d_{excess} in Antarctic precipitation: Insights from an intermediate
14 15	440	complexity isotope model. J. Geophys. Res. Atmos. 121, 11,215–11,247
16 17	441	(2016). DOI:10.1002/2016JD025117.
18 19 20	442	10. Landais A., Steen-Larsen H.C., Guillevic M., Masson-Delmotte V., Vinther B.,
20 21 22	443	Winkler R., Triple isotopic composition of precipitation in surface snow and
23 24	444	water vapor at NEEM (Greenland). Geochimica et Cosmochimica Acta 77,
25 26	445	304-316 (2012). DOI:10.1016/j.gca.2011.11.022.
27 28 29	446	11. Winkler R., Landais A., Sodemann H., Dümbgen L., Prié F. et al., Deglaciation
30 31	447	records of ¹⁷ O-excess in East Antarctica: reliable reconstruction of oceanic
32 33	448	normalized relative humidity from coastal sites. Climate of the Past 8, 1-16
34 35 26	449	(2012). DOI: 10.5194/cp-8-1-2012.
36 37 38	450	12. Meijer H.A.J., Li W.J., The use of electrolysis for accurate $\delta^{17}O$ and $\delta^{18}O$
39 40	451	isotope measurements in water. Isotopes in Environmental and Health Studies
41 42	452	34 , 349-369 (1998). DOI: 10.1080/10256019808234072.
43 44 45	453	13.Luz B., Barkan E., Variations of ¹⁷ O/ ¹⁶ O and ¹⁸ O/ ¹⁶ O in meteoric waters.
46 47	454	Geochimica et Cosmochimica Acta 74 , 6276-6286 (2010).
48 49	455	DOI:10.1016/j.gca.2010.08.016.
50 51		
52		
53 54		
55 56		23

2 3		
4 5 6	456	14. Chacko T., Cole D.R., Horita J., Equilibrium oxygen, hydrogen and carbon
7 8	457	isotope fractionation factors applicable to geologic systems. Reviews in
9 10	458	Mineralogy and Geochemistry 43, 1-81 (2001). DOI: 10.2138/gsrmg.43.1.1.
11 12 13	459	15. Lisiecki L.E., Raymo M.E., A Pliocene-Pleistocene stack of 57 globally
14 15	460	distributed benthic δ^{18} O records. <i>Paleoceanography</i> 20 , PA1003 (2005). DOI:
16 17	461	10.1029/2004PA001071.
18 19 20	462	16. Railsback L.B., Gibbard P.L., Head M.J., Voarintsoa N.R.G., Toucanne S., An
21 22	463	optimized scheme of lettered marine isotope substages for the last 1.0 million
23 24	464	years, and the climatostratigraphic nature of isotope stages and substages.
25 26 27	465	Quaternary Science Reviews 111 , 94-106 (2015). DOI:
27 28 29	466	10.1016/j.quascirev.2015.01.012.
30 31	467	17. Vho A., Lanari P., Rubatto D., An internally-consistent database for oxygen
32 33	468	isotope fractionation between minerals. Journal of Petrology 60, 2101-2130
34 35 36	469	(2019). DOI: 10.1093/petrology/egaa001.
37 38	470	18. Cao X., Bao H., Redefining the utility of the three-isotope method. Geochimica
39 40	471	<i>et Cosmochimica Acta</i> 212 , 16-32 (2017). DOI: 10.1016/j.gca.2017.05.028.
41 42 43	472	19. Guo W., Zhou C., Triple oxygen isotope fractionation in the DIC-H $_2$ O-
44 45	473	CO ₂ system: A numerical framework and its implications. Geochim.
46 47	474	Cosmochim. Acta. 246, 541-564 (2019). DOI: 10.1016/j.gca.2018.11.018.
48 49	475	20. Herwartz D., Pack A., Krylov D., Xiao Y., Muehlenbachs K., Sengupta
50 51 52 53 54	476	S., Rocco T.D., Revealing the climate of snowball Earth. Proceedings of the
55		

