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eutrophication of water with loss of biodiversity,
respiratory diseases and the long-range transport 
of sulphur (S) and N (Sutton et al., 1993; Asman 
et al., 1998; Erisman et al., 2001; Harper, 2005).
Moreover, by 2020 NH3 is expected to be the largest
single contributor to acidification, eutrophication
and formation of secondary particulate matter
(Ammann et al., 2005).
The need of reliable NH3 measurements at field-
scale becomes decisive (i) to promote abatement
strategies, (ii) to derive emission factors to be used
in national and international emission inventories,
(iii) to validate models, (iv) to evaluate the
ammonia exchange over natural surfaces in the
continuum soil-plants-atmosphere domain, (v) to
quantify the value of agronomic N-fertilisers.
The ammoniacal losses from agriculture
contributes to over 90% in Europe (EEA, 2011),
where Po Valley (Northern Italy) is one of the most
emitting region of the whole area (Skjøth et al.,
2011). Nevertheless, the lack of measured data at
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INTRODUCTION
Agriculture is the primary source of gaseous
ammonia (NH3) in atmosphere and its emissions
are mainly originated from the field application
of animal manure and fertilisers (Gènermont 
et al., 1998; Sommer et al., 2001; Asman et al.,
2004), animal waste and grazing (Jarvis and Pain,
1990). 
Ambient NH3 assumes an important role and
growing interest among different atmospheric
nitrogen reactive species as a key to mitigate the
impact of nitrogen (N) on terrestrial ecosystems
(Sutton, 2006). The environmental issues due to
NH3 emissions include mainly acidification of soils,

Abstract: Po Valley (Northern Italy) is one of the major ammonia (NH3) emitting regions of Europe, where the slurry
spreading causes high NH3 volatilisation, reducing its agronomic value and becoming a potential cause of environ-
mental concerns. In autumn 2011 a field trial was conducted to estimate the NH3 losses from the application of dairy
slurry at rate of 57 m3 ha-1 on bare soil. The emissions were estimated from surface application of dairy slurry by using
an inverse dispersion modelling technique associated with long term exposure passive samplers and the measure of the
atmospheric turbulence. NH3 emissions levels resulted high within the first 24 hours from the spreading, reaching the
73% of the entire losses, with a maximum value of 163 μg m-2 s-1 after 3 hours and 20 minutes, whereas the 50% of the
emissions was achieved after 10 hours. The phenomenon stopped after 168 hours with a total NH3 losses equal to 44%
of the total ammoniacal nitrogen (TAN) applied. Results showed and confirmed that surface application involves high
NH3 emissions and then alternative low-emission techniques have to be adopted.
Keywords: ammonia emissions, inverse dispersion modeling, surface slurry application, passive samplers.

Riassunto: In pianura Padana la distribuzione superficiale dei reflui zootecnici determina elevate emissioni di am-
moniaca (NH3), riducendo il loro valore agronomico e causando problemi ambientali. L’obiettivo di questo studio è la
stima dell’emissione di NH3 a seguito di una distribuzione superficiale di 57 m3 ha-1 di reflui zootecnici su suolo nudo
nell’autunno 2011. La stima è stata effettuata mediante l’applicazione di un modello per la dispersione degli inqui-
nanti, associato alla misura della concentrazione dell’NH3 mediante esposizione in pieno campo di campionatori a dif-
fusione passiva e all’utilizzo di un anemometro sonico per la misura della turbolenza atmosferica. L’emissione di
ammoniaca è stata elevata nelle prime 24 h dalla distribuzione, evidenziando un picco massimo dopo 3 ore e 20 mi-
nuti (163 μg m-2 s-1), laddove il 50% dell’intera emissione è stato raggiunto già a 10 ore dalla distribuzione. L’emissione
di NH3 è stata pari al 44% del totale di azoto ammoniacale applicato. I risultati mostrano e confermano come la di-
stribuzione superficiale sia un metodo che determina alte perdite di ammoniaca e che quindi deve essere incentivato
l’uso di tecniche alternative.
Parole chiave: emissioni di ammoniaca, modelli a dispersione, distribuzione superficiale dei reflui, campionatori passivi.
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characterized by silty-clay soil (Hypercalcic
Calcisol). Maize crop was previously harvested in
September and stubbles were chopped and left
on the surface. A uniform dairy slurry application
rate of 57 m3 ha-1 was applied on 10th of October
using a 20 m3 tank equipped with a splash plate.
The spreading started from the longitudinal row
passing to the centre of the field, close to
measuring devices, towards the upwind edge, and
then from the centre to the downwind side of the
field. The slurry application (started at 8.15 a.m.
and lasted 4 hours) supplied 68 kg N ha-1 of total
ammoniacal nitrogen (TAN = NH4

