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A DEM/FFT approach to simulate the effective thermal conductivity of granular
media

Tristan Calvet, Jean-Mathieu Vanson, Renaud Masson∗

CEA, DES, IRESNE, DEC, Cadarache F-13108 Saint-Paul-Lez-Durance, France

Abstract

A numerical method to compute the Effective Thermal Conductivity (ETC) of granular media surrounded by a
stagnant fluid is presented. Based on the geometry and size of grains, a Representative Volume Elements (RVE) of
the granular media is created using the Discrete Element Method (DEM) while the ETC of this RVE is estimated with
Fast Fourier Transform (FFT) computations.

To bridge the gap between the DEM and the FFT, a discretization algorithm (voxelisation of convex polyhedra) was
developed. Since their physical properties are poorly defined, ”fuzzy” voxels associated with solid-gas interfaces or
solid-solid contacts, domains inherent in a granular medium, are clearly identified during this step. The assignment of
extreme properties to these voxels, assuming negligible radiation, allows to establish lower and upper ETC bounds.

This methodology is applied to granular media of Uranium dioxide particles immersed in stagnant Helium; packed
beds for which experimental data are available in the literature. First, the effect of RVE and discretization sizes
on the simulated ETC are investigated and optimal values of RVE size and discretization ratio are defined. Next,
the significant deviation of simulated DEM-FFT ETC bounds, observed at high solid to gas conductivity contrasts,
exhibits the key role of interfaces on the computed ETCs. An improved modelling of solid-gas interfaces based on
the Knudsen effect and a modelling correction for solid-solid interfaces is therefore proposed. The new modelling is
shown to adequately bound and estimate the ETC of considered granular media at high (∼100) solid to gas thermal
conductivity contrasts.

Keywords: Effective Thermal Conductivity, Granular media, Representative Volume Element, Discrete Element
Method, Fast Fourier Transform, Knudsen effect

1. Introduction

Modelling the equivalent macroscopic properties of
heterogeneous media is an important issue for many
applications, especially for the ones involving granu-
lar media. The heterogeneous, complex microstructure
of granular media often implies chemical, electrical or
thermal effective behaviours commonly driven by, but
not solely, respective phase properties, interfaces be-
tween phases and property ratio of phases. While con-
sidering the thermal properties of packed beds consti-
tuted of particles surrounded by a gaseous phase, the
thermal fluxes in each phase or passing between phases
compete altogether making contacts or near-contacts of
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particles key in the prediction of thermal effective prop-
erties, particularly at high contrast of each phase proper-
ties. The prediction of the effective thermal conductivity
is important in order to model materials for which con-
ducting experimental measurements is either impossible
or too complex and expensive (e.g. nuclear materials).

For thermal conduction problems and considering
granular media with interstitial stagnant fluid, the
Wiener [1], Maxwell-Eucken [2] theoretical works
provide bounds of the effective thermal conductivity
(ETC) of the considered heterogeneous material.
However, these bounds deviate significantly which
prevents their application to the estimation of effective
thermal properties of granular media. Alternatively,
theoretical models [3] (packed beds with locally spher-
ical contacts) or models based on an uni-dimensional
representation of the heat flux have also been proposed,
see for example [4, 5, 6]. However, such models do no
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Nomenclature

Kn Knudsen number (−)

T Temperature (K)

β Thermal polarizability (−)

λ Thermal conductivity (W m−1 K−1)

σ Stefan-Boltzmann constant (kg K−4 s−3)

j Heat flux (W m−2)

ε Emissivity (−)

ϕ Porosity of the granular media (−)

dm Kinetic molecular diameter (m)

dl Size of the voxels (m)

kb Boltzmann constant (kg s−1 K−1)

p Porosity of the solid particles (−)

req Mean size of the particles (m)

Abbreviations
DEM Discrete Element Method

ETC Effective Thermal Conductivity

FFT Fast Fourier Transform

RVE Representative Volume Element

Subscripts
e Effective

g Gas

s Solid

take into account the key microstructural parameters
related to the considered granular material. As a result,
these models are generally fitted on experimental data.
Considering the interstitial stagnant fluid as a perfect
thermal insulator, the so-called Discrete Element
Method (DEM) has been used to simulate Represen-
tative Volume Elements (RVE) of granular media as
well as the effective conductivity of these RVEs (see for
example [7] and [8]). To account for the conductivity
of the stagnant fluid surrounding solid particles with
the DEM, Yun [9] proposed to model heat transfers
at interfaces using resistor models when the particles
have a spherical shape. Furthermore, numerical meth-
ods combining the Discrete Elements and the Finite
Element Methods have also been proposed (see for
example [10]). These methods aim at modelling the
effect of key microstructural parameters such as the
size, shape and spatial distribution of the solid particles
on the effective thermal conductivity. Nevertheless, the
modelling of the heat flux at the interfaces between
the solid and gaseous phases remains often arbitrary.
Recently, and using a DEM approach, Moscardini
[11] proposed to take into account the influence of the
interstitial gas pressure and temperature on the thermal
contact conductance between particles. However, this
modelling of solid-fluid interfaces is not adequate
for complex, non-spherical fragment geometries and
requires improvements. Overall, interfaces in packed
beds have a prominent importance in the simulation of
the ETC of packed beds and their modelling remains a
challenge which requires further research and enhance-

ments.

