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Abstract The PID control is favored in controlling industrial processes for its ease of
implementation. In this paper, the multiplicity-induced-dominancy property is used in the
design of stabilizing PID controllers for some delayed reduced-order plants. More precisely,
the controllers gains are tuned using the multiplicity’s algebraic constraints allowing to assign
analytically the closed-loop solutions’ decay rate. Furthermore, the robustness of the control
against uncertain delays is also addressed. An illustrative example completes the presentation.
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1. INTRODUCTION

Linear systems with commensurate delays (all delays are
multiple of a nominal delay) are described in the Laplace
domain by transfer functions involving quasi-polynomials
and then possibly admit an infinite number of poles.
Studying the stability properties of retarded systems (they
admit a finite number of poles in any right half-plane) is
much easier than studying those of neutral systems which
may have an infinite number of poles, in chains asymptotic
to vertical axes possibly located in the open right half-
plane or clustering the imaginary axis from left or right.
Both situations prevent to get exponential stability for
these systems. A subclass of neutral systems of interest
is the one with all asymptotic axes in the open left half-
plane guaranteing that there is a finite number of poles in
an extended right half-plane. For such systems, the concept
of α−stability will play an important role.

In the Laplace domain, a number of effective methods have
been proposed, see for instance Bellman and Cooke (1963);
Cooke and van den Driessche (1986); Walton and Marshall
(1987); Stépán (1989); Hale and Lunel (1993); Michiels and
Niculescu (2007); Olgac and Sipahi (2002); Sipahi et al.
(2011).

Even with the significant advances that have been reported
on the topic of Delay systems, the question of determining
conditions on the equation parameters that guarantee
asymptotic stability of solutions of linear time-invariant
time-delay systems remains an open question.

Once stability conditions are established; further questions
related to performance occur. What is about the estima-
tion of the corresponding rightmost roots of the system
characteristic equation? Such a rightmost root corresponds
to the so-called α−stability problem, itself is related to
the solution’s decay rate. Also a fundamental measure of
robust stabilization against uncertain time delays is the
so-called delay margin, which addresses a central issue in
the study of feedback stabilization of time-delay systems:
What is the largest range of delay so that there exists a
single controller that can stabilize the delay plant within
that entire range? This question is also longstanding and
remains open except in particular cases, see for instance
Ma and Chen (2019).

PID controllers have been extensively used to control and
regulate industrial processes which are typically modeled
by reduced-order dynamics. In Ma and Chen (2019), the
delay margin achievable using PID controllers for reduced
order linear time-invariant (LTI) systems subject to vari-
able, unknown time delays is investigated. An explicit
expressions of the exact delay margin is carried out and its
upper bounds achievable by a PID controller for low-order
delay systems with unknown constant and possibly time-
varying delays. The effect of non minimum phase zeros
is also investigated and the fundamental limits of delay
within which a PID controller may robustly stabilize a
delay process is emphasized.

In recent works, the characterization of multiple spectral
values for time-delay systems of retarded type were es-



tablished using a Birkhoff/Vandermonde-based approach;
see for instance Boussaada and Niculescu (2016b,a, 2014);
Boussaada et al. (2016). In particular, in Boussaada and
Niculescu (2016a), it is shown that the admissible multi-
plicity of the zero spectral value is bounded by the generic
Polya and Szegö bound denoted PSB , which is merely
the degree of the corresponding quasipolynomial 1 , see
for instance Pólya and Szegő (1972). In Boussaada and
Niculescu (2016b), it is shown that a given crossing imag-
inary root with a non vanishing frequency never reaches
PSB and a sharper bound for its admissible multiplicities
is established. Moreover, in Boussaada et al. (2016), the
manifold corresponding to a multiple root for scalar time-
delay equations defines a stable manifold for the steady
state. An example of a scalar retarded equation with
two delays is studied in Boussaada and Niculescu (2016b)
where it is shown that the multiplicity of real spectral
values may reach the PSB . In addition, the corresponding
system has some further interesting properties: (i) it is
asymptotically stable, (ii) its spectral abscissa (rightmost
root) corresponds to this maximal allowable multiple root
located on the imaginary axis. Such observations enhance
the outlook of further exhibiting the existing links be-
tween the maximal allowable multiplicity of some negative
spectral value reaching the quasipolynomial degree and
the stability of the trivial solution of the corresponding
dynamical system. This interesting property induced by
multiplicity appears also in optimization problems since
such a multiple spectral value is indeed the rightmost root,
see also Vanbiervliet et al. (2008).

