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The Laplace–Carson transform classically used for homogenization of linear viscoelastic heterogeneous
media yields integral formulations of effective behaviours. These are far less convenient than internal
variables formulations with respect to computational aspects as well as to theoretical extensions to clo-
sely related problems such as ageing viscoelasticity. Noticing that the collocation method is usually
adopted to invert the Laplace–Carson transforms, we first remark that this approximation is equivalent
to an internal variables formulation which is exact in some specific situations. This result is illustrated
for a two-phase composite with phases obeying a compressible maxwellian behaviour. Next, an incre-
mental formulation allows to extend at each time step the previous general framework to ageing visco-
elasticity. Finally, with the help of a creep test of a porous viscoelastic matrix reinforced with elastic
inclusions, it is shown that the method yields accurate predictions (comparing to reference results pro-
vided by periodic cell finite element computations).

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

To derive the effective behaviour of non-ageing linear viscoelas-
tic heterogeneous media, the Laplace–Carson transform is classi-
cally used (the so called correspondence principle, Mandel,
1966). This functional transform allows to define a symbolic linear
elastic composite in the Laplace domain. Linear homogenization
models are then applied to this fictitious elastic body to derive
its effective properties. The viscoelastic effective properties (for in-
stance the effective relaxation function) are then deduced by the
inversion of the Laplace–Carson transform.

This methodology has been successfully applied in various situ-
ations: first work (see for instance, Christensen, 1969) has ex-
tended the composite sphere assemblage model (Hashin, 1962)
to linear viscoelasticity. Afterwards, extension has been achieved
for various approaches from linear elasticity to linear viscoelastic-
ity. For instance, the self-consistent (Kröner, 1958) and the Mori
and Tanaka (1973) models have been extended by Laws and
McLaughlin (1978) and Wang and Weng (1992) (see also, Brinson
and Lin, 1998), respectively. However, apart from some particular
cases (see for instance, Rougier et al., 1993), the inversion of the La-
place–Carson transform is usually performed numerically (see the
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collocation method, Schapery, 1962). In addition, this method
leads most of the time to integral equations over the whole loading
path even if the different phases of the heterogeneous composite
exhibit limited memory effects. This last point makes difficult di-
rect extensions to more general situations manifested by a change
of viscoelastic properties as a function of time: thermomechanical
loading, ageing viscoelasticity.

To overcome these limitations, a new theory based on internal
variables has been recently proposed by Lahellec and Suquet
(2007). This method is able to address a large class of microstruc-
tures. It directly operates in the time domain by reducing the res-
olution of the discretized evolution equations to the minimization
of an incremental energy function. This theory leads to an implicit
system of non-linear equations at each time step. The present work
aims also at deriving an internal variables formulation but in a dif-
ferent manner. Here, we remain consistent with the classical meth-
odology (the Laplace–Carson transform and the correspondence
principle) but we propose to take advantage of the usual Prony–
Dirichlet series expansion of the effective properties (the colloca-
tion method) to reduce the general integral equations to an equiv-
alent internal variables formulation. In contrast with the theory of
Lahellec and Suquet (2007), the interest of the method proposed
hereafter is twofold: first, it leads to an implicit system of linear
equations which is significantly easier to solve at each time step.
Second, the formulation turns out to be exact within the case of
very useful inclusion–matrix types of composites.

The paper is organised as follows. In Section 2, the collocation
method and the equivalency between a Prony–Dirichlet series
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expansion and an internal variables formulation are first recalled.
Then, particular cases are studied to yield exact results for two-
phase random macroscopically isotropic composites. This internal
variables formulation being equivalent to the classical one, these
last results are not fundamentally new. However, this formulation
allows straightforward extensions to more general problem like
ageing viscoelasticity. This last point is illustrated in Sections 3
and 4: the equivalent internal variables formulation is used to di-
rectly model the densification of a porous viscoelastic matrix rein-
forced by elastic inclusions.

2. Internal variables formulation of non-ageing linear
viscoelastic heterogeneous media

2.1. A preliminary remark: from the collocation method to an internal
variables formulation

Here, we consider a non-ageing linear viscoelastic material
which is subjected to a given strain path defined by the function
of time �ðsÞ (0 6 s 6 tÞ. Its stress response is denoted by the func-
tion of time rðtÞ and reads (see, Mandel, 1966):

rðtÞ ¼
Z t

0
Eðt � uÞd�ðuÞ þ EðtÞ�ð0Þ; ð1Þ

where the function of time EðtÞ corresponds to the relaxation func-
tion of the material: Eðt � t0Þ denotes the stress at time t caused by a
unit constant strain applied at time t0 6 t. �ðtÞ and rðtÞ are assumed
to be scalar in this section to shorten notations.