The use of Fast Fourier Transform (FFT) instead of
Finite Elements offers some advantages. It relies on a
regular grid which is easier and faster to compute than
a non regular finite element mesh. Moreover, the com-
putations are efficiently accelerated thanks to paralleli-
sation that is, in this case, easier to implement. In [12],
the microstructure model was directly obtained by to-
mography. Here, we propose to combine the DEM to
generate a RVE of the granular medium. Indeed, the
DEM is a powerful technique to generate packed beds
at a given density. Then, we propose to use FFT to sim-
ulate the effective property of the RVE. A discretization
algorithm was used to bridge the gap between the DEM
and the FFT computations.

This paper is organized as follows. In section 2,
reference packed beds experimental data (Uranium
dioxide granular packing immersed in Helium) [13, 14]
obtained from the literature are presented. Materials
properties from the solid and gas phases are defined
clearly and the potential effects of radiation and the
Knudsen effect on the ETC of considered media
are discussed. In section 3, the new methodology
associating the DEM and FFT methods is presented.
The two bounds and the estimate delivered by this
new methodology are applied to the prediction of
the effective conductivity of an idealized dispersion
of spheres at the end of section 3. In section 4, the
real packed beds presented in section 2 are replicated
used the DEM while DEM-FFT simulations of the
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ETC of these experimental beds are compared to
experimental results. The role of the solid-solid and
solid gas interfaces as well as the Knudsen effect on
the simulated ETC are deeply studied. New DEM-FFT
estimates are then derived. In section 5, the best bounds
and estimates of the ETC predicted by the DEM-FFT
approach are finally compared to experimental results.

2. Materials

2.1. Experimental data

Experimental data are extracted from [14] (NACA
experiments) and have been obtained with a radial ap-
paratus during a steady regime. The gas volume frac-
tion reaches nearly 40.5%. The size distribution is: 60%
of particles with diameters between 20 and 80 µm and
40% between 80 and 120 µm. The solid particles and
the gaseous phase are Uranium dioxide and Helium, re-
spectively. In [14], no information about the shape of
the powder particles is given. The thermal properties of
Uranium dioxide and Helium depend mainly on temper-
ature and are described below (see section 2.2).

We extracted data from the fitted curves computed
by Boegli et al.. These data are reported on Table 1.
The relative deviation of the experimental data is around
5−10%. At 472 K, we have also reported on Table 1 the
experimental data provided by Hall [13]. The packed
beds studied by Hall [13], although characterised by
various uniform size distributions of UO2 spheres (rang-
ing from 80 to 800 µm in size) with densities of 60.5%,
provide a range of relevant experimental values. We
take into account in Table 1 the experimental value by
Hall for a packed bed of 80 µm spheres, this packed bed
being most representative of our owns. The remaining
experimental values obtained for bigger spheres were
considered to define a relative experimental error mar-
gin of 5%. As explained in the next section 2.2, all these
considered ETC measurements were taken under high
helium pressure (Boegli: 0.41 - 0.94 MPa, Hall: ∼1.7
MPa) in order to overcome the thermal interface resis-
tance existing between the gas and the solid, discussed
in the subsection 2.4.

2.2. Material properties

The thermal conductivity of Uranium dioxide is ex-
pressed as a function of temperature (T ) and porosity
(p) according to [15]:

λs =
1 − p

1 + 0.5p

[
1

A + BT
+ CT−2e

D
T

]
, (1)

where A = 0.0375 K.m.W−1, B = 2.165 × 10−4 m.W−1,
C = 4.715 × 109 W.m−1.K, D = −16361 K. For the next
experimental data, the porosity equals 2% (p = 0.02).
The thermal conductivity of Helium is expressed as a
polynomial function of the temperature (T )[16]:

λg = E + FT −GT 2 + HT 3, (2)

where E = 4.76 × 10−2 W.m−1.K−1, F = 3.62 ×
10−4 W.m−1.K−2, G = 6.18 × 10−8 W.m−1.K−3, H =

7.18 × 10−12 W.m−1.K−4.
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Figure 1: Effect of temperature on the thermal conductivity of helium
(λg), uranium dioxyde (λs with inernal porosity p = 0.02 and Burnup
= 0. GW/D/tM) and solid to gas conductivity contrast

The evolution of the thermal conductivity of Helium
(λg) and UO2 (λs) as function of temperature, described
by equations (1) and (2) are depicted in Fig. 1 as well
as the resulting conductivity contrast (λs/λg). As seen,
temperature has opposite effect on the conductivities of
Helium and UO2. Overall, the contrast is maximal at
low temperatures and decreases progressively with tem-
perature. The maximum observed contrast for relevant
temperatures is less than 100.

2.3. Radiation contribution
Radiation in packed beds may be a considerable

mechanism for heat transfer notably at high tempera-
tures. Inside our granular media, radiation occurs in the
interstitial spaces between particles (called pores here-
after). The effect of radiation on the ETC depends upon
the bed temperature, the size and shape of pores and
upon radiation properties of the solid and gas phases
(transparency, emissivity, absorption). In the fluid, ra-
diation is in direct competition with the conduction heat
mechanism characterised by the fluid thermal conduc-
tivity. A comparison between these mechanisms thus is
needed to determine their relative importance.
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Temperature (K) 366.5 422 472 477.5 533 588.5 644 755 866
Conductivity (W/m/K) 1.36 1.41 1.34 1.43 1.45 1.46 1.47 1.47 1.47

Table 1: Experimental data extracted from [14] (NACA experiments) and from [13] (Hall experiments).
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Figure 2: Effect of temperature and pore size (modelled as infinite
parallel plates separated by a distance l) on the relative contribution of
radiation to heat conduction in He.

