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Abstract: This paper deals with the problem of active vibration control for a flexible axisymmetric
membrane. This mechanical system is equipped with two piezoelectric circular chips where one of
them works as an actuator, whereas the other is used as a sensor. Both are glued on the membrane,
one on each side, and centered according to its axis of symmetry. The model of this system is obtained
from a finite element modelling, leading to a linear state-space model. The design of the proposed
controller is based on delayed proportional actions. We exploit a property called Coexisting Real Roots
inducing Dominancy to an assignment of spectral values in an appropriate sector corresponding to a
desired damping. The aim of this work is to examine the performances of the proposed output feedback
controller in terms of vibration damping of the main observable and controllable vibrating modes.

Keywords: Time-delay, infinite dimension system, quasipolynomial, partial pole placement, spectral
abscissa, active vibration damping.

1. INTRODUCTION

In recent studies Boussaada et al. [2019], a property called
Multiplicity-Induced-Dominancy has been introduced in the
framework of pole placement for delayed systems. It is worth
mentioning that multiple spectral values for time-delay sys-
tems can be characterized by using a Birkhoff/Vandermonde-
based approach, refer for instance to Boussaada and Niculescu
[2016b,a, 2014], Boussaada et al. [2016]. Moreover, it has
been emphasized that the admissible multiplicity of the real
spectral values is bounded by the generic Polya and Szegö
bound (denoted BPS), which corresponds to the degree of the
associated quasipolynomial, i.e. the number of the involved
polynomials plus their degree minus one, refer for instance
to [Pólya and Szegő, 1972, Problem 206.2, page 144 and
page 347]. Such a bound has been recovered using structured
matrices in Boussaada and Niculescu [2016a] rather than the
Principle Argument as done in Pólya and Szegő [1972].

One can note that the multiplicity of a root does not really
matter, but its relation with the dominancy of this root may be
a useful tool for feedback control design. An analytical proof
of the dominancy of a spectral value for the scalar equation
with a single delay has been proposed and discussed in the
50s, see Hayes [1950]. Then, the dominancy property has
been deeply studied and analytically proven for scalar delay
equations in Boussaada et al. [2016]. Next, for second-order
systems controlled by a delayed proportional controller, this
property has been exploited in Boussaada et al. [2018b, 2017]
for the active damping of the vibrations in a flexible beam.
In Boussaada and Niculescu [2018], Boussaada et al. [2018a],
the dominancy property has been parametrically characterized
and proven using the Argument Principle in the special case of
the delayed proportional-derivative controller.

Finally, in Boussaada et al. [2018a], Boussaada and Niculescu
[2018], an analytical proof for the dominancy of the spec-
tral value with maximal multiplicity for second-order systems
controlled via a delayed proportional-derivative controller has
been discussed. Recently, in Amrane et al. [2018] it is shown
that under appropriate conditions the coexistence of exactly
BPS distinct negative zeros of quasipolynomial of reduced de-
gree guarantees the exponential stability of the zero solution of
the corresponding time-delay system. The dominancy of such
real spectral values is shown using an extended factorization
technique which generalizes the one proposed in Amrane et al.
[2018]. More precisely, in Bedouhene et al. [2020], the frame-
work of partial pole placement has been extended to real spec-
tral values which are not necessarily multiple. The effect of the
coexistence of such non oscillatory modes on the asymptotic
stability of the obvious solution has then been investigated.
In reality, the coexistence of BPS real spectral values makes
them the rightmost-roots of the associated quasipolynomial.
As a matter of fact, the negativity of such assigned real roots
guarantees the asymptotic stability of the obvious solution.
These results has given rise to a new control approach for
the design of an output feedback controller, leading to a con-
trol law composed with proportional and delayed proportional
terms. Such a controller will be called in the sequel a Partial
Pole Placement (PPP) controller.

Furthermore, if the number of coexistent real spectral values
reaches the BPS, then a necessary and sufficient condition for
the asymptotic stability is provided (which is equivalent to the
exponential stability [Kolmanovskii and Nosov, 1986, p79]),
see also Mori et al. [1982] for an estimate of the exponential
decay rate for stable linear delay systems. Notice also that the
proposed constructive approach, which consists in providing
an appropriate factorization of a given quasipolynomial func-



tion and then to focus on the location of zeros of one of its
factors, gives further insights on such a qualitative property.
Namely, it furnishes the exact exponential decay rate rather
than just counting the number of the quasipolynomial roots
on the left-half plane as may be done by using the principle
argument, refer for instance to Stépán [1989].