2.1.1. Expansion of the relaxation function as Prony series
The relaxation function EðtÞ is expanded as Prony series as

follows:

EðtÞ ¼
XNp

i¼1

Esi
e�

t
si ; ð2Þ

where si denotes Np relaxation times. If Ee is the elastic (instanta-
neous) modulus of the considered material (sometimes referred to
as E0), it is worth mentioning that the Np scalar coefficients Esi

of
the previous expansion satisfy:

PNp

i¼1Esi
¼ Ee.

In some particular cases (see Section 2.2.3), this expansion will
turn out to be exact with a finite (and rather small) number Np of
terms. In general, this expansion will represent an approximation
of the relaxation function (the collocation method), namely:

EðtÞ � EaðtÞ ¼
XNa

p

i¼1

Esi
e�

t
si ;

where the Na
p relaxation times si are chosen arbitrarily. If the error

due to this approximation is measured byZ þ1

0
ðEðtÞ � EaðtÞÞ2dt;

the optimal values of the coefficients Esi
are given by (see, Schapery,

1962):

1 6 i 6 Na
p E�

1
si

� �
¼ E�a

1
si

� �
;

where f �ðpÞ ¼ p
Rþ1

0 f ðtÞe�ptdt denotes the Laplace–Carson trans-
form of any function of time f ðtÞ with respect to the parameter p.

2.1.2. An equivalent internal variables formulation
As the number of terms in the Prony series expansion (2) is fi-

nite, the integral strain–stress relation (1) could be expressed as
a constitutive relation with a finite number of internal variables
(Mandel, 1966). These Np internal variables, denoted as asi

ðtÞ here-
after (1 6 i 6 Np), are solutions of the Np first order linear differen-
tial equations (3) with the characteristic times si ranging from s1 to
sNp :

1 6 i 6 Np; _aðtÞ þ 1
si

aðtÞ ¼ 1
si

Esi

Ee �ðtÞ with að0Þ ¼ 0: ð3Þ

Since:

1 6 i 6 Np; asi
ðtÞ ¼ Esi

siE
e e�

t
si

Z t

0
e

u
si�ðuÞdu

and:

1 6 i 6 Np;

Z t

0
e�

ðt�uÞ
si d�ðuÞ ¼ �ðtÞ � 1

si
e�

t
si

Z t

0
e

u
si�ðuÞdu� �ð0Þe�

t
si ;

the constitutive law (1) reads:

rðtÞ ¼ Ee �ðtÞ �
XNp

i¼1

asi
ðtÞ
!
: ð4Þ

As a result, the expansion (2) allows to reduce the integral
expression (1) of the viscoelastic constitutive law to the constitu-
tive relation (4) with the Np internal variables asi

. These internal
variables are viscous strains. Their sum gives the viscous strain
of the material. Finally, it is worth emphasizing that the evolution
with time of the Np internal variables during the relaxation test
�ðtÞ ¼ �0; t > 0þ reads:

i ¼ 1 . . . Np; t > 0þ; asi
ðtÞ ¼ Esi

Ee �
0ð1� e�

t
si Þ: ð5Þ

As a result, the ratios
Esi
Ee represent the relative magnitude of

each internal variable ðasi
Þ. These ratios satisfy 0 6

Esi
Ee 6 1.

2.2. Application to two-phase composites

In this section, we consider a viscoelastic micro-structurally
random composite material. This composite is made of two per-
fectly bonded phases which obey an isotropic compressible max-
wellian behaviour:

_em ¼
1

3ke _rm þ
1

3kv
i

rm; _e ¼ 1
2le

_sþ 1
2lv

i

s;

for each phase i ¼ 1;2; ð6Þ

where e, s are the strain and stress deviators, em and rm the respec-
tive spherical-tensor parts. Bulk and shear moduli are, respectively,
denoted by k and l. Upper scripts e and v denote, respectively, the
homogeneous (for the sake of simplicity) elastic and the heteroge-
neous viscous behaviour for each phase ðiÞ whose volume fraction
is denoted by ci.