+ + NH3). The
TAN content was the 63% of the total slurry N
content, while the values of the dry matter and
the pH were 30 g kg-1 and 7.5, respectively.
Meteorological data were collected by a standard
weather station, located close to the field. During
the trial air temperature ranged from 0 to 25°C
(mean value: 12.3°C), relative humidity was 29 to
98% (mean value: 65.5%). The mean of wind
speed was 1.2 m s-1 with a maximum value of 4.7
m s-1, whereas the main wind direction was SW.
No rain events occurred in the sampling period.
During the experiment ammoniacal (NH4–N) and
nitrate (NO3–N) nitrogen, pH and water content
were daily measured at 0-5 cm and 5-15 cm soil
depth. Particularly, concentrations of soil NH4–N
and NO3–N were performed with a KCl
extraction and determined by spectrometric
detection (FIAstar 5000 Analyzer, Foss Tecator,
Denmark). These analysis were in agreement with
the ISO 11732 (1997) and ISO 13395 (1996)
procedures. The values of soil pH were obtained
in water solution with a soil-to-solution ratio of
1:2.5 (weight/volume), whereas the soil water
content (SWC) was determined gravimetrically
for each soil sample by the oven-drying method.

Air ammonia measurements
The air NH3 concentration was quantified
through the exposure of the passive samplers
ALPHA (Adapted Low-cost Passive High
Absorption) developed by Tang et al. (2001) and
Sutton et al. (2001a). The operating principle of
ALPHA samplers is the capture of gaseous NH3

on acid support coated with citric acid. These
tools are designed to measure NH3 air
concentration less than 1 μg m-3 (Leith et al.,
2004) to over 4 mg m-3 (Carozzi, 2011).
Samplers were placed both in the centre of the
field to measure the NH3 concentration from the
slurry application (C) and 1 km away from the
field and from any other known source of NH3.

field scale in such region (Valli et al., 2001), was
only recently filled (Carozzi, 2011).
NH3 losses from field-applied manure, particularly
slurry, were measured in many European
experiments (Søgaard et al., 2002; Sintermann et
al., 2011a). Due to the sticky characteristics given
by its polar configuration, NH3 is capable to bind
and to be released from solid surfaces, resulting in
biased measurement of the emission. However,
despite many techniques have been developed
(Brodeur et al., 2009), a standardized method is not
yet available. The different techniques vary with
regard to sensitivity, selectivity and speed;
furthermore measuring NH3 is often expensive,
extensive and time consuming (Aneja 1997; Harper
and Sharpe, 1998). Nowadays among all the
available techniques for measuring or estimating
NH3, the most popular are (i) fluxes measurement
approaches, as enclosure methods (Mosier, 1989)
and micrometeorological methods (Kaimal and
Finnigan, 1994), (ii) concentration-based dispersion
modelling, Lagrangian (Flesch et al., 2004),
Eulerian (Loubet et al., 2010) or Gaussian (Gash,
1985) types, and (iii) ammonia emission models
(Gènermont and Cellier, 1997).
The emission of NH3 at field-scale depends on the
interaction of various factors which contribute to
decrease or increase the losses: fertiliser type
(nitrogen content, pH, dry matter), soil type (water
content, soil reaction), cultivation techniques
(amount and application methods of fertilisers) and
climatic conditions (temperature, wind speed,
rainfall) (Sommer et al., 1991; Moal et al., 1995;
Génermont and Cellier, 1997; Sommer et al., 2001;
Sommer and Hutchings 2001; Søgaard et al., 2002;
Misselbrook et al., 2005).
The aim of this study was to estimate the NH3