It is worth noting that the rightmost root for quasipolyno-
mial function corresponding to stable retarded time-delay
systems (also in the neutral case under some assumptions)
is actually the exponential decay rate of its time-domain
solution, see for instance Mori et al. (1982) for an esti-
mate of the decay rate for stable linear delay systems.
To the best of our knowledge, the first time an analyt-
ical proof of the dominancy of a spectral value for the
scalar equation with a single delay was presented in Hayes
(1950). The dominancy property is further explored and
analytically shown in scalar delay equations in Boussaada
et al. (2016), then in second-order systems controlled by
a delayed proportional is proposed in Boussaada et al.
(2017) where its applicability in damping active vibrations
for a piezo-actuated beam is proved. An extension to the
delayed proportional-derivative controller case is studied
in Boussaada et al. (2018) where the dominancy prop-
erty is parametrically characterized. We emphasize that
the idea of using roots assignment for controller-design
for time-delay system is not new. As a matter of fact,
an analytical/numerical stabilization method for retarded
time-delay systems related to the classical pole-placement
method for ordinary differential equations is proposed in
Michiels et al. (2002), see also Zitek et al. (2013) for
further insights on pole-placement methods for retarded
time-delays systems with proportional-integral-derivative
controller-design.

The present work is a natural continuation of Bous-
saada and Niculescu (2014, 2016a); Ma et al. (2020), it
aims at proposing a systematic PID controller tuning to

1 The quasipolynomial degree is exactly the number of the involved
polynomials plus their degree minus one

achieve the asymptotic stability of a first order linear time-
invariant dead-time plant by extending and exploiting the
Multiplicity-Induced-Dominancy property for quasipoly-
nomial functions corresponding to neutral systems with
single delay. Furthermore, it extends Ma et al. (2020)
by considering the robustness of such a design against
uncertain delays.

The remaining paper is organized as follows. Some prereq-
uisites in complex analysis and the problem formulation
are presented in section 2 . The main results are presented
in Sections 3 and 4. In the first, a PID tuning based on
the MID property is provided. Section 4 is dedicated to
the robustness of such a design against uncertain delay. An
illustrative example is provided in Section 5. A conclusion
ends the paper.

2. PREREQUISITES AND PROBLEM
FORMULATION

The principle argument is a consequence of Cauchy the-
orem and connects the winding number of a curve with
the number of zeros and poles of a given complex variable
function inside that curve. More precisely, it asserts that
the integral of the ratio of the single valued complex
variable functions f ′(z)/f(z) on a single passage along
a closed path in the positive sense (in counter clockwise
direction) is equal to 2iπ(N−P ) where N (respectively P )
is the sum of multiplicities of zeros (respectively of poles)
of the function f enclosed in such a contour. A natural
and direct application of the principle of the argument is
the stability analysis of dynamical systems. As a matter
of fact, in the frequency domain, showing the asymptotic
stability of the trivial solution of a given dynamical system
amounts to prove that the zeros of the corresponding
characteristic equation are located in the open left-half
complex plane. The principle of argument is applied to
determine the stability of closed loop system by choosing
a closed path which encircles the entire right half complex
plane in counter clockwise direction.

The next theorem follows directly from Krall (1964) and
(Partington and Bonnet, 2004, Prop. 2.1) which gives an
explicit localisation of the spectrum chain’s asymptote for
quasipolynomial functions corresponding to the following
neutral systems.

G(s) =
r(s)

Q0(s) +Qτ (s)e−sτ
(1)

such that deg(r) ≤ deg(Q0) = deg(Qτ ).

Theorem 1. Let α = lim|s|→∞Qτ (s)/Q0(s)

1. If |α| < 1 then the poles of G of large modulus are
asymptotic to a vertical line <(s) ≈ log(|α|)/τ in the
left-half plane. The number of poles of G in the right
of <(s) = log(|α|)/τ + ε is finite for any fixed ε > 0.

2. If |α| > 1 then G has infinitely many unstable poles,
asymptotic to a vertical line <(s) ≈ log(|α|)/τ which
is the right-half plane.