2.2.1. Overall behaviour
A representative volume element (RVE) of the considered com-

posite is subjected to a known macroscopic history of strain eðtÞ
from time t ¼ 0. rðtÞ denotes hereafter the overall stress response
of this RVE. If we now consider an isotropic material, the relaxation
function depends on the two scalar functions ð~lðtÞ; ~kðtÞÞ, namely:

rðtÞ ¼ 3
Z t

0

~kðt � uÞdemðuÞdþ 2
Z t

0
~lðt � uÞdeðuÞ; ð7Þ

where d is the second-order identity tensor and em ¼ 1
3 d : e. Follow-

ing Section 2.1.1, these two relaxation functions expand as follows:

~lðtÞ ¼
XNd

p

i¼1

lsd
i
e
� t

sd
i ; ~kðtÞ ¼

XNm
p

i¼1

ksm
i

e
� t

sm
i ; ð8Þ

with the two following constraints:



                                                                                   
XNd
p

i¼1

lsd
i
¼ le;

XNm
p

i¼1

ksm
i
¼ ke

: ð9Þ

These expansions are proved to be exact for the microstructures
considered in Section 2.2.3. In general, they represent approximations
of the relaxation functions as explained in Section 2.1. Substituting
ð�ðtÞ; EðtÞ;rðtÞÞ by ðeðtÞ; ~lðtÞ; sðtÞÞ and afterwards by
ðemðtÞ; ~kðtÞ;rmðtÞÞ, we apply the results derived in Section 2.1 to yield:

sðtÞ ¼ 2le eðtÞ �
XNd

p

i¼1

ad
sd

i
ðtÞ

0
@

1
A;

rmðtÞ ¼ 3ke emðtÞ �
XNm

p

i¼1

am
sm

i
ðtÞ

0
@

1
A; ð10Þ

where the internal variables am
sm

i
ðtÞ and ad

sd
i
ðtÞ are, respectively, sca-

lar and (second-order) tensorial functions of time which satisfy the
following evolution laws:

_aðtÞ þ 1
sm

i

aðtÞ ¼ 1
sm

i

ksm
i

ke emðtÞ 1 6 i 6 Nm
p ;

_aðtÞ þ 1
sd

i

aðtÞ ¼ 1
sd

i

lsd
i

le
eðtÞ 1 6 i 6 Nd

p:

ð11Þ

In that isotropic case, the viscoelastic effective response reduces
to an incremental formulation with Nm

p þ 5Nd
p scalar internal vari-

ables at the utmost.

2.2.2. Evolution laws of the averaged stresses per phase
Here, we take advantage of the number of phases (two phases)

to express the stress average over the phase (1) as an explicit
expression of the overall stress and strain, and their derivatives
(xi denotes the average over the phase ðiÞ of the field x in the
sequel).

First, the application of the Laplace–Carson transform to the
average over phase (i = 1,2) of the constitutive relations (6) yields:

r�imðpÞ ¼ 3k�i ðpÞe�imðpÞ; s�i ðpÞ ¼ 2l�i e�i ðpÞ; ð12Þ

p being the Laplace–Carson parameter and ðl�i ðpÞ; k
�
i ðpÞÞ corre-

sponding to the symbolic linear elastic moduli of any phase ðiÞ:

k�i ðpÞ ¼
1

1
ke þ 1

pkv
i

; l�i ðpÞ ¼
1

1
le þ 1

plv
i

: ð13Þ

For a given real value of p, we now consider the heterogeneous
composite whose microstructure is the same as the previous one
but with phases obeying the linear elastic behaviour defined by
the relations (12). Within this fictitious heterogeneous composite,
the two following relations hold:

c1s�1ðpÞ þ c2s�2ðpÞ ¼ s�ðpÞ; c1e�1ðpÞ þ c2e�2ðpÞ ¼ e�ðpÞ: ð14Þ

Substituting the deviatoric part of the constitutive relations (12)
in the latest relation yields:

s�2ðpÞ ¼
1
c2

2l�2ðpÞe�ðpÞ � c1
l�2ðpÞ
l�1ðpÞ

s�1ðpÞ
� �

: ð15Þ

Reporting this relation in the left-hand side of (14) gives:

s�1ðpÞ ¼
2
c1

1
l�1ðpÞ

� 1
l�2ðpÞ

� ��1

e�ðpÞ � 1
2l�2ðpÞ

s�ðpÞ
� �

; ð16Þ

while a similar relation holds for the spherical part of the average
stress in phase (1), namely:

r�1mðpÞ ¼
3
c1

1
k�1ðpÞ

� 1
k�2ðpÞ

� ��1

e�mðpÞ �
1

3k�2ðpÞ
r�mðpÞ

� �
: ð17Þ
As rmð0Þ ¼ 3keemð0Þ and sð0Þ ¼ 2leeð0Þ, the average stress
in phase (1) at a time t is given by the inverse Laplace–Carson
transform of the two previous relations:

r1mðtÞ ¼
3
c1

1
kv

1

� 1
kv

2

!�1

_emðtÞ �
1
3

1
ke

_rmðtÞ þ
1
kv

2

rmðtÞ
!!

