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Abstract

Motivated by recent results obtained in the context of variational approaches, new estimates are proposed for the homogeni sed
behaviour of nonlinear viscoel astic materials. The key point reliesin theintroduction of field fluctuationsin the context of hered-
itary behaviours. This is accomplished by incorporating the intraphase second moment of the mechanical fields of a reference
linear viscoelastic material in an hereditary linearisation procedure. Analytical results for the evolution of field fluctuations
within a linear viscoelastic composite are derived. Some illustrative results are presented for the creep response of a nonlinear
viscoelastic matrix containing elastic inclusions with different morphologies. Compared with a classical approach, the pro-
posed procedure leads to a softer overall response for both transient and steady-state regimes, and predicts a faster stress field
redistribution.

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Thisarticle dealswith the derivation of new estimates, in the context of the homogeni sation theory, for the overall mechanical
response of an heterogeneous nonlinear viscoelastic material. Significant advances have been recently made for such nonlinear
composites which exhibit a coupling between a conservative and a dissipative constitutive mechanism. On one hand, Rougier
et a. (1994) and Masson and Zaoui (1999) showed that the pioneering work of Laws and McLaughlin (1978) in the linear
context, based on the use of the correspondence principle (Mandel, 1966) and the Laplace-Carson (L C) transform technique,
could be extended to nonlinear behaviours. The subsequent work of Pouya and Zaoui (1999) has shown that this so-called
“affing” formulation constitutes the first order approximation of ageneral linearisation procedure for which the local behaviour
is linearised with respect to the whole stress (or strain) history up to the current time 7. On the other hand, for behaviours
deriving from a single potential (nonlinear elasticity, for instance), the importance of the field fluctuations for the derivation of
the overall behaviour has been pointed out by numerous studies (see Ponte Castafieda and Suquet, 1998). Especialy, it has been
observed that awide variety of estimates neglecting the intraphase field fluctuations leads to unrealistic estimates of the effective
energy with respect to rigorous nonlinear bounds (Gilormini, 1995). Owing to these results, the question of an homogenisation
scheme for nonlinear viscoel asticity that would account for field fluctuationsis relevant. The present study is an attempt towards
thisaim.

* Corresponding author.
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The paper is composed as follows. First, the computation of the field fluctuations for a linear viscoelastic composite is
detailed. In a simple case allowing to derive exact analytical results, an approximate method for the inverse LC transform,
namely the “direct inversion method” (DIM), is discussed. Then in the nonlinear framework, after a brief recall of the affine
procedure, different possibilities for incorporating the available statistical information on the field fluctuations are presented.
Particularly, an improved affine estimate is constructed by defining the linearised viscous compliance according to the new
second-order method (Ponte Castafieda, 2002a) whereas the classical affine estimate uses the definition from the old second-
order approach (Ponte Castafieda, 1996). The obtained scheme is further simplified by using the DIM previously studied in the
linear framework. The different nonlinear extensions are then compared for the case of an isotropic two-phase composite with
particulate microstructure. Throughout this paper, we consider a viscoel astic microstructurally random composite material. This
heterogeneous medium occupies a volume 2 and is made of N constituents phases (r), perfectly bonded, occupying volumes
£2, (volumic fraction equalsto ¢ ).

2. Field fluctuationsin linear viscoelastic composites

Hereafter, the phases of the composite medium obey a non-ageing linear viscoelastic behaviour. This material is subjected
to a known macroscopic mechanical loading for time ¢ € [0; +oo[. At apoint X € £2,, the stress-strain behaviour obeys the
following integral relation

t
e(X, 1) =/qr(t—u):dd(x,u) @
0

with g, (¢) the tensorial creep function and f(’, f(t —u) : dg(u) the Stieljes convolution product.
2.1. Analytical computation of second moments

Linear non-ageing viscoel astic problems can be reduced to linear elastic ones by the use of the LC transform defined as
+00
ff(p=p f e, @)
0

with p the complex variable, f the original time function and f* its LC transform.
Therefore, application of the LC transform to relation (1) gives alinear elastic relation between L C transforms of strain and
stress histories, namely

e*(X, p) =q5(p) : 0¥ (X, p) ©)

where g (p) denotes the (symbolic) linear elastic compliance of any phase (r).