We consider that the conductivity due to radiation in
packed beds is always lower than the radiant conduc-
tivity between infinite parallel plates separated by a dis-
tance l equal to the size of pores. The pore size distri-
bution for the considered granular beds is more deeply
studied in section 4 with the maximum inscribed ball
technique depicted in section 4.3. It is demonstrated that
the diameter of pores is about 60 µm for the considered
granular media (see Fig. 14).

Assuming that the temperature difference between
planes is small when compared to the average tempera-
ture, the thermal conductivity due to radiation between
parallel infinite planes is the following:

λrad =
4 ε σ l T 3

2 − ε
(3)

where T is the average temperature, σ the Stefan-
Boltzmann constant (kg K−4 s−3) and ε the emissivity
(−) of UO2.

Helium is considered to be a transparent gas and UO2
an opaque solid which has a decreasing emissivity with
temperature [17]. Fig. 2 shows that even for the largest
interstitial space between particles (≈ 60 µm), radiant
thermal conductivity will be less than three percent of
the gas conductivity at the highest temperature (1000 K)
considered in this study. The assumption of negligible
radiant heat transfer is therefore relevant for the packed

beds considered here. Further discussion on the limited
effect of radiation on the ETC through the analysis of
thermal heat fluxes paths inside granular media RVEs
is presented with the analysis of thermal heat maps (cf.
section 4.2).

2.4. Knudsen effect

The influence of pressure on the effective thermal
conductivity of helium was considered in accordance to
the Knudsen effect [18]: as the mean free path of the
gas molecules increases when the pressure decreases,
this mean free path may reach the dimension of the gas
layer between particles inducing an additional thermal
resistance between particles. To quantify this potential
Knudsen effect (also called ”Smoluchowski effect” in
[11]), the calculation of the ratio between this mean free
path and the gas layer (Knudsen number) is needed, this
number Kn being given by:

Kn =
kb T

√
2 π d2

m P L
(4)

where kb is the Boltzmann constant, dm the kinetic
molecular diameter (dm = 2.15 10−10 m for Helium ac-
cording to [11]), P the pressure and L the dimension of
confining spaces between particles.

The measurements of the effective conductivity re-
ported by [14] were made under high helium pressure
(P ∼ 1.7MPa) overcoming this Knudsen effect. Experi-
mental data reported in section 4.3 have been conducted
in the temperature range [300, 1000 K].

In [14], the dimension of confining spaces between
particles was chosen equal to 45 µm (mean size of the
particles). If this dimension equals the radius of the
smallest particles (10 µm), the Knudsen number varies
in the considered range of temperature from 0.001 to
0.004 placing our packed beds in the lower part of the
transition regime (0.001 ≤ Kn ≤ 10.0) between the
continuum regime (the heat transfer between particles is
dominated by the gas conduction - see (2)) and the free
molecule regime (the heat transfer between particles is
dominated by the interactions of the gas molecule with
the solid surfaces). Therefore, the Knudsen effect can
not be fully neglected and will be studied in-depth in
section 4.3.
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3. Methods

3.1. Discrete Element Method

The discrete element method is widely used to sim-
ulate the granular behavior of matter in many fields. It
makes it possible to efficiently simulate the granular re-
arrangements taking into account the shape, the size of
the particles as well as their mutual interactions. Here,
the particles are considered rigid while their motion is
calculated from the detection of their mutual contacts
and the computation of the contact forces. The network
of forces is solved by the implicit method of contact dy-
namics [19] using the software LMGC90 [20]. At each
time step, the method is composed of three steps. The
first step consists in detecting the contacts between par-
ticles. The second step aims at calculating the forces of
the previously detected contacts and the third step con-
sists in updating the position of the particles from the
forces balance. Interactions between particles are gov-
erned by the Signorini conditions and by a Coulomb dry
friction law (Fig. 3).

Fn

un

F
T

u
T

μFn

-μFn
(a) (b)

Figure 3: Contact law: Signorini Conditions (a) and Coulomb law (b)
connecting respectively the normal force to the normal speed and the
tangential force to the tangential velocity. µ is the friction coefficient.

We create each packing from a size distribution (de-
fined in section 4) and a regular polyhedra shape hav-
ing 20 faces. We first place the polyhedra in a box us-
ing a potential energy minimization algorithm (gravity).
Then, we perform DEM computation of polyhedra mo-
tion under gravity with periodic boundary conditions
over the X and Y axis and a fixed plane at Z=0. We
use a static Coulomb friction law (friction coefficient =

0.2). The porosity has a first order influence on the ETC.
We chose the Coulomb friction coefficient to control the
porosity of the simulated packed beds and obtain poros-
ity values close from NACA experiments[14]. When
the kinetic energy tends to zero we cut the domain with
two planes orthogonal to the Z axis to avoid side effects
and keep it full over the periodic directions (X and Y

axes). An example of DEM generated granular media is
depicted in figure 4.

Figure 4: Granular media constituted of regular polyhedra (icosahe-
dra) generated with the Discrete Element Method with X and Y axes
periodic boundary conditions.

These DEM simulations yield a Representative Vol-
ume Elements (RVE) of the granular medium under
consideration. A given RVE denoted by V is made of
two different homogeneous constituents (the solid par-
ticles and the fluid) with ϕ the volume fraction of the
fluid. (λs, λg) denote the thermal conductivity of the two
constituents.

