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Abstract

In classical probability theory, the term cutoff describes the property of some
Markov chains to jump from (close to) their initial configuration to (close to)
completely mixed in a very narrow window of time. We investigate how coherent
quantum evolution affects the mixing properties in two fermionic quantum models
(the “gain/loss” and “topological” models), whose time evolution is governed by a
Lindblad equation quadratic in fermionic operators, allowing for a straightforward
exact solution. We check that the cutoff phenomenon extends to the quantum
case and examine how the mixing properties depend on the initial state. In the
topological case, we further show how the mixing properties are affected by the
presence of a long-lived edge zero mode when taking open boundary conditions.
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1 Introduction

Coupling to an external environment is one of the many ways to drive a classical or quantum
system out of equilibrium. Besides its relevance in experiments or realistic materials, where
the influence of the environment can very rarely be discarded, it also offers the possibility of
creating new types of steady states, and has thereby received an increase of interest over the
last decade [1–3]. A particularly important parameter is then the time needed for the system
to reach equilibrium, which, depending on the situation, one may want to be as long (e.g.,
in quantum memory devices) or as short as possible (e.g., in Monte-Carlo samplings of the
steady state) [4]. When the system’s effective dynamics can be treated as Markovian, which
occurs whenever the environment relaxes much faster than the system and keeps no memory
of its interaction with the latter, relaxation towards the steady state is generally characterized
by the relaxation time trel, obtained as the inverse of the spectral gap of the Liouvillian (in
the quantum case [5, 6]) or the transition matrix (in the classical case [10]).

One should however bear in mind that, while the spectral gap gives information about the
late time convergence of physical observables, this information may often not be enough to
quantify how far the system is from equilibrated (or “mixed”) at a given time t. In other terms,
while the gap informs us of an exponential decay of the form Ce−λ̄t, it does not tell anything
about the prefactor C, nor about the actual behaviour of the system at times which are not
� trel [11]. This fact has been at the source of a widespread interest among the mathematical
community, and the study of the mixing times of classical Markov chains has expanded over
the last thirty years as one of the most active branches of probability theory [10, 11]. A
remarkable result in this field, observed in many Markov chains when some parameter such
as the size, number of particles or dimensionality is growing large, is the emergence of a
cutoff phenomenon, a sharp transition which sees the system reach equilibrium over a narrow
window of time [7–11]. The historical example was the shuffling of a deck of 52 cards, where
it was shown that 7 shuffles are enough to bring the distribution to close to random, whereas
less shuffles still retain a strong memory of the intial ordering and more than 7 shuffles do
not significantly alter the mixing [7, 8]. However, cutoffs have kept on attracting attention
ever since and were proven to appear in a number of classic situations, including random
walks on hypercubes [12], simple one-dimensional exclusion processes [13, 14] or the Glauber
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dynamics of statistical models such as the two-dimensional Ising model in its high-temperature
phase [15].

It seems natural at this stage to ask whether an equivalent phenomenon exists in the
quantum context. This was in fact already adressed in [16], where an appropriate distance
to equilibrium was defined in the quantum information language and the existence of cutoff
established in some specific cases. However these results remain tied to some restrictions on
the types of systems considered as well as on the nature of the initial states, and leave several
open questions, for instance relating to the initial state dependence of the mixing properties.

Rather than generic theorems, our focus in this work will be to study mixing properties in
a paradigmatic example of open quantum system, consisting in a free fermionic Hamiltonian
linearly coupled to an external bath. More specifically, there are two types of system-bath
coupling we shall consider : one corresponds to gain/loss of particles through interaction
with the environment, and the other may be considered as a toy-model for Liouvillians with
non-trivial topological properties [17]. Both these couplings have in common that they re-
duce in the classical limit to the master equation for the hypercube random walk, and are
therefore good candidates for studying the interplay of quantum coherence and classical cut-
offs. Another advantage of such models is that they can be solved exactly using free-fermion
techniques [18], and can therefore be used to make analytical predictions on the mixing prop-
erties (in [19] free-fermionic chains linearly coupled to a bath were already studied in this
perspective, generic bounds on the mixing times were provided, but no discussion of a cutoff
phenomenon was made).

Our work is organized as follows. In Section 2, we introduce the models and review their
classical limit. In Section 3, we describe the diagonalization of the Liouvillians in terms of
a complete set of master modes. We also put forward the topological features of one of our
models, in particular the existence of an edge zero mode when open boundary conditions
are taken. In Section 4 we turn to the mixing properties, and construct in terms of the
master modes a family of factorized initial states, from which the exact time evolution may
be computed, and which we argue from numerics that they are good representatives of the
“worst” and “best” conditions for mixing among all possible initial states, that is, those
which lead at a given time t to the least or most possible mixing. From there, we conclude
in Section 5 about the existence of a cutoff in all cases (defined, as customarily, from the
worst mixing state at all times), and further describe the dependence of the mixing time
on the choice of initial state. An interesting exception, discussed in Section 5.4, is the case
of the “topological” model with open boundary conditions, where the existence of the zero
mode results in a destruction of the cutoff, a phenomenon we do not know of an analog in
classical problems. We also discuss in Section 5.3 the relation with other physical quantities,
in particular the von Neumann entropy and local observables. Our findings are summarized
in Section 6.

2 The models

2.1 Fermionic chains with linear dissipation

We consider the evolution of an open quantum system, that is a quantum system coupled to
an external environment. In the Markovian description, where the coupling is supposed to be
weak enough, and the environment’s dynamics fast enough such that the latter does not keep
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any memory of its interaction with the system, the dynamics of the system’s density matrix
is known to be well described by an equation of the Lindblad form [6]

dρ

dt
= Lρ := −i[H, ρ] + LDρ , LDρ =

∑
µ

(
LµρL

†
µ −

1

2
{L†µLµ, ρ}

)
, (1)

where the Liouvillian L is formed of a Hamiltonian part accounting for the system’s unitary
evolution, and a part LD describing the coupling with the environment. [, ] and {, } are
respectively the commutator and anticommutator, [A,B] := AB −BA, {A,B} := AB +BA.

The Hamiltonian is taken here to be that of a free fermionic chain,

H = −g
L∑
j=1

[
c†jcj+1 + c†j+1cj + α

(
c†jc
†
j+1 + cj+1cj

)]
− gh

L∑
j=1

c†jcj , (2)

where the c†j , cj are fermionic creation/annihilation operators, satsifying the canonical anti-

commutation rules {c†i , cj} = δi,j , {ci, cj} = {c†i , c
†
j} = 0. Through a Jordan-Wigner transfor-

mation [20,22],

cj + c†j =

∏
l<j

σzl

σxj , i(cj − c†j) =

∏
l<j

σzl

σyj , (−1)Q =
L∏
l=1

σzl , (3)

the Hamiltonian (2) can also be rewritten as that of a XY spin-1/2 chain with transverse
magnetic field, namely

H = g

L−1∑
j=1

[
1 + α

2
σxj σ

x
j+1 +

1− α
2

σyj σ
y
j+1

]
− (−1)Q

[
1 + α

2
σxLσ

x
1 +

1− α
2

σyLσ
y
1

]
− gh

2

L∑
j=1

(
σzj + 1

)
, (4)

where the matrices σx,y,zj act as Pauli matrices on the jth site of the chain, and as identity
elsewhere. The case α = 1, in particular, corresponds to the Ising chain in a transverse
magnetic field, or, expressed in terms of Majorana fermions w2j−1 = cj + c†j , w2j = i(cj − c†j),
the Kitaev chain [23]. Let us also recall that the particle-hole transformation cj ↔ c†j maps h
to −h, therefore we will restrict in the following to positive values of h.

As for the dissipative part LD, we will consider in this work two choices of Lindblad jump
operators Lµ, both linear in the fermions. As a result the Lindblad equation (1) is quadratic,
and can be diagonalized exactly [18]. The first case we will consider, dubbed “gain/loss” in
the following, corresponds to two types of jump operators for each site of the chain,

Lgain
j =

√
γc†j , Lloss

j =
√
γcj , (5)

corresponding to gain and loss of fermions through interaction with the environment. Such
models have been considered in many places in the past literature, see for instance [24–26].

Another case we will consider, dubbed “topological” for reasons that will be explained
below (see Section 3.3), corresponds to the following choice of jump operators on each site :

Ltop
j =

√
γ(cj + c†j) . (6)
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Contrarily to the gain/loss case, it is not clear how to realize the above operators in a realistic
physical setting. Nevertheless, we will study them as a particularly simple toy model for
dissipative fermionic systems exhibiting topological features, such as those considered in [17,
27, 28] (we note in particular that our model corresponds to a particular choice of the model
considered in [28], namely ∆ = 1).

