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Abstract

Motivated by recent resultsobtained in thecontext of variational approaches, new estimatesareproposed for thehomogenised
behaviour of nonlinear viscoelastic materials. Thekey point reliesin theintroduction of field fluctuationsin thecontext of hered-
itary behaviours. This is accomplished by incorporating the intraphase second moment of the mechanical fields of a reference
linear viscoelastic material in an hereditary linearisation procedure. Analytical results for the evolution of field fluctuations
within a linear viscoelastic composite are derived. Some illustrative results are presented for the creep response of a nonlinear
viscoelastic matrix containing elastic inclusions with different morphologies. Compared with a classical approach, the pro-
posed procedure leads to a softer overall response for both transient and steady-state regimes, and predicts a faster stress field
redistribution.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Thisarticledealswith thederivation of new estimates, in thecontext of thehomogenisation theory, for theoverall mechanical
responseof an heterogeneous nonlinear viscoelastic material. Significant advances havebeen recently made for such nonlinear
composites which exhibit a coupling between a conservative and a dissipative constitutive mechanism. On one hand, Rougier
et al. (1994) and Masson and Zaoui (1999) showed that the pioneering work of Laws and McLaughlin (1978) in the linear
context, based on the use of the correspondence principle (Mandel, 1966) and the Laplace–Carson (LC) transform technique,
could be extended to nonlinear behaviours. The subsequent work of Pouya and Zaoui (1999) has shown that this so-called
“affine” formulation constitutes thefirst order approximation of ageneral linearisation procedure for which the local behaviour
is linearised with respect to the whole stress (or strain) history up to the current time t . On the other hand, for behaviours
deriving from a single potential (nonlinear elasticity, for instance), the importance of the field fluctuations for the derivation of
theoverall behaviour hasbeen pointed out by numerousstudies(seePonteCastañedaand Suquet, 1998). Especially, it hasbeen
observed that awidevariety of estimatesneglecting theintraphasefield fluctuationsleadsto unrealistic estimatesof theeffective
energy with respect to rigorous nonlinear bounds (Gilormini, 1995). Owing to these results, the question of an homogenisation
schemefor nonlinear viscoelasticity that would account for field fluctuations isrelevant. Thepresent study isan attempt towards
this aim.
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The paper is composed as follows. First, the computation of the field fluctuations for a linear viscoelastic composite is
detailed. In a simple case allowing to derive exact analytical results, an approximate method for the inverse LC transform,
namely the “direct inversion method” (DIM), is discussed. Then in the nonlinear framework, after a brief recall of the affine
procedure, different possibilities for incorporating the available statistical information on the field fluctuations are presented.
Particularly, an improved affine estimate is constructed by defining the linearised viscous compliance according to the new
second-order method (Ponte Castañeda, 2002a) whereas the classical affine estimate uses the definition from the old second-
order approach (Ponte Castañeda, 1996). The obtained scheme is further simplified by using the DIM previously studied in the
linear framework. The different nonlinear extensions are then compared for the case of an isotropic two-phase composite with
particulatemicrostructure. Throughout thispaper, weconsider aviscoelastic microstructurally random compositematerial. This
heterogeneous medium occupies a volume Ω and is made of N constituents phases (r), perfectly bonded, occupying volumes
Ωr (volumic fraction equals to cr ).

2. Field fluctuations in linear viscoelastic composites

Hereafter, the phases of the composite medium obey a non-ageing linear viscoelastic behaviour. This material is subjected
to a known macroscopic mechanical loading for time t ∈ [0;+∞[. At a point x ∈ Ωr , the stress-strain behaviour obeys the
following integral relation

ε(x, t) =
t∫

0

qr (t − u) : dσ (x, u) (1)

with qr (t) the tensorial creep function and
∫ t
0 f (t − u) : dg(u) theStieljes convolution product.

2.1. Analytical computation of second moments

Linear non-ageing viscoelastic problems can be reduced to linear elastic onesby theuseof the LC transform defined as

f ∗(p) = p

+∞∫
0

f (t)e−pt dt, (2)

with p thecomplex variable, f theoriginal time function and f ∗ its LC transform.
Therefore, application of theLC transform to relation (1) givesa linear elastic relation between LC transformsof strain and

stress histories, namely

ε∗(x,p) = q∗
r (p) : σ∗(x,p) (3)

where q∗
r (p) denotes the (symbolic) linear elastic compliance of any phase (r).

For agiven real valueof p, wenow consider theheterogeneouscompositewhosemicrostructure is thesameas theprevious
onebut with phasesobeying thelinear elastic behaviour defined by (3). Classical homogenisation schemesfor linear behaviours
apply to this new composite. Itsoverall compliance is Q∗(p) while theoverall stressapplied to this composite is Σ∗(p).