So, under the condition |α| < 1 one is able to prove that
at most a finite number of poles of G are located in the
right-half plane. By scaling, this property extends to any
parallel to the imaginary axis located at the right of the
spectrum chain’s asymptote.
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Figure 1. A feedback control system

Remark 2. The above result naturally apply to any trans-
fer function

G(s) =
r(s)e−s T

Q0(s) +Qτ (s)e−sτ
for any T > 0. (2)

2.1 Problem formulation

Consider the feedback control system depicted in Figure.1
where P (s) is a reduced order plant which is subject to an
unknown delay. Thus, the corresponding transfer function
is given by

Pτ (s) = P0(s) e−τ s (3)
where P0(s) is a delay-free plant. Our aim in this paper is
to provide an easy way in tuning the standard PID gains
(ki, kp, kd) achieving the stabilization of the closed-loop
system. More precisely, the approach consists in inten-
tionally impelling an appropriate multiplicity for a given
root of the quasipolynomial function such that the induced
algebraic constraints on the quasipolynomial’s coefficients
leads to robustly stabilize the considered unstable delayed
plant. This approach showed its efficiency in studying
stability and stabilization of retarded time-delay systems.
However, in the present paper context, the obtained char-
acteristic equation in closed-loop system corresponds to a
delay system of neutral type, a class for which the stability
analysis becomes more involved. As a matter of fact, the
structure of the controller we consider is given by:

KPID(s) = kp + kd s+
ki
s
, (4)

Consider the open-loop transfer function:

L0(s) = P0(s)KPID(s)

In order for the system to achieve disturbance attenuation
and for the open loop gain to roll off at high frequencies,
we make the following assumption.

Assumption: (i) |L0(0)| > 1 (ii) |L0(∞)| < 1

3. PID STABILIZING DESIGN FOR FIRST-ORDER
DELAYED PLANTS

First-order plants are typical benchmarks usually consid-
ered for controlling industrial processes. In this aim, let
consider the unstable plant P0(s) = 1

s−p where p is a posi-

tive pole and define the delay margin τPID = sup{µ ≥ 0 :
There exists someKPID(s) that stabilizes Pτ (s) ∀τ ∈ [0, µ)} .

It is shown in Silva et al. (2002) that τPID = 2
p , see also

Ma and Chen (2019).

The resulting closed-loop plant is given by:

M(s) =

(
kp s+ ki + s2kd

)
e−sτ

s2 − sp+ e−sτkp s+ e−sτki + e−sτs2kd
. (5)

Since we are dealing with stability aim, let us focus on the
corresponding characteristic equation:{

∆(s) = Q0(s) +Qτ (s)e−sτ where

Q0(s) = s2 − sp and Qτ (s) = kds
2 + kp s+ ki .

(6)

Notice that the degree of the quasipolynomial function
defined in (6) is equal to 5. So, using a result from
Pólya and Szegő (1972) one asserts that 5 is the generic
bound of the multiplicity of any root of (6). The following
theorem provides a sharper bound on the multiplicity of
the corresponding zeros as well as a systematic manner to
tune the parameters kp , ki , kd such that the closed-loop
system (5) becomes stable.

Theorem 3. i) For arbitrary real parameters kp , ki , kd
and arbitrary positive delay τ , the multiplicity of
a given root of the quasipolynomial function (6) is
bounded by 4.

ii) The quasipolynomial (6) admits a multiple real spec-
tral value at

s± =
τ p− 6±

√
τ2p2 + 12

2τ
(7)

with algebraic multiplicity 4 if, and only if,

kd=
(4 + 2 τ s± − τ p) eτ s±

2
,

kp=−

((
8 τ + τ2s±

)
p− 18− 12 τ s±

)
eτ s±

τ
,

ki=

(
(τs± + 3) τ2p2+(−12τs±−60) τp+108+84τs±

)
eτs±

2τ2

(8)
iii) If s = s+ is a quadruple root of (6) then it is also the

corresponding rightmost root and the corresponding
tuning (8) is stabilizing.

Proof. First, the vanishing of the quasipolynomial ∆
given in (6) yields the elimination of the exponential term
as a rational function in s:

e−τ s =
−s2 + ps

kd s2 + kp s+ ki
(9)

Next, to investigate potential roots with algebraic mul-
tiplicity 4, one substitutes of the obtained equality (9)
in the ideal generated by the first three derivatives of
∆. This allows to investigate a variety of three algebraic
equations in 6 unknowns ki, kp, kd, τ, p, s. Using standard
elimination techniques, one obtains the following set of
admissible solutions:

1. ki = kp = kd = 0.
2. ki = s = 0.