The strain of the particles being not taken into ac-
count (rigid particles), the contact area between parti-
cles does not depend on their mechanical interactions.
This approximation is consistent with the fact that the
RVE considered hereafter will be stress-free at their
boundary so that the residual force network (and the re-
sulting contact area) remains negligible.

3.2. Discretization of DEM RVEs

The cartesian discretization needed to compute the
ETC with the FFT method consists in a regular 3D grid,
each subvolume of this grid being called a voxel (see
section 3.3). To build this grid, an additional algorithm
is needed to discretize the generated DEM packed beds
into numerous voxels of size ’dl’, differentiated by their
respective phase index. This algorithm is depicted be-
low.

As illustrated on Fig. 5, most voxels are fully defined
by a solid or gas phase index and are thus assigned with
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solid or gas thermal conductivity. The remaining vox-
els, called hereafter fuzzy voxels, are solid-gas interface
voxels as well as solid-solid contact voxels located at
the contact interface between distinct polyhedra. All
fuzzy s/g and fuzzy s/s voxels posses unknown equiv-
alent thermal conductivity since they are constituted of
either two distinct phases, and/or embedded with an ill-
defined thermal resistance resulting from the imperfect
contact between fragments.

Solid-solid contact voxels (fuzzy s/s) either result
from occasional surface to surface contacts and point
contacts between particles usually coupled with minor
bias from the DEM and/or from the discretization (seen
notably in the construction of the upper bound described
below). Assigning the solid thermal conductivity to
solid-solid contact voxel creates unrealistic perfect ther-
mal bridges between particles which may significantly
increase the ETC of the RVE especially when the solid
to gas conductivity ratio is high. To limit the impact
of solid-solid contacts on the ETC, the discretization
may be refined. However, taking into account a parti-
cle surface roughness, the discretization size (dl) should
not be any smaller than twice the surface roughness
of particles. Another proposed correction (cf. section
4.2), is the insulation of particles by a thin layer of gas
equalling, in our case, to twice the surface roughness
of particles (Mean estimate no-contact in Table 2). Al-
though, this correction may lead to an underestimation
of the media ETC, its implementation results in a im-
proved modelling of solid-solid contacts.

Since the thermal conductivity of the solid phase is
higher than the fluid phase conductivity in our case, as-
signing the conductivity of the solid to the fuzzy s/g
voxels yields an upper bound for the effective thermal
conductivity. Oppositely, assigning to the fuzzy s/g vox-
els the conductivity of the fluid yields a lower bound.
This elementary result is the direct extension for con-
duction problems of the Strengthening theorem formu-
lated by [21] for linear elastic heterogeneous materials.

Alternatively, the usual method consists in defining
the conductivity of the fuzzy s/g voxels regarding the
position of the center of the cell of the cartesian mesh.
This method, called ”mean estimate” hereafter, yields
estimates of the effective conductivity lying between the
two bounds defined above.

3.3. Fast Fourier Transform computations of the ETC
and discretization of RVEs

In the steady-state regime with no source terms, the
thermal field as well as the heat flux field (denoted by j)

λ f uzzy s/g λ f uzzy s/s

Upper Bound λs λs

Lower Bound λg λg

Mean estimate λcenter λcenter

Mean estimate no-contact λcenter λg

Table 2: Values of the conductivities of fuzzy voxels defining the up-
per bound, the lower bound and the mean estimate.

Data: DEM outputs : position of all polyhedra
and their respective nodes

Initialization : creation of global container
(3D grid: Nx, Ny, Nz) considering discretization
parameter (dl) and extreme positions of all
polyhedron nodes;

for each polyhedron (p) do
for each face (f) of polyhedron ’p’ do

Detect ”fuzzy s/g” voxels situated on
face ’f’;

for each ”fuzzy s/g” voxel (v) of face ’f’
do

Assign value of volume fraction of
solid phase to voxel ’v’;

end
Detect all bulk voxels enclosed by ”fuzzy
s/g” voxels. Assign to bulk voxels the
solid thermal conductivity;

end
end
if lower bound structure then

Assign to all ”fuzzy s/g” voxels gas thermal
conductivity

else
Assign to all ”fuzzy s/g” voxels solid thermal

conductivity
end
Selection of periodic RVE for effective thermal

conductivity computation;
Algorithm 1: Voxelisation algorithm for DEM-FFT
ETC bounds
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Figure 5: Voxelisation of a 2D structure composed of two polygons
(outlined in black). Dark and light blue pixels respectively designate
solid and fluid phase. Pixels in intermediate blue (”fuzzy” pixels) are
ill-defined and possess unknown effective properties. Assigning to
the ”fuzzy” pixels extreme conductivity (either solid or gas conduc-
tivity) leads to RVE with lower or upper ETC bound. ”Fuzzy” pixels
are further subdivided into solid-gas interface ”fuzzy s/g” pixels and
solid-solid contact ”fuzzy s/s” pixels.

are solutions of (x ∈ V):

∇ · j(x) = 0 with j(x) = λ(x) e (T (x)) (5)

where the intensity vector field e is defined as the op-
posite of the thermal gradient e (T (x)) = −∇ · T (x). To
solve the boundary value problem (5), we use the Fast
Fourier Transform (FFT) method originally proposed
by [22]. In this method, periodic boundary conditions
are considered, the macroscopic intensity vector e be-
ing prescribed in volume average (see [12]). Therefore,
the unknown temperature and intensity fields have the
general form:

T (x) = T ∗(x) − e · x and e (T (x)) = e (T ∗(x)) + e.

where T ∗(x) denotes a periodic field. If λ0 denotes an
arbitrary conductivity, the relation between the heat flux
and the intensity vector reads:

j(x) = λ0(x) e (T (x)) + τ(x)

with the polarization field τ(x) defined as:

τ(x) = (λ(x) − λ0) e (T (x)) .