Stress field second moments through any phase (r) of this linear elastic compositearedefined by

〈σ∗ ⊗ σ∗〉r,p = 〈
σ∗(p) ⊗ σ∗(p)

〉
r

(4)

where the notation 〈·〉r denotes the average on volume Ωr of phase (r). They can be obtained from any linear homogenisation
schemeby computing thepartial derivativesof thestresselastic energy of thecompositewith respect to the fourth-order tensor
q∗
r (p) (Ponte Castañedaand Suquet, 1998)

〈σ∗ ⊗ σ∗〉r,p = 1

cr

[
Σ∗(p) ⊗ Σ∗(p) :: ∂Q∗(p)

∂q∗
r (p)

]
. (5)

Furthermore, according to the correspondence principle (Mandel, 1966), the second moment of the stress field throughout the
original viscoelastic composite’s phase isgiven by

〈σ ⊗ σ 〉r,t = 〈
σ (t) ⊗ σ (t)

〉
r
= LC−1{〈σ∗ ⊗ σ∗〉r,p

}
, (6)

with LC−1 denoting the inverseoperator to LC transform defined by: LC−1{LC[f (t)]} = f (t).



                                                                          
Except for some limited situations (seeSection 2.2), theexplicit determination of theLC inverseoperator isnot straightfor-
ward and a numerical inversion based on finite Dirichlet series development is required (see the collocation method proposed
by Schapery, 1962). In thefollowing, weaim at applying an approximateanalytic LC transform inversion method, theso-called
“direct inversion method” (Schapery, 1962; Brenner et al., 2002) which provides a simple non-integral relation between the
function and its transform. Indeed, its application to (6) yields

〈σ ⊗ σ 〉r,t ≈ 〈σ∗ ⊗ σ∗〉r,p=10w0/t , (7)

thechoiceof w0 depending on phaseconstitutivebehaviour aswell asdeformation path (Brenner et al., 2002). Thevaluew0 = 0
hasbeen proved to be thebest one for Maxwellian phasebehavioursand creep responses. In thenext section, weshow that this
choice is the most appropriate for the present study which is mainly focused on the creep response of nonlinear viscoelastic
heterogeneous composites.

2.2. Application

Weconsider an isotropic material whoseconstituents obey an isotropic incompressible Maxwellian behaviour defined by

ε̇(t) = me
r ṡ(t) + mv

r s(t). (8)

The scalar constants me
r and mv

r are, respectively, the elastic and viscous shear compliances of phase (r), ε̇ is isochoric and
s is thestressdeviator. Thus, the local relaxation spectrum reduces to asingle relaxation time τr = me

r/mv
r and thescalar creep

function of any phase (r) reads: qr (t) = me
r + tmv

r . Aspreviously, relation (8) can be transformed into

ε∗(p) = q∗
r (p)s∗(p) (9)

with q∗
r (p) = me

r + (1/p)mv
r .

For the coming applications, weconsider matrix-inclusion microstructures. By considering the connectedness of the matrix
and restricting the study to low volume fractions of inclusions (up to 0.2), the overall behaviour and local mechanical fields
are estimated through the classical Mori–Tanaka model (Mori and Tanaka, 1973) which identifies in the present case with the
lower Hashin–Shtrikman bound. Note that the inclusions are assumed ellipsoidal and distributed within the material with the
same ellipsoidal symmetry. In this specific context, the estimate of the time-dependent overall compliance as well as the first
and second moments of the stress field within each phase can be derived analytically. The accuracy of the DIM can thus be
checked rigorously at theglobal and local scales.

The exact and approximate analytic derivations lead to the following expressions for the overall viscoelastic compliance
(sub-indice “2” refers to thematrix)

Q(t)Exact = a
[
mve

2 (t) + (b − 1)
(
mv

2t + (me
2 − mv

2τ̃ )(1− e−t/τ̃ )
)]

,

(10)

Q(t)DIM = a

[
mve

2 (t) + (b − 1)mve
2 (t)

t

t + τ̃

]
.