;

s1ðtÞ ¼
2
c1

1
lv

1
� 1

lv
2

� ��1
_eðtÞ � 1

2
1
le

_sðtÞ þ 1
lv

2
sðtÞ

� �� �
:

ð18Þ

In addition, as the composite is elastically homogeneous, it
comes: r1mð0Þ ¼ rmð0Þ and s1ð0Þ ¼ sð0Þ. Obviously, similar
expressions can be derived for the stress average over the phase
(2) while the averaged strain in each phase can be easily inferred
by using the constitutive equations (6). The approach we have pre-
sented above leads to shorten theoretical expressions in which no
additional internal variables are needed to compute stress (or
strain) averages in each phase.

2.2.3. Exact results for some particular microstructures
The following particular microstructures are considered hereafter:

� a ‘‘series” microstructure which would correspond to Reuss-type
estimates,

� a ‘‘parallel” microstructure which would correspond to Voigt-
type estimates,

� a matrix–inclusion microstructure with a low volume fraction of
inclusions (say, up to 0.2): the overall behaviour will be esti-
mated through the classical Mori and Tanaka (1973) scheme.

This last estimate identifies in the present case to the lower Ha-
shin–Shtrikman bounds. We will denote hereafter by the sub-
scripts c ¼ R; V the reference to the Reuss and Voigt schemes,
respectively. Using Eqs. (13), the Laplace–Carson transforms of
the estimates of the shear and bulk parts (~lcðtÞ; ~kcðtÞ) of the over-
all relaxation function moduli are:

~l�R ¼
1
l�

� ��1

; ~k�R ¼
1
k�

� ��1

; ~l�V ¼ l�h i; ~k�V ¼ hk
�i;

while the Mori–Tanaka scheme yields (i ¼ 1 denotes the matrix):

~l�MT ¼ l�1 þ c2
l�2 � l�1

1þ c1
l�2�l

�
1

l̂�þl�1

0
@

1
A; ~k�MT ¼ k�1 þ c2

k�2 � k�1
1þ c1

k�2�k�1
k̂�þk�1

0
@

1
A;

with k̂� ¼ 4
3 l
�
1; l̂� ¼ l�1

6
9k�1þ8l�1
k�1þ2l�1

:

These various expressions of the Laplace–Carson transforms of
the shear and bulk parts of the overall relaxation function are ra-
tional functions of the variable p. These rational functions admit
exact expansions which read as (c=R, V, MT):

~l�cðpÞ ¼
XNd
ðcÞp

i¼1

lsd
ðcÞi

p
pþ 1

sd
ðcÞi

; ~k�cðpÞ ¼
XNm
ðcÞp

i¼1

ksm
ðcÞi

p
pþ 1

sm
ðcÞi

; ð19Þ

with the constraints (9). These expressions are the Laplace–Carson
transforms of former expansions (8). As a result, these three
schemes lead to an exact expansion (8). Expressions of the effective
relaxation times ðsd

i ; sm
i Þ, as well as their numbers ðNd

p;N
m
p Þ and their

magnitudes ðlsd
i
; ksm

i
Þ defined by relation (5) are reported in Table 1

for each internal variable. On the one hand, for Voigt and Reuss esti-
mates, these results are directly expressed as a function of the
phases volume fractions, the elastic moduli and the relaxation times
in each phase ði ¼ 1;2; sm

i ¼
kv

i
ke ; sd

i ¼
lv

i
leÞ. On the other hand, for the

Mori–Tanaka estimate, the results are expressed as a function of the
four additional constants:



                                                                                   
1
ŝm

a
¼ 1

sm

� �
þ 1

4þ 3n
3n

sd
1

þ 4
c2

sm
1
þ c1

sm
2

� �� �
;

1
ŝm

b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4þ 3n

3n

sd
1

1
sm

� �
þ 4

sm
1 sm

2

� �s
;

1
ŝd

a
¼

15
sd

1
þ 9

sd
2

� �
nþ ð6nþ 12Þ 1

sd

D E
þ 8

sd
2
þ 20

sm
1

15nþ 20
;

1
ŝd

b

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ6c2Þn

sd
1
sd

2
þ 8þ12c2

sd
2
sm

1
þ 6nc1

sd
1

2 þ 12c1
sd

1
sm

1

15nþ 20

vuut
;

(n ¼ ke

le) as well as the polynomial functions:

pdðxÞ ¼ 5c2le

ð2þ 3c2Þsd
2ð15nþ 20Þ

ð20þ 15nÞsd
2

ðŝd
bÞ

2

þ x ð6þ 9c2Þnþ 8þ 12c2 þ ð9nþ 12Þc1
sd

2

sd
1

� �!
pmðxÞ ¼ ke 1
sm

� �
xþ 1

4þ 3n
4

sm
1 sm

2
þ 3n

1
sm

� �
1
sd

1

� �� �
:

The number of internal variables obviously depends on the
microstructure: Reuss estimate predicts a maxwellian overall
behaviour (one single relaxation time) while the shear part of the
relaxation function, as predicted by the Mori–Tanaka model, dis-
plays three different relaxation times (including the one of the ma-

trix (a�sd
1
)). In addition, the relative magnitudes

lsd
i

le ;
ksm

i
ke

� �
as

predicted by Voigt and Reuss models only depend on the phases
volume fraction while these magnitudes also depend on the con-
trast between phases according to the Mori–Tanaka model. For a
particular contrast, we have reported in Fig. 1 the evolutions of
the magnitudes and the relaxation times of the three shear internal
variables, with respect to the volume fraction, as predicted by the
Mori–Tanaka model.

