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Abstract

Many countries lack the economic capacity to effectively manage invasive species. Yet, the direct
socioeconomic impact generally much outweighs the expected costs of prevention. A distinct lack of
monetary cost quantification associated with key invasive species groups impedes decision-making, and thus
resource allocation, by policy makers to address invasions. Here, we synthesize published global economic
costs of impacts for one key taxonomic group — freshwater bivalves — whilst explicitly considering the
reliability of estimation methodologies, cost types, economic sectors and impacted regions. Although several
species from this group are notorious widespread invaders, estimations of their economic costs have
remained relatively sparse. Cumulative total global costs of invasive macrofouling bivalves were US$S

63.6 billion (2017 USD) across all regions and socioeconomic sectors between 1980 and 2020. Costs were
heavily biased taxonomically and spatially, dominated by two families, Dreissenidae and Cyrenidae
(Corbiculidae), and largely constrained to North America. The largest share of reported costs ($ 30.6 billion)
did not make the distinction between damage and management. However, of those that did, damages and
resource losses were one order of magnitude higher ($ 30.3 billion) than control or preventative measures ($
1.7 billion). Moreover, although many impacted socioeconomic sectors lacked specification, the largest shares
of costs were incurred through authorities and stakeholders ($ 26.3 billion, e.g. public and private sector
interventions) and by public and social welfare ($ 11.6 billion, e.g. via power/drinking water plant and
irrigation system damage). Average cost estimates over the entire period amounted to approximately $

1.6 billion per year, most of which was incurred in North America. We thus present novel cost quantifications
that offer a strong economic incentive to invest in preventative management of invasive bivalves in
freshwaters. However, these costs are severely underestimated because well-documented economic impacts
are lacking for most invaded countries and most invasive bivalve species.

Introduction

Freshwater ecosystems have been identified as among the most threatened worldwide, owing to their
sensitivity to the effects of climate change (Woodward et al. 2010) and a range of other anthropogenic
pressures (Darwell et al. 2018), including invasive species (Strayer 2010; Poulin et al. 2011). Globally, invasive
non-native species are a major driver of erosion of native biodiversity and the disruption of ecosystem
functioning (Malcolm and Markham 2000; Stigall 2010; Blackburn et al. 2019). Furthermore, they are a
burgeoning economic stressor on virtually all resource sectors — especially those associated with inland
waters, where they are several times more likely than natives to become socioeconomic pests (Hassan and
Ricciardi, 2014). Indeed, invasion rates worldwide have been steadily increasing with no sign of saturation
(Seebens et al. 2017), owing to increasing globalization, intensification of global transport networks and
accessibility of new non-native source pools (Seebens et al. 2018). At present, most countries have limited
capacity to manage invasions (Early et al. 2016) and are increasingly forced to make decisions regarding
investment in biosecurity versus other societal needs.

In recent years, the ecological impacts of invasive species on recipient ecosystems have been better described
(e.g. Kumschick et al. 2014; Dick et al. 2017; Crystal-Ornelas et al. 2020). However, whilst categorizations for
invader socioeconomic impacts have been designed (Bacher et al. 2017), there remains a paucity of
quantified socioeconomic costs incurred by invasions, constraining effective cost/benefit analysis and
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rationale for policy makers to invest the sparse available resources toward prevention (but see Lovell et al.
2006; Marbuah et al. 2014). This constraint exists even though preventive measures are generally considered
more cost effective than long-term mitigation and control (Keller et al. 2008; Ahmed et al., this issue), and
management is less costly than losses from damages (Leung et al. 2002). Pimentel et al. (2000, 2005), and
later Kettunen et al. (2009), were among the first to attempt to summarize the costs of invasive species on
large scales. Despite methodological shortcomings, these pioneer studies had the benefit of raising
awareness of the potentially huge costs associated with non-native species (Hoffmann and Broadhurst 2016).
Their shortcomings originate from the problem that some categories of costs are difficult to quantify,
especially regarding damages to ecosystem services or other indirect effects (Charles and Dukes 2008) and
that they are often not comparable and thus summable. The lack of such synthesis, however, is critical
because it can give the false impression that costs for invasive species are lower than empirically observed. In
turn, this can result in an under-allocation of economic resources to tackle invasive species. Regional or even
global estimations of the cost of invasions rely on the resolution of cost estimation at smaller spatial scales
and at various taxonomic levels. In particular, it is important to document the economic costs of taxonomic
groups known to include damaging invasive species, as it could help to inform decision-making at the
national level and thus provide appropriate economic incentives for controlling the arrival and spread of such
species.