For agiven real value of p, we now consider the heterogeneous composite whose microstructure is the same as the previous
one but with phases obeying the linear elastic behaviour defined by (3). Classical homogenisation schemesfor linear behaviours
apply to this new composite. Its overall compliance is Q* (p) while the overall stress applied to this compositeis X*(p).

Stress field second moments through any phase (r) of this linear elastic composite are defined by

(0*®@0%)p=(c"(p) @™ (p)), 4

where the notation (-), denotes the average on volume £2, of phase (r). They can be obtained from any linear homogenisation
scheme by computing the partial derivatives of the stress elastic energy of the composite with respect to the fourth-order tensor
g (p) (Ponte Castafieda and Suquet, 1998)
1 3Q*(p)
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Furthermore, according to the correspondence principle (Mandel, 1966), the second moment of the stress field throughout the
original viscoelastic composite's phase is given by

(@®0) =(o()®a), =LC H(e* ®0%),,}. ©6)

with LC~1 denoting the inverse operator to LC transform defined by: LC™L{LC[f ()1} = f ().



Except for some limited situations (see Section 2.2), the explicit determination of the LC inverse operator is not straightfor-
ward and a numerical inversion based on finite Dirichlet series development is required (see the collocation method proposed
by Schapery, 1962). In the following, we aim at applying an approximate analytic L C transform inversion method, the so-called
“direct inversion method” (Schapery, 1962; Brenner et al., 2002) which provides a simple non-integral relation between the
function and its transform. Indeed, its application to (6) yields

(0®0)r ~ (0" ®0"), p—10%0 /s @)

the choice of wq depending on phase constitutive behaviour aswell as deformation path (Brenner et al., 2002). Thevalue wg =0
has been proved to be the best one for Maxwellian phase behaviours and creep responses. In the next section, we show that this
choice is the most appropriate for the present study which is mainly focused on the creep response of nonlinear viscoelastic
heterogeneous composites.

2.2. Application

We consider an isotropic material whose constituents obey an isotropic incompressible Maxwellian behaviour defined by
&(1) =mEs(r) + m) s(r). ®)

The scalar constants m€ and m are, respectively, the elastic and viscous shear compliances of phase (r), & isisochoric and
sisthe stress deviator. Thus, the local relaxation spectrum reduces to a single relaxation time z, = m&/mY and the scalar creep
function of any phase (r) reads: g, (t) = mE + rmY. As previoudly, relation (8) can be transformed into

e*(p) =g (p)s'(p) ©)

with g (p) = m€ + (1/ p)my’.

For the coming applications, we consider matrix-inclusion microstructures. By considering the connectedness of the matrix
and restricting the study to low volume fractions of inclusions (up to 0.2), the overall behaviour and local mechanical fields
are estimated through the classical Mori—Tanaka model (Mori and Tanaka, 1973) which identifies in the present case with the
lower Hashin—Shtrikman bound. Note that the inclusions are assumed ellipsoidal and distributed within the material with the
same ellipsoidal symmetry. In this specific context, the estimate of the time-dependent overall compliance as well as the first
and second moments of the stress field within each phase can be derived analytically. The accuracy of the DIM can thus be
checked rigorously at the global and local scales.

The exact and approximate analytic derivations lead to the following expressions for the overall viscoelastic compliance
(sub-indice “2" refersto the matrix)

QB = a[m¥(t) + (b — ) (myr + (M — mbe) (L —e7/D))],

. (10
DIM
Q(rHPM = a[m\ée(t) +(b— 1)m\ée(t)t 3 ]
For a creep loading path (i.e. constant overall stress, S(¢) = S Vr > 0), the average stress field in the matrix reads
Ex T /7
[(s(z))z]eqaCt = d{l+ <; - 1)(1 —€ t/r)}so,
(11)
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and the second moment of the stress field in the matrix reads
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Fig. 1. Relative error between analytic and “direct” inversetransforms of the overall creep function asafunction of logz (continuous: 71 /7 = 2,
dotted: 71/t = 10, dashed: t1 /12 = 100).
Note that the following constants have been defined
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It isworth emphasising that elastic (t — 0) aswell as purely viscous (t — +o0) responses derived using the DIM are exact.