The unknown intensity field satisfies the following inte-
gral equation:

e (T ∗(x)) + Γ0 ? τ(x) = 0 (6)

where ? denotes the convolution product and Γ0 is the
periodic Green-operator associated with λ0. This oper-
ator being explicitly known in Fourier space, this last

equation is solved in Fourier space:

ξ , 0 : ê(ξ) = −Γ̂0(ξ) · τ̂(ξ) and ê(0) = 0. (7)

The iterative algorithm proposed by [23] and adopted
here, uses alternately (6) and (7) in real and Fourier
spaces. To compute the unknown temperature and in-
tensity fields, the RVE V is discretized into nvox =

Nx×Ny×Nz regular cubic regions (the voxels introduced
in the previous section 3.2), the unknown intensity field
being chosen constant per voxel. As a result, the po-
larization is also constant per voxel and is computed in
the real space. Thus, the polarization for any voxel v is
given by:

τv = (λv − λ0) ev,

where λv is the conductivity assigned to the voxel v. As
recalled in the previous section, the position of the cen-
ter of the voxel defines generally the value of its con-
ductivity which remains arbitrary when the considered
voxel intercepts a solid-gas interface.

For an isotropic behavior, the effective thermal con-
ductivity is a scalar denoted by λe and can be computed
by prescribing the macroscopic intensity in an arbitrary
direction, for instance the ey direction:

e = e0 ey ⇒ λe =
< j · ey >

e0
(8)

where < . > denotes the volume average on the RVE V ,
namely:

< j >=
1

nvox

nvox∑
v=1

λv ev. (9)

Compared to the classical Finite Element method, the
FFT method is able to handle a large number of degrees
of freedom and can be accelerated by parallelization
techniques (through this work, an OpenMP paralleliza-
tion technique is used). In addition, the FFT method
has the great advantage to have a Cartesian mesh being
easier and faster to perform than a non regular classical
finite element mesh.

3.4. Validation of DEM-FFT bounds on a reference
Body-Centered Cubic structure

In order to test the reliability of the mean estimates
and bounds defined above, we consider an ideal two-
phase microstructure where the solid phase is spheres
arranged in a Body-Centered Cubic (BCC) configura-
tion. For this periodic structure and a superconducting
solid (λs/λg → ∞), the effective conductivity has al-
ready been computed exactly by [24] as a function of
the solid volume fraction. For this analysis, a volume
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fraction of 53.6% is considered, while the effect of the
discretization ratio for different solid to fluid conductiv-
ity ratio is analysed.

The BCC structure unit cell needed for FFT compu-
tations reduces to a cubic cell with one sphere at the
center and one-eighth of spheres at the eight edges of
this cube (the BCC crystalline mesh). Therefore, if r
denotes the radius of the spheres, the discretization ra-
tio (r/dl) can be chosen small enough to reach a volume
fraction of fuzzy voxels close to zero. Indeed, for the
highest contrast considered in this work (λs/λg = 100,
see Fig. 1), the predicted effective conductivity as a
function of this discretization ratio is reported on Fig 6.
The evolution of the volume fraction of the fuzzy voxels
with the discretization ratio is also reported on Fig 6. As
the volume fraction of the fuzzy voxels decreases with
the discretization ratio, the bounds and the estimate all
converge to the theoretical effective conductivity of this
BCC periodic micro-structure. For r/dl > 90, the de-
viation between the mean estimate and the theoretical
result is less than 1%.
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Figure 6: FFT computations of the effective conductivity of a solid
made of identical spheres arranged on a periodic BCC array. Evolu-
tions of the bounds and the estimate as a function of the discretization
ratio (λs/λg = 100).

Additionally, the effect of the contrast on the ETC
of the BCC structure is studied for a wide range of
conductivity contrasts (λs/λg). Consistently with the
previous results, the theoretical results are derived
with the ”mean estimate” obtained by FFT and a
discretization ratio r/dl = 320. We will see later that
to perform FFT computations on realistic granular
media, a lower discretization ratio has to be adopted,
namely req/dl ranging from 10 to 60 (average around
30). req is the equivalent radius of particles for the
granular media considered. Thus to estimate the effect
of this discretization ratio for the next predictions, we
compare on Fig. 7 the FFT predictions obtained with

r/dl = 30 (bounds and estimate) to these reference
results. The FFT lower bound and the FFT mean
estimate give a good agreement with the reference
solution. The FFT upper bound overestimates the
effective conductivity since the increased amount of
solid creates solid thermal bridges between the spheres
(the spheres overlap). Even if the volume fraction of the
fuzzy voxels remains quite low for this ideal structure
(≈ 5.3% for the considered value of the discretization
ratio, namely r/dl = 30), the gap between the FFT
lower and upper bounds is not negligible (≈ 22%) at a
high conductivity contrast (λs/λg) of 100.
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Figure 7: Effective conductivity of a solid made of identical spheres
arranged on a periodic BCC array: deviation of the FFT computa-
tion (req/dl = 30) compared to reference results (FFT, mean estimate,
req/dl = 320).