A group of aquatic invasive species that has caused significant ecological and socioeconomic impacts are
freshwater bivalves (Sousa et al. 2009; 2014), including, inter alia, several hyper-successful invasive species
from the genera Dreissena, Limnoperna, and Corbicula (Boltovskoy et al. 2006; Karatayev et al. 2007; Sousa et
al. 2008). These taxa have caused a broad range of impacts (e.g. macrofouling, habitat modification,
restructuring communities and food webs, nutrient mineralization, contaminant transfer, alteration of oxygen
availability and sedimentation rates, and promotion of excessive macrophyte and algal growth; see reviews by
Karatayev et al. 1997; Boltovskoy et al. 2006; Ward and Ricciardi 2007). As a result, they affect various sectors
of society (e.g. infrastructure, municipal and industrial water supply systems, and fisheries; Hoyle et al. 1999;
Minchin et al. 2002; Waterfield 2009). Arguably, the enormous costs associated with invasions of invasive
bivalves such as the Asian clam Corbicula fluminea and the zebra mussel Dreissena polymorpha have done
more to raise public awareness of aquatic invasions than their respective ecological impacts, although the
economic and ecological impacts are often linked (e.g. Kao et al. 2015). On the other hand, invasive
freshwater bivalves have, on occasion, been associated with certain perceived beneficial effects for human
activities, as with other invaders (Kourantidou et al., this issue). For instance, their filtration capacity can
substantially increase water clarity (Phelps 1994; Higgins and Vander Zanden 2010; Boltovskoy et al. 2009),
which may benefit certain recreational activities (e.g. scuba diving and angling), while at the same time
causing food web disruptions that harm fisheries (Kao et al. 2015).

Despite the notoriety of invasive freshwater bivalves in invasion science, information on economic costs for
invasive bivalves in freshwater ecosystems is often scanty or anecdotal, which challenges efforts to prioritize
management action. To broadly address this pervasive lack of information and provide a basis for
quantifications of costs associated with most invasive species worldwide, the InvaCost database has recently
been developed (Diagne et al. 2020). This database contains extensive information on the costs (e.g. cost
types, impacted sectors, regional attributes, cost estimation reliability, etc.) associated with ~ 500 invasive
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species. In the present study, we use a subset of the database to describe global costs associated with
invasive freshwater bivalves, anticipating unevenness in cost reporting towards a few regions and a few
highly conspicuous invasive species. Moreover, we investigate how these costs are structured, and identify
knowledge gaps in cost estimations for key invasive freshwater bivalves.

Methods

Original data

To estimate the cost of bivalve invasions of fresh waters on the global economy, we considered cost data
from version 3 of the InvaCost database (full database and descriptive files are available at
https://doi.org/10.6084/m9.figshare.12668570). This database (9,823 entries; Diagne et al. 2020; Angulo et
al. 2021) compiles entries that extensively describe documented costs globally, enabling large-scale cost
synthesis associated with invasive species in different spatial and temporal frames. We note that this
database only reports monetary values for invasion costs, without considering monetised benefits of invasive
species quantitatively. Therefore, the analyses which follow reflect that scope and only consider costs. Grey
and published references were retrieved from standardised searches in online repositories (IS| Web of Science,
Google Scholar and Google search engine) and opportunistic collection based on targeted searches. Full
information on the search terms (see Supplementary material 1) is provided in Diagne et al. (2020) and
Angulo et al. (2021). Gathered references were thoroughly examined to assess relevance, and then scrutinized
for collating cost estimates associated with invasive species. Every cost entry was recorded, depicted by 64
parameters, and finally converted to a common and up-to-date currency (US dollars (USS) 2017; see Diagne et
al. 2020, for detailed information; Supplementary Material 2). From this full database, 231 cost data entries
were identified as exclusively belonging to the Bivalvia class using the ‘Class’ column filter and 226 cost data
entries belonging to bivalves which impact freshwaters (see Figure 1). We therefore excluded fully marine
species, but focused on various taxa such as D. polymorpha and Mytilopsis spp. that occur in both brackish
and freshwater ecosystems (e.g. Leppakoski et al., 2002).