Comparisons between the exact overall viscoelastic compliance (i.e. creep function) and the one obtained with the DIM are
reported on Fig. 1 for different ratios of the two phases relaxation times (2 < 71 /72 < 100, mf /m§ = 1). It isworth mentioning
that the DIM leadsto the exact L C inversion result when the two phases have identical relaxation times whatever the value of the
elastic contrast mﬁ /mg (Brenner et a., 2002). Consequently, the accuracy of the DIM is especially dependent on the contrast of
the relaxation times of the two phases. Results derived with the direct method are very close to exact ones in transient regimes
even for large contrasts (r1/t2 = 100). This good agreement for creep loading is consistent with former simulations (Brenner
et a., 2002) derived with other homogenisation schemes (Voigt as well as self-consistent schemes) associated to different
microstructures (“parallel” as well as polycrystalline microstructures). Similar comparisons concerning variations with time of
both first and second moments of the stress field throughout the matrix are reported on Fig. 2. Deviations between exact and
direct inversions remain still acceptable (less than 8%) for the various contrasts studied.

2.3. Conclusions

The correspondence principle reduces the computation of field fluctuations of stress (or strain) in non-ageing linear vis-
coelastic composites to the LC inversion of corresponding field fluctuations throughout a composite whose microstructure is
the same as the previous one but with phases obeying a linear elastic behaviour. LC transform of field fluctuations can then
be obtained with any homogenisation scheme by computing the partial derivatives of the stress (or strain) elastic energy with
respect to the local compliance (or stiffness).

To compute the inverse L C transform, the DIM provides an approximate but powerful way. This method has been applied to
simple isotropic matrix-inclusion composite with linear Maxwellian local behaviour. For creep loadings, the creep function as
well as the evolutions with time of first and second moments of the stress field in the matrix have been computed analytically
(Mori—Tanaka estimates). Comparisons between these exact results and the ones derived with the DIM display low deviations
even for high contrasts (two phases relaxation time ratios up to 100). Consequently, it can be advantageously used for nonlinear
problems which reduce, at each linearisation time, to anew linear problem. As shown in the next section, the application of the
DIM givesrise to aso-called “quasi-elastic” formulation of the affine model for nonlinear viscoel asticity.
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Fig. 2. Relative error between analytic and “direct” inverse transforms of (a) the average stressfield and (b) the second moment of the equivalent
stressin the matrix as afunction of logs (continuous: t1/t2 = 2, dotted: t1 /72 = 10, dashed: 71 /77 = 100).

3. Homogenisation procedure for nonlinear viscoelastic composites

A microstructurally random composite material, with linear compressible elasticity and nonlinear incompressible viscosity,
is now considered. The constitutive behaviour of the individua constituents is governed by two stress-energy functions u€ (o),
for the elasticity, and u" (), for the viscosity, which present respectively a quadratic and a more than quadratic growth. At each
point x inside £2, the infinitesimal local strain rate é reads

d /ou® ouV
e(t) = — — — . 14
¢0 =g ( Py (o(t))> + =5 (s0) (14)
With use of afunctional representation, thislocal constitutive equation can be expressed as
t
et)=g {089)} (15)

where G is a nonlinear functional which correlates the strain (¢) at a given time ¢ with the whole stress history o (6) with
0<o <.