For acreep loading path (i.e. constant overall stress, S(t) = S0 ∀t � 0), theaveragestressfield in thematrix reads

[〈
s(t)

〉
2

]Exact
eq = d

{
1+

(
τ̃

τ̂
− 1

)
(1− e−t/τ̃ )

}
S0,

(11)[〈
s(t)

〉
2

]DIM
eq = d

{
1+

(
τ̃

τ̂
− 1

)
t

t + τ̃

}
S0

and thesecond moment of thestressfield in thematrix reads

〈
s2
eq(t)

〉Exact
2 = 1

5− 3c2

{
2+ c

[
1+ 2

(
τ̃

τ1
− 1

)
(1− e−t/τ̃ ) +

(
τ̃

τ1
− 1

)2(
1−

(
t + τ̃

τ̃

)
e−t/τ̃

)]}
S2

0,

〈
s2
eq(t)

〉DIM
2 = 1

{
2+ c

[
1+ 2

(
τ̃ − 1

)
t +

(
τ̃ − 1

)2 t2

2

]}
S2

0. (12)

5− 3c2 τ1 t + τ̃ τ1 (t + τ̃ )



                                                                          
Fig. 1. Relativeerror between analytic and “direct” inversetransformsof theoverall creep function asafunction of log t (continuous: τ1/τ2 = 2,
dotted: τ1/τ2 = 10, dashed: τ1/τ2 = 100).

Note that the following constants havebeen defined

a = 5me
1 + 2c2(me

2 − me
1)

3c2me
1 + (5− 3c2)me

2
, b = τ̃

5mv
1 + 2c2(mv

2 − mv
1)

5me
1 + 2c2(me

2 − me
1)

,

c = 75(1− c2)me2
1

(3c2me
1 + (5− 3c2)me

2)2
, d = 3me

1 + 2me
2

3c2me
1 + (5− 3c2)me

2
,

1

τ̃
= 3c2mv

1 + (5− 3c2)mv
2

3c2me
1 + (5− 3c2)me

2
,

1

τ̂
= 3mv

1 + 2mv
2

3me
1 + 2me

2
.

(13)

It is worth emphasising that elastic (t → 0) as well as purely viscous (t → +∞) responsesderived using the DIM areexact.
Comparisons between the exact overall viscoelastic compliance (i.e. creep function) and the one obtained with the DIM are

reported on Fig. 1 for different ratiosof the two phases relaxation times (2� τ1/τ2 � 100, me
1/me

2 = 1). It isworth mentioning
that theDIM leadsto theexact LC inversion result when thetwo phaseshaveidentical relaxation timeswhatever thevalueof the
elastic contrast me

1/me
2 (Brenner et al., 2002). Consequently, theaccuracy of theDIM isespecially dependent on thecontrast of

the relaxation times of the two phases. Results derived with the direct method are very close to exact ones in transient regimes
even for large contrasts (τ1/τ2 = 100). This good agreement for creep loading is consistent with former simulations (Brenner
et al., 2002) derived with other homogenisation schemes (Voigt as well as self-consistent schemes) associated to different
microstructures (“parallel” as well as polycrystalline microstructures). Similar comparisons concerning variations with time of
both first and second moments of the stress field throughout the matrix are reported on Fig. 2. Deviations between exact and
direct inversions remain still acceptable (less than 8%) for the variouscontrasts studied.

2.3. Conclusions

The correspondence principle reduces the computation of field fluctuations of stress (or strain) in non-ageing linear vis-
coelastic composites to the LC inversion of corresponding field fluctuations throughout a composite whose microstructure is
the same as the previous one but with phases obeying a linear elastic behaviour. LC transform of field fluctuations can then
be obtained with any homogenisation scheme by computing the partial derivatives of the stress (or strain) elastic energy with
respect to the local compliance (or stiffness).

To compute the inverseLC transform, theDIM providesan approximatebut powerful way. Thismethod hasbeen applied to
simple isotropic matrix-inclusion composite with linear Maxwellian local behaviour. For creep loadings, the creep function as
well as the evolutions with time of first and second moments of the stress field in the matrix have been computed analytically
(Mori–Tanaka estimates). Comparisons between these exact results and the ones derived with the DIM display low deviations
even for high contrasts (two phasesrelaxation timeratiosup to 100). Consequently, it can beadvantageously used for nonlinear
problemswhich reduce, at each linearisation time, to anew linear problem. Asshown in thenext section, theapplication of the
DIM gives rise to aso-called “quasi-elastic” formulation of theaffinemodel for nonlinear viscoelasticity.



                                                                          
(a) (b)

Fig. 2. Relativeerror between analytic and “direct” inversetransformsof (a) theaveragestressfield and (b) thesecond moment of theequivalent
stress in the matrix asa function of logt (continuous: τ1/τ2 = 2, dotted: τ1/τ2 = 10, dashed: τ1/τ2 = 100).