emissions caused by surface spreading of dairy
slurry by using a concentration-based dispersion
model. The quantification of the NH3 fluxes was
obtained by applying the backward Lagrangian
Stochastic model (bLS) WindTrax (Flesch et al.
1995; 2004), since it has been increasingly
employed in the last years (Sintermann et al. 2011b;
Ni et al. 2012). The model was implemented by the
use of passive diffusion samplers (Tang et al., 2001)
and the measure of atmospheric turbulence.

MATERIALS AND METHODS

The experimental site
The trial was performed from the 9th to 17th of
October 2011 in Bigarello (MN), (Lat. 45°11’ N,
Long. 10°54’ E, Alt. 23 m a.s.l.) in a field of 4.3 ha
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directions of the wind. The Monin-Obukhov
length L [m] was derived from the Monin and
Obukhov similarity theory (MOST, Stull, 1988)
under horizontally homogeneous and steady state
conditions:

[eq. 2]

where T [K] is the mean air temperature within
the surface boundary layer, k is the von Kàrmàn’s
constant (0.41), g is the acceleration of gravity
(9.81 m s-2) and w' T' is the covariance between
w and T.
The roughness length was derived from the wind
speed profile relationship, as:

[eq. 3]

where U is the magnitude of the horizontal
component of wind speed (m s-1) and Ψm is a
Monin–Obuhkhov universal function for
momentum, estimated from the approach
described by Flesch et al. (2004). The u* and L
were further filtered (u* > 0.2 m s-1 and |L| > 5 m)
to guarantee the condition for the MOST
application (Flesch et al., 2004; Hensen et al.,
2009; Loubet et al., 2009). Moreover, to
parameterise the bLS model, a constant value of
z0 (0.028 m) was calculated as the median value
of eq. 3 over the experimental period.

The backward Lagrangian Stochastic model
WindTrax
The WindTrax model (Thunder Beach Scientific,
Halifax, Canada) is based on the backward
Lagrangian stochastic dispersion theory described
by Flesch et al., (1995; 2004) and it has been
employed to estimate the transfer coefficient D (s
m-1). The transfer coefficient is used to derive the
flux of NH3, S (μg m-2 s-1), emitted from the
fertilised surface, on the basis of the NH3

measured concentrations (C and Cbgd, in μg m-3),
from the relationship:

[eq. 4]

where D is retrieved by the model as the number
of the interactions (Nsource) between the source
area and the thousands of trajectories (N)

The latter sampling point was used to measure the
background level of NH3 concentration (Cbgd).
Samplers were exposed in three replicates at the
height (z) of 1.25 m from the displacement height
d = 0, corresponding to the ground. The positions
of the ALPHA samplers and the shape of the
fields were mapped using a GPS device.
ALPHA were replaced a minimum of twice per
day, after dawn and just before sunset, in order to
monitor the change of atmospheric turbulence,
which affects the dispersion of pollutants. During
the daylight hours of the spreading day and the
day after, the samplers replacement was done
every three hours to have a more detailed time
step. On the third day the replacement was done
each 6 hours and subsequently every 12 hours.
The exposed filters were leached with deionised
water (3 mL) and then analysed by spectrometric
detection (FIAstar 5000 system, FOSS,
Denmark) through a gas semi permeable
membrane (ISO 11732, 1997), in order to
measure the concentration of NH4-N (mg L-1).
The air NH3 concentration (μg m-3) was then
calculated by multiplying the NH4-N
concentration, the volume of air sampled in one
hour (Va = 0.003241315 m3 h-1), the time of
exposure (hours) (Sutton et al., 2001b; Tang et al.,
2008), and the stoichiometric ratio between NH4-
N and NH3. The mean concentration and the
standard deviation of the three replicates were
calculated both for background (σbgd) and field
measurements (σC). 

