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Abstract
Despite voluminous literature identifying invasive species impacts, understandings of monetary costs
remain limited. Recently, profound impacts have been attributed to invasive crustaceans, but associated
monetary costs lack synthesis. Here, we analyse globally reported costs of invasive freshwater cray�sh
across taxonomic, spatial and temporal descriptors. Moreover, we compare their cost magnitude to other
invasive crustaceans — crabs, amphipods and lobsters. Between 2000 and 2020, cray�sh caused US$
1.28 billion in reported costs; the vast majority (95%) attributed to Astacidae (principally the signal
cray�sh Pacifastacus leniusculus) and the remainder to Cambaridae. According to reports, cray�sh costs
mostly impacted European economies (US$ 1.23 billion), followed by costs reported for North America
and Asia. Despite well-known damages caused by invasive cray�sh, costs were unreported elsewhere,
highlighting knowledge gaps and challenges in cost quanti�cations. Invasive cray�sh costs increased
exponentially in the last two decades, averaging at US$ 61 million per-annum. Invasive crabs caused
costs of similar magnitude (US$ 1.25 billion; US$ 53 million per-annum) but were mostly con�ned to
North America (95%). Damage-related costs dominated for both cray�sh (83%) and crabs (99%), with
management spending lacking. Reported economic impacts from amphipods (US$ 178.8 thousand) and
lobsters (US$ 44.6 thousand) were considerably lower. We identify burgeoning economic costs from
these invasive groups yet highlight pervasive knowledge gaps at multiple scales. Further cost reporting is
required to better-ascertain the true scale of monetary costs caused by invasive aquatic crustaceans.

Introduction
Owing to their sensitivity to the effects of climate change (Woodward et al. 2010) and a range of other
anthropogenic pressures (Strayer 2010; Darwell et al. 2018), freshwater ecosystems have been
characterised as the most threatened ecosystems worldwide (Reid et al. 2019). Invasive alien species
(IAS) are considered among the strongest drivers of biodiversity decline, as well as disruptors of
ecosystem functioning and ecosystem services provisioning (Blackburn et al. 2019; Pyšek et al. 2020),
with concerns rising as invasion rates continue to increase (Seebens et al. 2017; 2020; Bailey et al. 2020).
Freshwater ecosystems are especially vulnerable to the introduction of alien species (Frederico et al.
2019). Despite the recognition of these ongoing losses and risks, the capacity of various countries to
effectively combat and prevent biological invasions remains limited (Early et al. 2016; Faulkner et al.
2020). This can be in part attributed to limited understanding of the magnitude of losses and the
expenditure required to avoid those or prevent them from happening in the future.

In recent years, there have been signi�cant advances in understanding the ecological impacts of IAS on
recipient aquatic ecosystems (e.g. Jackson 2015; Dick et al. 2017; Bradley et al. 2019; Haubrock et al.
2019b). Whilst frameworks for categorising invader socioeconomic impacts have advanced throughout
the years in response to the challenges associated to monetizing socioeconomic impacts (Bacher et al.
2018), the paucity of quanti�ed costs incurred by invasions is weakening the rationale for policy makers
to invest the sparse available resources toward prevention, control and eradication. Pimentel et al. (2000;
2005), followed by Kettunen et al. (2009), summarized the costs of IAS on large spatial scales. Despite
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the methodological shortcomings of these studies (Charles and Dukes 2008; Cuthbert et al. 2020a), they
partly succeeded in raising awareness of IAS-induced costs (Hoffmann and Broadhurst 2016). The
existence of information on costs inferred from IAS is of utmost importance; a lack thereof may be
misleading for policy making and resource management as well as minimize the awareness and
preoccupation regarding IAS. Despite recent efforts to analyze invasion costs of speci�c taxonomic
groups (Bradshaw et al. 2016; Haubrock et al. this issue ), across various regions (Crystal-Ornelas et al. in
review; Haubrock et al. in press; Liu et al. in review) or habitat types (Cuthbert et al. in review), a detailed
collective understanding is still lacking for many taxa and regions. Filling this knowledge gap is critical
for informing policy responses, e�ciently allocating resources for management and avoiding future
losses.

Cray�sh are the largest of freshwater invertebrates and among the longest-lived (Souty-Grosset et al.
2006), with almost 700 currently known species (Crandall and De Grave 2017). Owing to their substantial
individual size and ability to reach high densities, their omnivorous nature and dominance in trophic
interactions and ecosystem engineering (Reynolds and Souty-Grosset 2011), they play important
ecological roles (Twardochleb et al. 2013; Lipták et al. 2019; Veselý et al. 2020). Their introduction
globally has been mostly for aquaculture, �shery and ornamental purposes (Ackefors 2000; Faulkes
2015; Weiperth et al. 2020), with resulting invasions generally leading to severe ecosystem and socio-
economic losses (Lodge et al. 2012; Madzivanzira et al. 2020). In some cases, the entire functioning of
freshwater ecosystems has been irreversibly altered by alien cray�sh (Lodge et al. 2000; Gherardi 2006).
The increasing recognition of severe impacts caused by alien cray�sh has attracted increasing research
attention about their introduction pathways, risks, ecological interactions and impacts (Gherardi et al.
2011; Haubrock et al. 2019a; South et al. 2019; 2020). Introductions of North American cray�sh species
are particularly problematic, as they often also vector Aphanomyces astaci Schikora (Oomycetes), the
causative agent of cray�sh plague. This oomycete is included among the IUCN 100 world’s worst IAS list
(Lowe et al. 2000), given the highly susceptibility and mortality of cray�sh species not originating from
this continent (Svoboda et al. 2017).