Estimating the total costs

Deriving the total cumulative cost of invasions over time requires consideration of the probable duration time
of each cost occurrence. This duration consisted of the number of years between those mentioned in the
‘Probable_starting_year_adjusted’ and the ‘Probable_ending_year_adjusted’ columns. When information was
missing for the ‘Probable_starting_year_adjusted’ column, we conservatively considered the publication year
of the original reference. For the ‘Probable_ ending_year_adjusted’ column, information was missing only for
potentially ongoing costs (‘Occurrence’ column), which are costs likely to be repeated over years (contrary to
one-time costs occurring only once along a precise period). We used this temporal information to annualize
the invasion cost entries (4th step in Figure 1). This was done by ‘expanding’ the database via the
expandYearlyCosts function of the ‘invacost’ R package (Leroy et al. 2020) - a process that causes each entry
in the database to correspond to a single year, thereby increasing the number of entries beyond that of the
original data. For example, an initial single cost between 2000 and 2009 that totalled at USS 10,000 would
become ten entries at USS 1,000 each after the expansion. All analyses were performed using this version of
the database. A full explanation of this and other functions used is available in Leroy et al. (2020). For one
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cost entry, the probable ending year was presumably after 2020. Hence, all resulting cost estimates projected
beyond 2020 were not taken into account. Similarly, costs were not available before 1980. This resulted in a
subset of 468 expanded database entries (Figure 1). The dataset was then reduced to 443 entries by removing
entries before 1980 to ensure comparability of currency translations (“recent” in Figure 1) and is provided in
Supplementary Material 3.

Finally, the invasion costs were specifically estimated by summing all entries according to different descriptive
columns of the database (see Supplementary Material 2):

(i) Method_reliability: illustrating the perceived reliability of cost estimates based on the type of publication
and method of estimation. Estimates in peer-reviewed publications or official reports, or with documented,
repeatable and/or traceable methods were designated as High reliability; all other estimates were designated
as Lowreliability (Diagne et al. 2020b). We acknowledge that this approach, which categorises costs as High
reliability based on their presence in peer-reviewed material, may not be fully representative of the diverse
forms of method reliability of cost estimates. Nevertheless, these criteria provided clear, objective and
reproducible means of assessing material, as it was not feasible to assess method reliability on a broader
categorical scale;

(i) Implementation: referring to whether the cost estimate was actually realised in the invaded habitat
(observed) or whether it was extrapolated (potential), based on the methods reported in the underlying study
(i.e., we did not perform extrapolations ourselves);

(iii) Geographic_region: describing the geographic origin of the listed cost;

(iv) Type_of_cost_merged: grouping of costs according to the categories: (a) Damage costs referring to
damages or losses incurred from invasion (e.g. costs for damage repair, resource losses, medical care), (b)
Management costs comprising control-related expenditure (for example monitoring, prevention, management,
eradication) and money spent on education, research and maintenance costs, (c) Mixed costs including mixed
damage and management costs (cases where reported costs were not clearly distinguished among cost
types). We note that Management costs include also research spending, irrespective of the findings, because
this work often aims to better understand the ecology of invaders and their impacts, in turn informing
management options;

(v) Impacted_sector (i.e. the activity, societal or market sector where the cost occurred; see Supplement 4).
Individual cost entries not allocated to a single sector were modified to “Other”.

Temporal dynamics of costs

We analysed the economic costs of invasive macrofouling bivalves over time. For this, we used the
calculateRawAvgCosts-function implemented in the R package “invacost” (Leroy et al. 2020). With this
method, we calculated the observed cumulative and average annual costs between 1980 — 2020, considering
10-year intervals.