Moreover, it was stressed in Niculescu et al. [2010] that, in
some cases, time-delay has a stabilizing effect on the closed-
loop system. Indeed, the closed-loop stability is guaranteed by
the existence of the delay. Also, in Niculescu and Michiels
[2004], it has been proven that a chain of n integrators can be
stabilized using n distinct delays. The noticeable interest of
considering delayed control laws lies in the simplicity of the
controller as well as in its easy practical implementation.

The problem under consideration and the proposed approach
give rise to an exponential decay assignment method using
only two parameters: a ”gain” and a ”delay”. Note that the
idea of using roots assignment for a controller design of time-
delay system is not a novelty. For instance, in Manitius and
Olbrot [1979] a feedback law has lead to a finite spectrum
assignment for the closed-loop system. Such an assignment
could be located at an arbitrary preassigned set of points in
the complex plane. For the systems with delayed input, a
necessary and sufficient condition for finite spectrum assign-
ment has been obtained. On should note that the resulting
feedback law involves integrals over the past control. In case
of delays in state variables, it has been shown that a technique
based on the finite Laplace transform leads to a constructive
design procedure. The resulting feedback consists in a propor-
tional and (finite interval) integral terms over present and past
values of state variables. In Loiseau [2001], a similar finite
pole placement for time-delay systems with commensurate
delays has been proposed. Feedback laws defined in terms of
Volterra equations have been obtained thanks to the properties
of the Bezout ring of operators including derivatives, local-
ized and distributed delays. Other analytical/numerical place-
ment methods for retarded time-delay systems are proposed in
Michiels et al. [2002], Mondie and Loiseau [2001], Zitek et al.
[2013].

In this work, the methodology described in Amrane et al.
[2018] is applied in order to reduce the peaks of resonance
of the first three vibration modes for a flexible axisymmetric
membrane, firstly introduced for control purposes in Tliba
[2011].

The remaining paper is organized as follows: in Section 2, the
axisymmetric membrane under consideration is presented and
its modelling is briefly explained. Section 3 provides a descrip-
tion of the PPP-delayed controller design. Some numerical
simulations illustrating the efficiency of the proposed method
are presented in Section 4. Finally, the paper ends with some
concluding remarks.

2. SYSTEM DESCRIPTION AND ITS MODELLING

The system under consideration is depicted in Fig. 1. It is a
thin metallic membrane with a clamped circular edge. This
disc is embedded into a mobile support that only moves
along the z axis. The support is submitted to an unknown
acceleration, noted d(t) in the sequel. This flexible membrane
is equipped with two ceramic-based piezoelectric chips. One
of them is used as an actuator and the other is used as a
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Fig. 1. Axisymmetric flexible membrane (dimensions on the
right) inserted in the device which is subjected to vibra-
tions (Computer Aided Design figure on the left).

sensor. The actuator’s thickness is 0.4mm. It is lower than the
sensor’s thickness which is 0.7mm. The reason why should the
thickness of a piezoelectric actuator must be lower than the
sensor’s one is given in Tliba [2011] and references therein.
These circular chips are assumed to be perfectly bounded
on the disc, one on each side, and centered according to the
axis of symmetry of the disc. All the physical parameters
of the materials used here can be found in Tliba [2011] and
references therein. The dimensions of the used elements are
indicated in Fig. 1.

The control signal (input), noted u(t), is the voltage applied
across the piezoelectric actuator. The measured output, noted
y(t), is the electric voltage across the piezoelectric sensor. The
disturbance signal d(t) is the total acceleration applied to the
clamped circular edge of the structure. The controlled output
that is considered in this paper, noted z(t), is the z component
(see Figure 1) of the acceleration for a particular point on the
structure. This point is located at the center of the disc and on
the upper side of the piezoelectric chip used as a sensor.

The mathematical modeling of the dynamical behavior for
such mechanical structures is based on several coupled Partial
Differential Equations (PDEs) in space and time-dependant
variables. See for example Tliba [2011] and references therein,
for more details that are out of the scope of this paper.
Such equations, that are of infinite dimension, are usually
addressed through numerical methods like the Finite Element
Modeling (FEM) Petyt [2010]. This method leads to a set
of Ordinary Differential Equations (ODEs) that are linear
but with a very great number of variables. Because of the
numerical feature of this method, it is worth at mentioning
that the physical parameters of the PDEs are dissolved within
numerical coefficients of the corresponding ODEs.