Invasive cray�sh species (ICS) are, however, not the only invasive crustaceans with proven impacts on
recipient communities (Lodge et al. 2012; Twardochleb et al. 2013). Similar to them, numerous invasive
crabs have been recognized as a large threat, with marked adverse ecological and socioeconomic effects.
Examples include the Chinese mitten crab Eriocheir sinensis Milne-Edwards, 1853 and the European
green crab Carcinus maenas (Linnaeus, 1758), both listed in the Global Invasive Species Database and
among the 100 worst invasive species (Lowe et al. 2000). Amidst their relatively well-established
presence in Europe and North America, invasive crabs are also known for their often devastating effects
on the invaded environment and native biota (Holdich et al. 1999). Other invasive aquatic crustaceans,
such as amphipods for example, have also created large concerns (Cuthbert et al. 2020b). A noteworthy
example is the ‘killer shrimp’ Dikerogammarus villosus (Sowinsky, 1894) (e.g. Dick et al. 2002; Taylor and
Dunn, 2017).
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Despite the recent advances in invasion science con�rming the ecological notoriety of ICS as well as
other aquatic crustaceans, economic analyses lag behind, and are partly overshadowed by the bene�ts
brought by aquaculture and �shing industries. Direct and indirect costs associated with damages or
losses from these taxa therefore remain scarce, resulting in minimal investments into research and
management measures. To address this lack of information and highlight existing knowledge gaps in
costs of their invasions worldwide, we utilized the InvaCost database, the most recent, comprehensive
database of globally reported economic costs of IAS (Diagne et al. 2020a). This database contains
detailed information on the costs (e.g. cost types, impacted sectors, regional attributes, cost estimation
reliability, etc.) associated with ~ 500 invasive species. In the present study, we use a relevant subset of
this database to describe the global costs associated with ICS and other aquatic invasive crustaceans to
infer comparisons and understand the magnitude of their impacts. Moreover, we investigate how these
costs are structured across space, time, cost types and sectors affected, as well as identify knowledge
gaps in cost estimates.

Methods
Data collection and �ltering

For the purpose of analyzing global costs of invasive aquatic cray�sh, we used data from the InvaCost
database (Diagne et al. 2020a), which primarily presents costs from English-written sources. InvaCost is
a dynamic database that allows for corrections and additions of new cost entries as they develop or are
reported throughout time. The �rst version of InvaCost comprised 2,419 reported economic costs of IAS
retrieved from published peer-reviewed and grey literature (InvaCost v1; as of December 2019). More
recently, those data have been supplemented with a search for costs recorded in �fteen of the most
widely spoken languages, either as a mother tongue or second language (5,212 cost entries; Angulo et al.
2020), as well as via additional searches (2,374 entries; Ballesteros-Mejia et al. 2020). As of the timing of
the writing (November 2020), the latest version of InvaCost (version 3.0, Diagne et al. 2020b; openly
available at https://doi.org/10.6084/m9.�gshare.12668570) consisted of 9,823 cost entries from IAS
globally, after resolving duplications, allowing for comprehensive analysis of IAS at different taxonomic,
spatial and temporal levels.

In compiling these data, grey and peer-reviewed literature were retrieved from standardised searches in
online repositories (Web of Science, Google Scholar and Google search engine). The standardized
searches, described in more detail in Diagne et al. (2020a), were enriched by targeted searches aiming at
opportunistic collections of material containing cost information on IAS; these searches were performed
through national databases, web pages of national institutions, NGOs and other organizations, as well as
through contacts with regional national experts (Angulo et al. 2020). The collected material was
thoroughly examined to assess relevance, and then scrutinized for collating cost estimates associated
with aquatic crustaceans. Every cost entry recorded was described by various descriptors (Supplementary
Material 1).
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We identi�ed cost entries attributed to invasive freshwater cray�sh, based on the “Order’’ classi�cation by
�ltering out species belonging to “Decapoda” and thereafter entries belonging to relevant cray�sh
families (“Astacidae”, “Cambaridae”, “Parastacidae”, and “Cambaroididae”). This resulted in a total of
112 entries. Additionally, to put the costs of invasive cray�sh into perspective relative to other invasive
crustaceans, we compared them to those of invasive amphipods (Order: Amphipoda; n = 1 species), crabs
(Infraorder: Brachyura and Anomura; n = 6), and lobsters (Family: Nephropidae; n = 1), on the basis of
reported costs in the InvaCost database. Costs for these groups were extracted using (a) the “Order”
column and selecting “Amphipoda”, and (b) the “Family” column and selecting families of crabs and the
family “Nephropidae”, respectively. The identi�ed cost entries for all crustaceans thus amounted to 120
entries attributed exclusively to aquatic species.