Micrometeorological measurements
Micrometeorological measurements were
performed to supply the parameters of
atmospheric turbulence to the bLS model
WindTrax (see section 2.4). The friction velocity
(u*), the Monin-Obukhov length (L) and the
surface roughness length (z0), together with wind
speed (U) and wind direction (WD), were derived
from a three-dimensional ultrasonic anemometer
(USA-1, METEK GmbH, Elmshorn, Germany).
The sampling frequency was 10 Hz and the
device was set in the centre of the field at the
same height of the ALPHA samplers. Friction
velocity (m s-1) is derived from the Weber’s
formula (1999):

[eq. 1]

where u’ and w’ indicate the fluctuations of the
wind components u and w along the three
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minimum values over the night time, where the
amplitude and the magnitude of the peaks are
directly related to the presence of horizontal wind.
The negative peaks of z/L indicated the daily
instability whereas positive peaks showed the
nocturnal stability. Night and early mornings were
characterized by phases of stability conditions,
excepted for 14th and 15th of October where cloud
cover and a strong and persistent wind occurred.

Ammonia concentrations
Fig. 2 shows the concentrations of NH3 (μg m-3)
measured over the experimental period in the
centre of the field and present as background.
Before the application of the fertiliser, the
concentration was 1.7 μg m-3 higher than the
background value. In the first three hours after the
spreading, the field NH3 concentration rose up to
505 μg m-3, followed by a fast increase to 820 μg m-

3 in the subsequent three hours. In the following
measurement period (6 to 15 h), the concentration
decreased down to 300 μg m-3 and then increased
during the night time hours to 539 μg m-3. After
the first 24 hours the concentration gradually
decreased, reaching the background concentration
after further 60 hours. In the last measurement
period (84 to 168 h) the magnitude measured in
the centre of the field and as background was
coincident. Tab. 1 shows the statistics relative to
such NH3 concentrations. 
The variability (σ) of the three ammonia samplers
ranged from 0.2 to 31.8 μg m-3. In Fig. 3 the

generated by the model and located upwind from
the position of the two NH3 samplers in the space
(see eq. 5).

[eq. 5]

where (w0) is the vertical wind speed of those
trajectories that intersect the source area. The
dispersion model used with the long term exposure
samplers can be applied only with short time intervals
(typically 30 min or 1 hour), because of the strong
change of the atmospheric stability over a timescale
of few hours. In the same way, the estimation of S is
possible considering only the periods of atmospheric
stationarity reached by short integration time of the
turbulence parameters (u*, L and z0), as the MOST
theory states. For the determination procedure of S
three hypotheses have to be assumed: (i) non-
reactivity of the emitted NH3 in the atmosphere, (ii)
spatial homogeneity of the flux from the surface and
(iii) steadiness of z0 (Loubet and Cellier, 2001;
Loubet et al., 2009; Nemitz et al., 2009).

RESULTS

Micrometeorological conditions
The trends of u* and the atmospheric stability
parameter (z/L) measured together with their
statistics, are shown in Fig. 1 and Tab. 1,
respectively. Friction velocity marked the typical
high peak values during the daylight hours and the

Fig. 1 - a) friction velocity (u*) and wind speed (grey dotted line)
over the experiment; b) atmospheric stability parameter (z/L).
Fig. 1 - a) velocità di frizione (u*) e velocità del vento (linea grigia
tratteggiata) per la durata dell’esperimento; b) parametro di
stabilità atmosferica (z/L).