Results
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Economic costs among taxonomic groups

The InvaCost database contained information on five families of bivalves: Cyrenidae, Dreissenidae, Mytilidae,
and Unionidae (Figure 1). The collective costs of the 443 expanded entries in the InvaCost database for
freshwater bivalves amounted to $ 63.6 billion covering the impacted years 1980-2020. At the family-level,
366 cost entries were attributable to Dreissenidae ($ 51.2 billion), 28 to Cyrenidae (formerly Corbiculidae; $
12.4 billion), 43 to Mytilidae ($ 11.8 million), and 2 to Unionidae ($ 16.4 thousand). Four cost entries were
inferred by both Dreissenidae and Cyrenidae simultaneously ($ 9.3 thousand).

Within Dreissenidae, 368 cost entries were linked to the zebra mussel D. polymorpha ($ 19.4 billion; n = 255)
and quagga mussel D. bugensis (S 4.6 million; n = 2), either singularly or in congeneric combination ($ 31.8
billion; n = 108). Forty-three cost entries were found for the golden mussel Limnoperna fortunei ($ 1.2 million),
two for the Chinese pond mussel Sinanodonta woodiana ($ 1.6 thousand) and only one for the false mussel
(Mytilopsis trautwineana S 68.3 thousand). Further, 4 undefined species cost entries were derived, accounting
for <1 % of the documented total costs (S 9.3 thousand). All Cyrenidae entries (n = 28) were attributable to the
Asian clam C. fluminea singularly ($ 12.4 billion).

Economic costs among method reliability and implementation types

Although constituting the majority of cost entries (n = 328), highly reliable cost estimates comprised only 10 %
of the documented total (S 6.2 billion), with the remaining costs not originating from accessible peer-reviewed
or official sources. Observed costs accounted for 77 % from freshwater bivalves, whereas other potential costs
were derived in the absence of the invader in the study area based on observed costs in other regions (i.e. in
the case the species were to be introduced) or based on extrapolated predictions of an existing impact over
time (see Diagne et al. 2020 for details). In particular, 72 % of documented Dreissenidae costs, as well as 99%
of Cyrenidae costs were observed.

Economic costs among geographic regions and cost types

Approximately 99% of the total costs were incurred in North America (Figure 2a). For Dreissenidae, the single
M. trautwineana cost was incurred in South America ($ 0.007 billion), 69 specific D. polymorpha cost entries
were incurred in North America ($ 18.2 billion), 13 in Europe and North America combined ($ 1.10 billion), and
173 in Europe ($ 0.06 billion). No invasive bivalve costs were reported for Africa, Asia or Oceania. All costs of
the family Mytilidae (L. fortunei; n = 31; $ 0.012 billion) were incurred in South America, while the two entries
of Unionidae (S. woodiana, $ 0.002 million) originated from Europe.

With respect to cost types, 48% of bivalve-related costs were categorised as due to damages or resource
losses (S 30.3 billion), with relatively little (3%; $ 1.7 billion) spent on control singularly (Figure 3b). The largest
share of costs (50%; $ 31.6 billion) was, however, categorized as general (mixed) as they contained elements
relating to several types and were thus not specific. For Cyrenidae, the majority of costs were due to damages,
whereas the remainder were associated with mixed control and damages exclusively.

Economic costs across North American sectors
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In North America specifically, where the vast majority of bivalve costs were reported, 39% (S 24.2 billion; n =
51) of bivalve costs was incurred by undefined or unspecified socioeconomic sectors (Figure 4), whilst 19% (S
11.6 billion; n = 25) impacted public and social welfare directly (e.g. via power/drinking water plant and
irrigation system damage), only being surpassed by 41% of costs ($ 26.3 billion; n = 93) attributed to
authorities and stakeholders (e.g. public and private sector interventions; see Diagne et al. 2020 for full
definition of each category). Of the remaining sector types, ‘Environment’ was listed with $ 369.6 million,
followed by ‘Fisheries’ with § 7.4 million. At the species-level, C. fluminea had lower specific costs to the public
and social welfare sector than D. polymorpha ($ 2.2 vs. 9.0 billion).