Temporal cost dynamics, cost descriptors and comparisons across crustacean categories

Deriving the total cumulative cost of invasions over time requires to consider the duration of each
reported cost. The duration of each cost entry was inferred from the InvaCost database (columns
“Probable starting year adjusted” and “Probable ending year adjusted”; see more details in Diagne et al.
2020b; http://borisleroy.com/invacost/Readme.html ). When information was missing for the year that
the costs started occurring, we conservatively considered the publication year of the original reference as
the starting years for costs. In those cases where the last year over which costs occurred was missing,
but the cost was listed as ‘highly reliable’ and ‘potentially ongoing’, costs were assumed to continue until
2020 (see Method reliability below). Costs in InvaCost were standardized to 2017 equivalent US$ using
the World Bank’s market exchange rate and accounting for in�ation through the Consumer Price Index of
the year the cost was estimated for in each study. Using the duration time (in years) and the standardized
costs in 2017 values (US$), we annualised the data, with each entry corresponding to a given year. This
step made cost entries of different types and durations comparable. For example, a total cost of $1,000
between the years 2000 and 2009 would correspond to $100 per year (see
https://doi.org/10.6084/m9.�gshare.12668570 for further information). This process allowed us to
analyze in a systematic manner the total cumulative cost along the de�ned period, resulting in 277 cost
entries for invasive cray�sh species, and considerably less for invasive crab species (n = 71), amphipods
(n = 6), and lobsters (n = 2). We provided our �nal dataset used as a supplement (Supplementary Material
2).

Finally, the invasion costs were analysed based on the following �ve descriptors (described in more
details in Diagne et al. 2020a; see Supplementary Material 1 and Diagne et al. 2020b):

(i) Method reliability: illustrating the perceived reliability of cost estimates based on the type of
publication and method of estimation (“High” if costs were described in pre-assessed material (peer-
reviewed articles and o�cial reports) or in grey material but with documented, repeatable and traceable
methods; and “Low” otherwise); (ii) Implementation: referring to whether the cost estimate was actually
realised in the invaded habitat (“Observed”) or whether it was extrapolated based on expectations on
costs beyond the invaded habitat and/or predicted over time (“Potential”); (iii) Geographic region:
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describing the continental geographic origin of the listed cost; costs that were not attributable to speci�c
regions were categorised as “Diverse/Unspeci�ed”; (iv) Type of cost merged: grouping of costs according
to the categories: (a) “Damage-Loss”, referring to damages or losses incurred by invasion (i.e. costs for
damage repair, resource losses), (b) “Management costs”, comprising expenditure such as monitoring,
prevention, control, eradication and (c) “Mixed” costs, including a mix of categories (a) and (b) which
include cases where reported costs were not easily distinguished between damage and control costs; and
(v) Impacted sector: the activity, societal or market sector that was impacted by the cost. Individual cost
entries not allocated to a single sector were classi�ed under “Mixed” in the “Impacted sector” column.

For the purposes of analysing the economic costs of invasive cray�sh and describing trends through
time, we used the calculateRawAvgCosts function implemented in the R package “invacost” (Leroy et al.
in prep; borisleroy.com/invacost/Readme.html). Using this method, we calculated the observed
cumulative and average annual costs between the �rst recorded costs (2000) and last reported costs
(2020), considering 5-year intervals.

Last we compared the costs of cray�sh invasions to costs of other prominent crustacean invaders (crabs,
amphipods, and lobsters) which has helped identify knowledge gaps and biases. Speci�cally, we focused
on comparing how the total costs of these groups varied across species, impacted geographic regions,
sectors of the economy, and the type of costs.

Results
Economic costs across taxonomic groups

The total costs of the 277 freshwater cray�sh entries amounted to US$ 1.28 billion, for the period 2000–
2020. From this total cost, 94.5% was inferred from Astacidae (US$ 1.21 billion; n = 159 database entries)
and 5.3% from Cambaridae (US$ 67.8 million; n = 110). Further, eight cost entries were classi�ed as
diverse or unspeci�ed. No entries were reported for Parastacidae (cray�sh native to the Southern
Hemisphere) and Cambaroididae (endangered endemic species from Far-East Asia).

At the genus-level, US$ 1.21 billion was attributed to the genus Pacifastacus (speci�cally the signal
cray�sh P. leniusculus (Dana, 1852); n = 147), US$ 54.80 million were attributed to the genus Faxonius
(34 entries with reported representative species previously attributed to Orconectes, see Crandall & De
Grave 2017); the rusty cray�sh F. rusticus (Girard, 1852), the spiny-cheek cray�sh F. limosus (Ra�nesque,
1817), followed by US$ 13.01 million to the genus Procambarus (the red swamp cray�sh P. clarkii (Girard,
1852); n = 76). Diverse or unspeci�c costs amounted to US$ 6.76 million (n = 20).

Economic costs based on method reliability and implementation types

Highly reliable cost entries comprised 99.8% of the documented total cost for freshwater cray�sh (as well
as 275 of 277 database entries, Fig. 1). Although most entries and cost estimates were classi�ed as
‘High’ reliability, the vast majority of them were ‘Potential’ (US$ 1.14 billion; 89.1%) rather than ‘Observed’
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(10.9% of total costs, US$ 141 million), implying that most were projected in time and/or space but have
not necessarily been borne in practice. Note though that observed costs constituted the majority of
database entries (207 out of 277 database entries, Fig. 1).