Tab. 1 - Main statistics of atmospheric turbulence parameters
(u* and L), NH3 concentration measured in the fertilised field
(C) and its background level (Cbgd), Wind speed and the estimates
NH3 flux (S).
Tab. 1 - Principali statistiche dei parametri della turbolenza
atmosferica (u* e L), concentrazione di NH3 misurata al centro
del campo (C) e di background (Cbgd), velocità del vento (Wind
speed) e del flusso di NH3 stimato (S).

a)

b)
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Ammonia emissions from slurry spreading
The flux estimated by the bLS model WindTrax
and the error due to the dispersion of the NH3

concentration mean value are displayed in Fig. 4.
The emission trend showed high peaks
immediately after the spreading, with a maximum
value (163 μg m-2 s-1) reached after 3 hours and 20
minutes (see Tab. 1). Subsequently, the emission
decreased quickly to rise again during the night
time hours (15 to 21 h). The last high peak
occurred after 24 hours because of the increase of
the solar radiation. In the last measurement period
(24 to 168 h) a gradual reduction to low values (2
μg m-2 s-1) was detected. Errors ranged from 0 to
4.7 μg m-2 s-1, with a mean value of 0.4 μg m-2 s-1.

Dynamics of soil NH4-N, NO3-N and pH
The dynamics of N into the soil as ammonium and
nitrate form, together with the trends of SWC and
pH at 0-5 and 5-15 cm depth, are displayed in
Fig. 5a and 5b, respectively. The measurement
period ranged from -72 to 96 hours with a time
step of 24 hours, where time 0 represented the
time immediately before the manure spreading.
Samplings at -48 and -24 hours were not carried
out because of the high soil moisture. The content
of NH4-N in the soil profile (0-15 cm) was
constant before the slurry application (around 1
mg L-1, from 0 to -72 hours) and rose up after the
fertilisation, particularly in the first layer (0-5 cm).

relation between σ and the mean values of
concentration measured in the field and as
background is displayed for each measurement
period. The relation between Cbkg and σbgd was not
significant (R2 = 0.10, P>0.05), while a significant
relationship was detected between C and its σC (R2

= 0.54, P<0.01). 

Fig. 4 - a) NH3 flux simulated by the inverse dispersion model
WindTrax. b) uncertainty in the modelling approaches employed
due to the uncertainty in the concentrations measurements.
Fig. 4 - a) flussi di NH3 stimati attraverso l’impiego del modella
a dispersione WindTrax. b) incertezza nella stima dei flussi
attraverso il modello, dovuti alla incertezza nella misura delle
concentrazioni.

Fig. 3 - Scatter plots reporting the average of NH3 concentration
and relative standard deviation (σ) for measurements in the field
(∆) and at the background (▲).
Fig. 3 - Grafico a dispersione riportante la media delle con cen -
trazioni di NH3 e la deviazione standard (σ) misurate nel centro
del campo (∆) e come background (▲).

Fig. 2 - NH3 concentrations measured in the centre of the
fertilised field (dark line) and in its background values (gray
line). The error bars show standard deviations.
Fig. 2 - Concentrazioni di NH3 misuratenel centro del campo
fertilizzato (linea nera) e come background (linea grigia). Le
barre di errore mostrano le deviazioni standard.
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Subsequently, it quickly fell down because the
concentration of TAN in soil surface decreased as
consequence of emission itself, infiltration,
absorption in the soil matrix, or nitrification (van
der Molen et al., 1990; Sommer et al., 2004).
Cumulative NH3 loss observed at the end of the
trial was visibly exhausted and equal to 30.2 kg N
ha-1, corresponding to an emission factor (EF) of
44.4% of the TAN applied. The emission ranged
from 40% to 53% between 6 to 12 hours from the
spreading. Similar findings were obtained by other
authors, measuring a range of total loss between
30 and 70% of the TAN (Sommer and Hutchings,
1995; Meisinger and Jokela, 2000). After 24 and 48
hours the total loss reached 73% and 88%,
respectively, getting to the 100% of the emission
at the end of the trial at 168 hours. The trend of
the cumulate emission can be represented by the
Michaelis-Menten equation (eq. 6) already used in
this context by Søgaard et al. (2002):