2 3		
4 5	477	National Academy of Sciences 112 , 5337-5341
6 7 8	478	(2015). DOI: 10.1073/pnas.1422887112.
9 10	479	21.Levin N.E., Raub T.D., Dauphas N., Eiler J.M., Triple oxygen isotope
11 12 13	480	variations in sedimentary rocks. Geochimica et Cosmochimica Acta 139, 173-
14 15	481	189 (2014). DOI: 10.1016/j.gca.2014.04.034.
16 17	482	22. Wostbrock J.A.G., Sharp Z.D., Triple oxygen isotopes in silica-water and
18 19 20	483	carbonate-water systems. Reviews in Mineralogy and Geochemistry 86, 367-
20 21 22	484	400 (2021). DOI: 10.2138/rmg.2021.86.11.
23 24	485	23. Sengupta S., Peters S.T.M., Reitner J., Duda JP., Pack A., Triple oxygen
25 26 27	486	isotopes of cherts through time. <i>Chemical Geology</i> 554 , 119789 (2020). DOI;
27 28 29	487	10.1016/j.chemgeo.2020.119789.
30 31	488	24. Aron P.G., Levin N.E., Beverly E.J., Huth T.E., Passey B.H., Pelletier E.M.,
32 33	489	Poulsen C.J., Winkelstern I.Z., Yarian D.A., Triple oxygen isotopes in the water
34 35 36	490	cycle, <i>Chemical Geology</i> 565 , 120026 (2021). DOI:
37 38	491	10.1016/j.chemgeo.2020.120026.
39 40	492	25. Bigg G.R., Rohling E.J., An oxygen isotope data set for marine waters. Journal
41 42 42	493	of Geophysical Research: Oceans 105 , 8527-8535 (2000). DOI:
43 44 45	494	10.1029/2000JC900005.
46 47	495	26. The Nansen Legacy. Sampling Protocols: Version 7. The Nansen Legacy
48 49	496	Report Series 17/2021. DOI: https://doi.org/10.7557/nlrs.5793.
50 51 52	497	27. Landais A., Winkler R., Prié F., Triple isotopic composition of oxygen in water
53 54	498	from ice cores. Thermo Scientific Application Note 30287 (2014).
55 56		25
57 58		
59 60		ACS Paragon Plus Environment

3		
4 5 6	499	28. Schoenemann S.W., Schauer A.J., Steig E.J., Measurement of SLAP2 and
7 8	500	GISP $\delta^{17}O$ and proposed VSMOW-SLAP normalization for $\delta^{17}O$ and $^{17}O_{excess}.$
9 10	501	Rapid Communications in Mass Spectrometry 27, 582–590 (2013). DOI:
11 12 13	502	10.1002/rcm.6486.
14 15	503	29. Schmidt G.A., Bigg G.R., Rohling E.J., Global Seawater Oxygen-18 Database
16 17	504	- v1.22 https://data.giss.nasa.gov/o18data/ (1999).
18 19 20	505	30. LeGrande A.N., Schmidt G.A., Global gridded data set of the oxygen isotopic
20 21 22	506	composition in seawater. Geophysical Research Letters 33, L12604 (2006).
23 24	507	DOI: 10.1029/2006GL026011.
25 26	508	31. Yeung L.Y., Hayes J.A., Climbing to the top of mount Fuji: Uniting theory and
27 28 29	509	observations of oxygen triple isotope systematics. Reviews in Mineralogy and
30 31	510	Geochemistry 86, 97-135 (2021). DOI: 10.2138/rmg.2021.86.03.
32 33	511	32. Wostbrock J.A.G., Cano E.J., Sharp Z.D., An internally consistent triple
34 35 26	512	oxygen isotope calibration of standards for silicates, carbonates and air
37 38	513	relative to VSMOW2 and SLAP2. Chemical Geology 533, 119432 (2020).
39 40	514	DOI:10.1016/j.chemgeo.2019.119432.
41 42	515	33. Sharp Z.D., Principles of Stable Isotope Geochemistry, 2nd Edition (2017).
43 44 45	516	DOI:10.25844/h9q1-0p82.
46 47	517	34. Craig H., Gordon L.I., Deuterium and oxygen 18 variations in the ocean and
48 49	518	the marine atmosphere in Stable Isotopes in Oceanographic Studies and
50 51 52 53 54	519	Paleotemperatures, E. Tongiorgi, Ed. (Pisa : V. Lischi, 1965). pp.121-130.
55 56 57 58		26
59 60		ACS Paragon Plus Environment