4. Results

4.1. DEM simulation of the packed beds
Several packed beds are generated using the DEM.

The gas volume fraction (≈ 40.5%) as well as the size
distribution of the polyhedra are based on the experi-
mental data provided by Boegli [14] and described in
details in section 2. Each generated granular medium
contains 5000 particles with sizes ranging from 20 to
120 µm. Because the dispersion of the simulated ETC
varies with the number of particles (or equivalently the
size of the RVE) a specific sensitivity study to this pa-
rameter was conducted. This analysis revealed that this
dispersion is stable when the number of particles ex-
ceeds 3000 and becomes very low (≤ 3.5%) when this
number reaches 5000. The impact of the shape of parti-
cles was also analysed by increasing the number of faces
from 4 to 20 of polyhedra. It was demonstrated that this
parameter had no significant effect on the granular me-
dia ETC (less than 3% at 1000K).
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The RVE discretization parameter dl (voxel size) con-
sidered is 2 µm (RVEs were constituted of nearly one
billion voxels each). Simulated ETC bound may be
more precise by decreasing the size of voxels to 1µm or
less. However, in addition to increasing severely the in-
tensity of FFT computations, considerations of the sur-
face roughness of particles limit the physical validity of
any further refinement of the discretization approaching
the surface roughness. In [13], the surface roughness is
estimated to be around 1µm. Therefore, to remain con-
servative, no voxel size below 2µm is considered. In
that sense, the provided FFT results allow to bound the
uncertainty related to this physical feature of the con-
sidered bed. Considering a lower voxel size will require
to represent more precisely these surface irregularities
which is beyond the scope of this study.

The average size distribution of the particles for the
different granular media generated with the DEM is re-
ported on figure (8). The error bars represent the stan-
dard deviation between the five generated RVEs.

0 20 40 60 80 100 120 140
Diameter( m)

0

50

100

150

200

250

300

350

400

Nb
. f

ra
gm

en
ts

Figure 8: Size distribution of the polyhedra: the diameter of a poly-
hedron corresponds to the one of the sphere having the same volume.
The distribution chosen is here representative of experimental packed
beds of Boegli [14] with 60% of particles with diameters between 20
and 80 µm and 40% between 80 and 120 µm. Without more detailed
information, the polyhedra distributions in these ranges are arbitrarily
chosen as equiprobable distributions in our simulations.

The distribution of particle size is known to affect the
porosity of the generated media hence, in some cases,
impacting greatly the ETC. The packed beds poros-
ity can be partially controlled by modification of the
Coulomb friction coefficient.

As the voxel size dl equals 2 µm, the discretization
ratio req/dl varies from 10 (for the smallest particles) up
to 60 (for the largest particles) which ensures that the
relative volume error does not exceed 2% for any of the
5000 particles considered here.

The results of the DEM-FFT mean estimate and

bounds of ETC as defined in Table 2, are reported in
Fig. 9 as a function of the temperature and in Fig. 10 as
a function of the solid to gas conductivity ratio. The
mean-estimate no-contact appears in Fig. 9 and will
be discussed in section 4.2. To lighten FFT computa-
tions results depicted on figures, only the averages of the
computed ETC over the five RVEs are reported (the de-
viation between the ETC of the different RVEs and the
mean value is less than 3.5%). The lower bound is found
to slightly underestimate the ETC of the packed bed
for any conductivity ratio. The DEM-FFT upper bound
possesses limited value at high conductivity contrasts
where a large deviation between bounds is observed.
This suggests the prominent role solid-gas and solid-
solid interfaces on the ETC and the limits of the sim-
ple bounding method. As the discretization may not be
refined further for physical reasons detailed above, the
DEM-FFT bounds are not able to give adequate bound-
ing of the ETC at high conductivity contrasts.

In addition, the mean estimate does not capture the
expected increase of the ETC with temperature. To al-
low for consistent estimations of ETC, the mean esti-
mation is improved in the next sections by having inter-
faces better modelled by considering the Knudsen effect
as well as imperfections at solid-solid contacts notably
in relation to the surface roughness of particles.
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Figure 9: Evolution of the effective thermal conductivity as a function
of temperature: simulation results compared to Hall experiments [13]
and NACA experiments [14].

4.2. Effect of the solid-solid interfaces on the ETC
On Fig. 11 and Fig. 12, bimodal heat flux distribu-

tions for conductivity ratios λs/λg = 11 and λs/λg = 65
(lower bound) have been reported.

Even with the implementation of a contact resistance
at solid-gas interfaces (lower bound: assignment of
gas conductivity to interface voxels), heat fluxes in the
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tion of the ratio λs/λg (dl = 2 µm): simulation results compared to
Hall experiments [13] and NACA experiments [14].
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Figure 11: Heat fluxes (X-component) distribution. The heat fluxes
are normalized by their volume average on the RVE (λs/λg = 11,
lower bound and dl = 2 µm).

gas phase remain significantly lower than ones in the
solid phase especially at higher conductivity contrasts.
The modelling of close contact areas between particles
hence becomes critical in the simulation of the ETC of
the RVE.
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Figure 12: Heat fluxes (X-component) distribution. The heat fluxes
are normalized by their volume average on the RVE (λs/λg = 65,
lower bound and dl = 2 µm).

When discretizing RVEs (especially during the dis-
cretization for the upper bound and to a lesser extent
the mean estimate), some particles will be discretized
so that they may be in direct contact with other particles
in the discretized RVE. The presence of these perfect
contacts, although limited in size and numbers, leads to
overestimating the ETC especially at high conductivity
contrasts. In real packed beds or even in the DEM gen-
erated packed-beds, the particles are almost always sep-
arated by a thin layer of gas and physical contacts are
solely point contacts. These contacts points depends on
roughness and are imperfect. They should be associated
with a thermal contact resistance.