[eq. 6]

where Nmax is the total loss of NH3 (fraction of TAN
applied) and Km [h] is the time t satisfying N(t) = ½
Nmax. A low value of Km indicates that a high
proportion of the total NH3 loss occurs soon after
application, whereas a high Km value indicates that
losses occur over a longer period. In our case after
10 hours the 50% of the total NH3 was emitted (Km

= 10 hours). The EF obtained in this field trial is
coherent with what has been reported in the recent
literature for similar conditions (see the review by
Sintermann et al., 2011b). Furthermore, applying
the regressive model ALFAM (Søgaard et al.,
2002), based on the data deriving from 800
experiments and on the Michelis-Menten equation
type described above, the EF obtained resulted
40% of the TAN.
The fluxes estimated by the bLS model WindTrax
showed high levels of emission when z/L
parameter assumed negative values, or else when
the atmosphere is in unstable condition. That was
evident during the hours immediately close to the
application of the slurry, characterized by high
levels of concentration. The high fluxes observed
during the night time hours of the spreading day
(15 to 24 h) were due both by high levels of
ammonia concentration (see Fig. 2) and the
alternation of the atmosphere conditions. In fact,
over the night, atmospheric condition can range
from high stability, where the vertical gradients of
ambient concentration are enhanced to very small

The highest values in the two soil layers were
observed 48 hours after the spreading.
The values of NO3-N concentration did not seem
to have a specific trend over time. In both layers
the maximum values were reached at 72 h,
showing the highest values in the lower layer (5-
15 cm). At 72 and 96 hours the NO3-N
concentration appeared to be higher in the 0-5
cm depth (+26% and +44%, respectively).
The values of pH were reduced by 0.23 and 0.19
units in the 0-5 and 5-15 cm, respectively. The pH
fast decrease started after 48 hours. The SWC
showed values ranging from 24 to 31% in the 0-5
cm profile, with the maximum value observed 24
hours after the spreading. In the deeper layer a
wider variation of SWC occurred (from 22% at -
72 hours to 35% at 48 hours).

DISCUSSION
The NH3 volatilisation estimated over the 
field trial followed the typical trend reported
elsewhere (i.e. Sommer and Hutchings 2001;
Powell et al., 2011). The highest emission rate was
recorded immediately after the slurry application.

Fig. 5 - Trend of soil N-NH4
+, N-NO3

-, pH and water content
(SWC) during the time after slurry spreading in the field trial: a)
0 – 5 cm depth; b) 5 – 15 cm depth.
Fig. 5 - Andamento del valore di pH e del contenuto di N-NH4

+ e
N-NO3

- e acqua (SWC) nel suolo durante le ore dello span di -
mento del liquame in campo: a) profilo 0 – 5 cm di profondità; b)
profilo 5-15 cm di profondità.
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1983). Lastly the increase of the SWC due to the
slurry application was observed in the first 24
hours in the 0-5 cm layer, whereas in the 5-15 cm
layer the effect was extended till 48 hours.

CONCLUSIONS
Surface application of dairy slurry determined
high ammonia emission levels within the first 24
hours, followed by a first rapid and then gradual
decrease to low emission levels in the subsequent
days. Ammonia losses were the 44% of the total
TAN applied. The results obtained highlighted
the need of low-emission techniques, such as
surface spreading with incorporation and
injection, which are supported by scientific data
showing the reduction of ammonia emission
under experimental conditions. However, the
incorporation of slurry should be done as soon as
possible because the 50% of the total ammonia
emission occurred within 10 hours. Reliable NH3

quantification has to be considered a central
aspect for decision makers, to promote abatement
strategies and to derive emission factors used in
national and international emission inventories.
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