3. Homogenisation procedure for nonlinear viscoelastic composites

A microstructurally random compositematerial, with linear compressibleelasticity and nonlinear incompressibleviscosity,
is now considered. The constitutive behaviour of the individual constituents is governed by two stress-energy functions ue(σ ),
for theelasticity, and uv(s), for theviscosity, which present respectively aquadratic and amorethan quadratic growth. At each
point x insideΩ , the infinitesimal local strain rate ε̇ reads

ε̇(t) = d

dt

(
∂ue

∂σ

(
σ (t)

)) + ∂uv

∂s

(
s(t)

)
. (14)

With useof a functional representation, this local constitutive equation can beexpressed as

ε(t) = G
{

t
σ (θ)

0

}
(15)

where G is a nonlinear functional which correlates the strain ε(t) at a given time t with the whole stress history σ (θ) with
0� θ � t .

3.1. Hereditary affine formulation

The specificity of the required linearisation procedure for nonlinear viscoelastic behaviours lies in the differential nature of
the constitutive relation (14) which readsalternatively

ε̇(x, t) = me(x) : σ̇ (x, t) + g
(
x, s(x, t)

)
, ∀x ∈ Ω, (16)

with me the elastic compliance and g the nonlinear viscous strain rate deriving from the potential uv. At each time t , the
dependence of the strain rate on the whole stress history from t = 0 prevents from a direct definition of instantaneous moduli
or compliances as it is the case for nonlinear purely elastic or viscous behaviours. To treat this difficulty, Rougier et al. (1994)
initially proposed a linearisation procedurealong the loading path which reads

ε̇(t) = me : σ̇ (t) + mv(ζ ) : s(t) + ε̇0(t, ζ ) (17)

with {
ε̇0(t, ζ ) = g

(
s(t)

) − mv(ζ ) : s(t) ∀t � ζ,

ε̇0(t, ζ ) = g
(
s(ζ )

) − mv(ζ ) : s(ζ ) ∀t � ζ.
(18)

It can be remarked that the stress-free strain rate ε̇0(t, ζ ) does not depend on the mechanical loading after t = ζ . According to
(17) and (18), thisprocedurethusleadsto thedefinition of alinear thermoviscoelastic heterogeneousmedium. At thispoint, it is
worth noting that there isno requirement for the linearised viscouscompliance mv(ζ ) to correspond to the tangent compliance

mtgt(ζ ) = ∂g (
s(ζ )

)
. (19)
∂s



                                                                          
Alternatively, relation (17) can beput in the following integral form

ε(t) =
t∫

0

qζ (t − u) : dσ (u) + ε0(t, ζ ),

qζ (t) = me + mv(ζ )t,

ε0(t, ζ ) =
t∫

0

ε̇0(θ, ζ )dθ

(20)

where it isemphasised that thestress-freestrain ε0 isa function of thewholestresshistory thusaccounting for theviscoelastic
coupling phenomenawithin thematerial.

3.2. Uniform behaviour per phase

We restrict ourselves to the derivation of estimates for the overall behaviour using classical mean-field approaches. Using
a statistical description of the microstructure, through the first-order (i.e. volume fractions) and second-order (i.e. covariances)
spatial correlation functions, it consists in the determination of the phase stress and strain averages, 〈σ 〉r and 〈ε〉r . This can be
achieved by using Eshelby’ssolution (Eshelby, 1957) of the inclusion problem. Nevertheless, in thenonlinear context, thisstep
itself is not straightforward. Indeed, the dependence of the local behaviour on the mechanical fields, which vary continuously
in the material, leads to nonuniform intraphase responsesand implies

〈
ε(t)

〉
r
=

〈
G

{
t

σ (θ)
0

}〉
r


= G
{

t〈
σ (θ)

〉
r

0

}
. (21)

In any phase, the stress and strain average histories are not linked by the constitutive equation of the phase. By contrast to
the case of a linear behaviour, the resolution of the homogenisation problem thus requires complementary relations to define
an uniform behaviour per phase. For this crucial step, use has to be made of the statistical information, delivered by linear
homogenisation schemes, on the mechanical fields distribution. The available quantities are the intraphase averages given by
the linear concentration equations, and the intraphasesecond momentsobtained by derivation of theoverall energy with respect
to theuniform local compliances (or moduli). Initially derived in thecaseof isotropic elasticity (Bobeth and Diener, 1986), the
field intraphasesecond momentshavesubsequently been given in moregeneral cases(Kreher, 1990; Buryachenko, 1993, 2001;
Ponte Castañeda and Suquet, 1998). These intraphase fluctuations result from the interphase interactions inside the material. It
is stressed that the adopted definition for the linearised behaviour per phase will give rise to distinct estimations for the overall
behaviour as well as for the fields distribution. The present work is focused on different possibilities in the framework of the
hereditary affineprocedure presented above.