Therefore, solid-solid interfaces have been identified
right after the discretization of our DEM generated me-
dias. The value of the Coulomb friction coefficient of
0.2 between particles used in DEM computation, im-
plies strong contact forces, in comparison to the packed
bed global stress. This causes contacts to be mostly
”vertex to face”, ”edge to edge” or “edge to face” con-
tacts (point contact) and negligible ”face to face” or
”vertex to vertex” contacts between particles (see Fig.
13). Particles at contact areas have then been insulated
from each other by a thinnest possible layer of gas so
that heat fluxes may not pass through close contacts ar-
eas within going through at least one voxel of gas. The
effect of solid-solid contacts is especially important at
high conductivity contrasts. If two voxels from differ-
ent solid particles found themselves adjacent, a non-
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realistic, solid thermal bridge is created during the dis-
cretization of the DEM generated packed bed. These
thermal bridges, without being accounted for, conse-
quently impact the simulated ETC, which is overesti-
mated significantly at high phase conductivity contrasts,
as shown in Fig. 9 and 10.

Considering the particle contacts insulation yields re-
sults depicted on Fig. 9. The Knudsen effect is not taken
into account here but will be considered in the next sec-
tion 4.3.

The mean estimate with insulation of particles con-
tacts is denoted ”mean estimate no-contact” on Fig. 9.
This estimate now follows the experimental trend curve
as does the lower bound trend curve where the ETC is
primarily driven by the fluid thermal conductivity. This
trend is therefore similar to the evolution of Helium con-
ductivity with temperature, depicted in Fig. 1. This re-
sult confirms the sensitivity of the ETC to the contribu-
tion of solid contacts between particles and provide a
more accurate estimation in this case. However, this re-
sult should be considered with caution, as the solid/solid
contact insulation is clearly an extremum of contact ef-
fective properties. The real contact conduction is cer-
tainly between gas and solid conductivity and depend-
ing on several parameters like contact force or rough-
ness.

4.3. Impact of the Knudsen effect on the ETC
The significant deviation of bounds (Fig. 9 and 10)

shows the importance of the solid-gas and solid-solid
interfaces on the effective thermal conductivity notably
at high conductivity contrasts. As depicted in figure
10, the upper bound reaches three times the value of
the lower bound. For the same contrast (λs/λg ≈ 65),
the DEM-FFT bounds relative difference is significantly
lower for the one computed in section 3.3 for the ideal
BCC structure (22% in Fig. 7). Although the deviation
of bounds is lower, which may principally be explained
by the difference in microstructure, the deviation still
becomes consequent for the reference BCC structure.

As the proposed methodology models explicitly its
micro-structure, the thermal fields through the granular
media can also be studied. On Fig. 13 is reported a
typical view of the heat flux field through the RVE. The
temperature gradient is along X axis (horizontal on Fig.
13) while the contrast λs/λg = 8.2. Here, the lower
bound has been chosen for display. The particles can
be easily identified on this figure as they correspond to
high values of the heat flux while the gas corresponds
to the lowest values. Consistently, the highest values
of the heat flux are localized at close contact areas be-
tween particles. This last result illustrates the key role

Figure 13: X-component of the simulated heat fluxes (lower bound)
throughout the granular media (minimum and maximum values are
blue and red, respectively). The heat fluxes are normalized by their
volume average on the RVE. λs/λg = 8.2 and dl = 2 µm.

of gas-solid interfaces on the ETC and therefore the ne-
cessity to consider the Knudsen effect in confined areas
between particles.

If the thickness of the gas regions between particle
is small (less than 10 µm), the Knudsen effect on the
gas conductivity in these gas layers may not be negli-
gible (see section 2). To study quantitatively this effect
in a given voxelized microstructure, we chose to take it
into account for all the gas voxels. To do so we have
first to evaluate the distance between the solid voxels
surrounding the gas voxels considered. This computa-
tion is equivalent to evaluate, for each gas voxel, the
size of the cavities in the packed bed: the pore size.
The local pore size attached to each voxel is computed
thanks to the so-called ”Maximum inscribed ball” (see
[25]) technique which consists in finding the largest in-
scribed spheres centered on each voxel of the gas space
that just touches the solid surface. Those that are fully
overlapped by larger spheres are removed. The remain-
ing spheres are called maximal balls which covers fully
the gas space. For the packed beds considered hereafter,
this pore size distribution will be computed thanks to
this maximum inscribed balls technique (see Fig. 14).

Then, for each gas voxel, the thickness of the gas
layer is defined hereafter as the diameter of the maxi-
mum inscribed ball to which the voxel belongs. Thus, as
the size of the confined space L (the thickness of the gas
layer) is defined for each voxel, the associated Knudsen
number Kn can be computed from relation (4). Here,
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Figure 14: Size distribution of the diameter of the maximum inscribed
balls (gas voxels) in the considered packed bed (dl = 2 µm).

following [11], the corrected effective thermal conduc-
tivity of the considered voxel gas is finally estimated
by :

λc
g =

λg

1 + 2βKn
(10)

where β is given by:

β =
2 − αc

αc
and αc =

Cmr

(1 + mr)2 (11)

with C = 2.4, an empirical constant, mr = mg/ms the ra-
tio of the gas (mg) to the solid (ms) atomic masses. Even
under the high pressure adopted by [14] (1.7 MPa) for
their reported experimental data and for a confinement
distance equal to 10 µm, this correction leads to a de-
crease of 12% (300K) to 31% (1000K) of the conduc-
tivity of the gas. This correction will be systematically
applied to each gas voxel to take into account the Knud-
sen effect.