2 3		
4 5 6	520	35. Horita J., Rozanski K., Cohen S., Isotope effects in the evaporation of water:
7 8	521	a status report of the Craig-Gordon model. Isotopes in Environmental and
9 10	522	<i>Health Studies</i> 44 , 23-49 (2008). DOI: 10.1080/10256010801887174.
11 12 13	523	36. Gonfiantini R., Wassenaar L.I., Araguas-Araguas L., Aggarwal P.K., A unified
13 14 15	524	Craig-Gordon isotope model of stable hydrogen and oxygen isotope
16 17	525	fractionation during fresh or saltwater evaporation. Geochimica et
18 19	526	<i>Cosmochimica Acta</i> 235 , 224-236 (2018). DOI: 10.1016/j.gca.2018.05.020.
20 21 22	527	37.Gonfiantini R., Wassenaar L.I., Araguas-Araguas L.J., Stable isotope
23 24	528	fractionations in the evaporation of water: The wind effect. Hydrological
25 26	529	Processes 34, 3596-3607 (2020). DOI: 10.1002/hyp.13804.
27 28 20	530	38. Cao X., Liu Y., Equilibrium mass-dependent fractionation relationships for
30 31	531	triple oxygen isotopes. Geochimica et Cosmochimica Acta 75, 7435-7445
32 33	532	(2011). DOI: 10.1016/j.gca.2011.09.048.
34 35 26	533	39. Angert A., Cappa C.D., DePaolo D.J., Kinetic ¹⁷ O effects in the hydrologic
30 37 38	534	cycle: Indirect evidence and implications. Geochimica et Cosmochimica Acta
39 40	535	68 , 3487-3495 (2004). DOI: 10.1016/j.gca.2004.02.010.
41 42	536	40. Horita J., Wesolowski D.J., Liquid-vapor fractionation of oxygen and hydrogen
43 44 45	537	isotopes of water from the freezing to the critical temperature. Geochimica et
46 47	538	<i>Cosmochimica Acta</i> 58 , 3425-3437 (1994), DOI: 10.1016/0016-
48 49	539	7037(94)90096-5.
50 51 52	540	41. MacKinnon J., Mountain waves in the deep ocean. Nature 501, 321-322
52 53 54	541	(2013). DOI: 10.1038/501321a.
55 56		27

60

Page 28 of 44

3		
4 5 6	542	42. Griffies S.M., Winton M., Anderson W.G., Benson R., Delworth T.L. et al.,
7 8	543	Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of
9 10	544	Climate Model. Journal of Climate 28: 952–977 (2014). DOI: 10.1175/JCLI-D-
11 12 13	545	14-00353.1.
14 15	546	43. Fontes J.C., Letolle R., Marcé A., Some results of oxygen isotope studies of
16 17	547	marine waters in Stable Isotopes in Oceanographic Studies and
18 19 20	548	Paleotemperatures, E. Tongiorgi, Ed. (Pisa : V. Lischi, 1965). pp. 131-141.
20 21 22	549	44. Richardson J.L., Bergsteinsson P., Getz R.J., Peters D.L., Sprague R.W.,
23 24	550	"Sea Water Mass Diffusion Coefficient Studies" PHILCO Publication No. U-
25 26 27	551	3021 (1965).
27 28 29	552	45. Harris K.R., Woolf L.A., Pressure and temperature dependence of the self
30 31	553	diffusion coefficient of water and oxygen-18 water. Journal of the Chemical
32 33	554	Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases
34 35 36	555	76, 377-385 (1980). DOI: 10.1039/F19807600377.
37 38	556	46. Chapman S., Cowling T.G., The mathematical theory of non-uniform gases:
39 40	557	An account of the kinetic theory of viscosity, Thermal Conduction and Diffusion
41 42	558	in Gases, D. Burnett, Ed. (Cambridge University Press, 1990).
43 44 45	559	47. Hopp M., Mele J., Gross J., Self-diffusion coefficients from entropy scaling
46 47	560	using the PCP-SAFT equation of state. Industrial & Engineering Chemistry
48 49	561	Research 57, 12942-12950 (2018). DOI: 10.1021/acs.iecr.8b02406.
50 51 52	562	48. Lohmann R., Jurado E., Dijkstra H.A., Dachs J., Vertical eddy diffusion as a
53 54	563	key mechanism for removing perfluorooctanoic acid (PFOA) from the global
55 56		28
57 58		
59		