Economic cost accumulations through time

Cost accumulations between 1980 and 2020 are presented in Figure 5. In total, these costs remained at a
consistent magnitude over the past decade and amounted to $ 63.6 billion, with an average annual cost over
the entire period of $ 1.6 billion. Whilst the effects of time lags in cost reporting were not incorporated into
analyses, average cost estimates became reduced slightly towards the end of the last decade, indicating a
gap in cost reporting.

Discussion

The present study demonstrates massive economic costs associated with invasive freshwater bivalves,
estimated at a total of $ 63.6 billion USD over the period 1980-2020. The resulting average annual cost of $
1.6 billion is lower than the previous annual cost estimation ($ 2 billion USD) for the zebra mussel and Asian
clam in the United States (Pimentel et al. 2005). However, here we explicitly account for temporal dynamics in
costs over a longer period, using a more conservative methodology and more robust data. Within the InvaCost
database, Dreissenidae constituted the majority of data sources and costs, while fewer cost entries referred to
Cyrenidae and none for other families, excepting minor additions from the Mytilidae and Unionidae. Within
these families, D. polymorpha, D. bugensis, and C. fluminea were implicated in the vast majority of economic
damage, particularly in North America where they are widespread and locally abundant. Nonetheless, species
such as C. fluminea are global invaders (Sousa et al. 2008), and thus a lack of cost estimation for such taxa
on a wide scale is surprising and indicates a profound lack of reporting. Furthermore, few documented costs
were reported for the golden mussel L. fortuneij, which is invasive in southeast Asia and South America (e.g.
Sousa et al. 2014; Boltovskoy and Correa 2015). Accordingly, the current availability of costs identified is
inherently species-specific, and thus, costs likely represent a gross underestimation of the full scale of
economic impacts across taxonomic groups, given the range of impact types associated with many
macrofouling freshwater species and entirely unreported groups (Sousa et al. 2009, 2014).

On a taxonomic level, some key species of freshwater bivalves with well-known invasion histories (e.g. the
golden mussel L. fortunei, the dark false mussel Mytilopsis leucophaeta, the Chinese pond mussel
Sinanodonta woodiana) account for only a few entries in the InvaCost database, owing to a lack of published
or traceable cost data. Macrofouling induced by L. fortunei and M. leucophaeta (a predominantly brackish-
water species that was not represented in InvaCost), in particular, has been recognized as an economic
problem for South America and Europe, respectively, where they foul municipal and industrial water supply
systems (Verween et al., 2010). Yet, their invaded regions contributed very little of the total documented costs
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of freshwater invasive bivalves. Both L. fortunei and M. leucophaeta generate dense colonies causing
obstructed water flow in pipes, occlusion of water filters, and corrosion of surfaces that result in system
shutdowns, chemical/mechanical treatment, and equipment replacement (Magara et al. 2001; Montalto and
De Drago 2003; Rajagopal et al. 2003; Boltovskoy et al. 2015), virtually identical to the biofouling impacts
associated with Dreissena and Corbicula. In a review of the economic impacts of L. fortunei on man-made
structures, Boltovskoy et al. (2015) noted that “objective estimates of the economic losses are extremely rare”,
but nevertheless economic impacts are probably quite substantial. The authors mentioned that the annual
costs of maintenance and cleaning tasks owing to Limnoperna biofouling in one pipeline project in China, for
example, have been anecdotally reported at over $1 million USD. However, this cost was not included in the
analysis as no citable reference could be located. In Brazil, over 30 hydroelectric power plants along the
Parana River and its tributaries have been colonized by L. fortunei; a shutdown of a single 40 MW turbine for
servicing as a result of biofouling could cost $6.2 million USD per year in lost power generation (reviewed by
Boltovskoy et al. 2015).