3.2.1. Original affineestimates
The initial proposal madeby Rougier et al. (1994) and Masson and Zaoui (1999) consists in considering a tangent linearisa-

tion defined with respect to the averagefields over each phase. The linearised viscous compliance reads

mv
r = ∂g

∂s

(〈s〉r ). (22)

This choice, consistent with the pioneering work of Hill (1965) for elastoplasticity, implies that the stress and strain average
histories are linked by the constitutive behaviour. Clearly, this condition can only be fulfilled if the mechanical fields are
homogeneous within each phase in the nonlinear material (e.g. laminate microstructures). In the general case, since intraphase
heterogeneity is not accounted for in the definition of the linearised behaviour, it might be expected that this formulation
presents some deficiencies especially for situations where the field fluctuations inside the material become important (high
contrast and/or high nonlinearity) (Masson et al., 2000). Wewill refer to this approach as the “classical” affine (CA).

3.2.2. Improved affineestimates
In the context of variational approaches, Ponte Castañeda (2002a) recently proposed a theory which incorporates the field

fluctuationsfor thederivation of theeffectivebehaviour. Thisformulation still makesuseof an affinelinearisation. Nevertheless,
instead of using atangent compliance, it definesa“generalised” affine(GA) compliancewhich dependson both first and second
moments of the intraphase fields. For purely nonlinear viscous behaviours, this procedure improves on previous proposals
(Ponte Castañeda, 2002b; Idiart and Ponte Castañeda, 2003). In contradistinction with classical mean-field approaches, it has



                                                                          
to be mentioned that this variational procedure does not use the linearised constitutive behaviour to link the average fields per
phase. However, by dismissing this condition, Ponte Castañeda (2002a) proposed an extension of this approach to the classical
mean-field context. Whereas it can beproved that the resulting estimate is lessaccurate than thecorresponding stationary ones,
it presents the specific advantage of being incorporable into the present viscoelastic procedure. It is worth noting that although
thisGA estimatedoesaccount for field fluctuations, through the linearised compliance, it still assumes that thestressand strain
average histories are linked by the constitutive behaviour as the CA estimate does. According to this theory, the linearised
viscous compliance is obtained from the following condition

∂uv

∂s
(ŝr ) − ∂uv

∂s

(〈s〉r ) = mv
r : (ŝr − 〈s〉r

)
(23)

with ŝr a reference deviatoric stress state. Hereafter, restriction is made to tensors mv
r whose principal axes are aligned with

〈s〉r , i.e.

mv
r = 1

2λr
0

Er + 1

2µr
0

Fr (24)

whereusehas been madeof theprojection operators Er and Fr introduced in PonteCastañeda (1996):

Er = 〈s〉r ⊗ 〈s〉r
〈s〉r : 〈s〉r and Fr = K − Er , (25)

with K the deviatoric isotropic projection tensor. The reference fields 〈s〉r and ŝr are respectively given by the average stress
localisation relation and thecondition(

ŝr − 〈s〉r
) ⊗ (

ŝr − 〈s〉r
) = Cr

s (26)

with Cr
s = 〈s⊗ s〉r −〈s〉r ⊗〈s〉r thecovariancetensor of thedeviatoric stressesin phase(r). Becauseof thechoice(24), relation

(26) reduces to

ŝr‖ = σ̄ r
eq +

√
3

2
Er :: Cr

s and ŝr⊥ =
√

3

2
Fr :: Cr

s (27)

with ŝr‖ =
√

3
2 ŝr : Er : ŝr , ŝr⊥ =

√
3
2 ŝr : Fr : ŝr and σ̄ r

eq = [〈s〉r ]eq, i.e. the Von Mises equivalent of the average stress√
3
2〈s〉r : 〈s〉r . The stress second moment tensors 〈s ⊗ s〉r , required to compute Cr

s , are obtained by taking the partial deriv-
ativeof theeffectiveenergy of theheterogeneous linearised medium with respect to thecompliance of each phase (r).

Thepresent paper ismainly concerned with thetwo presented linearisation procedures. Nevertheless, to illustrate thevariety
of approaches that can be constructed, let us mention an alternative procedure proposed by Brenner et al. (2001) and aiming
too at incorporating the field fluctuations for the derivation of the effective behaviour. This “modified” affine (MA) procedure
defines the linearised complianceas the tangent compliance in thevicinity of thesecond moment of the intraphasefield. On the
other hand, thephaseaveragestrain rate 〈ε̇〉r isestimated by following thework of Suquet (1995). Consequently, thisempirical
formulation fulfils, by construction, the inequality relation in (21).

3.3. “ Quasi-elastic” approximation of theaffine procedure

By meansof theadopted linearisation procedure, the treatment proposed by Lawsand McLaughlin (1978) can beapplied in
the present nonlinear context at each linearisation time. It may besummarised in three steps:

• the thermoviscoelastic problem isconverted into asymbolic thermoelastic problem using theLaplace transform technique,
• the linear homogenisation problem is solved,
• thesolution is obtained in the timespaceby inverse transform of the result.