5. Discussion

The heat-flux maps reported on the previous Fig. 13
have shown the key-role of the gas regions localized
between particles on the heat propagation through the
packed bed. Hence, on Fig. 15, we have reported the
lower FFT bound and mean estimates of the ETC tak-
ing into account the Knudsen correction.

As expected, the effect of the Knudsen correction on
the effective conductivity increases with temperature. In
addition and even if the volume fraction of gas vox-
els concerned by this correction is relatively low (about
10 %), we can observe on this figure that the correc-
tion can no longer be ignored (about 20 % at 1000 K).
As expected, experimental data are located between the
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Figure 15: Relative deviation of the simulated ETC as a function of
the temperature: simulated results (dl = 2 µm) with Knudsen.

bounds. In addition, and thanks to this Knudsen correc-
tion, experimental data are now better surrounded by the
upper and lower estimates (denoted by ”mean estimate
Knudsen” and ”mean estimate no-contact Knudsen”, re-
spectively).

Solid to solid thermal resistances at contact points be-
tween particles are also known to decrease the ETC of
packed beds alongside the Knudsen effect. However,
with the discretization parameter (’dl’) selected in this
study, and given the phases conductivity ratio, the con-
tact thermal resistance should be lesser than the separa-
tion of particles with gas voxels accompanied with the
Knudsen effect, hence allowing to still bound the exper-
imental ETC. A more accurate modelling of this thermal
contact resistance may allow to further narrow the dif-
ference obtained between experimental and simulated
results. Improved modelling of the Knudsen effect and
contacts between particles combined with potential ef-
fects of particle roughness and fluid pressure should be
further studied to allow for better estimates of the ETC,
especially for more complex packed beds, for instance
possessing higher phase conductivity contrasts.

Even though the mean estimate no-contact yields the
most accurate results, it should be considered as the ref-
erence DEM-FFT as the trend of this estimation (cf.
Fig. 15) adequately follows the experimental trend with
temperature. It is important to note that this DEM-FFT
mean estimate no-contact has the most constant devia-
tion among all models. The predicted results are how-
ever below the experimental data point (relative differ-
ence of about 15%). This may mainly be explained by
the contact correction which may be, in some high heat
flux contact areas, too significant. Particles are insulated
from each other by at least 2 µm which is usually, in
critical areas for heat transfers, larger than the true dis-
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tance separating particles. This may be improved by as-
signing a corrected thermal conductivity to contact area
voxels based on the DEM generated media distances be-
tween particles, ideally also dependent on the direction
of the heat flux.

Additionally, the effect of the chosen correction (the
choice of the empirical constant C in equation (11) for
instance) on this trend may have impact on the final re-
sult, and allow for more accurate framing of ETC results
but this sensitivity analysis is left for future works.

6. Conclusions

In this work, a methodology based on the DEM (gen-
eration of RVEs) and FFT (calculation of effective prop-
erties) to simulate through bounds and estimations the
ETC of granular media made of solid particles embed-
ded in a stagnant fluid was proposed.

• The DEM-FFT method is an efficient method for
computing the ETC of granular media when no
or negligible radiation is involved. Identification
of key voxels for the media ETC may be de-
tected rapidly and their respective thermal conduc-
tivity may be corrected. This method although
used here for a simple dual phase media may be
used for more complex media involving multiple
anisotropic phases or other complex composites.

• Sensitivity analyses using the DEM-FFT method
allow to determine the optimal RVE size, num-
ber of considered particles and discretization size
(ie. 5000 particles and nearly 1 billion voxels size
RVEs). The maximal discretization was herein de-
termined by the particle surface roughness deter-
mined in reference experimental work.

• DEM-FFT lower and upper bounds can be con-
structed by identifying voxels of interfaces and the
assignment of extreme properties. These bounds
may effectively surround experimental data. How-
ever, at high conductivity contrasts, significant de-
viation of the bounds is seen. This deviation
demonstrates the prominent role of the solid-gas
and solid-solid interfaces on the ETC of the granu-
lar bed.

• The DEM-FFT usual estimate called ”mean esti-
mate” in this paper is not able to capture the effect
of the temperature on the evolution of the ETC of
the granular bed under consideration. Indeed, spe-
cial care and correction to the thermal conductivity
solid-solid interfaces are necessary to effectively

predict the ETC of granular media. Considering
the inclusion of a thin gas insulation layer in con-
tact areas, allows for the proposal of a new lower
estimate (called ”mean estimate no-contact”) fol-
lowing the experimental data trend.

• Our ”mean estimate no-contact” complemented
with a Knudsen correction is the proposed refer-
ence model to estimate the ETC of granular media.
Although, slightly underestimating the experimen-
tal measurement, it provides a consistent estima-
tion of ETC for all conductivity contrasts. Among
all models, it has the most constant difference with
reference ETC measurements.

• In future works, a better DEM/FFT modelling of
particle surface roughness as well as an improved
modelling of contact interfaces will allow for a
closer framing of experimental data. Granular me-
dia with larger particle ratio and contrast between
solid and gas conductivity may be studied to prove
the robustness of the method and considerations of
the contribution of radiation using the already im-
plemented inscribed ball technique may allow to
predict the conductivity where all mechanisms of
heat transfer are present.
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