60

ACS Earth and Space Chemistry

1 2											
3 4											
5 6	564	surface oceans. Environmental Pollution 179 , 88-94 (2013).									
7 8	565	DOI: 10.1016/j.envpol.2013.04.006.									
9 10	566	49. Clayton R.N., Mayeda T.K., Kinetic isotope effects in oxygen in the laboratory									
11 12 13	567	dehydration of magnesian minerals. The Journal of Physical Chemistry A 113,									
14 15	568	2212-2217 (2009). DOI: 10.1021/jp808621n.									
16 17	569	50. Sarmiento J.L., Gruber N., Ocean Biogeochemical Dynamics. Princeton,									
18 19 20	570	Woodstock: Princeton University Press (2006). pp.528.									
20 21 22	571	51. Souchez R., Jouzel J., Lorrain R., Sleewaegen S., Stiévenard M., Verbeke V.,									
23 24	572	A kinetic isotope effect during ice formation by water freezing. Geophysical									
25 26	573	Research Letters 27 , 1923-1926, DOI: 10.1029/2000GL006103.									
27 28 29	574	52. Sharp Z.D., Wostbrock J.A.G., Pack A., Mass-dependent triple oxygen									
30 31	575	isotope variations in terrestrial materials. Geochem. Persp. Let. 7, 27-31									
32 33	576	(2018). DOI: 10.7185/geochemlet.1815.									
34 35 36	577	53. Sharp Z.D., Gibbons J.A., Maltsev O., Atudorei V., Pack A. et al., A calibration									
37 38	578	of the triple oxygen isotope fractionation in the SiO_2-H_2O system and									
39 40	579	applications to natural samples. Geochimica et Cosmochimica Acta 186, 105-									
41 42	580	119 (2016). DOI: 10.1016/j.gca.2016.04.047.									
43 44 45	581	54. Wostbrock J.A.G., Brand U., Coplen T.B., Swart R.K., Carlson S.J. et al.,									
46 47	582	Calibration of carbonate-water triple oxygen isotope fractionation: Seeing									
48 49	583	through diagenesis in ancient carbonates. Geochimica et Cosmochimica Acta									
50 51 52	584	288, 369-388 (2020). DOI: 10.1016/j.gca.2020.07.045.									
53 54											
55 56		29									