An accurate model in state-space form is derived from the set
of ODEs thanks to a model reduction method called modal
analysis. It describes the inputs-to-outputs dynamical behavior
in the bandwidth of interest, say [0−4000Hz] for our system.
This model, called the analysis model, is of order 12 and
includes only controllable and observable modes. A reduced-
order model, dedicated to the controller design, is obtained
from the analysis one thanks to a reduction method based on
state-variable truncation. It is called the synthesis model. It is
of order 6 and includes the first three vibration modes that are
controllable and observable. Let ηp ∈ Rnp be the state vector
of the system, with np = 12 in the case of the analysis model



and with np = 6 for the synthesis model. Both models can be
described by the linear state-space model in (1), where the
details of the matrices (Ap, Bp,d , . . . ) are voluntary omitted
in this text since they are not of special interest here (see Tliba
[2011] and references therein for more details). Note that, in
the case of the synthesis model, there are non-zero feedthrough
terms between the inputs d and u and the outputs z and y,
whereas these feedthrough terms are equal to zero in the case
of the analysis model. Figure 2 shows the geometrical shapes
of the vibration modes in the synthesis model.

S

{
η̇p(t) = Apηp(t) + Bp,dd(t) + Bp,uu(t)

z(t) = Cp,zηp(t) + Dp,zdd(t) + Dp,zuu(t)
y(t) = Cp,yηp(t) (+ Dp,ydd(t) + Dp,yuu(t))

(1)

The control input u is a scalar signal, as well as the measured
output signal. Then, the considered flexible membrane is a
single-input-single-output system. The disturbance input d is
the total acceleration applied to the clamped edge of the struc-
ture. The controlled output z is the vertical total acceleration of
the membrane center. The frequency responses of the full and
reduced order models, from the input d to the output d + z,
are shown in Fig. 3. In order to comply with the framework
of models used in our controller design procedure, the state-
space model in (1) is converted into a model based on transfer
functions. This is achieved by applying the Laplace Transform
to the equations in (1). By denoting the Laplace variable by s,
the model based on transfer functions is given by

S


z(s) =

Ndz(s)
ψ(s)

d(s)+
Nuz(s)
ψ(s)

u(s),

y(s) =
Ndy(s)
ψ(s)

d(s)+
Nuy(s)
ψ(s)

u(s).
(2)

These polynomials are written as

Ndz(s) :=
np

∑
k=0

ndzk sk,

Nuz(s) :=
np

∑
k=0

nuzk sk,

Ndy(s) :=
np

∑
k=0

ndyk sk,

Nuy(s) :=
np

∑
k=0

nuyk sk

and ψ(s) :=
np

∑
k=0

ak sk,

where anp := 1 is imposed for simplicity. The numerical values
of the polynomials’ coefficients for the synthesis model in (2)
are given in Table 1.

3. CONTROL DESIGN

The main goal of the sought controller is to reduce the peaks of
resonance for the first three controllable/observable modes, by
using an output feedback controller, without making unstable
the vibration modes that are not in the synthesis model. By us-
ing the same notations as in Tliba et al. [2019], the considered
system is inserted in the output feedback control structure of
Fig. 4, where the reference signal is always equal to zero. A
rectangular impulse signal is used for the disturbance input

ndz6 −1.14828 ·100 nuz6 −1.0868 ·100

ndz5 −1.2958 ·102 nuz5 −1.2264 ·102

ndz4 −5.9240 ·107 nuz4 −4.1250 ·107

ndz3 −3.0537 ·109 nuz3 −2.0051 ·109

ndz2 −7.5305 ·1014 nuz2 −2.2105 ·1014

ndz1 −5.3167 ·1015 nuz1 −2.3803 ·1015

ndz0 5.3049 ·1014 nuz0 −1.0173 ·1020

ndy6 −1.4896 ·10−3 nuy6 8.3825 ·10−2

ndy5 −1.6809 ·10−1 nuy5 9.4592 ·100

ndy4 7.5073 ·104 nuy4 5.8545 ·106

ndy3 −1.1243 ·106 nuy3 2.6728 ·108

ndy2 −3.2099 ·1012 nuy2 5.4039 ·1013

ndy1 4.6902 ·1013 nuy1 5.0870 ·1013

ndy0 1.7174 ·1019 nuy0 2.9349 ·1019

a5 1.1284 ·102 a4 6.5167 ·107

a3 2.9844 ·109 a2 5.7253 ·1014

a1 5.4259 ·1015 a0 3.0464 ·1020

Table 1. Numerical values for the polynomials’
coefficients in the case of the synthesis model.