3. kp = −2

(
(τs±+8)τp−12 τ s±−18

)
kd

τ (τ (2s±−p)+4)
,

ki =

(
(τs±+3)τ2p2+(−12 τs±−60)τp+84 τ s±+108

)
kd

(2 τ s±+4−τ p)τ2
where

the explicit expression of s± is given by (7).

Observe that the first solution corresponds to the open-
loop system while the second solution is inconsistent
with respect to the transcendental-term elimination (9).
So that, these two solutions are discarded. Furthermore,
substituting conditions of the third solution in (9) yields
the explicit values of the gain kd allowing to tune the



parameters as provided in (8). Note that, when forcing
multiplicity 5 complex gains and delay are obtained.

Next to show that s+ is the dominant root of the
quasipolynomial ∆ (with coefficients satisfying (8)), one
has to apply the principle of the argument. However, it
is necessary first to prove that only a finite number of
roots of ∆ may occur in the right-half complex plane
C+
s+ = {s ∈ C, s.t. <(s) > s+}. According to Theorem 1,

one has to check that τ s+ > log(|α|), see also (Partington
and Bonnet, 2004, Prop. 2.1). In our case, α is nothing but
kd. So that,

ln(kd) = ln

(
(

√
τ2p2 + 12

2
− 1)e−1/2 τ p−3+1/2

√
τ2p2+12

)
= τ s+ − ln(2) + ln(

√
τ2p2 + 12− 2)

Since, τ < τPID = 2
p , then

√
τ2p2 + 12 < 4. So that,

log(kd) < τ s+ which proves that only a finite number
of roots of ∆ may occur in the right-half complex plane
C+
s+ = {s ∈ C, s.t. <(s) > s+}.

Equivalently, by using the following scaling s → z + s+

and the new parametrization δ =
√
τ2p2 + 12, one has to

show the dominancy of zero spectral value for the following
quasipolynomial function:

∆̃(z) =z2 +
δ − 6

τ
z +

12− 3 δ

τ2

+

(
δ − 2

2
z2 +

2 δ − 6

τ
z +

3 δ − 12

τ2

)
e−zτ

(10)

Obviously, z = 0 is a root of (10) with multiplicity
4. To apply the principle argument on the standard
Bromwich contour, which allows to counting the roots
of the quasipolynomial (10) on the right half-plane, one
needs first to introduce a deflation eliminating the roots
on the imaginary axis. To do so, let us first investigate
nonzero imaginary roots for (10). Assume that there exists
ω > 0 such that z = iω is a root of (10). Let define

R(ω) = <(∆̃(iω)) and S(ω) = =(∆̃(iω)), which gives :



R(ω) =

(
2− δ

2
ω2 +

3 δ − 12

τ2

)
cos (ω τ)

+
(2 δ − 6)ω sin (ω τ)

τ
− ω2 +

12− 3δ

τ2
,

S(ω) =

(
δ − 2

2
ω2 +

12− 3 δ

τ2

)
sin (ω τ)

+
ω (2 δ − 6) cos (ω τ)

τ
+
δ − 6

τ
ω.

(11)

This means that for any z = iω a root of (10) one has:

R(ω) = 0, S(ω) = 0.

Some algebraic manipulations allow to eliminate the
trigonometric functions. Next, using the standard trigono-
metric identity cos2 (ω τ) + sin2 (ω τ) = 1 we get

0 = Ω2δ (δ − 4)×(
(δ2 − 4 δ + 4)Ω2 + (4 δ2 − 24 δ + 48)Ω

+36 δ2 + 576− 288 δ
) (12)

where Ω = τ2ω2. Since τ < τPID = 2/p, then , one shows
that no positive solution exists for both cases (?±).

Now, one is able to apply the principle of the argument to
investigate the dominancy of s+ as a root of ∆, given by
(6) such that its coefficients satisfy (8), which is equivalent

to investigate the dominancy of zero as a root of ∆̃ given

by (10). Clearly, apart from zero, ∆̃ and ∆̂(s) = ∆̃(s)
s4 have

the same roots.