55. Havles J.A., Cao X., Bao H., The statistical mechanical basis of the triple isotope fractionation relationship. Geochemical Perspectives Letters 3, 1-11 (2016) DOI: 10.7185/geochemlet.1701. 56. Hayles J.A, Gao C., Cao X., Liu Y., Bao H., Theoretical calibration of the triple oxygen isotope thermometer. Geochimica et Cosmochimica Acta 235, 237-245 (2018). DOI: 10.1016/j.gca.2018.05.032. 57. Schauble E.A., Young E.D., Mass dependence of equilibrium oxygen isotope fractionation in carbonate, nitrate, oxide, perchlorate, phosphate, silicate, and sulfate minerals. *Reviews in Mineralogy and Geochemistry* 86, 137-178 (2021). DOI: 10.2138/rmg.2021.86.04. 58. Gibbons J., Calibration and application of a silica-water single mineral thermometer to geothermal systems in Iceland and Chile. (University of New Mexico thesis, 2016). 59. Wostbrock J.A.G., Sharp Z.D., Sanchez-Yanez C., Reich M., van den Heuvel D.B. et al., Calibration and application of silica-water triple oxygen isotope thermometry to geothermal systems in Iceland and Chile. Geochimica et Cosmochimica Acta 234, 84-97 (2018). DOI: 10.1016/j.gca.2018.05.007. 60. Muehlenbachs K., Clayton R.N., Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research 81, 4365-4369 (1976). DOI: 10.1029/JB081i023p04365. 61. Pack A., Herwartz D., The triple oxygen isotope composition of the Earth mantle and understanding Δ^{17} O variations in terrestrial rocks and minerals.

ACS Earth and Space Chemistry

Earth Planetarv 390. and Science Letters 138-145 (2014). DOI:10.1016/j.epsl.2014.01.017. 62. Sengupta S., Pack A., Triple oxygen isotope mass balance for the Earth's oceans with application to Archean cherts. Chemical Geology 495, 18-26 (2018). DOI:10.1016/j.chemgeo.2018.07.012. 63. Shackleton N., Kennett J., Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281. Deep Sea Drilling Project Initial Reports Volume 29 (1975). DOI:10.2973/DSDP.PROC.29.117.1975. 64. Muehlenbachs K., The oxygen isotopic composition of the oceans, sediments and the seafloor. Chemical Geology 145. 263-273 (1998). DOI:10.1016/S0009-2541(97)00147-2. 65. Luz B., Barkan E., The isotopic ratios ¹⁷O/¹⁶O and ¹⁸O/¹⁶O in molecular oxygen and their significance in biogeochemistry. Geochimica et Cosmochimica Acta , 1099-1110 (2005). DOI: 10.1016/j.gca.2004.09.001. 66. Juranek L.W., Quay P.D., Using Triple Isotopes of Dissolved Oxygen to Evaluate Global Marine Productivity. Annual Review of Marine Science 5, 503-524 (2013). DOI: 10.1146/annurev-marine-121211-172430. 67. Kaiser J., Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements. *Biogeosciences* 8, 1793–1811 (2011). DOI:10.5194/bg-8-1793-2011.

628	68. Kaiser J., Abe O., Reply to Nicholson's comment on "Consistent calculation of
629	aquatic gross production from oxygen triple isotope measurements" by Kaiser
630	(2011). <i>Biogeosciences</i> 9 , 2921–2933 (2012). DOI:10.5194/bg-9-2921-2012.
631	69. Prokopenko M.G., Pauluis O.M., Granger J., Yeung L.Y., Exact evaluation of
632	gross photosynthetic production from the oxygen triple-isotope composition of
633	O ₂ : Implications for the net-to-gross primary production ratios. <i>Geophys. Res.</i>
634	<i>Lett.</i> 38 , L14603 (2011). DOI:10.1029/2011gl047652.
635	70. Reuer M.K., Barnett B.A., Bender M.L, Falkowski P.G., Hendricks M.B., New
636	estimates of Southern Ocean biological production rates from O_2 /Ar ratios and
637	the triple isotope composition of O ₂ . Deep Sea Research Part I:
638	Oceanographic Research Papers 54 , 951-974 (2007).
639	DOI:10.1016/j.dsr.2007.02.007.
640	71. Manning C.C., Howard E.M., Nicholson D.P., Ji B.Y., Sandwith Z.O., Stanley
641	R.H.R., Revising estimates of aquatic gross oxygen production by the triple
642	oxygen isotope method to incorporate the local isotopic composition of
643	water. <i>Geophysical</i> Research Letters 44 , 10,511–10,519
644	(2017). DOI:10.1002/2017GL074375.
645	72. Nicholson D.P., Stanley R.H.R., Barkan E., Karl D.M., Luz B., Quay P.D.,
646	Doney S.C., Evaluating triple oxygen isotope estimates of gross primary
647	production at the Hawaii Ocean Time-series and Bermuda Atlantic Time-
648	series Study sites. <i>J. Geophys. Res.</i> 117 , C05012 (2012).
649	DOI:10.1029/2010JC006856.
	32