3.1. Hereditary affine formulation
The specificity of the required linearisation procedure for nonlinear viscoelastic behaviours liesin the differential nature of
the constitutive relation (14) which reads aternatively
(X, 1) =m°X):6(X, 1) +9g(X,S(X,1)), VXeE R, (16)

with m® the elastic compliance and g the nonlinear viscous strain rate deriving from the potential «V. At each time ¢, the
dependence of the strain rate on the whole stress history from ¢ = 0 prevents from a direct definition of instantaneous moduli
or compliances as it is the case for nonlinear purely elastic or viscous behaviours. To treat this difficulty, Rougier et a. (1994)
initially proposed a linearisation procedure along the loading path which reads

e)=m®:6(0)+mV () :s(t) + €9, ) a7
with
94, 0) =g(stt)) —mV(¢):s(r) Vi<,
%1, ) =g(s(t)) —mV(¢):s(¢) Ve=¢.

It can be remarked that the stress-free strain rate 9z, ¢) does not depend on the mechanical loading after ¢ = ¢. According to
(17) and (18), this procedure thus |eads to the definition of alinear thermoviscoel astic heterogeneous medium. At thispoint, itis
worth noting that there is no requirement for the linearised viscous compliance mY(¢) to correspond to the tangent compliance

(18)

ag
tot -y _ %9
m9@) = as(s(c)). (19)



Alternatively, relation (17) can be put in the following integral form

t
e(t) =/q;(r —u):do(u) + &2, ),
0

Az (1) =me+mV (o), (20)
t
e, 0)= f %6, ¢)do
0

whereit is emphasised that the stress-free strain Y isafunction of the whole stress hi story thus accounting for the viscoelastic
coupling phenomena within the material.

3.2. Uniform behaviour per phase

We restrict ourselves to the derivation of estimates for the overall behaviour using classical mean-field approaches. Using
a statistical description of the microstructure, through the first-order (i.e. volume fractions) and second-order (i.e. covariances)
spatia correlation functions, it consists in the determination of the phase stress and strain averages, (o), and (&),. This can be
achieved by using Eshelby’s solution (Eshelby, 1957) of the inclusion problem. Nevertheless, in the nonlinear context, this step
itself is not straightforward. Indeed, the dependence of the local behaviour on the mechanical fields, which vary continuously
in the material, leads to nonuniform intraphase responses and implies

le(r), = <g {aém})r 4G {(a{f»,} . @)

In any phase, the stress and strain average histories are not linked by the constitutive equation of the phase. By contrast to
the case of alinear behaviour, the resolution of the homogenisation problem thus requires complementary relations to define
an uniform behaviour per phase. For this crucial step, use has to be made of the statistical information, delivered by linear
homogenisation schemes, on the mechanical fields distribution. The available quantities are the intraphase averages given by
the linear concentration equations, and the intraphase second moments obtained by derivation of the overall energy with respect
to the uniform local compliances (or moduli). Initially derived in the case of isotropic elasticity (Bobeth and Diener, 1986), the
field intraphase second moments have subsequently been given in more general cases (Kreher, 1990; Buryachenko, 1993, 2001;
Ponte Castafieda and Suquet, 1998). These intraphase fluctuations result from the interphase interactions inside the material. It
is stressed that the adopted definition for the linearised behaviour per phase will give rise to distinct estimations for the overall
behaviour as well as for the fields distribution. The present work is focused on different possibilities in the framework of the
hereditary affine procedure presented above.

3.2.1. Original affine estimates

Theinitial proposal made by Rougier et al. (1994) and Masson and Zaoui (1999) consistsin considering atangent linearisa-
tion defined with respect to the average fields over each phase. The linearised viscous compliance reads

my = %((sn). (22)

This choice, consistent with the pioneering work of Hill (1965) for elastoplasticity, implies that the stress and strain average
histories are linked by the congtitutive behaviour. Clearly, this condition can only be fulfilled if the mechanical fields are
homogeneous within each phase in the nonlinear material (e.g. laminate microstructures). In the general case, since intraphase
heterogeneity is not accounted for in the definition of the linearised behaviour, it might be expected that this formulation
presents some deficiencies especialy for situations where the field fluctuations inside the material become important (high
contrast and/or high nonlinearity) (Masson et a., 2000). We will refer to this approach as the “classical” affine (CA).