All invasive cray�sh species with recorded costs in InvaCost were native to North America (Fig. 2). The
majority of total (‘Observed’ and ‘Potential’) reported costs (US$ 1.23 billion; n = 232) were inferred in
Europe, while US$ 54.8 million (29 database entries) was related to certain parts of North America
(speci�cally Wisconsin, which is north to the native range of rusty cray�sh responsible for these costs)
and relatively little in Asia (US$ 292.73 thousand; n = 16) (Fig. 3a). Accordingly, there was a striking
absence of cost information for certain regions which include South America, Africa, and Oceania (Figs. 2
and 3).

In Europe, the vast majority of total costs were incurred in Sweden (US$ 1.03 billion; n = 24), followed by
the United Kingdom (US$ 176.75 million; n = 91); the costs in both countries were entirely due to P.
leniusculus. Monetary impacts in Spain (US$ 7.63 million; n = 69), Portugal (US$ 4.11 million; n = 2) and
France (US$ 1.72 million; n = 37) were signi�cantly lower and mostly driven by P. clarkii, whereas those
incurred in Italy (US$ 6.29 million; n = 7) were not linked to a speci�c species (Fig. 3a). Considering only
observed costs, US$ 116.41 million was attributed to Europe and US$ 24.56 million to North America.
Within Europe, ‘Observed’ costs were reported predominantly in the United Kingdom (US$ 99.41 million; n 
= 79), Spain (US$ 7.63 million; n = 69), Italy (US$ 6.29 million; n = 7), France (US$ 1.72 million; n = 37),
Portugal (US$ 1.22 million; n = 1), and Norway (US$ 145.36 thousand; n = 1) (Fig. 3b).

Economic costs among cost types and impacted sectors

With respect to cost types, 83.2% of cray�sh-related costs were attributed to damages or resource losses,
and only 12.8% allocated to management expenditures on prevention, control or eradication; very few
were classi�ed as mixed (4.0%). Regarding impacted sectors, the majority was, however, classi�ed under
“Mixed” sectors (US$ 1.06 billion; 82.5%; n = 35), followed by impacts to “Authorities-Stakeholders” (US$
193.51 million; 15.1%; n = 204), impacts to “Fishery” (US$ 24.64 million; 1.9%; n = 20), and lastly to the
categories “Environment” (US$ 7.41 million; < 1%; n = 17) and “Agriculture” (US$ 1.22 million; < 1%; n = 1).
Observed costs differed considerably, with 37.8% of costs (US$ 53.6 million) being attributed to
management expenditure, 25.8% (US$ 36.4 million) to damage-losses, and 36.4% (US$ 52.3 million)
classi�ed as mixed costs (Fig. 4a). The majority of observed costs were attributed to “Authorities-
Stakeholders” (US$ 82.28 million; 58.4%), substantially driven by P. leniusculus. This cost was followed
by costs to “Fishery” (US$ 24.64 million; 17.5%), inferred by F. rusticus, “Environment” (US$ 7.41 million;
5.3%) and lastly “Agriculture” (US$ 1.22 million; <1 %), both majorly induced by P. clarkii. Costs attributed
to “Mixed” sectors totalled at (US$ 25.72 million; 18%) (Fig. 4b).

Temporal dynamics of costs

For invasive cray�sh, the recorded total cost of US$ 1.28 billion between 2000 and 2020 (Fig. 5a)
amounted to an average annual cost over the entire period of US$ 61.14 million and to US$ 6.71 million
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when only observed costs were considered. Because the effects of time lags in cost reporting were not
incorporated into the analyses, average cost estimates tended to reach a plateau phase in recent years
(Fig. 5). Nonetheless, reported costs have increased in the last two decades by two orders of magnitude.

Costs of other crustaceans

The reported costs of invasive crabs summed up to US$ 1.25 billion, being based on costs for only �ve
species: the C. maenas (US$ 1.19 billion; n = 22), followed by the E. sinensis (US$ 62.79 million; n = 46),
the red king crab Paralithodes camtschaticus (Tilesius, 1815) (US$ 915.67 thousand; n = 1), the blue crab
Callinectes sapidus Rathbun, 1896 (US$ 20.75 thousand; n = 1), and lastly the �ower crab Portunus
pelagicus (Linnaeus, 1758) (US$ < 1 thousand; n = 1) (Supplementary material 3a). The majority of crab
invasion costs (94.9%) was inferred in North America, with the majority of those (97.4%) reported in
Canada and the remaining costs reported in the USA. Signi�cantly fewer costs (< 1%) were reported in
Europe (Germany, Norway, and Spain) and Africa (Tunisia) (Supplementary Material 3b). The costs
affected primarily the “Fishery” sector (US$ 1.16 billion; n = 21), with 3% (US$ 32.19 million; n = 4) of the
costs attributed to “Authorities-Stakeholders” and 5% (US$ 62.79 million; n = 46) classi�ed as “Mixed”
costs. Almost all reported total costs (99.9%) were attributed to damage costs, with very few attributed to
management (Fig. 6a). In the past 20 years and since the �rst recorded crab cost in InvaCost, annual
costs remained on average at US$ 53 million. Between 2000 and 2020, crab invasion costs averaged at
US$ 53.10 million per year.

Overall, six expanded costs were inferred to amphipods, speci�cally the killer shrimp D. villosus, summing
up to US$ 178.8 thousand (n = 6). These costs were classi�ed as “Damages and losses”, impacting
“Authorities-Stakeholders” solely in Europe (Italy). Lastly, the two recorded costs inferred to marine
lobsters (Nephropidae) summed up to US$ 44.6 thousand. Similar to amphipod costs, costs inferred by
Nephropidae predominantly impacted Authorities-stakeholders in Europe (UK), but were attributed to
“Management costs” (Fig. 6b).