ACS Earth and Space Chemistry

2 3										
4 5	650	73. Nicholson D.P., Stanley R.H.R., Doney S.C., The triple oxygen isotope tracer								
0 7 8	651	of primary production in a dynamic ocean model. Global Biogeochem. Cycles,								
9 10	652	28 , 538–552 (2014). DOI:10.1002/2013GB004704.								
11 12	653	74. Wurgaft E., Shamir O., Angert A., Technical Note: The effect of vertical								
13 14 15	654	turbulent mixing on gross O_2 production assessments by the triple isotopic								
16 17	655	composition of dissolved O2, Biogeosciences Discuss. 10, 14,239-14,259								
18 19	656	(2013). DOI:10.5194/bgd-10-14239-2013.								
20 21 22	657	75. Jonsson B.F., Doney S.C., Dunne J., Bender M., Evaluation of Southern								
22 23 24	658	Ocean O ₂ /Ar based NCP estimates in a model framework. Journal of								
25 26	659	Geophysical Research: Biogeosciences 118 , 385–399 (2013).								
27 28	660	DOI:10.1002/jgrg.20032.								
29 30 31	661	76. Castro-Morales K., Kaiser J., Using dissolved oxygen concentrations to								
32 33	662	determine mixed layer depths in the Bellingshausen Sea. Ocean Sci. 8, 1–10								
34 35	663	(2012). DOI: 10.5194/os-8-1-2012.								
36 37 38	664	77. Howard E.M., Durkin C.A., Hennon G.M.M., Ribalet F., Stanley								
39 40	665	R.H.R., Biological production, export efficiency, and phytoplankton								
41 42	666	communities across 8000 km of the South Atlantic. Global Biogeochem.								
43 44 45	667	<i>Cycles</i> 31 , 1066–1088 (2017). DOI:10.1002/2016GB005488.								
45 46 47	668	78. Haskell W.Z., Prokopenko M.G., Hammond D.E., Stanley R.H.R., Sandwith Z.								
48 49	669	O., Annual cyclicity in export efficiency in the inner Southern California								
50 51	670	Bight. <i>Global Biogeochem. Cycles</i> 31 , 357–376 (2017).								
52 53 54	671	DOI:10.1002/2016GB005561.								
55 56		33								

79. Uemura R., Barkan E., Abe O., Luz B., Triple isotope composition of oxygen in atmospheric water vapor. Geophysical Research Letters 37, L04402 (2010). DOI: 10.1029/2009GL041960. 80. Landais A., Capron E., Toucanne S., Rhodes R., Popp T. et al., Ice core evidence for decoupling between midlatitude atmospheric water cycle and Greenland temperature during the last deglaciation. Clim Past 14, 1405-1415. DOI: 10.5194/CP-14-1405-2018. 81. Uechi Y., Uemura R., Dominant influence of the humidity in the moisture source region on the ¹⁷O-excess in precipitation on a subtropical island. *Earth* 513. and Planetarv Science Letters 20-28 (2019). DOI: 10.1016/j.epsl.2019.02.012. 82. Surma J., Assonov S., Staubwasser M., Triple oxygen isotope systematics in the hydrologic cycle. Reviews in Mineralogy and Geochemistry 86, 401-428 (2021). DOI: 10.1515/9781501524677-013. 83. He S., Jackisc D., Samanta D., Kho P.Y.Y., Liu G., Wang X., Goodkin N.F., Understanding tropical convection through triple oxygen isotopes of precipitation from the Maritime Continent. Journal of Geophysical Research: Atmospheres 126, e2020JD033418 (2021). DOI: 10.1029/2020JD033418. 84. Merlivat L., Jouzel J., Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research 84, 5029-5033 (1979). DOI: 10.1029/JC084iC08p05029.