d. The control problem consists in reducing the vibrations
generated by the first three modes, when the mobile support
imposes a shock to the whole flexible membrane. Let us define
the output feedback control law in frequency domain by

u(s) := K(s,τ)y(s), (3)

where K(s,τ) stands for the PPP controller. This last is given
in Laplace domain by

K(s,τ) :=
Q(s,τ)
P(s,τ)

(4)

where

Q(s,τ) := q0 +qr0 e−τ s,

and P(s,τ) := p0 + pr0 e−τ s.

After applying the inverse Laplace transform, this control law
given in time-domain is

u(t) =−
pr0

p0
u(t− τ)+

q0

p0
y(t)−

qr0

p0
y(t− τ) (5)

which is an output feedback control law based on proportional
actions plus delayed proportional actions.

Proposition 1. There exists a set of parameters q0, qr0 , p0, pr0
and τ > 0 such that the controller (4) allows to assign three
negative dominant poles (spectral values) λ1, λ2 and λ3, for
the system (2) in closed-loop with the control law (3).

Sketch of the proof. The first assertion of the proposition is
related to a problem of quasipolynomial interpolation, that is,
one has four free parameters and three interpolating points,
this guarantees that the interpolation problem is poised. Next,
the dominancy of the assigned poles is guaranteed by estab-
lishing an integral factorization of the quasipolynomial in the
spirit of the ones given for instance in Amrane et al. [2018],
Bedouhene et al. [2020], see also Tliba et al. [2019].
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Fig. 2. First three controllable and observable vibration modes.
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4. SIMULATION RESULTS

The main issue of the proposed method relies on the choice
of the closed-loop dominant poles. As for the pole placement
in the linear, but finite dimensional framework, this is often

empirical. One clever way is to keep the magnitude of the
open-loop dominant pole, in order to get a closed-loop control
signal with a reasonable amplitude. It reduces the risk of
input saturation due to actuator’s limitation while ensuring an
efficient damping.

The PPP method gives the following numerical values for
the parameters of the controller in (4) that assigns λ1 =
−500, λ2 = −550 and λ3 = −600 as the dominant roots of
the characteristic polynomial for p0 ' 4.4611, pr0 ' 3.0515,
q0 ' 41.290, qr0 ' 36.403 and τ ' 3.360 ·10−4.

One should pay attention to the value of the delay. This
last should be compatible with the sampling capabilities of
some real-time digital standard facilities. In the case of the
considered system, the last kept mode in the synthesis model,
with a resonant frequency close to 1 kHz, imposes a sampling
time lower than 0.1 millisecond. In consequence, the value of
the delay can then be considered acceptable with respect to
this specification.

Figure 5 shows the distribution of the closed-loop poles, with
a focus around the three assigned poles λ1, λ2 and λ3. To

Fig. 5. Distribution of the closed-loop poles when
p0 ' 4.4611, pr0 ' 3.0515, q0 ' 41.290, qr0 ' 36.403,
τ ' 3.360 ·10−4.

show the performances of the proposed PPP-controller, the
time responses of both output signals in open-loop (blue)
and in closed-loop (orange) are depicted in Fig. 6, when the
disturbance d is a rectangular impulse (black), modelling a
very brief shock imposed to the whole flexible structure. The
time response of the control signal u is also plotted in Fig. 6.



A peak of magnitude roughly equal to 12 V can be observed,
a value that is quite realistic for this kind of application.

Fig. 6. Time responses of the measured output y at the top, of
the controlled output z at the middle and of the closed-
loop control signal u at the bottom.

5. CONCLUSIONS

This work have shown the interest to use time-delay in a
controller as a design parameter. The practical application
that we have considered is a flexible axisymmetric membrane
equipped with a piezoelectric sensor and a piezoelectric ac-
tuator in a collocated configuration. For this system, it was
expected to achieve an active vibration control thanks to an
output feedback controller. This controller have been designed
by using the partial pole placement approach in order to en-
sure the damping of the first three observable and controllable
vibrating modes. The output feedback feature opens the pos-
sibility to implement such a controller in an experimental test
bench. An extended version of this note will be available soon
with the complete proofs.
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