2.2 The classical part, and the cutoff phenomenon

A reason for the choices (5), (6) of Lindblad operators is that both lead, in the purely dissipa-
tive limit (that is, when the Hamiltonian part is removed from (1)), to a well-known classical
Markovian problem. The latter is obtained by restricting to density matrices diagonal in the
basis of fermion occupation numbers, whose diagonal entries we label as ρn1,...nL , ni ∈ {0, 1}.
As can easily be checked, both gain/loss and topological models lead to the same master
equation

d

dt
ρn1,...nL = γ

L∑
j=1

(
ρn1...n̄j ...nL − ρn1...nj ...nL

)
, n̄j := 1− nj , (7)

which is the master equation for a classical nearest-neighbour random walk on the L−dimensional
hypercube {0, 1}L (the latter is also equivalent to the Glauber dynamics of the classical Ising
model at infinite temperature [15]). The walk, whose position is indexed by the L-uple
n1, . . . nL, performs nearest neighbour jumps of rate Lγ, corresponding to each of its compo-
nents changing value at rate γ. As t→∞, it reaches the uniform stationary state, where all
the ρn1,...nL are equal to 1/2L.

Starting from an initial configuration ρ(0) (corresponding to a set of non-negative densities
ρn1,...nL(0) normalized to

∑
{ni} ρn1,...nL = 1), a good way to quantify how fast equilibration

occurs is through the total variation distance to equilibrium [10,11]

||ρ(t)− ρ(∞)|| = 1

2

∑
n1,...nL∈{0,1}

|ρn1,...nL(t)− ρn1,...nL(∞)| . (8)

One way to think of the total variation distance between two distributions is as the maximum
difference between probabilities associated to a single event. The total variation distance
to equilibrium has several well-known properties which hold for any Markov chain [11], in
particular it is always comprised between 0 and 1, and is non-increasing with time.

Given (8), a very important quantity is

d(t) = max
ρ(0)
||ρ(t)− ρ(∞)|| , (9)

which is at a given time the maximal distance to equilibrium over all possible initial config-
urations. Looking back at the particular case of the random walk on {0, 1}L, the maximal
distance is obtained at any time by taking ρ(0) to be any purely localized state, where one of
the ρn1,...nL(0) equals 1 and the others equal 0 [12]. As can be seen on Figure 1, and reviewed
in more detail in Appendix A, the distance jumps from 1 to 0 around a time tmix(L) = lnL

2γ ,
and this jump occurs in a time window of width O(1), which becomes much smaller than
tmix as L increases: this characterizes what has been coined a cutoff by the mathematical
community [7, 9, 10]. More generally, a sequence of Markov chains indexed by some size or
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Figure 1: Distance to equilibrium of the classical random walk on the hypercube {0, 1}L. As
L increases, a sharp cutoff develops, with the distance jumping from 1 to 0 around a time
tmix = lnL

2γ .

dimensionality L are said to exhibit a cutoff if there exist a sequence of mixing times tmix(L)
(typically increasing with L) such that for any ε > 0, one has [11]

d ((1− ε)tmix(L)) −−−−→
L→∞

1 (10)

d ((1 + ε)tmix(L)) −−−−→
L→∞

0 . (11)

3 Diagonalization of the Liouvillians

3.1 The gain/loss model

Lindblad equations of the form (1), quadratic in fermion operators, have been presented and
diagonalized in [18]. While generically the diagonalization goes through re-expressing the
Liouvillian as a quadratic “Hamiltonian” acting on a superspace of operators and reduces the
diagonalization of the latter to that of a 4L-dimensional matrix, in the present case translation
invariance makes it natural to reduce the problem to a block-diagonal form without stepping
to the super-operator formalism. We therefore introduce the momentum space creation and
annihilation operators

ck =
1√
L

L∑
j=1

eikjcj , k ∈ {k0, k1, . . . kL−1} :=

{
0,

2π

L
, . . .

2π(L− 1)

L

}
, (12)

and it shall be clear depending on the context whether we are using real space or momentum
space operators (we will try as much as possible to reserve the letter j for the sites of the
chain and k for the momenta).

A first step is the diagonalization of the Hamiltonian (2). This is achieved by introducing
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the Bogoliubov-rotated fermions [22],

ηk =


e−i

π
4 c†k k = 0

ei
π
4 ck k = π

e−i
π
4 cos θkc

†
k − e

iπ
4 sin θkc−k otherwise

, tan(2θk) =
α sin k
h
2 + cos k

. (13)

which satisfy the canonical anticommutation relations {ηk, ηk′} = {η†k, η
†
k′} = 0, {ηk, η†k′} =

δk,k′ , and in terms of which the Hamiltonian (2) becomes

H =
∑
k

εk

(
η†kηk −

1

2

)
− ghL

2
, εk = 2g

√(
cos k +

h

2

)2

+ α2 sin2 k . (14)

Turning to the dissipative part LD, it is easy to check that we can rewrite it for the
gain-loss model as

LDρ = γ
∑
k

(
c†kρck + ckρc

†
k − ρ

)
= γ

∑
k

(
η†kρηk + ηkρη

†
k − ρ

)
. (15)

Gathering (14) and (15), we can now compute the action of the full Liouvillian L on

the rotated fermions ηk, η
†
k. Because of their anticommuting nature, these are not simply

annihilated by the components of L with momentum k′ 6= k. Therefore, it will turn convenient
to introduce the modified fermions

η̄k = ηk(−1)Q η̄†k = (−1)Qη†k = −η†k(−1)Q , (16)

so that [η̄
(†)
k , η

(†)
k′ ] = 0 for k 6= k′. We can check from there

L id = 0 (17)

Lη̄†k = (−γ − iεk)η̄†k := −2β+
k η̄
†
k (18)

Lη̄k = (−γ + iεk)η̄k := −2β−k η̄k (19)

L[η̄†k, η̄k] = −2γ[η̄†k, η̄k] = −2(β+
k + β−k )[η̄†k, η̄k] , (20)

and therefore the modified fermions η̄k, η̄
†
k can be used to define a complete set of eigenmodes

(master modes) of the Liouvillian. These are indexed by a sequence of 2L binary integers
ν =

(
ν+

0 , ν
−
0 , ν

+
1 , ν

−
1 , . . . ν

+
L−1, ν

−
L−1

)
, ν±i ∈ {0, 1}, and read

Cν =

L−1∏
i=0

[(η̄ki)
ν+i (η̄†ki)

ν−i ] (21)

where the bracket notation indicates that if for a given i both ν±i are = 1, the factor [η̄ki η̄
†
ki

]

should be understood as the commutator [η̄ki , η̄
†
ki

]. The associated eigenvalues of the Liouvil-
lian, namely LCν = λνCν , read

λν = −2
L−1∑
i=0

(ν+
i β

+
ki

+ ν−i β
−
ki

) . (22)
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Since all β±k have a positive real part, the identity (or, rather, ρ∞ := 1
2L

id), is the only mode
with eigenvalue 0 and therefore corresponds to the unique steady state. Relaxation towards
the steady state occurs exponentially at late times, with a rate given by the eigenvalue with
smallest real part (in absolute value), the so-called spectral gap λ̄ = γ. We accordingly define
the relaxation time as the inverse of the spectral gap,

trel = 1/λ̄ =
1

γ
. (23)

3.2 The topological model

We now turn to the topological model (6). The Hamiltonian part is the same as for the
gain/loss model, so we look directly at the action of the dissipative part. In terms of the
rotated fermions (13), we check

LDρ = γ
L∑
j=1

(
(c†j + cj)ρ(c†j + cj)− ρ

)
= γ

∑
k

(
(η†k + η−k)ρ(ηk + η†−k)− ρ

)
, (24)

which leads to the following action of the full Liouvillian

Lη̄k = (−γ + iεk)η̄k − iγη̄†−k (25)

Lη̄†k = (−γ − iεk)η̄†k + iγη̄−k . (26)

Let us define new fermion operators

Γk =
ei
π
4 ηk + e−i

π
4 η−k√

2
, Γ†k =

e−i
π
4 η†k + ei

π
4 η†−k√

2
, (27)

and similarly Γ̄k = Γk(−1)Q, Γ̄†k = (−1)QΓ†k. Γk and Γ†k satisfy the same canonical an-

ticommutation relations as the fermions ηk, η
†
k. The eigenmodes of the Liouvillian can be

constructed from (25), (26), and these are conveniently reexpressed in terms of (27) as