3.2.2. Improved affine estimates

In the context of variational approaches, Ponte Castafieda (2002a) recently proposed a theory which incorporates the field
fluctuations for the derivation of the effective behaviour. Thisformulation still makes use of an affine linearisation. Neverthel ess,
instead of using atangent compliance, it defines a“ generalised” affine (GA) compliance which depends on both first and second
moments of the intraphase fields. For purely nonlinear viscous behaviours, this procedure improves on previous proposals
(Ponte Castafieda, 2002b; Idiart and Ponte Castafieda, 2003). In contradistinction with classical mean-field approaches, it has



to be mentioned that this variational procedure does not use the linearised congtitutive behaviour to link the average fields per
phase. However, by dismissing this condition, Ponte Castafieda (2002a) proposed an extension of this approach to the classical
mean-field context. Whereas it can be proved that the resulting estimate is less accurate than the corresponding stationary ones,
it presents the specific advantage of being incorporable into the present viscoelastic procedure. It is worth noting that although
this GA estimate does account for field fluctuations, through the linearised compliance, it still assumes that the stress and strain
average histories are linked by the constitutive behaviour as the CA estimate does. According to this theory, the linearised
viscous compliance is obtained from the following condition
ouV ouY v

55 &) = 55 () =my: (8 —(s)) (23)

with & areference deviatoric stress state. Hereafter, restriction is made to tensors mY whose principal axes are aligned with
(Sr,i.e
v 1 1

= —Er +
r 2)4 2ug

m F (29)

where use has been made of the projection operators E" and F" introduced in Ponte Castarieda (1996):

pro @0y pok_p (25)
(S)r:(3)r
with K the deviatoric isotropic projection tensor. The reference fields (s), and & are respectively given by the average stress
localisation relation and the condition

(5 —(9r)® (5 — () =Cs (26)

with Cg = (s® ), — (s)» ® (s), the covariance tensor of the deviatoric stressesin phase (r). Because of the choice (24), relation
(26) reducesto

3 3
§ﬁ:'éq+ EEr;:cg and § = EF’::Cg (27)

with ‘Gﬁ = ,/%é, (ET:§, 8 = ,/:—23%, :F:§ and agq = [(9)r]eq, i.e. the Von Mises equivalent of the average stress

\/ %(s)r : (s). The stress second moment tensors (S® s}, required to compute C%, are obtained by taking the partial deriv-
ative of the effective energy of the heterogeneous linearised medium with respect to the compliance of each phase (r).

The present paper is mainly concerned with the two presented linearisation procedures. Nevertheless, to illustrate the variety
of approaches that can be constructed, let us mention an alternative procedure proposed by Brenner et al. (2001) and aiming
too at incorporating the field fluctuations for the derivation of the effective behaviour. This “modified” affine (MA) procedure
defines the linearised compliance as the tangent compliance in the vicinity of the second moment of the intraphase field. On the
other hand, the phase average strain rate (&), is estimated by following the work of Suquet (1995). Consequently, this empirical
formulation fulfils, by construction, the inequality relation in (21).

3.3. “Quasi-elastic” approximation of the affine procedure

By means of the adopted linearisation procedure, the treatment proposed by Laws and McLaughlin (1978) can be applied in
the present nonlinear context at each linearisation time. It may be summarised in three steps:

o the thermoviscoelastic problem is converted into a symbolic thermoelastic problem using the Laplace transform technique,
o thelinear homogenisation problem is solved,
o the solution is obtained in the time space by inverse transform of the result.