For a low volume fraction of inclusions, the overall behaviour
of the composite tends towards the one of the matrix. As a re-
sult, in this limiting case, the magnitudes of the internal vari-
ables ða�s2 ;a�s3 Þ tend towards zero while a�s1 tends towards the
viscous strain of the matrix. Conversely, the overall behaviour
tends towards the one of the inclusions for a high volume frac-
tion of inclusions. The internal variables ða�s1 ;a�s2 Þ tend to vanish
while a�s3 tends to the viscous strain of the inclusions (notice
that the corresponding relaxation time tends to the one of the
inclusions (Fig. 1b)). For moderate volume fraction of inclusions
(c2 � 0:2 for instance), the internal variable a�sd

1
displays the

highest relative magnitude (�0.6) but the two remaining internal
variables can not be neglected.
1
c

2

0

0.2

0.4

0.6

0.8

1

μ τ 
/μ

e μτ3
d
/μe

μτ2
d
/μe

μτ1
d
/μe

0 0.2 0.4 0.6 0.8

a

Fig. 1. Shear internal variables (Mori–Tanaka model): evolutions of the magnitud

inclusions sd
2

sd
1
¼ 3; sm

2
sm

1
¼ 1; sm

1
sd

1
¼ 2 and n � 2:61

� �
.

2.2.4. General microstructures: approximated results
Results obtained hereabove are consistent for some two-phases

composites of inclusion–matrix type. Results are exact because the
relaxation function has, in each case, a discrete spectrum. Actually,
for more general microstructures in which no phase plays the spe-
cific role of matrix (polycrystals,. . .), the relaxation function should
have a continuous spectrum (see, Rougier et al., 1993). Moreover,
even for such composites of inclusion–matrix type (but with high-
er volume fraction of inclusions), Rougier et al. (1993) show that a
generalized self-consistent scheme (see, Christensen, 1979) also
leads to a relaxation function with continuous spectrum. Hence,
one may use Prony series development of the relaxation function
to obtain an approximated solution:

~lðtÞ � ~ldðtÞ ¼
XNd

p

i¼1

lsd
i
e
� t

sd
i ; ~kðtÞ � ~kmðtÞ ¼

XNm
p

i¼1

ksm
i

e
� t

sm
i :

The so-called collocation method does not require the exact
relaxation function but only some values of its Laplace transform:

1 6 i 6 Nd
p l� 1

si

� �
¼ l�d

1
si

� �
; 1 6 i 6 Nm

p k�
1
si

� �
¼ k�m

1
si

� �
:

The accuracy of the result depends on the number of values, that
is the number of the terms (Nd

p and Nm
p ) within the Prony series

expansions. For polycrystalline microstructures (see, Turner et al.,
1994), 20 terms in the Prony series are enough to yield satisfying re-
sults. More recently, Rekik and Brenner (2007) improved the collo-
cation method to decrease the number of terms within the Prony
series expansion. These authors obtained with far less than 20
terms very accurate results when considering the case of a contin-
uous spectrum (two-phases isotropic incompressible self-consis-
tent model) for which the homogenized relaxation function is
known.
3. Extension to ageing linear viscoelasticity

Hereafter, the results derived in the previous section are applied
to predict the overall response of an ageing viscoelastic heteroge-
neous medium. From a general point of view, at least one of the
phase of this heterogeneous medium displays a viscoelastic ageing
behaviour (see for instance, Mandel, 1974):

rðtÞ ¼
Z t

0
Eðt; t � uÞd�ðuÞ; ð20Þ

with ð�;rÞ the shorten notations of strain and stress introduced in
Section 2.1. In this new expression, the relaxation function Eðt; t0Þ
depends separately on t and t0 rather than only on the time lag
ðt � t0Þ. This general framework enlarges constitutive behaviours
0 0.2 0.4 0.6 0.8 1
c
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d

b

es (a) and the relaxation times (b) as a function of the volume fraction of



                                                                                   
for which the time appears explicitly (for instance, the ageing of
concrete by chemical processes) as well as constitutive behaviours
for which the time dependency is the result of the loading. This last
case is also of practical importance when considering, for instance,
thermomechanical loading: the parameters of the constitutive law
(e.g. the shear viscous modulus) depend generally on temperature.
Similarly, the loading may also induce physical changes throughout
one of the phase of the considered heterogeneous medium (dam-
age, densification processes,. . .). Consequently some parameters of
the constitutive law will also depend on time. We study this last sit-
uation in the sequel for the particular case of a matrix–inclusion
microstructure with a low volume fraction of inclusions.