C+
k =

εk −
√
ε2k − γ2

εk +
√
ε2k − γ2

1/4

Γ̄k −

εk −
√
ε2k − γ2

εk +
√
ε2k − γ2

−1/4

Γ̄†k (28)

C−k =

εk −
√
ε2k − γ2

εk +
√
ε2k − γ2

−1/4

Γ̄k −

εk −
√
ε2k − γ2

εk +
√
ε2k − γ2

1/4

Γ̄†k (29)

C±k = [Γ̄†k, Γ̄k] . (30)

One indeed checks

L id = 0 (31)

LC+
k = (−γ − i

√
ε2k − γ2)C+

k := −2β+
k C

+
k (32)

LC−k = (−γ + i
√
ε2k − γ2)C−k := −2β−k C

−
k (33)

LC+−
k = −2γC+−

k = −2(β+
k + β−k )C+−

k , (34)
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0 π 2 π

0

0 π 2 π

0

0 π 2 π

0

Figure 2: Band structure for the elementary excitations of the Liouvillian L for the topological
model, with α = 1. Depending on the relative values of γ/g and h, there are three regimes
: two bands (left), one band (right), and an intermediate regime (middle). The black arrow
represents the spectral gap λ̄ in each case.

and from there the master modes can be constructed as for the gain/loss model, with eigenval-
ues of the form (22). Depending on the value of γ/g, α, h, the band structure of the eigenvalues
−2β±k may draw different regimes. For simplicity we restrict here to α = 1, corresponding
to the transverse field Ising chain. We also restrict to h ≥ 0, thanks to the particle-hole
symmetry cj ↔ c†j .

On Figure 2, the band structure is represented in three regimes drawn by the parameters
γ/g and h. The expression of the spectral gap, indicated by the black arrow on the figure,
depends on the regime under consideration. For α = 1, it is given by

λ̄ =

{
γ if γ

g ≤ |h− 2|
γ −

√
γ2 − g2(2− h)2 if γ

g ≥ |h− 2| .
(35)

We represent the spectral gap in the (h, γ/g) plane on Figure 3. One noticeable difference
with the gain-loss model is the existence of a “quantum Zeno” regime, corresponding to
γ/g ≥ |h− 2|, where the gap decreases when γ/g is increased [21]. Eventually, for γ/g →∞,
the gap vanishes, as the result of there being many other steady states in this limit.

3.3 What is topological about the topological model ?

It is well known that in the regime of parameters |h| < 2, α 6= 0 the Hamiltonian (2) is in a
topologically non-trivial phase, with a gapped bulk and gapless edge modes [23]. This is best

seen in terms of the Majorana fermions w2j−1 = cj + c†j , w2j = i(cj − c†j), in the extreme limit
α = 1, h = 0: the Hamiltonian is then a sum of bilinears of the form w2jw2j+1, which in the
case of open boundary conditions leaves the modes w1 and w2L unpaired. These edge modes
commute with the Hamiltonian, anticommute with the fermion number parity (−1)Q, and are
therefore responsible for an exact degeneracy of the spectrum between sectors (−1)Q = ±1.
Furthermore, these survive throughout the topological phase, where they can be expressed are
a power series in h [29]. They are then exponentially located at the edges, and the degeneracy
holds exactly in the L→∞ limit.

We will now see that analogous features hold for the Liouvillian of the topological model,
in the same regime of parameters. Recasting the action of the dissipative part LD in terms

9
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0 1 2 3 4

0

1

2

3

4

Figure 3: Spectral gap of the topological model for α = 1 as a function of h and γ/g. Darker
tones correspond to smaller values of the gap, and lighter tones to larger values. The dashed
green line corresponds to the topological to trivial phase transition discussed in Section 3.3,
while the red lines denote the limit of the “Zeno” regime, where the gap decreases under
increasing γ.

of spins, we see that it commutes with the operation

Ψ : ρ→ σxLρ , (36)

Taking open boundary conditions for the Hamiltonian (2), σxL further commutes with H in
the limit α = 1, h = 0, so the operation (36) commutes with the action of the full Liouvillian
L. Another important property of the operation (36) is that it anticommutes with the “parity
of a-fermions” operator [18], which can be defined through its diagonal action on any product
C of fermion operators as ZC := (−1)QC(−1)Q (in other terms Z counts the parity of the
number of fermion operators in the product C). Since Z further commutes with the action of
the Liouvillian, we see that Ψ plays the role of a zero mode, and results for the Liouvillian in a
doubly degenerate spectrum between sectors of parities Z = ±1. Switching to different values
of α and h, we see that these features persist throughout an extended phase, namely whenever
the Hamiltonian is in a nontrivial topological phase. More precisely, the degeneracies hold for
|h| < 2, α 6= 0, up to corrections exponentially small in the system size L. This is illustrated
on Figure 4. We however note in passing, looking back at Figure 3, that for periodic boundary
conditions nothing distinguishes between the two phases.

In Section 5.4 we shall come back to these features, which will turn out to have interesting
consequences for the mixing properties.

10
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Figure 4: (Negated real part of the) spectrum of the Liouvillian for the topological model
with open boundary conditions, split according to the value of the parity Z = ±1, for values
of the parameters inside the topological (left) or topologically trivial (right) phase. In the
former case, the inset shows the first two eigenvalues in both sectors for increasing system
sizes.

4 Mixing in the presence of quantum coherent evolution

Having at hand a complete set of master modes for both the gain/loss and topological models,
we can now turn to the mixing properties of these models. In particular, we will be concerned
with the fate of classical cutoff described in Section 2.2 when quantum coherent evolution is
turned on (g 6= 0), and the dependence of the mixing properties on the choice of initial con-
ditions. The notions of distance to equilibrium, mixing times and cutoffs have been extended
to the quantum context in the past literature [16]. For a given quantum channel (Liouvillian)
with a unique stationary state, the total variation distance (8) should be replaced by the trace
distance

||ρ(t)− ρ∞|| =
1

2
Tr
√

(ρ(t)− ρ∞)†(ρ(t)− ρ∞) , (37)

which, in the case where the matrices ρ and ρ∞ are hermitian (as they will here), is simply half
the sum of their absolute eigenvalues. The trace distance shares some important properties of
the total varation distance, in particular it is comprised between 0 and 1, and non-increasing
with time.

In this section we will examine the time-dependence of the distance (37) as a function of
the initial configuration ρ(0), with a particular interest in finding the “worst choice” initial
conditions ρ(0), which maximize the distance (37) at a given time t.

4.1 Preamble: a look at product chains

Both the gain/loss and topological Liouvillians split into L momentum sectors, each carrying
master modes C+

k , C−k , C+−
k which are eigenmodes of the Liouvillian and which commute

or anticommute between different momentum sectors (for the topological model these were

11
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explicitly defined in equation (28)-(30), while for the gain/loss model they are simply the

Bogoliubov fermions C+
k = η̄†k, C

−
k = η̄k, C+−

k = [η̄†k, η̄k]).
Let aside anticommutation, our models therefore resemble the so-called product chains,

where the time evolution can be decomposed as the tensor product of L independent channels.
In the classical setup, product chains (the hypercube random walk being an example) are
known to generically exhibit a cutoff under mild assumptions [10,30]. Some results were also
established in the quantum context [16]: for instance, if the time evolution can be decomposed
as a tensor product of identical quantum channels with a unique non-degenerate steady state,
a cutoff was proven to hold when restricting to separable initial states, of the form ρ(0) =∑

i piρ
(i)
1 ⊗. . .⊗ρ

(i)
L , pi ≥ 0,

∑
i pi = 1. It is however not known in general, whether such states

indeed maximize the distance (37) at all times. Another question raised in [16] is whether
the worst choice of initial state at a given time t is always a pure state, or whether, rather
counterintuitively, states with some level of mixing might take slower to reach equilibrium (in
the classical setup such a phenomenon has been presented in [34], where under the Glauber
dynamics extra updates may result in delaying the mixing).

In order to illustrate these ideas, and before embarking into the study of the models
defined in Section 2, let us briefly discuss a very simple example of product chain acting
on L independent qubits, where the Liouvillian acts on each qubit as : Lρk = ig[σzk, ρk] +
γ(σ+

k ρkσ
−
k + σ−k ρkσ

+
k − ρk). One easily checks that Lσ0

k = 0, Lσ±k = (−γ ± ig)σ±k , Lσzk =
−2γσzk, so here again there is a unique steady state ρ∞ = 1

2L
id. For the sake of illustration,

let us restrict to initial states of the product form, namely ρ(0) = ρ1(0) ⊗ . . . ⊗ ρL(0). Each
of the ρk(0) can be decomposed as

ρk(0) =
1

2
σ0
k +

(
pk −

1

2

)[
cos(2θk)σ

z
k + sin(2θk)

(
eiϕkσ+

k + e−iϕkσ−k
)]
, (38)

where 0 ≤ pk ≤ 1, and therefore evolves as

ρk(t) =
1

2
σ0
k +

(
pk −

1

2

)[
e−2γt cos(2θk)σ

z
k + e−γt sin(2θk)

(
ei(ϕk+gt)σ+

k + e−i(ϕk+gt)σ−k

)]
.