Discussion
The present study is the �rst systematic analysis of global economic costs of invasive cray�sh species
and other aquatic crustaceans. Analysis of several cost descriptors helped identify key trends and
knowledge gaps across spatial, taxonomic and temporal scales. Most reported cray�sh costs were
obtained from peer-reviewed literature and thus deemed “highly reliable”, however, the vast majority were
based on predictions or extrapolations arising from relatively few studies. As a result, there was a
substantial difference between realized and predicted/expected costs of ICS. We identi�ed four key costly
species, P. clarkii, F. rusticus, F. limosus and P. leniusculus, with the latter representing the highest costs,
while other damaging ICS were absent from the database. The analysis also includes comparison of ICS
costs with other invasive crustaceans, namely crabs, amphipods and lobsters.

Spatial biases and persisting knowledge gaps
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Documented costs of ICS were found to be dominated by European countries, with comparatively few
costs reported in North America, and Asia (Japan), and no costs reported for all other geographic regions,
despite the global extent of cray�sh invasions (Lodge et al. 2012; Ribeiro 2020). The absence of reported
costs for Africa is noteworthy, as continental Africa and associated island nations are recipients of nine
cray�sh species (Madzivanzira et al. 2020).

Several prominent ICS have long introduction-histories in Europe (Holdich et al. 2009; Kouba et al. 2014).
Dedicated research in recent years has enabled inclusion of several cray�sh in the list of invasive species
of EU concern, the Union list (European Commission 2016). As such, efforts to estimate and report costs
in Europe might re�ect a proactive stance on behalf of the European Union (European Commission 2014)
in trying to understand the costs of ICS and limit their spread. Reported costs for ICS in Europe indicate
that Sweden has been affected signi�cantly. On the other hand, information on costs of ICS from South
America, Africa, Oceania and Asia (except a few costs in Japan) were entirely absent, but can be expected
in the future given the ongoing spread of ICS and targeted research in these regions (Horwitz and Knott
1995; Nunes et al. 2017; Madzivanzira et al. 2020; O�cialdegui et al. 2020b; Haubrock et al. in review). For
instance, considering the growing production trends of P. clarkii in China in the last few years (global
leading production country of cray�sh, exceeding one million tonnes per year recently according to FAO
2020a), it is obvious that such a production cannot be reached without side effects. Indeed, this has
become recognised as a national food security issue in the country, given that larger areas of agricultural
land are permanently �ooded, leaving less space for other crops including rice (Ho 2020), but
environmental consequences are also indisputable. The lack of reported costs from diverse regions in
InvaCost may be attributed to a number of reasons, which may span from the comparably shorter
introduction histories, limited attention to aquatic environments, anecdotal reporting, low research effort
on this topic and limited available funding, or limited accessibility to relevant cost information. However,
this geographical bias is not unique to costs from invaded aquatic environments or ICS (see Early et al.
2016; Cuthbert et al. in review).

Taxonomic biases

Whilst overall costs of ICS were found to be substantial, the underlying cost quanti�cation presented
covers only a small subset of species from a few regions. For instance, P. leniusculus accounted for the
largest share of the total cost, however, these were inferred only from northern European countries where
targeted Plan Actions were developed to prevent reduction of native noble cray�sh Astacus astacus
(Linnaeus, 1758) stocks (Bohman and Edsman 2011). The second most costly cray�sh invader in Europe,
P. clarkii, was reported primarily in southern parts of the continent, where the majority of invaded habitats
are found. These burgeoning costs of P. clarkii (US$ 13.01 million) were estimated on the basis of 76
observations. The fact that this species is particularly widespread in Europe (Kouba et al. 2014), and
already present in 40 countries of four continents with the potential for further spread (O�cialdegui et al.
2020b), highlights the knowledge gap in costs at a broader spatial but also temporal scale. Other high-
pro�le ICS that are also listed by the EU as prominent invaders (European Commission 2016) but with no
invasion costs reported, include F. virilis and the parthenogenetic marbled cray�sh P. virginalis Lyko, 2017.
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The latter has a high spread potential (Hossain et al. 2018) and can be expected to cause considerable
damage in the near future (Feria and Faulkes 2011). Additionally, cost data for some members of the
Parastacidae family are lacking, despite their ubiquitous presence in substantial pathways such as
aquaculture and pet trade (e.g. yabby C. destructor (Clark, 1936) and redclaw C. quadricarinatus (von
Martens, 1868); Souty-Grosset et al. 2006; Madzivanzira et al. 2020; Haubrock et al. in review).

Given these knowledge gaps, the presented costs in our study are mostly driven by P. leniusculus, inferred
from damage-losses and control actions. The vast majority of these costs were the result of
extrapolations, possibly indicating a lack of empirical reporting effort and monitoring. This bias is
noteworthy and worrisome, as applied management efforts are seemingly not dedicated to several high-
risk species, e.g. P. clarkii (Gherardi et al. 2011; Souty-Grosset et al. 2016) or other emerging invasive ones
(e.g. C. quadricarinatus and P. virginalis). For instance, dense burrowing has been signalled as especially
problematic, affecting irrigation ditches and causing water leakages, but management is only scarcely
conducted and is inherently challenging in cryptic aquatic ecosystems (Kouba et al. 2016; Haubrock et al.
2019b). Further, ICS cause signi�cant damages to hydraulic and irrigation systems, but information
about the associated costs are largely missing (Tricarico et al. 2018; Madzivanzira et al. 2020). This
could suggest a lack of management efforts on widely established ICS, and especially among Southern
European countries. Note though that insu�cient management could be attributed to the limited capacity
to implement widespread management actions when ICS are so diffused (see management section
below), and/or possibly a lack of adequate funding for such interventions.