3.1. An ageing viscoelastic problem

We consider hereafter an ageing porous viscoelastic matrix
reinforced with elastic inclusions. In order to remain within the
general framework presented above, we assume low initial volume
fraction of pores (up to 10%). Porosity evolution effects on the elas-
tic behaviour of the matrix will then be neglected. Hence, elastic
properties of the composite are homogeneous and given below.

The inclusions obey an elastic behaviour (Young modu-
lus = 183.4 GPa, Poisson ratio = 0.31) while the matrix obeys a vis-
coelastic behaviour. At a much lower scale, the matrix displays
pores with a volume fraction denoted by fp (see Fig. 2).

After homogenization at the lower scale (see Fig. 2), the inelas-
tic strain rate second-order tensor in the matrix is given by:

_ev ¼ dwðr; fpÞ
dr

;

with wðr; fpÞ the dissipative potential. The evolution equation for the
volume fraction of voids reads (volume balance):

_f p ¼ 3ð1� fpÞ _em: ð21Þ

Hereafter, the dissipative potential of the porous matrix is
approximated by Michel and Suquet (1992):

wðr; fpÞ ¼
1
2
r0 _e0 AðfpÞ

3rm

2r0

� �2

þ BðfpÞ
req

r0

� �2
!
;

with:

AðfpÞ ¼
fp

1� fp
and BðfpÞ ¼

1þ 2
3 fp

1� fp
:

As a result, the inelastic strain in the matrix reads:

ev ¼ 3 _e0BðfpÞ
2r0

sþ 3 _e0AðfpÞ
4r0

rmd:
ba

Fig. 2. Schematic representations of the composite: (a) at the lowest scale, the pores are
potential of the porous matrix). In both pictures the elastic inclusions are represented b
Alternatively, the viscous bulk and shear moduli of the matrix
depend on the porosity at any point ðxÞ of the matrix and read:

kv
1ðxÞ ¼

4f1

3AðfpðxÞÞ
; lv

1ðxÞ ¼
f1

BðfpðxÞÞ
with f1 ¼

r0

3 _e0 : ð22Þ

Since the internal variable fp depends on time (see the evolution
law (21)), this last expression clearly shows that the bulk and shear
viscous moduli will implicitly depend on time for a given loading.
Hence, the associated bulk and shear relaxation functions display a
time dependency similar to the one defined in relation (20). In
other words, the viscoelastic behaviour of this matrix–inclusion
heterogeneous medium is of the ageing kind.

3.2. The incremental model

Let us consider an overall stress loading path rðuÞ on the time
interval ½0; t � dt�. We aim at the determination of the effective re-
sponse eðtÞ. We must assume that the problem is solved until
u ¼ t � dt. At time t, the viscous properties of the matrix are functions
of the (non-uniform) porosity field fpðt; xÞ. However, to keep the for-
mulation with a finite number of internal variables, the viscous prop-
erties at any point ðxÞ of the matrix are approximated at time t by:

kv
1ðfpðt; xÞÞ � kv

1ðf1pðtÞÞ and lv
1ðfpðt; xÞÞ � lv

1ðf1pðtÞÞ; ð23Þ

where f1pðtÞ denotes the average porosity over the matrix at time t
(f1pðtÞ ¼ hfpðt; xÞi1).

The average strains over the two phases as well as the internal
variables ðad

sd
i
;am

sm
i
Þ and the average porosity f1p over the matrix

are thus known on ½0; t � dt� and the unknowns are: e1ðtÞ; e2ðtÞ;
ad
sd

j
ðtÞ; am

sm
i
ðtÞ; f 1pðtÞ (we recall that i and j depend on the used

homogenization scheme, see Section 2.2.3). At time t, the behaviour
at any point ðxÞ of the matrix is approximated by:

_e1mðt; xÞ ¼
1

3ke _rmðt; xÞ þ
1

3kv
1ðf1pðtÞÞ

rmðt; xÞ;

_eðt; xÞ ¼ 1
2le

_sðt; xÞ þ 1
2lv

1ðf1pðtÞÞ
sðt; xÞ;

ð24Þ

where the viscous and shear moduli now depend on the average
porosity f1p over the matrix.