To perform the last step of this procedure, one can take advantage of the DIM introduced in Section 2. It is recalled that this
approximation relieson amathematical property of theLaplacetransform which allowsto identify (with achangeof variables) a
function with its transform. Asaconsequence, thehomogenisation can beperformed directly in thetimespace. Thisapproach is
relevant for different typesof loading pathsand especially for creep conditions. It isworth to note that thissimplified treatment
does retain the main features of the viscoelastic behaviour. In particular, the hereditary nature is kept and the overall response
is not assumed to be of the Maxwell-type. As shown in Section 2 in the linear context, it delivers reasonable estimates at both
local and global scales. The “quasi-elastic” approach, adopted in the sequel, can be formulated as follows. Considering, e.g.,



                                                                          
a macroscopic stress loading path Σ(t) on the time interval [0, ζ ] and assuming that the problem was solved until t = ζ − δt ,
the linearised behaviour reads, for agiven linearisation time ζ , at any time t � ζ

εr (t) = qζ (t) : σ r (t) + ε0
r (t, ζ ),

qr
ζ (t) = me

r + mv
r (ζ )t,

ε0
r (t, ζ ) =

t∫
0

ε̇0
r (θ, ζ )dθ,

ε̇0
r (θ, ζ ) = g

(
sr (θ)

) − mv
r (ζ ) : sr (θ).

(28)

According to theapproximateprocedure, it isonly required to solvethehomogenisation problem associated with (28) for t = ζ .
It reads{

Qζ (ζ ) = 〈
qr
ζ (ζ ) : Br (ζ )

〉
,

E0(ζ, ζ ) = 〈tBr (ζ ) : ε0
r (ζ, ζ )

〉 (29)

where Br is theaveragestress concentration tensor. The interaction equation can beexpressed as εr (ζ ) − E′(ζ ) = −Q̃ζ (ζ ) : (σ r (ζ ) − Σ ′(ζ )
)
,

Q̃ζ (ζ ) = (
(SE)−1 − I

)−1 : Q∗
ζ (ζ )

(30)

with Q̃ζ theinteraction tensor, SE theEshelby tensor, Q∗
ζ thecomplianceof thereferencemedium which dependson thechosen

homogenisation scheme. E′ and Σ ′ are the homogeneous strain and stress fields in the infinite medium for the corresponding
inclusion problem. They are linked to themacroscopic fields E and Σ by

E′ = ( L̃ζ + L∗
ζ )−1 : 〈( L̃ζ + lrζ )−1〉−1 : E,

(31)
Σ ′ = (Q̃ζ + Q∗

ζ )−1 : 〈(Q̃ζ + qr
ζ )−1〉−1 : Σ

with L̃ζ = Q̃−1
ζ , L∗

ζ = (Q∗
ζ )−1 and lrζ = (qr

ζ )−1, the linearisation time ζ being omitted for brevity. The homogenisation
procedure defined by (28), (29) and (30), together with an adequate description of the microstructure, thus requires at each
linearisation time ζ the resolution of aset of nonlinear equations which readsF(σ r (ζ )) = 0.

4. Illustrative applications: creep of a two-phase isotropic composite

The different affine schemes introduced in Section 3 are now applied to the case of a two-phase composite presenting
an isotropic constitutive relation. Within each phase (r) of the composite, the local elastic and viscous stress potentials are
characterised by

ue(x) = σ2
eq(x)

6µe
r

+ σ2
m(x)

2ke
r

,

uv(x) = σ r
0 · ė0

n + 1

(
σeq(x)

σ r
0

)n+1
= ψ

(
σeq(x)

) (32)

with position vector x ∈ Ωr . µe
r is the elastic shear modulus, ke

r the elastic bulk modulus and σ r
0 the reference viscous stress,

uniform per phase. ė0 isareferencestrain rateand n thestresssensitivity coefficient, both homogeneouswithin thematerial. σm
representsthehydrostatic stressdefined by 1

3 tr(σ ). For agiven linearisation timeζ , at any time t � ζ , thelinearised viscoelastic
compliance obeys the following generic expression{

qr
ζ (t) = me

r + mv
r (ζ )t,

mv
r (ζ ) = α(ζ )Er + β(ζ )Fr .