Moreover, the geographic bias of cost estimations towards North America and the complete lack of
documented cost estimation within Asia, Africa, and Oceania reflect major knowledge gaps in the economic
costs of invasive bivalves spatially. While North America is unique in its cultural history, leading to a
substantially higher study effort, it is also possible that actually exerted impacts of invasive bivalves are
unevenly distributed owing to differences in economic activity. Further, it may be possible that early estimates
for invasion costs in the USA led to greater reporting efforts for invasion economic effects in the last two
decades (Pimentel et al. 2000). Indeed, the zebra mussel invaded most of the waterways in central and
western Europe well before the mid-20th century (Dediu, 1980). We speculate that this produced a baseline
bias in which subsequent costs were not viewed as novel and thus, were not reported — in contrast with the
sudden incursion and recognition of massive costs following the more recent invasion of North America.
Moreover, zebra mussel densities in the Great Lakes reached peaks that were 1-2 orders of magnitude larger
than what is typically reported in Europe, probably because as invasions progress mussel densities tend to
level off at a lower equilibrium density (Burlakova et al., 2006; Jernel6v, 2017). However, this trend was already
highlighted more broadly in invasion science (Early et al. 2016). In turn, less than 1 % of the globally reported
costs of invasive bivalves were estimated from within Europe or South America; but an absence of evidence is
not evidence of absence.

Our analyses indicated that studies reporting invasive freshwater bivalve costs have remained at a similar
magnitude in recent decades. Whilst average decadal cost estimates tended to decline slightly in recent years,
this is likely to be an artefact of time lags in cost estimation, rather than an empirical reduction in economic
impact. The relative stability in cost increases for freshwater bivalves might also relate, in some cases, to
improved management efficiencies — in spite of increases in both invasive species numbers (Seebens et al.
2017) and global invasion costs (Diagne et al. 2021, see also Cuthbert et al., 2021 for aquatic IAS) through
time. For example, once being initially impacted by pipe-clogging and having to shut down for cleaning,
industries will typically bleed chlorine in their water intakes to eliminate further fouling, thus reducing on-going
costs. On the contrary, it is also entirely possible that the annual monetary burden actually increased between
years owing to new invasions, interventions or damages, leading to a gross underestimation of costs, owing to
(i) insufficient reporting (Wakida-Kusunoki et al. 2015; Enders et al. 2019) and / or (ii) the very conservative

Page 8/22



nature of our approach. An outstanding example of the latter is the impact of biofouling by the Asian clam
Corbicula fluminea on the operation of power plants in the United States over several decades, compromising
fail-safe operations and causing emergency shutdowns of nuclear facilities. The control and mitigation costs,
as well as costs related to reduced plant operating efficiencies, were estimated by Isom (1986) to exceed $1
billion USD per year, based on various anecdotal costs recorded primarily before 1980. Our approach led us to
ignore all costs prior to 1980, despite C. fluminea having invaded the USA and other regions many decades
before (Crespo et al., 2015). Further, these costs only pertain to power plants in the US, whereas C. fluminea is
globally invasive and has fouled water supply systems in other countries. In addition to impacts on
technological systems, C. fluminea is known to negatively impact native bivalve abundance and diversity
(Sousa et al., 2008), and to alter physical habitat structure including water quality, sediment composition, and
submerged vegetation (Phelps 1994), thus producing ecosystem impacts that can be difficult to quantify in
monetary terms (Darrigan, 2002). It should be emphasised, therefore, that we consider the presented costs to
be highly conservative overall, particularly given the prominent cost reporting gaps, both taxonomically and
spatially.

Another factor contributing to uncertainty surrounding our estimate is the difficulty in quantifying types of
economic damage associated with ecosystem services (Spangenberg and Settele 2010). Invasive freshwater
bivalves can be ecosystem engineers and keystone species where they have disproportionate effects on
ecosystem structure and function— and thus, the various services they provide to humans (e.g. aquaculture).
For instance, dreissenid mussels indirectly stimulate benthic algal growth (Boegman et al. 2008), invasive
aquatic weed proliferation (Zhu et al. 2007), and harmful algal Microcystis blooms (Vanderploeg et al. 2001).
Furthermore, dreissenid species have been shown to create new pathways for the transfer of contaminants
(e.g. Hg, Cd, PCBs, botulism toxin; Hogan et al. 2007; Carrasco et al. 2008). These effects likely result in
substantial indirect socioeconomic impacts that are difficult, if not impossible, to evaluate in terms of
monetary losses. More directly, costs of invasive macrofouling bivalves incurred for technological systems
other than power plants (municipal and industrial water supply systems in general; fouling of lock-and-dam
structures and aquaculture equipment) are virtually undocumented for most regions of the world other than
the USA and Canada. Research effort into freshwater bivalves is concentrated in North America and Europe
(Lopes-Lima et al. 2014), with a consequent lack of detailed reporting of basic aspects of invasions in other
regions (Lopes-Lima et al. 2018), where invasive freshwater bivalves have been reported only relatively
recently (e.g. Africa; Clavero et al. 2012). In these cases, published documentation of ongoing costs is urged to
fully account for monetary aspects of invasion within emerging economies.