We consider the heterogeneous composite whose microstructure
is the same as the previous one but with the matrix obeying the non-
ageing linear viscoelastic behaviour as defined by (24). To estimate
the effective response at time t of this composite, the Mori–Tanaka
scheme is adopted since the volume fraction of inclusions remains
low. Using the results derived in Section 2.2.1, the overall response
of this non-ageing viscoelastic composite is given by:
represented by dots, (b) after homogenization of the lowest scale (w is the effective
y hatched disks.



Table 1
Exact values of the effective relaxation times as predicted by Voigt, Reuss and Mori–
Tanaka homogenization schemes. The magnitudes of each internal variable are also
reported.

Reuss Voigt Mori–Tanaka

Shear
Relaxation times Nd

p ¼ 1 Nd
p ¼ 2 Nd

p ¼ 3

sd
1 ¼ sd

1 sd
1 ¼ sd

1

sd ¼ h 1
sd i�1 sd

2 ¼ sd
2 sd

2 ¼ 2ŝd
a 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðŝd

a=ŝd
bÞ

2
q� ��1

sd
3 ¼ 2ŝd

a 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðŝd

a=ŝd
bÞ

2
q� ��1

Magnitudes lsd
1
¼ c1le lsd

1
¼ 2c1
ð2þ3c2Þl

e , lsd
2
¼ sd

2
1
ŝd

a
� 2

sd
2

pd
�
� 1

sd
2

�
lsd ¼ le lsd

2
¼ c2le lsd

3
¼ le � lsd

1
� lsd

2

Bulk
Relaxation times Nm

p ¼ 1 Nm
p ¼ 2 Nm

p ¼ 2
sm ¼ h 1

sm i�1 sm
1 ¼ sm

1 sm
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a 1�
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1� 4ðŝm

a =ŝm
b Þ

2
q� ��1

sm
2 ¼ sm

2 sm
2 ¼ 2ŝm

a 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðŝm

a =ŝm
b Þ

2
q� ��1

Magnitudes ksm
1
¼ c1ke ksm

1
¼ ðs

m
1 Þ

2sm
2

sm
1 �sm

2
pm � 1
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1

� �
ksm ¼ ke ksm

2
¼ c2ke ksm

2
¼ ke � ksm

1

Fig. 4. Finite element discretization of one eighth of the periodic cell.
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eðtÞ ¼ 1
2le

sðtÞ þ
X3

i¼1

ad
sd

i
ðtÞ; emðtÞ ¼

1
3ke rmðtÞ þ

X2

i¼1

am
sm

i
ðtÞ; ð25Þ

where the internal variables am
sm

i
ðtÞ (1 6 i 6 2) and ad

sd
i
ðtÞ (1 6 i 6 3)

are, respectively, scalar and (second-order) tensorial functions of
time. They, respectively, satisfy the evolution laws (11) while the
five scalar coefficients ðl�sd

1
; l�sd

2
; l�sd

3
; l�sm

1
; l�sm

2
Þ are given in the

Table 1 as a function of material constants. These coefficients de-
pend on the bulk and shear viscous moduli of the matrix appearing
in the relations (23). The results derived in Section 2.2.2 enable to
calculate the average strain over the matrix at time t.

To close these equations, we have to derive the average porosity
over the matrix at time t. Hence, the evolution equation of porosity
at any point x of the matrix is given by:

_f pðt; xÞ ¼ 3ð1� fpðt; xÞÞ _emðt; xÞ:

As a result, the evolution law of the average porosity over the
matrix is given by:

_f 1pðtÞ ¼ 3hð1� fpðt; xÞÞ _emðt; xÞi1:

The porosity being small, a first order expansion of the previous
equation reads:

_f 1pðtÞ � 3ð1� f1pðtÞÞ _e1mðtÞ: ð26Þ
Fig. 3. The hexahedric periodic cell.
Finally, it is worth remarking that the averaged spherical strain
in the matrix appearing in the right term of Eq. (26) implicitly de-
pends on the average porosity over the matrix at time t since the
bulk and shear viscous moduli of the matrix are (non-linear) func-
tions of this unknown. Hence, Eq. (26) is a scalar but non-linear
first order differential equation of the unknown f1pðtÞ.

4. Results

The composite considered in Section 3 is subjected to a com-
pressive creep test at t ¼ 0. The overall stress is given by r ¼ r0d

with r0 < 0.
To assess the accuracy of the model presented above, its predic-

tions are compared to exact response of a specific class of micro-
structures: a periodic distribution of inclusions. The full-field
simulation of this periodic microstructure is performed by consid-
ering a three-dimensional unit cell as depicted in Fig. 3. Thanks to
symmetry considerations, one eighth of this unit cell is meshed
with 274 quadratic elements (see Fig. 4). The accuracy of next sim-
ulations has been evaluated by increasing the number of elements
up to 1210: relative deviations have never exceeded 1%.