(33)

Theclassical affineprocedure leads to the following expressions for thescalarsα and β

α(ζ ) = nβ(ζ ), β(ζ ) = 3ė0

2σ r

(
σ̄ r

eq(ζ )

σ r

)(n−1)

(34)

0 0



                                                                          
(a) (b)

Fig. 3. Normalised overall equivalent strain rateestimated by theclassical and generalised affineprocedures for (a) aligned-fiber and (b) spheri-
cal inclusions. Thedotted linecorresponds to adecoupled Maxwell-typeapproach using thegeneralised affineprocedure. Thevolumic fraction

of inclusions is ci = 0.15 and the stress sensitivity exponent of the matrix isn = 5. Caseof a longitudinal simple shear with Σ13/σ
(2)
0 = 1.

whereas theexpressionsobtained with the generalised affineprocedure read

α(ζ ) = 3

2

ψ ′(σ̂ r
eq)(σ̂ r‖ /σ̂ r

eq) − ψ ′(σ̄ r
eq)

(σ̂ r‖ − σ̄ r
eq)

, β(ζ ) = 3

2

ψ ′(σ̂ r
eq)

σ̂ r
eq

(35)

where the dependence on ζ of the tensors σ̂ r and σ̄ r has been omitted for brevity. Hereafter, the focus is on the special

case of a viscoelastic matrix (phase 2) containing elastic inclusions (phase 1). Consequently, we have σ
(1)
0 → ∞ and thus

q(1)
ζ (t) = me

(1)
. In the context of Mori–Tanaka estimates, the effect of the inclusions’ morphology together with the loading

path on the composite’soverall responseand its link with the local fieldsheterogeneity is now discussed for creep conditions.

4.1. Creep under longitudinal shear

In thiscase, two typesof inclusionsareconsidered: aligned (continuous) fibers(along x3 axis) and spheres. Weareinterested
in theresponseof thecompositematerial subjected to (longitudinal) simpleshear in x3 direction. Notethat theelastic properties
are assumed uniform in the material so that we focus on the role of the viscous heterogeneity on the transient and steady-state
(i.e. viscous) regimes. It isworth noting that, rigorously, this regimecorrespondsto thestabilisation of thestressfield within the
material. In our analysis, this condition is restricted to the first and second moments of the stress field within each constituent
phase. Fig. 3 presentscomparisonsbetween CA and GA estimates for theevolution of theeffectivestrain rateduring creep. It is
observed that the GA procedure predicts a weaker decrease of the strain rate during the test thus leading to a “softer” estimate
of thesteady-state regime in agreement with the results reported in PonteCastañeda(2002b). In the transient regime, where the
viscoelastic coupling takes place, it can be seen that the GA approach predicts a perceptibly shorter overall primary creep. In
other words, to account for the heterogeneous character of the intraphase stress field leads to a faster stress field redistribution
within the material. Note that a Maxwell-type approach neglecting the viscoelastic coupling would lead to a constant overall
strain rate since the overall stress is constant ∀t > 0+. These observations are valid for parts (a) and (b) whereas the following
differences deserve to bementioned:

• spherical inclusions are responsible for ahigher decreaseof the effectivestrain rate independently of theapproach,
• the relativediscrepancy between CA and GA estimates is less pronounced for the microstructurewith aligned fibers.

The interphase distribution of the average stress fields is reported in Fig. 4. The evolution of the average stress within each
phase during the transient regime is characterised by a high increase in the inclusions which are purely elastic and a relatively
moderate decrease in the matrix which undergoes a viscoelastic deformation. For both microstructures, the GA estimates lead
to a lower stress interphase heterogeneity throughout the creep deformation. In agreement with the effect of the microstructure
at the macroscopic scale, it can be seen that the spherical inclusions induce a higher stress interphase heterogeneity for a given



                                                                          
(a) (b)

Fig. 4. Normalised equivalent average stresses per phase estimated by the classical and generalised affine procedures for (a) aligned-fiber and
(b) spherical inclusions. Samematerial and loading condition as Fig. 3.

(a) (b)

Fig. 5. Normalised stress fluctuation within the matrix estimated by the classical and generalised affine procedures for (a) aligned-fiber and
(b) spherical inclusions. Samematerial and loading condition as Fig. 3.

homogenisation procedure. To characterise the evolution of the intraphase deviatoric stress s and isochoric strain e fluctuations
within theviscoelastic matrix, it is convenient to introduce the following quantities,