The overall cost (categorized as damage-losses) impacted various sectors such as “Fisheries”,
“Environment” and “Public and social welfare”. Only two recorded costs are reported for cray�sh plague,
speci�cally in Norway (US$ 72.8 million: diverse/unspeci�ed; US$ 2 million). Costs associated with this
pathogen are therefore heavily underestimated, as exempli�ed by numerous rapid population extinctions
of native cray�sh across Europe (Svoboda et al. 2017). Occurrence of chronically infected European
native cray�sh populations is a relatively rare and poorly understood phenomenon (Svoboda et al. 2017;
Mojžišová et al 2020; Ungureanu et al. 2020). The pathogen is currently also known from further regions
harbouring equally susceptible native cray�sh in: South America (Peiró et al. 2016), Indonesia (Putra et al.
2018), and Japan (Martin-Torrijos et al. 2018; Mrugała et al. 2017), posing a threat to their remaining
populations. Recent research efforts have focused on, the role of crabs (Schrimpf et al. 2014; Svoboda et
al. 2014b; Tilmans et al. 2014) and shrimp (Mrugała et al. 2019; Putra et al. 2018; Svoboda et al. 2014a)
as alternative hosts of this pathogen.

Temporal biases

Considering temporal trends, a complete lack of costs reported prior to 2000 indicates a large knowledge
gap in how ICS have historically impacted human well-being and ecosystems. This is despite the long
history of freshwater cray�sh introductions worldwide and more than 150 years of cray�sh plague
outbreaks in Europe (Holdich et al. 2009; Kouba et al. 2014). In the case of P. clarkii, which is a costly and
prominent invader especially in Southern Europe, most studies concerning its impact were not published
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until the end of 1990s, albeit being introduced in the 1970s (O�cialdegui et al. 2020b). This lag in
bringing cray�sh invasions to the attention of the scienti�c community and managers raises questions
about ICS awareness, policies, perceptions and funding available for research prior to 2000. Given current
invasion rates globally (Seebens et al. 2017) and future projections (Seebens et al. 2020), the high
likelihood that known costs are broadly underestimated and poorly monetized along with trends over the
past two decades, we expect that future research may shed more light on the true costs of ICS.

Data de�ciencies in invaded regions as a whole can have knock-on effects, especially on cost reporting
and estimation of potential costs. For example, the Upper Zambezi catchment has been invaded by C.
quadricarinatus through multiple introductions since 2001 (Madzivanzira et al. 2020). There are known
impacts of this invasion upon �sheries conferred through scavenging behaviours (Weyl et al. 2017;
Madzivanzira et al. 2020) as well as consumptive effects on juvenile �sh affecting recruitment
(Madzivanzira et al. in review). The challenge can be attributed to poor or outdated assessments of the
impacted �sheries which limits an understanding of their values and therefore the costs triggered by the
invasion. This conundrum likely applies to other species and countries, such as P. clarkii in Kenya (Lowery
and Mendes 1977), C. quadricarinatus in Mozambique (Chivambo et al. 2019), and P. virginalis in
Madagascar (Andriantsoa et al. 2019). Indicatively, the 30% gill net catch reduction attributed to invasive
cray�sh in Zambian �oodplains results in an estimated de�cit of US$ 128.33 per household which needs
to be compensated for by increased �shing effort over time (Turpie et al. 1999). This cost, however, can
be seen as a lower-bound estimate and highlights the challenges involved in valuing with con�dence
through time the damages caused by invasions. Even larger challenges apply to quantifying and valuing
the loss in ecosystem services and the many forms of damage that occur indirectly (Pejchar and Mooney
2009; Spangenberg and Settele 2010; Schröter et al. 2014; Temel et al. 2018).

Costs of other aquatic crustaceans

Based on the reported costs of ICS, and considering that this taxonomic group remains largely
understudied, it is not unreasonable to assume that costs for other related taxonomic groups such as
invasive crabs or amphipods are also greatly underestimated. Having identi�ed only �ve invasive crabs
and one invasive amphipod species with reported costs (plus only two entries associated with invasive
lobsters) indicates that there likely remain substantial knowledge gaps.