Fig. 5 shows the evolution of the overall strain (spherical part)
as a function of normalized time t

sd
1

for different values of the initial
volume fraction of pores f1p (parameter f1 in relation (22) is easily
deduced from the relaxation time of the matrix sd

1 as given in Table
1 and the initial porosity f1pð0Þ). As a limiting case, one can note
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Fig. 5. Evolutions of the predicted overall strain as a function of time for different
values of the initial porosity (c2 ¼ 0:2, n � 2:3, le ¼ 70 GPa and r0 ¼ �200 MPa).



0 500 1000 1500 2000

t/τ
1
d

0

0,05

0,1

f 1p

f
1p 

(0)=0.1

f
1p 

(0)=0.01

f
1p 

(0)=0.05

F E results

Fig. 6. Evolutions of the average porosity f1p over the matrix as a function of time
for different values of the initial porosity (c2 ¼ 0:2, n � 2:3, le ¼ 70 GPa and
r0 ¼ �200 MPa).
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Fig. 7. Evolution of the average porosity (continuous line) and its spatial fluctuation
(vertical bars) as a function of time for an initial porosity of 10%.

                                                                                   
that for a dense matrix (i.e. f1pð0Þ ¼ 0), the viscous strain through-
out the matrix is traceless. As a result, the overall response of the
composite is purely elastic.2

Conversely, a non-zero initial volume fraction of pores induces
creep phenomena inside the matrix. This inelastic strain is pro-
vided by the decrease of the average porosity f1p as depicted in
Fig. 6. As expected, when the volume fraction of porosity tends to-
wards zero, the overall strain rate decreases: the creep spherical
strain is bounded (see Fig. 5).

Finally, the reference results as predicted by full finite element
simulations (and identified by circles in Figs. 5 and 6) are very close
to the ones of the incremental model. This excellent agreement can
be explained as follows: first, the porosity field is non-uniform (see
Fig. 7) but its spatial fluctuations remain low. As a result, the use of
an average porosity (approximations (23) and (26)) is consistent in
this situation. In addition, the first order effect of the evolution of
the porosity on the constitutive behaviour of the matrix is well
represented: at each time step, the viscous compressibility of the
matrix increases and the viscoelastic compressibility tends to-
wards a purely elastic one. This last point illustrates the ability of
the proposed incremental model to represent ageing effects.

5. Conclusions

In order to derive the overall behaviour of heterogeneous med-
ia, the internal variables formulation presented hereabove as well
as the one proposed by Lahellec and Suquet (2007) offers an inter-
esting alternative to integral methods. First, it should be useful
when introducing viscoelastic overall constitutive laws in finite
element codes. Based on internal variables, these formulations
overcome some computational limits like the requirement of the
storage of all the stress (or strain) history from the initial time to
the present time at which the effective response of the composite
is estimated. As explained above, the merit of the proposed inter-
nal variables formulation lies on the fact that it provides exact re-
sults for the particular two-phase composites considered (‘‘series”,
2 The elastic properties of the composite being homogeneous, the elastic stress field
obeys at any point ðxÞ of the composite: rðxÞ ¼ r ¼ r0d. Hence, the deviatoric part of
the stress field vanishes and the viscous strain at any point ðxÞ of the matrix reads:
limkv!1 _ev ðxÞ ¼ 0.
‘‘parallel” and matrix–inclusion microstructures at low fraction of
inclusions). Exact expressions have been reported (see Table 1)
when the two phases of the (homogeneous elastic) composite obey
an isotropic maxwellian behaviour. Conversely, it is worth men-
tioning that the easiness of this method remains limited to a large
range of constitutive laws as well as microstructures types. Even
for the microstructures considered above, the study of more gen-
eral constitutive behaviours (Maxwell chain model for instance)
would require more intricate algebraic computations which still
lead to exact expansions but with a higher number of terms. In
addition, algebraic computations of the effective properties would
fail (see for instance, Rougier et al., 1993) for more general situa-
tions (matrix–inclusion microstructures at higher volume fraction
for instance). Nevertheless, our method remains valid. The use of
appropriate and accurate collocation methods (see for instance, Re-
kik and Brenner, 2007) leads as Lahellec and Suquet (2007) to
approximated results.

Last but not least, these internal variables formulations enable
straightforwardly extension to ageing behaviours. This last point
has been illustrated with the help of the proposed internal variables
formulation: a theoretical framework has been developed to derive
effective properties of ageing linear viscoelastic composite. Finally
as an example, effective properties of a porous viscous matrix with
elastic inclusions have consistently been derived with this internal
variables formulation. Such results have been compared with
success to full-field simulations of a periodic microstructure.
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