Remark 4. Notice that if (8) is satisfied and s = s+ is a
root of (6) then ∆ can be normalized first using the change
of variable z = s−s+ then by scaling λ = z τ which allows
to:

∆̄(λ) =λ2 + (δ − 6)λ− 3 δ + 12

+

(
δ − 2

2
λ2 + (2 δ − 6)λ− 12 + 3 δ

)
e−λ,

(13)

with δ =
√
p2τ2 + 12. So, s+ is the dominant root of ∆

is equivalent to say that the roots of ∆̄ are located in the
left-half complex plane. Interestingly, ∆̄ can be written in
the following compact integral form,

∆̄(λ) = λ4

∫ 1

0

(
4− δ

2
t3 +

δ − 6

2
t2 + t

)
e−tλ dt,

Further, ∆̄ satisfies:

∆̄(λ)

λ4
=

(δ − 4) Γ(2)2M(2, 4,−λ)

2Γ(4)
+

Γ(2)Γ(3)M(3, 5,−λ)

Γ(5)
,

where M(a, b, z) is nothing but the hypergeometric func-
tions solution of the Kummer differential equation, see for
instance Abramowitz and Stegun (1964). Other quasipoly-
nomials written under confluent hypergeometric functions
appeared in Boussaada et al. (2016, 2017); Mazanti et al.
(2021) in investigating the dominant root of quasipolyno-
mial functions corresponding to retarded delay systems.

4. ROBUSTNESS OF THE DESIGN AGAINST
UNCERTAIN DELAY

The following result addresses the delay robustness with
respect to uncertain delay of a stabilizing PID controller
as defined in Theorem 3:

Theorem 5. i) For any τ < τPID = 2
p with (kd, kp, ki)

given in (8) one has:

0 < kd < 1, kp > p, ki > 0. (14)

The PID controller KPID(s) stabilizes Pτ (s) for all
τ ∈ [0, τ̄) where

τ̄ =
tan−1(ω0

p )

ω0
+

tan−1(
kdω0−

ki
ω0

kp
)

ω0
(15)

with ω0 is given by:

2ω0=
k2
p − 2kdki − p2

1− k2
d

+

√√√√(kp2 − 2kdki − p2

1− k2
d

)2

+4
k2
i

1− k2
d

(16)
ii) For τ → τPID with (kd, kp, ki) given in (8) one has:

kd → 1, kp → p, ki → 0. (17)

Under this circumstance, s+ → 0. The PID controller
KPID(s) stabilizes Pτ (s) for all τ ∈ [0, τPID).



Proof. To prove i), we first note that

τ s+ =
τ p− 6 +

√
(τ p)

2
+ 12

2
. (18)

To examine the controllers gains, let denote τ p = χ. Then
for τ < 2

p , one has χ ∈ [0, 2). Accordingly, one has

τ s+ =
χ− 6 +

√
χ2 + 12

2
.

which allows to rewrites (8) as:

kd = f(χ)eτ s+ , kp =
g(χ)

τ
eτ s+ , ki =

h(χ)

τ2
eτ s+ .

where

f(χ) =

√
χ2 + 12

2
− 1,

g(χ) =

(
6− χ

2

)√
χ2 + 12− χ2

2
+ χ− 18,

h(χ) =

(
χ2

2
− 6χ+ 42

)√
χ2 + 12

+
χ3

2
− 6χ2 + 18χ− 144

First, for any χ < 2, we have f(χ) < 1. Since eτ s+ < 1
then kd = f(χ)eτ s+ < 1. Next, kd > 0 since f(χ) > 0 for
any χ ∈ [0, 2).

Consider the function

ĝ(χ) = g(χ)e
χ−6+

√
χ2+12

2 − χ = g(χ)eg1(χ)) − χ
We prove below that ĝ is monotonically increasing on
[0, 2). For this purpose we consider its two first derivatives

ĝ′(χ) =
(χ− 5)

√
χ2 + 12− χ2 + 5χ− 8

2
eg1(χ) − 1

and

ĝ′′(χ) =

(
−χ2 + 3χ− 3

2
+
χ3 − 3χ2 + 9χ− 18

2
√
χ2 + 12

)
eg1(χ)

One easily shows that ĝ′′ is negative since both of the
second-order polynomials g2(χ) = −χ2 + 3χ − 3 and
g3(χ) = χ3 − 3χ2 + 9χ− 18 are negative on the interval
[0, 2). In other words, ĝ′ is a decreasing function, which
in turn means that infχ∈[0,2) ĝ

′(χ) = g′(2) = 0. As such,
on [0, 2), ĝ′(χ) > 0 which implies that ĝ is monotonically
increasing, and

ĝ(χ) = g(χ)e
χ−6+

√
χ2+12

2 − χ = g(χ)eg1(χ)) − χ > ĝ(0) > 0.

or equivalently

g(χ)eg1(χ)) > χ

Substituting now χ = τ p, we have kp = g(χ)
τ eτ s+ > p.