(39)

The eigenvalues of ρk(0) are pk, 1−pk, and therefore pk is a measure of the purity of the initial
state : pk = 0 or 1 for pure quantum states, and pk = 1

2 for a completely mixed state. At time
t the eigenvalues of ρk(t) take the form 1

2 ± (pk− 1
2)f(θk, t), and the distance to equilibrium is

||ρ(t)− ρ∞|| =
1

2

∑
ε1=±,...εL=±

∣∣∣∣∣
L∏
k=1

(
1

2
+ εk

(
pk −

1

2

)
f(θk, t)

)
− 1

2L

∣∣∣∣∣ , (40)

where of course εk = ± should not be confused with the eigenenergies εk of (14). At any
time this distance is maximized by maximizing (in absolute value) the terms (pk − 1

2)f(θk, t)
for each individual k. We observe here a peculiarity of two-level systems, namely that the
purity of the initial states appears as a prefactor at all times, and, therefore, that the maximal
distance is indeed obtained starting from a pure state 1. More explicitly, it corresponds to
choosing for each k pk = 1, and θk = π

4 , so the eigenvalues of ρk(t) are 1
2±

1
2e
−γt. The distance

1Another way to arrive at the same conclusion would be to use the monotonicity of the distance, namely
the fact that it can only decrease under the application of quantum channels [16]. Starting with ρ(0) a product
of density matrices with eigenvalues pk, 1 − pk, one can act on each qubit with negative time exponentials

12
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to equilibrium as a function of time then has the same form as that of the classical random
walk on the hypercube discussed in Section 2.2 and Appendix A, and is indeed seen to exhibit
a cutoff.

4.2 Constructing initial states

We now move back to our models, which in contrast with product chains cannot be written as
a tensor product of independent channels, due to the anticommutation between the operators
C±k in different sectors To get an idea of the difficulties raised by the fermionic nature of
the problem, let us look at the gain/loss model, starting with a single momentum sector. A
generic initial density matrix can be written in the form (38), where σ0

k, σ
+
k , σ

−
k , σ

z
k are now

replaced by id, η̄†k, η̄k and [η̄†k, η̄k]. From (17)-(20) it is easy to read off its time evolution, and
eigenvalues. As in the toy-model discussed above, the slowest mixing (namely, the maximal
distance) is obtained by choosing pk = 1 (or 0) and θk = π

4 . However, putting all momentum
sectors back together, it is not anymore a valid choice to simply consider a product of such
density matrices: contrarily to the case of product chains these do not commute with one
another and therefore their product, being non-hermitian, does not correspond to a physical
initial configuration. Similar remarks can be paralleled for the topological model.

In the following we will construct several classes of physical initial density matrices in terms
of the master modes C+

k , C−k , C±k , which will turn out to be relevant for both the gain/loss and

topological models (we recall that for the former the correspondence is C+
k = η̄†k, C

−
k = η̄k,

C+−
k = [η̄†k, η̄k]).

Single-sector commuting density matrices A natural way to work around the problem
of anticommutation is to start from products of single sector commuting density matrices,
namely linear combinations of id and C+−

k in each sector :

ρC
k (0) =

1

2
id +

(
pk −

1

2

)
C+−
k , (41)

with 0 ≤ pk ≤ 1. For both the gain/loss and topological models, these evolve in time as

ρC
k (t) =

1

2
id + e−2γt

(
pk −

1

2

)
C+−
k , (42)

and we write the corresponding single-sector eigenvalues

p
C(1,2)
k (t) =

1

2
±
(
pk −

1

2

)
e−2γt . (43)

Paired commuting density matrices Another possibility is to combine the anticommut-
ing master modes of different sectors into commuting objects. There are many ways to do

e−tkLk in order to arrive at a pure quantum state, ρ̃(0). By monotonicity arguments, it is then easy to see
that ||eLtρ̃(0) − ρ∞|| ≥ ||eLtρ(0) − ρ∞||. Transposed to a product of internal spaces with larger dimension d,
this argument only tells us that the maximal distance is obtained for initial density matrices which have “a
certain level of purity”, namely at least one zero eigenvalue in each tensorand.

13
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this, but in the following we will restrict to the so-called paired density matrices built from
two sectors with momenta k1, k2. We therefore define

ρC
k1,k2(0) =

1

4
id +

1

2

(
eiϕk1,k2 Γ̄†k1Γ̄†k2 + e−iϕk1,k2 Γ̄k2Γ̄k1

)
+

1

4
[Γ̄†k1 , Γ̄k1 ] · [Γ̄†k2 , Γ̄k2 ] , (44)

where Γ̄k, Γ̄†k were defined in (27) for the topological model, while for the gain/loss model

they should just be taken to be η̄k, η̄
†
k. Eq. (44) is the most general choice of a commuting

combination corresponding to a pure state, that is with eigenvalues (1, 0, 0, 0) (times the
identity in other sectors). We will not justify here that starting from a pure state in paired
sectors is indeed what maximizes the distance to equilibrium, but numerical studies below
will confirm this fact. The explicit time dependence of ρC

k1,k2
(t) will be worked out separately

for the gain/loss and the topological models in the next sections, and we will generically write
the corresponding eigenvalues as

p
C(1)
k1,k2

(t), p
C(2)
k1,k2

(t), p
C(3)
k1,k2

(t), p
C(4)
k1,k2

(t) . (45)

Density matrices for the full system The single-sector and paired commuting density
matrices can now be combined into density matrices for the full system, namely arbitrary
products of them can be taken. Furthermore, we may still multiply such products by one
noncommuting single-sector density matrix ρk(t). We therefore define

ρ{(k)},{(ki1 ,kj1 ),...(kim ,kjm )},{kl1 ,...kln}(t) := (ρk(t))

m∏
a=1

ρC
kia ,kja

(t)

n∏
b=1

ρC
klb

(t) , (46)

where the parentheses around k in the left-hand side, and around ρk(t) in the right-hand side,
mean that the non-commuting density matrix ρk(t) may or may not be present in the product.
We must then have 2m + n(+1) = L. In each sector (or pairs of sectors) the initial density
matrices have internal parameters (pk, ϕk, ϕk1,k2 , etc...), which we leave unspecified for the

moment. Writing the eigenvalues of ρk(t) as p
(1,2)
k (t), and those of the single-sector/paired

commuting matrices as (43) and (45) respectively, we obtain the eigenvalues of (46) as prod-
ucts of the latter, which results in the following expression for the trace-norm distance to
equilibrium

||ρ(t)− ρ∞|| =
1

2

∑
(c∈{1,2})

d1,...dm∈{1,2,3,4}
e1,...en∈{1,2}

∣∣∣∣∣(p(c)
k (t)

) m∏
a=1

p
C(da)
kia ,kja

(t)
n∏
b=1

p
C(eb)
klb

(t)− 1

2L

∣∣∣∣∣ , (47)

where once again parentheses account for the presence or absence of the non-commuting
matrix ρk(t).

Let us emphasize that the the density matrices (46) are only a very small subset of all
the possible initial states. In particular, these are completely (or almost completely, because
of the pairing between sectors) factorized. In the following, we will however observe from
numerics that such density matrices still encompass the worst-choice initial state at any time.
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4.3 The gain/loss model

We are now ready to examine the mixing properties of our models, starting with the gain/loss
model. Before turning to numerics, we want to find the conditions which maximize the
distance at any time t for density matrices of the form (46). As can easily be checked, the
distance (47) is generically maximized by separately optimizing the individual eigenvalues in

each sector, that is taking the p
(c)
k (t), p

C(da)
kia ,kja

(t) and p
C(eb)
kib

as close as possible to 0 or 1. Let

us therefore see how this goes sector by sector.