In comparison to other invasive crustaceans, ICS and invasive crabs dominated in terms of reported costs
(being several magnitudes higher), although the number of reported costs was also several magnitudes
higher in ICS than for invasive crabs. Indeed, costs of crabs were similar in magnitude, amidst originating
from merely six unexpanded database entries (in contrast to the 114 unexpanded cray�sh entries in
InvaCost). This bias is noteworthy, because (a) commercial �sheries in marine environments are typically
of much larger scale and commercial value compared to freshwater commercial �sheries and the same
applies to commercial �sheries for marine vs. freshwater crustaceans (FAO 2020b) and (b) crab species
recorded in InvaCost affect mainly the marine �shery sector. Invasion costs were not reported for many
notorious and widespread invasive crabs, such as the C. maenas, Asian shore crab Hemigrapsus
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sanguineus (De Haan 1853) and the Harris mud crab Rhithropanopeus harrisii (Gould, 1841), which have
marked economic and ecological impacts via predation on shell�sh resources, spatially overlapping and
causing costs to other commercial �sheries (Grosholz et al. 2000; Lohrer 2001; Zaitsev and Öztürk 2001;
Boyle et al. 2010). Also, impacts of invasive crabs in poorly explored aquatic ecosystems such Arctic
marine waters remain challenging due to limited understanding of baseline values and therefore costs of
expanding crab invasions (Kourantidou et al. 2015; Kaiser and Kourantidou, in review). The snow crab
Chionoecetes opilio (O. Fabricius, 1788) in the Barents Sea is one such prominent example which
continues to grow at the cost of several benthic species (Kaiser et al. 2018). Commercial interest in
harvesting this species may also hinder progress towards understanding their costs (Kourantidou and
Kaiser 2019a). The red king crab Paralithodes camtschaticus is yet another example of high-impact
invasion in Arctic waters which owing to its high commercial value is primarily managed as a commercial
�shery rather than an invasion in Norway and exclusively as a commercial �shery in Russia, with
ecosystem damages often downplayed (Kourantidou and Kaiser 2019b). Similarly, to other species, the
present InvaCost database does not su�ciently cover the multiple costs associated to bycatches in
spatially overlapping �sheries, predation and degradation upon native species (Skonhoft and
Kourantidou, in review) or costs spent for baseline and restoration research (Kourantidou and Kaiser, in
review). InvaCost is a living database that continues to be improved as reported costs become available.

Reposted costs of invasive amphipods were attributed exclusively to D. villosus. This notorious Ponto-
Caspian invader has been shown to have marked impacts on a diverse range of prey types, including
cray�sh eggs/juveniles and �sh eggs/larvae, with a greater feeding e�ciency than native analogues
towards vertebrates and invertebrates (Bollache et al. 2008; Taylor and Dunn 2017; Roje et al. 2021).
Invasions by D. villosus can result in the extirpation of native species from freshwaters (Gergs and
Rothhaupt 2015), and once established, populations can dominate native communities in terms of
biomass and abundance (Josens et al. 2005; van Riel et al. 2006). Globally, only 27 alien species of
gammarids have been reported, and these principally originate from the Ponto-Caspian region (Cuthbert
et al. 2020b), with 96% of recognised gammarid invaders, thus lacking costs, as exempli�ed by the
‘demon shrimp’ D. haemobaphes (Eichwald 1841) having similar ecological effects as D. villosus
(Constable and Birkby 2016).

Invasion perception and management implications

Despite their signi�cance for socio-economic well-being and their susceptibility to change, aquatic
invasions have overall received less attention (MacIsaac et al. 2011; Lynch et al. 2020; Cuthbert et al. in
review). Often, both invaders and their impacts are challenging to monitor, which can lead to a series of
knock-on effect time delays between impact reporting and management interventions (Beric and
MacIsaac 2015), thus reducing the e�cacy of preventative biosecurity measures (Coughlan et al. 2020),
and hampering the understanding of their costs (Hanley and Roberts 2019). Crustaceans, however, have
received comparatively substantial public attention, perhaps because of their prominent role in aquatic
ecosystems or their popularity as food items (Kawai et al. 2015). The introduction of alien crustaceans,
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however, has not only induced a considerable native to alien species turnover (Kouba et al. 2014), but has
also led to the loss of cultural heritages and traditions (Edsman 2004; Swahn 2004; Kataria 2007).

Public perceptions are of special consideration in the context of management responses (Höbart et al.
2020) and directly affect reporting of costs from invasions. Similar to other invasions, aquatic invasions
may bring bene�ts (King et al. 2006; Christie et al. 2019), despite their harmful properties. Commercial
and recreational �sheries for introduced crustaceans also contribute to a higher perceived value of these
invasive species (Kourantidou and Kaiser 2019a). In low-income areas, they are often valued as a cheap
source of protein or may contribute to regional economies (Andriantsoa et al. 2020; Haubrock et al. in
review), resulting in limited recognition of costs (especially indirect ones) and possibly limited interest to
understand impacts and identify related costs (Kourantidou and Kaiser 2019b). In Sweden, for example,
the native cray�sh A. astacus was largely extirpated by competition with the invasive P. leniusculus and
transmission of the cray�sh plague pathogen (Bohman and Edsman 2011), which itself has caused
considerable monetary impact. As a result, the original source of income was largely replaced by P.
leniusculus having a lower market price. The Swedish example, however, highlights how the almost
complete loss of a native species (i.e. a considerable environmental and cultural damage-loss), along
with costly spread control, created additional management costs. Similar substitutions towards the
consumption of the introduced P. virginalis were also reported in Madagascar (Andriantsoa et al. 2019;
2020). Stakeholder interests at odds for certain species with perceived bene�ts may trigger con�icts in
resource management (Zengeya et al. 2017; O�cialdegui et al. 2020a; Kourantidou and Kaiser 2019a;
2019b).