To perform the last step of this procedure, one can take advantage of the DIM introduced in Section 2. It is recalled that this
approximation relies on amathematical property of the Laplace transform which allowsto identify (with achange of variables) a
function with itstransform. As a consequence, the homogenisation can be performed directly in the time space. Thisapproachis
relevant for different types of loading paths and especially for creep conditions. It is worth to note that this simplified treatment
does retain the main features of the viscoelastic behaviour. In particular, the hereditary nature is kept and the overall response
is not assumed to be of the Maxwell-type. As shown in Section 2 in the linear context, it delivers reasonable estimates at both
local and global scales. The “quasi-elastic” approach, adopted in the sequel, can be formulated as follows. Considering, e.g.,



amacroscopic stress loading path X () on the time interval [0, ¢] and assuming that the problem was solved until 1 = ¢ — §t,
the linearised behaviour reads, for agiven linearisationtime ¢, at any timer < ¢
er()=0c (1) 10, (1) +2(1, ),
0z () =mZ +m} ),

0 t 0 28)
2.0 = [ 20,00,

0

20,0 =9(5(0)) —m)(¢) : 5:(6).

According to the approximate procedure, it is only required to solve the homogenisation problem associated with (28) for r = ¢.
It reads

Q: (&) ={a; (©):Br(£)),
0 A 0 (29)
E%(Z.0) =('B,(¢): (2. 0))
where B, is the average stress concentration tensor. The interaction equation can be expressed as
&) —E @) =-Qc(©): (0:) = Z'©)),
~ Eoel 1 (30)
Qr(@)=(sH~1-1) iQ;(g“)

with 64 theinteraction tensor, SE the Eshelby tensor, QZ‘ the compliance of the reference medium which depends on the chosen

homogenisation scheme. E’ and X’ are the homogeneous strain and stress fields in the infinite medium for the corresponding
inclusion problem. They are linked to the macroscopic fields E and X by

r 1.7 -1—-1,
E'=(Le +LH ™ ((Le +1) )7 HE,
~ 1 -1
¥ =Qc+ Q) (Qc+ap Y T
with L, = (5;1 L* = (Q?)—1 and I” = (7)1, the linearisation time ¢ being omitted for brevity. The homogenisation

procedure defined b§/ (28), (29) and (350), tog%ther with an adequate description of the microstructure, thus requires at each
linearisation time ¢ the resolution of a set of nonlinear equations which reads F (o, (¢)) = 0.

(3D

4. lllustrative applications: creep of a two-phase isotropic composite

The different affine schemes introduced in Section 3 are now applied to the case of a two-phase composite presenting
an isotropic constitutive relation. Within each phase (r) of the composite, the local elastic and viscous stress potentials are
characterised by

o) 2 (%)

us(x) = T
L (32)
Vi 90 "0 (req(x))” -
uV(x) = o) ( 06 _W(aeq(x))

with position vector x € £2,-. uf isthe elastic shear modulus, & the elastic bulk modulus and oj the reference viscous stress,
uniform per phase. ¢g isareference strain rate and n the stress sensitivity coefficient, both homogeneous within the material. om
represents the hydrostatic stress defined by % tr(o). For agiven linearisationtime ¢, at any timer < ¢, thelinearised viscoelastic
compliance obeys the following generic expression

{ gy (1) =mZ+m()e,
(33
my(¢) =a(Q)E" + BOF".
The classical affine procedure leads to the following expressions for the scalars « and 8
3ég (Toq(&)\ D
@) =nB@).  BEO)= > ( e ) (34)
%0 0
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Fig. 3. Normalised overall equivalent strain rate estimated by the classical and generalised affine procedures for (a) aligned-fiber and (b) spheri-
cal inclusions. The dotted line corresponds to a decoupled Maxwell-type approach using the generalised affine procedure. The volumic fraction

of inclusionsis ¢; = 0.15 and the stress sensitivity exponent of the matrix isn = 5. Case of alongitudinal simple shear with 213/032) =1

whereas the expressions obtained with the generalised affine procedure read

. gw/(ée’q)(&ﬁ/c?&i) - w’(c‘réq}7 &) = 3 w/fééq)
2 @ — & 2 6ly

(35)

where the dependence on ¢ of the tensors 6" and 6" has been omitted for brevity. Hereafter, the focus is on the special
case of a viscoelastic matrix (phase 2) containing elastic inclusions (phase 1). Consequently, we have aél) — oo and thus

qgl) ) = m(e1 . In the context of Mori—Tanaka estimates, the effect of the inclusions' morphology together with the loading
path on the composite’'s overall response and its link with the local fields heterogeneity is now discussed for creep conditions.