1 2 3											
4 5	693	85. C	appa (C.D.,	Hendri	cks M	.B., DePac	lo D.J., Cohe	en R.C., Iso	topic frac	tionation
6 7 8	694	0	f wat	er c	luring	evap	oration. J.	Geophys.	Res. 1 08	, 4525	(2003).
9 10	695	D	OI:10.	1029/	2003J	D003	597, D16.				
11 12 13	696	86.P	assey	B.H.,	Ji H.,	Triple	e oxygen i	sotope signa	tures of ev	aporatior/	n in lake
14 15	697	W	aters a	and c	arbona	tes: A	A case stud	ly from the v	vestern Un	ited State	es. <i>Earth</i>
16 17	698	а	nd	Plar	netary	S	Science	Letters	518 ,	1-12	(2019).
18 19 20	699	D	OI:10.	1016	j.epsl.2	2019.0	04.026.				
21 22	700										
23 24 25	701										
26 27	702										
28 29 20	703										
31 32	704										
33 34											
35 36 37											
38 39											
40 41 42											
42 43 44											
45 46											
47 48 49											
50 51											
52 53											
55 56											35
57 58											
59 60						A	CS Paragon P	us Environment			

Figure 1. Bathymetry map and location of the sampling sites at the Mariana Trench. Red dot in A represents sampling site that is further detailed in B.

Figure 2. Depth profiles of seawater $\delta^{18}O(A)$, $\delta^{17}O(B)$, ^{17}O -excess (C) at Mariana Trench in this study, plotted with data from Global Seawater Oxygen-18 Database records at Mariana Trench²⁹ (reproduced from Schmidt G.A., Bigg G.R., Rohling E.J., 1999, "Global Seawater Oxygen-18 Database - v1.22", https://data.giss.nasa.gov/o18data/), and data from world oceans in Luz and Barkan¹³.

Figure 3. Oxygen three-isotope-plots of Mariana Trench waters from this study (A), deep Pacific (B), surface Atlantic (C), world oceans (D) from Luz and Barkan¹³. $\delta^{x}O = 1000 \ln(\delta^{x}O/1000+1)$, where *x* is 17 or 18.

Figure 4. Correlation of δ^{18} O and salinity for water samples deeper than 500 m indicating mixing of AABW and AAIW to Pacific water body. W. Pacific data are from Global Seawater Oxygen-18 Database²⁹ (reproduced from Schmidt G.A., Bigg G.R., Rohling E.J., 1999, "Global Seawater Oxygen-18 Database - v1.22", https://data.giss.nasa.gov/o18data/).

Figure 5. Gross oxygen productivity (GOP), g, estimated with ¹⁷O-excess of seawater at –5 per meg¹³ and –17 per meg (this study) with respect to VSMOW, using a Southern ocean dataset⁷⁰.

60

 h_n (%)

70

50

Table 1. Triple oxygen isotopic compositions of Mariana Trench water samples.