Single-sector commuting density matrices The time evolution of single-sector com-
muting matrices has been discussed in the previous section, and the associated eigenvalues
found to be given by (43). Their contribution to the distance is maximized by taking pk = 1
(or 0), that is, starting from a pure state in the corresponding sectors. Therefore,

p
C(1,2)
k (t) =

1

2
± 1

2
e−2γt . (48)

Paired commuting density matrices Paired commuting density matrices take the form
(44), where in the present case Γ̄†k, Γ̄k = η̄†k, η̄k. Plugging in the time evolution of the latter,
we check that the corresponding eigenvalues take the form

p
C(1,2,3,4)
k1,k2

(t) =

(
1

2
+
ε

2
e−2γt

)(
1

2
+
ε′

2
e−2γt

)
, ε, ε′ = ±1 , (49)

irrespectively of the value of ϕk1,k2 , as well as of the value of k1 and k2.

Single-sector non-commuting density matrices The case of single-sector non-commuting
density matrices was already briefly discussed in the beginning of Section 4.2. These evolve
as

ρk(t) =
1

2
id +

(
pk −

1

2

)[
e−2γt cos(2θk)[η̄

†
k, η̄k] + e−γt sin(2θk)

(
ei(ϕk−εkt)η̄†k + e−i(ϕk−εkt)η̄k

)]
,

(50)

and the maximal contribution to distance is obtained by setting pk = 1 (or 0) and θk = π
4 ,

irrespectively of the value of ϕk. The associated eigenvalues then read :

p
(1,2)
k (t) =

1

2
± 1

2
e−γt . (51)

Gathering (48), (49), (51), it is easy to see that the density matrix of the form (46) which
maximizes the distance to equilibrium at all times corresponds to a product of one single-sector
non-commuting density matrix, and commuting density matrices in all other sectors (given
the similarity between (48) and (49), it does not matter which of those are paired and which
are single-sector). On Figure 5, we represent the associated distance as a function of time for
a system of finite size L = 4 (blue curve), and plot in comparison the distances computed
from exact diagonalization starting from randomly drawn initial conditions, corresponding
to either pure or mixed states. We also represent as a red curve the distance for a product
of commuting (paired or single-sector) density matrices, which, following the same lines as
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Figure 5: Evolution of the distance to equilibrium in the gain/loss model for L = 4. The
dashed light gray lines correspond to randomly drawn initial density matrices with various
levels of mixing, while the darker gray lines correspond to initial pure quantum states. The
colored lines are analytical predictions for initial density matrices of the type (46). We recall
the notation kj = 2πj

L for the momenta, but emphasize that in the present case the results
are insensitive to any permutation of the latter.
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above, corresponds to the fastest mixing (that is, minimizes the distance to equilibrium at
time t) when restricting to pure quantum initial state of the form (46).

Several observations can be made from there. First, it is apparent that at any time the
least mixed state is indeed of the form (46), with one single-sector fermionic density matrix,
and commuting matrices in other sectors. This observation continues to hold for larger systems
sizes and we conjecture it to be true for generic L, however we limit ourselves to presenting
results for a small system here, as for larger systems the Hilbert space of possible initial states
becomes longer to explore, and the upper bound much harder to saturate from randomly
drawn samples. In Section 5, we will study the large L behaviour of the corresponding
distance d(t), with particular interest in whether a cutoff develops in this limit. Another
observation is that, conversely, the lower bound for the distance (once restricted to starting
from pure quantum states) is not given by a density matrix of the form (46) (red curve),
which means that the states with fastest mixing may be non-factorizable.

4.4 The topological model

Let us now follow the exact same steps for the topological model. Our main interest here will
be to investigate both sides of the “Zeno transition” (red line of Figure 3), as well as the effect
of the edge modes on the mixing properties, in the case of open boundary conditions. For
this reason, we shall restrict from now on to the topologically trivial phase, 0 ≤ h < 2. This
excludes in particular the critical line h = 2, where there are two degenerate steady-states
and where the trace distance (37) is not anymore a proper measure of mixing.

Single-sector commuting density matrices As has been discussed in Section 4.2, the
time evolution of the single-sector commuting density matrices has the same form as for
the gain/loss model. Once again, their maximal contribution to the distance is obtained by
choosing pk = 1 (or 0) in (41), with eigenvalues given by (48).

Paired commuting density matrices Paired commuting density matrices take the form
(44). Their time evolution is read off by rewriting the Γ̄k, Γ̄

†
k in terms of the master modes

using (28)-(30), and we find that as a function of time the corresponding eigenvalues take the
form

p
C(1,2,3,4)
k1,k2

(t) =

(
1

2
+
ε

2
f+
k1,k2

(t)

)(
1

2
+
ε′

2
f−k1,k2(t)

)
, ε, ε′ = ±1 , f+

k1,k2
(t)f−k1,k2(t) = e−4γt .

(52)

where the explicit form of f±k1,k2(t) depends on ϕk1,k2 . The corresponding contribution to the
distance is maximized at a given time t for a certain value ϕ∗k1,k2(t) of ϕk1,k2 , and the associated

f∗±k1,k2(t) will be given in Section 5 for the particular case of the Ising chain, α = 1, h = 0.

Single-sector non-commuting density matrices The generic form for a single-sector
(non necessarily commuting) initial density matrix is

ρk(0) =
1

2
1 +

(
pk −

1

2

)[
cos(2θk)[Γ̄

†
k, Γ̄k] + sin(2θk)

(
eiϕk Γ̄†k + e−iϕk Γ̄k

)]
. (53)
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Figure 6: Evolution of the distance to equilibrium in the topological model for L = 4 and
various choices of parameters. The dashed light gray lines correspond to random initial density
matrices with various levels of mixing, while the darker gray lines correspond to initial pure
quantum states. The colored lines are analytical predictions for initial density matrices of the
type (46), where we recall the notation kj = 2πj

L .

As above we can compute the time evolution ρk(t) by recasting Γ̄k, Γ̄
†
k in terms of the master

modes, and find the associated eigenvalues under the form

p
(1,2)
k (t) =

1

2
± 1

2
fk(t) , (54)

where once again the function fk(t) depends on the parameters θk, pk, ϕk. The maximal dis-
tance at time t is obtained by maximizing |fk(t)|, which corresponds to a choice of parameters

pk = 1 , θk =
π

4
, ϕk = ϕ∗k(t) :=

π

2
+
i

2
tanh−1


√
ε2k − γ2

εk
coth(t

√
ε2k − γ2)

 . (55)

The corresponding explicit expression of fk(t), which we denote f∗k (t), is too lengthy to be
detailed here, but will be given in Section 5 for the particular case α = 1.

As for the gain/loss model we now compare the distances built from (48), (52), (54) with
numerical results from randomly drawn initial density matrices, see Figure 6. At difference

18



SciPost Physics Submission

with the gain/loss model, the eigenvalues (48), (52), (54) now depend on the momentum
sectors, and differ between the paired or single sector commuting cases. The distance to
equilibrium therefore depends on the repartition of commuting matrices between paired and
single-sector, as well as on the associated distribution of momenta, the choice of pairings
between those, etc... We do not attempt at a generic discussion here (in Section 5 this
discussion will be simplified by restricting to the particular case α = 1, h = 0, where the
dependence in momentum vanishes), but restrict to plotting for L = 4 and different sets of
parameters the distances associated with some relevant initial states, including the slowest
and fastest mixing cases (blue and red curves, respectively). As can be observed from the
blue curves in Figure 6, the maximal distance is attained at any time by a product of one
non-commuting single sector density matrix, and commuting matrices in all other sectors,
with the maximal of these being paired (which leaves out, for L even, one commuting single
sector). We also note, as attested by the various crossings between blue curves, that the
repartition of momenta for which this maximal distance is attained may vary over time.

Turning to the fastest mixing states (restricted to start from a pure quantum state), two
regimes emerge, which seem to coincide with the regimes γ/g > 2−|h|, γ/g < 2−|h| emerging
from the band structure on Figure 2. In the “small dissipation” regime (γ/g < 2 − |h|, left
panel on Figure 6) things seem to go similarly as in the gain-loss model, namely the fastest
mixing state is not of the form (46) and therefore corresponds to a non-factorizable state. In
contrast, in the “large dissipation” regime (γ/g > 2 − |h|, right panel on Figure 6), fastest
mixing does seem to be attained for a product of single sector commuting density matrices,
and we further observe a separation of timescales between the fastest and slowest mixing
states. This separation of timescales will be studied in more detail in the next section.

5 Study of the mixing times and cutoffs

In the previous section we have constructed a family of factorized density matrices (46), which,
despite being a very restricted subset among all the possible initial states, do achieve at all
times the slowest mixing (that is, they maximize at all times the distance (37) to equilibrium),
as well as, in some regimes of parameters, the fastest mixing. We will now exploit the
analytical formula (47) for the associated distance to equilibrium in order to investigate the
mixing properties and existence of cutoffs in the different regimes of our models. Then, we will
turn in Sections 5.3 and 5.4 to other related aspects, namely the behaviour of other physical
observables with respect to mixing, and the effect of the edge mode discussed in Section 3.3
when taking open boundary conditions in the topological model.