4.1. Creep under longitudinal shear

In this case, two types of inclusions are considered: aligned (continuous) fibers (along x3 axis) and spheres. We are interested
in the response of the composite material subjected to (longitudinal) simple shear in x3 direction. Note that the elastic properties
are assumed uniform in the material so that we focus on the role of the viscous heterogeneity on the transient and steady-state
(i.e. viscous) regimes. It isworth noting that, rigorously, this regime corresponds to the stabilisation of the stressfield within the
material. In our analysis, this condition is restricted to the first and second moments of the stress field within each constituent
phase. Fig. 3 presents comparisons between CA and GA estimates for the evolution of the effective strain rate during creep. Itis
observed that the GA procedure predicts a weaker decrease of the strain rate during the test thus leading to a “ softer” estimate
of the steady-state regime in agreement with the results reported in Ponte Castafieda (2002b). In the transient regime, where the
viscoelastic coupling takes place, it can be seen that the GA approach predicts a perceptibly shorter overall primary creep. In
other words, to account for the heterogeneous character of the intraphase stress field leads to a faster stress field redistribution
within the material. Note that a Maxwell-type approach neglecting the viscoelastic coupling would lead to a constant overall
strain rate since the overall stress is constant Vr > 0. These observations are valid for parts (&) and (b) whereas the following
differences deserve to be mentioned:

e spherical inclusions are responsible for a higher decrease of the effective strain rate independently of the approach,
o therelative discrepancy between CA and GA estimatesis less pronounced for the microstructure with aligned fibers.

The interphase distribution of the average stress fields is reported in Fig. 4. The evolution of the average stress within each
phase during the transient regime is characterised by a high increase in the inclusions which are purely elastic and arelatively
moderate decrease in the matrix which undergoes a viscoelastic deformation. For both microstructures, the GA estimates lead
to alower stress interphase heterogeneity throughout the creep deformation. In agreement with the effect of the microstructure
at the macroscopic scale, it can be seen that the spherical inclusions induce a higher stress interphase heterogeneity for a given
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Fig. 4. Normalised equivalent average stresses per phase estimated by the classical and generalised affine procedures for (a) aligned-fiber and
(b) spherical inclusions. Same material and loading condition as Fig. 3.

0.05 " 0.10
—— CA
—— GA
0.04 0.08
g o
R 0.03 L 0.06
~ ~
g €
o o JE—
© 0.02 T — “© 0.04 P
// //
Ve e
0.01 // 0.02 // CA
—— GA
000 1 1 1 1 O-OO 1 1 L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t
@ (b)

Fig. 5. Normalised stress fluctuation within the matrix estimated by the classical and generalised affine procedures for (a) aligned-fiber and
(b) spherical inclusions. Same material and loading condition as Fig. 3.

homogenisation procedure. To characterise the evolution of the intraphase deviatoric stress s and isochoric strain e fluctuations
within the viscoelastic matrix, it is convenient to introduce the following quantities,

S =1(s:92—(92:(5)2, 85 =(ere)p— (6)2: (€)2, (36)