Sample	Latitude (N)	Longitude (E)	Depth (m)	δ ¹⁸ Ο (‰)	δ ¹⁷ Ο (‰)	¹⁷ O-excess (per meg)
37II-CTD05-5m	10°51.875′	141°53.963′	5	-0.049	-0.040	-14
37II-CTD05-1000m	10°51.875′	141°53.963′	1000	0.005	-0.013	-15
37II-CTD05-2000m	10°51.875′	141°53.963′	2000	-0.104	-0.075	-20
37II-CTD05-3000m	10°51.875′	141°53.963′	3000	-0.480	-0.267	-13
37II-CTD05-4000m	10°51.875′	141°53.963′	4000	0.072	0.024	-14
37II-CTD05-5000m	10°51.875′	141°53.963′	5000	0.039	0.006	-14
37II-CTD05-5900m	10°51.875′	141°53.963′	5900	-0.263	-0.155	–16
37II-CTD01-50m	10°52.178′	141°55.451′	50	-0.028	-0.031	–16
37II-CTD01-500m	10°52.178′	141°55.451′	500	0.234	0.106	–17
37II-CTD01-1000m	10°52.178′	141°55.451′	1000	-0.251	-0.143	-10
37II-CTD01-2000m	10°52.178′	141°55.451′	2000	-0.229	-0.135	-14
37II-CTD01-4000m	10°52.178′	141°55.451′	4000	-0.166	-0.109	-22
37II-CTD03-1200m	10°50.480′	141°57.101′	1200	-0.478	-0.258	-6
37II-CTD03-2100m	10°50.480′	141°57.101′	2100	-0.260	-0.153	-16
37II-CTD03-3000m	10°50.480′	141°57.101′	3000	-0.163	-0.100	-14
37II-CTD03-4000m	10°50.480′	141°57.101′	4000	0.309	0.146	–17
37II-CTD03-4500m	10°50.480′	141°57.101′	4500	-0.206	-0.124	-16
37II-CTD03-5400m	10°50.480′	141°57.101′	5400	0.010	-0.018	-23
JL115	10.85097°	141.9537°	5497	0.071	0.016	-22

ACS Earth and Space Chemistry

JL120	10.5824°	141.8796°	6717	-0.043	-0.032	-10
JL122	10.8976°	142.2218°	6140	0.168	0.073	-16
JL144	10.8889°	142.2289°	6560	0.002	-0.021	-22
JL146	10.9166°	141.6984°	6539	0.065	0.008	-26
JL150	11° 34.850'	141°52.930'	6479	-0.431	-0.237	-9
Dive-YW17	11°10.7160′	142°06.1020′	9320	0.303	0.137	-23
Dive-YW18	11°19.9844′	142°12.4887′	10910	-0.024	-0.034	-21
Dive-YW19	11°19.9844′	142°12.4887′	10901	-0.395	-0.226	-17
Dive-YW20	11°20.0742′	142°12.9313′	10912	-0.077	-0.059	-18
Dive-YW21	11°19.5011′	142°10.7433′	10902	-0.004	-0.012	-10
Dive-YW22	11°19.8720′	142°12.0900′	10920	0.082	0.031	-12
Dive-YW23	11°22.3440′	142°35.7284′	10922	-0.083	-0.060	-16
Dive-WQ20	11°19.6882′	142°11.5436′	10910	-0.215	-0.125	-12
Dive-WQ21	11°20.211′	142°13.034′	10910	-0.180	-0.112	-17
Dive-WQ22	11°19.9865′	142°11.9294′	10908	0.544	0.270	-17
Dive-WQ23	11°20.3824′	142°12.3219′	10910	-0.351	-0.202	-17
Dive-WQ24	11°20.1566′	142°12.6868′	10923	-0.249	-0.146	–15
TS09-CTD06-500m	10°50.7840′	140°20.400′	500	-0.097	-0.068	-17
TS09-CTD06-4500m	10°50.7840′	140°20.400′	4500	-0.018	-0.027	-17
TS09-CTD06-5400m	10°50.7840′	140°20.400′	5400	0.016	-0.020	-29
TS09-CTD06-5800m	10°50.7840′	140°20.400′	5800	-0.443	-0.255	-21

Table 2. Measurement standards at LSCE.

	δ ¹⁸ O (‰) rel. VSMOW2	$\delta^{17}O$ (‰) rel. VSMOW2	¹⁷ O-excess (per meg) rel. VSMOW2	$\delta^{18}O$ (‰) VSMOW2/SLAP2 norm.	$\delta^{17}O$ (‰) VSMOW2/SLAP2 norm.	¹⁷ O-excess (per meg) VSMOW2/SLAP2 norm.
EPB8	-7.383	-3.89	15	-7.45	-3.926	15
HAWAI-1	0.516	0.272	0	0.521	0.275	0
VSMOW2	0	0	0	0	0	0
SLAP2	-55.001	-29.426	2	-55.5	-29.6989	0