5.1 The gain-loss model

As we have seen in Section 4.3, the slowest mixing in the gain-loss model is obtained at all
times starting from a density matrix of the form (46), with one non-commuting single sector
density matrix and commuting matrices in all other sectors. Using (47), the corresponding
distance to equilibrium as a function of time reads

d(t) =
1

2

∑
ε1=±,...εL=±

∣∣∣∣∣
(

1

2
+ ε1

e−γt

2

) L∏
k=2

(
1

2
+ εk

e−2γt

2

)
− 1

2L

∣∣∣∣∣ , (56)
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(where once again the signs εk = ± have nothing to do with the energies εk), and can be
reinterpreted as the distance to equilibrium for a classical random walk on an anisotropic
hypercube, with jump rate γ in one direction and 2γ in the other directions.

The large L asymptotics of (56) can be tackled analogously as in the isotropic case, and
we show in Appendix B that for L large, t large,

d(t) ' 1

2

((
1− e−γt

2

)
erf

(√
Le−2γt

√
8

− eγt√
2L

)
+

(
1 +

e−γt

2

)
erf

(√
Le−2γt

√
8

+
eγt√
2L

))
,

(57)

where erf is the Gauss error function. The function (57) develops a cutoff for

tmix(L) =
lnL

4γ
=
trel

4
lnL , (58)

where the relaxation time trel, defined in (23), is the inverse of the spectral gap. The asymp-
totic profile of the cutoff around this time is

d

(
lnL

4γ
+ s

)
= erf

(
e−2γs

√
8

)
. (59)

Several remarks are in order : first, the profile (59) is formally the same as for the classical
hypercube random walk, and in particular retains a finite width when L→∞. Second, it is
independent of the coherent coupling strength g. Nevertheless, a striking difference with the
classical case is that all timescales, and in particular the mixing time (58), are divided by two
as a consequence of the constraint imposed on initial states by the fermionic nature of the
problem, and which can be viewed as a kind of exclusion constraint (see section 4.2).

5.2 The topological model

For the topological model, we have seen in Section 4.4 that the least mixed state is obtained
at any time from a factorized matrix of the form (46) with one non-commuting factor and
paired commuting density matrices in other sectors, plus one residual single sector commuting
matrix in the case where L is even. Furthermore, the way momenta {k0, . . . kL−1} should be
distributed between all these factors in order to maximize the distance (47) may generically
depend on time in a complicated fashion as attested by the multiple crossings between the
blue curves on Figure 6.

Here, we will specify to the particular case α = 1, h = 0, that is that of the Ising chain
in the absence of an external magnetic field, which brings the simplification that the energies
εk in (14) and hence the Liouvillian eigenvalues β±k do not depend on k, namely εk = 2g for
all k. In practice this means that all the blue curves on each panel of Fig. 6 collapse into a
single one, for which we will be able to compute the large L asymptotics. The distance reads
from (47)

d(t) =
1

2

∑
ε1,...εL=±

∣∣∣∣(1

2
+
ε1

2
f∗k (t)

)(
1

2
+
ε2

2
e−2γt

)

×

L
2
−1∏

a=1

(
1

2
+
ε2a+1

2
f∗+kia ,kja

(t)

)(
1

2
+
ε2a+2

2
f∗−kia ,kja

(t)

)
− 1

2L

∣∣∣∣∣∣ , (60)
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where the functions f∗k (t) and f∗±k′,k′′(t) are those appearing in (54) and (52), taken for the
worst-choice values of the initial state parameters, and which we here find to be

f∗k (t) = e−tγ


√√√√1 +

(
γ sinh(t

√
γ2 − 4g2)√

γ2 − 4g2

)2

+
γ sinh(t

√
γ2 − 4g2)√

γ2 − 4g2

 , (61)

f∗+k′,k′′(t) = (f∗k (t))2 , f∗−k′,k′′(t) =
e−4γt

(f∗k (t))2
. (62)

As for the gain-loss model, we can reinterpret (47) as the distance for a classical random
walk on an anisotropic hypercube, with the additional difference that the jumps are not
exactly Poisson processes anymore, as the functions (61), (62) are not purely exponentially
decaying, but only become so in the late time limit.

In Appendix B we show from there that in the large L limit all of these distances exhibit a
cutoff phenomenon at times ∝ lnL, and that the asymptotic expressions of the cutoff profiles
can be expressed in terms of the Gauss error function erf. In order to describe these profiles
in more detail we now distinguish between the small disipation (γ < 2g) and large dissipation
regimes (γ > 2g), recalling that the spectral gap (35), becomes for α = 1, h = 0,

λ̄ =

{
γ |g| ≥ γ

2 ,

γ −
√
γ2 − 4g2 |g| ≤ γ

2 .
(63)

We will also be interested in the asymptotics of the “fast mixing” red curves of Figure 6,
which is given in both regimes by

dfast(t) =
1

2

L∑
p=0

(
L

p

) ∣∣∣∣∣
(

1

2
+
e−2γt

2

)p(
1

2
− e−2γt

2

)L−p
− 1

2L

∣∣∣∣∣ . (64)

This is exactly the distance to equilibrium for a classical random walk on the isotropic hyper-
cube, and therefore develops a cutoff at times

t
(fast)
mix (L) =

lnL

4γ
. (65)

As has been discussed in section 4.4 these red curves do not necessarily correspond to the
fastest mixing state (only in the large dissipation regime might it be the case), but looking
at Fig. 6 it seems reasonable to expect that in both regimes these give a good indication of
the spreading of mixing times for all possible initial states (conditioned to be pure quantum
states at t = 0).

5.2.1 Small dissipation regime (γ < 2g)

In the small dissipation regime, we find following Appendix B the asymptotics

d (t) ' erf

e−2γ
(
t− lnL

4γ

)
2
√

2

√√√√1 + 8

(
γ sin(2t

√
4g2 − γ2)

2
√

4g2 − γ2

)2

+ 8

(
γ sin(2t

√
4g2 − γ2)

2
√

4g2 − γ2

)4
 ,

(66)
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Figure 7: Distance to equilibrium in the topological model for the Ising chain in zero magnetic
field (α = 1, h = 0) starting from two different classes of initial states, in the regimes γ > 2g,
γ < 2g and for different sizes L. The blue curves correspond to the least mixed state at
all time (“worst choice” initial conditions), while the red curves correspond to a product of
single-sector commuting matrices, which for γ > 2g seems to be the fastest-mixing state.
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which develops a cutoff for

tmix(L) =
lnL

4γ
=
trel

4
lnL . (67)

The corresponding distance, as well as the “fast mixing” distances are plotted on the left
panel of Figure 7 for various sizes.

The situation here is quite similar to that of the gain/loss model : the slowest and fast
mixing curves develop a cutoff at the same value mixing time (67), which is half that of
the classical problem. Assuming, as seemed reasonable from Figure 6, that the distance for
generic (pure) initial states remains “close enough” to these two cases, we may conclude that
in this regime all initial states develop a cutoff at time (67).

5.2.2 “Quantum Zeno regime” (γ > 2g)

In the large dissipation regime, the asymptotics of the functions (61), (62) further simplifies
to

f∗k (t) ∼ γ√
γ2 − 4g2

e
−t

(
γ−
√
γ2−4g2

)
(68)

f∗±k′,k′′(t) ∼
(

γ2

γ2 − 4g2

)±1

e
−2t

(
γ∓
√
γ2−4g2

)
. (69)

Following Appendix B, we check that the distance (60) develops a cutoff at

tmix(L) =
lnL

4(γ −
√
γ2 − 4g2)

=
trel

4
lnL , (70)

and the cutoff profile is given by

d

(
lnL

4(γ −
√
γ2 − 4g2)

+ s

)
= erf

(
γ2

4(γ2 − 4g2)
e−2(γ−

√
γ2−4g2)s

)
. (71)

An interesting feature appearing here, illustrated on the right-hand panel of Figure 7, is
the separation of timescales between the slowest mixing states and the “fast mixing” states
(which, as concluded from Figure 6, are likely to be the fastest mixing states in this regime).
In other terms, the time required to reach equilibrium strongly depends on the initial state in
this regime. Let us point that the fact that both the fastest and slowest mixing states show
a cutoff phenomenon does not imply a cutoff phenomenon for any initial state. Rather, we
conclude from the above that any initial state (conditioned to be a pure quantum state at
t = 0) should display a weaker version known as pre-cutoff [10,16] , characterized by the two

sets of timescales tmix(L) (eq. (65)) and t
(fast)
mix (L) (eq. (70)) and the fact that for any ε > 0,

||ρ
(

(1− ε)tfast
mix(L)

)
− ρ∞|| −−−−→

L→∞
1 (72)

||ρ ((1 + ε)tmix(L))− ρ∞|| −−−−→
L→∞

0 . (73)

5.3 Other physical observables

In the previous sections we have observed that both the gain/loss and topological models
exhibit a cutoff phenomenon, as defined by the trace-norm distance to equilibrium of the
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slowest-mixing state. More generally, it seems that the distance from an arbitrary initial

state satisfies a pre-cutoff with two timescales t
(fast)
mix (L) and tmix(L). In the gain/loss model

and the weak-dissipation regime of the topological model these two timescales coincide, so
there is in fact a cutoff from any initial state.