which, although not variances, are positive and equal to zero only if the fields are homogeneous within the matrix. They are
respectively plotted in Figs. 5 and 6. Note that the corresponding quantities for the inclusions are equal to zero since the
fields predicted by the Mori—Tanaka scheme are homogeneous in the inclusions. For a given procedure, aligned fibers in the
shear direction induce less perturbations of the stress and strain field within the matrix than spherical inclusions isotropically
distributed. This reflects at the intraphase level the relative discrepancies observed between CA and GA estimates for the
overall response. Although both CA and GA estimates predict the same trends at the intraphase level, it is interesting to note
that GA estimates predict higher strain fluctuations and lower stress fluctuations in the matrix regardless of the considered
microstructure. It can be emphasised that a similar observation has been previoudly reported with the MA scheme (Brenner
et a., 2001) for self-consistent estimates of the steady-state (nonlinear viscous) regime. For the shear loading path considered,
it is quite intuitive that the effective strain response is rather driven by the matrix. This remark is especialy true for the GA
estimate which takes into account the strong fluctuations (consistent with shear bands) which occur within the matrix (see
Moulinec and Suquet, 2003).
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Fig. 6. Normalised strain fluctuation within the matrix estimated by the classical and generalised affine procedures for (a) aligned-fiber and
(b) spherical inclusions. Same material and loading condition as Fig. 3.
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Fig. 7. Normalised overall equivalent strain rate estimated by the classical and generalised affine procedures for (a) spherical and (b) oblate
ellipsoidal inclusions. The volumic fraction of inclusionsis ¢; = 0.15 and the stress sensitivity exponent of the matrix isn = 5. Case of uniaxial
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Fig. 8. Normalised equivalent average strain per phase estimated by the (a) classical and (b) generalised affine procedures for spherical inclu-
sions. Same material and loading condition asFig. 7.
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Fig. 9. Normalised equivalent average strain per phase estimated by the (a) classical and (b) generalised affine procedures for oblate ellipsoidal
inclusions. Same material and loading condition asFig. 7.
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Fig. 10. Normalised stress fluctuation within the matrix estimated by the classical and generalised affine procedures for (a) spherical and
(b) oblate ellipsoidal inclusions. Same materia and loading condition as Fig. 7.

4.2. Creep under uniaxial tension

In connection with the preceding observations, the case of a uniaxial tensile loading along x3 direction is now studied.
Two kinds of inclusions are till considered, namely: spheres and oblate spheroids along x3 axis. For the latter morphology, an
aspect ratio of 5 was considered. It approximates the case of discontinuous fibers. The effective response is plotted in Fig. 7.
The strong reinforcement caused by the oblate spheroidal elastic inclusions, with respect to the spherical ones, can be observed
in the steady-state regime. For comparison, the MA estimate has been added for the spherical case. Interestingly, it can be
noted that although leading to a different viscous regime, the predicted duration of the transient regime is very close to the
one of the GA estimate. Again, it appears that the improved affine estimates present the trend of a shorter transient regime.
The interphase strain fluctuations within the composite are illustrated in Figs. 8 and 9. In the case of spherical inclusions (i.e.
moderate reinforcement), it can be seen that both CA and GA formulations lead to very similar responses of the matrix and
the inclusions. On the contrary, for oblate inclusions, it is obvious that the CA estimate predicts a very stiff response of the
matrix (and consequently the composite) compared to the GA estimates. This can be explained by the fact that the CA estimate
which does not take into account the field fluctuations within the matrix will tend to predict a behaviour strongly driven by the
inclusions response because of the “aligned” morphology along the tensile direction. The improvement obtained with the GA
estimate is obvious in that case. The comparison of the intraphase stress fluctuations between the two morphologies (Fig. 10)



assesses thislast remark sinceit is obtained that oblate spheroidal inclusions lead to an increase of the stress field heterogeneity
within the matrix.

5. Concluding remarks

In this work, we have proposed an original procedure to estimate the homogenised properties of nonlinear viscoelastic
composites. Basically, this approach relies on alinearisation procedure which mixes the hereditary affine approach (Masson and
Zaoui, 1999) and the variational second-order procedure (Ponte Castafieda, 2002a). Consequently, this scheme allows to derive
estimates for hereditary behaviours incorporating field fluctuations. It has been compared with the classical affine approach
in the context of matrix-inclusion microstructures, with homogeneous elasticity, under creep conditions. Especially, the effect
of the inclusions' morphology combined with the loading path on the intraphase field fluctuations has been emphasised. Our
analysis shows that accounting for the field fluctuations to estimate the homogenised behaviour |eads to softer overall responses
aswell as afaster stressfield redistribution within the material which implies a shortened viscoelastic regime.
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