Finally, consider the parameter ki. For this aim, we show
that h(χ) > 0. The first derivative of h reads:

h′(χ) = 3
(χ− 2)

(
(χ− 6)

√
χ2 + 12 + χ2 − 6χ+ 24

)
2
√
χ2 + 12

.

It is obvious that the denominator h′ is positive and the
first factor of its numerator is negative. Let investigate
the properties of the second factor of h′. Assume first that

there exists χ0 ∈ [0, 2) such that (χ0 − 6)
√
χ0

2 + 12 +

χ0
2 − 6χ0 + 24 = 0. and consider the second-order

polynomial

h1(χ) = χ2 + (ξ − 6)χ− 6 ξ + 24

with ξ =
√
χ0

2 + 12. Thus, necessarily ξ is in the interval√
12 < ξ < 4. To investigate the sign of h1 in the

prescribed intervals (ξ, χ) ∈ (
√

12, 4)×(0, 2) one computes
the discriminant of h1 which is given by δ = ξ2 + 12 ξ− 60
which vanishes only at ξ± = −6± 4

√
6 so that only ξ+ ≈

3.464101616 is of interest. However, solving
√
χ2 + 12 =

ξ+ gives the pair of solutions χ± = −6
√

2± 4
√

3 /∈ (0, 2)
which are discarded. In conclusion, the discriminant δ of
h1 does not vanish, so that h1|ξ=

√
χ0

2+12
keeps a constant

sign in the interval [0, 2) which guarantees the negativity
of h′. This shows that h is a decreasing function. Since
h(2) = 0 then h is strictly positive in the interval [0, 2).

We have thus proved 0 < kd < 1, kp < p and ki > 0. The
rest of the proof follows directly from Theorem 3.1 Ma and
Chen (2019).

The second item ii) follows directly by substituting τ = 2
p .

Remark 6. This result provides a very useful justification
of the selection of kd, kp, ki in (8). First, it shows that this
selection will not introduce any nonminimum phase zero.
Secondly, it actually guarantees some level of system’s
robustness against uncertain delays.

5. ILLUSTRATIVE EXAMPLE

Consider the plant depicted in Figure 1 where Pτ (s)
is a delayed first order instable plant and K(s) is a
PID controller. So that the performance properties of
the closed-loop plant are characterized via the transfert
function (5) and its stability is characterized by (6).
Assume the K(s) admits an instable pole at p = 1 and a
delay τ = 1. One tunes the controller gains as prescribed
in (8) and such that s+ is a root of (6), which gives:

kd = 1/2
(
−2 +

√
13
)

e−5/2+1/2
√

13,

ki = 1/2

(
−263

2
+

73

2

√
13

)
e−5/2+1/2

√
13,

kp = −
(

35

2
− 11/2

√
13

)
e−5/2+1/2

√
13,

(19)

This guarantees that s+ = −5/2 + 1/2
√

13 is a root
of the quasipolynomial function (6) with multiplicity 4.
Obviously, s+ is negative and its dominancy is asserted by

Theorem 3. Furthermore, since ∆̂ is analytic inside and on
a closed contour γ, and is not zero on γ, then the number
of its within γ is equal to the number of times the image
curve of γ under the mapping ω = ∆̂(z) encircles the origin

in the ω-plane. The point ω = ∆̂(z) moves around as
depicted in Fig 2, where θ increases from −π/2 to π/2,
and y increases from −R to R. Since the curve does not
encircles the origin, the argument of ∆̂ does not increase,
see for instance Bellman and Cooke (1963).

6. CONCLUSION

This paper presented a systematic method for PID con-
troller design able to stabilize first order unstable plants.



Figure 2. The argument variation: the behavior the point
ω defined by the mapping ω = ∆̂(z).

It is shown that the proposed design is robust against
delay uncertainties and satisfies the requirement for rolling
off at high frequencies. The method is based on the
multiplicity-induced-dominancy property extended to lin-
ear functional differential equations of neutral type. The
proposed method can be extended to higher order systems
with potential application in systems with propagation.
An extended version of this work with complete proofs
and further discussions will be available soon.
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