A natural question at this stage, is whether the notion of cutoff extends to other physical
observables, for instance to the growth of the von Neumann entropy S(t) = −Tr(ρ(t) ln ρ(t))
or to the equilibration of local observables. Let us start with the entropy. Starting from initial
states of the form (46), it is easy to see that it can be decomposed at all times as a sum over
individual (pairs of) sector contributions,

S(t) =

− ∑
c∈{1,2}

p
(c)
k ln p

(c)
k

− m∑
a=1

∑
da∈{1,2,3,4}

p
C(da)
kia ,kja

ln p
C(da)
kia ,kja

−
m∑
b=1

∑
eb∈{1,2}

p
C(eb)
klb

ln p
C(eb)
klb

,

(74)

which, for both the slowest- and fast- mixing states of the gain/loss model, converges for
L→∞ to the asymptotic expression

lim
L→∞

S(t)

L
= −1 + e−2γt

2
ln(1 + e−2γt)− 1− e−2γt

2
ln(1− e−2γt) + ln 2 . (75)

We plot on Figure 8 the trace norm distance and the (rescaled) entropy for the fastest-mixing
state as a function of time for various system sizes. While the former develops a cutoff at
times tmix(L) ∝ lnL, the latter relaxes exponentially with a timescale 1/2γ for any system
size, and therefore is insensitive to the cutoff.

A similar conclusion can be made for local observables. This is in fact very easily seen in
the classical case: starting from the configuration localized on site {0}L of the hypercube, a
meaningful local observable is for instance the expectation value of the ith coordinate. As can
easily be checked this evolves in time as 1

2−
e−γt

2 , so relaxes exponentially towards equilibrium
with a timescale incommensurate with the mixing time. Now, there is little reason to expect
that things should go differently in the quantum case. In order to illustrate this fact but keep
the calculations at their simplest, let us consider the example of the gain/loss model with
α = 0, and look ath the evolution of the number of particles at site j = L. In this case the
Bogoliubov fermions η†k, ηk coincide with the original momentum-space operators c†k, ck, and
we have simply

〈c†jcj〉(t) =
1

L

∑
k 6=k′

e−2γt cos((ε′k − εk)t+ j(k′ − k))〈c†kck′〉(0)

+
1

L

∑
k

(
e−2γt〈c†kck〉(0) +

1− e−2γt

2

)
. (76)

Starting for instance from the situation where there is one particle on site j = L and none on
the others (as we have argued earlier, this initial state, like all pure quantum initial states,

is expected to develop a cutoff as L → ∞), we have 〈c†kck′〉(0) = 1/L ∀k, k′, which we can
plug into (76) in order to obtain the various occupation numbers at time t. The results are
plotted on the right-hand panel of Fig. 8 for j = L and j = L/2. In all cases, the occupation
numbers converge to their equilibrium values with a timescale 1/2γ, which is the same as for
the entropy and is incommensurate with the mixing time.
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Figure 8: (Left) Evolution of the distance to equilbrium (blue curves) and the von Neumann
entropy (colored dots) of the slowest-mixing state for various system sizes in the gain-loss
model with γ = 0.5. (Right) Evolution of the fermion occupation number at site L (blue
curves) and in the middle of the chain (orange curves) for the gain/loss model with α = 0,
h = 0, γ = 0.5, starting from the state with one particle at site L and zero elsewhere.
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Figure 9: Comparison of the distance to equilibrium for the topological model for open and
periodic boundary conditions, as well as the gain/loss model with open boundary conditions,
on a system of size L = 4 and starting from randomly drawn initial states (restricted to be
pure quantum states at time 0).

5.4 Effect of the edge mode

We finally move on to considering the effect of topological features on the mixing properties.
For this sake we take the topological model with open boundary conditions, as studied in
Section 3.3, where it was shown that there exists throughout the regime |h| < 2, α 6= 0 a zero
mode Ψ, commuting in the L→∞ limit with the action of the Liouvillian, and resulting in a
twofold degeneracy of the Liouvillian spectrum between sectors Z = ±1. While these features
hold throughout the topological phase up to corrections exponentially small in L, they are
exact at any size at the zero-field Ising point α = 1, h = 0, where the action of Ψ is simply
given by (36). As a degeneracy of the spectrum means in particular closing of the spectral
gap, we expect that taking open boundary conditions will have a drastic effect on the mixing
properties. In fact, the whole discussion on mixing and cutoffs, including the definition (9)
of the distance, is valid only in the case where the Liouvillian has one single non-degenerate
steady state, which in the present case discards the particular point α = 1, h = 0. For that
case, the various initial states decay at large time towards linear combinations of the form
1

2L
(id+fσxL), −1 ≤ f ≤ 1, and the distance as defined in (9) may take any value between 0 and

1/2 in the t→∞ limit. Now, in the rest of the topological phase, the spectral gap is strictly
speaking > 0 for any system size L, and any initial state will eventually decay towards the
unique steady state ρ∞ = 1

2L
id. The associated timescale is however now exponentially large

in the system size, and cancels the cutoff effect observed for periodic boundary conditions.
This is illustrated on Figure 9, where we compare the distance from randomly drawn initial
states for open and periodic boundary conditions (we also plot in comparison the distances
for the gain/loss model with open boundary conditions, which as should be expected does not
show any drastic modification compared with the periodic case).

The long-lived edge mode also manifests itself at the level of “local” (in terms of spins,
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Figure 10: Evolution of the “local” observables 〈σx1 〉 and 〈σxL〉 for the topological model with
open and periodic boundary conditions, starting from randomly drawn initial states (restricted
to be pure quantum states at time 0).

not of fermions) physical observables. The consequences of edge zero modes on the out-of
equilibrium physics have been thoroughly studied in the past litterature, for closed Hamil-
tonian dynamics [31] but also in a dissipative (albeit quite different from the one considered
here) setup [32, 33]. Here we illustrate these effects by comparing the time evolution of the
expectation value 〈σxL〉 for open and periodic boundary conditions, see Figure 10. While in the
periodic case 〈σxL〉 = 〈σx1 〉 quickly relaxes to its equilibrium value, in the open case relaxation
takes a much longer time, exponentially increasing with the system size. This is a result of
σxL being “almost conserved” by the Liouvillian evolution, and we indeed check in comparison
a much quicker relaxation at the other end of the chain, for the expectation value 〈σx1 〉.

6 Conclusions

In this work we have examined the mixing properties of open quantum fermionic systems
whose time evolution is governed by the Lindblad equation, and in particular the quantum
counterpart of the so-called cutoff phenomenon, a well-studied aspect of classical Markov
chains. A general conclusion of our analysis is that the notion of cutoff generally carries over
to the quantum framework (see also [16]): considering two free-fermionic models which in
the classical limit reduce to the well-studied hypercube random walk [10,12], we showed that
the “worst-choice” distance to equilibrium, defined by maximizing over all possible initial
conditions, develops a cutoff at a time tmix(L) ∝ lnL as L→∞. Going further, we explored
the initial-state dependence of the mixing properties, and provided some evidence that a
cutoff, or pre-cutoff (depending on the model and regime) should exist for arbitrary initial
states.

With respect to the classical case, the quantum realm however reveals a number of new
and potentially interesting features. A first aspect, well illustrated by the gain/loss model,
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is the halving of the mixing times with respect to the classical problem, as a result of some
“exclusion constraints” due to the fermionic nature of our models. This is in contrast, in
particular, with the case of product quantum channels considered in [16], where, under some
assumptions, the mixing time was related to the relaxation time through tmix(L) = trel

2 lnL
(here, conversely, tmix(L) = trel

4 lnL). Another aspect is the separation of timescales in some
regimes between the slowest-mixing and fastest-mixing states. Finally, we have seen in the
so-called “topological model” how the presence of an edge zero mode dramatically alters the
mixing properties when open boundary conditions are taken, a phenomenon we know of no
counterpart in the classical context (let us warn however, that the classical limit of open
boundary conditions in the quantum chain does not correspond to open boundary conditions
on the classical hypercube).