δσ
m = 〈s : s〉2 − 〈s〉2 : 〈s〉2, δε

m = 〈e : e〉2 − 〈e〉2 : 〈e〉2, (36)

which, although not variances, are positive and equal to zero only if the fields are homogeneous within the matrix. They are
respectively plotted in Figs. 5 and 6. Note that the corresponding quantities for the inclusions are equal to zero since the
fields predicted by the Mori–Tanaka scheme are homogeneous in the inclusions. For a given procedure, aligned fibers in the
shear direction induce less perturbations of the stress and strain field within the matrix than spherical inclusions isotropically
distributed. This reflects at the intraphase level the relative discrepancies observed between CA and GA estimates for the
overall response. Although both CA and GA estimates predict the same trends at the intraphase level, it is interesting to note
that GA estimates predict higher strain fluctuations and lower stress fluctuations in the matrix regardless of the considered
microstructure. It can be emphasised that a similar observation has been previously reported with the MA scheme (Brenner
et al., 2001) for self-consistent estimates of the steady-state (nonlinear viscous) regime. For the shear loading path considered,
it is quite intuitive that the effective strain response is rather driven by the matrix. This remark is especially true for the GA
estimate which takes into account the strong fluctuations (consistent with shear bands) which occur within the matrix (see
Moulinec and Suquet, 2003).



                                                                          
(a) (b)

Fig. 6. Normalised strain fluctuation within the matrix estimated by the classical and generalised affine procedures for (a) aligned-fiber and
(b) spherical inclusions. Samematerial and loading condition asFig. 3.

(a) (b)

Fig. 7. Normalised overall equivalent strain rate estimated by the classical and generalised affine procedures for (a) spherical and (b) oblate
ellipsoidal inclusions. Thevolumic fraction of inclusions isci = 0.15 and thestresssensitivity exponent of thematrix isn = 5. Caseof uniaxial

tension with Σ33/σ
(2)
0 = 1.

(a) (b)

Fig. 8. Normalised equivalent average strain per phase estimated by the (a) classical and (b) generalised affine procedures for spherical inclu-
sions. Same material and loading condition asFig. 7.



                                                                          
(a) (b)

Fig. 9. Normalised equivalent averagestrain per phaseestimated by the (a) classical and (b) generalised affineprocedures for oblateellipsoidal
inclusions. Samematerial and loading condition as Fig. 7.

(a) (b)

Fig. 10. Normalised stress fluctuation within the matrix estimated by the classical and generalised affine procedures for (a) spherical and
(b) oblate ellipsoidal inclusions. Same material and loading condition asFig. 7.

4.2. Creep under uniaxial tension

In connection with the preceding observations, the case of a uniaxial tensile loading along x3 direction is now studied.
Two kinds of inclusions are still considered, namely: spheres and oblate spheroids along x3 axis. For the latter morphology, an
aspect ratio of 5 was considered. It approximates the case of discontinuous fibers. The effective response is plotted in Fig. 7.
Thestrong reinforcement caused by theoblatespheroidal elastic inclusions, with respect to thespherical ones, can beobserved
in the steady-state regime. For comparison, the MA estimate has been added for the spherical case. Interestingly, it can be
noted that although leading to a different viscous regime, the predicted duration of the transient regime is very close to the
one of the GA estimate. Again, it appears that the improved affine estimates present the trend of a shorter transient regime.
The interphase strain fluctuations within the composite are illustrated in Figs. 8 and 9. In the case of spherical inclusions (i.e.
moderate reinforcement), it can be seen that both CA and GA formulations lead to very similar responses of the matrix and
the inclusions. On the contrary, for oblate inclusions, it is obvious that the CA estimate predicts a very stiff response of the
matrix (and consequently thecomposite) compared to theGA estimates. Thiscan beexplained by the fact that theCA estimate
which does not take into account the field fluctuations within the matrix will tend to predict a behaviour strongly driven by the
inclusions response because of the “aligned” morphology along the tensile direction. The improvement obtained with the GA
estimate is obvious in that case. The comparison of the intraphase stress fluctuations between the two morphologies (Fig. 10)



                                                                          
assesses this last remark since it isobtained that oblatespheroidal inclusions lead to an increaseof thestressfield heterogeneity
within thematrix.

5. Concluding remarks

In this work, we have proposed an original procedure to estimate the homogenised properties of nonlinear viscoelastic
composites. Basically, thisapproach relieson alinearisation procedurewhich mixesthehereditary affineapproach (Masson and
Zaoui, 1999) and thevariational second-order procedure (PonteCastañeda, 2002a). Consequently, thisschemeallows to derive
estimates for hereditary behaviours incorporating field fluctuations. It has been compared with the classical affine approach
in the context of matrix-inclusion microstructures, with homogeneous elasticity, under creep conditions. Especially, the effect
of the inclusions’ morphology combined with the loading path on the intraphase field fluctuations has been emphasised. Our
analysisshowsthat accounting for thefield fluctuations to estimate thehomogenised behaviour leadsto softer overall responses
as well as a faster stress field redistribution within the material which implies ashortened viscoelastic regime.
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