Reporting of invasion costs (foremost management and research related) relies on managers and
stakeholders to have reached the end of a pathway which eventually leads to management interventions
(Latombe et al. 2017). Pathways which lead up to applied management can vary but ultimately, they
involve a risk assessment (e.g. Hawkins et al. 2015; Bacher et al. 2018), a classi�cation of invasion
status (e.g. Blackburn et al. 2011) and a choice of appropriate management intervention (see Robertson
et al. 2020). However, formal risk assessments, speci�cally for cray�sh species, are lacking (but see Roy
et al. 2019; Yonvitner et al. 2020; Haubrock et al. in review). This could be due to either a data de�ciency
in evidence for cray�sh impact assessments (such as in South Africa; Weyl et al. 2020) and/or due to the
intensive nature of compiling contextually relevant impact assessments. Nevertheless, recent national
horizon scanning exercises have ranked invasive cray�shes, crabs and amphipods as among the top ten
risky species across all habitat types (Lucy et al. 2020).

Management intervention or cost reporting may be hindered in some cases due to public perceptions,
stakeholder interests at odds and backlash, or lack of perceived necessity for management. Further, it is
generally well-established in the literature that investment into control and management can lower
damage-losses (Leung et al. 2002). In this study, total damages and resource losses were found to be an
order of magnitude higher than control or management costs, suggesting the need for more proactive
rather than reactive responses. However, management costs were dominant when considering empirically
observed costs alone for ICS. Nonetheless, management attempts have largely failed at developing tools



Page 15/32

to hinder the spread or successfully eradicate widely established populations of invasive aquatic
crustaceans (Gherardi et al. 2011; Stebbing et al. 2014; Haubrock et al. 2018). Indeed, feasible
eradications are only possible under a narrow range of speci�c conditions (rather small, isolated
localities) and with the use of drastic measures like long-term dewatering or application of non-selective
biocides which may negatively affect the entire aquatic biota (Lidova et al. 2019; Manfrin et al. 2019;
Peay et al. 2019; Chadwick et al. 2020). Therefore, effective management interventions may be
impractical in many e.g. African or Asian systems because of their broad geographical expanse, besides
their high costs. This is further underlined by the high cost and scale-speci�c methods used to control
aquatic IAS in the USA or Europe (i.e. the use of rotenone, dewatering and draw-down methods).
Furthermore, some management or control interventions may have unexpected adverse outcomes
(Závorka et al. 2020; Loureiro et al. 2018). Developing effective means of introduction and spread
prevention is therefore of key importance as crustacean invaders can lead to long-term persisting and
growing invasion costs (Krieg and Zenker 2020).

Conclusion
In this study, we highlight that there is an exponentially increasing trend in reported costs of ICS since
recording started in 2000. However, the currently available information is generally highly fragmented
both spatially and taxonomically. Our analysis sheds light on several limitations and knowledge gaps in
economic impacts of cray�sh and other crustacean invasions. A better understanding of impacts, past
and ongoing costs of ICS is therefore urgently needed to allow national and regional authorities to invest
in appropriate policies and measures that can help mitigate those in the future. Considering the lack of
reported costs across many invaded regions, despite well-known impacts of some ICS, the estimates
provided in this study are probably very conservative. Nonetheless, despite being a rather small group
taxonomically with only a few species having triggered invasions, the economic losses at a global level
are substantial. Likewise, only �ve crab species represent signi�cant invasion costs while amphipods are
almost overlooked in this regard, indicating the dire need of investigating the true costs of invasive
crustaceans. The costs identi�ed along with the knowledge gaps highlighted in this study call for more
effort to understand the impacts of invasive aquatic crustaceans on primary sectors as well as social and
human wellbeing. A more thorough understanding of the positive values associated with crustacean
invasions can help advance management and identify suitable compromises in those cases where
stakeholder interests are con�icting.

Eulogy
This article is dedicated to Professor Olaf LF Weyl who passed away suddenly on November 14th, 2020.
Prof. Olaf Weyl was a hugely in�uential scientist, mentor and dear friend, who described our African
cray�sh work as his 'pet project'. His giant presence, in every way, is sorely missed.
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Figure 1

Global costs in US$ millions (2017 value) of recorded invasive cray�sh genera according to method
reliability (‘Low’ vs. ‘High’) and implementation of cost (‘Potential’ vs. ‘Observed’). Circle sizes depict the
total amount of costs in US$, whereas colouration indicates numbers of entries.
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Figure 2

Indicative European distribution (red) of Procambarus clarkii (a), Pacifastacus leniusculus (b), Faxonius
rusticus (c), and Faxonius limosus (d) (Kouba et al. 2014; Collas and Andrieu 2019). Note that reported
costs of rusty cray�sh are exclusively from North America. Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the
part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.
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Figure 3

Distribution of total (a) and observed (b) invasive cray�sh costs across continents and European
countries. Note that subplot (a) is scaled in billions and (b) in millions. Note: The designations employed
and the presentation of the material on this map do not imply the expression of any opinion whatsoever
on the part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.
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Figure 4

Observed economic cost estimates for invasive cray�sh species according to cost type (a) and impacted
sector (b).



Page 31/32

Figure 5

Temporal development of reported cumulative costs (total on the left vs. observed on the right) between
2000 – 2020 of invasive cray�sh. Points represent decadal means. Note that the last 5 years indicated in
grey are subject to incompleteness in cost reporting and that the y-axes are shown on log10 scales that
differ between subplots.
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Figure 6

Share of (a) total crab costs vs. (b) total costs of amphipods and lobsters among sectors and cost types.
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