The sparse economic data for invasive freshwater bivalves also inhibits recognition of any potential benefits
these species provide to humans, and thus impedes comprehensive cost-benefit analyses which could further
inform and direct management actions among different economic sectors or regions. For example, filtration
activities of dense populations of Dreissena spp. and C. fluminea have been shown to substantially increase
water clarity (Phelps, 1994; Higgins and Vander Zanden 2010; Boltovskoy et al. 2009), which (while causing
myriad ecological disruptions and harm fisheries whose focal species depend on prey that are competing with
mussels for resources; Kao et al. 2018) could benefit certain recreational activities such as scuba diving,
which in turn could conceivably drive tourist revenue and increase the property value of neighbouring real
estate. Conversely, accumulations of sharp shells on beach sands are a hazard to the feet of swimmers.
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Whilst many beneficial effects are difficult to quantify in monetary terms, or are yet to be shown, it is unlikely
that they will outweigh the presently documented (and underestimated) costs of $ 63.6 billion USD.

In conclusion, our study highlights very fragmented data that calls for national and regional authorities to
produce more and better structured reporting of invasion costs. Given that many known invasive freshwater
bivalve species (such as Batissa violacea, Sphaerium corneum, and Pisidium spp.; see Sousa et al., 2013) and
invaded regions completely lacked reported economic costs, our figures are likely gross underestimations.
Nonetheless, the monetary costs reported in this study are still very high (e.g., over 1 billion USS per year) and
should provide added incentive to manage invasive bivalves in freshwater systems. When specific cost types
were known, damages and resource losses were an order of magnitude higher than control or management
costs, suggesting that more management is needed to prevent the spread and establishment. Given that
invasion rates are expected to keep increasing over time (Seebens et al. 2017, 2020), we predict that the costs
of invasive macrofouling freshwater bivalves will increase substantially in the future.
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Figure 1

successive steps of filtering from the entire InvaCost database to the conservative subset analysed for
annualized costs of freshwater bivalves between 1980 and 2020. Each step is detailed in the text.
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Figure 2

Distribution of known invasive bivalves according to Sousa et al. (2014) and species listed in InvaCost. Costs
are classified according to magnitude across geographic regions and number of cost entries (in InvaCost) per
species. Species are: Corbicula fluminea (Cf); Batissa violacea (Bv); Dreissena bugensis (Db); Dreissena
polymorpha (Dp); Limnoperla fortunei (Lf); Eupera cubensis (Ec); Pisidium amnicum (Pa); Pisidium
henslowanum (Ph); Pisidium moitesserianum (Pm); Pisidium punctiferum (Pp); Pisidium supinum (Ps);
Sphaerium corneum (Sc); Alasmidonta marginata (Am); Fusconaia flava (Ff); Lampsilis cardium (Lc);
Lasmigona subviridis (Ls); Leptodea fragilis (Laf); Ligumia nasuta (Ln); Ligumia recta (Lr); Potamilus alatus
(Poa); Pyganodon grandis (Pg); Sinanodonta woodiana (Sw). Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of
Research Square concerning the legal status of any country, territory, city or area or of its authorities, or
concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Global costs of recorded bivalve taxa according to affected continent (a) and cost type (b).
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Figure 5

Annual total and observed costs between 1980 — 2020 of invasive macrofouling freshwater bivalves and the
number of published cost entries between the same period. Points with bars represent decadal means. Note
the broken y-axis scale.
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