There are several interesting directions to go from there. The most natural next step would
be to investigate the mixing properties of systems with a non-trivial steady state, for instance
one with long-range order, entanglement [1], or current-carrying [3, 35, 36]. Another possible
direction would be to study whether the present analysis, and in particular the existence of
cutoffs, could be extended to non-markovian dynamics such as that governing the evolution of
subsystem density matrices in isolated quantum systems after a quantum quench [37, 38], or
in random quantum circuits [39] (see also [40]). A second direction concerns the relation with
other physical observables : even though we have observed in Section 5.3 that the most natural
local observables as well as the von Neumann entropy are insensitive to the presence of a cutoff,
namely they do not develop a sharp jump as the trace-norm distance to equilibrium does at
the mixing times tmix(L), it remains an intriguing question whether the cutoff phenomenon
might transpire into other physical quantities. On a more technical level, it would of course
be interesting to move on to interacting systems, for instance using the mapping of some
interacting Liouvillians onto Bethe ansatz solvable quantum Hamiltonians [41–44]. The study
of mixing in this framework however seems to be a challenging issue. In fact, even in classical
Markov chains which can be mapped onto quantum integrable systems (for instance the
symmetric or assymetric exclusion processes [45–47]), relating mixing properties to the Bethe
ansatz language seems to be a difficult task.
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A Random walk on the hypercube

Here we review well-known results on the random walk on the hypercube with many dimen-
sions, as presented (up to changes in notations) in [12].

Consider a continuous time random walk on the hypercube {0, 1}L, parametrized by the
L-uples x = (x1, . . . , xL), where each xi ∈ {0, 1}. Starting in the situation where all xi = 0,
the walk undergoes neares-neighbour jumps at rate Lγ. In other terms, every component
xi changes value at rate γ, and its probability of being in state 1 at time t is P(xi = 1) =
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1
2(1− e−γt). At time t, the probability of being at a position x is therefore

P(x) =
1

2L
(1− e−γt)|x|(1 + e−γt)L−|x| , (77)

where |x| = x1 + . . .+ xL.
The stationary distribution, reached as t→∞, is the uniform distribution π where every

x has probability π(x) = 1/2L, and one is interested in the evolution of the total variation
distance

d(t) =
1

2

∑
x

|P(x)− π(x)| =
∑

x|P(x)≥1/2L

(P(x)− π(x)) . (78)

Comparing with (77) shows that the condition P(x) ≥ 1/2L is equivalent to imposing

|x| ≤ |x|max = L
ln(1 + e−γt)

ln 1+e−γt

1−e−γt
. (79)

When N is large, |x|, which is the sum of L binomial variables, becomes a normal distribution

of mean µ = L1−e−γt
2 and variance σ2 = L1−e−2γt

4 . Similarly, under the distribution π(x), the
distribution of |x| is a normal distribution of mean L

2 and of variance L
4 . We may therefore

write

d(t) =
∑

|x|≤|x|max

(P(x)− π(x)) = Φµ,σ(|x|max)− ΦN
2
,L
4
(|x|max) , (80)

where Φµ,σ is the cumulative distribution function of the normal law with parameters (µ, σ),
that is,

Φµ,σ(z) =
1

σ
√

2π

∫ z

−∞
e−

1
2( y−µσ )

2

dy =
1

2
+

1

2
erf

(
z − µ
σ
√

2

)
. (81)

We check from there that the distance d(t) jumps from 1 to 0 at a time with increases
logarithmically with L (see Figure 1): more precisely, expanding to second order in e−γt, we
obtain

d(t) = erf

(
e−(γt− 1

2
lnL)

√
8

)
+ o(1) (82)

B Asymptotic expressions for the various distances

Our goal here is to use techniques similar to those presented in Appendix A to derive the
asymptotic behaviour of the distance d(t) for “anisotropic” random walks as appearing in the
main text.

We consider a random walk on the hypercube {0, 1}L, where now the different components
change value at different rates. In fact, these are not necessarily Poisson processes, and we
define the probabilities P(xi = 1) = 1

2(1 − fi(t)), where fi(t) are monotonously decreasing
from 1 to 0 as t grows from 0 to ∞, so that the stationary distribution π is the uniform one.
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In practice we will consider the case of interest in Section 5.2, which is the case where L is
even, and

f3(t) = f4(t) = . . . = fL
2

+1(t) := f+(t) (83)

fL
2

+2(t) = fL
2

+3(t) = . . . = fL(t) := f−(t) . (84)

Accordingly, we decompose |x| = x1+x2+|x+|+|x−|. The probability of a given configuration
at time t reads

P(x) =
1

2L

∏
a=1,2

(1− fa)xa(1 + fa)
1−xa

∏
ε=±

(1− fε)|xε|(1 + fε)
L−2
2
−|xε| . (85)

Proceeding as in Section A, computing the distance d(t) implies a restricted summation
over configurations with P(x) ≥ 1

2L
, which corresponds to

y ≤ ymax(x1, x2) , (86)

where we have defined

y := |x+| ln
1 + f+

1− f+
+ |x−| ln

1 + f−
1− f−

(87)

ymax(x1, x2) :=
L− 2

2
[ln(1 + f+) + ln(1 + f−)] +

∑
a=1,2

ln((1− fa)xa(1 + fa)
1−xa) . (88)

By virtue of the central limit theorem, when L is large, y is described by a normal law of
parameters

µ =
L− 2

2

(
ln

(
1 + f+

1− f+

)
1− f+

2
+ ln

(
1 + f−
1− f−

)
1− f−

2

)
(89)

σ2 =
L− 2

2

((
ln

1 + f+

1− f+

)2 1− f2
+

4
+

(
ln

1 + f−
1− f−

)2 1− f2
−

4

)
. (90)

Similarly, under the uniform distribution π(x), y is distributed under normal distribution of
parameters

µ0 =
L− 2

2

((
ln

1 + f+

1− f+

)
1− f2

+

4
+

(
ln

1 + f−
1− f−

))
(91)

σ2
0 =

L− 2

4

((
ln

1 + f+

1− f+

)2

+

(
ln

1 + f−
1− f−

)2
)
. (92)

Decomposing the distance as

d(t) =
∑

x1,x2=0,1

∑
y≤ymax(x1,x2)

(
p(x1, x2)P(x+,x−)− 1

2L

)
, (93)

we therefore obtain

d(t) =
∑

x1,x2=0,1

[
p(x1, x2)Φµ,σ(ymax(x1, x2))− 1

4
Φµ0,σ0(ymax(x1, x2))

]
, (94)

where Φµ,σ was defined in (81).
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[4] M. Žnidarič, Relaxation times of dissipative many-body quantum systems, Phys. Rev. E.
92 (2015) 042143, doi:10.1103/PhysRevE.92.042143.

[5] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Ch. 3.5, p. 166,
Oxford University Press (2002).

[6] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys.
48 (1976) 119–130, doi:10.1007/BF01608499.

[7] D. Aldous and P. Diaconis. Shuffling Cards and Stopping Times., The American Math-
ematical Monthly 93, no. 5 (1986): 333–48, doi:10.1080/00029890.1986.11971821.

[8] D. Bayer, P. Diaconis, Trailing the Dovetail Shuffle to its Lair, Ann. Appl. Probab. 2
(1992) 294–313, doi:10.1214/aoap/1177005705.

[9] P. Diaconis, The cutoff phenomenon in finite Markov chains, PNAS. 93 (1996)
1659–1664, doi:10.1073/pnas.93.4.1659.

[10] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, American
Mathematical Society (2009).

[11] N. Berestycki, Mixing Times of Markov Chains: Techniques and Examples, Lecture notes,
(2016) https://www.statslab.cam.ac/ beresty/mixing3.pdf.

[12] P. Diaconis R. L. Graham J. A. Morrison, Asymptotic analysis of a random walk on
a hypercube with many dimensions, Random structures & Algorithms 1, 1 (1990), pp.
51–72, doi:10.1002/rsa.3240010105.

[13] H. Lacoin, The cutoff profile for the simple exclusion process on the circle, Ann. Probab.
44 (2016) 3399–3430, doi:10.1214/15-AOP1053.
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